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SUMMARY

A new approach to the finite element method which utilizes families of

conforming finite elements based on complete polynomials is presented here.

Finite element approximations based on this method converge with respect to
progressively reduced element sizes as well as with respect to progressively

increasing orders of approximation. Numerical results of static and dynamic

applications of plates are presented to demonstrate the efficiency of the

method. Comparisons are made with plate elements in NASTRAN and the high-

precision plate element developed by Cowper and his co-workers. Some

considerations are given to implementation of the constraint method into

general purpose computer programs such as NASTRAN.

INTRODUCTION

With the availability of general purpose computer programs, such as

NASTRAN, at reasonable cost, utilization of the finite element approximations ""
is co_on practice, In the conventional finite element method, a continuous

structure is idealized by discrete structural elements which are Joined

together at nodes. Structural c_aracterlstics are expressed in terms of ii-"
nodal variables. Improvement of accuracy is generally made with respect to

progressively reduced element sizes. If certain conditions are met, then the

finite element approximation will converge to the true solution when the
element sizes are reduced (Ref. i).

Unfortunately, reliable and practical error estimation techniques are ::or _

yet available. In important analytical computations it is usually necessary _

to complete two or more calculations of the same problem in order to establish
the validity of t,e finite element model itself. The calculations usually

employ progressively refined finite element nets, altL,ough upper and lower

bound estimates have been proposed also (Ref. 2). This is a tedious and

costly process involving a considerable amount of duplicated effort.
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Much interest has been shown in the development of high-precision finite

_ elements so that better accuracy could be obtained with fewer elements.

Incorporation of such elements into the NASTRAN program was reported to be

under development (Refs. 3 and 4).

Computational experiments as well as theoretical considerations have shown

that, in terms of the number of variables needed to carry an analysis to a

specified level of precision, the high-order or high-precision finite elements

are more efficient than the low-order ones. This is particularly true in
vibration and buckling analyses where eigenvalue problems must be solved in

terms of the problem variables. An additional fact in favor of using fewer

, high-precision finite elements is that the number of necessary man-computer
interface operations and the volume of data processing services are roughly

proportional to the number of finite elements employed.

In view of these findings it is logical to expio_e poLential benefits to

be gained from the convergence process based on progressively increasing

orders of polynomial approximation. In this convergence process, the finite

element net is held constant and the order of polynomial approximating

functions is varied. Existing error bounds such as that proposed by Fried
(Ref. 5) indicate that the convergence rate will be exponential in this case,

whereas the convergence rate is geometrical when the finite element sizes are

reduced. It is noted that this error bound is valid only when the exact\.

solution is sufficiently smooth and free from singularities.

While there are many competing formats for stating finite element

approximation problems, it was found that it is convenient to state the

general problem as a quadratic programming problem. In this formulation,
which will be referred to as the constraint method in the following

discussions, the functional to be approximated (usually the potential energy
expression) is written as a quadratic expression of the unknown coefficients

of the polynomial approximating functions. The interelement continuity

conditions and principal boundary conditions are stated as linear equality

constraints. An advantage of this formulation is that all matrices that are
necessary to define the numerical problem can be generated automatically for

arbitrary orders of approximation. The finite elements so constructed will

exhibit convergence with respect to reduced element sizes as well as with

_ respect to increasing orders of polynomial approximation. Because of the

I latter type of convergence, it is unnecessary to reconstruct the finite

1 element model when higher accuracy is sought. Additional advantages of this-+_ formulation are: (a) Since the unknowns are the scalar coefficients of the

++" _ '[ approximating polynomial sequences, it is not necessary to transform the

1 variables and stiffness matri=es from one coordinate system to another.
'_. " I (b) All finite elements can be made mutually compatible by specifying the

._, appropriate connectivity through the constraint equations. This is a very
important feature of the new method because it permits consideration of
structural stiffeners with greater ease than the standard finite element

methods. (c) The new method will yield the _xact solution when the exact

solution is a polynomial with a degree less than or equal to the degree of

• the approximating polynomials, regardless of the number or orientation of the
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finite element employed. (d) The accuracy of solution and the computational
" efficiency are not sensitive to input numbering schemes (therefore, the

method provides flexibility to the users in generating the structural models).

(e) The number of elements depends solely on the geometrical ronfiguration of

_. the structure to be analyzed, not on the desired degree of precision as in

conventional analysis. Thus only the minimum number of elements sufficient

for idealizing the structure needed to be defined. Other factors, _uch as 7
existence of point loads and/or discrete supports, do not preclude the use of

large elements.

