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1.0 SUMMARY

Phase I testing of a 0.3 scale model 727 inlet and "S" duct in

the Boeing 9' x 9' Low-Speed Wind Tunnel demonstrated tne design
feasibility of the 727 inlet and "S" duct for the JT8D-100 series
engines. Phase I test results indicated improvement in the "S"
duct distortion was required. In addition, during Phase I studies,
certain structural design problems were exposed. To resolve these
design problems, a new 0.3 scale inlet and "S" duct, referred to
as the Phase II duct, was designed and tested in the Boeing

9' x 9' Low-Speed Wind Tunnel.

The duct was designed for a nominal MCR (maximum cruise) corrected
airflow of 480 lb/sec (compared to 334 1lb/sec for the existing
JT8D-15* engine on the 727-200) with minimum modification to the
existing 727 airplane structure. Steady-state pressure recovery,
steady-state pressure distortion, and dynamic pressure measurements
were taken at the engine face station. Surface static pressure
measurements were taken along the duct. The presence of the engine
was simulated by screens installed at the JT8D-100 fan station
behind the rotating rake assembly.

Test measurements and flow visualization indicated a strong sec-
ondary flow at the first bend which produced a low total pressure
region in the lower part of the aanulus at the compressor face.
At the upper wall a flow separation region just in front of the
compressor face was indicated. Installation of the vortex
generators along the duct wall improved the steady state radial
and circumferential pressure distortions. Vortex generator

configuration 12 was the flow control device selected for thr full
scope of testing.

* por perfcrmance comparisons in this document, the current pro-
duction 727-200 with the highest engine rating (JT8D-15) is
compared to the JT8D-100 ongine series which all have the
same design airflow requiremerits.




Co-rotating type vortex gencrators were used on the lower wall of
the "S" duct. In this configuration, on each side of tne duct,

the vanes were set at the same angle with respect to the local
streamline to produce a set of co-rotating vortices. Each side

was a mirror image of the other. The main advantage of co-rotating
type vortex generators over ccunter-rotating vortex generators is
their downstream effectiveness, i.c¢., the induced vortices will remain
closer to the wall. This type of vortex generator has a few

special advantages over the counter-rotating type vortex generator
when applied on the lower wall of the "S" duct: (1) the induced
vortices will remain close to the wall; consequently, a cleaner

core (primary) region will be obtained,(2) the induced cross <~lows

at the walls tend to counteract the tendency of the secondary flow

to deposit and accumulate low energy air at the 6 o'*clock position.
The improvement in pressure recovery is most pronounced at “he

6 o'clock position as can be seen in Figure S1.

Pressure recovery versus corrected airflow is shown in Figure S2
for the bare duct and in Figure S3 for the duct with vortex gen-
erators (flow control configuration 12). A recovery penalty of
0.1 percent at cruise was associated with the installation of
vortex generators. Inlet inflow angle variation within the 727
airplane operating regime (-5 to 5 degrees) had no effect on the

inlet pressure recovery as shown in Figure S4.

Several inlet lip configurations were tested in the static cross-
wind environment. A steady-state pressure distortion comparison
of the selected 30-percent inlet lip and a 34-percent lip is shown
on Figures S5 and S6. No discernible advantage is evident for
either lip at the l0-knot crosswind condition with both possibly
meeting P&WA limits. At the 25-knot condition neither configura-
tion will meet P&aWA radial distortion criteria, both lips showing
comparable performance. However, utilizing the selected 30-

percent inlet lip configuration, it is seen that with the normal

rolling-takeoff procedure, the pressure distortion effect is




minimal, Figure S$7, for a 29-knot crosswind upon attaining the
takeoff thrust-setting speed of 67 knots.

The "S" duct (Figure S8) was designed using a Boeing two-
dimensional compressible potential flow/boundary layer computer
program. Predicted surface Mach number distributions, obtained
by transforming the three-dimensional duct into an equivalent
two-dimensional duct, were found to be in good agreement with the
test results as shown in Figure S8.

Pressure recovery and distortion, compari-

(Praye = PTyin’ /PTave’
sons of the Phase II and 727-200 production ducts are shown in
Figures S3 and S9, respectively. The results indicate comparable
duct performance, Steady-state radial and circumferential pres-
sure distortion comparisons of the Phase II and 727-200 production
ducts are shown in Figures S10 and S11, respectively. In the core
region (primary), which is very critical for engine/inlet com-
patibility as evidenced by the low distortion limit imposed by
P&WA, the Phase II duct has a lower distortion. In the tip region,
which is relatively less important for engine/inlet compatibility,
the Phase II duct has a higher radial distortion.

Steady~state (PT/PTOQ) and dynamic (RMS/PT.,) compressor-face total
pressure contour maps at 160 knots and MCR airflow are shown in
Figures S12 and S13, respectively. It is seen that a good corre-
lation (i.e., higher dynamic activity in regions of large steady-
state total-pr:ssure gradients) between steady-state and RMS/PTDQ
contours 1is ohtained.

Conclusions drawn by The Boeing Company are:

o The required airflow was achieved with acceptable pressure

recovery (comparable to the current 727-200 duct).

N
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Pressure recovery for the Phase II center duct inlet 1is
0.1 percent better than that cf the Phase I duct at
160 knots, takeoff osirflow condition (with best vortex

generator installed for both Phase I and Phase II ducts).

Installation of co-rotating type vortex generators on the
lower wall improved pressure distortion in the core region
when compared to the 727-200 or Phase I ducts. Therefore,
the Phase II center duct should provide improved engine/
inlet compatibility.

Pressure distortion at static and forward speed, takeoff
airflow conditions is within P&WA limits for the Phase II
duct when equipped with vortex generator configuration 12.
(P&WA is independently assessing the results of the test
program to determine if the model test results indicate
that the engine and "S" duct are compatible. Findings
have not yet been received).

