NASA CR-134600

FINAL REPORT

DETERMINATION OF LIFE FOR A POLYIMIDE-EPOXY ALTERNATOR INSULATION SYSTEM

by

W. B. Penn, R. F. Schaefer, and R. L. Balke

GENERAL ELECTRIC COMPANY AIRCRAFT EQUIPMENT DIVISION ERIE, PENNSYLVANIA 16501

prepared for

Ē

=:-

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

March 4, 1974

CONTRACT NAS 3-15691

NASA Lewis Research Center Cleveland, Ohio 44135 Davis S. Repas, Project Manager .

FOREWORD

The work described herein was conducted by the Aerospace Controls and Electrical Systems Department of the General Electric Company, Erie, Pennsylvania, under National Aeronautics and Space Administration Contract NAS3-15691, Modification No. 1. The work was performed under direction of Mr. D. S. Repas of the Power Systems Division of NASA-Lewis Research Center.

Measurements and insulation studies were conducted in the Advance Development Laboratory of the Direct Current Motor and Generator Products Department of the General Electric Company, Erie, Pennsylvania. Hardware used to conduct this work was designed and manufactured during the period 1964 to 1966 under NASA Contract NAS5-417.

DEPENDENT OF A DEPENDENT OF A DEPENDENT

 \equiv

=

ABSTRACT

Tests were conducted to predict remaining electrical insulation life of a polyimide-epoxy insulated 60 KW, 208 volt homopolar inductor alternator, following completion of 23,130 hours of turbo-alternator endurance tests at NASA. The sectioned armature winding of this alternator stator was used as means to evaluate and measure end-life at several aging temperatures for development of an Arrhenius plot.

A one-half life rate of 11.3°C was established from these data with a predicted remaining life of 60,000 hours at an armature winding temperature of 248°C and a total life, including endurance test time, of 61,645 hours. These data correlate reasonably well with data reported in CR-120901 on previous contract work.

The test method applied provides static test means for establishing insulation life-temperature profiles on completed components of electrical rotating machines.

TABLE OF CONTENTS

Section

l

Ξ

-

Title

	SUMMARY	1
I	INTRODUCTION	3
II	INVESTIGATION	5
	 A. Equipment Tested	6 6 9
	 B. Test Procedure	10 10 13
	 C. Test Apparatus	14 14 15
III	TEST RESULTS	17
	 A. Initial Measurements 1. Stator 2. Statorettes 3. Statorettes 	17 17 17
	B. Aging Tests	18
	C. Failure Probability Analysis	22
	D. Insulation End Life Determination	24
	E. Failure Location Investigation	24
IV	DISCUSSION OF RESULTS	27
	A. Insulation Measurements	27

TABLE OF CONTENTS

Section	Title					
	B. Insulation End Life	28				
	C. Failure Location	30				
v	CONCLUSIONS ·	33				
REFER	ENCES	151				
DISTRIE	BUTION	153				

A DATE OF TAXABLE PARTY OF TAXABLE PARTY

2

110 M START NAMES & 1 AVEC 18 18

_

Ξ

Ξ

Number	Title	Page
I	SNAP-8 Alternator Rating and Performance Characteristics	37
II	Alternator Insulations and Conductor Materials - Armature	38
III	Alternator Insulations and Conductor Materials - Field	40
IV	Test Equipment	41
v	Test Instrumentation	42
	INITIAL INSULATION DATA	
VI	Initial Measurements - Insulation Resistance and DC Leakage	43
VII	Initial Corona Onset Voltage, Stator S/N 481490	44
VIII	Statorette Initial Measurements - DC Leakage Current	45
IX	Statorette Thermal Stabilization, After 24 Hours at 200°C - DC Leakage Current	46
x	Statorette Thermal Stabilization, After 24 Hours at 200°C - Insulation Resistance at 500 vdc	47
XI	Statorette Initial Measurements - Corona Onset Voltage	48
	STATORETTE ACCELERATED AGING DATA 350°C	
XII	Statorette Accelerated Aging - 350°C, DC Leakage Current Measured at 23°C (Sheets 1 thru 8)	49

Number	Title	Page
XIII	Statorette Accelerated Aging - 350°C, DC Leakage Current Measured at Aging Temperature (Sheet 1 thru 4)	57
XIV	Statorette Accelerated Aging - 350°C, Insulation Resistance Measured at 23°C (Sheets 1 and 2)	61
xv	Statorette Accelerated Aging - 350°C, Corona Onset Voltage at Room Temperature and Simulated Altitude After Aging at 350°C (Sheets 1 and 2)	63
	STATORETTE ACCELERATED AGING DATA <u>325°C</u>	
XVI	Statorette Accelerated Aging - 325°C, DC Leakage, Current Measured at 23°C (Sheets 1 thru 9)	65
XVII	Statorette Accelerated Aging - 325°C, DC Leakage Current Measured at Aging Temper- ature (Sheets 1 thru 3)	74
XVIII	Statorette Accelerated Aging - 325°C, Insulation Resistance Measured at Aging Temperature	77
	STATORETTE ACCELERATED AGING DATA <u>300°C</u>	
XIX	Statorette Accelerated Aging - 300°C, DC Leakage Current Measured at 23°C, (Sheets 1 thru 11)	78 /
xx	Statorette Accelerated Aging - 300°C, DC Leakage Current Measured at Aging Temperature (Sheets 1 thru 4)	89

_

_

Number	Title	Page
XXI	Statorette Accelerated Aging - 300°C, Insulation Resistance Measured at Aging Temperature (Sheets 1 and 2)	93
XXII	Statorette Accelerated Aging - 300°C, Corona Onset Voltage at Room Temperature and Simulated Altitude After Aging	95
	STATORETTE ACCELERATED AGING DATA 275°C	
XXIII	Statorette Accelerated Aging - 275°C, DC Leakage Current Measured at 23°C (Sheets 1 thru 7)	96
XXIV	Statorette Accelerated Aging - 275°C, DC Leakage Current Measured at Aging Temperature (Sheets 1 and 2)	103
XXV	Statorette Accelerated Aging - 275°C, Insulation Resistance Measured at Aging Temperature	105
	STATORETTE ACCELERATED AGING DATA 250°C	
XXVI	Statorette Accelerated Aging - 250°C, DC Leakage Current Measured at 23°C (Sheets 1 thru 6)	106
XXVII	Statorette Accelerated Aging - 250°C, DC Leakage Current Measured at Aging Temperature (Sheets 1 thru 5)	112
XXVIII	Statorette Accelerated Aging - 250°C, Insulation Resistance Measured at Aging Temperature (Sheets 1 and 2)	117

<u>Number</u>	Title	Page
XXIX	Statorette Accelerated Aging - 250°C, Corona Onset Voltage Measured at Room Temperature and Simulated Altitude After Aging	119
xxx	Aging Time to Failure Summary, Conductor Failures, All Positions	120
XXXI	Aging Time to Failure Summary, Conductor Failures, Combined	121
XXXII	Aging Time to Failure and Failure Prediction Summary	122
XXXIII	Statorette Conductor Failure Location	123

FIGURES

.

.....

.

Number	Title	Page
1	Cross Section View, Alternator Components and Insulation	125
2	Stator No. 1, S/N 481490, Lead Connection End View, prior to Sectioning	126
3	Stator No. 1, S/N 481490, Opposite Lead Connection End View, prior to Sectioning	127
4	Statorette Fabrication Procedures	128
5	Stator No. 1 Following Removal of Armature Coil End Turns	129
6	Sectioned Stator for Fabrication of Statorettes	130
7	Statorette Prior to Removal of Protective Wax	131
8	Completed Statorette with Measurement Leads and Lead Support Attached	132
9	Statorette Measurement Lead Connection View	133
10	Test Measurement Schematic Diagrams (10a, 10b)	134
11	Statorette Positioned in Enclosure for Nitrogen Purged Oven Aging Tests	135
12	Enclosure for Nitrogen Atmosphere	136
13	Initial Condition - Change in Stator Winding Insulation Resistance With Temperature	137
14	350°C Statorette After Completion of Aging Tests	1 38
15	Statorettes at Termination of Aging Tests	139

FIGURES

Number	Title	Page
16	Lognormal Probability Plot of Failures - Completed 350°C Aging Data	140
17	Lognormal Probability Plot of Failures - Completed 325°C Aging Data	141
18	Lognormal Probability Plot of Failures - Incomplete 300°C Aging Data	142
19	Lognormal Probability Plot of Failures - Incomplete 275°C Aging Data	143
20	Lognormal Probability Plot of Failures - Incomplete 250°C Aging Data	144
21	Arrhenius Life-Temperature Plot for Statorette <u>Combined Conductor Position</u> Aging Test Data	145
22	Change in Corona Onset Voltage With Aging Time (22a, 22b, 22c)	146
23	Arrhenius Life-Temperature Plot for Statorette <u>Top Conductor-to-Frame</u> <u>Conductor Position</u> Aging Test Data	149

SUMMARY

The work under NASA Contract NAS3-15691 Modification No. 1 was conducted to establish Arrhenius dielectric life-temperature data on the polyimide-epoxy insulation system of a previously endurancetested inductor alternator. The data are intended for product design and application use.

Thermal aging tests were conducted at five accelerated temperatures on carefully divided sections of the alternator stator. Each section, designated a statorette, provided twenty-two conductors for armature winding dielectric measurements for top-to-bottom conductor and top and bottom conductors to frame. The statorette fabrication technique applied during this work is considered new. The technique provides a means to establish insulation dielectric life-temperature profiles on completed electromagnetic components of rotating machines.

Statorette tests were completed with failure of all coils at 350°C and 325°C. Tests were terminated at the contract scheduled completion date with conductor failures of 78.9%, 36.4% and 21.2% for respective test temperatures of 300°C, 275°C and 250°C.

An Arrhenius life-temperature curve for the alternator armature winding insulation system was developed from the statorette tests with a slope or one-half dielectric life rate of 11.3°C. At this rate, projected dielectric life, in addition to the turbo-alternator 23,130 hours of endurance test time, is 60,000 hours at 248°C. The equivalent time for the endurance hours was determined to be 1,645 hours resulting in a total predicted life of 61,645 hours at 248°C.

A failure location study was conducted at the completion of the aging tests using the position failure data from aging tests and post-aging dielectric breakdown. From this study, recommendations were made for insulation improvements for longer life potential.

SECTION I

INTRODUCTION

The stator armature and field windings of two Model 2CM391B1, 60 KW, 120/208 volt, 12000 RPM homopolar inductor alternators were evaluated under NASA Contract NAS3-15691 previous to work reported herein to determine electrical insulation quality and predict remaining insulation life. (ref. 1) The polyimide-epoxy insulated stators had been removed from the alternators at NASA after completing respectively 12,440 and 23,130 hours at approximately rated load in turbo-alternator endurance tests. (ref. 2)

The stator-in-frame for these alternators is approximately 12 inches in diameter, 20 inches long, contains an armature winding of 72 slot double core construction, and a field winding positioned between the armature cores and between the armature conductors and frame. The armature is wound one turn per slot per phase with frog-leg coils inserted into one end of a semi-closed slot and inter-phase connected at the opposite core end. The field winding is placed into a double cavity copper box with start of the coil winding at the box ID to permit the two lead exit at coil periphery.

-

Alternator rating information is shown in table I. The insulating materials and conductors used to comprise the insulation system for the armature and field windings of the stators investigated are described in tables II and III with component location depicted by alternator crosssection in figure 1.

During previous work, tests to predict insulation life were conducted on the 12,440 hour tested stator using an increasing step-temperature aging procedure with 600 volt dc proof test on five armature coils for each of nine temperatures. The life for each aging period and respective aging temperature was projected from the slope of an average life-temperature plot established from industry tests on polyimide insulated wire. From these projections, a life exceeding 80,000 hours at an operating temperature of 248°C was predicted. Results of this work was reported in April 1972 in NASA contract report CR-129091. (ref. 1)

Results from these previous tests were not considered sufficiently conclusive to provide data for predicting life with reasonable confidence for design and application use. An alternate means for life

prediction and verification of the aforementioned data was therefore proposed using the 23,130 hour tested stator and a method to obtain endlife data from at least three aging temperatures so as to produce an Arrhenius life-temperature plot. This proposal resulted in modification of the contract (Modification No. 1) and work on the second stator.

The purpose of the work herein reported was to obtain Arrhenius lifetemperature data and an analysis of alternator insulation life prediction for product design and application use.

The scope of the work included (1) fabrication of test specimen hardware by stator sectioning, (2) insulation measurements and heat aging tests to obtain end-life data, (3) failure location analysis for insulation improvement recommendations, and (4) an analysis of data to permit lifetemperature predictions.

The objectives for the work are summarized as follows:

- 1. Establish an Arrhenius life-temperature plot with three sigma limits from test data on a sectioned 2CM391B1 alternator stator.
- 2. Apply insulation measurements as techniques to monitor insulation deterioration and failure prediction.
- 3. Determine means to integrate the accumulated turbo-alternator endurance test time with contract work test data for an overall lifetemperature profile.
- 4. Identify insulation improvements for longer life potential.

SECTION II

INVESTIGATION

The test hardware specified for this investigation was the stator-inframe from alternator model 2CM391B1, Serial Number 481490. The alternator had completed 23,130 hours turbo-alternator endurance testing by NASA with an average total armature winding temperature of 205°C and an end turn bus connection temperature of 260°C. In addition to the endurance tests, the stator had been subjected to a series of tests during previous contract work with short time exposure to temperatures as high as 250°C. (ref. 1).

The phases of investigation directed at meeting contract work scope objectives are summarized as follows:

1. Initial Insulation Measurements

Conduct initial insulation measurements to establish insulation quality as a base prior to follow-on fabrication and tests.

2. Fabrication of Statorettes

Section the stator axially to provide six equal sections of the armature winding so as to permit top conductor-to-frame, bottom conductor-to-frame and top-to-bottom conductor measurements. The completed sections to be designated statorettes.

3. Aging Tests

Following initial insulation quality determination tests, subject five statorettes to cycle or repeating type tests until failure of all coils. The cycle should include sequential exposure to (1) oven heat with dielectric measurements at temperature, (2) mechanical vibration at room temperature, and (3) dielectric measurements conducted at room temperature.

4. Failure and End-Life Analysis

Conduct an analysis to include (a) evaluation of the failure type, (b) use of various measurements as means to detect incipient failures, (c) projection of failure data for incompleted tests using

probability techniques, (d) development of Arrhenius life-temperature plots, and (e) prediction of additional and total life of insulations for the tested stator.

5. Failure Location Study

Conduct a failure location study to identify areas of insulation system weakness and submit recommendations for achieving longer life potential. The study should include an analysis of failure positions from the statorette test data.

A. EQUIPMENT TESTED

The equipment to be tested was stator S/N 481490 from alternator model 2CM391B1 sectioned with axial cuts on centers of the slot to provide six statorettes. Each statorette contained a minimum of eleven slots to permit application of twenty-two conductor-to-frame and eleven conductor-to-conductor insulation measurements and a section of the annular field coil for two field-to-frame insulation measurements.

Tests to establish armature and field winding insulation quality were conducted prior to sectioning. These tests included corona onset voltage, insulation resistance as a function of temperature to 200°C, and DC leakage current to 1000 volts, also as a function of temperature to 200°C.

The procedure used to section the stator and complete fabrication of the statorettes in preparation for tests is described in the following report sections. Views of the stator prior to start of work are shown in figures 2 and 3 for the connection and opposite connection ends, respectively.

1. Statorette Fabrication

The general approach to statorette fabrication was to (1) imbed the stator end turns in rigid wax so as to provide coil support and contamination protection during machining operations, (2) remove both end turns with machine cuts in radial direction, (3) remove surplus frame end portions, (4) section the stator axially into six equal portions, (5) remove surface contamination from waxed areas, and (6) melt and clean wax from the sections. An optimum length for end turn removal was desired so as to provide maximum conductor-to-conductor contacts in the end turn portion and a length sufficiently short to prevent possible slot insulation damage at the core ends due to machine tool stress during end turn removal. A one inch length, measured from the core end, was established.

Studies were conducted to identify an imbedment wax to (1) provide maximum rigidity and contamination protection to the coils and insulation, and (2) permit complete removal by melt or solvent action. Conventional paraffin type wax was selected for the stator embedment material. Experience revealed best impregnation and fill of the stator was achieved by pre-heating the stator at a temperature somewhat lower than the wax melt point. These temperatures were 45°C and 80°C, respectively.

Machining of the end turns and frame was completed as shown in figure 4. This was accomplished as follows:

- a) Bus-bars and cross-connections at the terminal end of the stator were machined to a diameter of 7.250" (0.250" less than the stator bore) using a sharp cutting lathe tool.
- b) Both stator-end turns were removed one inch from each of the core ends by use of a high speed milling cutter.
- c) Oil fittings were removed from the frame O. D. and the frame length reduced to specified dimensions. A parting tool was required for removal of the frame on the opposite terminal end of the stator primarily to prevent melt of the wax due to heat generated from machining.
- d) Axial sectioning of the stator-frame was achieved by:

111

A one-inch deep cut was made axially into the frame
 O.D. using a milling cutter.

- (2) The stator-frame was sectioned in two by continuing at the slot cut by milling machine, using a vertical band saw.
- (3) Subsequent axial cuts providing six frame-stator sections was achieved by band-saw cuts from the bore.

The removal of end turns and sectioning of the stator was a success in terms of not imparting damage to the conductors or insulations and achieving the sectioned armature coil end configuration as planned. Completion of this operation was considered a significant process achievement. A view of the stator following end turn removal is shown in figure 5. The stator sections, prior to removal of wax, are shown in figures 6 and 7.

Although the two end turn annuli removed by the this operation were intact, it was apparent separation of conductors and retention of end-turn configuration with proposed exposure to test accelerated aging and vibration would become too complex to be of value. The studies on these end-turns were, therefore, discontinued and emphasis placed on the core portion of **a**rmature and field coil.

The six stator sections, obtained from the equal machined parts of the stator, were mounted on cradles prepared from 2" high by 6" wide x 15" long channel low carbon steel. The sections were affixed to the cradles by weldments at the stator outer periphery, approximately one inch from the armature conductors. A careful hand clean-up and polishing operation was applied to the armature and field conductor ends so as to remove all burrs and reduce risk of dielectric breakdown between adjacent armature conductors and the field conductors and field coil copper box. The wax was then melted from the stator sections. The process consisted of meltout at 80°C with the stator bore in down position and a final wash with Freon TF.

2. <u>Measurement Connections</u>

The proposed insulation measurement connection procedure was to manually apply the measurement probes to the test conductors. This procedure included removal of oxides from the test conductors, following exposure to temperature during aging tests, for effective probe contact. Permanent measurement leads were required for select conductor measurements to be conducted with the statorette in the oven or corona test pressure chamber. The field coil and three top and three bottom slot armature conductors were selected for these measurements.

The armature conductors were designated 1T through 11T and 1B through 11B with measurement lead connections made to 6T, 7T, 8T, 6B, 7B and 8B. (T and B are designations for top and bottom slot positions, respectively). The conductor arrangement permits eleven each top-to-frame and bottom-to-frame, and eleven top-tobottom armature conductor measurements for a total of thirtythree measurement possibilities per statorette.

AWG 16 polytetrafluoroethylene-glass insulated silver plated copper stranded leads, four feet in length, were connected to one end of each three top and three bottom armature conductors sharing the same slots. This connection arrangement could permit slot phaseto-phase and phase-to-frame measurements. To minimize heating, the connection was made by producing a ball at the strand ends and butt tungsten inert gas welding the ball to the armature conductor end.

Connections for field coil measurements were made by applying silver paint over the exposed conductors, exclusive of about onehalf the area adjacent to the copper field coil boxes. AWG 16 polytetrafluoroethylene-glass insulated stranded leads were connected to the silver coated conductor ends by a brass fastener inserted into a hole drilled and tapped into the field coil conductors.

To prevent breakage of lead strands, a lead support was constructed of steel and polyimide-glass laminate and attached to the statorettes above the bore. Untreated glass tape was wrapped tightly around the lead strands at the armature conductor joint to provide a stress transition from the rigid joint to the flexible lead. The leads were looped from the joint and anchored through the polyimide-glass support.

The completed statorettes, prior to conductor taping, are shown in figures 8 and 9.

The six statorettes were designated No. 1 through No. 6. Five were selected for the required aging tests, with statorette No. 5 remaining as a spare.

B. TEST PROCEDURE

The test procedure adopted was based on industry developed methods for thermal evaluation of electrical insulation systems (ref. 3, 4, 5). The procedure involves exposure of the statorette to critical elements, simulating the environmental conditions and stresses typical of the product application, but aggravated to accelerate deterioration. For this program the intended product application was electrical machinery for space power generation. (ref. 6). The data obtained on the system tested are expected to be applicable to a broader spectrum of equipment and applications.

1. Test Cycle Description

The elements of the test cycle adopted included heat aging at elevated temperature, mechanical vibration, thermal shock produced by moving the test specimen into the hot oven, and electrical stress through application of voltages for insulation condition measurements.

The sequence and details of these exposure elements are described as follows:

- a) Heat age statorette in nitrogen atmosphere for prescribed time and temperature.
- b) Apply voltage stress, at aging temperature, to selected conductors for measurement of dc leakage current to 1000 Vdc and 500 volt insulation resistance.
- c) Apply thermal stress by cooling statorette from aging temperature to room temperature.
- d) Apply mechanical vibration at room temperature.
- e) Apply voltage stress with measurement of corona onset voltage to 700 Vac.

- f) Apply voltage stress through measurement of dc leakage current to 1000 Vdc at room temperature.
- g) Repeat steps a) thru f) until "failure" of all coils. "Failure" is defined as leakage current exceeding 2000 micro-amperes at 600 Vdc or less, when tested at room temperature condition.

Femperature increments of 25° C were used from selected aging temperatures of 250° C through 350° C. The aging periods corresponding to each of the temperatures were estimated to provide approximately the same number of cycles to failure for each test temperature. The oxygen concentration for the aging environment was reduced to 0.16%, a level corresponding to the concentration at 100,000 feet (30.5 Km), by closing the oven outlets and purging the ovens with dry nitrogen to pressurize the system.

l

Thermal profiles were obtained on the statorettes to establish the time required to heat and cool the statorettes. The aging time used in the analysis was the specified time at temperature and did not include heatup and cool-down time. Power to the oven heating elements was removed at the end of cycle heat aging time, but the flow of nitrogen was continued until the statorette reached room temperature to reduce oxidation effects.

The vibration stress was applied by subjecting the statorette to 60 Hz, 8 mil peak-to-peak amplitude vibration for one hour in each cycle. The vibration corresponds to 1.5 G's loading.

Voltage stress was applied through measurements of dc leakage current, insulation resistance at 500 Vdc, and corona onset voltage for each armature top conductor-to-frame, bottom conductor-to frame, between top and bottom conductors, and field coil to frame measurement position. DC leakage current was measured at voltages to 1000 with criterion for failure established as leakage exceeding 2000 micro-amperes at 600 Vdc or less, measured at room temperature. The 600 volt dc limit was based on 1.4 (ac to dc conversion) and 2.0 (expected application transients) multiplying factors of the rated 208 volt ac alternator terminal voltage. Leakage current and insulation resistance measurements were also conducted at aging temperature for conductor positions to which leads were affixed, permitting measurements to be conducted on the outside of the ovens.

Corona onset voltage was measured at voltages to 700 Vac rms, a level corresponding to the 1000 Vdc limit established for leakage current measurements. Corona onset voltage was measured at room temperature and at a reduced pressure of 4.5 TORR. The 4.5 TORR is the pressure equivalent to 100,000 feet (30.5 Km) at 250°C and simulates space conditions.

The test cycles applied for each of the five selected aging temperatures are summarized in the following table:

TEST CYCLE ELEMENTS AND HEAT EXPOSURE PERIODS

· · · · · · · · · · · · · · · · · · ·			[Stato	ette Nu	mber	
Element		Test Temperature					
	Liement		1	6	4	.3	2
No.	Description	Condition	350°C	325°C	300°C	275°C	250°C
1 **	Voltage stress - between all conductors and all conductors to frame, to 1000 Vdc or failure *.	Cold, at room temp.	x	x	x	х	x
2.	Heat Exposure Hours	Oven, Nitrogen gas purged	4	24	68	168	336
3	Voltage stress - select conductors, same as No. 1	Hot, at test temp.	x	x	x	x	x
4	Mechanical Vibration	Cold, at room temp.	х	х	x	х	х
5	Voltage stress - select conductors, corona onset voltage	Cold, at room temp, sea level and 4.5 TOPR		-	x	-	x
6	Voltage stress - between con- ductors and conductors to frame, to 1000 Vdc or failure*.	Cold, at room temp.	х	X	x	x	х

* - Failure, Leakage Current in excess of 2000 micro-amperes
** - Initial Cycle only

11.0

2. Measurements

Electrical measurements were conducted on the statorettes to monitor degradation of insulations at the test temperatures and at room temperature during the heat aging cycles. Leakage current measurements were conducted at test temperature where possible. Corona onset voltage measurements were conducted under vacuum with intent to detect formation of voids in the structure as the organic materials aged and pyrolyzed.

Initial measurements were conducted on the stator prior to sectioning and on the statorettes to establish base line data. Initial measurements were conducted on the statorettes at temperatures to 200° C to establish a base for the insulation quality prior to initiation of aging tests.

Measurement positions and connection arrangements are described in section II-A.2 of this report. The schematics for measurement connections are shown in figures 10a and 10b for the stator and statorettes, respectively. The measurements are described as follows:

a) Insulation Resistance

Measured at 500 Vdc with a 20 million megohm instrumentation read-out capability.

Measurements conducted at room temperature prior to aging tests, at aging temperature on select conductors with leads attached, and at room temperature at completion of each aging cycle.

b) Leakage Current

Measured at 200, 400, 500, 600, 800 and 1000 volts dc using a "Takk" tester.

Measurements conducted at room temperature prior to aging tests, at aging temperature on select conductors with leads attached, and at room temperature at completion of each aging cycle.

c) Corona Onset Voltage

Measured with application of voltage to 700 Vac to select conductors with leads attached. **Cor**ona onset voltage measured by detecting initiation of noise on the cathode ray tube display. Measured in a chamber at (1) room temperature and atmospheric pressure, and (2) at 4.5 TORR and room temperature conditions. The 4.5 TORR at room temperature is equivalent to the space application condition of 250°C and 8 TORR*. Corona tests were conducted on the statorettes used for 250, 300 and 350°C test temperatures only.

C. TEST APPARATUS

The test apparatus used for conducting tests included convection ovens, nitrogen gas purging, mechanical vibration facilities, a corona-altitude chamber, and measurement instrumentation.

1. Facilities

a) Ovens

The ovens used for heat aging were high velocity convection type. The 0.16% oxygen environment was achieved by purging the ovens with dry nitrogen from the plant source.

After initiating aging tests, a high volume loss of nitrogen was observed. Quantity lost was reduced by placing the statorette into an enclosure and purging the enclosure only with nitrogen within the oven. The enclosure was constructed from steel sheet with a screw-fastened lid, and a copper tube connection and vent valve at the cover. A view of this enclosure is shown in figure 11.

The statorette was placed into the box and the lid fastened in place through strips of unsintered polytetrafluoroethylene as gasket material. Room temperature vulcanizing silicone rubber was then applied as a sealing bead along the edge of the cover-box interface and allowed to cure. Connection was made to the copper line in the oven with the vent valve fully opened. Nitrogen flow was initiated and continued for half an hour to assure the system was purged of air. A gas chromatograph analysis of the gas effluent from the vent valve after the half-hour purge showed 99.99+% nitrogen and 0.003% oxygen, indicating the air had been virtually eliminated from the enclosure.

(*) - 4.5 TORR at 23° C = 8 TORR x	23 + 273
	250 + 273

Gas flow meters were installed in the gas lines to the ovens, and flow was monitored periodically throughout the aging. With the vent valves closed, after purge, nitrogen flow was zero; had leakage occurred in the enclosures, flow would have been observed on the gauges. This situation did not occur.

A thermal profile was repeated on the statorettes in the enclosure, using the same procedure as described in Section IIB of this report, and the time in the oven adjusted to obtain the required time at aging temperature. An enclosure is shown positioned in the oven in figure 12.

b) Mechanical Vibration

Mechanical vibration was applied to the statorette by mounting the statorette (bore side up) onto the flat plate of a Syntron Shake Table and subjecting the statorette to 1.5 G's vibration (8 mils peak-to-peak amplitude at 60 Hz) in a vertical plane. Vibration amplitude was monitored by read-out from accelerometers fastened to the statorettes.

c) Corona-Altitude Chamber

A vacuum chamber approximately $14'' \ge 14'' \ge 20''$ inside dimensions was used to achieve 4.5 TORR pressure conditions for corona tests. The corona measurements were made with an Addison Discharge Scope Detector with a General Electric 5 KV transformer potential source.

A list of the equipment used for these tests is shown in table IV.

2. Instrumentation

.....

i

The instrumentation used in conducting tests for this program is described in table V.

. :

SECTION III

TEST RESULTS

The data from all tests conducted are compiled and presented in tables VI through XXIX. Summaries of these data and failure analyses are shown in tables XXX through XXXII, inclusive. Results of tests conducted on the stator prior to sectioning, tests on statorettes prior to aging, and aging tests are described in this report section.

A. INITIAL MEASUREMENTS

1. Stator

The insulation quality level of the stator was determined before sectioning to establish a base line. Results of insulation resistance and leakage current measurements are shown in table VI. Corona onset voltage was also determined, and results are shown in Table VII. To determine the effect of temperature, insulation resistance and leakage current were also measured as a function of temperature to 200°C. The change in insulation resistance with temperature is shown in figure 13.

A study of the leakage current data indicated the stator insulations to be in good condition with zero leakage at low temperature and slight leakage at 200°C and 1000 Vdc. This is corroborated by the insulation resistance data. Corona was not evident at voltages to 700 Vac.

2. Statorettes

Initial measurements were made on the statorettes at room temperature and at 200°C after a 24-hour-exposure to 200°C as a test to establish insulation integrity prior to aging. Test results are shown in tables VIII, IX, X and XI.

All statorettes showed essentially zero leakage to 1000 Vdc except for two slots in statorette No. 4. The top and bottom conductors were shorted in this unit. These failures were also evident by the hot insulation resistance reading, as shown in table X, although an additional failure, a top-to-bottom conductor, was detected. At room temperature, all statorettes showed zero leakage in all positions with voltage stress to 1000 Vdc. Measurements made at 200°C, to establish insulation integrity of the statorette field coils prior to aging tests revealed excessive leakage current with dc voltage applied between the field coil conductors and statorette frame. Field coils in all statorettes were faulted. The cause was speculated to be surface tracking, and effort was made to clean the conductor surface area for fault removal. The faults were located and established as an arc-over or track from an outer conductor across the epoxy compound and 0.0055" field coil box insulation to the copper box. Study was continued to verify if the field faults were due to air-dielectric breakdown at 200°C, using an "air-quench" concept. A sheet of silicone rubber was placed between the field coil conductor ends and the steel cover plate and measurement leads sealed with room temperature vulcanizing silicone compound at the joint. This study was unsuccessful however; build-up of voltage could not be achieved at room temperature.

From these studies, it was concluded the field faults were breakdowns occurring at the machined surface. Arcing that occurred during statorette field coil corona testing, and the field coil breakdown that occurred during the 200°C test, apparently caused permanent damage to field coil insulations at the machined surface. The cause appeared to be attributable to copper particles from stator sectioning operations and/or tracking of the polyimide polymers. Tests on the field coils were, therefore, abandoned, and test effort concentrated on the statorette armature conductors only.

B. AGING TESTS

Deterioration of the insulation system during accelerated aging tests was determined primarily by leakage current measurements at room temperature to establish a common end point for life at the five test temperatures. Failure was defined as leakage in excess of 2000 micro amperes at a voltage not exceeding 600 Vdc. Time to failure was observed for each armature conductor in test positions of top conductor-to-frame, bottom conductorto-frame, and top conductor-to-bottom conductor. These life data were used to calculate a median time to failure with 100% failure, or a plot on lognormal probability paper from which a median and three sigma limits could be determined from data of incompleted tests.

Leakage current measurements at temperature, insulation resistance measurements at temperature, and corona onset voltage measurements at 4.5 TORR were of value in detecting incipient failure. The high temperature readings and the corona start voltage readings, particularly at reduced pressure, were more sensitive than the room temperature leakage current readings, but less consistent and more difficult to correlate. These measurements were eliminated, however, with the change from nitrogen pressurized ovens to the statorette enclosures; it was necessary to remove the leads used for obtaining these measurements in order to seal the statorette enclosure.

A study of leakage current measured at test temperature shows that for some statorettes failure could not be predicted. For example, for some readings leakage current was extremely low at high voltages, but in the following cycle, failure would occur with application of low voltage. However, with other readings, leakage current increased with each cycle until failure occurred. It was, therefore, concluded leakage current measured at test temperature resulted in inconsistent data, not fully useful for failure prediction or study of insulation deterioration trends.

1. 350°C Test Results

On the statorettes aged at 350°C earliest room temperature leakage current failures occurred in the slot top-to-bottom armature conductor mode. Bottom conductor-to-frame failures slightly outpaced the top conductor-to-frame failures. Failure was achieved on all conductors. These data are shown in table XII.

Hot leakage readings displayed an interesting pattern. High leakage measured initially dropped as aging progressed and slowly rose again. Readings were not particularly consistent. The hot insulation resistance measurements followed the same pattern with low megger reading initially, but improved steadily with heat aging until abrupt "failure" occurred. Recovery occurred in some instances. The hot leakage current and insulation resistance data are shown in tables XIII and XIV.

