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" SUMMARY
t

f

i A new eigensolution routine, FEER (Fast Eigensolution Extraction

i Routine), used in conjunction with NASTRAN at Israel Aircraft Industries

is described. The FEER program is based on an automatic matrix re-
_ duction scheme whereby the lower modes of structures with many degrees

of freedom can be accurately extracted from a trldiagonal eigenvalue

problem whose size is of the same order of magnitude as t_e number of

required modes. The process is effected without arbitrary lumping of
masses at selected node points or selection of nodes to be retained in

the analysis set.

The results of computational efficiency studies are presented,

showing major arithmetic operation counts and actual computer run times
of FEER as compared to other methods of elgenvalue extraction, including
those available in the NASTRAN READ module. It is concluded that the

tridiagonal reduction method used in FEER would serve as a valuable addi-

tion to NASTRAN for highly increased efficiency in obtaining structural ,_

vibration modes. -r

INTRODUCTION :_

One of the most burdensome computational tasks in dlscretized

structural systems centers around the extr _tlon of mode shapes end

frequencies when the orders of the metr + :s are large. The difficulties
are compounded as the number of requir., eigensolutions increases and
multiple or near-multiple eisenvalues are encountered.

1974006473-482



L

Currently, NASTRAN provides three methods for modal extraction
' (refs. 1 and 2): the Trldiagonal or Givens method, the Inverse Power

Method with Shifts, and the Determinant method. In each method the

problem size encountered is equal to the number of degrees-of-freedom

in the analysis set which, given typical, present-day prob:em applica-

tions, may run into the thousands. One means of reducing the size of
; th_ analysis set is via the Ouyan reduction (ref. 3), which has been

incorporated into NASTRAN. This technique, which is similar in concept

to the Kaufman - Hall reduction (ref. 4), requires a "Judicious"

elimination of selected mass degrees-of-freedo_ and an attempt is made
to account for the influence of the eliminated nodes through eq,llvalent

energy criteria. As demonstrated by Levy (ref. 5), such an intuitive

approach involves a great deal of guesswork and can led to grossly
inaccurate results, particularly in systems with relatively non-unlform

i mass distributions.

? What is required to circumvent these difficulties is a more

| automated eigenreduction scheme which yields _ccurate lower modes of
' the structural system. In essence, the probl,m may be pos_ as follows:

i Given the nth order eigenvalue problem

,, [K]{+) = w2[M][_) (i)

where [K] and [M] are symRetric and non-negative definite, we wish to
approximate the nodal vectors by

{+} - IT]{8} (2)

where [T] is a sultpblv constructed transformation matrix of size
nxm (m<<n) and (8_ is en m-component vector of generallzed co-
ordinates. Usinl a R_yJelgh-Ritz procedure the r+sultinK reduced,
mth order eigenpz_b!_ _s of the form

[K]{6) - _2[f1(6) (3)

where

- IT]T (4a)

- IT]T[M] (4b)

• and _ is an approximate wdal frequency. If a specified number of
lower nodes are to be accurately obtained, then the Indlvldual nth

' order vectors comprisin8 the transformation matrix must be eufflclently

I rich In the corresponding modal vector,. Thus, the practical value of
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the reduction 3theme hinges on its ability to generate such a trans-

. _ formation matrix with a minimum of computational effort.

_, A number of closely related methods involving elgenreductlonconcepts have been proposed previously. In the work of Hestenes and

i Karush (ref. 6), eigensolutlons were obtained via a block power method(iterating with several vectors simultaneously as opposed to a single

i vector) and a reduced eigenvalue problem was employed to orthogonallze
and improve successive blocks of vectors between iteration steps. More
recently, Jennings and Orr (ref. 7), Dong, Wolf and Peterson (ref. 8),

i and Bathe and Wilson (ref. 9) proposed similar techniques using the
| Inverse Power Method in conjunction with simultaneous sets of vectors

(alternately called Simultaneous Iteration, Subspace Iteration and

Block-Stodola methods). In each of these approaches, however, the

functional role of the reduced elgenproblem Is to improve a sub-
space of approximate modal vectors with central emphasis being placed

on a block-type Inverse Power method.