In the following, a solution technique utilizing the essential features of
this formulation is discussed and applications of the constraint method are

illustrated with numerical examples for static and dynamic analysis of plates.

Comparison is made with results obtained by plate elements in the NASTRAN
program and the IS degrees-of-freedom plate element presented by Cowper et al.

I (Ref. 6).

i THE CONSTRAINT METHOD

i In the constraint method, the finite element approximation is treated as

_ a direct energy minimization problem in which the minimum potential energy is

sought subject to certain linear constraints. As in the conventional finite
element method, the structure is idealized by discrete elements whose dis-

placement characteristics are approximated by the polynomial functions defined

over the element domains. Usually, the unknown variables are the coefficients

in the assumed polynomials, although other variable definitions may be used

also. The total potential energy is minimized with respect to these unknown
coefficients subject ! , constraints which ensure satisfaction of both inter-

element continuity and _inematic boundary conditions.

Detailed formulation of the constraint method has been presented elsewhere
(Refs. 7 to i0). It will be outlined here as follows:

The total potential energy _ is obtained by assembling the element

,, potential energies _K, expressed in terms of the coefficlent_ nf the
approximating polynomials as

' In e_uatlon (i), ta] is a row vector, containing the polynomial coefficients

and {a is transpose of ta|; {S] is a symmetric, positive matrix conta_nlng a
set of submatrices along its diagonal; LZJ is a row vector associated with

applied loading. This equation is treated as a quadratic objective function
which is to be minimi_ed subject to the following linear constraints:
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" t_Jla} " t_} {2_ !
where [P] and {R_ define the interelement contlnuitz and the external boundary

conditions. For homogeneous boundary conditions {R _ is null.

: Several different algorithms can be used for solving the problem
represented by equations (I) and (2). Most of these require separation of the

! independent variables from the dependent ones in the constraint equations.

Then the problem can be reduced to solving a system ot simultaneous linear

algebraic equations as explained in Appendix A.

For structures subject to dynamic loading, inertia properties must be
introduced in addition to the structural stiffnesses. In the case of free

vibration, the equation of motion for the Kth element is expressed as

where [HI= is the consistent mass matrix and {_} K is the second derivative of
{a} wit_ respect to time. The unconstrained equations of motion for the

_' enti_e system are obtained by summation and can be written as

is] IaI * tM_I'_} " 0 C4)

After separating the independent and the dependent variables in the

constraint set (see Appendix A), the unknown variables _ a } can be expressed in

terms of the free variables ,_a c } , and the constrained equations of motion
become

[HT] IS] [H] {ac} + [HT] [M] [H] {a'c} " - [HT] IS] {h} (5)

., _ The matrix [H] and the vectors l ac} and l h} are defined in Appendix A.

"_"_' For homogeneous boundary conditions, t h } vanishes and equation (5) becomes

" .,- [S'] t a } + [M'] t'_, } = 0 (6) ..°' C C

where IS] and [M] are the constrained stiffness and mass maarices,
r espec t ively:
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IS] " [H_] [5] [H] (7) i

7 [_] " [HT] [M] [HI (8)

It is noted that the eigenvalue problem associated with equation (6) is
relatively small since all dependent variables were eliminated.

An important feature of this formulation is that all finite element

_pRroximatlon problems can be fully defined by the matrices [S], { Z } , [P],
{R } , and [M] (for dynamic application) for arbitrary orders of approximation.

- These matrices can be generated automatically for any given problem.

NUMERICAL EXAMPLES

The efficiency of the constraint method is illustrated with examples for

static and dynamic analyses of structural plates. A comparison is made with

: results obtained using plote elements in the NASTRAN program and the high-

precision plate element presented by Cowper et al. (Ref. 6). Emphasis is on

the accuracy and convergence of the c_,,_tralnt method with respect to
increasing orders of approximation and using a minimum number of elements.

Additional numerical results for static analysis of plates and shells can be
found in references 7 to 10.

Static Analysis -

The first example problem for static application is the simply-supported
_ equilateral trlangular plate (Fig. l(a)) under uniform pressure q. Tne exact

solution of this problem is a 5th order polynomlal (Ref. 11).