Static crosswind operation up to 10 knots appears feasible
at full takeoff power. Somewhere between 10 knots and
25 knots, a thrust setting procedure involving rolling
takeoff would be required., This rolling-takeoff procedure

is the prescribed method shown in the 727 Boeing Operations

Manual for all takeoff conditions.
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FIGURE S11. - STEADY-STATE CIRCUMFERENTIAL PRESSURE DISTORTIONS FOR 727-200

AND PHASE 1I DUCT WITH VORTEX GENERATOR CONFIG. 12
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TRY COENTER ENGINE CuC! AN INLET TEST - JTBL-102
TUNKEL VELOCITY = 160 XN-1TY AMNLLE CF ATTACK = O CEG.
VORTEX CENERATOR CONFIGL ND. 12

993
.980
+980
980
.940

TZSY MO. 2370 TEST DATE e/ 373 CAl.C. DATE 10/03/7)
AUN WO, 22 RECOVERY .980% PRI RECOVERY 1.0000
COND. NO. 1.0000 wCFs2 476.038 LB/SEC FAN RECOVERY .9639

FIGURE S12. - 160-KNOT STEADY-STATE COMPRESSOR FACE PRESSURE RECOVERY MAP
WITH VORTEX GEWERATOR COWFIG. 12




T27 CENTER ENGINE CUCT AND INLET TEST J78C-109

RN!S/F?T-

" RNwee I e

e ——
-

JESY NO. 2370 CALC. TATE 13/05/7)
KUN MO, k2 RECOVERY .9803
CLMNZS. NG, 1.0500 WeFs2 474 .0500 LE/SEC

FIGURE S13. - 160-KNOT DYNAMIC (RMS/PTm)
COMPRESSOR FACE CONTOUR MAP WITH VORTEX GENERATOR CONFIG. 12

17




P T

FPRECEDIL G 2000 lALT

2.0 INTRODUCTION

2.1 BACKGROUND

The Pratt & Whitney Aircraft JT8D-100 engine is a derivative of

the basic JT8D turbofan engine, modified to incorporate a new,
larger diameter, single-stage fan with a bypass ratio of 2.03 and
two supercharging low-pressure compressor stages. The modification
lowers jet noise, increases takeoff and cruise thrust, and lowers

specific fuel consumption. The use of the JT8D-100 series engines

on the Boeing 727 airplane requires a larger center duct inlet
("S"™ duct), referred to as the NASA Refan Configuration.

Previous center duct inlet studies and Phase I testing reported in
Reference 1 indicated that, without modification to the vertical
fin front spar or other major structural changes, the increased
airflow demands of the refanned JT8D engine were feasible and the

predicted "S" duct werformance was attainable.

This Phase II model inlet low-speed performance test is a second
stage in the center duct inlet development program and has the
objectives of (1) resolving design problems exposed in Phase I
model tests and, (2) providing confirmation for the design config-
uration to be selzcted for the full-scale ground test program, It
should be recognized that further testing at full scale is required
to demonstrate engine/inlet compatibility. This will include
ground testing ci the engine with (1) simulated inlet distortion
patterns and (2) the full-scale "S" duct. In addition to the
Phase II testing, 727 airplane flight testing wiil be required for
final substantiation.

This test was performed under authorization of NASA Contract
NAS3~17842, Phase II Program on Ground Test of Refanned JT8D
Engines and Nacelles for the 727 Airplane to support tne develop-

ment of a new 727 center engine inlet.
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2.2 INLET AND "S" DUCT DESIGN

2,2.1 Design Constraints

The following restrictions were imposed on the design to enable the

"S" duct to clear airplane structure:

o Center line of inlet throat at Body Station (BS) 1(91.85
Body Water Line (BWL) 350.20: Slope 3°40' horizontal.

o Pressure bulkhead notch: Lower flow surface at BS 1183.00,
BWL 297.50.

o Front spar forging: Lower flow surface at BS 1196.72,
BWL 286.50.

o Front spar forging: Upper flcw surface at BS 1247.33,
BWL 316.54,

o Rear spar bulkhead: Centerline of duct horizontal at
BS 1342.40, BWL 228.00.

2.2.2 Design Goals

The following design goals were set:
o Airflow reguirements
Corrected design airflows as follows:

(1) 467 lb/sec at takeoff, sea level static condition,
std. day.

(2) 480 lb/sec at MCR, 0.8M, 30,000 ft., Std. day (duct
design condition) .

(3) 501 1lb/sec at MCT, 0.6M, 35,000 ft,, Std. day. '




The maximum JT8D-100 enuine cold-day airflow at both sea
level and 10,000 fect, -60°F ambient temperature, 1is

516 lb/sec. Applying a +3 percent production engine air-
flow tolerance results in a 531.5 lb/sec maximum airflow

requirement.
o Inlat inflow angle reguirement

The normal inlet inflow angle requirement for the 727 air-
plane during low speed operation falls within a positive

5 degrees and negative 5 degrees with respect to the boay
water lines. The maximum inlet inflow angle is experienced
during airplane stall and is approximately a negative 15
degrees, Reference 2.

o Crosswind capability

Equivalent to Boeing production airplane fixed lip inlets.
o Pressure distortion

Equivalent to 727-200 center inlet.

2.2.3 Center Duct Inlet Geometry - Lip Sizing

The lip geometry was selected based on the following asrpects:
Lip Loading

Lip loading is defined as the corrected airflow per unit highlight
area (WA\/E;l/'STQAHI). For fixed lip inlets with contraction
ratios of about 1.25 to 1.35, the recommended lip loading :.s
approximately 30 1b/sec/ft2. This value, which was selected for
the center duct inlet, represents a compromise between internal
performance (inlet pressure recovery and distortion) and external

drag (cowl drag, pressure drag, interference, etc.).

2
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Contraction Ratio

Contraction ratio is defined as the ratio of highlight area tc
throat area, AHI/ATH' Generally, it is desirable *o employ high
contraction ratios around 1.30 to 1.35 for better static and cross-
wind performance. For forward speed, at MCR conditions, a contrac-
tion ratio below 1.30 would be more favorable from the drag stand-
point when considering a specific inlet throat area. For the
center duct inlet lip the ratio AHI/ATH = 1.30 was selected as the

best compromise. A blunter lip (A I/A 1.34) was also tested

HI’ “tH ~

for crosswind conditions.

Lig Contour

For any given contraction ratio AHI/ATH an infinite variety of lip
contours can be generated. A gentle curvature distribution between
highlight and throat favors static and crosswind behavior. A sharp
lip (rapid change of curvature close to the highlight) improves the
inlet inflow-angle capability. Three lip contours were tested in
Phase II (Figure 1). A "super ellipse" [(§>2.2+/%>2.2 = 1.0]

was chosen for the inlet configuration to undergo the full range of

test conditions.