In this report, a new elgenreductlon routine, FEER (Fast

Eigensolution Extraction Routine) is described, wherein a single reduced

eigenproblem is generated for the accurate extraction of any specified

number of low6r modes. Further, the transformation matrix is generated
vector-by-vector in such a way that the reduced ei_enproblem is%

tridiagonal in form. The FEER pcogram is now being used in conjunction
with NASTRAN at Israel Aircraft Industries to obtain much more

economical eisensolutlons than currently possible with the NASTRAN READ
module.

The trldlagonal reduction method employed in FEER was first
suggested by Cranda11 (ref. 10) as a truncated version of the Lanczos
alsorlthm (ref. 11). However, it was soon discovered that the original
scheme voseessed numerical instabilities (refs. 12 and 13). The

necessary improvements to correct these weaknesses were made by OJalvo
and Newman (ref. 14), who were the _irst to develop a successful

tridlagonal reduction pros, m for large scale structural dynamics
problems. The FEER computer program contains further refinements later
introduced by Newman and Pipano (ref. 15), Includlng:

1. Highly efficient numer#cal computation schemes, usis$ packing ,_
techniques which take advantage of matrix sparslty.

2o Calculatlon of accurate upper and lover bounds on the
extracted elgenvalues.

, 3, Accommodation of elugular mass matrices and stiffness matrix
slnsularltles associated with rigid body modes.

487
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TRIDIAGONAL REDUCTION METHOD

: Prellmlna_y Ope_atlons i
t

Employing the NASTKAN notation, the structural elgenvalue problem
I is of the form

[Kaa]{_ a) = m2[Maal{,a } (5)

Both [Kaa] and [Maa] ,_renth order symmetric, nov-negative and s_=t-

definite _trices corresponding to the analysis set. _ence, they may
both be singular, but all _he elgen_al:es are zero or positive.

In order to obtain a decomposable matrix, a small, positive shift
parameter, a , is chosen such that

2 2
- _ - _ (6)o

Then

[Kaa _" aHaa]{$a} ,, _[Maa]{,a}. (7)

It can be easily sho_. that the shifted stiffness matrix Is non-
singular and positive-definite provided that _he system masses generate
kinetic energy due ¢_ any kinematically admissible rigid body motions
of the structure. This requtremen_ is alway_ satisfied by the mass
matrix tn a physically well-posed problem.

In order to maintain the elements of the subsequent trial vectors
on the order of unity, a positive mass-scaling para_._ter, S, i_J also
employed, such that

[Maa] - _ [_] (8) '

If a Choleaky syumetrlc decomposition of the shifted stlffuess
. macrlx 18 perforamd:

[Kaa + _aa] - It] ILlT (9)

it follows that the eiganv.lua problem,equation (7). .., be converted

488
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to the form

[B] {x} = _(x} (i0) !

: where I

[B] = [L]-I[_] [L-I]T (lla)

{x} = [L]T {Ca } (llb) [
f and
t

S
= (no)

The above triangular matrix inverses are treated as purely

operational symbols, since in actual numerical operations forward and
backward passes on vectors are employed.

._' Generation of the Reduced Eigenproblem I
!

A reduction of the nth order eigenvalue problem, equation (i0), is i

"_' effected through the transformation
!

{ x } = [ v ] { y } (12)
nxl nxm mxl

where {x} is an approximation of {x} and m < n. The transformation ,!i_
matrix is taken to be unitary, so that

", - [v]T[v] = [z] (13)

'_:"iJ"_.-.? The reduced mth order eigenproblem is then _

"" [A] {y} = _{y} (14)
,:,j

where

[vlZ[B]....,_-'. [A] - [V] (15) _"

'_ '" '_ and [ is an approximation of the eigenvalue X. r-:

:_" The essence of the reduction scheme lies in the choice of the .....

!__,

?