The constraint method gave the exact solution when the 5th order
polynomial was employed, and only one finite element was necessary. The

results obtained by the 18 degrees-of-freedom high-precision element (also ._
based on the 5th order poly_omlal) for various finite element layouts were

presented in reference 6 for displacements and bending moments at the centrotd "
of the plate. Figure l(b) shows the layout given in reference 6 for N=I and
N=36, where N is the total number of elements. Finite element layouts _
(N-25 and 100) used in the NASTRAN model are shown in figure l(c). Due to _
symmetry, only one-half of the plate was considered. Results at the centroid '_

of the plate are given in table 1. It is seen tb t 36 high-precision elements

with 108 degrees-of-freedom (DO_) were needed to obtain precision to five
significant digits whereas only 6 DOF were needed in the constraint method to
achieve similar precision. The NASTRAN results were obtained by interpolation. --:_-
Employing 100 CTRPLT elements with 166 DOF, 10 percent error was observed. _:
Additional comparisons between _ASTBAN plate elements and the constraint

method are presented in figures 2 and 3 for the displacement and bending a

moment Mx alon8 the ce_ez'lins of the plate, respectively. The NASTRAN
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I100-element model gave satisfactory answers for the displacements but only
marginal accuracy for moment. Similar accuracy was observed for the bending i

moment M alon,_ the same llne. !
• Y

The second example is a rectangular plate with two oppcsite edges simply i

supported, the third edge free, and the fourth edge fixed under uniform i
pressure q (Fig. 4(a)). This is an interesting problem because it comprises i

all common boundary conditions. Due to sjmmetry, only one-half of the plate _

was consiaered. Finite element layouts are shown in flgures 4(b) and 4(c) for

the constraint method and the NASTRAN model, respectively. The quadrilateral

. bending element CQDPLT was used in the NASTRAN model with 300 DOF. Result3

obtained by the constraint method were also reported elsewhere (Ref. 7).
Rapid convergence was observed with respect to increasing order_ of approxi-

mation. It was found that very good results were obtained for the 6th order

approximation wlth 21 DOF (free variables). These are compared with the

i NASTRAN results in figures 5 and 6 for bedding moments along a line in the

I middle of the rectangular pla:e. It is seen that correlation of the NASTRAN
results for My with the exac_ solution is not as good as for M . In this casex

the NASTRAN model overestimates the maximum My by about 50%. It should be
noted, however, that NASTRAN gave satisfactory results along the centerline

i of the plate.

I,_ Dynamic Analysis

I The first example for dynamic application is a cantilevered triangularplate. Natural frequency of the plate was solved by the constraint method

for various combinations of finite element layouts _nd orders of approximation.i

Results are given in table 2 together with the results obtained by the high-
precision 18 degrees-of-freedom plate element and the experimental data
(Ref, 12). The results show that in the constraint method monotonic

convergence can be achieved by increasing the orders of approximation as well
as by reducing element sizes. It is noted that the DOF represent the total
number of equations in the associated elgenvalue problems. Comparable results
were obtained by the constraint method with fewer DOF.

The next dynamic problem is the free vibration of a simply-supported

i i! square plate shown in figure 7(a). Two elements were used for one-half of the

plate in the constraint method (Fig. 7(b)), and 200 elements in the NA3T_AN
,wdel (Fig. 7(c)). Natural frequencies of the first three modes are r.resented
in table 3. Monotonic convergence w_s obtained by increasing the orders of
approximation in the constraint method. The I_STIh_ results, presented in
rsference 13, are also given for comparison. It is significant that tho

'r resulting number of DOF for the eigenvalue problem is much smaller in the
constraint method.
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IMPLEMENTATION

• _ In,plementatlon of the constraint method in conjunction with the solution

_algorithm given in Appendix A may be di¢ided into the following steps:

i. Define structural model

i a. Joint coordinates
i b. Ele_ent incidence (including order of approximation that can

_ be provided by default value)

_ c. Element compatibility (this data can be generatedautomatically from Element 11_cidence or by user's input)
f d. Element and mat(rial properties

e. Applied loads (referred to individual element ID and define
l point of application by its coordinates or Joint ID if the

Joint exists; only element ID is required for distributed
v load)

i f. External boundary conditio_ (referred to individual element •

' ID and define locations for point supports; define element

i boundary number for line support)
2. Generate and assemble matrix

a. Unconstrained stiffness matrix [S]_, [S] (one functlonal
routine for each element type of a_y order of approximation)

b. Unconstrained mass matrix [Myv, [My (one functional routine
for each element type of any _rder of approximation)

c. Unconstrained load vector tZ}K, tZ} (point load, uniform or
nonuniform distributed load f_r any other order of approximation)

d. Constraint matrix [P] (two parts: interelement compatibility

and external boundary conditions)

e. Enforced displacement vector |R_ (null or constant value)

3. Determine the rank of [P] and separete independent and dependent
columns in [P] into matrices [By and [C]. This can be accomplished

by usln8 the product form of inverse to obtain [B"I] directly

4. Constrained matrix generation _P

:: Compute(equatlontransformatlonmstrlce.(A8)) -- [HI (equation (A7))and ih } _Constrai_ stiffness matrix [S] (equation (7))
c. Constrained mass matrix IN] (equation (8))

. d. Co.train,dlo,dvector[z}- [,T]{z} ,-, .
i • Constrained enforcsd dlsplacement vector | R _ [HT] [S] { h }



5. Equation solver

a Forstaticproblem,solvela }- for!acl
Compute { a_._ (equat.lon (AS)) and Then {a[ (equation (A4))i Separateinto---lel"2,.. N,for each individual

i element.

