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Abstract

This lecture discusses the problems of excess
capacity in the airline industry and focuses on the
following topics: load factors; "fair" rate of return
on investment; service-guality rivalry among airlines;
pricing (fare} policies; aircraft production; and the
impacts of excess capacity on operating costs. The
lecture also will include a discussion of the interrela-
tionships among these topics.
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Excess. Capacity, Service Quality and
the Structure of Airline Fares

by George W. Douglas*

L INTRODUCTION

CHARACTERISTIC. common to most scheduled transportation systems, s

that “demand” only rarely equals “supply.” Because of the discrete
nature of the “supply,” or capacity offered, and the stochastic nature of de-
mand, the equilibrium of any scheduled transportation system is characterized
over time by “excess” capacity. A measure commonly used to denote this ex-
cess capacity in the airline industry is the average load factor, the ratio of the
number of passengers carried to the number of seats available. Moreover,
since the costs of a scheduled transportation system are largely determined
by the capacity offered, the cost per passenger is quite sensitive to the average
Joad factor.

The average load factor in the scheduled airline industry has, in the
past, been implicitly regarded as an exogenous parameter, characteristic
of the nature of the industry and not subject to control by the airlines or the
regulators. Following that assumption, average and long run marginal costs
per passenger czn be defined, with respect to the costs cf capacity and the

ven average load factor. One might describe in this manner the costs and
ﬁre determinaticn procedure as followed by the C.A.B. in the past.

It can be shown, however, that the system’s equilibrium average load
factor, rather than being exogenous, is determined endogenously by the mar-
ket, given the costs and fares facing the carriers. In competitive markets, the
existence of scheduling competition tends to bring about an equilibrium ALF
at or near the “break-even” ALF defined by the costs of production and the
fare level chosen. Similarly, the average load factors in nen-competitive mar-
kets are higher, ceteris paribus, but their level is also related to the costs
and the fare levol chosen by the regulators. Most airline markets, moreover,
can operate over a significant range of prices, or fare, each price level de-
fining, in equilibrium, the average load factor of the system. Only recently
has the C.A.B. recognized that by setting fares it implicitly determines the
average load factor of the system, and that the setting of explicit load factor
standards for use in computing fares is desirable and proper.?

We will seei to describe in this paper the issues relevant to the selection

*Azgigtant Professor of Economics, University of North Caroling at Chapel
Hill. The author wishes to thank Jomes C, Miller III, of tl.e U.5. Department
of Transportation, with whom many of these concepts are shared, and which
were in part developed jointly, The author bears sole responsibility, however,
Jor the views erpressed here.

1 See C.A.B. Order T1.4-54, April 12, 1971. In this decision on the “Load Factor Phase™
of the General Fare Investigation, the Boards deeision reversed the Fxaminer's opinion and

cstablished for the first time desirable load factor standards for ratetnuking purposes of 565
for Trunks, and 44.49% for the Local Service Carriers. %
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110 TRANSPORTATION RESEARCII FORUM

of load factor standards, and by analyzing the implications of the ALF for the
system’s level of service quality, suggest various characteristics of an efficient
price structure. . : : ’

1. SERVICE QUALITY AND THE AVERAGE LOAD FACTOR

Although a scheduled transportation system can feasibly operate over a
wide range of average utilization, we should expect that the quality of service
provided to be closely related to the excess capacity offered. The aspect of
quality of crucial importance for us in this regard, relates to levels of delays
incurred by passengers using the system. These delays arise from two sources:
(1) that a departure is not scheduled at the time a passenger desires to de-
part, and (2) that the preferred flight might be filled, causing the traveler
to take another, less desirable flight. From the first source, we might compare
the scheduled departure times with the daily profile of desired departure
times, and compute the absolute values of the time differentials. The mean
absolute difference between the travelers’ desired departure times and the
scheduled departure time we denote as “frequency delay.” The expected
frequency delay should be a function then of the pattern of desired departure
times for the route, and the number of flights scheduled.? As the daily fre-
quency of flights increases, we would expect frequency delay to be decreased.