Throat Mach Number

The inlet was sized to produce an average throat Mach number of
MTH == 0.53,design airflow.

2.2.4 Center Duct Inlet Geometry - Duct Design

The selection of the center duct contours was based upon analytical
results obtained from a two-dimensional potential flow/boundary
layer analysis computer program. The method of application of this
analysis was previously proven by the good agreement of Phase I "S"
duct test data with the predictions (Reference 1). The criterion
used in the selection of the final duct contours was a low

analytically predicted peak shape factor (H).
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In the analyses of a number of "S" ducts it was found that a low
shape factor at the lower wall usually results in a high shape
factor at the upper wall and vice-versa. The duct, with the
minimum combination of peak shape factors at both upper and lower

walls was chosen as the wind tunnel test model.

It is realized that the flow field calculated based on the modified
two-dimensional potential flow/boundary layer program will be
different from that of the actual three-dimensional flow in the
duct. Also, the secondary flow effect is not accounted for;
consequently, the absolute values of the shape factors will be
different from those of real flow conditions. The trend of shape
factors, however, is believed to be similar between two-dimensional
and three-dimensional analyses. The criteria used in the selec-
tion of the upper and lower contours (12 and 6 o'clock) of the "S"
duct were based on comparison of the relati e values of shape
factors only and therefore should be valid.

The side wall contours (3 and 9 o'clock position) were splined
with maximum wall diffusion half ang'es not exceeding 3 degrees.

Duct contours, Mach number and shape factor distributions for both
lower and upper walls, and one-dimensional flow area and Mach
number distributions for the design are shown in Figure 2,

23
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3.0 MCDEL AND TEST DESCRIPTION

3.1 MODEL DESCRIPTION AND MODEL INSTRUMENTATION

A 0.2994 scale fiberglass "S" duct model was constructed. Figure 3
shows the contours of the upper and lower walls. Also shown is

a comparison of the Phase II duct lines with the Phase I and the
production 727-200 duct. All model surfaces were of the hardwall
type (i.e. without acoustic lining). The model was made in two
halves such that it could be opened up for the purpose of observ-
ing and photographing oil flow patterns. A 727 fuselage section
was simulated under the "S" duct inlet section during crosswind
testing. Figures 4 and 5 show photos of the model installed in

the wind tunnel facility for forward-speed and crosswind testing,

respectively.

The model "S" duct surface was instrumented with 59 static pressure
ports, which were positioned over the length of the duct on lines
at angles of 0 (12 o'clock), 90, 180 and 270 degrees. The center-
body and duct wall were instrumented with 8 static pressure ports

at the engine face at 45 degree intervals.

Flow properties at the engine face station were measured using a
15-inch diameter rotating rake section. The rake consisted of

four equally spaced arms containing 16 steady state and 5 dynamic
total pressure probes each. The instrumentation was set up to
measure compressor face total pressures at angular increments of

10 degrees. The rotating rake section also had two traversing pro-
bes located 180 degrees apart. Each traversing probe contained a
total pressure port and a dynamic transducer for measuring the
steady-state and dynamic total pressures across the annulus.

These traversing probes were kept available as back-up instrumenta-
tion in case the regular dynamic instrumentation on the rotating
rake failed. Figure 6 shows a sketch of the rotating rake and the

traversing probes.

25
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3.2 FLOW CONTROL CONFIGURATION

During the test program the "S" duct was tested with and without
flow control devices. A total of 17 flow control configurations
were investigated. The flow control devices were positioned on
the upper and lower surfaces of the "S" duct in the vicinity of

convex curvature. Table I lists the flow control devices tested.

The flow control devices tested can be divided into three categor-
ies: (1) Vortex generators (configurations 1 through 12), (2)

Boundary layer fences (configurations 13 and 14) and (3)
vanes (configurations 15 through 17).

Turning
For vortex generator config-
urations both co-rotating and counter-rotating types were tested.

The co-rotating type vortex generators have the vanes set at the
same angle while the counter-rotating type vortex generators have

the vanes set alternately at positive and negative angles.
3.3 TEST FACILITY AND FACILITY INSTRUMENTATION

The test was conducted in the Boeing 9 foot by 9 foot Low Speed
Wind Tunnel "B" (LSWT). The wind tunnel, lo-ated at the North
Boeing Field site of the Propulsion Mechanical Engineering Labora-
tories, is an open circuit type wind tunnel drawing air in through
a bellmouth from the atmosphere. An Allison model 501-D13 gas
turbl.e is used as a prime mover. A variable pitch propeller is
used to vary airspeed in the tunnel from 0 to approximately 165

knots. Engine airflow simulation is obtained by utilizing a General

Electric J-47 turbojet engine. Air was drawn in through the test

model, down through flow straighteners, a venturi meter and into

the engine. Variations in inlet airflow were obtained by varying

the engine RPM. The presence of the engine was simulated by the

installation of screens at the JT8D-100 fan station behind the
rotating rake assembly.
consisting of 0.41 inch

A 19-percent blockage screen configuration
mesh with 0.041 inch diameter wire was used.

Tunnel total and static

temperatures and pressures were recorded for each test condition.

pressure, tunnel total temperature and venturi

fisiinithk oo ¢
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This steady-state data along with the model steady-state data were

recorded on the standard 9' X 39' LSWT data acquisition system.

This system, a Hewlett-Packard Dymec 2010D, 1is a trap and scan
scannivalve system with output on punched paper tape. The capabil-
ity of monitoring on-line engine RPM and a selected number of static

pressures was availlable for setting test conditions.

Dynamic data were recorded at the compressor face for a selected
number of conditions. The dynamic signal, measured using the Kulite
transducers located as shown in Figure 6, was passed through a
bandpass filter prior to recording. The frequency range was set at
5 to 1200 Hz (the lower limit set by the recording system and

the high limit based on an input from P&WA concerning the frequency
sensitivity range of the JT8D-100 engine).