] 974006473-486



% •

: 1

transformationmatrix [V]. In the tridiagonal reduction method, the
Lanczos algorithm (refs. ii and 13) is used to build the [V] matrix,

vector by vector, i.e.,

[vl ffi[(vI} {v2] (Vm}1 (16) I
such that the reduced mxmmatrix [A], is tridiagonal and its eigenvalues i
approximate the higher end of the eigenspectrum of [B] (or, equivalently, _

the lower natural frequencies of the structure). II

The algorithm yieldsi

d 2- all

i d2 a22 d3

i \ \ \[A] ffi \d 3 \a33 _\_ (17)

\ _ \d
\ \

i . \ atom!

\ o m

where the matrix coefficients are theoretically given by the recurrence
formulas

all " {viIT[B]{vi}

di ffi {Vi_l}T[B]{vi} ; i =l,m (18)

_ " _ (Vl+lI = [Bl{viI-ali{vil-di{vi_i}

_::_ [[_l+l)T{_i+l}] I/2 i{vi+I} = {vi È%8',�x�!

!,_:@, The process is initialized by choosing an initial trial vector, {vI}

.,_-:.._=. and setting (V_l) = {0}; dI O.

_ < The initial trial vector should contain all components of the system
_-.,, ei_envectors and must be constrained to eliminate spurious eigensolutions

(_z �_) due to ..ass matrix singularities. These requirements are

#

_90

i
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Isatisfied by setting

• {vI} = [B]{w}/[(Bw)T(Bw)] I/2, (19) !

• where {w} is an n-element vector obtained from a random number generator j

: routine. !

Reorthogonalization of the Trial Vectors il

Although the trial vectors {vi} generated in equations (18) form

a theoretically orthogonal set, it has been shown (ref. 16) that they

i rapidly degrade as the computations proceed, such that the later vectors
are far removed from orthogonallty to the earlier ones. This is caused

° by unavoidable computational round-off, which, because of repeated

multiplications by the unreduced elgenmatrlx, [B], tends to amplify

the contributions of the lower frequency eigenvector components. To

correct this problem, Gregory (ref. 12) experimented with the use of

higher precision arithmetic, but found only marginal improvements in

the final results. Later, Lanczos suggested a single reorthogonalization

of the trial vectors. While this improves matters substantially, it still

_ does not eliminate the precision problem adequately. However, Ojalvo
and Newman (ref. 14) found that the introduction of an iterative

reorthogonalizatlon loop can make the trial vectors as orthogonal as

necessary for extremely large systems. The procedure is as follows:

O

Denote each new vector obtained from equations (18) as {vi+I} and

.... iterate,
i

T o

I o [{re} {vi+I}]{vj}
{Vi+l} " (Vi+l} -J_l

i (19)2 1 T 1
": {vi+ 1} = {vi+ 1} _ l- [{vj}{vi+I} {vj}

J=l

'!!Wi' until an acceptable vector ;-"

-j_ } {Vl+l}l{vj} 1' _ = {vi+I} [(vj

is found whtch satisfies the orthogonality criterion

1 T'I__IO 2-t
,. max {v11 {vi+11 < (20)

l_<J

":_ where t is the total number of decimal digits carried by the computer.

&/'l
i
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A normalized form of the reorthogonalized trial vector is finally

obtained through

{Vi+l} r s+l. r s+l,T_tvi+llS+l.]i/2= iVi+l J/[tVi+l_ (21)

Experiences gained through application of the FEER program to

a large variety of problem types and sizes have indicated that an

average of only two reorthogonallzations are required per trial vector
generation.

Size Criteria for the Reduced Eigenproblem

As a result of numerical experiments and a_-licatlons (refs. 14,
15, 17-19), it has been found that in cases where m<<r (where r is the

total number of structural modes, including rigid body modes, and m is

the size of the reduced eigenvalue problem), a first grouping of more

than m/2 lower frequencies of the reduced system are in accurate

agreement with the corresponding number of exact frequencies, provided

,_. that m >.7, i.e., when at least seven trial vectors are chosen. The
remaining reduced system frequencies are spread across the remaining

exact spectrum, with the last one representing a lower bound on the
highest exact frequency of the unreduced problem.