The second source of delay encountered is a queuing phenomenaon, gen-
erated by the fixed scheduled capacity faced by the stochastic demand, We
would expect that as additional flights (capacity) are offeced, the probability
of being delayed and the expected time of the delay would be decreased.

The sum of these two kinds of delay we denote as expected “schedule
delay,” measuring the expected absolute difference between a traveler’s de-
sired departure time and the actual departure. The level of expected sched-
ule delay can bs considered a characteristic of service quality, and is a sig-
nificant determainant of air travel demand, particularly in short to intermediate
distance markets, where substitution among medes is feasible. As the capacity
is increased by increasing the flight frequency (of a given aircraft type), we
would expect the stochastic delay and [requency delay to both decrease,
thereby decreasing schedule delay. However, as frequencies are increased,
the average load factor would decline {in spite of the additional travel in-
duced by the better service), thereby increasing the average cost per pas-
senger.

We have simulated these delay processes (described in the appendix)
and can approximate the level of frequency delay by:

(1) T, = 92F—4s6
The stochastic delay is approximated by:
N S$-N

(2) T, = .445(—)—B645 (——)—1.790
o o

B 2 I1deally, we might expect that the flights would be scheduled so ms to minimize 'Pf for

any given number of flights. Tn practice, constraints on scheduling fights over & route, and
potentin] “clustering’ effects of competition mey prevent the anctusl scheduling pattern from
being locally efficient.
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where S = capacity (seats) per aircraft,
N = mean flight .demand,
o = standard deviation of flight's demand

Expected schedule delay, T, is the sum of expected frequency delay and ex-
pected stochastic delay

) T=T+T,

For a route with the distance and the aircraft type specified, we may com-
ute the relationship between the cost per passenger, and the average load
actor, as described in figure 1. The operating costs were estimated using a

Average Cost os Reloted to Average Load Factor

st .‘l
+ 0. ¢
Coat $35. &
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Aversge Load Facror’

Hypothetical Trip:
Distance = 600 miles
Aircraft = Three tngine Turbo-Fan

FIGURE 1

model developed bfy the C.A.B., which relatcs the c.st per passenger to the
ALF, and the performance and factor price parameters of the various air-
craft types.3 For a specific level of mean daily demand (and its variance), we
can then compute the expected schedule delay for any assumed level of ca-
pacity {or the ALF). On table 1 we indicate” the iévels of these delays that
might be expected for a hypothetical route. As might be expected, as excess

3 Civil Aeronautics Board, Costing Methodology, Version & (August 1870) and Domestic
Fare Structure: Costing Tabulatione for 1963 (Sept. 1970),
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EXPECTED DELAYS PER PASSENGER;

Hypothetical Route with

Distance = 600 miles

Avg. Passengers/Day — 800
Aircraft = Three Engine Turbo-Fan

Stochastic Frequency Schedule
ALF Delay Delay Delay Cost/Pax
40 6.90 23.86 30.76 43.84
44 9.07 2492 33.99 40.99
48 11.87 2593 37.80 38.61
.52 15.54 26.90 42.44 36.59
56 20.40 27.82 43.22 34.85
.60 26.97 2871 55.68 33.34
.64 36.05 2957 65.62 32.01
.68 48,96 30.40 79.36 30.84
72 68.03 31.21 99.24 29.79
76 97.60 31.99 129.59 28.85
.80 146.63 3274 179.37 28.00

Delays measured in minutes per passenger.

Cost is weighted overage of coach and first class costs, inclusive of ""fair"” rate of
return on capital,

TABLE 1

capacity is reduced, and approaches the mean demand (ie., the ALF in-
creases) the stochastic delay increases exponentially. On fipure 2, we graph
the relationship (in this market) between the average load factor and the
expected level of schedule delay.