Dynamic data were recorded as a permanent record on magnetic tape.
3.4 TEST PROCEDURES AND TEST CONDITIONS
The following test procedure was followed throughout the test program:

1. Each day inspect instrumentation lines and blow out for 1/2
minute with industrial nitrogen (a complete leak check was made

after each model installation or major configuration change).
2. Inspect model and facility.
3. Zero check instrumentation.
4. Start J-47 turbojet and warm up (inlet airflow).
5. Start Allison 501 and warm up (if tunrel velocity is required).

6. Establish desired tunnel velocity and inlet airflow and
stabilize at least 30 seconds prior to obtaining data.

7. Close cut-off wvalves.

8. Activate scannivalves and record data.

29
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9. After scan, open cut-off valves.

10. Rotate rake and repeat steps 7 through 10.
11 Repeat steps 6-10 at other desired airflow conditions.

12. Change model attitude or configuration, and repeat steps 2
through 11.

Data were taken for static, crosswind, forward speed and angle of
attack conditions. Steady state and dynamic data could be taken
simultaneously during a run. Oil flow studies required a separate
run. Table II gives a summary of the "S" duct test runs. Runs 1
through 9 define bare-duct performance; Runs 10 through 27 were
used to select the flow control configuration; and Runs 28 through
56 demonstrcte performance of the selected configuration for the
full scope of testing including crosswind.

3.5 DATA REDUCTION AND DATA PRESENTATION

During the test program steady-state data were reduced using a
standard Boeing data reduction program for inlet tests. Data were
reduced using a gquick-look and final reduction version of the pro-

gram.

Quick-look data were obtained by processing the punched paper tape
through the Boeing Mechanical Laboratories SDS 92 computer. The
tabular output consisted of total and static pressure measurements,
surface Mach number distributions, inlet recovery, inlet airflow,
and the commonly used steady-state distortion parameters defined as:

Pr vax = Pr MmIn and Pr ave ~ Pr mIn

Pr ave Pr ave

Additional quick-look data were obtained from the test facility's
own PDP8 computer in form of tabulations of radial and circumfer-
ential distortion parameters defined by Pratt & Whitney Aircraft
(see Section 4.6.3).
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Final data were obtained by generating a magnetic tape from the

paper tape for processing through the Boeing CDC 6600 computer.
The final data consisted of tabular information similar to that
obtained from the gquick-look data.

All airflow data shown in this report have been converted from
0.2994 mcdel scale to full scale values.

The recovery measurements (PTZ/PTOO) presented in this document

are computed on an area-averaged basis. The wall region is handled

by taking the average of the wall static measurement and the closest
total probe multiplied by the annular area segment between the two.

Other regions are handled by multiplying the annular area segment

between any two probes by the average of their total pressures.

Computer plots were also generated on the CDC 6600. These plots
consisted of:

1. Compressor face steady-state pressure recovery maps
2. Local Mach number vs. location in "S" duct

3. Compressor face maps of the RMS level of the dynamic pressure
data.

Final dynamic data consisted of RMS pressure data to be evaluated by
P&WA.

Dynamic pressure as used in this report is defined as the time

varying portion of the total pressure. The term instantaneous

pressure is taken as the sum of the steady-state total pressure
plus the dynamic total pressure at a given instant.

The statistical term RMS pressure as used in this report is usually
called the standard deviation (frequency response between 5 and
1200 Hertz).

Steady state tabulated and machine plotted data are permanently
stored on microfilm.
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4.0 RL3 .08 AND OISCUSSION

$.1 0 ViAW UISUALIZATION STULRIES

s s-udies were conducted for selected conditions. Figure 7
5hows the flow pattern inside the duct at takeoff airflow and
160-knot speed. Examination of wall streamline patterns indicated
that strong secondary flovs existed. The flow was curving from
both sides toward the I-wer wall at the first bend. The co-rotating
vortex generators at the lower wall counteract that flow at the
same time they re-energize the lower wall boundary layer. At the
second bend flow was curving from both sides toward the upper wall.
Vortex generators at the upper wall re-distribute the secondary
flow and re-energize the upper wall boundary layer. The secondary
flow is explained in more detail in Section 4.4.2.

4.2 SURFACE MACH NUMBER DISTRIBUTION

Surface Mach number distributions at the lower and upper walls at
MCR airflow for the JT8D-100 engine are shown in Figure 8 for the
25-knot condition. Analytically predicted surface Mach number
distributions are superimposed and found to be in good agreement

with the test results.
4.3 AN SIMULATION-SCREEN TECHNIQUE

As a result of joint program planning with P&WA, it was agreed that
the effect of fan simulation was desirable during the inlet testing.
The fecasibility of simulating the engine in inlet test with respect
to both steady-state and dynamic interactions has been examined
previously, Reference 3. Properly sized screens at the fan station
of an inlet model can be employed for the simulation of the engine.
A 19-percent blockage screen configuration consisting of 0.41 inch
mesh with 0,041 inch diameter wire was installed at the simulated
rotor glane. This screen was sufficiently dense that the flow was
choked at the screen minimum area for a full-scale flow of

500 1b/sec. The screen was selected to provide a pressure ratio/
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flow characteristic similar to that predicted by P&WA for the
JT8D-100 fan at the design speed. Inspection of the duct wall
Mach number distribution indicates a slightly improved surface
pressure gradient at the 12 o'clock duct orientation, Figure 8.
Figures 9 and 10 verify this improvement showing less total pres-

sure loss in the boundary layer at the same position.
4.4 CONFIGURATION SELECTION

4.4.1 External Flow Field Consideration

The external flow field around the inlet highlight plane was in-
vestigated and reported in Reference 2. It was indicated that at

cruise conditions, flow direction is downward and is approximately

1 degree with respect to the body water line. At airplane rotation,
an upward flow angle of apprcximately 1 degree was measured. Down-
flow angles of 11 to 14 degrees can be experienced at wing stall.
The "S" duct was essentially insensitive to angular variations

over this range of inflow angles based on Phase I testing; there-
fore, the investigation of these large inflow angles was not
repeated in Ph. 3e II.

It is advantageous to slant the inlet highlight plane (an upward
tilt of the inlet centerline) to reduce the curvature of the first
bend. The slanted inlet results in a slightly higher inflow angle
at airplane rotation. The final inlet highlight plane was slanted
3°40' as shown in Figure 3.

