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ABSTRACT

Explosives and pyrotechnic propellant materials which

will withstand heat sterilization cycling at 1250 C and ten year deep

space aging under 10 - 6 torr and 66 0 C have been selected. The selection

was accomplished through a detailed literature survey and an analyti-

cal evaluation of the physicochemical properties of the materials.

The chemical components of the electroexplosive devices used in

U.S. missiles and spacecraft were categorized into primary explo-

sives,secondary explosives,and propellant ingredients. Kinetic data

on such parameters as thermal decomposition and sublimation were

obtained for these materials and used as a basis for the ten year

life prediction. From these experimental data and some analytical

calculations, a listing of candidate materials for deep space missions

was made.



INTRODUCTION

Future long-term deep space missions, such as the ex-

ploration of the outer planets, necessitate the spacecraft being exposed

to deep space environments for periods of up to ten years. The ex-

plosive and propellant actuated devices on board used to performmechani-

cal functions must survive these exposures' and exhibit a predictable per-

formance. More specifically, the chemical components (i. e. the ex-

plosive and pyrotechnic propellant materials) in the devices must main-

tain their initial characteristics throughout the mission.

Under relatively high sterilization temperatures (e. g.

two 64 hour cycles at 125 0 C) and on prolonged exposure to an outer

space environment (e.g. 10 years at 660C*under 10-6 torr) these

chemical components could experience several physical changes. It

is conceivable that materials having relatively high vapor pressures

will sublime away from initiating interfaces, thus creating voids and

potential functional failures. For example, the exposed material at

the open ends of mild detonating fuse leads, (MDF),may evaporate and

be deposited onto some foreign surface. Also, after storage at an

elevated temperature for periods of up to 10 years, the degree of

thermal decomposition of the materials may be significant enough to

affect the performance of the device. Additionally, since many ord-

nance devices contain several explosives, any material that would

melt during sterilization or during the flight could, upon cooling,

cause various eutectic mixtures to be formed, and resultant performance

changes.

'Caused by solar radiation or onboard radioisotope thermoelectric

generate (RTGs).



To determine the survivability of materials to be used

in long term deep space missions each item must be tested. Since

heat sterilization is accomplished in a few days, laboratory tests

duplicating. the sterilization requirements may easily be performed.1- 6

However, since real-time aging and either performance testing of the

devices or analytical (chemical) testing of the components to deter-

mine their survivability and reliability after several years' aging

is not practicable,an accelerated aging technique must be used.

Studies have been and are being performed wherein ex-

plosives and propellants undergo "accelerated aging". 7 -11 These

studies are directed at determining the effects of age on the performance

of devices or propellants and at establishing the maximum safe storage

life. However, in these studies, "accelerated aging" is the storage of

an explosive or propellant actuated device at some arbitrarily chosen

temperature above ambient, typically 50 to 80 0 C, under ambient pressure,

for periods ranging from 1 to 3 years. The philosophy of this approach

is that if the items survive storage at an elevated temperature for a

particular length of time then they will survive for longer periods of

time at a lower storage temperature.

The most quantitative accelerated aging method that has

been proposed thus far 12 is based on a modification of the Arrhenius

reaction rate equation. This method assumes that if a material survives

a certain length of time at some elevated temperature, then this survival

time increases by a factor of between 2. 7 and 2. 9 for every 10 0 C de-

crease in temperature. In this technique it is further assumed that the

reaction rate for all materials increases by a factor of between 2 and 3



3

for each 10 0 C rise in temperature.

Innone of these accelerated aging studies is any reference

made to the possibility that a change may occur in the activation

energy of the critical degradation process with temperature.

An accelerated aging procedure can only be meaning-

ful when the critical degradation process occuring at the elevated

test temperature is truly the same process which occurs at the actual

storage temperature. The relationship between the rate of a degrada-

tion process and temperature may not be a single linear relationship,

but instead be two or even more linear relationships. One example

of this can be seen with PETN, where the. plot of log (% weight loss)

against reciprocal temperature gives two straight lines with the break

occuring at the melting pointl3. In such a case, any accelerated

aging above the Iielting puilit wuuld be imeaningless because the

accelerated test would be monitoring a reaction completely different

from the one occuring in real aging. Another example of this can be

seen in the thermal decomposition of ammonium perchlorate (AP).