With the information contained in figures 1 and 2, we are now pre-
pared to relate the costs per passenger with the level of expected schedule
delay, or service quality. This “tradeoff” relationship is depicted in figure 3.
This might be interpreted as the opportunity locus facing the regulators; if
a high fare is chosen, the market equilibrium will generate a low ALF, and
o high level of service quality; reduction of the fare implies an equilibrium
with a higher ALF and a greater delay {or a lower level of service quality).4

IIt. THE OPTIMAL REGULATED PRICE STRUCTURE

Having the information necessary to describe the technical tradeoff be-
tween price (cost) and service quality, the selection of an “optimal” price

4 The tradeoff curve is drawn over a btond range, and without rezard to dernand elastici-

tles, Since we assume that total revenues must equal total costs, the range of fensible points
of equilibrium would be constrained to be belween some eritical boundary prices. The feasible
range, however, ia rather wide in most markeis.
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Expected Schedule Delay as Related to Average Load Factor
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Hypothetical Route;
Distance == 600 miles
Meon Demand = 800 passengers daily
Aircroft = Three Engine Turbo-Fan

FIGURE 2
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and implicit quality level may be investigated. It appears on first glance to
be a straightforward maximization problem, in which one should choose that
point where the technical tradeoff is consistent with that of the customers’
preferences. This is a particularly difficult problem, however, if, as in this
case, quality differentiation is constrained s The regulators must select a qual-
ity level for a population of customers whose preferences for quality may be
diverse. The level chosen then, must compromise those aspects of service
quality that are not separable among these customers.

The simplest approach to this problem is to attempt to discover the
tradeoff preferred by the typical traveler, or the implicit value the traveler
places on time he is delayed.® By assigning such a price, we can determine
an “optimal” level of price and quality, which minimizes total trip cost for

5 Conceivably, the stechastie delavs could be priced and thereby differentiated smong eus-
tomers by the sale of “priorities.” Frequency delny, however, could not be rcasonably differen-
tiated smong eustomers.

6 Thia approach, while used persussively in valeing asvme delnys in transportation, sush
a8 congestion delays, should be approached cautiously here. The time lost throagh congestion
is irretrievebly lost, wherens pcnedule delaya may have elternative uses, Idenlly, we would

like to discover the tradeoff of demand ——

aPI N = const.

PRI QAL b i R Y -
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: Cost as Related to Schedule Delay
Cost
sa5- |
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Schedule Delay

Hypothetical Route:
Distance = 600 miles
Mean Demand = 800 passengers daily
Aircraft = Three Engine Turbo-Fan

FIGURE 3

that “typical” traveler, inclusive of the value of delay times. In figure 3 we
indicate that optimal level where the slope of the technical tradecff between
cost and delays equals the assumed value of time. Alternatively, we may rep-
resent the minimization problem with a marginal analysis, such as contained
in figure 4. Here we indicate with the curve labeled “C8,” the reduction in
cost per passenger (fare) of a 2% increase in the average load factor, as a
function of the Ioad factor. We also indicate with the curves labeled MDC,
the implicit value of the additonal delay caused by a 2% increase in the aver-
age load factor, with time valued at $5.00 and $10.00 per hour. Cost mini-
mization occurs at that ALF where the fare reduction caused by the increase
of the ALF by 2% just equals the marginal delay cost (MDC}); in this market
between .59 and .686.

As pointed out above, the technical tradeoff between price and service
quality varies with changes in the distance, size and dispersion of demand.
This has the effect, then, of changing the optimal ALF chosen for markets
with different characteristics. We should expect, for example, that the opti-
mal load factor should be greater, ceteris paribus, for a long flight than a short
one. The delay for either route is related to the average load factor of the
system, or the relative number of empty seats flown, on the average. Thus,
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Least Trip Cost Analysis

2.000
Cost
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Harginal
Daluy Cost
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Avorage Load Factor
Curve C& == Cost reduction of 2% increase in averoge loed factor
Curve MDC = Marginal delay cost from 29% increase in dverage load factor;

) time valued ot $10.00/hr,
Curve MDC* = Marginal delgy cost; time valued ot $5.00/hr.