4.4.2 Flow Control Devices

The center inlet has two bends between the inlet highlight and
compressor face and is commonly called the "S" duct. Because of
the bends the pressure recovery at the compressor face is highly
distorted. A compressor face pressure recovery map (bare duct) for
25 knots at the takeoff airflow condition is shown in Figure 1l.

A localized, highly depressed region at the upper wall is evi-
dent. A low pressure region symmetrical about a vertical plane is




noticeable at the lower wall. The upper wall pressure depression

resulted from deterioration of flow quality at the second bend.

The low pressure region at the lower wall is attributed to the
effects of secondary flow. At the first bend of the duct, the
particles near the flow axis which have a higher velocity, dictate
the normal pressure gradient. The slower particles near the wall
cannot balance this gradient. This leads to the emergence of a
secondary flow which is directed outwards in the center and inwards
(i.e., towards the center of curvature of the bend) near the wall
as shown in the following sketch.

SECTION AA

In order to have a better understanding of the development of the
secondary flow, a traversing u-shaped rake with 5 total pressure :
probes was employed to measure the total pressure at lower wall
body stations 1160.4, 1209.1 and 1277.4. The traversing rake is
capable of moving four inches from the lower wall into the stream.
To insure an undisturbed flow upstream of each traversing station,

LRI e e

the measurements were taken in three separate runs, one for each : 4

i

traversing station, Figure 12 shows the pressure recovery at the
stations. The pressure profile at lower wall body station 1160.4

i3

it

is abnormal (not symmetrical to lower wall vertical plane) and is

K1




probabliy chargeable to design tolerance and flexibility of the rake
installation. The effect of secondary flow on boundary layer
growth 1s not very severe up to the mid-point of the first bend
(station 1209.1). The accumulation of low energy flow 1is evident
at station 1277.4.

Steady-state radial and circumferential distortions for the bare
duct at the 160 knot, takeoff airflow condition are shown in
Figures 13, 14 and 15.

The distortion limits as defined by the engine manufacturer, P&WA,
are for the instantaneous total pressure (steady-state plus
dynamic) . The limits are also plotted in the same figures. It is
seen that the 60-degree distortion limit was exceeded by che steady-
state levels alone. In order to meet the distortion requiremerit
imposed by the engine manufacturer, i% was concluded tnat flow
control devices would be required.

The following flow control devices were tested in the wind tunnel
to evaluate their performance:

1) Vortex generators
2) Boundary layer fences
3) Turning vanes

4,4,2.1 Vortex Generators

0 Mechanism of Vortex Generators

The principle of boundary layer control by vortex generators
relies on the increased mixing between the external streams
and the boundary layer. This mixing is promoted by

vortices trailing longitudinally over the surface, adjacent
to the edge of the boundary layer. Fluid particles with
high momentum in the stream direction are swept along
helical paths toward the surface to mix with and to some
extent replace the retarded air at the surface. This is a




continunus process and so provides a continuous source cf

re-enersization ‘o counter the rnatural boundary-layer
retardation and growth caused by surface friction and
adverse pressure gradients. Large adversz pressure

gradients can thus be imposed without causing separation.

The principle of reducing pressure distortion at the compres-

sor face which is caused by the accumulation of low-energy

flow due to secondary flow relies on increased momentum

for fluid particles in the boundary layer and induced

cross flows which counteract the secondary flow. By

increasing the velocity in the boundary layer, the flow

particles near the wall have a higher momentum, thus -

reducing the amount of secondary flow.

Description of the Vortex Generators

The wvortex generators tested were the vane-type generators
which were used in the production 727 airplanes and the
Phase I model "S" duct. They consist of a row of airfoils
or small plates that project normal from the surface and
are set at an angle of incidence to the local flow to
produce single trailing vortices. The vanes can all be
set at the same angle to produce a set of co-rotating
vortices, or they can be set alternately at positive and _
negative angles to produce counter-rotating pairs of :

vortices.

i

The performance of vane-type vortex generators was evaluated
by Taylor (Reference 4) of United Aircraft Corporation for
diffusers and airfoils at low speeds, and by several NACA
experiments (References 5 and 6) for airfoils and aircraft

wings at high speeds. This work provides trends in

effectiveness for certain vortex generator design variables,
such as their angle of attack, height, distance ahead of

<2
5
i
s

éeparation, etc., Attention was, however, focused on the

st v miaatisl
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detailed changes that were produced in the boundary layer
profile upstream of th- imposed pressure gradient. Pearcy
and Stuart (Reference 7) extended the study of the cffects
of various design parameters and concluded that the strength
and disposition of the individual vortices was more
important than the details of the boundary layer profile

just upstream of the imposed gradient.

Counter-rotating, equal-strength vortex generators were
used on both the lower and upper walls of the production
727 airplanes and the Phase I model "S"™ duct. This type
of vortex generator is very effective in reducing flow
separation if the vortex generator is placed slightly
ahead of the point of separation. The disadvantages,
compared to co-rotating vortex generators, are: (1) the
induced vortices tend to lift off the surface as they
proceed downstream; consequently, their effectiveness in
reducing separation diminishes very rapidly downstream;
(2) higher loss in inlet pressure; and (3) higher pressure
distortion in the compressor face core region when used
on the lower wall of the "S" duct.

Co-rotating vortex generators, as indicated by Pearcy and
Stuart, are very competitive in reducing fiow separation

if the vortex generators are properly selected and located.
The main advantage of co-rotating type vortex generators
are their downstream effectiveness resulting in more
efficient usage of the vortex energy within the affected
boundary layer. This type of vortex generator has a few
special advantages when applied on the lower wall of the
"S" duct: (1) the induced vortices will remain close to the
wall; consequently, a cleaner core (primary) region will

be obtained; (2) the induced cross flows at the walls tend
to counteract the tendency of the secondary flow to deposit
and accumulate low energy air at the 6 o'clock position.




During this Phase II test only the co-rotating type of
vortex generator was evaluated in the first ben: on the
lower surface of the "S" duct since this type demonstrated

a superior capability to the counter-rotating type tested
in the Phase I model test.

4.4.2.2 Boundary Layer Fences and Turning Vanes

The low pressure region symmetrical about a vertical plane at the
lower wall is attributed to the migration of boundary layer due to
the bends of the "S" duct. Installation of boundary layer fences
was considered as one way of reducing pressure distortion. Turning

vanes, based on the work done in Reference 8 were also evaluated.