Below approximately 3000C AP undergoes decomposition such that

only 30% of the starting material is decomposed, whereas above

3000C the reaction goes to completion with a different activation

energy. It is, therefore, extremely important that the temperature

chosen for the accelerated aging tests be within the temperature range

applicable to the chemical reaction occurring in real-time aging.
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Basically, the processes involved in aging can be

described in terms of solid state kinetics, so it is possible to deduce

a meaningful and correct aging from data on the parameters relating

to the physicochemical properties of the materials such as thermal

decomposition kinetics, sublimation kinetics, phase change character-

istics, change of state phenomena, etc. These decomposition and

sublimation kinetics, when available, can be used to predict material

losses up to a ten year period under deep space environment exposures.

When these kinetic data are not available, an analytical approach to

determine these parameters can be used. Since explosive and pro-

pellant materials stored for years in a vacuum at some elevated

temperature will experience degradation through sublimation and/ or

thermal decomposition, two parameters of major interest are the

rates of these two processes.

The rate at which a material decomposes thermally is

determined by the rate constant, k, whose thermal dependence is

given by

k = A exp- E / RT (1)

where k, the reaction rate constant is expressed in units of sec - 1, E

is the activation energy in kcal mole-l, T the absolute temperature,

and A an experimentally determined frequency factor. If the fractional

decomposition, a , under isothermal conditions, can be determined

as a function of time, t, then k can be evaluated. Several equations have

been derived to describe the complete a - t curvesl4 such that accurate
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linear plots can be obtained up to a = 0. 99. For our purposes we are only in-

terested in a values of 0. 10 which enables us to use the simple expression

t = In (I - a ) /k (2)

for all cases. This is still an approximation of correctness but any

error due to invalidity of the equation will be small.

The degree of sublimation exhibited by a material

15can be determined by the Langmuir method, using the expression

G PM (3)
17. 14 T

-21where G is the rate of sublimation in gm. cm. -2 sec. -, P is the

vapor pressure in Torr, M the molecular weight , and T the absolute

temperature. The vapor pressure of a material, if it cannot be ex-

tracted from experimental data, can be derived from the vapor pressure

equationl 6 expressed as

log P = A + B/4. 576T (4)

where A and B are experimentally determined constants, A being a

frequency factor and B the activation energy associated with the pro-

cess, and T is the absolute temperature.

By using data available in the literature and these

analytical expressions on explosive and pyrotechnic propellant materials,

a selection of candidate materials most likely to survive sterilization
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and long term deep space aging can be made. In this study the ex-

plosive components of the electroexplosive devices used in NASA,

Army, Navy, and Air Force systems were identified, and categorized

into primary explosives, secondary explosives and propellant ingredi-

ents, and then, along with some available but as yet unused explosives,

evaluated for qualification as candidates. The qualification of a

material as a candidate for long term deep space missions has been

based upon its ability to survive (1) two 64 hour sterilization heat

cycles at 125 0 C and (2) storage for ten years at 660 C under a pressure

less than 10-6 Torr.

,RESULTS AND DISCUSSION

a. Primary Explosives

Ten primary explosives were surveyed (Table 1). For

six of these - lead styphnate, barium styphnate, LDNR, LMNR, TPB,

and KDNBF' - insufficient data are available to determine whether

or not they would withstand the specified heat sterilization and deep

space storage conditions.

Lead styphnate loses its water of hydration readily at

elevated temperaturesl 7' 18, although after heat sterilization of

three 36-hour cycles at 145 0 C 24 devices with lead styphnate, ignition

elements fired without failure 3. Whether it will lose its water of

hydration upon deep space storage to an extent that would lead to non-

uniformity and erratic behavior is questionable. Since in general

the properties and the stability of barium styphnate 19 are very

*Acronyms are defined in Tables 1 and 2.
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similar to lead styphnate, the same reservation applies to it.

LDNR and LMNR are anhydrous and less volatile than

the styphnates 2 0 , so may survive sterilization, however, their long

term deep space stability is indeterminable from the limited short

term thermal and vacuum stability data available 3 , 21.

The only data available on TPB are that it melts at

386 0 C, remains stable after 2 hours at 3000C, and exhibits several

phase transitions 2 2 . More explicit data on the properties of its

different phases, especially volatility, must be obtained.

Only short term vacuum stability2 3 and thermal

stability (at 100oC) 2 4 tests have been preformed on KDNBF.