Thus, if the user requests q lower frequencies of the structure,

the order of the reduced elgenvalue problem is

m - { mln [2q+l,r]; q > 3mtn [7,r] ; q < 3 } (22)-

It should be noted that in all cases m < r, and whenever m is
-

set equal to r, all the structural modes of the unreduced problem are
..,: .. generated.

-'_,.., . Error Bounds on the Computed Eigenvalues

_:/'io One of the inherently striking features of the tridiagonal reduction
_':, method is that the solution of the reduced, trldlagonal elgenproblem

" [A]{y} = _{y} (23)

i
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and the off-diagonal elements of [A] automatically provide accurate

" error-bound parameterr for the extracted eigenvalues. In particular,

it can be shown (ref.20) that absolute error bounds for each approximate

root, _2, are found from the inequality

-2

_i + _ dm+l "(Yf)i
- i < (24)

2 --

+ a _i

where _ is an exact system root, dm+ I is the (m+l)th off-diagonal

i element of an [A] matrix of order m+l, and Yfi is the last element of the

eigenvector corresponding to _i

Program FEER Flow Diagrams and Sample Output

i
I.

The overall flow diagram for implementation of the tridiagonal

r_duction method in FEER is shown in figure i. The reduced system

"_, eigenvalue problem is solved in block 7 by means of a Q-R algorithm which

takes advantage of thesymmetrical, tridlagonal form of the eigenmatrix

I and the physical modal vectors and frequencies are finally computed in
block 9. The details of block 6, "Execute Tridiagonal Reduction

Algorithm", are given in flgure2. Block 6.4 and the associated

peripheral test conditions are used to generate re-start vectors when-
ever premature vanishing of a trial vector occurs. This is usually due
to the existence of multiple or near-multlple eigenvalues, as described

in reference 13. Figure 3 shows a representative eigenvalue table

produced by FEER. In this example, the order of the stiffness matrix

was 3,072, while the size of the reduced problem was 41. As shown by _
the error bound listing, FEER generated 21 lower frequencies to within

an accuracy of .01%, using only 362 seconds of CPU time on a CDC-6600

computer.

COMPUTATIONAL EFFICIENCY STUDIES

A count of the major arithmetic operations expended in FEER is _
summarized in Table I, where n denotes the size of the stiffness matrix I

in the at.alysls set, b and b are average semi-band widths of the stiffness

and mass matrices, respectively, and q is the number of accurate modes --_"

requested by the user. Each operation is assumed to consist of a

J

493 '-.
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multiplication followed by an addition,

It should be noted that the average bandwidth parameters are used

primarily to provide a measure of the number of non-zero matrix elements.

• In actuality, FEER employs efficient packing routines which do not

require a unlformband structure for efficient computational operations.

It can be seen that the major computational effort involves decomposition

of the modified stiffness matrix (step 3) and provides the leading term

i of 1/2 nb2 in the total operation count. One of the positive features
of the tridiagonal reduction method is that only one such decomposition

. is performed regardless of the number of roots required.

Operation count and storage requirements for several alternate

eigensolutlon methods are compared with FEER in Table 2. The purpose
I ' of this comparison is to provide an indication of the potential

efficiency of each method, assuming that an equally adept and knowledg-
able programmer has had a chance to employ the same time-saving tricks

i in each case. For this reason, several excellent solution techniques

' which achieve high efficiency through special data handling and storage

i methods (see for example, refs. 21 and 22), but nevertheless showhigh minimum operation count, hav.c not been included in the comparison.

i As in Table I, the counts are presented in terms of average bandwidths

_ which are again to be interpreted as a measure of non-zero matrix entries

rather than in terms of a specific band structure.

23
It can be seen that in the Givens method the operation count (_n)

and the storage requirements as well ( 0(n 2) ) become prohibitively
large when the size of analysis set E_mws beyond more than a few hundred
degrees-of-freedom.