The idea of turning vanes was to turn the airflow in the opposite

direction of the secondary flow to obtain an even pressure at the
compressor face,

4.4.2.3 Results and Selection of Flow Control Devices

The criteria used in the selection of the flow control configuration
for further testing were based on parameters defined by P&WA.
Steady-state radial and circumferential distortions at the

160-knot takeoff airflow condition for the better performing con-
figurations are shown in Figures 16, 17 and 18 for comparison.
Steady-state compressor face pressure maps for the same conditions
are shown in Figures 19, 20 and 21. These contour maps were
generated as part of the final data reduction program and were

not available during the test,

Vortex generator configurations 7, 10 and 12 have comparable steady-
state pressure distortions. Intensified pressure distortions
(Section 4.6.3.1), i.e., steady state plus 1-RMS intensification,
were calculated for configurations 10 aad 12 and are shown in
Figures 22 and 23 for radial distortion and in Figures 24 through
27 for 60 and 180-degree circumferential distortions. These two
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configurations are very competitive when judged by pressure dis-

tortion criteria. Vortex generator configuration 12, which has
similar generator geometry in the second-bend upper surface to
that of the production 727, was selected for use in subsequent
testing of inflow angle variations and crosswind conditions. How-
ever, it is recommended that configurations 7, 10 and 12 should be
further evaluated for engine/inlet compatibility by full-scale
ground testing.

The compressor face pressure recovery map for the boundary layer
fences (configuration 14) is shown in Figure 28. Pressure distor-
tion at the lower wall is very similar to that of the bare duct as
can be seen by comparing Figures 11 and 28. It is felt, however,
that extending the bcundary layer fences further downstream and/or
incorporating more fences may help to improve the lower wall pres-

sure distortion.

The compressor face pressure recovery map for the turning vanes

(configuration 16) is shown in Figure 29. Ic is seen that pressure
distortion is worse than that of the bare duct. Pressure recovery
was considerably lower than the vortex generator configurations as

shown in Figure 30.

4.4.3 1Inlet Lip Configuration

4.4.3.1 1Inlet Lip Crosswind Consideration

In the JT8D Refan Program considerable emphasis has been placed on
the airplane's ability to perform satisfactorily in crosswind. As

i
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up to 1 wind velowooty
1 range of engine airflows Irom a iow
=f rolling takeoff ‘demands up to full
flow. In additicn to the static conditinn, a 29-knot
was simulated at 67-knot forward speed in the 9' x 9'
off airflow. Three inlet lip variations were tested. T
shows the characteristics of these l.ips. The lip contours are

shown 1in Figure 1,

TABLE III

LIP CONTRACTION RATIO ELLIPSE
CONFIG. LIP AXIS RATIO

NUMBER Ay1/Ary CONTOUR

1
1.30 (30% LIP) "SUPER-ELLIPSE" |
1.34 (34% LIP) "SUPER-ELLIPSE"

1.30 (30% LIP) "SUPER-ELLIPSE"

4.4.3.2 Results and Selection of Inlet Lip Configuration

Figurc 31 shows the static crosswind prassure recovery performance
of the three configurations tested. It would seem that the lip
performance is satisfactory up to and including l0-knot crosswind
for the full range of airflows tested. When increasing crosswind
to 25 knots, the pressure recovery decreased for all three lip
configurations. Configuration 1 crosswind periormance is shown
with both total airflow and primary only pressure recovery,

Figure 32. Beyond 10-knot crosswind, the primary core flow
recovery winich usually approaches unity is indistinguishable from
the total flow.

Steady~state radial and circumferential pressure distortions are
shown for confiqurations 1 and 2 at takeoff airflow on Figures 33,
34, and 35. No discernible advantage is evident for either lip

at the l0-knot crosswind condition with both possibly meeting
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mits. At the 25-knot cordition neither configuration will

meet PaWA radial distortion criteria, boti lips showing comparable
performance. Configuration 3 showed no special merit and was

eliminated from further discussion.

With rolling takeoff procedures both lip configurations demonstrate
similar steady-state pressure distortion characteristics at initi-
ation of takeoff roll with low airflow, Figures 36, 37 and 38.

Upon attaining the not-to-exceed airplane roll speed for final
setting of takeoff thrust the crosswind distortion effect is
minimal; the resulting steady-state pressure distortions under
this condition for configuration 1 only are shown on Figures 39,

40 and 41.

Because the alternate lips demonstrated insufficient crosswind

v b Bk AP e DS e A A 0T

performance improvement and can have adverse effect on external
lines and/or additional cost of tailoring internal lip contours,
configuration 1 lip was selected for Phase Il ground rig testing.
This inlet lip selection will also provide maximum correlation

with the existing model-~scale data bank.

4.4.4 Engine Nose Dome

The engine nose dome contour for this test was of an elliptical
shape described by a 2.0 to 1.0 ellipse (ellipse major/minor axis).
In addition, the inlet was selectively tested with a long nose dome
(3.15 to 1.0 ellipse) at 160 knots and takeoff airflow to evaluate
length sensitivity. Pressure recovery vVersus corrected airflow is
shown in Figure 42 for both nose domes. Radial, 180-degree and
60-degree circumferential pressure distcrtions are shown in
Figures 43, 44 and 45, respectively, for both nose domes. No
discernible difference in either pressure recovery or distortion
was observed. Therefore, for reasons of interchangeability with
the side inlet and a requirement to provide additional acoustic

treatment area, the long elliptical nose dome is recommended.
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4.5 TOTAL PRESSURE RECOVERY

4.5.1 Total Pressure Recovery Without Vortex Generators

Tests were conducted for the duct without vortex generators at
zero degree inflow angle for the forward speed conditions only be-
cause of excessive pressure distortion at upper wall and accumula-
tion of low energy air at the lower wall. Total pressure recovery
versus compressor face corrected airflow is shown in Figure 46 for
25-knot and 160~-knot speed conditions.

4.5.2 Total Pressure Recovery with Vortex Generators

Vortex generators were introduced because of high pressure distor-
tion. Vortex generator configuration 12 was found most effective
in reducing pressure distortion and was used in subsequent testing

at inflow angle variation and crosswind conditions.