These six explosives are therefore labeled as question-

able candidates until more data relevant to the specified environments

are available to make a firm decision. For the remaining four

primaries- DDNP, black powder, lead azide, and copper azide-

sufficient data are avilable to indicate that they would not survive

the specified environments.

DDNP, for instance, in vacuum at 120 0 C is completely

decomposed in less than 24 hours, and at 110 0 C decomposition is

complete in 80 hours25. These temperatures and times are well

below those specified for sterilization. The melting point of the sul-

fur in the black powder is also below the sterilization temperature.

Additionally, because of the high volatility of sulfur it is possible

that under the specified deep space storage constraints it will sub-

lime from the black powder leaving an inhomogeneous mixture.



Even though lead azide is perhaps the most widely used

primary explosive in military applications, its instability2 6 ,27 and

compatibility 2 8 limit its immediate qualification as a candidate. Numerous

cases of spontaneous explosion of lead azide are known, e. g. during pour-

ing, weighing, drying, and even upon storage 2 4 . The extreme sensitive-

ness and instability are counteracted in the commercial product by the

addition of small amounts of lead hydroxide and dextrin. This form, known

as "dextrinated lead azide", has the approximate composition: lead azide,

93%; lead hydroxide, 4%; dextrin and impurities, 3%. Dextrinated lead

azide, however, is less thermally stable than pure lead azide. At 75 0 C it

loses approximately 0. 8% of its weight during the first four days, after

which further heating involves a loss of 0. 03 - 0. 05% per week 3 0 . Should

this degradation continue at this rate, in 10 years this amounts to a 15 to

25% loss. At the specified storage temperature (66 0 C) the amount of

material lost for the same time period will be only slightly less. For

missions relevant to this studylit is probable that lead azide of a pure form,

e. g. polyvinyl alcohol lead azide or RD1333 lead azide could be used. Lead

azide is unique and in many cases necessary in an explosive train design to

achieve detonation in short columns. Thus lead azide, of a pure form, could

qualify for long term space missions.

Although copper azide is not widely used, its high shock

sensitivity eliminates it as a candidate. Copper azide is exceptionally

sensitive to friction and is often exploded by contact. It is also very

sensitive to impact, and is exploded by a 2 kg weight falling from a height

of less than 1 cm31. Associated with this high sensitivity, copper azide

is known to be extremely unpredictable in its explosive stability3 2



Again, although sufficient data are available to dis-

qualify four of the ten primary explosives surveyed, the remaining

six cannot positively be either qualified or disqualified until more

data are made available, particularly on their long term thermal

stability.

b. Secondary Explosives

The secondary explosives surveyed are listed in Table 2.

As indicated in the Table, only eight different secondary explosives

are being utilized in aerospace and military electroexplosive devices -

DIPAM, HMX, HNS, nitrocellulose, nptroglycerine, PETN, RDX,

and TACOT. In the process of surveying and evaluating these eight

explosives along with several available but as yet unused explosives,

some limited information and data were examined for six explosives

not yet available commercially. These six are newly developed high

temperature resistant explosives, and the data on them are mostly

in the form of synthesis procedures and crystallographic structure

determinations. However, the limited amount of stability data that

are available at this time indicate that these materials are potential

candidates, and that further studies on them may conclusively

demonstrate their qualification.

Vapor pressure and sublimation data are reported in

the literature for only nine sec~ dary explosive materials. Of these

nine, five are currently used in devices - HNS, DIPAM, HMX, RDX,

and PETN. The remaining four - TATB, DATB, TNA, and TNT -

are available but as yet unused. Table 3 lists the vapor pressure,
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sublimation rate, and anticipated ten year weight loss determined

for these materials at the specified storage temperature, 66 0 C.

Data on ammonium perchlorate (AP) are included in the Table for

comparison because of its extensive use as a propellant ingredient

in many initiators and igniters. The table shows that among the

currently used explosives there is an extremely wide range of

material losses, and the relatively large losses of RDX and PETN

are serious enough to disqualify these materials.