The leadin2 term in the Inverse Power Method (NASTRAN) is qnb2/2

as compared to nb2/2 for FEER, since at least one shift per extracted

root and a subsequent triangular decomposition is typically required in

the former method. Based on this assumption and the additional supposi-

tion that an average of seven iterations per eigenvector are required
in the Inverse Power method, theoretical operation-count ratios (Inverss ._

Power Method/FEER) are presented as a function of seml-band width and

the number of required roots in figures 4 and 5 for the cases of

diagonal and consistent mass matrices. These curves provide only an

approximate estimate of the relative time savings actually accrued for
several reasons. Flrgt, the s_ructure of the stiffness matrix influences

the decomposition strategy employed in NASTRAN via the active column
approach. In addition, there is no a-priori knowledge of the actual
number of shifts and iterations which will be required in the Inverse
Power method for any given problem application. In general, both the
number of shifts and iterations tend to increase with the number of

roots extracted, so that the curves indicating improved efficiency
of the Inverse Power method for a very large number of extracted roots

"_" i t

i
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and small bandwldths are unrealistic.

Table 2 also shows approximate operation counts and storage

requirements for Gupta's Sturm Sequence method (ref. 23) and a current

version of the subspace or Block-Stodola method (ref. 9). The storage
requirements for each of these methods, as well as the Inverse Power

and FEER methods, aze all on the same order of magnitude. In Gupta's

method the count of 25nb2q is based on his assumption that approximately

2nb2 operations are involved in examining the Sturm sequence for one
trial root value, and that about twelve such values must be examined tl

for each accurately predicted root (ref. 9). With regard to the
Subspace Iteration method, the leading term in the count,nb2, is twice

as large as in FEER and all other terms involving the same functional

forms of the parameters n, b, _, q are 'also much larger. In addition,

, the reduced elgenproblem which is solved for improvement of the sub-

space is not tridiagonal so that the count for this operation is on

the order of q3 as compared to q2 for the tridiagonal reduction method.

i Finally, the assumption of eight subspace iterations may not be very

i reliable, since this depends on the choice of the starting subspace,
which is somewhat arbitrary.

i , Table 3 presents a set of actual computer runs comparing the

_- CPU execution times of FEER vs. the Inverse Power and Givens methods

in the NASTRAN READ module. The results indicate that the more efficient

decomposition operations and shift strategy incorporated into Level 15

have yielded sIEnlflcant improvements in the Inverse Power method as

compared to the Level 12 version (see also ref.24).

However, the run times for comparable or identical problems are

generally 5 to 20 times faster with FEER than with the Level 15 Inverse

Power method when between 5 and 20 accurate modes are requested. This

result is in rough agreement with the operation count ratios shown in

figures 4 and 5. In problem No.2, which is rel_tively small and could
therefore be ,:sated with the Givens method, the execution time via

FEER was approxlmately 3 times as fast, since only 35 modes were re-

quested, while in the Givens method the user has no choice and must

pay the penalty of having all the elgenvalues calculated (in this -_

partlcular case, 105).

CONCLUDING REMARKS

Significant computational efficiencies are achieved in the FEER
program primarily due to the tridiagonal reduction method of modal

, extraction. Basically, the subspace of trial vectors senerated via

this method are sufficiently rich in the lower modes to provide a

U95
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single, reduced, tridiagonal eigenproblem whose solution provides these

modes with a high degree o_ accuracy. This feature distinguishes it

: from the usual subspace or block iteration methods, where the trial

vector subspace is established somewhat arbitrarily and subsequently

_ improved through repeated solutions of reduced eigenproblems. The

trldiagonal reduction method employs only a single, intitial shift of

eigenvalues and hence requires only one matrix decomposition. It is
consequently much more efficient than the Inverse Power Method with

' shifts when more than one or two lower modes are requi_ed. FEER is

also extremely efficient for out-of-core operations and requires only
(15,000 + 7.n) central memory words, where n is the order of the

analysis set. Another feature of the method is that the reduced

problem is generated automatically, starting with a random trial

I vector, and this avoids one of the basic weaknesses of techniques
requiring either a Judicious selection of starting vectors or retained

I nodes.

It is concluded that the tridiagonal reduction method used in

i FEER would serve as a valuable addition to NASTRAN for increased
efficiency in obtaining structural vibration modes.
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