Corona onset voltage readings were rather consistent and showed a drift downward as aging progressed for top to bottom conductor and top conductor-to-frame measurements. Corona onset for the bottom conductor-to-frame increased somewhat for the first few cycles, then also drifted lower. An abrupt drop in corona onset voltage occurred toward the end, and readings remained at a low value. The corona onset voltage data are shown in table XV.

2. <u>325°C Test Results</u>

Leakage current readings observed at room temperature, following each aging cycle at 325°C, demonstrated a failure pattern similar to that shown with the 350°C statorette tests. The earliest failures occurred between phase windings or top-to-bottom armature conductors. Bottom conductor-to-frame failures were initially slightly more rapid than top conductor-to-frame failures, but complete failure occurred first in the top conductors. Failure of all conductors was achieved. These data are shown in table XVI.

Leakage current measurements at test temperature showed a decrease in leakage initially to rather low values followed by a gradual increase. Phase, or top-to-bottom conductor, failures occurred first. There was slight difference between the top conductor-to-frame and bottom conductor-to-frame readings. These results were consistent with results of hot insulation resistance data. Data from these measurements are shown in tables XVII and XVIII.

3. 300°C Test Results

Due to termination of the test, complete failure was not achieved on conductors in the statorette aging at 300°C. However, failure was achieved on all top-to-bottom conductors, indicating this area to be the principal weakness of the insulation system. Some bottom conductor-to-frame failures occurred prior to top conductor-to-frame failures, similar to that experienced with the 350°C test, but there was essentially no difference between the quantity of top and bottom conductor-to-frame failures at termination of the test. Data from these tests, establishing conductor end life by room temperature leakage current, are shown in table XIX.

DC leakage current measurements at the 300°C test temperature showed a drop in current during early aging, followed by a gradual rise. Top-to-bottom conductor failures occurred first, and the top and bottom conductor-to-frame failures occurred at about the same rate. Data from DC leakage current and insulation resistance measurements are shown in tables XX and XXI.

Corona start voltage readings on this statorette were low for bottom conductor-to-frame measurements at simulated altitude prior to aging tests. (See table XI, initial measurements). These low readings continued to decrease with aging. Top-to-frame and top-to-bottom conductor readings drifted downward slowly in a manner expected for insulation systems subjected to heat aging. These corona data are shown in table XXII.

4. 275°C Test Results

Complete failure of conductors for the three test positions was not achieved in the 275°C aging tests. Leakage current readings observed at room temperature remained very low initially except for one bottom conductor-to-frame position, which demonstrated an "infant mortality" characteristic by failing in the third test cycle (table XXIII). Top-tobottom conductor failures paralled bottom conductor-to-frame failures as the test progressed. One failure occurred in the top conductor-toframe group at termination of the test. The room temperature leakage current data is shown in table XXIII.

Leakage current and insulation resistance measurements at 275°C showed a rapid decrease in the insulation condition as aging progressed, but these data lacked consistency. Insulation resistance appears to be a more dependable measurement for this purpose than DC leakage current. Data from these hot measurements are shown in tables XXIV and XXV.

5. 250°C Test Results

One early failure occurred in the eighth cycle (top conductor-to-frame), and a second occurred in the tenth cycle (top-to-bottom conductor), resulting in an extrapolated median time to failure appreciably shorter than anticipated. These failures were recorded from the leakage current measurements at room temperature condition. At termination of the test, the number of failures for top-to-bottom and bottom conductor-to-frame were essentially equal. Additional failures did not occur in the top conductor-to-frame group. Data from these room temperature tests are shown in table XXVI.

Leakage current measured at 250°C showed improvement in the conductor-to-frame positions during aging. The top-to-bottom conductor positions showed highest leakage and indication of the weak portion of the insulation system. Insulation resistance measured at 250°C did not provide useful information. Test results were similar to that reported for 275°C tests. These data observed at test temperature are shown in tables XXVII and XXVIII.

Corona onset voltage readings drifted downward slowly as aging progressed in a manner expected for deterioration of an organic insulation system. The corona data are shown in table XXIX.

Views of the statorettes following completion of tests are shown in figures 14 and 15.

C. FAILURE PROBABILITY ANALYSIS

A failure analysis was conducted on the life-data obtained from the five statorettes. The aging time to failures for all conductor positions was compiled and summarized as an initial step in this analysis. The aging time to failure for the top conductor-to-frame, bottom conductor-to-frame and top-to-bottom conductors is summarized in table XXX. A failure summary for the combined position of conductor failures is shown in table XXXI.

The mean and three sigma limits for data from 350°C and 325°C tests were calculated since failure of all conductors was achieved in these tests. Test data obtained at the remaining three test temperatures, 300°C, 275°C and 250°C, were incomplete, with 78.9%, 33.3% and 21.2% coil failures for each respective temperature at termination of tests. A statistical approach for determination of the mean and three sigma limits for these incomplete test data was, therefore, undertaken. (ref. 7,8)

The first step in the statistical approach was to plot the cumulative percentage of failures versus time to failure on log-normal probability paper. Plots of all conductor positions and combination of positions are shown in figures 16, 17, 18, 19 and 20 for the respective five test temperatures.

1. 350°C and 325°C Analysis

The calculated value of median life, or 50% probability, for the 350° C and 325° C data were obtained from the summary in table XXXI and plotted at the 50% probability line on the log-normal paper. The best straight line for all data points drawn through this median was used to establish the percent failure versus time to failure slope. The probability plots are shown in figures 16 and 17.

2. 300°C Analysis

Statistical experience has indicated the slope of the probability line for similar failure modes should not change with different aging temperatures*. Two lines parallel to the 350°C line were, therefore, drawn; one for the 325°C data, passing through the calculated median, and the second for the incomplete (78.9% failures) 300°C data. Both lines appeared reasonable for the data points. Although a line with a

^{* -} Private communication with Dr. Wayne Nelson, Corporate Research and Development, General Electric Co.

steeper slope could have been drawn for the 300°C data points, the location of the median would not have changed appreciably. The probability plots of the 300°C data are shown in figure 18.

3. 275°C Analysis

The incomplete 275°C time-to-failure data were also plotted on lognormal probability paper and is shown in figure 19. Thirty-three percent of the conductors had failed at test termination. The best straight line was drawn for the 275°C data with 33% conductor failures, and this line was extrapolated to intersect the 50% probability ordinate to provide the 275°C median life point for the Arrhenius plot. It was apparent that the slope of this 275°C probability-life data was different from that of the 350°C data. Additional 275°C failure points would be required to establish such difference with confidence.

4. 250°C Analysis

The 250°C data were also plotted on the log probability paper using a slope determination technique different than the technique used for 300° C and 275°C data. With 21% conductor failures, a number of lines with different slopes could be drawn. The concept of similar slopes was applied from the 275°C data, but the life probability line could be readily shifted up or down on the plot. The lines drawn and plotted on figure 20 appear to be a reasonable compromise. Greater confidence would have resulted with continuation of the aging tests and achievement of more than 50% failure of the conductors.

5. Failure Position Analysis

An analysis was made of the failure data for the three failure positions in an attempt to establish median life and three sigma limits for each position. The intent of this analysis was to study strength and weakness areas of the insulation system for improvement recommendations to achieve longer life potential. Plots of these failure position data were made on log-normal probability paper, and median life was established from the intersection of aging time and 50% probability with the life probability line.

The median and three sigma data were determined for the 300° C, 275° C, and 250° C data and are tabulated on table XXXII. Failure position data shown on this same table for the 350° C and 325° C tests were determined by calculation.

D. INSULATION END LIFE DETERMINATION

An Arrhenius plot of time to failure versus aging temperature for the median of all conductor failures for the 350°C, 325°C, 300°C, 275°C and 250°C tests is shown in figure 21. Median life for the 350°C and 325°C tests were calculated from completed data, and the life for the remaining three incompleted tests was determined by probability end life prediction as described in the previous report section. The data for this plot were obtained from table XXXII.

The data plotted result in essentially a straight line through all test temperatures except the 250°C test point. The reduced projected mean life for this temperature suggests factors other than aging may cause reduced life in a test of this duration, or a large number of early, infant mortality type failures occurred such that the median would be increased with extended tests.

The slope for the Arrhenius plot was calculated to show insulation life is changed by a factor of 2 for each 11.3°C change in temperature. The comparative slope factor for polyimide insulated conductor, obtained from several sources of industry data and reported in previous contract work, was determined to be 12.2°C, therefore, showing reasonable correlation in test results. (ref. 1)

E. FAILURE LOCATION INVESTIGATION

A study to determine location of conductor failures on tested statorettes was was undertaken to help identify areas of insulation weaknesses for design improvement recommendations. The study was conducted on statorettes No. 1 (350° C) and No. 6 (325° C) wherein aging tests had been completed with failure of all conductor positions.

Faults in new or partially aged electrical windings insulated with organic materials can normally be detected by smoke, burning, or flashing with application of conventional dielectric test equipment. The tested statorettes were, however, essentially void of organic and burnable materials. A 250 Vac high ampere power supply was, therefore, used as a dielectric breakdown test for visual location of conductor fault areas. A fault visually detectable was evident by current discharge, physical rupture of remaining insulation, melt of metal, and/or audible arcing. The high current test was applied at random to a minimum of five armature conductors for each top-to-frame, bottom-to-frame and top-to-bottom conductor positions. Failure locations were categorized as (1) bottom or top of the slot, and (2) the core connection end, opposite connection end, middle or field coil area. Results for both statorettes are shown in table XXXIII. Hidden faults, that could not be visually detected, were classified as middle core type faults.

Analysis of combined fault locations of both statorettes showed 18.2% of the top conductors tested were faulted at the core ends, 27.3% of the bottom conductors tested were faulted at the core ends, and 75.8% of all tested conductors were faulted in the middle of the core.

SECTION IV

DISCUSSION OF RESULTS

A. INSULATION MEASUREMENTS

The measurement of leakage current, observed at room temperature condition appears to be an acceptable technique for determining insulation life. Room temperature measurements applied to statorettes aged at different temperatures provided data on the same basis for conductor life comparisons. The 600 Vdc limit established for failure corresponds to twice the alternator peak rated voltage. The 2000 micro amperes limit for leakage was established from test experience which demonstrated that the change in current with increased voltage application above this limit is high and, for the configuration and insulations commonly used in aerospace electrical machines or aerospace environmental test conditions, may lead to insulation failure. The insulation life predictions are, therefore, conservative.

"Failure", as defined, was therefore also indicated for conditions when insulation resistance was 0.3 megohms. Correlation is shown between insulation resistance and leakage current measurements at 500 Vdc, but the range of voltages used for the leakage readings provided additional information and a better understanding of insulation change.

The readings observed at test temperature were most sensitive in that incipient failures appeared earlier than the failures observed at the room temperature measurements. However, there was lack of consistency in these data possibly due to thermal expansion effects such as movement of adjacent conductors or insulations.

Corona start voltage measurements obtained at reduced pressure demonstrated this measurement to be useful for monitoring insulation deterioration. As organic constituents in the insulation system pyrolyzed, voids were apparently developed in the system. Application of voltage at reduced pressure will produce ionization in these voids, resulting in corona formation. The more voids, and/or the larger the voids, the lower the voltage at which ionization would occur. Monitoring deterioration of the statorette insulations is depicted with plots of average corona onset voltage data for 350°C, 300°C and 250°C tests in figures 22a, 22b, and 22c, respectively.

B. INSULATION END LIFE

The one-half life rate of 11.3°C established from the statorette test data was used to determine alternator life additional to that accumulated during the NASA turbo-alternator endurance tests. The rate was also used for comparison of life predicted in earlier contract work. This determination and comparison is summarized as follows:

1.	Remaining life at 248°C, from Arrhenius plot, figure 21	60,000 hrs.
2.	Equivalent life at 248°C for NASA reported 23,130 hours endurance tests at the average armature winding temperature of 205°C, by	1,645 hrs.
	calculation	1,045 mrs.
3.	Total alternator life at 248°C	61,645 hrs.
4.	Predicted total life at NASA reported alternator bus bar temperature of 260°C, from Figure 21 and calculation of equivalent endurance life time	29,600 hrs.
		27,000 110
5.	Total life at 205°C, from calculation	863,000 h rs .
6.	Earlier contract work, stator tests previously reported (ref. 1)	
	a) Remaining alternator life at 248°C, determined from stator tests	80,000 hrs.
	 b) Equivalent life at 248°C for NASA reported 12,440 hours endurance tests (alternator S/N 481489) at the average winding temperature of 205°C, determined from Arrhenius plot 	
	and calculation	1,000 hrs.

28

- c) Total alternator life at 248°C..... 81,000 hrs.

The conclusions reached from this summary analysis include:

1. The 1,645 hours equivalent life achieved during endurance tests is insignificant with respect to altering the Arrhenius life line shown in figure 21.

Figure 21 is therefore considered acceptable for design and application use for prediction of life or permissive operating temperatures. At least two precautions are suggested in use of these data however:

a) The data are applicable to the alternator configuration and insulations tested. Configurations unusually different may not provide the same performance.

The data are based on aging in an environment essentially free of oxygen. Oxidative pyrolysis of the polyimide and epoxy materials would have been accelerated substantially at the elevated test temperatures in a normal air atmosphere.

- b) The data are based on insulation dielectric performance only. Changes in the insulation system properties during service life will alter thermal or mechanical properties so as to affect heat transfer or mechanical strength. These latter properties may become more limiting to the life of the equipment than dielectric properties.
- 2. Correlation is shown between the results of the earlier contract work (ref. 1) wherein 81,000 hours of life at 248°C was predicted from stator tests and the 61,645 hours determined from statorette tests reported herein.

The technique for determining life expectancy of an insulation system is well known in the electrical insulation technological field. Several IEEE Standards are based on the procedure of aging components at various temperatures to determine time to failure at each temperature; and from these data, an Arrhenius plot of life against temperature is derived. (ref. 3, 4, 5) The unique feature of the work reported herein is use of a completed machine to obtain test sections for heat aging. Feasibility of this approach and technique has been demonstrated.

Similarly, IEEE Standard No. 101 outlines the mathematical analysis for derivation of the Arrhenius plot, (ref. 7, 8), but this derivation is based on complete failure data. For work reported herein, statistical approaches were applied to incomplete failure data to construct points for the Arrhenius plot.

C. FAILURE LOCATION

A study of test position failure data, shown in table XXX and described in report section III-C.5, and the failure location data reported in section III-E, indicate the majority of failures were between conductors in the slots and within the stator core mid-section. The slot bottom conductors rank close to this majority, with predominance of failures in the core section. The slot top conductors provided longest life. Except for occasional flashover at the bare conductor ends, faults were not located between phases in the end turn regions.

The failure location results were evaluated with respect to the stator configuration, materials, and assembly procedures to establish areas for insulation improvements. The following was concluded:

- 1. The top-to-bottom conductor insulations may be upgraded by increasing the thickness of the slot phase insulation.
- 2. The bottom conductor insulation could be improved by providing an insulation strip at the slot bottom, probably 0.010" thick, so as to provide cushion and protection to the slot insulation against lamination edges at the core slot bottom.
- 3. The top conductor is double insulated at the top of the slot by means of a full fold-over of the slot liner, therefore providing added insulation equivalent to that suggested in Item 2 above. It is speculated the longest coil life of the three positions was achieved for this reason.

The median life for conductors in the slot top position, determined from data in table XXXII and the Arrhenius plot in figure 23, indicate a dielectric life expectancy at 248°C of approximately 122, 200 hours. This, therefore, could be considered a goal for insulation improvements of the other positions for longer alternator life potential. 4. The proposed changes would, no doubt, have impact on the alternator slot design or electromagnetic performance.

SECTION V

CONCLUSIONS

The work objectives detailed in Section I of this report were achieved. These attained objectives include development of an Arrhenius insulation system life-temperature plot, application of select measurements for monitoring deterioration of insulations, integration of NASA reported turbo-alternator endurance test time with time obtained from tests reported herein, and an analysis of failure location data with recommendations for longer life potential.

The significant conclusions reached are as follows:

_ -- -- ...

- 1. An Arrhenius dielectric life-temperature plot with a one-half life rate of 11.3°C was established for the armature insulation system of the endurance tested alternator. The rate was established from statorette tests conducted at five aging temperatures.
- 2. A mean dielectric life of 58.78 and 333.33 hours was determined from tests completed at 350°C and 325°C respectively. A mean life of 1520, 7900 and 30000 hours was determined from data on incomplete tests using life probability plots for the respective test temperatures of 300°C, 275°C and 250°C.
- 3. A remaining dielectric life of 60,000 hours at 248°C is predicted for the tested alternator. The temperature of 248°C was selected during previous contract work as a base for data comparisons.

The 60,000 hours established by statorette tests correlates reasonably well with the 80,000 hours determined by stator tests from previous contract work.

The equivalent life for the 23,130 hours endurance tests at 205°C was determined to be 1,645 hours at 248°C. Total alternator dielectric life at 248°C was therefore determined to be 61,645 hours.

4. A procedure was established for obtaining insulation dielectric life data for Arrhenius life-temperature plots from a completed alternator stator. The procedure involves accelerated thermal aging tests on carefully divided sections of the completed stator. 5. An increase in insulation thickness for the top-to-bottom conductor position was included with recommendations to achieve longer dielectric life potential. This conductor position was determined to be the limiting one for longer life. The top conductor-to-frame position provided longest life and suggests this longer life could be achieved by improvement of all conductor positions to the conductor-to-frame life level.

· · ·

.

•

34

TABLES AND FIGURES

COMPILATION AND PRESENTATION OF DATA

TABLE I -- SNAP-8 ALTERNATOR RATING AND PERFORMANCE CHARACTERISTICS

General Electric Model: Design Specification: Rating:	2CM391B1 Aerojet General Corp. AGC-10175A (31 March 1965) Under NASA Contract NAS5-417 80 kVA, 0.75 P.F., 120/208 Volts, 400 Hz, 3 Phase 3 Wire, 12000 RPM
Electrical Characteristic	s:
Wave form, total rm Line-to-line at 1.0 F	s harmonic content,
Efficien cy , 80 kVA,	0.75 P.F
Excitation, 80 kVA,	0.75 P.F
Winding symmetry, difference between pl	voltage
Mechanical Characteristi	св:
Oil inlet temperature Oil outlet temperatur Oil inlet pressure. Oil outlet pressure	Polyphenyl ether Polyphenyl ether Polyphenyl ether $96^{\circ}C$ $110^{\circ}C$ $110^{\circ}C$ $3.5 \times 10^{4} \text{ N/M}^{2}$ $8.3 \text{ psia} (57.2 \times 10^{3} \text{ N/M}^{2})$ $2.84 \text{ gpm} (1.79 \times 10^{-4} \text{ m}^{3}/\text{sec.})$ (Rated Load):
Armature bus bar en	inding temperature, hot spot
Weight:	
Electromagnetic .	
Envelope, Max.	
Diameter, frame	
	00 hours (3.6 x 10 ⁶ seconds) continuous, unattended ation at rated load.
Design Environment:	
Cavity pressure Radiation level	

TABLE II - ALTERNATOR INSULATIONS AND CONDUCTOR MATERIALS--ARMATURE

			MATERIAL DESCRIPTION	Γ	SOURCE	
	Component	Size	Composition	General Electric Co. Designation*	Commercial Source	Mfg's Designation
1.	Slot insulation	. 01 05''	Aromatic polyimide im- pregnated and coated glass cloth	A22L16A5	El DuPont Co., Fairfield, Conn.	#6508-0105
2.	Conductor	.125" x .212"	Heavy coated aromatic polyimide insulated rect OFHC copper	B50WB310E	General Electric Co., SAC-Wire Section Schenectady, N.Y.	"HML"
3.	Slot phase insula- tion	.016"	Silicone-glass laminate	A19B22A1	General Electric Co., Coshocton, Ohio	#11556 "Textolite"
4.	Insulation end punchings	.020" 3 per end	Silicone-glass laminate	A19B22A1	General Electric Co., Coshocton, Ohio	#11556 ''Textolite''
5.	Top-sticks	36A227152 .032" thick	Aromatic polyimide	A50WB381A	EI DuPont Co., Wilmington, Delaware	"Ve spel "
6.	Coil side end turn phase insulation	#3 AWG	Heat cleaned fiber glass sleeving	A50WB304A	Bentley Harris Mfg. Co., Conshohocken, Pa.	"on Special Treated"
7.	Coil top-to-bottom end turn phase in- sulation	. 01 05"	Aromatic polyimide im- pregnated and coated glass cloth	A22L16A5	EI DuPont Co., Fairfield, Conn.	#6508-0105
8.	Lead cable - power leads	#8 AWG (3 per phase)	Glass braid, reinforced mica insulated OFHC	B50WB317A8	Rockbestos Wire & Cable Co., New Haven Conn.	"Mica-Temp"
9.	Lead and phase joint insulation	.0065" (3 layers)	Pressure sensitive thermosetting silicone adhesive coated glass cloth tape	A23B5A3	Minnesota Mining and Mfg. Co., Irvington Div.	''Scotch'' -#69
		Plus - .005'' (3 layers)	Heat cleaned fiber glass woven tape	A50WB374A	Hess, Goldsmith & Co., New York, N.Y.	

TABLE II - ALTERNATOR INSULATIONS AND CONDUCTOR MATERIALS--ARMATURE

			MATERIAL DESCRIPTION	J	SOURCE	
	Component	Size	Composition	General Electric Co. Designation	Commercial Source	Mfg's Designation
10.	Inter-coil joint insulation	3/8" dia.	Heat cleaned fiber glass sleeving	A50WB304A	Bentley Harris Míg. Co., Conshohocken, Pa.	"BH Special Treated"
		Plus - Compound	Black, filled thixo- tropic epoxy Novolac resin compound	A50WB364A	General Electric Co., DCM&G Dept., Erie, Pa.	
11.	Winding im- pregnation	Compound	Thin, clear, unfilled epoxy Novolac resin compound	A50WB363A	General Electric Co., DCM&G Dept., Erie, Pa.	
12.	Insulation end punching cement	Compound	Thin, clear, unfilled epoxy Novolac resin compound	A50WB365A	General Electric Co., DCM&G Dept., Erie, Pa.	
13.	Fill between stator core sections	Compound	Black, filled thixo- tropic epoxy Novolac resin compound	A50WB364A	General Electric Co., DCM&G Dept., Erie Pa.	
14.	Reinforcement to tem #13	. 007"	Leno weave, heat cleaned glass cloth tape (3 layers)	A22L14A	Columbia Electric Tape & Mfg. Co Phila- delphia, Pa.	
15.	Bus conductors	.080 x .500	Heavy coated aromatic polyimide insulated rect. OFHC copper	B50WB310E	General Electric Co., SAC Wire Section Schenectady, New York	"HMI "
16.	Bus insulation	. 01 05"	Aromatic polyimide im- pregnated and coated glass cloth	A22L16A5	El DuPont Co. Fairfield, Conn.	6508-0105
		Plus - .005'' (3 layers)	Heat cleaned fiber glass tape	A50WB374A	Hess, Goldsmith & Co.	
17.	Lead cable - phase equalizer leads	#12 AWG (one per phase)	Glass braid, reinforced mica insulated OFHC copper stranded cable	B50WB317A12	Rockbestos Wire & Cable Co., New Haven Conn.	"Mica-Temp"

100

 Revised from designations shown in Report, Reference 1.

· .

TABLE III - ALTERNATOR INSULATIONS AND CONDUCTOR MATERIALS--FIELD

			MATERIAL DESCRIPTION	I	SOURCE	
	Component	Size	Composition	General Electric Co. Designation*	Commercial Source	Mfg's Designation
1.	Coil Box Bottom	. 0055''	Aromatic polyimide im- pregnated and coated fiber glass cloth	A22L16A2	EI DuPont Co., Fairfield, Conn.	#65 07 - 0055
ž.	Box corner fill	.026" dia.	Untreated glass cord	A4L1B2	Owens-Corning Fiber- glass Corporation	EC9-20
3.	Box side lead Insulation		Silicone-glass Laminate	A19B22A1	General Electric Co. Coshocton, Ohio	#11556 Textolite
		Plus - #13 AWG	Aromatic polyimide coated fiber glass sleeving	A50CD307A	Bentley Harris Mfg. Co., Conshohocken, Pa.	"Ben Har 963 ML"
		Plus - #9 AWG	Aromatic polyimide coated fiber glass	A50CD307A	Bentley Harris Mfg. Co., Conshohocken, Pa.	"Ben Haı 963 ML"
4.	Conductor	.0720" dia.	Heavy coated aromatic polyimide insulated round OFHC copper	B50WB312E	General Electric Co., SAC Wire Section Schenectady, New York	нмі
5.	Coil box liner cement	Compound	Thin, clear, unfilled epoxy Novolac resin compound	A50WB363A	General Electric Co., DCM&G Dept., Erie, Pa.	
6.	Conductor bond	Compound	Black, filled thixo- tropic epoxy Novolac resin compound	A50WB364A	General Electric Co., DCM&G Dept., Erie, Pa.	
7.	Insulation between coil O.D. and copper band	.0055" (2 layers)	Aromatic polyimide impregnated and coated fiber glass cloth	A22L16A2	EI DuPont Co., Fairfield, Conn.	#65 07- 0055
8.	Lead cable - power lead	#12 AWG	Glass braid, reinforced mica insulated OFHC copper stranded cable	B50WB317A12	Rockbestos Wire & Cable Co., Ne w Haven, Conn.	"Mica-Temp"

* Revised from designations shown in Report, Reference 1.

TABLE IV - TEST EQUIPMENT

FUNCTION	EQUIPMENT DESCRIPTION
1. Altitude & Corona	Air Research Environmental Chamber
2. Heat Aging	Despatch High Velocity Ovens Models: V31SD, Ser. 76138 V31 Ser. 39945 V31 Ser. 47180 Mfg. Despatch Oven Co. Minneapolis, Minn.
3. Vibration Simulation	Syntron Model VC-30 Serial No. A56017 Mfg. Syntron Co. Homer City, Penna.
Test equipment was calibrate ation of tests in accordance w	d prior to initiation of tests and at termin- yith MIL-C-45662.

TABLE V - TEST INSTRUMENTATION

Test Parameter	Instrument Description
1. Continuity Measurements	Simpson V-O-M Model 260 Simpson Electric Co. Chicago, Illinois
2. Insulation Resistance	Megger Insulation Tester Mfg. Type No. 500 Vdc James Biddle Co.
	Insulation Tester, Model 29 Twenty Million Megohmmeter H. Sticht & Co. New York City, New York
3. D. C. Leakage Current	Takk D. C. Leakage Tester Model 86, Ser. 111 Takk Corp., Newark, Ohio
4. Corona Onset Voltage	G. E. High Voltage Pwr Supply Cat. 153X238. Ser. No. D938553 coupled with an Addison Discharge Scope Detector, Type AC2 Ser. 5651 Addison Electric, London
5. Mechanical Vibration	Columbia Charge Amplifier Columbia Research Labs Woodlyn, Ýenna.
6. A.C. High Potential Measurements	High Potential Tester AC Type Catalog No. 98921156 General Electric Co.
7. Gas Analysis	Gas Chromatograph, Model 900 Perkin Elmer Corp. Norwalk, Conn.

All instrumentation was calibrated prior to initiation of tests and at termination of tests in accordance with MIL-C-45662.

	Test	Insulation Resistance,	DC I	Leakag	e, mie	cro-am	peres
Test Component Position	Temp	Ohms	L		olts,		
	°C	(Megger at 500 Vdc)	200	400	600	800	1000
Field Winding,	24	130,000 x 10^6	0	0	0	0	0
Fl to Frame	40	$115,000 \ge 10^6$	0	0	0	0	0
	80	26,000 x 10 ⁶	0	0	0_	0	1.0
	120	$1,200 \times 10^{6}$	0	0	.5	1.0	1.5
	160	59×10^{6}	3.0	7.5	12	15	18
	200	1.75×10^{6}	100	250	425	500	615
Armature Winding	24	180,000 x 10 ⁶	0	0	0	0	0
T4 to Frame	40	52,000 x 10 ⁶	0	0	0	0	0
	80	30,000 x 10^6	0	0.	0	0	0
	120	7,200 x 10^6	0	0	0	0	. 25
	160	$2,400 \ge 10^6$	0	0	.5	. 7,5	1.0
	200	550×10^{6}	.75	2.5	3.5	4.0	6.0
Armature to Field	24	1,200,000 x 10 ⁶	0	0	⁻ 0	0	0
Winding, T4 to Fl	40	390,000 x 10 ⁶	σ	0 -	0	0	0
	80	54,000 x 10^6	0	0	0	.5	.5 -
	120	$18,000 \times 10^{6}$	0	0	0	.5	.75
	160	2,700 $\times 10^6$	0	0	0	.5	1.5
	200	410×10^{6}	1.5	2.0	3.5	6.0	⁻ 6.5

Stator No. 1 S/N 481490

TABLE VII - INITIAL CORONA ONSET VOLTAGE

Stator No. 1 S/N 481490

Test Component Position, Measurement	Corona Onset Voltage, Volts AC RMS Initial, As Rec'd. at Sea Level Pressure and 23°C
Field Winding, Fl to Frame	700 *
Armature Winding, T4 to Frame	700 *
Armature to Field Windings, T4 to Fl	700 *

* 700 Volt AC application limit to prevent possible insulation damage; corona was not observed.