FIGURE 4

while the delay associated with any given load factor is equal for both routes,
ceteris paribus, the cost reduction (in dollars) per passenger, of a slight in-
crease in the average load factor is much greater for the long route than the
short one. In figure 5 we demonstrate this effect graphically. The curve C22
represents the cost reductions for a trip of 2200 miles, from an increase in
the ALF of 2%. As can be seen, the least trip cost ocours at an ALF of .59 for
the 600 mile trip, and at approximately .68 for the 2200 mile trip. On figure
6, we portray the range of “optimal” ALF’s for a market of a given size, as
the distance is increased.

We should also expect that the market size should affect the optimal
average load factor. The stochastic delays are derived by first computing the
probabilities of being delayed one, two, three or more flight intervals; and
then multiplying each by the average interval between flights. In comparing
a large and small market, with all other characteristics being identical, we
find that the probabilities of being delayed are similar for operations at a
given average load factor in either market. However, the expected delays
are less in the larger market, as the flight frequencies would be greater, and
the average interval between flights would be shorter, for any given ALF.
Hence, we would expect that the optimal average load factor in the larger
market would be greater than that in the smaller market. On figure 7, we
describe the analysis graphically. In this case, the marginal cost reduction

42
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. Least Cost Average Load Factor Analysis
es Distance is Yoried
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Curve C6 == Cost reduction of 2% increase in ALF for trip length of 600 miles
C22 = Cost reduction of 2% increase in ALF for trip length of 2200 miles
MDC = Marginol delay cost

FIGURE 5

curve, CB8, is identical for both markets. The marginal delay costs associated
with a market of mean demand of 3200 (labelled MDC32) lie below those
associaled with a mean demand of 800 (labolled MDCS). Hence, we find
that the optimal ALE for the smaller market is approximately .60, while that
of the larger market is approximately .64. Figure 8 describes the optimal
average load factors continuously against market size, as measured by mean
daily demand.

The delay model by which the relationship between the cost and the
level of service delays were estimated contains a number of assumptions
and approximations from limited data of the characteristics of the sto-
chastic demand distributions. Hence, the relationship should be consid-
ered tentative in the quantitative sense. However, the model, when tested
indirectly by comparing the forecast distributions of average load fac-
tors in specific markets with those observed, was found to be reasonably
accurate. In any case the qualitative assumptions of the model (ie., the
signs of the partial derivatives) are reliable, and we are thus prepared
to defend the qualitative conclusions; ie., that load factors on long
hauls should be higher than on short hauls, ccteris paribus, and higher
in dense markets than in thin markets. The measure of the delay, re-
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Range of Optimal Average Load Factors as
Related to Bistance; meon daily

demand = 800,
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‘Curve H represents optimol lood factors consistent with time volued at $5.00/hr.
Curve L represents optimal load factors with time valued ot $10.00/hr.

FIGURE &

lationship could be refined with more extensive data on the demands for in-
dividual flights over a wide variety of city pairs,

IV. CHARACTERISTICS OF THE EXISTING STRUCTURE
OF AVERAGE LOAD FACTORS

It is interesting to compare the pattern of average load factors that has
developed in the industry, with the pattern we have sugpested. In one in-
stance, the relationship of fares and the average load factor to length of
haul (distance), the industry’s pattern has been mildly perverse.

One well known characteristic of airline costs is that the average cost
of capacity per mile declines significantly with increases in distance. On
figure 9 we describe the average cost per passenger mile at various distances,
assuming that load factors are held constant. The source of this nonlinearity
is the rather substantial fixed or “terminal” cost per flight, which does not
vary with distance. The C.A.B. has, from time to time, investigated the cost
and fare “taper,” to see if they were in close correspondence. The Domestic
Air Fare Study of 1967, confused the issue, however, by principally comput-
ing the cost “taper” with load factors that varied with distance.” Although
actual load factor relationships with distance were not exhibited in this study,

7 The prineipal ammnlyses and discussions centered on a cost taper derived with load factors
varylug from 585 at 200 miles to .64 at 1000 miles to .46 at 2,600 miles, See Domestic Air Fares:
A Btudy, Civil Aeronrutics Board, Jan. 1968,
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Least Cost Average Load Factor Analysis
as Morket Size is Varied