Pressure recovery versus airflow is shown in Figure 47 for zero-
degree inflow angle and in Figure 48 for inlet inflow angle vari-
ations. It is seen that inlet inflow angle variations within the
727 airplane normal operating regime (-5 to 5 degrees) have no
effect on pressure recovery. The penalty in pressure recovery due
to vortex generators at takecff airflow with forward speed is 0.10
percent, Figures 46 and 47. Phase I testing demonstrated that inlet
performance was insensitive to inflow angle variation up to 15-

degree downflow; therefore, this corner condition was not repeated
in this Phase II program.

Crosswind pressure recovery versus airflow is shown in Figure 32.
Pressure recovery at a 25-knot crosswind and takeoff airflow is 96
percent for Phase II "S" duct as compared to 93.5 percent for the
727-100 "S" duct (1/9 model scale, unpublished data). At l0-knot
crosswind condition the Phase II "S" duct performance is comparable
to that of the 727-200 "S" duct.

Total pressure recovery of the Phase II duct has improved 0.1 per-
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cent over the Phase I duct at the 160-knot, takeoff airflow condi-

tion (see Figure 49). Pressure recovery of the bare ducts is
identical between Phase I and Phase II ducts; therefore, the
improvement is attributed to the better vortex generator configu-
ration used on the Phase II duct. The improvement in pressure
recovery is most pronounced at 6 o'clock position as can be seen
in Figure 50.

4.6 TOTAL PRESSURE DISTORTION

4.6.1 Steady-State Compressor Face Pressure Recovery Maps

Steady-state compressor face pressure recovery maps for the bare
duct (without flow control devices) at takeoff airflow conditions
are shown in Fiqures 51 and 52 for 25 and 160 knots, respectively.
Compressor face maps are identical for both the 25 and 160-knot
conditions.

Steady-state compressor face pressure recovery maps for the duct
with vortex generator configuration 12 installed are shown at
takeoff airflow for the following conditions:

Figure 53 0 degrees

25-knot forward speed, inflow angle
Figure 54 160-knot forward speed, inflow angle U degrees

Figure 55 160-knot forward speed, inflow angle

5 degrees

]

Figure 56 160-knot forward speed, inflow angle = -5 degrees
Figure 57 0-knot, 90-degree crosswind condition

Figure 53 10-knot, 90~degree crosswind condition

Figure 59 25-knot, 90-degree crosswind condition

Figure 60 35-knot, 90-degree crosswind condition

Figure 61 73-knot, 23~degree yaw condition

(simulates 29-knot crosswind at 67-knot

forward speed condition) .

v+




It is seen from Figures 54, 55 and 56 that the inlet inflow angle

variation within the 727 airplane normal operating regime (-5 to 5
degrees) has no effect on total pressure distortion. Total pres-
sure distortion 1s more pronounced at high crosswind conditions.
Rolling takeoff, which is a common airline operational procedure,
sets takeoff power at about 67 knots. To simulate 67-knot forward
speed and 29-knot crosswind conditions, the "S" duct was set at a
23-degree yaw and tested at a 73-knot forward speed condition.
Pressure distortion at this condition is identical to that of the
160-knot forward speed condition as shown by comparing Figures 55
and 61; therefore, it is probable that the "S" duct can be operated

successfully at 29-knot crosswinds by using a rolling takeoff pro-
cedure.

4.6.2 Compressor Face Dynamic Pressure (RMS) Maps

The RMS/PTco compressor face map at 160 knots and takeoff airflow
is shown in Figure 62. A steady-state compressor face pressure
recovery map for the same condition is shown in Figure 21. Some
correlation between steady-state pressure recovery and RMS/PT
compressor face maps can be noted: (1) in the core region, pressure
recovery is 100 percent (no steady-state pressure gradient) while
RMS/PToo is zero. (2) At the 6 o'clock position both the steady-
state data and the RMS/PToo data show better performance (high
recovery and low RMS) outside the core region than at other
circumferential locations. (3) At the upper wall, the large steady-
state pressure gradients exist between each pair of vortex gener-
ators and are well reflected in the RMS/PTOQ map .

4.6.3 Distortion Criteria

4.6.3.1 Pratt & Whitney Criteria

Radial and circumferential pressure distortions are used by P&WA,
Reference 9, to define the limits. All limits, radial and circum-

ferential, are baced on instantaneous pressure measurements. As
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prescribed by P&WA, the distortions were first calculated for

steady-state alone and then intensified with 1 RMS.

The distortion parameters are defined as follows:

P - P
o Radial distortion = T MAX RING T LOCAL RING
PT MAX RING
where P is averaged over 360 degrees for a

T LOCAL Ring
given radius and PT MAX RING is the maximum PT LOCAL RING

P - P
o Circumferential distortion = T RING AVG T MIN SECTOR AVG

PT RING AVG

Where PT MIN SECTOR AVG is the lowest average total pres-
sure in any 180-degree or 60-degree arc at a given radius

having an average pressure of PT RING AVG.

The intensification techniques employed by P&WA to get from steady-
state to estimated instantaneous distortion parameters are illus-
trated in Figure 63. For the radial pressure distortion, one RMS
vaiue was added to the maximum ring readings and subtracted from
all the other probe readings, and the radial parameter calculated.
For the circumferential factors, one RMS value was subtracted from
the probes in the minimum sectors and added to all other probes.
From these new values, circumferential parameters were recalculated.
Radial and 60-deqree circumferential pressure distortions are shown
in Figures 64, 65, 23 and 25 for takeoff airflow at the static and
the 160-knot conditions. It is seen that the "S" duct pressure
distortions are within P&WA distortion limits. The 180-degree
circumferential distortions are not critical with respect to the
limits (see Figure 27).

4.6.3.2 Boeing Criteria

The criterion used by Boeing in assessing the "S" duct is: the

steady-state pressure distortions for the Phase II "S" duct will be




no more than that of the 727-200 "S" duct. A typical compressor
face pressure recovery map for the 727-200 "S" duct is shown in
Figure 66. It is seen that pressure measurements were taken at
45-degree intervals. For the Phase II "S"-duct model test, pres-
sure measurements were taken at 10-degree intervals. 1In order to
make a fair comparison, the model test data was reconstructed to
show the pressure recovery at 45-degree intervals, similar to that
of 727-200. The pressure recoveries at the 0-, 30-, 180- and
270-degree locations were taken directly from the model test data.
At the 45-, 1235-, 225- and 325-deqree locations, the pressure
recoveries were obtained by averaging the two neighboring pressure
probes; for example, the pressure recoveries at the 45-degree
location were the average of the 40- and 50-degree locations.