TABLE VIII - STATORETTE INITIAL MEASUREMENTS -DC LEAKAGE CURRENT

											1								DC Leakage, micro-amperes Statorette No. 3 Statorette No. 4												
Test/Componen	nt Posi-		St	atorette						Statoret		2				Statoret		3	-		S						<u> </u>	tatorett			-
tion, Measures	ment			23*			1.00			23							°C					23°						23*			
				Volts,							é, de						s, dc					Volts						Volte			
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armanire	11			_	T .	.5	. 75						T	ĺ.	1																
Conductor - to-	ZT				1											1			1		1		1			t i	·				
Frame	TE				1	.5	. 75					1	1	1	1	1								1	1						
	4T										!	1		1						1						1					
	5T				ments					es sur e			1			passure					1							a.surer			
	61		•	scept a	ahow:		1 .		60	cept as	ahowa	1		1	•	ccept a	apom.	n .					enents :		1			cept as		ero	
	71						í			1	-	1		1					1	1		ercept i	a shown	`			ex	cept as	shown]	1
	8T				1					1	[1								1								
	9T				e .							1		1		1 '					1		1								
	IOT								1		i i		1		1								1	1							
	UT				<u> </u>				· · ·		ļ				ļ					++	+										
	11B				1.1		.5					1																	1	1	
	2B 3B				1.		· ?	1			1	1.			l.			1	1				i i		1				ĺ	1	
	4B					1		1					1		ł			1												1	
	58		A 17 -	: heren74	i fiments :				411 m	BABUTC	henre a				A11 1	beasure	mente	MITO							1						
	68				a shown			ł		cept as						scopt a							1		1						
	78			as also a	7	1		ł .		Г- <i>г</i> -	1				1		1	-	1		A11	-	emente	-			· All m	easurei	nents :	era	
	88				1		1	ł			1									1			s shows					cept as			
	98				i		ł	1		1 .	1				1		1		1	1	í	encopt.									
	10B				!	1	1	1	L		1				1				1			1							ļ		
	118			I		1		1								L															.
Armature	1T-1B				1		i i					[1		[1									1						i
Conductor-to-	2T-2B				!		5	1			1				1	1	i .	1	1		1	i		1					1	1	1
Conductor	3T-3B				Ì	i		i			1	1			1	1		i.			1		1		1						1
	4T-4B				1	1				1	1						I .	1			1										í
	5T-5B				ments		1			Asure			1	1		measure except s			1			ł	1	1		1			1 t		1
	6T-6B 7T-7B		•	prcebt a	a shows	1		1	- •	cept a	snown	1			1 '	except a							ements					beasure			1
	7T-7B 8T-8B					1					1			1	1		4					except	a show		1		. •	ccept #4	spow1		1
	81-8B 9T-9B			1	1		1	1)	1 .	1		1.	1	1	1	1	1			1	1	1	1	1	1					ľ.
	10T-10B				1		1	1			1				1	i	ł				1			1	1	}				1 ·	
	11T-11B				1	1	1	6	1	1	1	1	1	1	1	1	1		1	1.	1	1	1	1	1	1					

1 1

T = Top conductor in slot (Bore side)

B = Bottom conductor in alot (Frame side)

TABLE IX - STATORETTE THERMAL STABILIZATION, AFTER 24 HOURS AT 200°C DC LEAKAGE CURRENT MEASURED AT 200°C

Test Componen	t Posi-								DC Lea	akage, I	Microam	peres							
tion. Measure				Statorett	e No. 1						te No. 2				S	tatorett	e No 3		
cion, measure				Volts	, đc					Volte	, dc						, dc		
	Cond, No	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6т						. 75					<u> </u>	-						1000
Conductor-to-	7T					• •	. /5									ł			
Frame	8T	A 1	measu	remente	ZATO	. 5	. 75										i .	1	
	6B			as show			. 15	1		1	nents ze	TO			All n	neasure	inents ze	ro	
	7B	1	except	a anow	ť		-		er	cept as	shown				e	cept a	shown		ŀ
	8B																		.5
Armature	6T-6B								<u>├</u> ───						<u> </u>	+	l		
Cond to-Cond.	7T-7B	A1	1 measu	ements	zero				All m	easure	nents ze	ro			All n	easure	ments ze	-	
	8T-8B		except	as show	n				e	cept as	shown				1		shown	r ·	1

Test Componen	nt Posi-					DC Lea	kage Mi	croamo	eres						
tion, Measure	ment .		5	Statorett	e No. 4		and the second second second	Statorette No. 6							
				Volts	, dc		Volts, dc								
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000		
Armature	6т							0	0	0	0	0	.5		
Conductor-to-	7T							0	. 25	.5	.75	1.0	1.0		
Frame	8T		All me	surem	nts zer	•		0	0	0	.5		1.0		
	6B		exc	ept as s	hown			Ó	0	0	o	1	1.0		
	7B							0	0	0	.5	.75	1.25		
	8B							0	0	0	0		1.0		
Armature	6T-6B							0	0	0	0	0	0		
Cond to- Cond.	7T-7B		I I	1	nts zer	Þ		F							
_	8T-8B		exc	ept as s	hown			F	- 1	l _					

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE X - STATORETTE THERMAL STABILIZATION, AFTER24 HOURS AT 200°CINSULATION RESISTANCE AT 500 VdcMEASURED AT 200°C

Test Componention, Measure				Insulation Re	sistance - ohms		
	Cond. No.	Statorette No. 1	Statorette No. 2	Statorette No. 3	Statorette No. 4	Statorette No. 5	Statorette No. 6
Armature	6T						
Conductor-to-	7 T						
c raine	8T						
	6B		ALL MEASUREM	NTS INFINITY EX			
	7B		ADD MERSOREMI	INTS INFINITY ES	CEPT AS SHOWN		
	8B						
	6т-6в						0
rmature ondto-Cond	7T-7B						0
-	8T-8B						0

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

				Corona Onset Volt	tage, Volts AC RMS		
Test Componen		Stator	ette No, 1	Statoret	tte No. 2	Stato	rette No. 3
tion, Measure	ement	Pressure	e at 23°C	Pressure a	at 23°C	Pressur	e at 23°C
	Cond. No.	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *
Armature	6T	650	450	700**	450	450	300
Conductor-to-	7T	700**	550	500	300	700**	550
Frame	8T	700**	550	500	250	550	350
	6B	350	200	650	500	650	0
	7B	500	300	700**	650	350	200
	88	600	450	700**	600	450	300
Armature	6T-6B	700**	500	700**	650	650	450
Cond to-Cond.		650	550	700**	200	550	400
	8T-8B	700**	600	700**	650	700**	550

TABLE XI - STATORETTE INITIAL MEASUREMENTS - CORONA ONSET VOLTAGE AT ROOM TEMPERATURE AND SIMULATED ALTITUDE

			Corona Onset Volt	age, Volts AC RMS	
Test Compone	ent Posi-	Stator	ette No. 4	Stator	ette No. 6
tion Measur	ements	Pressur	e at 23°C	Pressure	at 23°C
	Cond. No.	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *
Armature	6T	700**	650	700**	550
Conductor-to-	7T	700**	600	350	200
Frame	8T	550	350	450	300
	6B	250	200	600	500
	7B	300	200	650	450
	/8B	200	0	700**	500
Armature	6T-6B	400	200	700**	500
Cond to - Cond	7T-7B	350	200	700**	550
	8T-8B	700**	450	650	600

- * Equivalent pressure for 100,000 feet at 250°C
- ** 700 volt AC application limit to prevent possible insulation damage; corona was not observed.
 - T = Top conductor in slot (Bore side)
 - B = Bottom conductor in slot (Frame side)

TABLE XII - STATORETTE ACCELERATED AGING - 350°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 1

Sheet <u>1</u> of <u>8</u>

		r		- -			DC Lea	akage, l	Micro-a	трегез									
Task Carry	. .	Cycle		*****	1			T		2							3		
Test Component		Accum	ulated																
tion, Measurem	lent	Hours			4					8						1	2		
				Volts	, dc				·	Volts	, dc					Volt	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	1 0	· 0	•0	0	0	0	0	0	0	0	o	0	0	0	0	0	0
Conductor-to-	2T	0	l o	l õ	o	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0
Frame	3T	0	o	0	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4T	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	51	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6T	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	c	. 0	С	. 25
	7T	ō	Ō	0	0	Ó	0	0	0	0	0	0	0	0	C	0	Ċ	.0	0
	8T	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0 -	0	с	C
	9T	0	0	0	0	0	0	0	0	0	0	0	C	с	0	C	0	0	0
	10T	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	Ċ.	0	. 25
	111T	0	0	0	0	0	0	0	0	0	0	0	0	C	C	0	0	0	. 25
	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0.	0	0
	2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С	0	. 0	0
	3B .	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	C	0	0
	4B	0 -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6B	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	c	0
	8B	0	0	۰o	0	0	0	0	0	0	0	0	. 25	0	e	0	0	.`25	.5
	9B	0	0	0	0	0	0	0	_0	0	0	0	0	0	0	0	0	0	0
	10B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	с
A .	11B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	0	.25	. 5
Armature	1T-1B 2T-2B	0	0	0	0	0	. 25	0	0	0	0	0	.5	0	C	0	C	. 25	.5
Conductor-to-	2T-2B 3T-3B	0	0	0	0 0	0	0	0	0	0	0	0	.5	0	0	C	0	0	.5
Conductor	4T-4B	0	0	0	0	0	. 25	0	0	0 0	0	0	.5	0		.0 0	0	0	.5
	41-4B 5T-5B	0	0	0	0	0	.25	0	0	0	0	0	.5	0		0	0	. 25	· .5 · .5
	5T-5B	0	0	0	0	0	0	0	0	0	0	.5	.5	0		0	0	. 45	.5
	7T-7B	0	0	o	0	ŏ	ŏ	0	0	0	0	0	.5	0	0	0	0	.25	5
	8T-8B	0	0.	o	ŏ	0	or Or	ő	0	0	.5	.75	.75	0	0	o	. 25	1.0	1.5
	9T-9B	0	0	a	ő	· 0	0	ů.	0	0	.5	0	. 25	0	0	0	0	.5	.75
	10T-10B	÷	0	ŏ	ŏ	ŏ	ŏ	ŏ	o	0	ő	l o	. 25	0 0	0	0	- 0	. 25	.5
	11T-11B	õ	o	0 O	ő	ő	0	ŏ	o	ő	ő	l õ	. 25	ő	ŏ	ŏ	ŏ	. 25	.5

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XII - STATORETTE ACCELERATED AGING - 350°C DC LEAKAGE CURRENT MEASURED AT 23°C . STATORETTE NO. 1

and a second second

							DC Lea	kage, 1	Micro-a	mperes									
Test Component	Deel	Cycle			4					5	··						6		
tion, Measurem		Accum	ulated		16			1.	-	20						2	4		
tion, Measurem	ent	Hours			10														
				Volts					.	Volte						Volt		-	
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	-800	1000	200	400	500	600	800	1000
Armature	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T	0	10	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
Frame	3T	0	0	0	0	0	0	0	0	0	· 0	0	0	0	0	0	0	0	0
	4T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	· 0	0	0	0
	6T	0	0	0	0	0	. 25	0	0	0	0	0	. 25	0	0	0	. 0	0	. 25
	7T	0	0	0	0	0	0	0	0	0	0	0	0	, 0	0	0	0	0	0
	8T	0	0 -	0	0	0	. 25	0	0	0	0	0	. 25	0	0	0	0	0	0
	9T	0	01	0	0	0	0	0	0	0	0	0	0	0 '	0	0	. 0	0	0
	10T	0	0	0	0	0	. 25	0	0	0	0	. 25	.5	0	0	Q	. 25	.5	.75
	11T	0	0	0	0	0	. 25	0	0	0	. 25	.5	. 75	0	0	Ó	.5	. , 75	1.0
	1B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0
	2B	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3B	0	0	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0
	4B	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
	5B	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
	6B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -
	7B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8B	0	0	0	0	0	. 25	0	0	0	0	. 25	.5	0	0	0	. 25	.5	.75
	9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10B	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	-0	0	0
	11B	0	0	0	0	. 25	. 75	0	0	0	0	. 25	.5	0	0	0	0	0	. 75
Armature	1T-1B	0	0	0	0	.5	. 75	0	0	0	0	.5	. 75	0	0	0	. 25	.5	. 75
Conductor-to-	2T-2B	0	0	0	0	. 25	.75	0	0	0	0	·.5	.75	0	0	0	0	.5	.75
Conductor	3T-3B	0	0	0	. 25	.5	. 75	0	0	0	. 25	.5	1.0	0	0	0	. 25	.5	1.5
	4T-4B	0	0	0	0	.5	. 75	0	0	. 25	.5	.75	. 75	0	0	. 25	.5	.75	1.5
	5T-5B	0	0	0	0	.5	. 75	0	0	0	0	.5	.75	0	0	0	.5	. 75	1.0
	6T-6B	0	0	0	0	. 25	. 5	0	0	0	0	. 25	.5	0	0	0	0	.5	1.0
	7T-7B	0	0	0	/0	.25	. 75	0	0	0	. 25	.5	.75	0	0	0	. 25	.5	.75
	8T-8B	0	0	0	0	1.0	1.25	0	0	0	.5	.75	1.0	0	0	0	.5	.75	1.5
	9T-9B	0	0	0	0	.5	. 75	0	0	0	0	.5	.75	0	0	0	0	.5	.75
	10T-10B		0	0	0	. 25	.5	0	0	0	0	. 25	.5	0	0	0	0	. 25	.5
L	11T-11B	0	0	0	0	. 25	,5	0	0	0	0	.5	.75	0	0	0	0	. 5	.75

Sheet <u>2</u> of <u>8</u>

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XII - STATORETTE ACCELERATED AGING - 350°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. ¹

Sheet <u>3</u> of <u>8</u>

							DC Lea	kage, N	Aicro-a	mperes									· · · · · · · · · · · · · · · · · · ·
1		Cycle	T	-	7					8						()		
Test Component	Posi-	Accum	ulated													-	,		
tion, Measurem	ent	Hours	and		28					32						3			· · · · ·
		<u> </u>	!	Volts	. dc					Volts						Volts		······	
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
				0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Armature	1T	0	0	-		0	0	0	ů 0	0	0	0	0	0	· 0	0	0	0	0
Conductor-to-	2T	0	. 0	0	0				o	ŏ	õ	ō	o	0	0	0	0	0	0
Frame	3T	0	0	0	0	0	-	Ö	0 0	0 0	ő	ŏ	0 ·	0	o	0	0	0	0
	4T	0	0	0	0	0	0		0	o	0	ŏ	ŏ	Ō	ō	0	0	0	0
	5T	0	· 0	0	0	0	0		Ö	0	o	Ő	. 25	õ	0	o	. 0	0	0 '
	6T	0	0	0	0	0	. 25	l č	-	· 0	0	ŏ	0	ŏ	ů	ō	Ő	Ō	l o
	7T	0	0	0	0	0	0	. 0	0	0	0	0	0	ň	o	ŏ	ŏ	ŏ	Ō
	8T	0	0	0	0	0	0	0.,	-	-	0		0	0	ŏ	ŏ	ŏ	ō	0
	9T	0	0	0	0	0	0	0	0	°	-	.5	1.0	0	o .	Ö	ŏ	0	Ō
	10T	0	0	0	. 25	.5	1.0	0	0		. 25	.5	1.0	0	0	0	ő	0	o
	11T	0	0	0	.5	.75	1.5	0	0	0	.5	0	1.5	0	0	0	0.	0	0
	1B	0	0	0	0	0	0	0	Ó	0	0	-	0	o	0	l o	ő	ŏ	lõ
	ZB	0	0	0	0	0	0	0	0	0	0	0	0	0	o	l o	0 O	Ö	ŏ
	3B	0	0	0	0	0	0	0	· 0	0	0	0		-	ŏ	0	ů	o	. 25
	4B	0	0	0	0	0	0	0	0	0	0	0	0	0		0	o	ŏ	. 25
	5B) o	0	0	0	0	0	0	0	0	0	0	0		0	l o		ŏ	0
	6B	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	l o	o o	0	Ő
	7B	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	o	ŏ
	8B	0	0	0	. 25	.5	. 75	0	0	0	. 25	.5	.75	0	0		0		0
	9B	0	0	0	0	0	0	0	0	0.	0	0	0	0	0		0	Ö	ŏ
	10B	a	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	ŏ
	11B	0	0	0	0	.5	. 75	0	0	0	0	. 25	.75	0	0	0	0	.25	.5
Armature	1T-1B	0	0	0	. 25	. 5	1.0	0	0	0,	. 25	.5	1.25	Ê	-	<u> </u>	U		
Conductor-to-	2T-2B	0	0	0	0	.5	1.0	0	0	0	0	. 25	1.25	40	750	Ē			
Conductor	3T-3B	0	0	0	.5	.75	1.5	0	0	0	. 25	.5	1.0				.5	1.5	2.0
	4T-4B	0	0	. 25	.5	1.0	1.5	0	0	0	.5	1.25	1.5	0	0	0	. 25	1.0	1.5
	5T-5B	0	0	0	.5	1.0	1.5	0	0	0	.5	1.0	1.25	0	0		. 25	0	0
e e e e e e e e e e e e e e e e e e e	6T-6B	0	0	0	0	. 25	. 75	0	0	0	. 25	.5	.75	0	0	0		0	0
	7T-7B	0	0	0	. 25	.5	. 75	0	0	0	. 25	.5	.75	0	0	0		0	. 25
	8T-8B	0	0	0	.5	. 75	1.0	0	0	0	.5	.75	1.5	0	0	0	· ·	-	
	9T-9B	0	0	0	~0	.75	1.0	0	0	0	0	.5	1.0	0	. 0	0	0	. 25	.5
	10T-10F	3 -0	. 0	0	0	. 25	. 75	0	0	0	0	.5	. 75	0	0	0		.5	1.0
	1117-111	3 0	0	0	0	. 5	. 75	0	0	0	. 25	.5	. 75	0	0	0	L		1.3

T = Top conductor in alot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XII - STATORETTE ACCELERATED AGING - 350°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 1

Sheet 4	4 (of	8
---------	-----	----	---

,

							DC Lea	kage, l	Micro-a	mperes									
	. .	Cycle	[10					<u> </u>						12			
Test Component		Accum	ulated					[_		
tion, Measurem	ent	Hours			40					44						4	8		
				- Volts	, dc	·····				Volts							9, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	11T	0	0	0	•0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T	ō	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Frame	3T	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4T	õ	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0
	5T	Ő	0	0	Ó	, 25	.5	0	0	.75	1.5	4.0	6.0	0	0	.5	1.75	3.0	4.5
	6T	Ő	ō	0	0	0	. 25	0	0	0	.75	16	40	0	0	0	0	0	F
	71	0	ō	0	0	0	.5	0	0	0	0	0	. 75	0	0	0	0	F	-
	8T	Ő	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40	125	F '
	9T	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	111	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ο.	0	0
	2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
	3B	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	4B	0	0	0	0	. 25	75	0	0	0	0	0	.5	0	0	0	0	0	0
	5B	0	0	0	0	0	.5	0	0	0	. 75	1.5	4.0	0	0	0	. 25	6.0	15
	6B	· O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	165	F
	- 7B	0	0	0	0	0	. 25	0	0	0	0	0	.5	Q	0	0	.5	. 75	6.0
	8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35	1300
	9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10B	0	0	0	0	0	0	0	0	0	0	. 25	. 75	0	0	. 25	1.5	3.0	8.0
	11B	0	0	0	0	0	0	0	0	0	.5	40	15	0	.5	. 75	40	185	F
Armature	1T-1B	0	0	0	. 25	.5	. 75	0	0	6.0	35	60	1300	0	0	.5	Ð	-	-
Conductor-to-	2T-2B	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-
Conductor	3T-3B	-	-	-	-	-	- 1	~	-	-	-	-	-	-	-	-	-	-	-
	4T-4B	0	.5	20	85	95	120	0	25	150	350	1,000	1600	0	. 5	.75	160	F	-
	5T-5B	0	0	.5	. 75	1.0	1.75	0	0	1.5	1.75	2.0	2.5	0	0	2.0	30	180	F
	6T-6B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.5	. 75	1.0	15
	7T-7B	0	0	0	0	0	. 25	0	0	0	0	.5	. 75	0	25	40	85	165	320
	8T-8B	0	0	0	0	0	. 25	0	0	0	0	. 25	. 75	0	0	0	.5	3.5	7.0
	9T-9B	0	0	0	.5	.75	1.5	0	0	0	. 5	1.5	2.0	0	0	0	1.75	F	
	10T-10B	i -	0	0	0	.5	1.5	0	0	0	1.0	3.0	F	0	0	.5	. 75	F	-
	11T-11B	0	0	0	. 25	. 75	3.0	0	0	0	0	0	F	0	0	0	.5	. 75	F

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XII - STATORETTE ACCELERATED AGING - 350°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 1

Sheet	5	of	8	

<u></u> ,,,,,		r					DC Lea	kage, N	Aicro-a	mperes									••••
		Cycle	T		13					14									
Test Component		Accum	ulated							~ /						60			
tion, Measurem	ent	Hours			52					56						Volts	1.		
				Volts	, dc					Volts			1.000	200	400	Volte	600	800	11000
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000						
Armature	1T	0	0	0	.0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
	2T	ŏ	õ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Conductor-to-	21 3T	ŏ	ō	ŏ	0	0	0	0	0	0	F	-	l -	-	-	-	-	-	0
Frame	4T	o	ŏ	ŏ	Ō	0	0	0	0	0	Ō	0	0	0	0	0	0	0	0
	5T	ŏ	õ	Ē	-	-	-	-	-	-	-	-	-	- 1	-	- 1	-	-	-
	6T		-	U U	-	_	-	- 1	- 1	-		-	-	-	-	ļ -		- 1	-
	01 7T	F	0	F	_	-	-	-	1 -	-	-	-	-	-	-	-	-	-	I
	8T	ŏ	ő		.5	F	-	0	0	0	F	-	-	-	-	-	-	-	0
	9T	ŏ	ő	Ő	0	Ō	0	0	0	0	ō	0	. 25	0	0	0	0	0	.5
	10T	o	ŏ	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0	. 25	
	111T	o	ŏ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -	0	0
	2B	l o	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	3B	ŏ	ō	0	0	0	0	0	. 0	0	F	-	-		-	-	-	- 0	0
	48	0	ō	0	0	0	0	0	0	0	0	0	0	0	· 0	0	U U	1	U U
	5B	Ō	. 25	F	-	-	-	-	-	-	- 1	-	-	- 1	-	-	-		
	6B	· 0	50	650	F	- 1	-	-	-	-	-	-	-	-	-	-	-		
	7B	0	0	F	- I	- 1	-	-	-	-	-	-	-	-	-	-	-		
	88	Ö	F	<u> </u>	-	-	-	-	-	- 1	-	-	-	-	-	- 0	0	0	0
	9B	Ó	Ĭŏ	0	0	0	0	0	0	0	0,	0	0	0	0	U U			
	10B	0	500	F	-	· -	-	-	-	-	-	· -	-	-	-	-			
	11B	0	F	-	-			_ <u>-</u>	<u> </u>	-		<u> </u>		<u>↓</u>		<u> </u>	<u> </u>		<u> </u>
Armature	1T-1B	-	-	-	-	· -	-	-	-	-	-	-	-	-					-
Conductor-to-	2T-2B	-	-	-	-	-	-	-		-	-	- 1	-	_	1	1	_	-	-
Conductor	3T-3B	-	-		· -	- 1	-	-	-	-	-	-	-			1 -	-	-	-
	4T-4B	0	0	F	1	- 1	-	-	-	-	-	-]		-		-
	5T-5B	0		Ō.	F	-	- 1	-	-	- 1	-		1]	1 [-	-	- 1	-
	6T-6B	0	F	-	-	-	-	-	-	Ā	-		1 -	1]	-	- 1	- 1	-	-
	7T-7B	0	500	1300	1800	F	-	0	1600	F	-		1 -			-	-	-	-
	8T-8B	0	0	I E	-	-	-	-		-	-	1	1 2			_	-	-	-
	9T-9B	, 0	500	I (F)	-	- 1	-	- 1	-	-	-		1			-	-	- 1	-
	10T-10	B 200	800	AAAAAAAAAAAAA	-	-	-	-	-	-	-		-		_	-	- 1	- 1	-
	11T-11	во	0	<u>(F)</u>	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>		1			<u> </u>	<u> </u>		<u> </u>	

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XII - STATORETTE ACCELERATED AGING - 350°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 1

		1					DC Lea	kage. 1	Micro-a	mperes									
m	. .	Cycle	T		16	,	20 20			17		··				18			······
Test Component tion, Measuren			nulated		64					68	3					72	:		
				Volta	. dc			1		Volta	s, dc	the TE Point - reis Alleria				Volt	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	F		-	-	-	-	-	-	_	Ι.	_	-	_	_	_	
Conductor-to-	2T	30	80	100	150	F		65 -	80	Ē		<i>,</i>		_			_	_	
Frame	3T	, ³⁰	-	-	150	-	_		-		_		_		-	_	-		-
Frame	4T	o	ō	ō	0	0	ō	0	0	0	0	0	0	0	0	0	0	0	. 25
	51	- I			-	-	Ľ	Ľ	-1		-	-	-			· _	-		
	6T		_	-		_	_	_	_`	_	_	_	_	<u> </u>	_	l _	_	_	- I
	71	_	-		-	-	_	_	-	_	_	-	- 1	-	-	-	ľ _	_	_
	81	_	-	-	-	i _	_	-	-	- 1	-	- 1	-	-	-	_	-	-	- ·
	91	0	0	0	0	0	F	0	0	0	0	0	F	0.	0	0	0	F	- '
	ior	o	l o	0	l o	0	.5	0	Ō	l o	0	. 25	.5	0	0	0	l o	.5	1.25
	11T	o	0	0	l o	o	0	o	Ō	0	Ō	0	0	Ō	0	0	. 25	5	1.0
······································	18	0	0	0	Ē	-			-	-	-	-	-	-	-	-		-	-
	2B	Ō	0	0	0	F	-	0	0	0	0	F	- 1	.5	. 75	6.5	Ð		-
	3B	-	-		-	-	-	-		-	-	-	-	-	- 1	i _		-	-
	4B	0.	0	0	0	0	F	0	0	0	0	0	F	0	. 25	.5	1.5	2.0	F
	5B	-	- 1	-	-	(-	-	-	_	-	-	-	-	-	-	-	- 1	-	-
	6B	· _	- 1	-		<u>`</u> _/	-	- 1	-	-	- 1	-	- 1	_	- 1	-	-	- 1	
	7B	- 1	-	-	-	-	-	· -	-	-	-	-	-	- 1	-	-	-	- '	-
	8B	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	- 1	-	-
	90	0	0	0	0	0	F	0	0	0	0	F	-	0	0	0	F	-	-
	10B	-	- '	- 1	+	-	-	-	-	-	-	· -		-	- 1	-	<u> </u>	- 1	-
	11B	-		-	-		_ ·	-	-	-	-	-	-	-		-	-	-	
Armature	1T-1B	-	-	-	-	-	-	-	·	-	-	-	-	-	· -	-	-	-	-
Conductor - to -	2T-2B	-	-	-	· -	-	-	-		-	- 1	· -	-	-	-	°	-	-	-
Conductor	3T-3B	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
	4T-4B	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-
	5T-5B	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6T-6B	-	-	-	-	- '	-	-	-	-	-	-	-	-	-	-	-	-	[-
	7T-7B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8T-8B	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
	9T-9B	- 1	-	-	-	-	-	-	-	-	- 1	-	-	- 1	- 1	-	-	-	-
	10T-10B		l	-	,-	-	-		-	-	-	-	-	-	-	-	-	l, -	-
	11T-11B	-	-	-	ľ -	-	-	-	-	-	- 1	-	-	-		-	-	-	

Sheet 6 of 8

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

٣

•

TABLE XII - STATORETTE ACCELERATED AGING - 350°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 1

Sheet 7 of 8 -

.

		1					DC Lea	kage, N	Aicro-a	mperes									
		Cycle	1		19					20						21			
Test Component		Accum	ulated					· · · · · · · · · · · · · · · · · · ·											
tion, Measuren	lent	Hours			76			1		80			1		- i	84			
				Volts	. dc					Volts	, dc				· ·		s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	-	-	· -		-	-	- 1	- 1	-	- 1	- 1	-	-	-	-	-	-	-
Conductor-to-	2T	-	-	_	-	-	_	- 1	-	-	- 1	- 1	-	-		-	-	-	-
Frame	3T	_	-	-	-	-	- 1	-	-	-	- 1	- 1	-	-	-	-	- 1	-	-
1	4T	0	0	0	-0	F	-	0	0	F	-	-	-	-	-	-	-	-	-
	ST		Ľ.		-	-	_	_	-	Ĭ	-	- 1	- '	-	-	-	- 1	-	-
	6T		_		_	- 1	-	- 1	- 1	-	-	-	-	-	-	- 1		- 1	-
	71			_	-	-	- 1	- 1	-	- 1	- 1	-	-	-	-	-	-	-	-
	8T	-	-	-	l _	-	- 1	- 1	-	- 1	-	- 1	-	-	- 1	-		-	-
	91	0	0	0	0	F	 -	0	0	0	F	-	-	- '		-	-	-	-
	ÎOT	ő	ŏ	0	Ō	.75	1.5	0	. 5	80	150	175	220	0	. 25	10	185	350	375
	11T	ŏ	0	. 25	.5	.75	2.0	0	0	. 75	1.5	2.0	3.5	0	.5	. 75	2.25	· 40	150
	1B	-	-	-	-	-	-	-	-	-	-	-	T -	-	-	-		-	-
	2B	-	-	-	- :	-	- 1		-	-	-	-	-	-] -	-		· -	-
	3B .	j -	-	-	-	-	-	- 1	l · -	-	1 2	-	-	-	-	-	-	-	-
	4B	0 -	. 25	.5	1.5	3.0	F	0	0	.5	F	-	-	- 1	-	-	- 1	-	-
	5B	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-
	6B	· -	-	-	-	-	-		-	-	-	-	1 -	-	-	-	- 1	-	-
	7B		-	-	-	-	-	-	-	-	- 1	-	1	-	-	-	-	-	-
	8B	- 1	-	-	-	; -	-	-	- 1	-	-	- 1	-	-	-	-	-	-	-
	9B	1 -	- '	- 1	- 1		- 1	-	-	-	-		-	-	-	-	-	-	-
	10B		-	1 -	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-
	11B	-	-		-				-		<u> </u>							+	
Armature	1T-1B	-	-	-	-		- 1	- 1	-	-	-		- 1	- 1	-	-	-	-	-
Conductor-to-	2T-2B	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	
Conductor	3T-3B	1 -	-	i - '	-	-	- 1	-	-	-	-	-	-	-	-	-			
	4T-4B	'l -	-	-	-	-	-	-	-	-	-	-	-	-	-		1 [1]	
ł	5T-5B	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-		1 2	1	
1	6T-6B	-	-	-	-	-	-	-	-	-	-	-	-	_		1			
	7T-7B	-	-	-	1	-	-	-	-	-	-	-	-						_
	8T-8B	-	-	-	-	-	-	- 1	· -	-	-	1 -	-	-	1	1			
	9T-9B	. –	-	-	-	- 1	-	-	-	-	-	-	-	1 -	- 1				1 [
	10T-10E		-	-	-	-	-	-	-	-	-	-	-	-	-	1 -		[1 [
1	11T-11E	3 -	1 -	1 -	- I	-			1 -		-	- 1	<u> </u>	<u> </u>	1	<u> </u>	J		

I = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XII - STATORETTE ACCELERATED AGING - 350°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 1

Sheet <u>8</u> of <u>8</u>

.

	•	L					DC Lea	ikage, l	Micro-a	mperes									
Test Component	Posi-	Cycle 22					<u> </u>	23											
tion, Measurement			Accumulated					1	- 										
ston, measuren		Hours 88						92											
والمشاهدة والمراقع والمتحد والمراجع والمراجع	Volts, dc					Volts, dc						Volts, dc							
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	11	-	_	-	· -	- 1	· - ·	- 1											
Conductor-to-	2T	_	-	-	- 1	-	-	-	1							1		1	
Frame	3T	-	-	-	-	-	_	-								1			
,	4 T	_	-	-	-	_	-											1	
	5T	-	-	-	_	- 1	-	-											1
	6T	_	-	-	_·	-	-	-											-
	7T	-	-	-	-	-	-	_								1		1	
	8 T	-	-	-	-	- 1	-	- 1								1			
	9T	-		-	-	-	-	-											
	IOT	0	15	65	185	650	1 3 0 0	F				1				1			
	11T	0	1.5	3.0	35	65	1800	Ŧ											
	18	-	~	-	-	-		-	1				1						
	2B	- 1	-	-	-	-	- 1	-								[
	3B	- 1	-	-	-	-	-	-											
	4B	-	-	-	-	-	-	-		1				1					
	5B	-	-	-	-	-	-	-		1			1						
	6B	· -	-	- 1	-	-	-	- 1											
	7B	-	-	-	-	-	-	· -			1								1
	8B	-	-	-	-	-	-	-											
	9B	-	-	-	-	-	-	-					1						1
	10B	- 1	-	-	-	-	-	-			1								1
	11B	<u> </u>	-	-	-	-	-			L			I	L	ļ		ļ		I
Armature	1T-1B	1 -	-	-	-	· -	-		1		1	ł							1
Conductor-to-	2T-2B	-	-	-	-	-	-	-			1	1				1			
Conductor	3T-3B	-	-	-	-	-	-	-											1
	4T-4B	-		-	-	- 1	-	- 1									i i		
	5T-5B	-	-	-	-	-	-	- 1										1	
	6T-6B	-	-	-	-	- 1	-	- 1	1					1					1
	7T-7B	-	-	-	-	-		-											1
	8T-8B] -	-	-	-	-	-	-	1									1	
	9T-9B	1 -	-	-	-	- 1	-	-											1
	10T-10B		-		-	-	-	-	l		1								1
	11T-11B		L		L	-	-	L -		L	1			<u> </u>			<u> </u>	L	.1

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XIII- STATORETTE ACCELERATED AGING - 350°CDC LEAKAGE CURRENTMEASURED AT AGING TEMPERATURESTATORETTE NO. 1

Sheet <u>1</u> of <u>4</u>

			DC Leakage, Micro-amperes												
Test Component Posi-		Cycle		1					2						
tion, Measure	Accumu Hours	lated		8											
			Volts, dc						Volts, dc						
	Cond, No.	200	400	500	600	800	1000	200	400	500	600	800	1000		
Armature	6т	250	400	475	525	700	F	165	45	55	65	85	110		
Conductor-to-	7 T	550	825	900	1000	1250	1500	17	60	90	F	-	- ·		
Frame	8T	550	950	1350	F	-	-	18	60	85	105	180	390		
	6B	500	950	1150	1200	1500	1900	16.5	48	60	70	110	160		
	7B	250	500	700	1200	1800	1950	14.5	40	50	60	78	110		
	8B	F	-		-	-	-	14.5	45	55	68	100	165		
	6T-6B	350	625	700	825	1150	1450	44	80	95	113	150	195		
Armature	7T-7B	300	700	F	-	-		28	50	63	72	95.	120		
Cond to Cond.	8T-8B	725	1300	1450	1975	F	-	143	400	575	700	1000	1400		

		,		licro-an	licro-amperes										
Test Component Posi-		Cycle		3					4						
tion, Measurer	Accumu Hours	lated	12					16 Volts, dc							
		Volts, dc													
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000		
Armature	6Т	8.5	16.25	28	32	48	60	2.5	3.5	5.5	7.0	8.5	12		
Conductor-to-	7 T	34	110	F	- 1	-	-	2.0	3.5	F	- 1	-	-		
Frame	8T	15	54	70	80	120	170	3.5	6.5	9.0	11.0	18	30		
	6B	11	30	38	45	65	87	4.0	6.5	7.25	9.0	12.5	18		
	7B	7	15.5	35	40	45	60	4.0	6.0	6.75	12.0	15.0	22		
	8B	10	32	35	42	65	90	3,5	5.0	7.0	8.5	12.5	18.5		
Armature	6T-6B	12	35	40	50	68	90	6.0	8.5	10.75	13.5	23	35		
Cond to-Cond	7 T- 7B	8	22	28	35	48	60	2.75	4.75	5.75	7.0	9.5	150		
	8T-8B	65	125	155	187	350	750	18.0	55.0	65	92	135	240		

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XIII - STATORETTE ACCELERATED AGING - 350°CDC LEAKAGE CURRENTMEASURED AT AGING TEMPERATURESTATORETTE NO. 1

and the second second

Sheet	2	of	4
0		•••	

.