: ! b. For dynamic problem, solve [S] {ac_ + [M] {ac_ = 0
)

_ 6. Output data processing

a. Compute results for each element directly from the approxi-
mating polynomials whose coefflcJencs are determined in step 5.

! b. Users define the element ID and desired locations of output

recovery; some default values may be prcvlded.

NASTRAN Implementation

In executing these operations, step I requires some modification of

NASTRAN procedures. In p_rticular, the element compatibility data needed in

constructing the constraint matrix [P] in step 2, and the options for

specifying uniform line support conditions must be revi_ed. Steps 2 through 4

are new except that the current multlple-polnt constraints and enforced

displacement in NASTRAN can be included in steps 2d and 2e. The current

equation solvers in NASTRAN may be used in s_ep 5. New NASTRAN functional

modules are alsc required for output data recovery in step 6, since the
results are obtained directly from the approximating polynomials.

It should be noted that finite elements generated by the constraint

method can be combined with existing elements in NASTRAN if it is so desired.

In this case, the unknown variables consist ok both coefficients in the

assumed polynomials and nodal variable components. The elements can be

connected together by the constraint equations.

O3:_CLUDING REMARKS

The constraint method is an efficient and cost effective approach to
finite element approximations. It _educes modeling time significantly because

' fewer elements are needed. The structural _xlel thus may b_ generated faster
. and with fewer errors. The accuracy and computational efficiency are not
.,_ sensitive to input numbering schemes, and remodeling is not requ:red for

greater accuracy. Results presented herein and those obtained in other test
cases (Refs. 7 to I0) indicate that highly accurate results can be obtained

" by the constraint nethod at reduced co_puter costs. It is deslr_ole, however,
Co solve F,nae larger pzoblems to provide better co_parlsons between this
approach and the current approaches to finite element structural analysis.
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_ Efficiency of this approach may be further improved by the development of :

_: efficient algorithms for obtaining [B-l]. Such an effort is currently under- i
_ way at Washington University in St. Louis• I

,_ Implementation of the constralnt method into the existing general purpose

# computer program such as NASTRAN is considered f _aslble and worthy of further i
_ investigation• ;
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APPENDIX A

A SOLUTION ALGORITHM FOR THE CONSTRAINT METHOD

The problem is to minimize the total potential energy (equation (AI))

subject to a set of constraints _equation (A2)):

Min. _ = i_-taJrs]{al- tzj{a} (Al)

S_bjectto: re] {a}-- {_l (A2_

- We begin by selecting m linearly independent columns from [P] and renaming them

[B]. Then equation (A2) can be written as

t_J{abl + ,c_taoI °{_t (A3_

where vector | ab } contains the variables associated with the linearly independent

columns in [Bl],and {ac} contains the remaining variables In {a}. Vector ]a} is

relatedtolablandlac}byt_e_ollowlngequationi-

- m{a',}"o
in which [T] is the appropriate permutation matrix.

From equation (&3), we can write

{ab} = [B-l] {R} - [B-l] [C]{%1 (A5)

Substituting equation (AS) into equation (A4), vector {a} can be expressed In

:. t_=sof {a=}as

:,. , {at " [.] {"ct +lht C_':,)
'¢5:-"'

: -'a:':. where

"" ", :_" [a] - [T] - [ ] [C (A7)

,.,. {h} - [a:] [B-
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_ Substituting equation (A6) into equation (AI), the total potential energy _ can

be written as

= _i tae] [HTI [S] [HI {ac} +

'! I1
tac] [HT] [S] {h} + 5 [hl [SI lh}

• i
- [ac] [HT] {Z I - [hJ IZ} (A9) i

Minimizing _ with respect to the elements of lac}, we have

Equation (AI0) represents a set of simultaneous algebraic equations. It is

noted that the original n variables in .]a_ were reduced to n-m, where m is the
rank of the constraint matrix [P]. When the boundary displacements vanish,

{R} is null. Equation (AI0) then becomes
!
!