Pressure distortion (PTAVG - PTMIN)/PT avG VS* corrected airflow
is shown in Figure 67 for both Phase I1I and 727-200 "S" ducts. It
is seen that in the range of takeoff and cruise corrected airflows,

the two ducts have comparable distortion.

Steady-state radial and circumferential pressure distortions, using
P&WA parameters are shown in Figures 68 and 69 for both the Phase II
and 727-200 ducts. Figure 68 shows that the Phase II duct has lower
radial distortion in the critical core region (lower engine limits)
than the 727-200 Production duct. Outside the core region, where
the engine limits are higher, the Phase II duct has higher radial
distor tion than the current Production duct. Except for an
isolated point outside the core region, the Phase II duct has

lower circumferential distortion everywhere as shown in Figure 69.

Pressure distortion in the core region is very critical from the
standpoint of engine/inlet compatibility. It is very important

that pressure distortion in the core region be kept to a minimum
because the engine is less tolerant of distortion in this region
(i.e., the limits are low). Sincc the Phase II duct has lower
pressure distortion in the core region, and P&WA claims the JT8D-100
engine and the current JT8D engines have comparable tolerance to
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distortion, it is concluded that the Phase II duct should provide

improved engine/inlet compatibility compared to the 727-200 duct.
4.7 MAXIMUM AIRFLOW CAPABILITY

Maximum airflow obtained with installation of a 19-percent screen
is approximately 500 lb/sec. To investigate "S" duct performance
at higher airflow conditions, tests were conducted at a 160-knot
forward speed with the screen removed. Maximum corrected airflow
tested was 585 lb/sec, pressure recovery is 95.9 percent. Pressure
recovery versus corrected airflow is shown in Figure 49.

RMS pressure data was taken at corrected airflow of 527.6 1lb/sec

(VT = 160 knot). Radial and circumferential pressure distortion

calculated based on P&WA criteria are shown in Figures 70 and 71.
It is seen that pressure distortions are within the limits set
by P&WA. Maximum test airflow at the static condition was 467
lb/sec. It is believed that higher airflow can be achieved
statically with modification of lip geometry to stay within the
P&WA distortion limits.

4.8 DATA REPEATABILITY

Pressure recovery and distortion at inlet inflow angles of 5, 0 and
-5 degrees are expected to be the same, consequently, measured data
at these angles can be compared as a check of data repeatability.
Figures 72, 73 and 74 are compressor face pressure recovery maps

at 100 knot and takeoff airflow condition for inlet airflow angles
of 5, 0 and -5 degrees respectively. It is seen that both pressure
recovery and distortion are consistent from run to run.




5.0 CONCLU3ILNS

'The required airflow was achieved with acceptable pressure

recovery (comparable to the current 727-207 duct).

Pressure recovery for the Phase II center duct inlet is 0.1
percent better than that of the Phase I duct at 160 knots,
takeoff airflow conditions (with best vortex generators
installed for both Phase I and Phase II ducts).

Installation of co-rotating type vortex generators on the lower
wall improved pressure distortion in the core region when com-
pared to the 727-200 or Phase I ducts. Therefore, the Phase

ITI center duct should provide improved engine/inlet compati-
bility.

Pressure distortion at static and forward speed, takeoff
airflow conditions is within P&WA limits for the Phase II
duct when equipped with vortex generator configuration 12.
(P&WA is independently assessing the results of the test
rogram to determine if the model test results indicate
that the engine and "S" duct are compatible. Findings have

not yet been received).

Static crosswind operation up to 10 knots appears feasible
at full takeoff power. Somewhere between 10 knots and 25
knots, a thrust setting procedure involving rolling takeoff
would be required. This rolling takeoff procedure is the
prescribed method shown in the 727 Boeing Jperations Manual
for all takeoff conditions.
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FIGURE 5.-DUCT MODEL WITH FUSELAGE SIMULATION CROSSWIND ORIENTATION
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APPENDIX A

SYMBCLS

1,2 Major Axis of arn Ellipse

Highlight Area, Ft2

Throat Area, th

Compressor Face Area Ft2

1/2 Minor Axis of an Ellipse
Body Water Line

Compressor Face

Diameter, In, Ft

&§*/e, Shape F-ctor

Hertz

Knots

Inlet Length, In, Ft

Mach Number

Compressor Face Mach Number
Throat Mach Number

Max Continuous Thrust

Max Cruise Thrust

Local Total ?ressure

Highlight Toial Pressure Taken as PT

oQ

’

PSIA

PP




r2* Proave

PT MIN SECTOR AVG

PT LOCAL RING

Wa, W

War Weor,

w/0o

WCFS2

Compressor Face Average Total Pressure, PSIA

Lowest average total pressure at a given radius
in any 180-degree or 60-degree arc. (P&WA includes
instantaneous values in their computation)

Average total pressure over 360° for a given
radius

Freestream Total Pressure, PSIA

Compressor Face Max Measured Total Pressure, PSIA
Compressor Face Min Measured Total Pressure, PSIA
Radius, In, Ft

Highlight Radius, In, Ft

Root Mean Square over frequency range noted (or
standard deviationj

Highlight Total Temperature, °r
Total Temperature at Compressor Face, °r
Local Velocity in x direction, Ft/Sec

Velocity in x direction at Boundary Layer Edge,
Ft/Sec

Tunnel Velocity, Knots
Vortex Generator

Inlet Airflow, Lb/Sec

= wA OTZ/ T2, Corrected Inlet Airflow, Full Scale,
Lb/Sec
Without
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812
dm1
5*

T2

Tl

Inlet Inflow Angle, degree:

Yaw angle, degrees

Local density, Lb/Ft3

Density at Boundary Layer Edge, Lb/Ft3
PT2/14.7

PT1/14.7

Displacement Thickness, In.

Boundary Layer Thickness, In.

Momentum Thickness, In.

TT2/518'7

TT1/518‘7
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