	DC Leakage, Micro-amperes														
Test Component Posi-		Cycle		5 20					6						
tion, Measure	Accumu Hours	lated	24												
				Volts	, dc				Volts, dc						
	Cond. No.	200	400	500	600	800	1.000	200	400	500	600	800	1000		
Armature	6T	2.25	2.5	2.75	3.0	85	4.5	1.5	2.75	7.5	16	40	1300		
Conductor-to-	7T	.75	1.25	2.25	2.75	F	-	4.75	5.0	7.5	150	320	F		
Frame	8т	1.0	2.0	2.6	3.25	5.0	8.25	1.5	2.0	2.25	3.5	4.5	8		
	6В	. 75	1.75	2.25	2.75	3.75	5.0	.75	1.5	1.5	1.75	2.5	2.75		
	7B	.75	1.0	1.5	1:75	2.5	3.25	.5	.75	1.0	1.5	2.0	2.5		
	8B	1.0	1.75	2.0	2.75	3.5	5.0	. 75	1.0	1.25	1.5	2.0	2.5		
	6T-6B	2.0	3.5	4.5	5.25	7.5	10	1.0	1.5	1.75	2.0	2.25	3.0		
Armature	7T-7B	.75	1.5	1.75	2.0	3.0	4.25	. 5	.75	1.0	1.5	1.75	2.0		
Condto-Cond	8T-8B	5,25	10.5	13.5	22.0	32.0	4.7	1.5	2.0	3.5	4.0	6.0	7.5		

			DC Leakage, Micro-amperes												
Test Component Posi- tion, Measurement		Cycle		7 28					8 32						
		Accumu Hours	lated												
				Volts	, dc				Volts, dc						
	Cond, No.	200	400	500	600	800	1000	200	400	500	600.	800	1000		
Armature	6T	1.75	2.5	7.5	9.0	150	F.	2.5	5.5	7.0	8.75	13.5	F		
Conductor-to-	7T	5.0	5.75	185	F	-	_	11.0	50	75	110	F	-		
Frame	8T	.75	1.0	2.5	3.0	3.75	5.0	1.0	1.75	2.5	3.0	6.0	9.5		
	6B	.5	.75	1.5	1,75	2.0	2.5	F	_	-	-	-	-		
	7B	.5	. 75	1.0	1.75	2.5	3.0	1.25	14.5	F	· _	-	-		
	8B	. 25	.5	. 75	1.0	1.5	2.0	1.5	3.75	5.0	8.5	F	-		
Armatúre	6T-6B	.5	.75	. 75	.75	1.0	1.25	1.5	3.75	5.25	7.0	14.25	35		
Condto-Cond.	7T-7B	. 25	.5	. 75	1.0	1.5	1.75	8.0	30	70	110	F	-		
	8T-8B	. 75	1.5	2.25	3.0	4.75	7.0	F	-	-	-	-	-		

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XIII - STATORETTE ACCELERATED AGING - 350°CDC LEAKAGE CURRENTMEASURED AT AGING TEMPERATURESTATORETTE NO. 1

Sheet	3	of	4

						DC Leal	cage, M	icro-am	peres				
Test Componen	nt Posi-	Cycle			9			10					
tion, Measur		Accumul Hours	lated		36			40					
				Volts	, dc					Volts			
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature Conductor-to- Frame	6T 7T 8T 6B 7B	0 .5 .25 .5 .75	.75 1.0 1.0 1.5 1.75	1.0 1.5 1.25 2.0 2.5	1.25 1.75 1.75 3.0 3.25	1.5 2.75 2.75 4.75 4.75	3.0 3.75 4.0 7.5 7.25	15 8 4 .75 .75	65 15 35 1.25 1.5	120 17.5 F 2.0 1.75 1.75	210 50 - 2.5 2.25 2.0	F 90 - 3.75 3.75 3.5	- 1650 - 6.0 5.5 6.0
	8B	.75	1.75	2.5	3.5	4.75	9.0 1.75	.6	1.5	2.0	2.25	3.75	5.75
Armature Condto-Cond	6T-6B 7T-7B 8T-8B	.5 .25 .5	.75 .75 1.25	.75 1.0 1.6	1.0 1.25 2.0	1.5 1.5 2.25	1.75 15 2.25	.5 .5 .65	1.25	1.75	2.0	3.5 3.25	5.0 5.0

	······					DC Leal	kage, M	icro-am	peres				
Test Componer	nt Posi-	Cycle			11			12					
tion, Measure		Accumulated Hours			44			48					
-		Volts, dc						Volts	s, dc				
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature Conductor-to- Frame	6T 7T 8T 6B 7B 8B	.85 1.5 F .5 .75 F	3.0 3.0 - 1.5 1.5	4 6.5 - 2.0 2.25	7 9.0 - 2.5 3.0	18 25 - 4.0 4.5 -	25 F - 6.25 6.0 -	0 50 - 0 0	.5 F - 0 .25	1.75 - .25 .5 -	F - 1.5 .75	- - F 6.5	- - - 10 -
Armature Condto-Cond	6T-6B	.5 .75 .75	1.25 1.5 1.75	2.0 2.0 2.25	2.5 2.5 2.5	3.5 4.25 4.0	5.0 5.5 5.25	0 .25 0	1.5 .75 0	2.0 12 .5	4 20 .75	10 F 4.5	25 - 6

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XIII - STATORETTE ACCELERATED AGING - 350°CDC LEAKAGE CURRENTMEASURED AT AGING TEMPERATURESTATORETTE NO. 1

.

Sheet 4 of 4

						DC Lea	kage, N	Aicro-an	nperes					
Test Component	nt Posi-	Cycle			13			14						
tion, Measure	ement	Accumu Hours	lated		52				56					
				Volt	s, dc					Volt	s, dc			
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	
Armature	6T	0	.75	1.0	F	-	_	F	_	-	_	_	_	
Conductor-to-	7T	75	F	-	- 1	- 1	-	8.0	45	F	_			
Frame	8T	10	F	-	-	-	-	1800	F	-	_	_	_	
	6B	0	. 5	.5	F	-	1 -	110	350	F	-	_	l _	
	7B	0	.5	.6	1.5	6.0	15	250	950	F	-	-	-	
	8B	.5	6.0	10	1350	F	-	750	F	-	_	-	_	
	6T-6B	0	2	3.5	5.5	11.0	30	135	F	-	_	-	-	
Armature	7T-7B	.5	. 75	13	25	F	- 1	350	1850	F	- 1	_	_	
Condto-Cond.	8T-8B	0	.5	.5	3	4.5	6	F	-	-	_	-	-	

Measurements Discontinued After the 14th Cycle

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XIV - STATORETTE ACCELERATED AGING - 350°C. INSULATION RESISTANCE MEASURED AT AGING TEMPERATURE STATORETTE NO. 1

Sheet	1	of	2
011000		01	

			Ins	ulation Resis	tance at 500	Vdc, ohms		
Test Componen	t Posi-	Cycle	0	1	2	3	4	5
tion, Measure	ment Cond. No.	Accumulated Hours	· 0	4	8	12	16	20
Armature Conductor-to- Frame	6T 7T 8T 6B 7B 8B		Infinity Infinity Infinity Infinity Infinity Infinity	$\begin{array}{c} 0.9 & \times 10^{6} \\ 0.6 & \times 106 \\ 0.4 & \times 106 \\ 0.7 & \times 106 \\ 1.25 & \times 10^{6} \\ 0 \end{array}$	$ 6 \times 10^{6} 8 \times 10^{6} $	20×10^{6} 0 13 x 10^{6} 18 x 10^{6} 25 x 10^{6} 18 x 10^{6}	$ \begin{array}{r} 150 \times 10^{6} \\ 50 \times 10^{6} \\ 60 \times 10^{6} \\ 75 \times 10^{6} \\ 125 \times 10^{6} \\ 75 \times 10^{6} \\ 75 \times 10^{6} \end{array} $	$200+ \times 10^{6}$ $200+ \times 10^{6}$ $200+ \times 10^{6}$ $200+ \times 10^{6}$ $200+ \times 10^{6}$ $200+ \times 10^{6}$
Armature Condto-Cond	6T-6B 7T-7B 8T-8B		Infinity Infinity Infinity	$\begin{array}{c} 0.7 \times 10^6 \\ 0.8 \times 10^6 \\ 0.4 \times 10^6 \end{array}$	7.5×10^{6}	$ \begin{array}{r} 15 \times 10^{6} \\ 25 \times 10^{6} \\ 2.75 \times 10^{6} \end{array} $	$ \begin{array}{r} 40 \times 10^{6} \\ 100 \times 10^{6} \\ 7 \times 10^{6} \end{array} $	$\begin{array}{r} 150 \times 10^{6} \\ 200+ \times 10^{6} \\ 200+ \times 10^{6} \end{array}$

			Ins	ulation Resis	stance at 500	Vdc, ohms		
Test Componer		Cycle	6	7	8	9	10	11
tion, Measure	Cond. No.	Accumulated Hours	24	28	32	36	40	44
Armature	6Т		$200 + \times 10^{6}$	$200 + \times 10^{6}$	40×10^{6}	Infinity	1.25×10^{6}	13×10^{6}
Conductor-to-	7T		$200 + \times 10^{6}$	28×10^6	0.5×10^{6}	$200 + \times 10^6$	0.9×10^{6}	5.5×10^{6}
Frame	81		$200 + \times 10^{6}$	Infinity 3	5 x 10 ⁶	Infinity	0 .	0
	6B		$200 + x 10^{6}$	Infinity	0	$200 + \times 10^6$	Infinity	$200 + \times 10^{6}$
	7B		Infinity	Infinity	$.05 \times 10^{6}$	$200 + x 10^{6}$	Infinity	$200 + x 10^{6}$
	88		Infinity	Infinity	0.1×10^{6}	$200 + \times 10^{6}$	Infinity	0
	6T-6B		200+ x 10 ⁰	Infinity	$80 \times 10^{\circ}$	Infinity	Infinity	$200 + x 10^{b}$
Armature	7T-7B		Infinity	Infinity	7×10^{6}	Infinity	Infinity	$200 + \times 10^{6}$
Condto-Cond.	8T-8B		185×10^{6}	Infinity	0	Infinity	Infinity	200+ x 10 ⁶

T = Top conductor in slot (Bore side)

, m. **.** . .

TABLE XIV - STATORETTE ACCELERATED AGING - 350°C INSULATION RESISTANCE MEASURED AT AGING TEMPERATURE STATORETTE NO. 1

Sheet 2 of 2

			Ins	ulation Resis	istance at 500 Vdc, ohms
Test Componer	nt Posi-	Cycle	12	13	
tion, Measure	ment	Accumulated			
	Cond. No.	Hours	48	52	
Armature	6T		0	0	
Conductor-to-	7 T		0	0	
Frame	8T		0	0	
	6B		Infinity	Infinity	Measurements Discontinued After
	7B		Infinity /	Infinity	the 13th Cycle
	8B		10×10^{6}	50×10^{6}	
Armature	6T-6B	2	$100 + x 10^{0}$	$200 + x 10^{6}$	
Condto-Cond.	ond. 7T-7B	50×10^{6}	80×10^{6}		
	8T-8B		Infinity	Infinity	

T = Top conductor in slot (Bore side)

IABLE XV -STATORETTE ACCELERATED AGING - 350°C CORONA ONSET VOLTAGE AT ROOM TEMPERATURE AND SIMULATED ALTITUDE AFTER AGING AT 350°C STATORETTE NO. 1

Sheet 1 of 2

		T		Corona Onset Vol	tage, Volts AC RMS			
Test Componer	at Posi-	Cycle	3		4	520		
tion, Measure		Accumulated Hours	12	3	16			
		Pressure at 23°C		Pressur	e at 23°C	Pressu	re at 23°C	
	Cond. No.	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	
	6T	700**	650	700**	650	700**	650	
	71	700**	600	700**	600	700**	600	
Innature	81	500	450	450	350	350	300	
rame	6B	700**	550	700**	600	700++	600	
1.01110	78	650	400	650	350	700**	450	
	88	600	350	650	350	600	350	
rmature	6T-6B	550	450	600	450	650	400	
ond,-to-Cond.		700**	500	700**	400	700**	400	
	8T-8B	450	350	400	300	350	300	

				Corona Onset Vol	tage, Volts AC RMS		<u> </u>		
Test Componen	nt Posi-	Cycle	6		7	88			
tion, Measure	ement	Accumulated Hours	24	24 28			32		
		Pressure at 23°C		Pressur	e at 23°C	Pressure at 23°C			
	Cond. No.	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *		
	6T	700**	650	700**	600	700**	600		
rmature	71	700**	600	700**	650	**00	650		
onductor-tc	81	300	275	300	200	200	200		
rame	6B	700**	550	700**	600	700**	600		
	7B	700**	500	700**	650	700**	600		
	8B	650	400	600	400	650	450		
	6T-6B	500	350	500	300	550	350		
20nd -to-Cond. 7T-7B 8T-8B	600	400	650	350	650	450			
	275	200	200	200	200	200			

* Equivalent pressure for 100,000 feet at 250°C

** 700 volt AC application limit to prevent possible insulation damage; corona was not observed.

T = Top conductor in slot (Bore side)

.

TABLE XV - STATORETTE ACCELERATED AGING - ^{350°}C CORONA ONSET VOLTAGE AT ROOM TEMPERATURE AND SIMULATED ALTITUDE AFTER AGING AT ^{350°}C STATORETTE NO. 1

Sheet 2 of 2

.

		[Corona Onset Vol	tage, Volts AC RMS			
Test Componer	nt Posi-	Cycle	9	1	0	16		
tion, Measure	ment	Accumulated Hours	36	4	40	64		
		Pressure at 23°C		Pressut	re at 23°C	Pressu	re at 23°C	
	Cond. No.	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	
	6T	700**	550	700**	500	200	200	
Armature	7T	700**	600	760**	600	200	200	
Conductor-to-	8T	200	200	200	200	500	350	
Frame	6B	700**	600	700**	550	350	200	
	7B 8B	625 600	600 400	600 600	500 300	400 350	200 200	
Armature	6T-6B	500	300	550	300	300	200	
Condto-Cond.	7T-7B	600	400	550	350	400	300	
	8T-8B	200	200	200	200	200	200	

		ſ			Corona Onset V	oltage, Volts AC RMS		
Test Componer	nt Posi-	Cycle		17				
tion, Measure		Accumulated Hours		68				
			Pressure	at 23°C	Press	ure at 23°C	Pressure	at 23°C
	Cond, Na	Sea Lev	el	4.5 TORR *	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *
	6T	200		200				
Armature	71	200		200				
Conductor-to-	81	450		200				
Frame	68	350		200		- Measurements disconti	nued after 17th cycle -	
	7B	350		200			1	
	8B	350		200				
Armature	6T-6B	300		2,00				
ondto-Cond.	7T-7B	350		300				
	8T-8B	200		200				

* Equivalent pressure for 100,000 feet at 250°C

** 700 volt AC application limit to prevent possible insulation damage; corona was not observed.

- T = Top conductor in slot (Bore side)
- B = Bottom conductor in slot (Frame side)

Sheet 1 of 9

							DC Lea	kage, 1	Aicro-a	nperes									
		Cycle			1					2						3	·		
Test Component		Accum	ulated							48						7	2		
tion, Measurem	ent	Hours	1		24											Volts	_		
				Volts	, dc			l		Volts					400	500	, ac 600	800	1000
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
• •	1.7	_	~	0	·0	0	0	0	0	0	0	.0	0	0	0	0	0	0	0
Armature	1T	0	0	0	0	ō	ŏ	ŏ	ŏ	o	. 0	Ö	Ó	0	0	0	0	0	0
Conductor-to-	2T	0	0	0	0	0	0	ŏ	ŏ	ŏ	0	ō	0	0	0	0	0	0	0
Frame	3T	0	0	-	0	ŏ	o	ŏ	ŏ	ŏ	Ō	Ō	0	0	0	0	0	0	0
	4T	0	0	0	0	o	0	ŏ	ŏ	ŏ	ŏ	ō	ō	o	0	· 0	0	0	0
	5T	0	0	1 - 1	-	ŏ	0	ŏ	ŏ	ŏ	ŏ	ō	ŏ	Ō	Ō	0	0	0	0
	6T	0	0	0	0	0	0	0	o	ŏ	ŏ	ŏ	· ŏ	ŏ	o	• 0	0	0	0
	71	0	0	0	0	0	o	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ō	Ō	0	0	0
	8 T	0	0	0	0	0	0	o	ŏ	ŏ	ŏ	o	ŏ	Ō	Ō	Ó	0	0	0
	9T	0	0	-	0	0	o	o	ō	ŏ	ŏ	o	ō	o i	Ó	0	0	0	0
	10T	0	0	0	0	Ö	o	ő	ŏ	ŏ	ŏ	ŏ	Ō	o	Ó	0	0	· 0	0
	11T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1B	0	0	0.		ő	0	0	ŏ	ŏ	o	ŏ	o	0	Ó	o	0	0	0
	ZB	0	0	-	0	Ö	o	ŏ	ŏ	0	ő	ŏ	0	l o	0	0	0	0	0
	3B	0	0	0	-	o	o	ŏ	o	ŏ	ŏ	0	0	Ō	Ó	0	0	0	0
	4B	0	0	-	0	0	ő	ů	o	Ö	ŏ	Ő	0	ŏ	0	o	0	0	0
	5B	0	0	0	0	Ö	o	Ö	ŏ	ŏ	o	Ö	ŏ	ō	0	0	0	0	0
	6B	. 0	0	-	-	ŏ	ŏ	l õ	lŏ	ŏ	ŏ	Ŏ	0	0	Ó	0	0	0	0
	7B	0	0	0	0	0	0	ŏ	ŏ	ŏ	ŏ	ŏ	Ō	o	Ō	0	0	0	0
	8B	0	. 0	0	0	0	0	l o	Ö	0	ŏ	o	Ö	ŏ	ō	o	0	0	0
	9B	0	0	0	0	ŏ	0	l o	ŏ	o	ŏ	0	0	0	0	0	0	0	0
	10B	0	0	0	0		o	ŏ	ŏ	ŏ	ŏ	0	Ŏ	ő	o	0	0	0	0
	11B	0	0	0	0	0	0	0	0	0	0	0	Ŏ	0	0	0	0	0	0
Armature Conductor-to-	1T-1B	0	0	0	0	Ö	0	0	ŏ	ŏ	ŏ	å	ŏ	l o	O O	0	0	0	0
	2T-2B	0			0	0	o	ŏ	o	o	Ö	ŏ	o	o	Ó	c	0	0	0
Conductor	3T-3B	0	0	0			0	ŏ	ŏ	ŏ	ŏ	ŏ	0	ō	0	o	. 25	.5	1.5
	4T-4B	0	0	-	1 -	-	l o	ŏ	ŏ	ŏ	Ö	l o	o	Ō	0	0	0	0	. 25
	5T-5B	0	0	25	0 2.0	0 4.5	5.0		o	ŏ	ŏ	l ő	o	l o	0	o	0	0	0
	6T-6B	0	0	. 25	2.0	4.5	1.5	0	o	ŏ	o	Ĭŏ	ŏ	ŏ	Ŏ	o	0	0	. 5
	7T-7B	0	0	1 -		350	800		0	ŏ	.5	10	ŏ	l o	. 25	.5	1.0	3.0	50
	8T-8B	0	0	0	0		800		0	ŏ		l õ	ŏ	ŏ	0	0	0	0	0
	9T-9B	0	0	0	l ·	0			o	ŏ	l o	ŏ	Ö	ŏ	o	Ō	Ō	0	0
	10T-101	-	0		0	0			l ő	ŏ	ŏ	ŏ	ŏ	ŏ	Ŏ	ŏ	ŏ	Ö	.5
1	11T-111	<u> </u>	1 0	1 0	<u> </u>	<u> </u>	<u>ь </u>	<u>ــــــــــــــــــــــــــــــــــــ</u>	. L	L									

T = Top conductor in slot (Sore side)

B = Bottom conductor in slot (Frame side)

Sheet <u>2</u> of <u>9</u>

		····	• •,• •				DC Lea	kage, l	Micro-a	mperes	•								
	D	Cycle			4						5						6		
Test Component		Accum	ulated		96					 1 *	20						144		
tion, Measurem	hent	Hours	1		90		•												
				Volts	, dc					Volts						Volts			
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	'1T	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T	ŏ	0	ŏ	ŏ	ŏ	ŏ	ō	0	0	0	0	o	0	0	0	0	0	. 25
Frame	3T	ŏ	0	Ő	ŏ	ŏ	Ő	ō	0	0.	0	0	0	0	0	0	0	0	0
1.0000	4T	ŏ	0	ŏ	ŏ	Ö	o	ō	Ō	ō	0	0	0	0	0	0	0	0	0
	5T	ŏ	0	Ő	ŏ	0	Ō	Ō	ŏ	0	0	0	0	0	0	0	0	.5	. 75
	6T	ŏ	0	0	Ő	0	o	Ō	0	Ō	0	0	0	0	0	0	. 5	. 85	25
	7T	ŏ	0	Ö	0	l o	o	ō	0	0	0	0	0	0	0	0	. 25	. 75	1.0
	81	ō	0	0	0	lo	0	0	0	0	0	0	0	0	0	0	0	.5	. 75
	91	o	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0.	.5
	10T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	111T	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 25
	2B	0	0	0 '	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3B	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0
	4B	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6B	· 0	0	0	0	0	0	0	· 0	0	0	0	0	0	0	0	. 25	.8	1.5
	7B	0	0	0	0	0	25	0	0	0	0	. 25	5	0	0	0	_0	.5	. 75
	8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.5	25 0	150
	9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.5
	10B	0	0	0	0	0	0	0	0	0	0	0	0	0	0 25	0 .5	. 85	2.0	6.0
	11B	0	0	0	0	0	0	0	0	0	0	0	0	0		.5	. 85	.75	1.0
Armature	1T-1B	0	0	0	0	.5	. 75	0	0	0	0	. 25	.5	0	0	v v	. 5 . 25	. 75	.75
Conductor-to-	2T-2B	0	0	0	0	0	0	0	0	0	0	0	0	0	. 25	.5	. 25	. 5	1.0
Conductor	3T-3B	0	0	0	0	0	.75	0	0	0	0	.25	0	0	. 25	.5	. "	50	160
	4T-4B	0	0	0	. 25	.5	1.5	0	0	0	0	. 25	.15	0	0	Ē	-	1 30	100
	5T-5B	0	0	0	. 25	0	0	0	0	0	0	. 25	.5	0	Ē			-	
	6T-6B	0	0	0	0	.25	.5	0	0	0	0	. 25	.5	0	E o	.5	15	F	0
	7T-7B	u o	.25	1.0	1.5	3.0	45	0	. 25	.5	1.5	6.0	.5 50	0	0	. 85	180	F	ŏ
	8T-8B	0	. 25	0	1.5	3.0	45 0	0	.25	.5	1.5	0.0	0	o	0	. 05	. 25	1.5	25
	9T-9B	-	0	0	0	0	0	0	0	0	0	0	0	0	0	σ	. 25	.5	1.5
	10T-10B		0	0	0	0	0	0	0	0	0	0	o	o	. 25	1.0	6.0	30	55
	11T-11B	0	U U	1 0	U U	U			v	U	U U	U U	U U		1.25	1.0	0.0	1	<u> </u>

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet 3_____ of _____

	i						DC Lea	kage, N	licro-ar	nperes									
		Cycle			7	-				8									
Test Component		Accum	ulated							10	-		1			216			
tion, Measurem	ent	Hours			168	1				19						Volts			
				Volts						Volts				200	400	500	600 I	800	1000
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400				
Armature	1T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T	o	Ő	ů	, 25	.5	1.5	`o	0	0	. 25	.5	1.5	0	0	0	. 25	.5	1.5
	21 3T	0	ŏ	0	0	.75	2.5	0	0	0	. 25	, 3	.5	0	0	0	0	. 25	.5
Frame	4T		0	å	õ	0	0	0′	0	0	0	́о	0	0	0	0	0	. 25	. 5
	5T		0	.5	.75	1.5	2.0	0	0	. 25	.75	1.75	1.75	0	-0	0	1.0	1,25	1.5
	6T	0	0	0	.75	1.0	65	0	0	.5	.75	3.6	70	0	. 25	5	20	35	50
	7T	0	0	. 25	1.0	1.5	2,5	0	0	.5	.75	1.5	1.5	. 25	. 25	.75	2.5	15	70
	8T		ő	0	. 25	.5	1.0	Ō	0	0	. 25	.3	.75	0	. 25	.5	.6	1.5	35
	9T	0	0		0	.5	,75	o	0	0	.5	.75	1.0	0	0	0	0	. 25	.5
	10T	0	ő	ŏ	ő	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	101	l õ	ő	0	o	.5	.75	Ō	0	0	0	0	.5	0	0	0	0	0	. 25
	1B	0	0	0	0	.5	.6	0	0	0	0	. 5	. 75	0	0	0	0	0	.5
	2B	Ö	ŏ	Ő	Ő	0	0	0	0	0	0	0	0	0	. 25	.5	1.25	2.5	5.25
	3B	ŏ	ŏ	Ö	0	0	0	0	.0	0	0	0	0	0	0	0	0	0	. 25
	4B	ŏ.	Ö	ō	0	0	0	0	0	. 0	0	0	0	0	0		0	0	0
	5B	Ő	Ŏ	Ō	Ó	0	0	0	0	0	0	0	0	.5	1.5	Ē	-	-	.75
	6B	ŀõ	o	Ō	. 25	1.0	1.5	0	0	0	. 25	. 75	50	0	0	0	0	.5	1.0
	78	. 75	1.0	1.5	3.5	15	35	.75	5.0	35	Ð	-	-	-	i i	-	-	-	-
	88	l o	0	.5	.75	3.5	1300	0	0	.5	.75	6.0	1500	15	Ē	-	-	-	5
	9B	0	0	0	0	. 25	.5	0	0	0	0	0	. 25	0	0	0	0	0	. 25
	10B	Ő	0	0	. 25	.5	.6	0	0	0	. 25	.3	.5	0	0	0	0	-	3.0
	11B	0	.25	.75	1.5	.3.0	3.5	0	0	. 25	.5	.6	4.0	0	0	0	.5	2.0	0
Armature	1T-1B	0	0	.5	.6	. 75	1.5	0	0	.5	.6	.6	1.0		0	0	0	, ^{''}	-
Conductor-to-	2T-2B	0	0	0	.5	.75	3.0	0	0	0	. 25	.75	2.5	Ē	-	0	0	0	.5
Conductor	3T-3B	0	. 25	. 25	.5	. 75	1.5	0	0	. 25	. 25	.5	.75		0		-		
	4T-4B	0	0	.5	35	85	300	0	0	. 25	60	110	500	F	-	-	-		1 [
	5T-5B	-	- 1	- 1	-	-	-	-		-	-	- 1	-	-	1 -	-	-	1 [
	6T-6B	-	-	-		- 1	-	-	-	-	-	-	-	-	-	-	-		
	7T-7B	. 25	.5	. 75	F	-	-	-	ت ا	-	-	-	-	1 -	-	-	-		
	8T-8B	0	.75	1.5	350	F	0	0	F	- 1	-	-	-	-	-	-	-		
1	9T-9B	0	0	0	. 25	1.75	40	0	0	0	0	. 25	75	480	Ē	1	3.0	4.5	50
	10T-10	во	0	0	0	. 25	3.0	0	0	0	0	.5	.75 185	Ê	.5	1.75	3.0		-
	11T-11		. 25	. 3	.5	.75	120	0	. 25	.5	. 75	135	185	10		<u> </u>	<u> </u>	L	

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet <u>4</u> of <u>9</u>

f		-					DC Lea	ikage,	Micro-a	mperes									
Test Comercia	Deel	Cycle			11					12						1	3		
Test Component		Accum	nulated		26	4				28	8					3	12		
tion, Measuren	nent	Hours			20	т		<u> </u>						L					
				Volts	, dc			1		Volts						Volts			
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	0	•0	0	0	0	0	0	0	.5	1.5	0	0	.5	20	35	45
Conductor-to-	2T	ŏ	ŏ	l õ	ŏ	Ő	ŏ	õ	Ő	ŏ	Ō	.25	.5	Ő	Ő	E E		_	_
Frame	3T	ŏ	ŏ	Ő	ŏ	Ő	0	Ő	0	0	o	0	. 25	0	0	Ē	0	.5	.75
	4T	Ō	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 25
	5T	Ō	0	0	0	0	0	0	0	0	0	5	.6	0	0	0	0	. 25	. 75
	6T	0	0	0	0	0	0	2.5	4.0	8.0	12	150	175	3.0	8.5	15	35	185	500
	71	0	0	0	0	0	0	3.5	6.0	15	175	F	0	6.0	35	Ē	-	-	- 1
	8T	0	0	0	0	0	0	6.0	45	65	135	250	275	8.5	50	135	Ē	-	-
	9T	0	0	0	0	0	0	0	0	15	25	F	0	F		-	-	-	-
	10T	0	0	0	0	0	0	0	0	0	0	. 25	.5	0	0	0	. 25	. 5	. 75
	11T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 25	3.5
	1 B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 5
	2B	0	0	0	0	0	0	0	0	0	U	0	0	0	0	500	Ē	-	-
	3B	0	0	0	0	0	. 5	0	0	0	.5	1.0	1.5	0	0	175	350	F	0
	4B	0	0	.5	5	7	16	0	. 25	. 5	15	25	40	0	6.5	65	185	350	700
	5B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6B	5	35	45	65	130	F	25	50	85	Ē	-	-	-	-	-	-	-	-
	7B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8B	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-
	9B	0	0	0	0	0	0	0	0	0	0	0	.5	0	0	0	. 25	. 75	4.0
	10B	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Armature	11B 1T-1B	10	15	Ē	-		-	<u> </u>			0					-		<u> </u>	
Conductor-to-	2T-2B	1. 10	<u> </u>	U U	-	-				_			-				-		
Conductor - to-	2T-2B 3T-3B	2	12	18	Ð	_				_			-			_	_		
Conductor	4T-4B	-	<u>-</u>		<u> </u>	· - ·			_	-	_	_	-	_			-		_
	5T-5B		· _	_	_		-	-	_	-	_	_	_	l _		-	-	- 1	-
	6T-6B	-	- 1	- 1	-		-	- 1	-	_	-	- 1	-	_ ·	- 1	_ `	-	-	-
	7T-7B	-	-		-	-	-	- 1	-	-	-	_ ·	-	_	-	-	-	-	-
	8T-8B	-	-	-	-	-	-	- 1	-		- 1	-	-	-	- 1	-		- 1	-
	9T-9B	-	- 1	-	-	-	-	-	-	-	-	-	-	-		-	-		-
]	10T-10B	25	.150	175	350	F	0	185	500	Ð	-	-	-	-	-	-	-	-	-
	11T-11B		-	- 1	-	-	-	- 1	-	<u> </u>	- 1	-	-	- 1	- 1		-	-	-
· · · · ·				• • • • • • • • • •							<u> </u>							· · · · · · · · · · · · · · · · · · ·	

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet	5	of	9

							DC Lea	kage, 1	Micro-a								<u> </u>		
Test Component	D!	Cycle			14					15							6		
tion, Measurem		Accum Hours	ulated		336	•				360						38	34		
		nours		Volts	dc					Volts	, dc					Volte	, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
				1.5	55	95	185	0	0	35	50	75	150	0	0	30	65	85	130
Armature	1T	0	0	-			105	v	Ĭ		50		-	-			_	-	- 1
Conductor-to-	2T	-	-	-	-	- 2.5	5,0	0	0	· 0	0	0	3.5	0	0	0	0	0	5.0
Frame	3T	0	0	0		2.5	.6	.0	l o	ŏ	0	۰ů	.5	ŏ	0	ŏ	o	0	. 2
	4T	0	0	_0_	0 6.0	15	.0	0		5	15	25	50	Ó	ŏ	20	35	185	30
	5T	0	0	2.5	0.0	15		U V	l v	_	1.5		-			-	_	-	-
	6T	6.0	40	Ē	-	-	-	-	-		-	-	_		Ì _	_	-	-	_
	7T	-	-	-	-	-	-		-		-		-			_	_	-	_
	8T	-	-	-	-	-	-	- 1	-				-			_	_		-
	9T	-	-	-	-	135	185	10	20	- 35	- 75	125	150	25	. 0	0	0	0	0
	10T	0	.25	8.0	25	135	25	0	0	0	ڊر 5	20	25	0	õ	ŏ	0	. 0	c
	11T	0	0	0	6.0	.25	1.5	0	0	0	1.5	1.5	2.0	0	0	. 25	1.5	1.75	2.5
	1 B	0	0	0	0	. 25	1.5		-		1,5	1.5	2.0	Ū		. 25	, -		
	2B		-		-	-	-		-	<u> </u>	-						<u>`_</u>	_	_
	3B		185	Ē	-	-	-	-		-	_		_	-			_	_	
	4B	E	-	- 1	-	-	-	- 1			-						_	l _	.
	5B	-	- 1	-	-	-	-			-	-	_	_					_	
	6B	-	-	- 1	-	-	-		_		-		_					_	.
	7B	-	-	-	-	-	- 1	-	-	-		-	-	-		_		_	
	8B	-	-	-	-	-	-	-		-	- 0	.75	1.0	0	0	. 25	.75	1.5	3.0
	9B	0	0	0	0	1.5	. 25	0	0	-			1.0	0	lo	0	0	.5	
	10B	0	0	0	0	0	0	0	0	0	.75	25	35	0	l o	.25	.5	1.5	20
	11B	0	. 25	.5	12	35	80	0	0	. 25			35		<u> </u>		<u> </u>		
Armature	1T-1B	ŀ -	-	-	-	· -	-	-	-	-	-			-	_		1	l _	
Converter-to-	2T-2B	-	-	-	-	-	-	1 -	-	-	-		1				_ ·	_	
Converter	3T-3B	-	1 -	-	-	-	-	-	-	-	· -	-	-		1			_	
	4T-4B	-	-	-	-	-	-	-	-	-	-	-	-	-		-	1 .	_	
	5T-5B	-	-	-	-	-	-	-	-	- 1	-	- 1	-	1		-	1 2		
	6T-6B	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-			1	
	7T-7B	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-		1		
	8T-8B	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -	- 1	-	- 1	
	9T-9B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	1
	10T-10E		-	-	-	· -	-	-	-	-	-	- 1	-	-	-	- 1	-	-	1 .
	11T-11E	3 -		<u> </u>	L	<u> </u>		<u> </u>	<u> </u>	L	-		L	.		<u> - </u>	-	i	