[.T1[s_ [.1 tac} - [HT1Izl = 0 (All) Ei
!

Once {ac} is solved, {ab} can be obtained from equation (AS). I

|
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:_: TABLE 1 SOLUTIONFOR S.S.EQUILATERALTRIANGULARPLATE

- -' DEGREESI _ENDING
: '_ METHOD NO. OF OF DISPLACEMEN_ MOMENT

ELEMENTS FREEDOMIAT CENTROI[AT CENTROI[
CONSTRAINT

' _' METHOD l 6 1.02880 2.40740

i- (EXACT) 1 3 .617284 1.08333
COWPER

36 108 1.02881 2.40792

25 46 .92 1.78
NASTRAN

100 166 .99 2.19

TABLE2 NATURALFREQUENCYOF CANTILEVEREDTRIANGULARPLATE (STEEL,T = .061")

_,ONSTRAINTMETHOD COWPER(REF.6 )

ELEMENT ]0" TYP. EXPERII_J_I'
LAYOUTS .9_ , : (REF. 12)

ORDEROF
APPROX, 4TH _iTH 6TH 4TH 5TH 6TH STH

D 0 F 6 I0 15 12 20 30 36 60

MODENO.

1 36.8757 36.6528 36.6024 36.5538 36.5331 36.5158 36.6419 36.6201 34.5

2 156,983 144,025 139,187 141,0743 139,3590 138.9769 139,3265 39,2633 136 _.

3 219,501 197,770 194,499 203,3356 194.0896 193,5854 194,1408 194,0186 190

TABLE3 NATURALFREQUENCYOF THESIMPLY-SUPPORTEDSQUAREPLATE _ _,

CONSTRAINTNETNOD NASTRAN '_
" ORDEROF ""_

4TH 5TH 6TH 3RD EXACT _.
APnRNXI_TION

n Q F 6 12 J ..... 20 59()
i , , |

MODENO. ""

"_ .9298 .9081 .9069 .9056 .9069

2 2,6972 2.3962 2,2782 2.2634 2.2672

3 5.1170 4. 6325 4. 5474 4. 5329 4. 5345 _°
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• _ SIMPLY

_-- - ,s/,r r,ri ¢'d ¢" ' _-X

(a) Geometry.

N=I N=36

(b)Cowper'slayouts.

NOTE: N = TOTALNUMBEROF ELEMENTS

/ /

%._, / /
',_: / / IA,CCC'IA'x

.... Z /_ t4,cc4Nvw_
N- 25 N- I00

"_;' (c) NASTRAN layouts (1/2 plate).

_: _. Figure i.- Simply-supported equilateral triangular plate.

i
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I ' AY ", T _
2.,' i : ..,e _ i I "" i _,

/ .
2.0 ,, I .... 0 . _ TM- _ 2L/'_"_ ---_

[A o4
I NASTRAN-CTRPLT (1/2 PLATE) \ o
I 0 25ELEMENTS

1.0 /' A 100ELEMENTS
I -- CONSTRAINT

_ ! ! METHOD(EXACT) "-_

, I I
04 02 0.3 0.4 0.5 I).6 03 0.8 0.9 1.0

Y/L (X • O)

Figure 3.- Moment along centerline of the equilateral triangular plate.
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FRgETi '• gfSIMPLY I

' i Z! '-SIMPLY' SUPPORTEO _--SUPPORTED ,[
FIXED

; !

(a) Geometry.

IllIlltllll I
• Illllllllll I
} lIlll I! I Ill I
: I I 111 I1 I III i

i (b) Finite element layout for the (c) Finite element layoutconstraint method, for NASTRAN.
f_
!

Figure 4.- The rectangular plate problem, i
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(a) Simply-supportedsquareplate.

_ "J-- J I I I I i J I I I I I | | I I I I I I i+._-

f t jl I I I I I I III I I I 11 1 1 1 1 ll_

_, I IIII II Ill II I II IIIIII I[_

f i I ._I I l I I I I I I I I I I I I I_

sL]_ llwl,lllw ,ni,ll n I
• -+" II I I II II I III II I IV+
P i .,_II I I I I I I I I I I I I LI" i .+,,,,,,,,,,,,,,,|iilg
s _le _ i n i w il I II I I I I II I ] I ] I..."
...' _ Jl I I I I I I I I I I I I I I I I I 1111/

I" _ f i f f J,'r i l /+ f'.f l . f f]d"
b

• , _ +

,'L, (b)Constraintmetho_ (2elements), (c) NABTH_N(200e_m_nts).

+

Figure 7.- Simply-supT_orted square plate problem.
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