A comparison of the change in vapor pressure as a

function of temperature for the materials listed in Table 3 is given

in Figure 1. The curves were generated from the reported vapor

pressure equations of each material. Again, among the currently

used explosives large differences extending over several orders of

magnitude can be seen. A further comparison of the five used ex-

plosives, in the amount of weight lost through sublimiation as a func-

tion of temperature, is given in Figure 2, where equation(3) was

used to generate the data. The relatively high volatility of RDX and

PETN which disqualifies them as candidates can be seen. After ten

years at the specified storage temperature of 660C, RDX and PETN,

will sublime approximately 20 gm/ cm 2 and 890 gm/ cm 2 , respectively,

while HNS, HMX, and DIPAM by comparison will sublime approxi-

mately 6 x 10 - 7 , 10 x 10 - 7 , and 2. 6 x 104gm/ cm 2 .

Further reasons for the disqualification of RDX and

PETN can be seen in Figures 3 and 4 where the time in which HMX,

RDX, and PETN will thermally decompose 1% and 10% as a function



of temperature is presented. Since the activation energies and

Arrhenius constants used in equation (1) to generate the curves in

these figures were experimentally determined at temperatures

generally between 200 and 300 0 C, the rate constants for the required

lower temperatures must be considered as approximate. At the

specified sterilization temperature, 125 0 C, these data indicate PETN

will decompose 10% in about 18 hours and RDX will decompose 10%

in about 0. 1 years. At the specified storage temperature however,

RDX will decompose only 1% in about 300 years, and PETN 1% in

about 10 years. In comparison, the amount of HMX decomposition

at these temperatures is negligible.

Four additional secondary explosives which do not

qualify as candidates are TNA, TNT, nitroglycerine, and nitrocellu-

lose. As seen in Table 3 and Figure 1, TNA is more volatile and

less thermally stable than RDX, and TNT more volatile and less

stable than PETN. Since RDX and PETN were disqualified as dis-

cussed above, so TNA and TNT are also disqualified as candidates.

Nitroglycerine is disqualified because it is an extremely volatile

liquid, unsuitable for spacecraft use. Nitrocellulose has a relative-

ly low thermal stability, is more volatile than PETN, and at 134. 50 C

explodes in 300 minutes 38, so is therefore disqualified. Thus, of

the eight secondary explosives that are being utilized in devices

only four qualify as candidates - HNS, DIPAM, HMX, and TACOT.

Also, of the four available but as yet unused secondary explosives

for which sublimation and thermal decompostion data are available
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only two qualify - TATB and DATB.

For the remaining available but unused secondary

explosives specific sublimation and thermal decomposition data are not

available, but the chemical and thermal stability data available indi-

cate that two of these secondaries - nonanitroterphenyl and

octanitroterphenyl - will withstand the specified heat sterilization

and deep space storage constraints. For the other explosives in

this group the limited amount of stability data indicate that these

materials are potential candidates and that further studies may

clearly show them to be qualified.

c. Pyrotechnic Propellant Materials

Presently, eighteen different inorganic materials, six

metals, one metal alloy, and three organic materials are being used

as pyrotechnic propellant ingredients in ordnance devices (Table 4).

Although sublimation and vapor pressure data are

available on only three of the eighteen inorganic materials (ammonium

perchlorate 3 5 , molybdenum trioxide 3 9 , and silicon dioxide 4 0 ) and

only limited thermal decomposition data have been reported for these

materials, they are in general quite stable at the specified steriliza-

tion and storage temperatures. Only two materials remain question-

able--ammonium dichromate and lead thio-cyanate. The only applic-

able data available on ammonium dichromate and lead thiocyanate

are that they decompose at 170 0 C and 190 0 C respectively. 41 All of

the other inorganics being used melt or begin decomposing at 300 0 C
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and higher. Since ammonium dichromate and lead thiocyanate have

relatively low decomposition temperatures, their decomposition rate

constant may be high enough such that after ten years at the specified

storage temperature, they would be significantly or perhaps even

completely decomposed. Thus, the data on ammonium dichromate

and lead thiocyanate at this time are insufficient to either qualify or

disqualify them as candidates.

The six metals and one metal alloy currently in use

are aluminum, boron, magnesium, titanium, tungsten, zirconium,

and zirconium/ nickel. Aluminum and magnesium melt at 6590 C and 651 0 C,

respectively, while the remaining five melt between 1500 and 3 4 0 0 0C 4 2

The temperatures at which the metals have a vapor pressure of 10-11

torr 4 2 are: aluminum-5420 C, boron-1062 0 C, magnesium-115 0 C,

Nickel-767 0 C, titanium-807 0 C, tungsten-1777 0 C, and zirconium-

1227 0 C. None of the metals will melt, sublime, or decompose under

the specified sterilization and deep space storage conditions. With

the data that are available so far, there are no indications of any

compatibility problems with, these metals in propellant ingredients.