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet <u>6</u> of <u>9</u>

								_											
							DC Lea	kage, l	Micro-a	mperes									
Test Comercial	D!	Cycle			17					18				2.		1	9		
Test Component		Accum	ulated		400			1		422							56		
tion, Measurem	ent	Hours			408					432									
				Volts	, dc			1		Volts						Volts			
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	0	6/5	180	F	0	0	0	0	185	F	0	0	350	Ē	_	-
Conductor-to-	2T			0	05	1	r		-		v	105	- r	Ŭ		-			
Frame	3T	0	0	0	0	-	15	0	0	0	0	0	9.5	0	0	0	2.5	3.0	12
Frame	4T	0	0	0	0		15	0	0		0	.6	1.0	Ö	l õ	l o	.5	1.5	150
	5T	Ē	-	0	U U			0		-	U U		1.0					1.5	1.50
	6T	U U	-	-	-		1 -	- 1		-	-	-	-	-	1 -			-	-
	7T	1 -	-	-	-	-	-		-	-		1			1 -				
	81	-	-		-	-	1	- 1	1	-	_	-		-			_	-	-
	9T	-	-		-	-	-	-	1 2	_	_	-		-		-	-		
	10T	Ä	-		-	-	-			-	-	-		-		-			
	111T	F	-	-	25	150	185	-	-	- 50	110	125	165	0	35	75	(F)		-
	1B	0	0	1.5	2.0	6.0	185	0	0	1.0	1.0	4.5	6.0	0	0	2.5	4.0	6.5	15
	2B			1.5	2.0		1.5	ľ -		1.0	1.0	4.5	, v. v		_				-
	3B		_	1]						_		_		_	- I	_		_	-
	4B	_					-			-	_	· _	-	_	_	-	- 1	_	-
	5B	_	_		-	-	-	-	l _	-	_	- 1	_	-	-	- 1	- 1	-	-
	6B	l _	-	I _	-	_	_	-	<u> </u>	-	-	- 1	-	-	-	-	- 1	-	-
	7B	_	_	l _		_	-	· _	-	-	-	-	-	-	-	- 1	-	-	-
	88	_	_		-	-	-	-	- 1	-	_	-	-	-	-	- 1	-	-	-
	9B	0	0	.5	1.0	1.5	3.0	0	0	0	25	. 5	2.5	0	0	. 25	.5	. 75	4.5
	10B	Ō	0	0	.5	.75	.9	Ō	Ō	Ō	0	25	.5	0	0	.5	. 75	1.5	6.0
	11B	ŏ	0	.5	1.5	1.5	F	0	0	. 25	6.0	25	F	0	0	0	150	F	-
Armature	1T-1B	-	-		-	-	-	-	-	-	-	-	-	-	-			-	-
Conductor-to-	2T-2B	-	-		-	-	- 1	-	-	-	-	-	-	- 1	-	-	-	-	- 1
Conductor	3T-3B	-	- 1	-	-	-	-	-	-	<u> </u>	-	-	-	-	-		-	-	-
	4T-4B	-	-	-	-	-	-	-	-	-	-	-	-		· - ·	- 1	-	-	-
	5T-5B	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	1 -	-
	6T-6B	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-
	7T-7B	-	-	-	-	-	-	-		-			-	-	-	-	-	-	-
	8T-8B	-	-	-	-	-	-	-	- 1	~-	-		-	-	-	-	·	-	- 1
	9T-9B	-	-	- 1	-	-	-	-	-	-	-	- 1	-	-	-		-	-	- 1
	10T-10B	-	-	1 -		-	-	-	-	-	- 1	-	-	-	-		-	-	-
	- 11T-11B	-	1 -	- 1	-	-	÷,_,			-	- 1	-	- 1	-	-	- 1		-	

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet	of	9

							DC Lea	kage, N	Aicro-an	nperes									
		Cycle			20					21	· _ · _					22			
Test Component	Post-	Accum	ulated	-	480					504						528	3		
tion, Measurem	ent	Hours								Volts	4.					Volts	dc		
				Volts				200	400	500	600	800	1000	200	400	500	600	800	1000
	Cond. No.	200	400	500	600	800	1000	200	400	500	000	000	1000						
Armature	1T	_	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-		
Conductor-to-	2T		-	-	-	-	-	-	-	-	Ā	-	-	-		-			1
Frame	3T	0	0	25	6.0	25	35	.5	50	185	F	-	-	-	-	_		-	-
-	4T	0	0	40	6.5	9.0	350	Ē	-	-	-	-	-	-	1 [-
	5T	-	- 1	-	-	-	-	-	-	-	-	-	-	-	1]	-	_		
	6T	-	-	-	-	-	-	-	-	-	-	-	-	-		_		l _	
	71	-	-	-	-	-	-	-		-	-	-	-	_		_		. .	-
	8T	-	-	-	-	-	-	-	-	-	-	-	- '	. .		_	_	l _	_
	9T	-	-	-	-	-	-	-	-	-	-	-	-	_	1		_	l _	-
	10T	-	- 1	-	-	-	-	-	-	-	-	-	-	-			_		-
	11T	-	-	-	-	-	-	-			- 6.0	85	1 25	0	. 25	1.5	1.75	165	250
,	1B	0	. 25	3.0	8.5	17	75	0	. 25	3.5	0.0	65	125			1.5	1.1.5		
	2B	-	-	-	-	-	-	-	-	-	-	-				_	_	-	-
	3B	-	-	-	-	-	-	-	-	-	-	-	Ξ.		_	_	<u> </u>	-	-
	4B	-	-	-	-	-	-	-	-		-					1 _	_	-	- 1
	5B	-	-	-		-	-	-	-	-	_				-	_	- 1	-	-
L	6B	-	-	-	-	-			-	_		-	<u> </u>	1 -	<u> </u>	_	-	<u>'</u>	-
	7B	-	-	•	-	-	-			_			l _		<u> </u>	-	-	_	-
	8B	1 :		.75	-	-	8.0	0	. 25	.75	1.5	6.5	13	0	.5	1.5	3.0	6.5	15
	9B	0	. 25	.75	1.0	3.5	15	0	0	.5	1.75	4.0	9	. 25	. 25	.5	.75	9.5	12
	10B	0	. 25	150	Ē		-	-	-			_	1	- 1	-	-	- 1	-	-
	11B		. 45	1 1 50	<u> </u>					<u> </u>			-	-	- 1	-	-	-	-
Armature	1T-1B					_				-	-	-	- 1	! -	-	-	-	-	-
Conductor-to-	2T-2B		1 -		_	-	-	l -	- 1	- 1	-	1 -	-	-	-	-	-	-	-
Conductor	3T-3B 4T-4B	1 -			_	-	-	- 1	- 1	- 1	- 1	-	1 -	-	-	-	-	-	-
1	4T-4B 5T-5B			1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	5T-5B 6T-6B		_	-	-		- 1	-	-	-	-	-	-	-	-	-	-	- 1	-
	7T-7B		_	-	-	-	-	- 1	-	- 1	- 1	-	-	-	-	-	-	-	-
	8T-8B	-	-	-	-	-	- 1	- 1	-	-	-	-	- 1	-	-	. –	-	-	-
	9T-9B			-	-	· _	-	1 -	-	-	-	1 -	-	-	-	-	-	-	-
	10T-10E			-	- 1	-	- 1	- 1	-	-	-	-	-	-		-	-	-	-
	11T-11E		· _	-	1 -	- 1		- 1	-	-	- 1	-	-	-	-	-	<u> </u>		<u> </u>

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet 8 of 9

.

Tratt Component Pair Cycle 23 34 50								DC Leakage, Micro-amperes	cage, M	licro-an	operes									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T transformed training		Cycle			23					24						25			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	tion, Measureme		Accum	ulated		552					57(.	i				909	0		1
		_			Volts	dc		Ī			Volts,						Volts			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1 000	200	400	500	900	800	1 000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Armature	17	1	ı	1		,	1	,	ı	ı	,	,	1	1	ı	r	r	,	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Conductor - to -	2T	1	,	ı	ı	ı	,	ı	•	•	ı	ı	1	,	1	ı	ı	ı	ı
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Frame	3T	ı	ı	,	1	1	ı	,	1	1	,	1	1	•	,	•	ı	,	ŀ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4T	1	•	,	,	,	ı	١,	,	1	,	1	1		1	۱	•	•	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5T	1	ı	•	1	ı	1	1	,	•	•	•	1		,	1	;	r	'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6Т	,	•	,	ı	ı	1	,	1	ı	,		ı	1	,	1	ļ	,	ı
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		77	ı	,	1	,	,	1	,	,	,			,	•	1	1	1	r	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		87	1	,	ı	,	1	ı		ı	ı	1	•	1		,	1	1	'	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9T	1	,	1	•	,	ı	1	•	•	,	1	ı		ı	1	1	1	'
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 0T	,	•	. 1	1	,	,	,	,	1	•	1	ı	1	1	•	•	'	۱
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		11T	-	'	'	-	'	,	-		•	•	-			,	•		-	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1B	0	1.5	35	Ð	•	•	•	,	,	•	1	,	,	1	•	ï	1	,
3B -		2B	1	ı	,		•	ı		,	1	1	•	r	,	1	ı	ı	'	"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3B	•	•	•	1	,	,	1	i	1	1	1	•	1	1	•	ı	ł	1
		4B		ı	,	,	,	,	1	1	1	ı	1	1	•	•	1	ı	1	1
		53	1	•	,	1	1	1	ı	,	ı	ı	1	,	1	1	ı	ı	'	ł
7B -		6B		ı	•	,	,	1	1	,	1	•	•	•	1	1	ı	ı		'
6B -		7B	,	,	•	1	1	ı	,	,	1	ŧ	•	•	1	J	ı	ı	T	•
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		83	•	ı	•	1	•	•	1	•	1	1	,	ı	1	,	•	•	•	•
10B 1.0 1.5 3.0 16 25 50 .5 75 25 75 175 350 11B -<		9B	0	I.5	6.0	25	150	185	0	35	60	110	125	190	. 25	40	65	185	<u>ل</u> تبا	0
111B -to- 17-18 -to- 27-28 - 37-38 47-48 - 57-58		10B	1.0	1.5	3.0	16	25	50	<u>.</u>	7.0	15	35	20	65	. 75	25	75	175	350	<u>ቤ</u>
-to- 11-115 37-335 47-435 57-535 57-535 57-535 57-535 57-535 57-535 57-535 57-53		11B		-	-	'	'	•	- 	-	•	'	•	•		-	'	•		, ,
3T-3B	Armature Conductor-to-	11-11	•											1			1	,	1	1
4T-4B 5T-5B 6T-6B 7T-7B 7T-7B 8T-8B 9T-9B 10T-10B 11T-11B	Conductor	3T-3B	1	ı	1	1	1	1	· /·	1	1	,	1	1	•	•	•	1	•	'
, , , , , , , , , , , , , , , , , , ,		4T-4B	1	,	•	,	1	•	1	•	1	•	1	1	'	'	1	•	'	•
· · · · · · ·		5T-5B	•	,	1	1	1	1	1	,	1	1	1	ı	1	1	•	ı	,	t
· · · · · ·		6T-6B	ı	,	1	•	,	1	T		1			,	1	•	•	•	'	ı
 		7T-7B	1	,	T		ı	1		•	•	1	1	ı	•	'	•	T	1	1
 		8T-8B	1		,	,	,	1	,	,	,	1	1	1	•	, ,	,	1	1	ı
0B		9T-9B		,	,	•	1	1	,	•	1	,	,	•	1	,	1	•	,	T
		10T-10B	•	·	1	•	1	•	,	'	,	,	1	1	,	1	•	1	r	•
		11T-11B	•	•	•	•••	•	'		•	,		-	-	•	,	•	1	-	•

T = Top conductor in slot (Bore side)
B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

Sheet	_9	of	
-------	----	----	--

a. . . .

							DC Lea	kage, N	licro-ar	nperes									
		Cycle			26					27									
Test Component		Accum	ulated		624					648									
tion, Measurem	ent	Hours								Volts	2.0					Volts	, dc		
				Volts					400	500	600	800	1000	200	400	500	600	800	1000
	Cond. No.	200	400	500	600	800	1000	200	400	500	000		1.000						T
	1 T	-	_	-	÷	_	-	-	-	-	-	-	-			1			
Armature	2T				-	_	_	-	-	-	-	-	-		}		1		
Conductor-to-	3T	-			-	-	_	- 1	-	-	-	-	-						
Frame	4T	_	_	-	_	-	-	-	-	-	-	- 1	- 1						
	5T		1 _		-	-	-	-	-	-	-	-	-						1
	6T		_	_	_	-	-	-	-	-	-	- 1	-	1					
	7T		_	-	-	-	-	-	-	-	-	- 1	-		1		ļ		
	81		l _		-	-	-	-	-	-	-	-	-						
	91	1 -	- 1	- 1	-	-	- 1	- 1	-	-	-	- 1	-					1	
	IOT	-	-	_	-	-	-	-	-	-	-	-	-				ĺ		
	111T		-		<u> </u>								+					1	T
	1B	-	-	-	-	-	- 1	-	-	-	1 -	-							
	2B	-	-	-	- 1] -	-	- 1	-	-								1	
	3B	-	l -	-	-	-	- 1	-	-	-				1			ļ		
	4B		-	-	-	- 1	-	-	- 1				-						1
	5B	1 -	-	-	-	-	-	-	-				-						
	6B	1 -	-	-	-	-	-	. =	-	1 -			_						
	7B	-	-	-	-	-	-	-				1 -	1 -						
	8B	-	1 -	-	-	-	-						l _						
	9B	250	F	-		-	0	- 185	350	F	1	1 1	1 -		1				
	10B	25	50	500	850	F	-	105	-		-	-	-						_
	11B		+	<u> </u>				<u>+</u>		<u></u>			-						
Armature	1T-1B	-	-	-	-	-		1 2	-	-	- 1	-	-	1		1		i	
Conductor-to-	2T-2B	-	-	-	-	-			_	- 1	-	-	-		1				
Conductor	3T-3B	-	-	-	-	-			- 1	- 1	-	-	-	-					
	4T-4B	-	-	-			-	-	-	- 1	- 1	-	-		1				
	5T-5B	-	-		_		_	1 -	- 1	-	-	-	-					-	
1	6T-6B	-	-					1 -	1 -	1 -	-	-	-	l					
	7T-7B	-	-				-	-	-	-	-	-	-					1	1
	8T-8B	-	-	1	1 -	•	-	_	- 1	1 -	-	-	-						
	9T-9B		-				-	l -	-	-	-	-	1 -				1	1	
	10T-10 11T-11		1 -	-			-	- 1	-	- 1	-	-	-						

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XVII - STATORETTE ACCELERATED AGING - 325°CDC LEAKAGE CURRENTMEASURED AT AGING TEMPERATURESTATORETTE NO. 6

Sheet	1	of	3	
-------	---	----	---	--

						DC Lea	kage, N	licro-an	nperes						
Test Componen	nt Posi-	Cycle			1		-		·	2					
tion, Measure	ement	Accumu Hours	lated		24					48		· .	<u> </u>		
			Volts, dc Volts, dc												
	Cand. No.	200	400	500	600	800	1000	200	400	500	600	800	1000		
Armature	6т	15	130	150	165	250	400	3`	7.5	9,75	12.5	30	40,25		
Conductor-to-	7 T	90	175	325	400	600	850	10	13	18	25	35	45		
Frame	8T	35	-100	155	185	450	625	6	10.5	14.5	17.5	30	42		
	6B	75	180	300	375	525	725	5	11.25	14	22	30	40		
	7B	80	170	285	350	500	725	6	1 11	15	20	32	45		
-	8B	38	80	130	165	400	550	2	6.5	16.5	18	25	35		
	6T-6B	35	85	130	F		- 1	35	F	-	-	-	_		
Armature	7T-7B	1500	F	F			3	45	650	1800	F	_			
Condto-Cond.	8T-8B	1650	F					.5	4.5	12	F		- 1		

-						DC Lea	kage, N	Aicro-an	aperes				
Test Compone	nt Posi-	Cycle			3				-	4			
tion, Measure	ment	Accumu Hours	lated		72					96			<u> </u>
				Volts	, dc			1		Volt	s, dc		
•	Cond. No.	200	400	500	600	· 800	1000	200	400	500	600	800	1000
Armature	6т	.5	1.0	1.5 1.85 11 25					.75	1.25	1.5	2.5	3.5
Conductor-to-	7T	.5	1.25	1.5	2.0	2.75	8	.5	1.0	1.25	11.0	20	F
Frame	8T	.75	2.25	9.0	F	- 1	-	2.0	10	13.5	115	F	
	6B	0	.5	.6	.75	1.5	2.25	F	-				ľ _
	7B	0	. 5	.6	. 75	1.0	1.75	.5	1.25	1.5	2.0	2.25	3.0
	8B	.25	.5	.6	. 75	F		. 25	.5	.75	1.0	2.0	16.0
Armature	6T-6B	0	5	.5	.5	F	-	. 25	13	35	350	F	
Condto-Cond.	7T-7B	.5	1.0	1.25	18	50	160	6.0	4.5	6.5	10	18	185
• • •	8 T- 8B	0	. 5	.6	.75	1.0	1.5	0	. 25	.25	.5	1.5	9

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XVII - STATORETTE ACCELERATED AGING - 325°C DC LEAKAGE CURRENT MEASURED AT AGING TEMPERATURE STATORETTE NO. 6

Sheet	2	of	· 3

		[DC Lea	kage, M	licro-am	peres		、		,	
Test Componen	nt Posi-	Cycle			5			_		6				
tion, Measure	ement	Accumu Hours	lated		120					144				
_				Volta	, dc					Volt	s, dc			
· · · · · · · · · · · · · · · · · · ·	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	
Armature	6T	.5	1.25	1.65	2.0	3.25	5.0	.75	1.75	2.25	2.75	4.5	1600	
Conductor-to-	7T	.75	1.5	2.0	2.5	3.75	5.25	.75	1.5	2.25	3.0	5.0	30 ·	
Frame	8T	.5	1.25	1.75	2.25	3.25	7.0	.5	1.75	2.25	3.0	7.0	20	
	6B	.75 .	1.5	1.75	2.25	4.5	F	.5	1.5	2.5	3.0	F	-	
	7B	.5	1.5	2.0	2.5	3.75	7.0	. 65	1.5	2.25	3.5	65	F	
	8B	.0	.5	1.0	2.8	F		.6	1.6	2.0	4.0	F		
	6T-6B	15	F		-	-	-	.15	F	-	- ·	-	-	
Armature	7T-7B	550	850	50 F			F	, - [`]	-	-	-	-		
Condto-Cond.	8T-8B	.4	3.5	5.0 11.5 35 350				F	-			-	-	

	·					DC Lea	kage, M	licro-am	peres				
Test Componer	nt Posi-	Cycle			7					8			
tion, Measure		Accumu Hours	lated		168					192	2		
				Volts	, dc					Volts	s, dc		
	Cond. No.	200	00 400 500 600 800 1000						400	500	600	800	1000
Armature	6T	.8	2.5	3.0	6.0	8.5	1250	55	F			-	-
Conductor-to-	7T				4.5	6.5	35	3.5	10	45	80	F	- 1
Frame	8T	.75	1.5	2.75	3.5	15	45	1.5	3.5	-7.5	10 `	F	· -
	6B	. 25	.5	3.0	6.5	F	-	1.0	3.0	5.0	F	-	· -
	7B	.75	1.5	3.0	8.0	F		1.0	3.25	6.0	F	-	- 1
	8B	.5	1.75	3.0	19	F	. -	1.0	3.0	5.75	9.0	3.5	F
Armature	6T-6B	F	-	-	-	-	-	F	-	-		-	-
Condto-Cond.	7T-7B	F		-	-	-	-	F	- .'	- '		· -	-
Quina, 10-00ma,	8T-8B	F	-	- /	- ·		• ·	F	-	-			

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2,000 micro-amperes

 $\mathcal{E}^{(i)} \in$

TABLE XVII-STATORETTE ACCELERATED AGING - 325°C DC LEAKAGE CURRENT MEASURED AT AGING TEMPERATURE STATORETTE NO. 6

											·····		
						DC Lea	kage, N	licro-an	peres				
Test Componen	nt Posi-	Cycle			9					10			
tion, Measure	ement	Accumu Hours	lated		216					240			
			:	Volt	s, dc					Volt	s, dc		
<u> </u>	Cond. No.	200	400 -	- 500	600	800	1000	200	400	500	600	800	1000
Armature	6T	1.25	8.0	50	125	F	-	3.0	4.5	5.0	F	-	-
Conductor-to-	7T	60.5	F	-	-	-	-	. F	-	-	-	-	i -
Frame	8T	1.0	2.25	4.0	7.25	F	-	2.5	3.0	8.0	F	-	-
	6B	.75	2.25	4.0	8.5	F	-	1.75	2.5	F	-	-	-
	7B	.75	1.75	5.5	8.6	F	-	2.0	3.5	F		-	. –
	8B	.5	2.0	5.0	8.5	F	-	3.0	4.0	7.0	F	-	-
	6T-6B	F		-	-	-		F	-	-		-	-
Armature	7T-7B	F	F		-	- 1	-	F	-	-	- 1	-	-
Condto-Cond	8T-8B	F	- 1 1 1 1					F	-	-	-	-	-

Measurements Discontinued After the 10th Cycle

Sheet 3 of 3

- T = Top conductor in slot (Bore side)
- B = Bottom conductor in slot (Frame side)
- F = Failure, leakage current in excess of 2,000 micro-amperes

TABLE XVIII - STATORETTE ACCELERATED AGING - 325°C INSULATION RESISTANCE MEASURED AT AGING TEMPERATURE STATORETTE NO. 6

Sheet <u>1</u> of <u>1</u>

			Ins	ulation Resis	tance at 500	Vdc, ohms		
Test Componen	t Posi-	Cycle	0	1	2	3	4	5
tion, Measure		Accumulated	0	24	48	72	96	120
Armature Conductor-to- Frame	6T 7T 8T 6B 7B		Infinity Infinity Infinity Infinity Infinity Infinity	$\begin{array}{rrrr} 1.5 & \times 10^{6} \\ 1.25 & \times 10^{6} \\ 2.0 & \times 10^{6} \\ 1.25 & \times 10^{6} \\ 1.5 & \times 10^{6} \\ 2.5 & \times 10^{6} \end{array}$	80×10^{6} 75 x 10 ⁶ 75 x 10 ⁶ 75 x 10 ⁶ 75 x 10 ⁶ 75 x 10 ⁶ 200 x 10 ⁶	$200 \times 10^{6} \\ 200 \times 10^{6} \\ 10 \times 10^{6} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	200×10^{6} 200×10^{6} 150×10^{6} 0 200×10^{6} 200×10^{6}	200×10^{6} 200×10^{6} 200×10^{6} 200×10^{6} 200×10^{6} 200×10^{6} 200×10^{6}
Armature Ccndto-Cond.	8B 6T-6B 7T-7B 8T-8B		Infinity Infinity Infinity Infinity	$ \begin{array}{c} 0.01 \times 10^{6} \\ 0 \\ 0 \\ 0 \end{array} $		- 200 x 10 ⁶ -	$ \begin{array}{r} 11 \times 10^{6} \\ 15 \times 10^{6} \\ 200 \times 10^{6} \end{array} $	0 0 20×10^{6}

			Ins	ulation Resis	tance at 50	00 Vdc, ohms_		
Test Componen		Cycle	6	7	8	9	10	
tion, Measurer	nent Cond. No.	Accumulated	144	168	192	216	240	
Armature Conductor-to- Frame	6T 7T 8T 6B 7B		$150 \times 10^{6} \\ 150 \times 10^{6} \\ 150 \times 10^{6} \\ 100 $	$150 \times 10^{6} \\ 100 \times 10^{6} \\ 150 \times 10^{6} \\ 10^{$	- - - -	$ \begin{array}{c} 100 \times 10^{6} \\ 0 \\ 150 \times 10^{6} \\ \end{array} $	- - - -	Measure- ments dis- continued after the 9th Cycle
Armature Condto-Cond	8B 6T-6B 7T-7B 8T-8B		0 0 0	0 0 0	- - -		-	

T = Top conductor in slot (Bore side)

Sheet	1	of	11	

		L					DC Lea	ikage, l	Micro-a	mperes									
Test Component	Dest	Cycle			1						2					3			
tion, Measuren		Accum Hours	nulated		68					1	36					20	4		
				Volts	de	· · · · · · · · · · · · · · · · · · ·				Volts	, dc					Volt	s. dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	0	•0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T	0	0	o	0	o	0	o	ŏ	0	ŏ	ŏ	ŏ	o	Ö	ŏ	ŏ	ŏ	l õ
Frame	21 3T	0		0	Ö	Ö	.25	ŏ	ŏ	Ö	0		0	0	lő	o	0	ŏ	
Frame			0		0	0	0	0	0		o		0	0		0	0	0	
	4T	0	-	0	0	Ö	0	ŏ	0	0	0		0			0	0	0	
	5T	0	0	0	-	-		-						-					- I
	6T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9T	0	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0
	10T	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0
	2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3B	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
	4B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5B	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	6B	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7B	0	0	0	0	0.	0	0	· 0	0	0	0	0	0	0	0	0	0	0
	8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10B	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0
	<u>11B</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Armature	1T-1B	0 '	0	0	0	0	· 0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T-2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0
Conductor	3T-3B	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	C
	4T-4B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5T-5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6T-6B	0	0	0	0	0 ·	0	0	0	0	0	0	0	0	0	0	0	0	0
	7T-7B	Ô	0	0	→ 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8T-8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	9T-9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10T-10B	-0	. 0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11T-11B	· o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

•

..

.

Sheet 2 of 11

.

. . .

.

							DC Lea	kage, M	Aicro-a	mperes									
_ . _ .		Cycle.			4				_	5						6	~~~		
Test Component	Post-	Accum	ulated		272					340						40	8		
tion, Measurem	ent	Hours							··········							Volts	dc		
				Volts					100	Volts 500	, dc 600	800	1000	200	400	500	600	800	1000
	Cond. No.	200	400	500	600	800	1000	200	400	500								0	0
Armature	IT	0	0	0	· 0	0	0	0	0	0	0	0	0	0	0	0	0		0
Conductor-to-	2T	ŏ	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o o	o o
Frame	3T	o	ō	0	0	0	0	0	0	0,	0	0	0	0	0	0	0	0	o
Fraine	4T	ŏ	lo	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
	5T	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
	6T	0	0	0	0	0	0	0	0	0	0	0	.5	0	0	-		0	0
	7T	Ŏ	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	81	ŏ	l o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
	91	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ŏ	Ö
	IOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	ŏ
	111	0	0	0	0	0	0	0	0	0	0	.5	. 75	0					1
······	1B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6B	0	0	0	0	0	0	0	0	0	0	. 25	. 5	0	0	0	0	0	0
	7B	0	0	0	0	0	0	0	0	0	0	0	.5	0	0	0	0		.25
	8B	0	0	0	0	0	0	0	0	0	0	.5	.75	0	0	0	0	0	.25
	9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11B	Q.	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
Armature	1T-1B	0	0	0	j o	0	0	0	0	0	1.5	. 75	1	0	0		0	0	0
Conductor-to-	2T-2B	0	0	0	0	0	0	0	0	0	0	. 25	.5	0	0	-	0	0	0
Conductor	3T-3B	0	0	0	0	0	0	0	0	0	0	0	.5	0	0	0	0	0	.5
	4T-4B	0	0	0	0	0	0	0	0	0	. 25	. 25	.5	0	0	0		0	0
	5T-5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l õ	.5
	6T-6B	0	0	0	0	0	. 25	0	0	0	0	0	.5	0	0	0	0 0	0	.5
	7T-7B	0	0	0	0	0	0	0	0	0	0	0	.75	0	0	0	0	.5	
	8T-8B	0	0	0	0	.5	.75	0	0	.5	.6	. 75	1.5	0		0	0	0	0
	9T-9B	0	0	0	0	0	0	0	0	0	0	0	.5	-	0	0	0	0	ŏ
	10T-101	-	0	0	0	0	0	0	0	0		. 25	.5			l o	Ö	0	ŏ
	11T-111	3 0	0	0	0	0	0	0	0		J				1	k			

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

٠.

Sheet 3 of 11

		L					DC Lea	ikage,	MICTO-2	mperes			_ <u>.</u>						
Test Component	Posi-	Cycle			7					8				ļ		9			
tion, Measuren		Accum	ulated		476			1		544						61	·		
tion, Measuren	lent	Hours	1		4/0)				544						01	2		
				Volts	s, dc					Volte	, dc					Volt	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T	0	0	ō	o	0	Ō	Ö	0	Ó	0	0	0	0	0	0	0	0	c
Frame	3T	0	0	Ō	0	ō	ō	Ó	0	0	0	. 25	.5	0	0	0	0	0	
	4 T	Ō	Ō	Ō	0	0	Ō	0	0	Ō	Ó	0	0	0	0	0	0	0	
	5T	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	
	6т	ŏ	Ō	l o	ŏ	0	.5	0	0	0	.5	.75	1	0	Ō	0	0	. 75	· j
	7T	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8T	Ō	Ō	Ō	0	0	0	0	0	0	0	.5	. 75	0	0	0	0	0	
	9T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	10T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	11T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 ·	
	1B	0	0	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0.	0	
	2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3B	0∼	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	4B	0.	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5B	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	6B	• 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7B	0	0	0,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8B	0	0	0	0	0	0	0	0	0	.5	. 75	. 85	0	0	0	0	0	'
	9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	10B	0	' 0	0	0	0	0	0	0	0	0	0	.5	0	0	0	0	0	
	11B	0	0	0	0	0	0	0	0	0	. 25	.5	.5	0	0	0	0	. 25	· ·
Armature	1T-1B	0	0	0	0	0	0	0	0	0	0	0	.5	0	0	o	0	0	
Conductor-to-	2T-2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	'
Conductor	3T-3B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4T-4B	0	0	0	0	. 75	1.5	0	0	0	.5	. 75	1.5	0	0	0	0	0	.'
	5T-5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6T-6B	0	0	0	0	0	.5	0	0	0	0	.5	1	0	0	0	.5	. 75	
	7T-7B	0	0	0	0	. 25	.5	0.	0	.5	.75	.85	1	0	0	0	. 25	.5	
	8T-8B	0	0	0	.5	. 75	1.5	0	0	0	.5	. 75	1.5	0	0	0	, 25	.5	-
	9T-9B	0	0	0	• 0	0	• 25	0	0	0	0	. 25	.5	0	0	0	0	0	
	10T-10B	0	0	0	0	. 25	.5	0	0	0	0	.5	1	0	0	0		0	
	11T-11B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	l v	1 '

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet 4 of 11

ſ · · · · · · · · · · · · · · · · · · ·		1					DC Let	kage 1	Micro-a	mperes									
_		Cycle			10		DC Dec			11				1		12			
Test Component			ulated																
tion, Measurem	ent	Hours			680					748						816			
				Volts	, dc			1		Volta	, dc					Volt	s, dc		
	Cond. No	200	400	.500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor - to-	2T	0	0	0	0	0	0	0	Ó	0	0	l o	l o	0	ō	ŏ	0	ŏ	ŏ
Frame	3 T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5T	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0
	6T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7T	0	0	0	0	0	0	0	0	0	0	0	0	Q	0	0	0	0	0
	8T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 25
	9T	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0
	10T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	2B	0	0	0	0	0	0	0	0	0	0	· 0	0	0	0	0	0	0	0
	3B	0	0	0	0,	0	0	0	· 0	0	0	0	0	0	0	0	0	0	0
	4B	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6B	0	0	0	0	0	0	0	0	0	0	0'	0	0	0	0	0	0	0
	7B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8B	0	0	0	, 0	0	0	0	0	0	. 25	.5	. 75	0	0	0	0	0	0
	9B	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0
	10B 11B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Armature	11B 1T-1B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T-2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor	3T-3B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jongeour.	4T-4B	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5T-5B	0	0	0	0	0	0	0	0	0	0	0	. Z5	0	0	ြို	0	0	0
	6T-6B	o	0	o	0	0	0	ő	0	0	.5	.75	0	0	0	Ē	-	-	-
	7T-7B	0	Ö		0	0	0	ŏ	0	0	.5	. /3	0	0	0	B	2.5	- 5	- 10
	8T-8B	ŏ	ŏ	l o l	0	ŏ	0 0	ŏ	0	0	0	0	0	0	0	0	2.5	0	0
	9T-9B	ō	ŏ	ŏ	å	ŏ	ŏ	ŏ	ŏ	õ	ő	ŏ	0	ŏ	0	o	0	0 0	0
	10T-10B		ŏ	0	ō	Ō	Ő	ŏ	ŏ	0	ő	ŏ	ő	ŏ	o	ŏ	o	o	0
	11T-11B	ō	Ō	o I	ŏ	ō	Ō	ō	ŏ	õ	ŏ	Ő	ŏ	ŏ	ŏ	ő	o o	ň	ŏ

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

,

TABLE XIX - STATORETTE ACCELERATED AGING - 300-C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 4

Sheet <u>5</u> of <u>11</u>

							DC Lea	kage, l	Micro-a	mperes									
m . c	Deal	Cycle			13					14						15		<u></u>	·
Test Component		Accum	ulated																
tion, Measurem	ent .	Hours			884	ł				952	and the second se					1020			
÷				Volts	, dc					Volts						Volts			
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	0	ò	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Frame	3T	ŏ	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.0
	4T	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ST	0	0	0	0	0	0	0	0	0	0	0	0	,0	0	0	0	0	0
	6T	0	0	0	Ö	0	0	0	0	o	0	0	0	0	0	0	. 0	0	. 5
	7T	0	Ō	0	0	o	0	0	0	0	0	. 25	.5	0	0	0	. 25	.5	.6
	81	0	0	0	0	5	. 75	0	0	0	0,	0	0	0	0	0	0	.75	1.5
	91	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	IOT	0	0	0	0	0,	. 25	0	0	0	. 25	.6	. 75	0	0	0	. 25	.5	.6
	111	0	0	0	0	0	0	0	ο.	0	0	0	0	0	0	0	0	. 25	.5
	1B	0	0	0	0	Ø	0	0	0	0	0	0	0	0	0	0	0.	0	0
	28	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	· 0	0
	3B	0	0	0	0	0	0	0	· 0	0	.5	.75	1.25	0	0	0	0	0	0
	4B	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5B	0	0	0	0	O O	0	0	0	.5	.75	1 1	1.5	0	0	0	0	0	0
	6B	· 0	0	0	0	O,	. 25	0	0	0	0	0	.5	0	0	0,	0	0	.5
	7B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 5
	9B	0	0	0	0	. 25	.5	0	0	0	. 25	.75	1.5	0	0	0	. 5	. 75	1.5
	10B	0	0	0	0	0	. 5	0	0	. 25	. 25	, 25	. 75	0	0	0	. 25	.5	. 75
	11B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Armature	1T-1B	0	0	0	0	. 25	. 5	0	0	0	. 25	.75	1	0	0	. 25	.5	.6	.75
Conductor-to-	2T-2B	0	0	0	0.	.5	.75	0	0	0	0	-, 25	1	0	0	0	0	. 25	.5
Conductor	3T-3B	0	0	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0	. 25	1.5
	4T-4B	0	0	0	0	0	, O	0	0	0	0	. 25	. 75	0	0	0	0	0	0
	-5T-5B	-	-	-	-	-	-	-	i - ·	-	-	-	-	- 1	- 1	-	-	-	-
	6T-6B	-	-	- 1	1 -	-	-	-	-	-	-	1 -	-	1 :		-	-	-	-
	7T-7B	0	0	0	. 25	.6	. 25	0	0	. 25	.5	.6	50	0	. 25	.5	.6	.75	150
	8T-8B	0	0	0	0	Ō	0	0	0 7	0	0	0	0	0	0		0	0	0
	9T-9B	0	0	0	0	F	-	0	0	35	70	F	-	0	0	Ē			-
	10T-10E		0	0	0	0 _,	, 0	0	0	0	0	0	0	0	0	0		0	. 25
	11T-11E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>	1.25	<u> </u>

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

.