WCE MDCI2
2,04
Cost
Raduction,
Marginal
Delay Cost
1.00
3 c6
.30 A0 .50 .60 <70 +80
Avorage Load Fagtor
MDC 8 = Marginal delay cost; mean daily demand = 800
MDC 32 = Marginal delay cost; mean daily demond = 3200

Cé Cost reduction of 2% incregse in ALF

FIGURE 7

il

one can only assume that the varying load factors chosen were typical of the
existing pattern. The determination of the study was that the fare (actually
the weighted “yield”) taper was not as steep as the cost taper; if this were
so it would explain why the load factors were lower for long hauls. Following
that study, a number of fare adjustments have been made to increase the fare
taper, presumably to be consistent with a cost taper with constant load fac-
tors.

The only data currently available to the public concerning the ALF’s in
the various markets, is that generated by the current General Fare Investiga-
tion. From this, we have data on capacity and traffic on each of 353 non-stop
routes, by all certificated carriers during selected months of 1969. We are
thus able to analyze the relationship of average load factors to the market's
characteristies with cross section regression analysis. This analysis indicates
that the average load Ffactor is most strongly influenced by the level of com-
petition, e.g., the number of carriers serving the market. The load factors
tend to be higher in large markets than in small markets, but even after ad-
justing for these effects, there yet remained (in 1969) an inverse relation
between the average load factor and distance. The results of these regressions
are summarized in table 2.

=
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Range of Optimal Average Load Factors
as Market Sixe is Varied
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Curve labelled H represents optimal
ALF's with time volued at $5.00/hr;

Curve labelled L represents optimal
ALF's with time valued at $10.00/hr.

FIGURE 8

V. CONCLUSIONS

We have demonstrated that the price level and structures set by the
C.A.B. tends to determine the average load factor of the air transport system.
Mareover, the level of service quality and the average costs of the system are
closcly related to the average load factor. By qualitative anulysis with simple
assumptions concerning the relationship, one van conclude that average load
factors should be higher in long haul markets than in short haul markets, and
higher in dense markets than in thin markets. The actuul specification of
desirable load factor standards depends on the quantitative description of the
lechnical tradeoff between price &ost) and service quality, and a measure of
the traveler's preference {tradeoff) between price and service quality. With
the limited data currently available, delay modecls were constructed to approxi-
nate these tradeoffs, and from these a range of “optimal” average load fac-
lors were computed.

APPENDIX

THE ESTIMATION OF SCHEDULE DELAYS
Schedule delay arises from two sources:

{a) That a traveler’s desired departure time does not coincide with a
scheduled Hight (“frequency delay”), and

e Aol ks it Aot g ot o
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- Cost Taper with Constant Average Load Factor
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FIGURE 9

(b) That the desired flight is filled, and the traveler must take another
flight (stochastic delay).

Frequency delay (lype “{a)”) was estimated by simulation. The daily
pattern of demand (Figure 2) of a typical route was transformed into a dis-
crete frequency distribution. A procedure was used to schedule “F” flights
during the day, such that each flight faced demand of equal size. The dif-
ference between cach traveler’s desirted departwre time and the wearest
scheduled flight was computed, and their absolute values summed for all
travelers. The mean, or average delay for each traveler was compuled. The
procedure was repeated for F+ 1, F 4+ 2, ete, thus generating the average
or “expected” value of frequency delays as a function of the daily flight {re-
quency. These observations were fitted to the function

(1) Ty = 92F—456

where Ty is the expected frequency delay, per passenger (measured in min-
utes) and I is the daily flight frequency.