These six metals and one metal alloy therefore qualify as candidates.

Teflon, Viton A, and Viton B are the three organic

materials presently being used as pyrotechnic propellant materials

along with metals and metal oxides in initiator and igniter composi-

tions. Teflon is extremely inert and stable up to tempe ratures of

43,44
250 0 C. 44 At temperatures above 2500C it begins to decompose

very slowly. The initial rate of weight loss is 0. 0001% per hour at
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260 0 C, and 0. 004% per hour at 3700C. 45 Viton A and Viton B also

display outstanding resistance to degradation by heat, with Viton B

possessing better high temperature resistance than Viton A.46,47

After 3 days at 2000C in air, Viton A had a 1.4% weight loss, but,

for the same time and temperature in vacuum it had a 0. 45% weight

loss. 48 After 24 hours at 26000C, raw Viton had a 1% weight loss in

air and a 0. 7% weight loss in nitrogen. 48 In view of the way these

three organic materials -- Teflon, Viton A, and Viton B -- are being

used, along with their temperature stability, they qualify as candidates.

CONCLUSIONS

Many explosive and pyrotechnic propellant materials

are available which appear to be capable of surviving heat steriliza-

tion and ten year deep space flight tirres without deterioratinn When

data on the parameters relating to the physicochemical properties of

these materials such as thermal decomposition kinetics, sublimation

kinetics, change of state phenomena, etc. are available the chemical

and thermal stability of these materials under the specified environ-

ments can be determined. Unfortunately, these types of data are

available for only a small number of explosive materials and there-

fore just a few secondary explosives and propellant ingredients can

be definitely qualified as candidate materials (Table 5) capable of

withstanding the specified environments. The limited amount of

relevant data that are available on a larger number of primary and

secondary explosives is sufficient to qualify these materials con-

ditionally. Further data and/ or testing are required for definite quali-

fication.
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TABLE 1 Primary explosives surveyed.

Lead styphnate PbC6H3N30 9  exp. INSD

Lead styphnate PbC6H 3 N 3 O 9  exp. IN,S,D

Barium styphnate BaC 6 H 3 N 3 0 9  IN,S,D

Lead 4, 6 dinitroresorcinol(basic) LDNR PbZC 6 H4 N20 8  213 D

Lead mononitroresorcinol LMNR PbC6 H 3 NO 4  IN,S,D

1,3,5 tripicrylbenzene TPB C24H9N90 8 386 D

Potassium 4, 6-dinitrobenzofuroxan KDNBF KC 6 H4 N 4 0 6  exp. 210 S

Diazodinitrophenol DDNP C6 HZN 4 0 5  157 S

Black powder 74% KNO 3  IN,S,IG
10.4% S
15.6% C

Lead azide Pb(N3)2 exp. IN,D

Copper azide Cu(N 3 )2  exp. 202 IN,IG

a IN = Initiator
IG = Igniter
S = Squib
D = Detonator



TABLE 2 Secondary explosives surveyed 20

End Appli-
Common Name Acronym Chemical Melting cation or

Formula Point OC PrincipalU s

Azobis (2,2' ,4,4' ,6,6' hexanitrobiphenyl) C 2 4 H 6 N 14 0 2 4  >485 NA

Ammonium picrate Expl D C6H 6 N4 0 7  d. 265

3,3' bis (methylnitramino) -2,2' ,4,4',6,6'- Bitetryl C 1 4 H8 N 1 0 0 1 6  218
hexanitrobiphenyl

1,3 diamino -2, 4, 6, trinitrobenzene DATB C6 H5N506 290

3,3' diamino -2,2' ,4,4' ,6,6' hexanitro- DIPAM C 1 2 H6 N8 0 1 2  304 MDF
biphenyl

1,3 bis (2,4, 6 trinitrophenylamino) -2, Dipicryl C 1 8 H7 N 1 1 0 1 8  335
4, 6 - trinitrobenzene DATB