TABLE XIX - STATORETTE ACCELERATED AGING - 300°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 4

Sheet	6	of	11

.

.

-

. .

				-			DC Lea	kage 1	Micro-a	mperes	,								
		Cycle			16		DO LLO	[[17						18			
Test Component	Posi-	Accum	nlated																
tion, Measurem	ent	Hours	uraveu		1088			ľ		1156						1224			
		nours		Volts						Volta	, dc					Volta	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
														•	0	0	ō	0	0
Armature	1T	0	0	0	0	0	0	0	0	0	0	0	0 .5	0	ŏ.	ŏ	.25	.5	1
Conductor-to-	2T	0	0		0	0	. 25	Ö	ŏ	ő	ŏ	ŏ	l o	ŏ	ŏ	ŏ	0	ő	ō
Frame	3T	0	0	0	0			0		o	.5	1	1.5	Ő	ŏ	. 25	.5	ı 1	1.5
	4T	0	0	0	0	-		.5	.5		1.5	ż	6,25	ĭ	1.5	3	4.5	8	25
	5T	0	0 .	0	0	0		0	0	.5	1.5	ž	2.5	0	0	Ĩ	1.5	6	11
	6T	0	0	0	0 .75	1 ·	1.5	o	ŏ	2	2.5	50	100	ŏ	ŏ	3.5	50	.150	185
	7T	0	0	.5	.75	1	1.5	.5	3	3.5	4	9	18	1	1.5	5 .5	25	85	150
	8T	0	0	0		1	0	0		0	0		10	o b	1.0	ŏ	0	0	õ
	9T	0	0	0	0	-		o	ŏ	Ö	.5	.75	1	ŏ	ŏ	ŏ	. 75	ĩ	2.5
	10T	0	0	0	.25	.5	.75	o	0	ŏ	0	.5	.75	ŏ	ŏ	ŏ	. 25	. ŝ .	1.5
	11T 1B	0	0	0	0		0		0	0	0		0	0	<u> </u>	ŏ	0	0	0
		0	0	0	0	ŏ	.25	0	ŏ	ŏ	ŏ	.25	.5	o	o .	ŏ	lõ	. 25	.75
	2B	0			0	ŏ	0	ŏ	. ŏ	ŏ	ŏ			ŏ	ŏ	ŏ	ŏ	0	0
	3B	0	0	0	. 0	0	0	ŏ	0	.25	1.5	2	2.5	. 25	.6	.75	ľ	1	1.5
	4B	0	0	0	0	0	0	Ē	-	1 . 23	1.5		<u> </u>				1 2	_	
	5B	0	0	0	0	0	0		0	Ð	1		1		_			-	
	6B	0		-	0	o	Ö	· o	ŏ		0	F		F	- 1	1		_	
	7B	0	0	0	Ğ	, u		U U	<u> </u>	-		r -				I _	l _	_	
	8B	0	0	.25		1.25	1.25	0	0	. 25		1.5	1.75	0	ō	.5	1	1.5	3
	9B	0	0	.25	.75	3.5	6.0	0	0	.25	75	2	4.5	Ö	.25	.75	1.5	6	12
	10B 11B	0	0	0	.15	0	0.0	ŏ	ŏ	0	0	ō	.25	ŏ	0	. 25	.3	.5	.75
Armature	11B	0	0		3	6.5	8	0	l o	3.5	6	80	120	0	0.	4	65	85	175
	2T-2B	0	ŏ	l o	0	.5	.75	ŏ	ŏ	Ē	-	-	-			_	_	-	-
Conductor-to-	3T-3B	ŏ	ŏ	ŏ	ŏ	0	.25	ŏ	ŏ	50	75	185	300	0	.25	(F) 65	-	-	-
Conductor	4T-4B	ŏ	ŏ	ŏ	ŏ	0	0	ŏ	ŏ	25	50	120	185	. 25	lī	65	185	F	-
	5T-5B			Ĭ	-		Ľ	l Ľ	_	-	-	-	1 -	-		-	- 1	-	-
	6T-6B				-	1]				-	-		F _	- 1	-	-	- 1	-	-
	7T-7B	ō	.5	.75	1	1.5	3.5	Ð		_	-	1	-	l -	-	-	- 1	-	-
	8T-8B	l o	1.0		Ō	0	0		0	350	Ð	1 -	-	-	- 1	_	- 1	-	-
	9T-9B	-			-	-	Ĭ	Ľ	ľ	-		- 1	-	- 1	- 1	<u> </u>	- 1	- 1	-
	10T-10B		0	0	.5	.75	Ĩ	0	50	75	185	650	F	0	150	350	Ð	-	-
	11T-11B		0	0	.5	. 75	1.25	ŏ	6	0	. 25	6	25	ŏ	0	l o	1.5	6	150
	1 11.1118		L. V.			L	1.65	L	<u> </u>	<u> </u>	L	<u> </u>	L		L				

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

.

-

· · · · ·

F = Failure, leakage current in excess of 2000 micro-amperes B = Bottom conductor in slot (Frame side)

• .

I = Top conductor in slot (Bore side)

	°	1
		4
	0	
1	. 25	1
	.5	
	1.5	1
	350	,
B-4	0	
	. 25	,
	S	1

		91-1	8T-8B	7T-7B	6T-6B	5T-5B	4T-4B	Conductor 3T-3B	Conductor-to- 2T-2B	Armature 1T-1B	11B	10B	9B	8B	7B	6B	BS B	4B	3B	2B	18	111	. 10T	. 9T	81	77	6T	ST			ģ	Armature	Cond. No.	•	tion, Measurement	Test Component: Posi-		
	IOT-LOB	9T-9B	88	718	6B	SB	G	3B	2B	B																			_		-		1-1	Ţ			- T	
,	;	1	1	1	'	'	0)' 	,'	•	,o	•	•	'	1	•	1	ι	•	•	•	0	•		2.5	0	0	ۍ ب	•	-	• •	•	200		Accumulated Hours	Cycle		
>	•	1	•	ı	1	•	1	•	1	•	0	0	0	•	1	ı	1	1.5	•	•	•	0	•	0	ω S	*		1.5	X	0	•	0	4 00		lated			
3	1	,	1	1	1	1	,	ï	,	4.5	. 25	ŝ	0	,	,	1	•	6	0	0	0	. 25	, 5	0	0	18	1,5	•	, 5	0	0	0	500	Volt				
'n	,	,	1	,	1	1	1	1	,	75	7	. 75	0	•	1	,	1	11	0	.25	0	7	. 75	0	81	25	œ	15	.	0	5	¢	500 600	dc	1292	19		
-	,	,	1	•	í	1	,	1	,	120	12	1.5	0	1	1	1	1	8	0	ŝ	0	12	1.5	0	120	150	15	75	1.75	0	, S	•	800		92			
360	1	1	1	i	ï	i		ı	.,	185	35		0	•	1	1	•	3	•	1.5	0	35	ω	ĩo	350	180	23	130	س	0	<u> </u>	•	1000		·	ŀ	DC L	
,	,	,	1	1	,	1	1	1	1	0	.5	0	, 25	•	1	1	,	. 75	0	0	0	0	0	0	41	. 25	•	, 25	•		0	•	00Z				akage,	
J	,	•	,	,	•	1	,	,	,	0	. 75	ŝ,	5	•	1	1	1	-	ó	0	0	0	0	0	18	6.5	1,5	5	5	0	0	•	400				Micro-	
•	1	,	1	1	,	1	•	1	,	3.5	. 75	1	1	1	ı	,	,	~	0	. 25	0	. 25	. 25	•	35	25	2.5	15	. 75	0	. 25	•	H	Volts,	1 360	20	DC Leakage, Micro-amperes	
-	1	ł	1	1	•	1	.'	1	1	8	1	25	2,5	1	1	,	•	1.5	0	5	0	 	. 75	0	600	1 35	25	25	1.5	0	თ	•	+	ts, dc	ð		8	
	1	,	ŕ	1		,	,	1	,	150	1.5	75	3,5	,		1	,	1.5	0	L	0	15	1.5		- 1	1.85	5	150	ŝ	8	3	8	800					
	•	,	,	,		•	,			250	2.5	150	ώ σ	,	,	1	,	85	。	2.5	0	35	w	. 28	,	300			4 .5		1.5		1000					
			 ,	1			_	 1		0	. 5	0	1	,	1	,	•	5	0	0					150	01	9	-I	. 25				200			╉		
							_				1.5		1.7			<u> </u>		25				-		-	(5)								400					
1.05										1	_	3									_				,			_	-		•			۷	1			
	<u> </u>	·	-	-	·	•	<u> </u>	•		11 0	5										-	_		_	, ., (_						-	500 600	olts, de	1428	21		
D			<u> </u>	•	•	<u> </u>	1	•	•		-									÷				-	.' (<u> </u>	9 	5	ω ——		ភ	• 	\vdash					
	•	1	-	•	1	•	1	1	'	ö	•			• •				ידי 			_	•	2 4	0	1 	1	•	ካ	ω 	°	-	<u>ა</u>	800 10					
	1	1	1	t	1	1	1	1	١	ч	,	20	35	'	ı	ı	ı	1	. 25	თ	. 5	20	. 25	Մ		1	1	•	(J)	0	-		1000					

 TABLE XIX
 - STATORETTE ACCELERATED ACING - 300°C

 DC
 LEAKAGE CURRENT

 MEASURED AT 23°C

 STATORETTE NO. 4

78

-.:/ a'

Sheet	8	of	11
Succi		01	

2

		<u> </u>					DC Lea	kage. N	Aicro-a	mperes						•			
		Cycle	T		22					23						24			
Test Component	Posi-	Accum	ulated		<u> </u>														
tion, Measurem	ent	Hours	aratea		1496					1564						163	2		
		Hours	ŀ	Volts	dc					Volts	, dc					Volts			
	Cond. No.	200	400	1 500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
		-		0	0	.5	1.5	0	0	0	0	. 25	3	0	0	. 25	.5	.75	4.5
Armature	IT	0	0 . 25	.5	.75	1.5	2.5	Ö	.5	.75	1.5	3	7,5	õ	1	1.75	4.5	15	35
Conductor-to-	' 2T	0		.5	0		. 25	0	. 0	0	0	Ő	.5	0	ō	0	0	.5	.75
Frame	3T	0	0	.75	1.5	3.5	25	0	.5	1.5	3	25	50	5	20	35	45	50	65
	4T	0	. 25				25	Ľ	•	1.7			-			_		-	
	5T	. 25	185	250	F	-	-		-	-	-	-			-	_		L _	_
	6T	-	-	-	-	-	-	-		-	-	_	_	_	_	_	_	L _	_
	7T	- 1	-	-	-	-	-	-	-	-	-	_			_			-	-
	8T		-	-	-	-	1,5	-	0	.25	.5	.75	1.5	. 25	.75	1	1,5	1.75	2
	91	0	0	. 25	.5	.5	8.5	0	. 25	.25	1.5	3.5	6	0	.5	l i	1.5	1.75	3.5
	10T	0	. 25	.5	1.75	4.5	8,5	0	.25	,25	1.5	1.5	4	ŏ	0	.5	1.5	1.25	3.75
	111	0	0	. 25	1.5		.5	0	0	.25	0	0	.5	0	0	0	0	. 25	.5
	1B	0	0	0	0	0	.5	0	. 25	.5	.75	1.5	3.5	ŏ	. 25	1.5	3	3.5	3.75
	2B	0	.25	.5	1			0	. 0	, 5 0	0	1.5	0.5	ŏ		0	ō	0	0
	3B	0	0	0	0	0	0			U	v		Ŭ	Ŭ			Š	Ĭ	-
	4B	5	20	180	F	-	-	-	-	-	-	_	-	-	1]	_			-
	5B	-	-	1 -	-	-	-	- 1	-	-	-	-		-		-	-		-
	6B	-	-	-	-	-	-	-		-				_		_		_	
1	7B	-	-	-	- 1	ļ -	-	-	-	-	-	-	-	-		_		1 _	
	'8B	-		-	-	-	- 85	5	1.0	4.5	- 35	85	120	15	35	65	150	165	320
	9B	5	25	60	80	85				4.5	85	185	F	25	50	150	Ē	-	
	10B	.5	20	135	145	165	500	.5	. 75	1.5		105	r	25	50	-		_	
	11B	<u> </u>	-										<u> </u>	- <u>-</u>	<u> </u>	-	-		-
Armature	1T-1B	E	-	-	-	-	-	- 1	-	-	-	-	-				_	i _	
Conductor-to-	2T-2B	-	- 1	-	- 1	- 1	-	-	-	-	-			-					
Conductor	3T-3B	-	-	-	-	-	-	-	-	-	-	-		-					
	4T-4B	- 1	- 1	-	-	- 1	-	-	-	-	-	-		-		1			
	5T-5B	- 1	- 1	-	-	-	-	-	-	-	-	-	-	-]			
l	6T-6B	- 1	-	-	-	- 1	-	-	-	-	-	-	_	-			1]		-
	7T-7B	-	-	-	-	-	-	-	-	-	-	-		-	1		_		
ł	8T-8B	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	1 -	_		
1	9T-9B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1			
	10T-10E		-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	-	-		
ł	11T-11E	3 -	<u> </u>	<u> </u>	<u> </u>	[-		<u> </u>	L	L	<u> </u>		<u> </u>	<u> </u>	L	<u> </u>		1	·I

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XIX - STATORETTE ACCELERATED AGING - 300°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 4

Sheet 9 of 11

۰.

		ŕ					DC Lea	kage, 1	Micro-a	mperes									
	_ ·	Cycle			25					26						27			
Test Component tion, Measuren	Post-	Accum	ulated		170	0		-		1768						183	6		'
		Hours	·····	Volts	dc	······				Volts	, dc					Volts	, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000 1
	1T	0	.5	.75	ł.5	3.5	6	0	1.5	3.5	7	8.5	12	0	. 25	1	4.5	6.5	10
Armature Conductor-to-	2T	. 25	1.5	. 75	1.5	40	45	1 1	1.5	40	120	135	150	. 75	1.5	35	100	115	1 35
	3T	-		0	. 25	.5	.75	ō	0	õ	.5	.75	1	0	0	0	. 25	.5	1
Frame	4T	0	0	45	75	120	165	10	35	60	120	135	170	25	50	65	95	165	185
	5T	1.3	h	40	15	120	105	-		00	120					· -	_	_	_
	6T	-	-	-	-	-	-	-		-	-			-			-	_	
		-	-	-	-		-	-		-				-	_	-	_	-	· -
	7T 8T	-	t -	-	-	-	-	-	-	-						_	_		1_
		-			-	-		.5		1.75	3.5	4	4.25	. 25	.75	1.5	3	5.	6
	9T	• .5		1.5	1.75	10	4	1	7.5	1.75	25	120	115	15	25	50	85	100	135
	10T 11T	.5	1.5	2	3.5	3	3.5	0	.25	1	3	3.5	4.5	0		1.5	2.5	3.5	4
<u> </u>	1111 1B	0	+	<u> </u>		. 25	1	0	0	0	0	. 25	.75	0	0	0	0	.5	1
	2B	0	0	0	0	4	4.25	. 25		1.5	3.5	4.5	4.5	.5	Ĭĭ	3	4	5	6
		. 25	.75	1.5	0	4	4.25	0	. 0	1.5	0		1.0		l õ	ō	0	0	0
	3B	0	0	0	-	-		-		v	U U	ľ				_ _	_	_	
	4B	- '	-	-	-	-	-	-	-	-	-						_	_	-
	5B 6B	-	-	-] -	-	-	-	-	-	-	-				-	_	-	-
	6B 7B	-	- 1	-	-	-			_	-	-	_				_	_	_	-
		- 1	-	-	-	-	-		-	-	-	-				_	_	_	-
	8B		75	-	320	- 380	- F	- 25	65	185	Ē	_	L _			_	_	_	_
	9B	25		130			r			105	U S	_				_	-	_	_
	10B 11B	-	-	-	-	-	-	-		-	-	_				ŀ _	_	_	-
Armature	1T-1B			<u>-</u>					-				<u> </u>		-	_	-	-	_
Conductor-to-	2T-2B	-	1	-		-	-			-			- I	l _	- 1	-	- 1	- 1	-
Conductor	3T-3B	-		_	-		_					I	_	<u> </u>	-	-	-	-	-
Conductor	4T-4B	-	1]		-			<u> </u>				1		1_	_	_	-	- 1	- 1
	5T-5B	-					_		_				_	-	<u> </u>	-	_	- 1	_
	6T-6B	-	1]		-	-			1				1 [l _	-	- 1	-	-
	7T-7B	1 -	<u> </u>		<u> </u>	-	-	-						_	;	-	-	- 1	-
	8T-8B		1		-	-					-	-		_	-	- 1	- 1	- 1	- 1
	9T-9B						_						-	_	- 1	-	-	- 1	-
1	10T-10E		-	1			_		1]		-		1]		_	_	-	- 1	-
· ·	101-10E			1 2]		_	1 2	1 2	-			_	1 -	-	-	-	-	- 1
	1 11 1 - 11 2	n -	4 -	1 -				J -	1 -	-	1	1	1	· · · · ·	h			L	

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

1

F = Failure, leakage current in excess of 2000 micro-amperes

98

. . in C

N......

TABLE XIX - STATORETTE ACCELERATED AGING - 300°C DC LEAKAGE CURRENT MEASURED AT 23°C STATORETTE NO. 4

Sheet 10 of 11

. .

[DC Lea	kage, l	Micro-a	mperes	-								
		Cycle			28					29						30			
Test Component		Accurr	ulated																
tion, Measurem	lent	Hours			1904					197	2					2040)		
				Volts	. dc					Volts	, dc					Volte			
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	· 0	.5	1	3.5	7	12	1.5	3.5	4.5	7	9.5	15	3	6.5	9	12	20	35
Conductor-to-	2T	1.5	3	25	120	185	300	10	25	150	350	600	1800	25	50	75	12 E	-	-
Frame	3T	0	0	0	.5	.75	1.5	0	0	0	. 25	1.5	2	0	0	0	.5	1.5	2.5
	4T	25	40	60	185	420	600	75	150	300	500	650	1200	160	Ð	-	-		-
	5T.	-	t _	-	-	- 1	-	-	-	-	-	- 1	-	-		· -	-	-	-
	6T	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
1	7T	-	-	-	-	-	- 1	-	- 1	-	-	-	-	-	- 1	-	-	-	-
ł	8 T	- 1	-	-	-	-	-	-	-	-	-	-	- 1	-	-		-	-	-
	9T	1	3	4.5	6	8.5	12	2	4	6.5	8	15	25	6	9.5	12	18	20	35
	10T	25	50	85	F	-	-	- 1	-	-	-	-	-	-	- 1	-	-	-	-
	11T	0	.5	1.75	3.5	12	25	.5	1.75	4	6.5	12	30	1	2.5	4	6.5	20.	35
	1B	0	0	0	.5	1.5	3	0	0	0	1	1.75	3.5	0	0	0	2.5	3	4
	2B	1	1.5	3	7.5	12	25	2.5	4	9	15	22	30	9.5	18	20	35	40	55
	3B	0	0	0	0	0	0	0	. O	0	0	0	0	0	0	0	0	0	0
	4B	-	-	-	-	-	-	- 1	-	-	-	-		-	- 1	-	-	-	-
	5B	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6B	· -	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	7B	- 1	-	-	-	-	- 1	- 1	- 1	-	-	-	-	-	- 1	-	-	-	-
	8B	- 1	- 1	-	-	-	- 1	-	-	-	-	-	-	- 1	-	-	-	-	-
	9B	1 -	-	-	-	-	- 1	- 1	-	-	- 1	-	- 1	- 1	-	-	-	-	-
	10B	-	- 1	-	-	-	-	-	-	-	-	-	-	-	i -	-	-	-	-
	11B		-	-	-	-	-			-	-	-			-	-	· -		
Armature	1T-1B	-	-	-	-	-	-	-	-	-	-	-	-	-	i -	-	-	-	-
Conductor-to-	2T-2B	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-
Conductor	3T-3B	-	-	-	-	-	-	- 1	-	-	-	· -	-	-	-	-	-	-	-
	4T-4B	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	
	5T-5B	-	- 1	-	-	-	- 1	-	-	-	-	-	- 1	-	-	-	-	-	-
	6T-6B	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1	-	-	-	
	7T-7B	-	-	-	-	-	-	-	-	-	-	- 1	-	-	- 1	-	-	-	-
	8T-8B	~	-	-	-	-	-	-	-	-	-	1 -	-	-	-	-	-	-	-
	9T-9B	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-
	10T-10B		· -	-	- 1	-	-	- 1	-	-	. .	-	-	- 1	-	-	-	-	-
1	11T-11B	- 1	- 1	1 -	- 1	-	-	-		I –	- 1	- 1	- 1	-	-	-	- 1		

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

.

87

4

.....

Sheet 11 of 11

•

							DC Lea	kage, 1	Micro-a	mperes									
	_	Cycle			31			L		32									
Test Component tion, Measurem	Post-	Accum Hours	ulated		21 (18				217	'6								
		nours		Volts	dc					Volts	, dc					Volt			
<u></u>	Cond. No.	200	400	500	600	800	1000.	200	400	500	600	800	1000	200	400	500	600	800	1000
A	1T	12	18	20	35	40	50	25	30	45	60	85	90		İ				
Armature	2T					40	50		-				1]	1	
Conductor-to-	3T	-	-	0	.75	2.5	4	. 0	0	o	.5	1.5	3.5					}	
Frame	4T	0	0	0)		-		-	-		1.5	1.5						
	5T	-	: -	-	- 1	-	1		1	_					1				
	6T	-	-	-	-	-	-		-	_	_								
	7T	-	-	- 1	-	-	-								[
	8T	-	-	-	-	- 1	-	-	<u> </u>	-	-	-			1		1		
	9T	-		22	- 28	35	40	12.5	15	22	30	40	55						
	10T	8.5	15	22	1		1	12.5				1							
	111	7.5	10	15	20	35	40	15	25	40	55	60	85						
	1B	0	0	0	3.5	8	12	.5	5	6.5	9	12	15		<u>†</u>	1			
	2B	15	25	30	50	65	85	25	35	45	95	185	350						
1	2B 3B	0	0	0	0	0	. 25	0	. 0	0	Ő	0	.5						1
1	4B		-	, in the second		-			-							1			
1	5B		1 2			-	_	-	-	-	<u> </u>	-	_						
	6B	·]					_	<u>ا</u>	-	- I	-		l _		Í				
	7B			_	_	-	-	· _	_	_	· _	-	l _						
	8B		1 [_	-	_	1 -		-	-						
	9B					_	-		- I	1	_	· _	-		l l				
	10B	-					_	_	_	- I	-	· _	-						
	111B					-	_	-	-	-	_	_	-						
Armature	1T-1B		-		<u> </u>	-	-	<u> </u>		-	- 1	-	_			1			
Conductor-to-	2T-2B	_	-	I .	-	-	- 1	-	-	-	-	-	-					1	
Conductor	3T-3B	-	-			_	1 -	_	-	-	_ <u>→</u>	_	-		1		1		
Conductor	4T-4B				_	-	- 1	_	-	-	- 1	-	-				i	1	
	5T-5B	1 _	- 1	-		_	-	L _		- 1	1 -	- 1	-						1
1	6T-6B		_	i -	-	_		- 1	_	-	-	-	-	ł	1			1	1
	7T-7B			l -	-	-]	-	-	-	-	-	-					1	
	8T-8B	_	l _	_	·		_	_	- 1	-	-	-	-				l		
	9T-9B				_	-	- 1	-	-	-	_	-	- 1	1			1		
	10T-10E	1	 _	1_			-		-	-	-	- 1	-				Į		
	11T-11E			_	l _	-	-		_	- 1	-	_	- 1	1		1	1		

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

.

88

-

TABLE XX- - STATORETTE ACCELERATED AGING - 300°CDCLEAKAGE CURRENTMEASURED AT AGING TEMPERATURESTATORETTE NO. 4

Sheet 1 of 4

.....

						DC Lea	kage, M	icro-an	peres				
Test Componer	nt Posi-	Cycle			1					2			
tion, Measure		Accumu Hours	lated		68					1 36			
				Volts	, dc					Volta	1, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6Т	3	6	7.5	8.5	12	14	0	5	.75	1	1.5	2
Conductor-to	7T	2	5	6	8	11	15	0	0	0	.5	.75	1.5
Frame	8T	2.5	4	5	6	8.5	11.5	0	0	0	0	.5	1
E L'AINC	6B	16	35	50	80	115	150	0	0	.5	.75	2	3
	7B	2	4.25	35	60	90	120	0	0	.5	1	1.5	2
	8B	15	40	50	60	85	105	0	.5	. 75	1.5	2.5	3
	6T-6B	3	6	8	9	12	15	0	0	.5	.75	1	1.5
Armature	7T-7B	3	5.75	6.5	8	10	13	0	0	0	0	.75	1.5
Condto-Cond		2	4	5.5	6.5	9	12	0	0	0	.5	1.5	2

					<u></u>	DC Lea	kage, M	icro-an	peres_				
Test Componer	nt Posi-	Cycle			3					4			
tion, Measure		Accumul Hours	lated		204					272			
			1	Volts	. dc					Volts	, dc		
<u></u>	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T	0	.5	. 75	1	1.5	2	0	.5	1	1.5	1.75	2.5
Conductor-to-	7T	0 '	.5	.75	1	1.5	1.75	0	0	.75	1	1.5	1.75
Frame	8T	0	. 75	1	1.25	1.5	1.75	0	.5	. 75	1.5 ·`j	1.75	2
FIGHE	6B	.5	.75	. 85	1	1.5	2	0	.5	1	1.25	1.5	1.75
	7B	0	.5	.75	1	1.5	2	0	0	.5	1	1.5	2
	8B	.5	.5	.75	1	175	2	.5	.75	1	1.25	1.5	2
	6T-6B	.75	1,25	1.5	2	3	5.5	. 75	1.25	1.5	1.75	2.	6
Armature	77.78	.5	1.25	1.75	2	3.5	4.5	.5	.75	1.25	2.5	3	4.5
Condto-Cond	8T-8B	.75	1	1.5	z	3	4	.75_	1.25	1.5	2,5	3,5	6

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame)

F = Failure, leakage current in excess of 2,000 micro-amperes

TABLE XX -- STATORETTE ACCELERATED AGING - 300°C DC LEAKAGE CURRENT MEASURED AT AGING TEMPERATURE STATORETTE NO. 4

	Sheet	.2	of	4
--	-------	----	----	---

						DC Lea	kage, M	licro-an	peres				
Test Componer	nt Posi-	Cycle			5					6			
tion, Measure	ement	Accumu Hours	lated		340					408			
				Volts	, dc					Volts	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T	0	1	1.5	2	2,5	3	. 25	.5	.5	. 75	1.75	3
Conductor-to-	7T	0	0	. 75	1.5	2	2.75	. 25	.75	1	1.25	2	3
Frame	8T	0	. 75	1	1.5	2.5	3	. 25	.75	1	1,25	2	2.5
	6B	0	.5	1	1.5	1.75	2.25	.5	1.5	1.75	2.5	4	11.5
	7B	0	0	.5	.75	1	1.5	1	2.25	3.25	4	7	14
	8B	.75	1	1.5	1.75	1.85	2.25	. 75	1.5	2	2.5	4.25	8.5
	6T-6B	1	1.25	1.5	2	2.25	3	1	2	2.75	3.6	6.25	10.75
Armature	7T-7B	.75	1	1.25	1.75	2	2.25	1.75	3.75	5	6.25	9.75	14.5
Condto-Cond.	8T-8B	.75	1.25	1.5	2.25	2.5	4	1.25	2.75	3.75	5	7.25	10.25

						DC Lea	kage, M	licro-am	nperes				
Test Componer	nt Posi-	Cycle			7					8			
tion, Measure		Accumu Hours	lated		476					54	4		
				Volts	, dc					Volts	s, dc		
	Cond. No.	200	00 400 500 600 800 1000						400	500	600 -	800	1000
Armature	6T	. 25	.75	1.25	1.5	2.5	7.75	. 25	.5	. 75	1.75	2.75	3
Conductor-to-	7T	1	2	2.5	3	5	7.5	.5	. 75	1	1.5	2	3
Frame	8T	1	2	2.75	3.25	4.75	7.75	. 25	. 75	1	1.25	1.75	2.5
• •	6B	1.5	3	4.25	5.5	12	25	.5	1.25	1.75	·2.25	3.5	11
	7B	1.5	3	4	5	8.5	15	.75	1.75	2	3	5	8.5
	8B	1	2	3.75	5	8.75	13.5	.5	. 75	.85		1.75	3
Armature	6T-6B	1.5	3.5	13.25	30	F	-	1	2.5	3.5	5	8.5	35
Condto-Cond	7T-7B	1.5	5,75	10	17.5	185	F	3.5	9.5	16	22	50	F
	8T-8B	16	35	45	1300	F	-	.25	1.5	2,5	4	12	18

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XX- STATORETTE ACCELERATED AGING - 300°CDC LEAKAGE CURRENTMEASURED AT AGING TEMPERATURESTATORETTE NO, 4

Sheet	3	of	4

						DC Lea	kage, M	licro-an	peres				
Test Componer	nt Posi-	Cycle			9					10			
tion, Measure		Accumu Hours	lated		612					68 0	1		
				Volts	, dc					Volta	s, dc		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T	. 25	.75	1	2.5	3.0	3.5	.5	1	1.25	1.65	2.75	4.25
Conductor-to-	7T	.75	1	1.25	2	2	3	.6	1.25	1.75	2	3.25	5
Frame	8T	.5	.75	1	1.25	2.5	3	.5	1.25	1.75	2	3.25	4.5
	6B	.75	1.25	2	2.25	12	18	.85	1.75	2.5	3.5	6	18
	7B	.5	.75	1.5	2.75	3.5	9	1	2.5	3.25	4.25	8	15
	8B	.5	.75	. 95	1	1.5	2.5	0	. 25	.5	1	1.5	2.5
	6T-6B	1	1.5	2	3.5	12	25	2	4.5	7	9.5	35	F
Armature	7T-7B	2.75	15	18	35	75	F	5	10	15	25	50	1000
Condto-Cond	8T-8B	. 25	1	2	6	8.5	15	. 25	.75	1.5	1.75	2	2.25

						DC Leal	kage, N	licro-am	peres				
Test Componen	t Posi-	Cycle			11					12			
tion, Measurer		Accumu Hours	lated		748					816			
				Volts	, dc					Volt	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6Т	.25	. 75	1	1.5	3	4.5	. 25	6	1	2	30	F
Conductor-to-	7 T	.5	1.25	1.5	2	2.75	4	.5	1.5	2	3.75	7.5	13.5
Frame	8 T	.5	1	1.5	2	2.75	4	1	2.25	3	4	6.25	10
-	6B	.5	1.5	2	2.5	3.75	8	1.25	3.25	5	7.75	F	-
	7B	.9	1.5	2	2.5	5	9	.6	1.5	2	3	F	-
	8B	1	2	2.5	3.25	5.25	8	B	roken L	ead			
Armature	6T-6B	5.5	14.5	F	-	-	-	12	F	-	-	-	-
Condto-Cond.	7T-7B	7.5	28	42	65	F	- 1	100	F	-	-	-	-
Condto-Cond.	8T-8B	28	60	85	150	F	L _	B	roken L	ead		<u> </u>	1

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2,000 micro-amperes

0.0

TABLE XX-- STATORETTE ACCELERATED AGING - 300°CDCLEAKAGE CURRENTMEASURED AT AGING TEMPERATURESTATORETTE NO.