To estimate stochastic delay, we characterized the problem as a gueuing
phenomenon, and described it as a Markov process. To do this, we assumed
that each flight faces a random demand with mean Ny and standard devia-
tion or. We describe the state of the system by a variable “Q,” defincd as
the number of passengers desiring space on a given flight. Assuming that the
distribution of demand is normal, we can then assign probabilities to a one
step transition matrix, An example of such a one step transition matrix is

A2,
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CROSS-SECTION ANALYSIS BY MARKET OF AVERAGE LOAD
FACTORS

“¢' -Statistics in Parentheses

Al Markets:

1. ALF = 588 — 2X10—4 X DISTANCE + .8X10—5 X PAX — .07 NO CARRIERS
(14) 9. 65 RZ == 23

2. ALF = 244 — 018 LOG DIST 4 .073 LOG PAX — .146 LOG C
(1.8} 2. (5.5) Rz =144

One Corrier Markets:

3. ALF = 494 — .3>10—4 DISTANCE - 1.4310—% PAX
(1.6} 4.1} R2 — 128

& ALF = 303 — 0156 LOG DIST { .059 LOG PAX
(1.25} (6.4} k2 = 238

Two Carrier Morkets:

S ALF = 349 — .3 10—4 DISTANCE 4 1.9x10—% PAX .
.0 (16.10) R2 == 572

6. ALF = 153 — 019 LOG DIST 4 .121 LOG PAX
(0.8) 4.5) B2 = 145

Three Carrier Markets:

Y. ALF = 495 — .2 104 DISTANCE + .1xX10—6 PAX
(0.8} (0.8} Rt = 024

8. ALF = 3711 — 017 LOG DIST 4+ .031 LOG PAX
(1.42} @n

Four Carrier Markets:

9. ALF = 464 4 5x10—¢ DISTANCE 4 .1x10—86 PAX
(.0} (2.8) RZ2 = 62

07 4+ 013 LOG DIST 4- .045 LOG PAX
(0.5} (2.2}

RZ = 105

10, ALF

I

Rz = 495

TABLE 2

given in Table Al. The row and column headings identify the state of the
system, or the number of travelers desiring a seat on the flight. The row
headings indicate the possible states of the system at any time T,, while the
volumn headings indicate the possible states of the system at time T, + 1.
The entries in the matrix are the conditional probabilities. For example, if
the state (number of passengers) at time T, were .4 of the mean demand,
the probability that at time T, + 1 there would be a demand of 4N is .1;
that there would be a2 demand of 1.8N; is .I187, ete. If at time T,, the de-
mand exceeded the capacity, then of course the demand at time T, + 1
must yeflect this “overflow.” Hence, the conditional probabilities would
change, as indicated in the matrix. These probabilitics are defined with re-
spect to a given capacity, measured in units of “X” where

o
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where § = aircraft capacity.

The “steady state” of the Markov process defines the probabilities that
Q is of any given size. Comparing these probabilities with the aircraft ca-
pacity, we can estimate the probability of being delayed by one, two, three or
more flights. By multiplying these probabilities by the average headway in-
terval, we can estimate the expected delay associated with any relative ca-
pacity, “X.” By computing many values of deleys, as X is changed, we then
fitted the function;

(3) T, = .455(2)"-“5 (S—;—IS)“L'TQ“ ¥ (headway interval),

One Step Transition Metrix X = 575

State (queue length) at T, + 1
State JIAN AON 67N 93N 12N T47N 173N 20N 227N 253N 3.07H
ot T, 1338 04% 100 158 194 (187 141 084 039 014 .004 ‘ 028
AON £49 100 158 %4 187 041 084 039 014 004 028
BIN 049 100 58 194 187 141 084 039 .Di4 004 028
93N 049 100 158 194 187 141 084 039 014 004 028
12N 049 100 158 .1%4 187 141 084 039 014 004 028

147N 0 049 300 358 194 BT 141 084 039 014 032
173N 0 0 .049 100 .lst Jd87 141 084 039 046
2.00N 0 0 0 049 100 ss\_.m J87 141 084 085
227N 0 0 0 ¢ 049 100 158 194 BT 141 169
253N 0 0 0 049 00 158 194 187 210
307N 0 0 0 0 049 100 58 194 397

Mote: Motrix condensed for expository purposes; computations were mode using
33 x 33 matrix,

M represents the mean demand per flight peried.

TABLE Al