N, N dipicrylpyromellitimide DIPPI C22H 6 N801 6  d. 370

Dodecanitroquaterphenyl C2 4 H 6 N 1 2 0 2 4  > 400 NA

2,2' ,4,4' ,6,6' hexanitrodiphenylamine Hexite C 1 2 H 5 N 7 0 1 2  243

Cyclotetramethylenetetranitramine HMX C4 H 8 N 8 0 8  276 D

2, 2' ,4,4' ,6,6' hexanitroazobenzene HNAB C 12 H 4 N8012  221

2,2',4,4',6,6' hexanitrobiphenyl HNB C 1 2 H4 N 6 0 12  241 NA

2, 2' ,4,4' ,6,6' hexanitrodipherlylsulfone HNDS C 1 2 H4 N 6 0 1 4 S d. 345

2, 2' ,4,4' ,6,6' hexanitrooxanilide HNO C 1 4 H6N 8 014 d. 302

2,2' ,4,4' ,6,6' hexanitrostilbene HNS C1 4 H6N 6 O12 316 MDF

Potassium hexanitrodiphenylamine C 1 2 H5N 7 0 1 2 K NA

Nitrocellulose C6H90 4 (ONO2 d. Propellant

Nitroglycerine C 3H 5N 30 9  13.2 Propellant

Nitroguanidine NG CH 4 N 4 0 2

2,2' , 2",4,4' ,4",6,6'6" nonanitroterphenyl C1 8 H5N 9 018 440

2,2',4, 4' ,4", 6,6' 6" octanitro-m-terphenyl C1 8 H 6 N8016 > 400

2, 24, 4' , 6-pentanitrobenzophenone C'13H 5N 50 1 1  320 NA

Pentaerithrytol tetranitrate PETN C5H8N40 1 2  141

Cyclotrimethylenetrinitramine RDX C 3 H6N606 204 MDF,D

Tetranitradibenzo- 1,3a,4, 6a TACOT C12 H 4 N808 378 MDF,D
tetraazapentalene

1, 3,5 triamino-2,4, 6 trinitrobenzene TATB C6H6N60 6  330

2,4, 6 trinitroaniline TNA C6H4N 4 0 6  190

Tetranitrocarbazole TNC C 1 2 H 5 N 5 0 8  296

1,4, 5,8 tetranitronaphthalene C 1 2 H4N 4 0 8  > 400

2,2' ,4,4' tetranitrooaxnilide TNO C1 4 H 8 N6010 d. 313

2,4,6 tripicryl-s-triazine C 2 1 H6 N 1 2 0 1 8  352 NA

1,3,5-tris (methylnitramino)-2,4,6- Tristetryl C 9 H 9 N 9 0 1 2  exp. 205
trinitrobenzene

a MDF = Mild detonating fuse
D = Detonator

IG = Igniter
NA = Not Available



TABLE 3 Vapor pressure and sublimation data at 660C

Material Vapor pressure, Sublimation 10 yr. weight
P( to.rr ) rate, G loss, W

(gm/ cm2/ sec) (gm/ cm 2 )

HNS 2. 88 x 10-14 (33) 1.93 x 10- 1 5  6.09 x 10 - 7

DIPAM 5. 02 x 10-14 (34) 3. 39 x 10-15 1. 07 x 10- 6

TATB 6.46 x 10 - 12 (33) 3.29 x 10-13 1. 04 x 10 - 4

HMX 1.51 x 10-11 (33) 8.24 x 10 - 13 2.60 x 10 - 4

AP 1.05 x 10-8 (35) 3.61 x 10-10 1. 14 x 10-1

DATB 1.78 x 10-8 (33) 8.81 x 10-10 2.78 x 10-1

RDX 1.32 x 10-6 (33) 6.24 x 10- 8  1. 97 x 101

TNA 1.74 x 10 - 6 (33) 8.36 x 10- 8  2.64 x 102

PETN 5.01 x 10- 5  (36) 2. 82 x 10- 6  8.89 x 102

TNT 5.62 x 10-3 (37) 2. 68 x 10 - 4  8.45 x 104

*1-'
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TABLE 4 Pyrotechnic propellant ingredients surveyed.