Sheet	4	of	4	
-------	---	----	---	--

			,			DC Lea	kage, M	licro-ar	nperes				
Test Compone:	nt Posi-	Cycle			13					14			
tion, Measur	ement	Accumu Hours	lated		884					952	2		
				Volts	, dc					Volt	s, dc	,	
	Cond. No.	200	400 500 600 800 1000					200	400	500	600	800	1000
Armature	6T	.5	1	1.5	F	-	_						
Conductor-to-	7T	1.	2.5	4.5	25	65	160		-				
Frame	8T	1	2.5	4	6	15	25						
	6B	1.5	3,	10	15	F	-		Mea	sűreme	nts Disc	ontinue	a
	7B	2	6.5	15	F	í -	-		Afte	r 13th	Cycle		[
	8B	2	3.5	6	1/5	25	40						
	6T-6B	F		-	-	-	-		<u> </u>				
Armature	7T-7B	F	- (-	-	-	- `						İ
Condto-Cond.	8T-8B	.5	7	12	25	30	55			, i			1

* Broken Lead Repaired

						DC Lea	kage, N	licro-an	nperes				
Test Compone	nt Posi-	Cycle											
tion, Measure	ement	Accumu Hours	lated										
				Volts	, dc	!		· · · · · · · · · · · · · · · · · · ·		Volt	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T		}										
Conductor-to-	71						· ·						
Frame	8T	6			1								
	6B]						
	7B					· .	Ĩ						
	8B					· · .							
Armatúre	6T-6B												
Condto-Cond.	7T-7B		ĺ									4	
, 10-00mg	8T-8B												

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XXI - STATORETTE ACCELERATED AGING - 300°CINSULATION RESISTANCEMEASURED AT AGING TEMPERATURESTATORETTE NO. 4

Sheet 1 of 2

يى ئ

			Ins	ulation Resis	stance at 500) Vdc, ohms		
Test Componen	t Posi-	Cycle	0	1	2	3	4	5
tion, Measure	ment Cond. No.	Accumulated Hours	0	68	1 36	204	272	340
Armature	6T		Infinity	50×10^6	Infinity	-	$200 + \times 10^6$	$200 + x 10^{6}$
Conductor-to-	7T		Infinity	65×10^{6}	Infinity		-	-
Frame	8T		Infinity	80×10^{6}	Infinity	- 1	- /	- 6
	6B		Infinity	6×10^{6}	Infinity	- 1	$200 + \times 10^{6}$	
	7B		Infinity	7×10^{6}	Infinity	-		$200 + \times 10^{6}$
	88		Infinity	6×10^{6}	Infinity			
· ·	6T-6B		Infinity	$60 \times 10^{\circ}$	Infinity	$200 + \times 10^{6}$		$200 + \times 10^{6}$
Armature	7T-7B		Infinity	80×10^{6}	Infinity	$200+ \times 10^{6}$	$200 + \times 10^{\circ}$	$200 + \times 10^{6}$
Condto-Cond.	8T-8B		Infinity	$100 \ge 10^{6}$	Infinity	$200+ \times 10^{6}$	200+ x 10 ⁶	$200 + x 10^{6}$

Test Component Posi-		Insulation Resistance at 500 Vdc, ohms							
		Cycle	6	7	8	9	10	11	
tion, Measure	nent Cond. No.	Accumulated	408	476	544	612	680	748	
Armature Conductor-to- Frame	6Т		Infinity 6	$200 + x 10^{6}$	- 6	$200 + \times 10^{6}$	$200 + x 10^{6}$	$200 + x 10^{6}$	
	7T		200 + x 10	$200 \times 10^{\circ}$	$200 + x 10^{6}$	$200+ \times 10^{6}$	$200 + x 10^{6}$	$200 + \times 10^{6}$	
	8T		$200 + \times 10^{6}$		$200 + \times 10^{6}$	$200 + \times 10^{6}$	$200 + x 10^{6}$	$200 + \times 10^{6}$	
	6B		200×10^{0}	$150 \times 10^{\circ}$	$200 + \times 10^{6}$	$200 \times 10^{\circ}$	200×10^{6}	$200 + \times 10^{6}$	
	7B		$150 \times 10^{\circ}$	$150 \times 10^{\circ}$	100×10^{6}	$200 + \times 10^{6}$	200×10^{6}	$200 + \times 10^{6}$	
	8B		200×10^{0}	$200 + x 10^{0}$	$200 + x 10^{6}$	$200 + \times 10^{6}$	$200 + x 10^{6}$	$200 + \times 10^{6}$	
	6T-6B		150×10^{6}	0	8 x 10 ⁶	200×10^{6}		0 6	
Armature Condto-Cond	7T-7B		100×10^{6}	0	0 6	1×10^{6}	35×10^{6}	7 x 10 x	
	8T-8B		150 x 10 ⁶	0	1×10^6	$200 \times 10^{\circ}$	$200 + \times 10^{6}$	7 x 10 ⁰	

T = Top conductor in slot (Bore side)

TABLE XXI - STATORETTE ACCELERATED AGING - 300°CINSULATION RESISTANCEMEASURED AT AGING TEMPERATURESTATORETTE NO. 4

1 . .

Sheet <u>2</u> of <u>2</u>

		Insulation Resistance at 500 Vdc, ohms								
Test Component Posi- tion, Measurement		Cycle	12	13			ſ	1		
		Accumulated								
	Cond. No.	Hours	816	884						
Armature Conductor-to- Frame	6T		$200 + \times 10^{6}$							
	7T		200×10^{6}		•					
	8T	$150 + x 10^{6}$		Measure-						
	6B		$100 + x 10^{6}$	ments dis-						
	7B		200 x 10 ⁶	continued						
	8B	1	Broken Lead	after 12th						
Armature Condto-Cond.	6T-6B		0	Cycle						
	7T-7B		0	1						
	8T-8B	l I	Broken Lead							

T = Top conductor in slot (Bore side)

TABLE XXII - STATORETTE ACCELERATED AGING - 300°C CORONA ONSET VOLTAGE AT ROOM TEMPERATURE AND SIMULATED ALTITUDE AFTER AGING AT 300°C STATORETTE NO. 4

Sheet 1 of 1

1

				Corona Onset Voltz	age, Volts AC RMS	· · · · · · · · · · · · · · · · · · ·	
Test Componer	nt Posi-	Cycle	1		3		
tion, Measure		Accumulated Hours	68	2	04	34	10
		Pressu	re at 23°C	Pressure	e at 23°C	Pressu	re at 23°C
	Cond. No.	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *
	6T	700**	600	700**	600	700**	550
	_		650	650	600	600	500
Armature	7T	700**	400	550	400	550	350
Conductor-to-		550		200	200	200	200
Frame	6B	250	200	350	200	300	200
	7B	350	200	200	200	200	200
	8B	200	200		300	400	300
Armature	6T-6B	400	300	400	200	350	200
Condto-Cond.	7T-7B	350	200	350		650	300
	8T-8B	700**	500	700**	400	050	

				Corona Onset Vol	tage, Volts AC RMS		1
Test Componer	nt Posi-	Cycle	7		9		1
tion, Measure		Accumulated Hours	476		612	74	8
			re at 23°C	Pressur	e at 23°C	Pressut	e at 23°C
	Cond. No.	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *
			375	700**	375	700**	350
rmature	6T	700**	500	550	450	600	400
Conductor-to-	7T	550	300	500	300	500	300
rame	8T	500	200	200	200	200	200
	6B	200	200	250	200	200	200
	7B	300		200	200	200	200
	8B	200	200	400	200	400	200
rmature	6T-6B	400	200		200	350	200
ond to- Cond.	7T-7B	350	200	350 1		600	200
	8T-8B	600	250	600	200.	1 300	

* Equivalent pressure for 100,000 feet at 250°C

THE REPORT OF A DESCRIPTION OF A DESCRIP

- Measurements discontinued after 11th cycle -

** 700 volt AC application limit to prevent possible insulation damage; corona was not observed.

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

ĵ

		r														· · · ·	_ or		
		<u> </u>					DC Le	akage,	Micro-a	mperes									
Test Component	Posi	Cycle			1					2							3		
tion, Measurem			nulated		16	•													
		Hours								33	-			1			504		
	1			Volte						Volte						Volt	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	IT	0	0	0	-0	0	0	0	0	0	0	0	0	0		1 · .		_	1
Conductor-to-	2T	0	Ö	0	· 0	l õ	ŏ	ŏ	l o	ŏ	lő	l ő	Ö	l o	0	0	0	0	0
Frame	3T	o	0	l o	ō	ō	ō	ŏ	ŏ	ŏ	ŏ	0	ő			0	0	0	8
	4T	Ó	o	l o	ō	Ō	o	ŏ	ŏ	ŏ	ő	ŏ	0	Ö	-	0	0	0	0
	5T	Ō	Ō	lo	ŏ	ŏ	ō	lõ	ŏ	Ö	ŏ	ŏ	ŏ		0	0	0	0	0
	6T	Ö	l o	Ō	0	o	Ő		ŏ	ŏ	ő	ŏ	ŏ	0	-	-		0	0
	7T	0	Ō	Ō	o	ŏ	Ö	l o	ŏ	Ö	ő	ő	ŏ	0	0	0	0	0	0
	8T	0	0	0	o	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ů	0		0	0	0
	9T	0	0	0	0	0	ō	0	ō	ŏ	ŏ	ů	ŏ	ŏ	Ö	0	0		0
	10T	0	0	0	Ō	ō	Ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ			0	0
	11T	0	0	0	0	0	ō	ō	ō	ŏ	ő	ŏ	o	ő	0			0	0
	1B	0	0	0	0	0	0	ō	0	0	0		0	0	0		0	0	
	2B	0	0	0	0	Ō	o	ō	ō	Ő	ŏ	ŏ	o	o	0		0		0
	3B	0	0	0	0	0	ō	ō	. 0	ŏ	ŏ	ŏ	ŏ	o	a	Ö	Ö		0
	4B	0 ·	0	0	0	0	Ó	o	Ō	ŏ	Ő	ŏ	ŏ	ă	ŏ	ŏ	0	Ö	0
	5B	0	0	0	0	0	0	0	Ō	ō	Ō	ŏ	ŏ	ŏ	ŏ	Ö	Ö		0
	6B	· 0	0	0	0	0	0	0	0	Ō	ō	ŏ	ŏ	ŏ	ŏ	Ē		ľ	
	7B	0	0	0	0	0	0	0	0	ō	Ō	ŏ	ő	ŏ	ŏ		-		0
	8B	0	0	0	0	0	0	0	0	a .	o	. 25	.5	ŏ	. 25	.5	. 75	.75	1.0
	9B	0	0	0	0	0	0	0	0	0	ō	0	.5	ŏ		ó			0
	10B	0	0	0	0	0	0	0	o	ō	ō	ŏ	0	ŏ	ŏ	0 0	0	ő	Ö
	11B	0	0	0	0	. 0	· 0	· 0	0	o	o	o	ŏ	ŏ	ŏ	o	ŏ	ŏ	0
Armature	1T-1B	0 [°]	0	0	0	0	0	0	0	0	0	0	0	Ō	0	ő	0	ŏ	0
Conductor-to-	2T-2B	0'	0	0	0	0	0	0	0	0	0	0	o	ō	o	ŏ	ŏ	ŏ	ŏ
Conductor	3T-3B	0	0	0	0	0	0	0	0	0	0	0	Ō	ō	ŏ	ŏ	ŏ	ő	ō
	4T-4B	0	0	0	0	0	0	0	0	0	0	Ō	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ
	5T-5B	0	0	0	0	0	0	0	0	o	ō	ō	Ō	ů	ő	ŏ	ŏ	ŏ	ŏ
	6т-6в	0	0	0	0	0	0	0	0	o	ō	ŏ	ō.	Ő	ŏ	ŏ	ŏ	ŏ	ŏ
	7T-7B	0	0	0	0	0	0	0	0	0	ō	Ō	ŏ	ů	ŏ	ŏ	ŏ	ŏ	ŏ
	8T-8B	0	0	0	0	0	0	0	0	0	ō	ō	ō	a	ŏ	ŏ	ŏ	ŏ	ŏ
	9T-9B	0	·0	0	0	0	· 0	0	0	0	ō	o	ō	ő	ŏ	ŏ	ŏ	0	ŏ
	10T-10B	0	0	0	0	0	0	0	0	ō	Ō	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	Ö
	11T-11B		0	0		0	0	,	0	ō	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	o	ő

Sheet 1 of 7

T = Top conductor in slot (Bore side)

.

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

12.

.

Sheet 2 of 7

.....

							DC Lea	kage.	Micro-a	mperes	,								
	_	Cycle	T		4		20 200	1		5						6	>		
Test Component tion, Measurem		Accum Hours	ulated		672			ŀ		840			İ			10	08		
		nours		Volts	, dc			1		Volta	, dc				,	Volte	, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
						1		-	<u> </u>		0		0	0	0	0	0	0	0
Armature	11	0	0	0	0	0	0	0	0	0	0	0	0	0	o ·	l o	0	. 25	.5
Conductor-to-	2T	0	0	0	0	0	0	0	0		0	ŏ	0	Ö	Ö	Ö	ŏ	0	0
Frame	3T	0	0	0	0	0	0			0	0	ŏ	0	0	ŏ	0	o o	o	ŏ
	4T	0	0	0	0	0	0	0	0	ő	0	0	0	o o	.0	l o	o	Ö	0
	5T	0	0	0	0	0	0	0	0		0		0	0	0	Ö	0	0	0
	6T	0	0	0	0	0	0	0	0		0	0	. 25	0	0	0	0	. 25	.5
	71	0	0	0	0	0	0			0	. 0	0	. 25	0	0	0	. 25	.5	1.5
	8T	0	0	0	0	0	0	0	ő	0	. 0		. 25	o'	0	o	1 0	.25	5
	9T	0	0	0	0	0		0	0	0	0	l o	0		0	0	0 0		0
	10T	0	0	0	0.			0	0	0	0	0	0		0	0	ő	0	0
	11T	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	. 25
	IB	0	0	0	0	0		0	0	0	0 0	ŏ	l o	l o	ŏ	ŏ	0	0	0
	2B	0	0		0	0	0	0 0	.0	0	ŏ	Ö	0	ŏ	Ö	o	ŏ	0	Ō
	3B	0	0 0			0	ŏ	ŏ	0	Ö	o	ŏ	ŏ	ŏ	ŏ	o	Ö	0	0
	4B	0			0	0 0		. 0	0	o	ů	a	ŏ	ů	ů	o	ŏ	0	0
	5B 6B				l v		Ň		ľ			ľ.		-					-
	6B 7B	0	0		0		0	· o	0	0	0	25	35	0	0	10	25	75	1 35
	8B	- 0	.5	. 75	1.5	2.5	3.5	ŏ	ŏ	ŏ	ŏ	0	0	0	ŏ	5	15	25	35
	9B	0	0	1.10	0	0	0	ŏ	Ö	ŏ	ŏ	ŏ	0	l õ	0	0	Ō	. 25	.75
	10B	ŏ	ŏ	ŏ	ŏ	ŏ	Ő	lŏ	ŏ	ŏ	ŏ	l o	Ŏ	l õ	Ō	Ō	ō	0	0
	11B	0.	l o	l õ	ő	l o	ŏ	ŏ	ō	Ö	o o	0	0	0	0	o	0	0	0
Armature	111-1B	0	0	1 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T-2B	ŏ	ŏ	ŏ	Ŏ	o	ŏ	ō	ō	Ō	Ō	0	0	0	0	0	0	0	0
Conductor	3T-3B	ŏ	Ŏ	0	0	lo	o	ō	0	o	0	· 0	0	0	0	0	0	0	0
~	4T-4B	ŏ	ŏ	ŏ	ŏ	ŏ	Ō	Ō	o	ō	0	0	0	0	0	0	0	0	0
	5T-5B	ŏ	ŏ	ŏ	ŏ	ŏ	Ō	o	0	o	o	0	0	0	0	0	0	0	. 25
•	6T-6B	ŏ	Ŏ	ō	Ō	ō	Ō	Ō	Ō	0	0	ŏ	0	0	0	0	0	. 25	.5
	7T-7B	ŏ	0	ō	Ō	ō	Ō	ō	0	0	0	0	0	0	0	0	0	.5	1.5
5 S	8T-8B	ŏ	ŏ	Ŏ	ō	Ō	0	o	0	0	Ó	0	0	Ð	-	-	-	-	- 1
	9T-9B	o	ŏ	ō	ō	ō	0	o	o	0	0	0	0	ŏ	0	0	0	0	0
	10T-10B	1 T	ō	ō	Ō	o	Ō	l o	.5	.75	3.0	7.5	12	0	0	0	0	0	0
	11T-118		ŏ	1 0	ŏ	Ō	0	0.	0	0	15	35	F	ଜ	-	- 1		<u> </u>	-

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

Sheet <u>3</u> of <u>7</u>

		[DC Lea		Micro-a	mperes									
Test Component	Deel	Cycle			7					8							9		
		Accum	nulated		117	4		1		134	4						1512		
tion, Measurem	ient	Hours			117	0		J						ļ					
				Volts						Volts						Volts		1	
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	11	0	0	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0	0	. 25
Conductor-to-	2T	0	0	ō	Ō	0	. 25	0	0	0	0	0	. 25	0	0	0	0	0	0
Frame	3T	o	0	ō	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.0000	4T	o	0	o	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0
	5T	Ō	ŏ	ō	Ō	Ō	Ó	0	0	0	0	0	0	0	0	0	0	0	0
	6T	0	0	o	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7T	0	0	l o	0	, 25	.3	0	0	0	.5	.75	.8	0	0	0	. 25	.75	. 75
	81	0	0	0	. 25	.3	1.0	0	0	0	.3	.5	1.25	0	0	0	. 25	. 75	1.5
	9T	0	0	0	0	. 25	. 75	0	0	0	0	. 25	.3	0	0	0	0	. 25	.5
	IOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3B	0	0	0	0	0	. 25	0	.0	0	0	0	.3	0	0	0	0	0	. 25
	4B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6B	-	-	-	-	-	-	-	-	-	-	-	- 1		-	-	-	-	- 1
	7B	0	0	20	35	75	F	0	0	30	40	85	F	0	0	35	65	85	F
	8B	0	0	25	7	20	40	0	0	3.5	6.5	35	185	0	0	3.0	15	45	150
	9B	0	0	0	0	. 25	.5	0	0	. 25	.3	.75	.9	0	0	. 25	. 3	. 75	1.5
	10B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Armature	1T-1B	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
Conductor-to-	2T-2B	0	0	0	0	0	0	0	0	0	0	. 25	.3	0	0	0	. 25	.25	.5
Conductor	3T-3B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.75
	4T-4B	0	0	0	0	.0	0	0	0	0	. 25	.5	.6	0	0	.25	.5	.6	1.5
	5T-5B	0	0	0	. 25	.5	.6	0	0	.3	.5	1.0	1.0	0	0	.'3	.5	1.0	3.5
· ·	6T-6B	0	0	0	0	.3	.3	0	0	0	.25	.5	1.5	0	0	. 25	. 75	3.0	5,0
, i i i i i i i i i i i i i i i i i i i	7T-7B	0	0	0	0	.3	. 75	0	0	0	, 25	.75	3.0	0	0	. 25	.5	.6	
	8T-8B	-	-		-	-	-		-	-	-		-				-		- 0
	9T-9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	.75	z. 0
	10T-10B		0	0	0	. 25	1.0	0	0	0	. 25	.5	1.5	0	0	0	.5	. ()	2.0
	11T-11B		<u> </u>	-	-		<u> </u>	<u> </u>		-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>		l	

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

.

~

Sheet <u>4</u> of <u>7</u>

Material Concernant

6

					<		DC Lea	kage, N	licro-ar	nperes						12			
		Cycle			10												,		
Test Component	Posi-	Accum	ulated		1680					1848						201	6		
tion, Measuren	hent	Hours								Volts.	de					Volts			
				Volts					400	500	600	800	1000	200	400	500	600	800	1000
	Cond. No.	200	400	500	600	800	1000	200	400							0	0	.5	1.0
		0	0	0	0	0	.5	0	0	0	0	. 25	.5	0	0	0	ŏ	ő	ŏ
Armature	1T	0	ő	ŏ	ő	ō	0	0	0	0	0	0	0	0	0	ő	, 25	.5	.75
Conductor-to-	2T	0	ŏ	ŏ	ō	0	, 25	0 `	0	0	0	. 2	. 25	0	0	ŏ	0	0	0
Frame	3T	-	ŏ	ŏ	Õ	0	0	0	0	0	0	0	0	0	-	· ŏ	. 25	.3	.5
	4T	0	0.	ŏ	Ő	0	0	0	0	0	0	. 25	.5	0	0	ŏ	0	0	.5
	5T	0		0	ŏ	õ	0	0	0	0	0	0	0	0	0	.75	1.5	2.5	13
	6T	0	0	0	.5	.75	1.0	.0	, 25	5 ،	1.5	3.5	10	0	.5	. 75	1.25	3.5	6.0
	71	•0	Ö	.25	.5	1.0	1.5	0	0	.5	1.5	2.5	3.0	0	.25	0	1.25	. 75	.8
	8T	0		.25	0	.25	.3	0	0	0	. 25	.75	.75	0	0	0	.5		l õ
	91	0	0	ŏ	ō	0	0	0	0	0	0	0	0	0	-	0	0	0	0
	10T		0	0	ŏ	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11T				0	ō	0	0	0	0	0	0	0	0	0	0	0 0	ŏ	. z
	1B	0	ŏ	l õ	lő	Ō	0	a	0	0	0	0	0	0	0	.5	.85	1.5	3.0
	28	Ö	l ő	ŏ	Ö	o	. 25	0	, 0	0	0	. 25	.5	0	. 25	1.5	20	35	45
	3B	-	l o	ŏ	ŏ	Ō	0	0	0	0	1.0	1.5	25	0	.75	0	0	Ő	0
_	4B	0	0	l ő	ŏ	Ō	0	0	0	0	0	0	0	0	0	l v			
-	5B	-		ľ	Ĭ		-	- 1	- ·	-	-	-	-	-	-	-			_
	6B	-	0	60	F	- 1	-	- i	-	-	-	- 1	-	-	-	Ē	1 -		1
	7B	0		3.5	25	50	185	0	0	15	25	250	500	0	350	1.5	3.5	15	35
	8B	0	. 25	.5	1.5	2.5	4.0	0	.5	.75	1.5	3.5	5.0	. 25	.5	0	1 0	Ő	0
· · · ·	9B	0	.25	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	ő	
	10B	0	l ő	l o	Ö	o	0	0	0	0	0	0	0	0	0	0	0	, 25	.6
	11B	0.			0	0	0	0	0	0	· 0	0	0	0	0	.75	15	25	85
Armature	1T-1B	0	0	.5	1.0	1.5	3.0	0	0	.5	1.5	2.5	50	0	.25	. 25	.5	1.0	1.5
Conductor-to-	2T-2B	0		1.0	0	0	0	0	0	0	.5	1.0	1.0	0	.25	.25	15	25	60
Conductor	3T-3B			5	.75	1.0	2.5	0	0	. 25	.5	1.5	3.5	0		5.5	15	35	4
l	4T-4B			.5	1.0	2.5	6.0	0	. 25	1.0	1.5	3.0	4.5	0	1.0	1 .	15	35	6
Į	5T-5B	1 °	0	.25	1.0	1.5	4.0	0	0	. 25	.5	1.5	3,5	0	.25		2.5	4.0	Ĭ
1	6T-6B	0	0	.5		1.5	12	0	0	.5	.6	1.5	13.5	0	. 25		4.5	1.0	
	7T-7B	0	-			1.5	-	-	-	-	-	-	-	-	-	- 0	0	0	
	8T-8B			1 0	0	0	0	0	0	0	0	0	0	0	0	.75	1.5	3.5	6.
	9T-9B	0	0	l o	1.0	1.5	3.0	0	0	.5	1.0	1.5	2.5	0	.5	1 . "	1.5	,,,	1.
l	10T-10	1.	1. 0	l °	1		-		- 1	-	-								
i	11 T-11	ы -																	

T = Top conductor in slot (Bore side)

· · · ·

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

ر

Sheet <u>5</u> of <u>7</u>

							DC Lea	akage, 1	Micro-a	mperes									
Test Component	Posia	Cycle			13					14							15		
tion. Measurem		Accum	ulated		218			ŀ		2352							2520		
ston, mousua citt	~	Hours				''		ļ						l					
	T			Volts		,				Volts				L	·····		s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	11	0	0	0	.5	1.0	1.5	0	0	0	. 25	.5	1.0	0	0	0	.5	.75	1.5
Conductor-to-	ZT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Frame	3T	0	0	. 25	.5	.75	. 85	0	0	. 25	.5	.5	. 75	0	0	.5	.75	.8	1.0
	4T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5T	.,0	0	0	. 25	.5	.6	0	0	. 25	.4	.5	.75	0	0	. 25	.5	.75	1.0
	6T	0	0	0	. 25	.75	1.5	0	0	. 25	35	70	150	0	0	.5	40	65	135
	7T	0	.6	.75	1.5	3,5	25 '	0	. 75	2.0	2.5	40	55	0	1	3.5	5.5	50	65
	8T	. 25	150	Ð	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-
	9T	0	0	. 25	. 5	.85	1.0	0	. 25	, 5	1.0	3,5	5.0	0	.5	1.5	3.5	5.0	6.0
	10T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1B	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2B	0	0	0	. 5	.75	1.5	0	0	. 25	.5	. 75	1.5	0	0	.5	.6	1.0	1,5
	3B	. 25	. 25	.75	1.0	1.5	4.0	.5	. 75	1.5	2.5	3.0	4.5	1.0	1.5	2.5	3.0	4.5	6.0
	4B	.5	15	35	60	85	90	. 25	.5	20	60	85	120	15	60	85	115	145	165
	5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6B	-	-	-	-	-	-		- 1	-	-	-	-	-	-	-	-	- 1	-
	7B 8B	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-
	9-18 9-18	.5	- 75	25	- 75	120	185	Ē	-	-	-	-	-	-	-	-	-	-	-
	10B	.5	0	25	0	120	165	l e	-	-	-	0	- 0	- 0	-	0	- 0	-	-
	11B	0	0	0	0	0	0	0	0	0	0	0				0	0	0	
Armature	11D	0	0	0	.5	.75	1.5	0	0	. 25	. 75	1.0	1.5	0	1.5	3.0	3.5	5.5	7.0
Conductor-to-	2T-2B	, 25	.75	35	80	160	250	15 '	50	75	120	150	350	25	50	85	115	135	320
Conductor	3T-3B	0	0	.25	, 75	3.0	4.5	0	, 25	,75	3.5	6.0	7.5	0	õ	.5	2.75	4.5	6.5
	4T-4B	Ē		-	_		-					-		, ,	Ľ		-		
	5T-5B	1.5	10	25	50	65	65	2.5	3.0	4.5	75	120	185	6.0	12.5	35	65	110	165
	6T-6B	0	15	25	185	350	500	0	50	120	300	550	1200	15	25	65	375	850	1500
	7T-7B	25	35	45	60	75	100	.5	25	50	75	150	185	1.0	15	65	125	165	220
	8T-8B	-	-	-	-	-	-	-	-	_	_		-	-	_	_	_	_	_
	9T-9B	0	0	0	0	0	.5	0.	0	0	. 25	.5	. 75	0	0	0	0	. 25	. 75
	10T-10B	25	75	500	800	F	0	0	F	-	-	-	-	-	- 1	-	-	-	-
	11T-11B	-	<u>_</u> :	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

r

,

}

,

Sheet 6 of 7

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1000 200 2.5 0 1.55 0 1.55 0 1.25 0 1.55 0 1.55 0 1.55 0 1.75 0 1.75 0 1.75 0 3.5 0 3.5 0 2.0 1.75 2.1 2.5 2.50 1.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 2856 500 6 500 6 500 6 4.5 4.5 1.0 1.0 1.0 20 20	6 dc 600 80 600 80 1.5 2 1.5 2 1.5 1 1.5 1 1.5 1 1.5 2 55 2 55 2 2.5 3 45 3	2.5 2.5 1.75 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	10000 10000 10000 100	2 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 3024 500 1.0 75 40 1.0 75 40 1.0 75 40 0 0 0 0 35 35 35 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	40 40 40 40 40 40 40 40 40 40	3.5 2.0 25.0 25.0 25.0 25.0 25.0 25.0 25.	25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -
Accumulated 2688 Hours Volta, dc 2688 No. 200 400 50 800 0 0 0 1:0 1.5 0 0 0 1:0 1.5 0 0 .75 1.0 1.25 0 25 .5 1.0 1.25 1.5 3.5 10 25 5 25 1.5 3.5 10 25 0 0 0 0 0 0 0 0 0 0 0 0 25 1.5 1.0 1.25 2.5 25.5 65 115 135 160 0 0 0 0 0 0 25 65 115 135 160 0 26 0 0 0 0 0 0 25 55 15 135 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td><td>2000 1.00</td><td></td><td>6.0 6.0 11.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2</td></t<>							<u> </u>		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2000 1.00		6.0 6.0 11.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							<u>in</u>		12 N N			0000 6.0 1.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2
$ \begin{array}{c ccccc} Cond. No. & 200 & 400 & 500 & 600 & 800 \\ \hline 1T & 0 & 0 & 0 & 1:0 & 1.5 \\ 3T & 0 & 0 & .75 & 1:0 & 1.25 \\ 4T & 0 & .25 & .75 & 1:0 \\ 5T & 0 & .25 & .75 & 1:0 \\ 6T & .25 & 1.5 & 3.5 & 10 & 55 \\ 7T & .25 & 1.5 & 3.5 & 10 & 55 \\ 10T & 0 & 0 & 0 & 0 \\ 11T & 0 & 0 & 0 & 0 & 0 \\ 11T & 0 & 0 & 0 & 0 & 0 \\ 11T & 0 & 0 & 0 & 0 & 0 \\ 11T & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 10T & 0 & 0 & 0 & 0 & 0 \\ 10T & 0 & 0 & 0 & 0 & 0 \\ 10T & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 11B & 0 & 0 & 0 & 0 & 0 \\ 11B & 25 & 5.0 & 6.5 & 9.0 & 15 \\ 115 & 135 & 500 & 0 & 0 \\ 118 & 25 & 5.0 & 6.5 & 9.0 & 15 \\ 115 & 27-2B & 27 & 27-2B & 27 & 27 & 27 \\ 217-2B & 27 & 27 & 27 & 27 & 27 & 27 & 27 & $			φ				<u>ν</u>					0000 6.0 11.5 120 120 120 120 120 120 120 120 120 120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					000001000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33 75 35 00 35 00 30 00000000	1.0 1.5 1.5 1.0 1.0 1.0 1.0 1.0 0 40 2.0 0 2.0	3.5 3.5 3.5 3.5 3.5 3.5 3.5 5.5 5.5 5.5	6.0 2.5 2.5 1.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0000 1000 1000 1000 1000 1000 1000 100					00001100000	0 15 0 0 0 0 0 0 0 0 0	35	4000 11.00 15.00 18.00 1.00 1.00 1.00 1.00 1.00 1.00	2, 0 25,0 3, 5 2, 0 3, 5 2, 0 2, 0 2, 0 2, 0 2, 0 2, 0 2, 0 2, 0	2.5 1.5 120 120 4.0 70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0000 - 000 0 v v v v v v v v v v v v v v					0000110000	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	. 25 . 0 . 75 . 75 . 75 . 0 . 0 . 75 . 75 . 75 . 75 . 75 . 37 . 75 . 37 . 75 . 37 . 75 . 37 . 37 . 37 . 37 . 37 . 37 . 37 . 37	1.5 150 150 150 150 150 150 150 150 150	2.0 1.0 350 3.5 250 3.5 250 3.5 20 23,5 20 20 20 20 20 20 20 20 20 20 20 20 20	2.5 1.5 500 120 25 25 25 25 70 70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.					000071.000		1:0 1:0 40 12 12 12 0 0 0 35 35	1.0 150 65 18 65 2 0 0 18 1 0 0 150 150 150 150 150 150 150 150 1	1.0 250 95 95 25 20 20 20 20 20 20 20 20 25 25	1.5 500 120 4.0 70 70
							00007 1 2000	. 75 15 15 15 15 15 15 15 15 15 15 15 15 15	1.0 75 40 12 12 0 0 0 0 35 35	1.0 150 65 150 150 2.0 40 40	1.0 250 95 25 20 20 3.5 20 20 20 20 20 25 25	1.5 500 120 120 4.0 25 70 70
		2.0. 1.5. 1.5. 2.5. 2.5. 2.5. 2.5. 2.5. 2.5					0007 00	4 . 5 . 0 0 0 0 5 . 0	75 40 12 12 0 0 0 35 35	150 65 18 18 20 20 40	250 95 3,5 55 3,5 0 0 20 20 20 20 20 20 20 20 20 20 20 20	500 120 25 25 4.0 70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0,000,1 .0000,1 .0000,0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1				v 1 2 0 0 0	6 1 1 0 0 0	40 12 0 0 35 35	65 18 2.00 40	95 3,5000 5,5000	120 25 - 25 - 0 - 4.0 70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1					15- 10- 3.5 65		1 2 0 0 0	- 12 0 0 0 0 0 25 35	1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3, 5 0 0 0 1 3, 5 0 0 0 0 1	25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						15 0 65 65	75 0 0 0 0	4. 2.000	12 0 0 .75 35	18 2.0 40 .2 .0 .2	20 0 3,5 55	25 25 4.0 70 70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		000 v. r. v. V. v.				0 65500	0000	000	0 0 0 .75 .75 35	2 4000 1	ی بی د بر بی د	0 0 0 0 0 2 0 0 0 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 15 55				0 0 3,5 65	000	00	0 0 35 35	2 0 0 0 4 0 0	3,50 5,50	4 0 0 7 0 0
IB 0 1.25 1.26 0 </th <th></th> <th>. 5 55 55</th> <th> </th> <th></th> <th></th> <th>0 3,5 65</th> <th>00</th> <th>0</th> <th>0 .75 35</th> <th>2.0 40</th> <th>3.5 55</th> <th>4.0 70</th>		. 5 55 55				0 3,5 65	00	0	0 .75 35	2.0 40	3.5 55	4.0 70
2B 0 .25 5 1.0 1.25 3B 2.5 4.0 12 18 25 4B 25 65 115 135 160 5B 0 0 0 0 0 6B - - - - - 7B - - - - - 8B - - - - - 9B - - - - - 10B 0 0 0 0 0 11B .25 5.0 6.5 9.0 15	7.7	15 55				3.5 65	0	-	.75 35	2.0 40	3.5	4.0
3B 2.5 4.0 12 18 25 4B 25 65 115 135 160 2 5B 0 0 0 0 0 0 6B - - - - - 7B - - - - - 8B - - - - - 9B - - - - - 10B 0 0 0 0 0 11B .25 5.0 6.5 9.0 15		.15 55				65	1	. 25	35	40	55	70
4.B 25 65 115 135 160 3 5.B 0 0 0 0 0 0 6.B - - - - - - 7.B - - - - - - 8.B - - - - - - 9.B - - - - - - 10.B 0 0 0 0 0 0 11.B .25 5.0 6.5 9.0 15	250 15	55					15	20				
5B 0 0 0 0 0 6B - - - - - 7B - - - - - 8B - - - - - 9B - - - - - 10B 0 0 0 0 0 11B 0 0 0 0 0 trans 25 5.0 6.5 9.0 15						500	35	75	150	300	500	650
6B	0	0				5.	0	0	0	0	0	ŝ.
7B -	•	,	•	,	,	ı	•	•	•	1	1	ı
8B -	•	1	ŕ	,	•	,	1	ı	1	,	•	',
9B - 1 1 1	•	1	1	•	,	,	•	ı	1	1	•	ı
10B 0	•	1	'		1	1	,	•	•	1	'	ı
11B 0	0	0	0		0	0	0	0	0	0	0	0
IT-IB .25 5.0 6.5 9.0 15 to- 2T-2B 25 55 115 135 500 7	0	0	0	4	+	0	0	0	0	0	0	0
2T-2B 25 55 115 135 500		2.5	5.0	7.5	12	25	3.0	4.5	6.0	8.5	12	40
		50				200	35	45	85	120	350	500
0 .25 1.0 3.5 4.5	9.0 1.5	3.0			7.5	12	ŝ	6.5	7.5	8.5	=	15
4T-4B	,	1			,	ı	1	,	•	•	•	t
8.5 15 40 85		25	90	75 I	115	165	25	35	80	110	135	165
110 400 850	1350 50	85	6	•	,	•	1	ı	1	•	•	٠
3,5 25 60 85 180	350 5.0	50	75	160 2	240	290	3.5	35	65	150	320	400
1 1 1		1	,		1	1	•	•	•	1	1	I,
0 0 0 0 .5	1.5 0	0	0	0	0.1	1.5	0	0	•	0	1, 25	1.5
1	, ,	1	•	,		•	•	,	I,	1	•	ł
		ı	1	-	•	•		-	-	'	•	'