Common Name Chemical Melting End Application
Formula Point OC orPrincipal Use a

Aluminum Al 660 S, IG, GG

Ammonium dichromate (NH4)2 Cr20 7  d. 170 IN,IG

Ammonium perchlorate NH4CIO4  d. 300 IN, S, IG

Barium chromate BaCrO4  IN, S, IG

Barium nitrate Ba(NO3 )2  592 IN, S, IG

Barium peroxide BaO 2  450 IN, IG

Boron B 2300 S, IG, GG

Carbon C 3500 IN, S

Cupric oxide CuO 1326 IN, S

Diatomaceous earth 84 to 92% SiO 2  1600 S

Ferric oxide Fe20 3  1565 IN

Lead chromate PbCrO 4  844 IG

Lead peroxide PbO4  d. 290 IN

Lead thiocyanate Pb(SCN) 2  d. 190 S, IG

Magnesium MG 651 IG

Ivioiybdenum trioxide Mo 03 795 IG

Nickel Ni 1455 IN, S

Potassium chlorate KC10 3  356 S, IG

Potassium perchlorate KC10 4  610 IN, S. IG, GG

Potassium nitrate KNO 3  338 S, IG, GG

Silicon dioxide SiO2  1713 IN

Teflon [C2F 4 ] d. 250 IG

Titanium Ti 1725 IG

Titanium hydride TiH2  d. 400 IN, GG

Tungsten W 3410 IG

Viton A d. 200 IN, IG, GG

Viton B d. 200 IN, IG, GG

Zirconium Zr 1857 IN, S, IG

a IN = Initiator

IG = Igniter

S = Squib

D = Detonator

GG= Gas generator
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TABLE 5 Qualified candidates

Pyrotechnic Propellant Ingredients

Secondary Explosives Inorganic Metal Organic

Diaminohexanitrobiphenyl(DIPAM) Ammonium perchlorate Aluminum Teflon

Cyclotetramethylenetetranitramine(HMX) Barium chromate Boron Viton A

Hexanitrostilbene(HNS) Barium nitrate Magnesium Viton B

Tetranitrodibenzotetraazapentalene(TACO-T) Barium peroxide Titanium

Nonanitroterphenyl Carbon Tungsten

Octanitroterphenyl Cupric oxide Zirconium

Triaminotrinitrobenzene (TATB) Diatomaceous earth Zirconium/
Nickel Alloy

Diaminotrinitrobenzene (DAfij) Ferric oxide

Lead chromate

Lead peroxide

Molybdenum trioxide

Potassium chlorate

Potassium perchlorate

Pottasium nitrate

Silicon dioxide

Titanium hydride
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TABLE 6 Conditionally qualified candidates a

Primary Explosives Secondary Explosives

Barium styphnate Azobishexanitrobiphenyl

Lead dinitroresorcinol, basic (LDNR, basic) Ammonium picrate(Explosive D)

Lead mononitrorescorcinol(LMNR) Bis (methylnitramino)hexanitrobiphenyl
(Bitetryl)

Lead styphnate
Bis (trinitrophenylamino)trinitrobenz ene

1, 3,5 tripicrylbenzene(TPB) (Dipicryl DATB)

Potassium 4, 6 dinitrobenzofuroxan(KDNBF) Dipicrylpyromellitimide (DIPPI)

Dodecanitroquaterphenyl

Hexanitroazabenzene (HNAB)

Hex-n-itrbiphenyl (HTN!B)

Hexanitrodiphenylamine (Hexite)

Hexanitrodiphenylsulfone (HNDS)

Hexanitrooxanilide (HNO)

Potassium hexanitrodiphenylamine

Nitroguanidine (NG)

Pentanitrobenzo phenone

Tetranitronaphthalene

Tetranitrocarbazole (TNC)

Tetranitrooxanilide (TNO)

Tripicryl-s-triazine

Tris (methylnitramino) trinitrobenz ene
(Tristetryl)

a Indeterminate without further data or testing.
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FIGURE CAPTIONS

Figure 1. Comparison of Vapor Pressures in Torr as a Function

of Temperature for the Explosives (1) TNT, (2) PETN,

(3) RDX, (4) TNA, (5) DATB, (6) AP, (7) P -HMX,

(8) TATB, (9) DIPAM, and (10) HNS.

Figure 2. Amount of Material Lost Through Sublimation, G, in

gm/ cm 2 / year, as a Function of Temperature, for HNS,

DIPAM, HMX, RDX, and PETN.

Figure 3. Time in Years for HMX, RDX and PETN to Experience

a 1% Loss Through Thermal Decomposition, as a

Function of Temperature.

Figure 4. Time in Years for HMX, RDX and PETN to Experience

a 10% Loss Through Thermal Decomposition, as a

Function of Temperature.
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