 $\mathbf{F} = \mathbf{F}$ ailure, leakage current in excess of 2000 micro-amperes B = Bottom conductor in slot (Frame side)

T = Top conductor in slot (Bore side)

Sheet <u>7</u> of <u>7</u>

							DC Lea	ikage, l	Micro-a	mperes				r				· · · · · · · · · · · · · · · · · · ·	·
Test Component	Posi-	Cycle			1	9		ļ											
tion, Measurem		Accum	ulated			~ 7													
tion, measuren	C116	Hours			31	72								F		17 - 14			<u>.</u>
				Volts				L	·····	Volts			1.000	200	T 100		s, dc 600	800	11000
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	117	0	0	0	1.5	4	8.5								1				1
Conductor-to-	2T	0	0	0	0	0	0								1				
Frame	3T	ō	Ō	. 25	.5	1.5	3,0		l l								ł	1	
	4 T	0	0	0	0	0	0												1
	5T	Ō	1.5	2	2.25	2.5	3.0												
	6T	6	25	40	85	350	500				1								1
	71	4.5	40	75	165	185	220				1					1			
	81			-	-	-	-					1							1
	91	. 25	6	15	35	45	65					1				1			
	10T	0	0	0	0	0	0		ł		1								
	111	Ō	0	o	0	0	0				[1			ļ				
	1B	0	0	0	0	0	0				1				1	1	l		
	2B	0	. 5	.6	.75	1.5	8						ł			1			
	3B	25	55	80	85	120	135							1					
	4B	85	165	F	-	-	-							•					
	5B	0	0	0	0	. 25	.5	ł				j		-		1			
	6B	-	-	-	-	-	- 1											1	
	7B	-	-	-	-	-	- 1												
	8B	-	-	-	-	-	-									1			
	9B	-	-`	- 1	-	-	-												
	10B	0	0	0	0	0	0		[1		}					
	11B	0	0	0	0	0	0	L								<u> </u>		L	
Armature	1T-1B	3.5	6	8.5	15	,25	55					1			1	1			
Conductor-to-	2T-2B	75	90	300	450	600	800	1											
Conductor	3T-3B	10	25	35	50	65	65	1						1					1
	4T-4B	-	-	-	1'-	-	-	i						1					
	5T-5B	25	55	75	250	850	1300												
	6T-6B	-	-	1 -	-	-	-	1						1	ſ	1			
1	7T-7B	6.5	40	85	185	350	600				1	1				1			
	8T-8B	- 1	-	-	-	-	-				1					1			
	9T-9B	0	0	0	.75	1.5	3.0	1							1	1			1
	10T-10B			-	-	-	-	I											
	11T-11E	- 1	-	-	-	-	-	1			1			<u> </u>	L	L	1	L	1

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

102

.

.

.

.

....

1 / 7

1 7. 11.

Sheet 1 of 2

١,

. ^

						DC Lea	kage, M	licro-an	nperes				
Test Componer	nt Posi-	Cycle			1					- 2			
tion, Measure		Accumu Hours	lated		168				_	336			
•				Volts	, dc					Volts	s, dc	· · · · · · · · · · · · · · · · · · ·	
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6т	1.25	2.25	2,75	3.5	4.75	6.5	o	.25	.5	.6	1.0	1.5
Conductor-to-	7T	.5	1.0	1.25	1.5	2.25	3,25	. 25	.75	1.0	1.25	2.0	4.5
Frame	8T	.5	1.0	1.5	1.75	2.5	3.75	.5	1.0	1.5	2.0	4.0	12.0
-	6B	F	-	- 1	-	-	-	-	-	-	-	-	-
	7B	. 25	1.0	1.25	1.6	2.25	3.0	.75	2.5	3.0	4.5	8.0	12.0
	8B	.75	1.5	1.75	2.25	3.0	4.25	.5	1.0	1.25	1.5	F	
	6T-6B	1.0	2.25	2.75	3.0	4.75	6.0	.5	1.0	1.25	1.5	3.0	4.5
Armature	7T-7B	.75	1.5	2.0	2.5	3.75	5,25	2.5	7.0	11.0	.16	85	F
Condto-Cond.	8T-8B	.75	1.6	2.0	2.5	3.5	5.0	.6	1.75	2.0	2.5	6.0	7.5

		[DC Lea	kage, M	licro-an	nperes				
Test Componen	nt Posi-	Cycle			3					4			
tion, Measure		Accumu Hours	lated		504					672	2		
				Volts	, dc					Volts	s, dc		
· · · · · · · · · · · · · · · · · · ·	Cond. No.	200	400	500	600	800	1000	200	400	500	600 ·	800	1000
Armature	6T	0	.5	. 75	1.0	1.75	0	.5	1.5	2.0	2.75	6.0	9.75
Conductor-to-	7T	1.0	2.75	4.5	6.5	18	F	50	150	F	-	-	-
Frame	8T	4.5	10	18	F	-	-	75	180	F	-	· -	-
· ·	6B	-	- 1	-	-	-	- 1	-	-	-	· -	-	-
	7B	.25	1.0	1.5	2.0	3.25	5.0	15	110	120	185	500	1300
	8B	1.0	3.5	15	ŕF	-	-	.5	.75	1.25			-
Armature	6T-6B	.6	1.5	1.65	2.0	. 3.0	5.0	.5	1.0	1.5	2.0	3.75	11.0
Condto-Cond.	7T-7B	3.0	8.5	15	30	35	45	55	F	ļ -	-	-	-
Condto-Cond.	8T-8B	.5	1.5	2.5	3.0	6.0	11.0	3.0	6.5	F	-		<u>-</u>

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet 2 of 2

						DC Lea	kage, N	licro-an	peres	- ·,		·····	
Test Componer	nt Posi-	Cycle			5					6			
tion, Measure	ement	Accumu Hours	lated		840					1008	3		
				Volts	s, dc					Volt	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T	0	. 25	.5	1.75	2.5	3.0	0	3.5	4.0	6.5	11	15
Conductor-to-	71	0	0	, 25	. 25	3.0	7.5	0	. 25	3.5	8.0	12	14
Frame	8T	. 25	.5	.5	2.0	9.0	F	. 25	10	35	F	-	-
	óВ	-	-	-	-	-	-	-	-	-	- 1	-	-
	7B	1.5	3.0	5.0	10.0	30	50	3.0	12	40	65	185	F
	8B	0	, 5	.5	.6	.75	F	.,⊉5	50	F	-	-	-
	6T-6B	. 25	.5	.5	.6	1.25	2.0	.5	1.0	1.25	1.5	3.0	' 3.5
Armature	7T-7B	. 25	. 25	.3	.3	.5	1.5	.5	.75	1.0	1.5	1.75	2.5
Condto-Cond.	8T-8B	F		-	-	-	-		-	-	- ·	-	-

Measurements discontinued after the 6th cycle

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XXV - STATORETTE ACCELERATED AGING - 275°C INSULATION RESISTANCE MEASURED AT AGING TEMPERATURE STATORETTE NO. 3

Sheet <u>1</u> of <u>1</u>

			In	sulation Resi	stance at 50	0 Vdc, ohms		
Test Componer	it Posi-	Cycle	0	1	2	3	4	5
tion, Measure		Accumulated Hours	0	168	336	504	672	840
A ==== = = = = = = = = = = = = = = = =	6T	nours	Infinity	200×10^{6}	-	200×10^{6}	200×10^6	-
Armature Conductor-to-	7T		Infinity	200×10^{6}	200×10^{6}	50×10^{6}	0	-
Frame	8T		Infinity	200 x 10 ⁰	200×10^{6}	0.05×10^{6}	0	-
	6B 7B		Infinity Infinity	200×10^{6}	100×10^{6}	200×10^{6}		<100 x ¹⁰⁶
	8B		Infinity	200×10^{6}	200×10^{6}	30×10^6	200×10^{6}	-
Armature	6T-6B		Infinity Infinity	$200 \times 10^{\circ}$ $200 \times 10^{\circ}$	200 x 10°	$200 \times 10^{\circ}$ 0.05 x 10 ⁶	$200 \times 10^{\circ}$	-
Condto-Cond.	7T-7B 8T-8B		Infinity	200×10^{6}	200×10^{6}	200×10^{6}	0	-

Measurements discontinued after the 5th cycle

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

1

1 0 4

1.1.100

P' = P'

Sheet	1	of	6
-------	---	----	---

							DC Lea	kage, 1	Micro-a	mperes						-			
Test Component	Desi	Cycle			1					2							3		
•		Accurr	ulated]	-					-					
tion, Measurem	ient	Hours			336					67	2		_			10			
				Volts	, dc					Volts						Volts			
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	0	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-		0	ŏ		0	0	0	0	0 0	0	0	o o	0	Ő	0	Ö	o	o o	0
Frame	3T	0	0	0		ů	Ö	or	0	ŏ	ŏ	ő	0	å	o o	o	0	0	
L'I dille	4T	0	0	0	0	0	0	0	0	0	· 0	ŏ	0	. 0	o o	0	0	0	
	5T	0	0	0	0	0	0	0	0	0	0	ŏ	. 25	0	Ö	0	o	0	.2
	6T	0	o	0	0	ŏ	ŏ	ŏ	0	o	o	ŏ	.2	0	o o	0	o	0	0
	7T	0	0	ŏ	ŏ	ŏ	0	0	0	0	o	o	ů	0	Ő	0	0	o	
	81	ŏ	o	ŏ	0	l õ	ŏ	0	0	ŏ	Ő	l o	. 25	0 0	ő	0	Ö	ŏ	.2
	91	ŏ	ŏ	ŏ	o .	ŏ	o o	Ŏ	ŏ	Ő	ŏ	0	0	õ	ŏ	ŏ	ŏ	Ő	0
	IOT	Ő	Ő	ŏ	ŏ	Ö	ŏ	Ō	ŏ	Ő	0	Ő	0	Ő	0	Ō	0	0	0
	11T	Ö	Ő	ŏ	ō	ō	o	l o	o	Ō	õ	Ő	ō	Ō	0	0	0	. 1500	F
	1B	0	0	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0	0	. 2
	2B	Ō	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0
	3B	0	0	0	0	0	0	0	· 0	0	0	0	0	0	0	0	0	0	6 0
	4B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9B	0	0	0	0	0	0	0	· 0	0	0	0	0	0	0	0	0	0	0
	10B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Armature	1T-1B	0	0	0	0	. O	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to	2T-2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor	3T-3B	0	0	0	0	0	0	0	0	0	. 0	0	. 25	0	0	0	0	0	0
	4T-4B	0	0	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0	0	C
	5T-5B	0	0	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0	0	C
	6T-6B	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0	C
	7T-7B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	C
	8T-8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9T-9B 10T-10B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	11T-11B	0	10	<u> </u>	<u>́0</u>	0	<u> </u>	0	0	0	0	0	. 25	0	U U	0	U	U	<u> </u>

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

.

. . .

Sheet 2 of 6

.

	•						DC Lea	kage, l	Micro-a	mperes									
		Cycle	T		4					5							6		
Test Component		Accum	ulated							1680						20	016		
tion, Measurem	ent	Hours			134	4													
				Volts	, dc					Volts						Volts		-	1.000
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	0	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T	o	ŏ	ŏ	o	ō	o	0	0	0	0	0	0	0	0	0	0	Ô	0
Frame	3T	o	ŏ	ŏ	ŏ	0	Ō	0	0	0	0	0	· 0	0	0	0	0	0	0
FIGINE	4T	ŏ	ŏ	Ő	o	o	Ō	0	0	0	0	0	0	0	0	0	0	0	0
	5T	ŏ	ŏ	ŏ	o	. 25	.5	0	0	0	0	0	0	0	0	0	. 25	. 5	1.0
	6T	ŏ	ŏ	o o	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
	71	l o	ō	Ō	0	0	. 25	0	0	0	0	. 25	.5	0	0	. 25	. 75	1.0	1.0
	81	Ő	ŏ	0	0	. 25	.5	0	0	0	0	.5	. 75	0	0	0	0	. 25	. 5
	91	l õ	Ō	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10T	ō	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	111	ŏ	Ō	o	ò	1550	F	0	0	0	0	1800	F	0	0	0	0	F	0
	1B	0	0	0	0	0	. 25	0	0	0	0	0	0	0	0	0	. 25	5	. 75
	2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.
	3B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.25
	4B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5B	0	0	0	0	0	0	0	0	0	0	0	0	ο,	0	0	0	, 25	.5
	6B	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	0	0	0	0
	7B	0	0	0	0	0	0	0	0	0	0	. 25	.5	0	0	0	0	0	0
	8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9B	0	0	l · ď	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
	10B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Armature	1T-1B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2T-2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor	3T-3B	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0	0	0	. 25
	4T-4B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5T-5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6T-6B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7T-7B	0	0	· 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8T-8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9T-9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10T-10E		0	0	0	0	0	0	0	0	0	0	0	0	0	.25	3	5	20
	11T-11E	8 0	1 0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

L

Sheet	3	of	6	

								-											
							DC Lea	kage,	Micro-a	mperes									
Test Component	Posi	Cycle			7			L		8							9		
tion, Measurem		Accum	nulated			-		1											
tion, Measurem	lent	Hours			235	2				2688	3					3	024		
				Volte	, dc			1		Volts	, dc					Volts	, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	1T	0	0	0	• 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	2 T	0	0	0	0	0	0	0	0	0	0	Í o	0	0	· 0	0	0	0	. 25
Frame	3 T	0	0	0	0	0	0	0	0	0	o	o	.5	0	Ó	o	Ō	0	.5
	4T	0	0	0	0	. 25	.5	0	0	0	0	.5	1.5	0	0	Ó	0	. 5	1.0
	5T	0	0	0	.0	.75	1.25	0	0	0	0	.6	1.5	0	0	· 0	. 25	.6	1.5
	6T	0	0	0	0	0	0	0	0	0	0	.5	.75	0	0	0	5	. 75	1.25
	7T	0	0	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0	0	.5
	8T	0	0	0	0	0	.5	0	0	0	.5	.75	1.0	0	0	0	.5	1.0	1.5
	9T	0	0	0	0	0	0	0	0	0	0	0	.5	O	0	0	0	0	. 25
	10T	0	0	0	0	0	0	0	0	0	0	.5	. 75	0	0	0	0	. 5	.6
	11T	0	0	0	. 25	F	0	0	0	Ð	-	-		-	- 1	-	-	. -	-
	1B	0	0	0	.5	.75	1.0	0	0	. 25	. 5	.75	1.5	0	0	.5	.6	. 75	Z. 0
	2B	0	0	0	0	0	.5	0	0	0	0	0	.5	0	0	0	0	0	. 25
	3B	0	0	0	0	. 25	.5	0	. 0	0	0	. 25	.5	0	0	0	0	. 25	.5
	4B	0.	0	0	0	0	0	0	0	0	0	.5	.6	0	0	0	0	.5	. 75
	5B	0	0	0	. 25	.5	.6	0	0	.5	. 75	1.0	1,25	0	0	. 25	1.0	1,75	2.5
	6B	0	0	0	0	0	0	0	0	0	0	.5	. 75	0	0	0	-0	0	. 75
	7B	0	25	.5	1.0	1.75	2.5	0	0	0	0	0	.25	. 75	1.0	1.5	2.0	3.5	6.0
	8B	0	0	0	. 25	.5	. 75	0	0	0	.5	. 75	1.0	0	.5	1.0	1.25	1.5	2.0
	9B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, 25
	10B	0	0	0	0	0	0	0	0	0	0	· 0	0	0	0	0	0	0	0
	11B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	· 0	0	0
Armature	1T-1B	0	0	0	0	. 25	.5	0	0	0	0	0	1.0	0	0	0	0	.5	. 75
Conductor-to-	2T-2B	0	0	. 25	.5	.75	1.5	0	0	.5	. 75	1.0	25	-0	0	1.0	1.25	1.5	2.0
Conductor	3T-3B	0	0	0	0	1.0	2.5	0	0	. 25	6	1.0	1.75	0	0	.5	. 75	1.0	1.25
	4T-4B	0	0	0	0	0	. 25	0	0	0	0	0	.75	0	0	0	0	. 25	1.0
	5T-5B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.5	.6
	6T-6B	0	0	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0	0	0
	7T-7B 8T-8B	0	0	0	0	0	0	0	0	0	0	0	. 25	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<i>,</i> 0	0
	9T-9B	0	0	0	0	0	0	0	0	0	0	0	.5	0	0	0	0	.5	.6
	10T-10B	-	25	,5	. 75	1,75	2,5	. 25	1.0	1.25	1.6	1.75	3.0	1.0	3.5	15	165	250	700
L	11T-11B	0	0_	0	0	0	. 75	0	0	0	0	.5	.6	0	0	0	0	. 25	.5

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

.

,

Sheet <u>4</u> of <u>6</u>

	<u> </u>						DC Lea	kage, N	licro-ar	nperes			1						
	ŀ	Cycle			10					11									
Test Component		Accum	ulated							3696						4032	1		
tion, Measurem		Hours	manou		3360											Volts	dc		
		Hours	. <u></u> !	Volts,	dc					Volts,	dc 600	800	1000	200	400	500	600	800	1000
	Cond. No.	200	400	500	600	800	1000	200	400	500	000						0	0	0
		0	0	0	· 0	0	ໍ່	0	0	0	0	0	0	0	0	0	ő	ŏ	0
Armature	1T	ő	0	ŏ	ŏ	ō	0	0	0	0	0	0	0	0	0	0	ŏ	o	.5
Conductor-to-	2T		0	ŏ	ŏ	ō	. 25	0	0	0	0	0	. 25	0	0	. 0	0	.5	.75
Frame	3T	0	0	o	ŏ	. 25	1.0	0	0	0	0,	. 25	1.0	0	0	1	, 25	.5	.8
	4T	0	0	o	õ	. 25	.5	0	0	0	0	25	.6	0	0	· 0	. 1, 5	2.5	4.0
	5T	0	-	o	. 75	.8	1.25	0	0	. 75	1.0	1.25	1.5	0	0	.8		.6	1.0
	6T	0	0	o	. 15	0	.6	0	0	0	0	.5	. 75	0	0	0	0	. 75	1.25
	71	0	-	0	. 25	.5	1.25	0	0	0	0	.75	1.5	0	0	0	.6	. 75	1.25
	8T	0	0	0	. 25	0	.5	Ō	0	0	0	0	.5	Ö	0	0	0	.5	1.0
	9T	0	0	0	0 0	ŏ	.6	0	0	0	0	0	. 75	0	0	0	0	. ,	1.0
	10T	0	0	U	0	-			-	-	-		-		-	-		1.0	1.5
	11T			. 25	. 25	.5	1.5	0	0	. 25	.3	.5	1.5	0	0	. 25	.5	1.0	
	1B	0	1 -	.25	. 25	0	0	0	0	0	0	0	0	0	0	0		.25	.5
	2B	0	0	0	0	ŏ	. 25	0	0	0	0	0	_ 25	0	0	0	0	.25	.6
	3B	0	0		0	ŏ	.5	0	0	0	0	0	.5	0	0	0	0	.25	.5
	4B	0	0	.25	.5	1.5	2.5	0	0	. 25	.75	1.5	2.0	0	0	0	0	. 25	1.25
	5B	0	0		.5	.75	1.5	o o	0	. 25	.5	.6	1.0	0	0	. 25	.6		1.25
	6B	0	0	0	1.75	2.5	15	1.0	2.5	3.5	3.5	4.5	16	1.5	3.0	6.0	25	150	3.0
	7B	1.0	1.25	1.25	1.75	1.5	1.5	0	. 25	.5	1.0	1.25	1.5	0	.5	.75	1.5	2.5	1,25
	8B	0	.5	1.0	1.25	1.5	.5	ŏ	0	0	0	. 25	1.6	0	0	0	. 25	.5	1,25
	9B	0	0	0	0	0		Ŏ	0	0	0	· 0	0	0	0	0	0	0	0
	10B	0	0	0	0	0	0	Ő	0	0	0	0	0	0	0	0	0	0	1.75
	11B	0	0	0	0	. 75	1.5		0	0	.6	. 75	1.6	0	0	0	.75	1.0	1.75
Armature	1T-1B	0	0		1.5	2.5	6.0	ŏ	ŏ	1.5	2.0	2.5	8.5	0	.5	1.5	3.0	6.0	25
Conductor-to-	2T-2B	0	0	1.25	.75	1.5	1.75	Ö	0	.5	. 75	5 1.6	1.75		. 25		1.5	2.5	.75
Conductor	3T-3B	0	0	.25	. /5	1.5	.75	ŏ	Ō	0	0	. 25	.75		0	0	0	.3	1
	4T-4B	0	0	0	.25	.75	1.5	l o	0	0	0	. 25	1.5	. 25	1	1.25	1.5	1.75	1
	5T-5B	0	0	0	(-	. /3	.25	ŏ	Ő	o o	.5	.6	.75		0	0	.6	.75	
1	6T-6B	0	0	0	0	0	.25	ŏ	l o	0	0	0	0	0	0	0	0	0	. 25
	7T-7B	0	0	0	0	0		l ő	ŏ	l o	0	0	0	0	0	0	. 0	0	0
	8T-8B	0	0	0	0	.75	1.5		ŏ	l ő	. z		1.75	i 0	0	0	.5	. 75	1.5
	9T-9B	0	0	0	.5	1.0	1		Ĭ			1	-	-	-	-	-	1 :	
	10T-10		15	35	E	- 5	.75		0	0	.2		. 75	5 0	0	0	.5	.75	1.0
	11T-11	в о	0	0	. 25	1.2	L. ()				- h								

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

i

Sheet 5 of 6

i

Cycle 13 13 14 Accumulated 4368 4704 Hours Volta, dc $\sqrt{10}$ $\sqrt{0}$								DC Lea	Leakage, N	Micro-amperes	nperes									-
Accumulated 4704 Hours 4704 4704 Hours $Volts, dc$ 800 1000 200 400 800 1000 200 800 1000 200 800 1000 200 800 1000 200 800 1000 200 800 1000 200 800 1000 200 800 1000 200 100 200 <	Test Component	Doei-	Cycle			13					1	_					1	5		
Volta, ic Volta, dc <	tion, Measurem	ent	Accum Hours	ulated		4368	.0				470	4					5040	0		
					Volts						Volts						Volts,	Ι.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cond. No.	200	400	500	600	800	1 000	200	400	500	600	800	1 000	200	400	500	600	800	1000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Armature	IT	0	0	0	0	0	. 25	0	0	0	0	0	.5	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Conductor-to-	2T	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0
4T 0 0 0 0 .75 1.0 1.0 0 .25 1.0 1.25 25 1.0 1.25 25 1.0 1.25 25 1.0 1.25 25 1.0 1.25 25 1.0 1.25 1.0 1.25 1.0 1.25 1.0 1.25 1.0 1.25 25 1.0 1.25 25 1.0 1.25 25 1.0 1.25 25 1.0 1.25 25 1.0 1.25 2.5 1.0 1.25 2.5 1.0 1.25 1.25 1.0 0 25 1.7 1.25 1.0 1.25 1.25 1.25 1.25 1.25 1.75 1.0 1.25 1.75 1.0 1.25 1.75 1.0 1.25 1.75 1.0 1.25 1.75 1.0 1.25 1.75 1.0 1.25 1.75 1.0 1.25 1.75 1.0 1.25 1.75 1.0 1.25 1.75	Frame	3T	0	0	0	0	. 25	.5	0	0	0	. 25	. 75	. 75	0	0	0	5	. 75	1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4T	0	0	0	0	. 25	1.0	0	0	. 25	s.	1.0	1.25	0	0	ŗ,	9.	1.5	2.0
		5 T	0	0	. 25	. 75	1.0	1.0	0	0	. 25	1.0	I.5	25	0	0	ŝ	1.0	15	35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6Т	0	0	1.0	3.5	4.0	11	0	. 25	1.0	3.5	6.0	15	0	۰ <u></u>	1.25	1.5	3.5	25
8T 0 0 :5 1.0 1.25 1.5 0 0 :25 1.5		7.7	0	0	0	ۍ ۲	1.5	2.5	0	0	0	0	1.0	3.0	0	0	0	0	. 75	2.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8T	0	0	<u>د</u>	1.0	1.25	1.5	0	0	. 25	1.5	3.0	4.5	0	0	s.	1.5	3.5	5.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9T	0	0	0	0	0	0	0	0	0	0	s.	. 75	0	0	0	0	. 65	1.0
11T - <th></th> <th>10T</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>. 75</th> <th>1.5</th> <th>0</th> <th>0</th> <th>¢</th> <th>. 25</th> <th>. 75</th> <th>1.5</th> <th>0</th> <th>0</th> <th>0</th> <th>.5</th> <th>. 75</th> <th>3.0</th>		10T	0	0	0	0	. 75	1.5	0	0	¢	. 25	. 75	1.5	0	0	0	.5	. 75	3.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11T		-	•	1		•	1		1	1	۱	•	•	•	•	ı	1	ı
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1B	0	0	•5	- 75	-		0		5.	1.5	1.75		0	-5	9.	1.5	3.0	4.5
3B 0 .25 .5 .75 1.5 0 1.5 2.5 5.0 \mathbb{F} 0 5B 0 .25 .6 .75 0 0 .25 .5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.5 2.0 4.0 65 185 3.5 6.0 2.5 1.5 3.5 6.0 2.5 1.5 3.5 6.0 2.5 1.5 3.75 4.5 1 3.5 6.0 2.5 3.75 4.5 1 3.5 6.0 2.5 3.75 4.5 1 3.75 4.5 1 3.75 4.5 1 3.75 4.5 1 3.75 4.5 1 3.75 4.5 1 3.75 4.5 1 3.75 4.5 1 3.75 4.5 1 3.75 4.5 1 3.75 4.5 1 3.75 4.5		2B	0	0	0	0		0	0		0	0	0	0	0	0	0		0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	3B	0	0	. 25	s.		1.5	0		2.5	50	ե	0	20	50	150	(F)	1	1
5B 0 0 $.25$ 5.0 25 1.5 2.5 1.0 1.5 3.5 6.0 65 185 7B 25 175 1.0 1.5 3.5 6.0 1.5 3.5 6.0 7B 25 175 1.0 1.5 3.5 4.0 1.0 1.5 3.5 6.0 8B 2.5 1.5 2.5 3.75 4.5 1.5 3.75 4.5 1.5 9B 0		4B	0	0	0	. 25		. 75	0		. 25	ŝ.	1.0	2.5	0	0	. 25		1.0	3.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	5B	0	0	. 25	5.0		35	. 25		20	40	65	185	25	50	65		185	350
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6B	0	°.	.75	1.0		3.5	0	. 25	1.0	1.5	3,5	6.0	0	· 2	1.5		4.0	8.5
8B .25 .5 1.5 2.5 3.5 4.0 1.0 1.25 3.5 3.75 4.5 1 9B 0 0 .5 .75 1.5 3.0 0 25 5 2.5 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 75 120 0 <th></th> <td>7B</td> <td>25</td> <td>175</td> <td>E</td> <td>•</td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td>,</td> <td>,</td> <td>·</td> <td>•</td> <td>,</td> <td>ı.</td> <td>•</td> <td>•</td> <td>•</td> <td>۱</td>		7B	25	175	E	•		•	•	•	,	,	·	•	,	ı.	•	•	•	۱
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		83	. 25	·.	1.5	2.5		4.0	1.0	1.0	1.25	3.5	3.75	4.5	1.25	1.5	3.0	6.5	15	25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9B	0	0	Ŀ.	. 75		3.0	0	. 25	. ء	2.5	15	25	0	ŝ,	3.0	25	35	55
IIB 0		10B	0	0	0	0		0	0	0	0	0	Ģ	0	0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11B	0	0	- 1	0		0	0	-	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Armature	1T-1B	0 0	0.		1.0	2.5	6.0 0	0 0	. 25	1.5	25	75	120	0	. 75	20	35	75	115
4T-4B 0 0 0 25 75 1.5 0 0 25 1.5	Conductor	87-12	25			67 22	ר דאו	75.0	•(F	00					1		1 1	1 1	1 1	
1.5 6.0 25 4.0 5.1 135 10 25 55 85 150 1 0 0 0 25 1.0 1.25 3.0 0 0 10 25 85 150 1 0 0 0 1.25 3.0 0 0 10 1.5 2.0 2.5 0 0 0 1.25 3.0 0 0 2.5 5 5 5 5 5 5 5 5 5 5 5 5 6 0 0 2.5 0 2.6 0 0 0 2.5 5 <td< th=""><th></th><th></th><th>ìc</th><th>; ;</th><th></th><th>2</th><th>75</th><th></th><th>.) <</th><th>c</th><th>36</th><th>U</th><th>4</th><th>ų I</th><th></th><th>C</th><th>u u</th><th>u ~</th><th>~</th><th>25</th></td<>			ìc	; ;		2	75		.) <	c	36	U	4	ų I		C	u u	u ~	~	25
0 0 25 1.0 1.25 3.0 0 0 1.5 2.0 2.5 0 0 0 0 10 1.25 3.0 0 0 2.5 2.0 2.5 0 0 0 0 0 0 2.5 2.0 2.5 5 0 0 0 0 0 0 0 2.5 5 5 5 0 0 0 0 0 0 0 0 0 0 5 1.5 1.75 0 0 25 .5 .75 1.5 0 25 .3 .5 1.75 1.75		85-15	, r	, , ,		, 4 , 6		135		, بر ا	; ;	ן ער ער יע	2.4	150	<u>י</u> י	ۍ د ۲			0.1	185
0 0		6T-6B				1.0	1.25	0.6		6	0.1	,	20			2		, v	, r , -	3.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7T-7B	0	0	0	0	. 25	. 25		0		0	. 25		0	0	0	. 25		. 75
0 0 .25 .5 .75 1.5 0 .25 .3 .5 1.75 10 - - - - - - - -		8T-8B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		9T-9B	0	0	. 25	ŝ	. 75	1.5	0	. 25	۳.	5	1.5	1.75	0	.5	.5	1.0	1.25	2.5
	+	10T-10B	1	ı	•	'	1	•	,	1	1	1	,	1	•	1	1	1	1	•
		11T-11B	0	0	. 25	. 75	1.0	3.0	0	. 25	. 75	ۍ س	4.5	6.0	0	ς.	. 75	l.5	8.5	10

B = Bottom conductor in slot (Frame side)
F = Failure, leakage current in excess of 2000 micro-amperes

T = Top conductor in slot (Bore side)

. .

1

.

.

Sheet	6	of	6	

							DC Lea	kage, N	licro-a	mperes									
	_ ·	Cycle	T		16					17.						1	8		
Test Component		Accum	ulated		c					5712			1			604	8		
tion, Measurem	lent	Hours			5376											Volts	de		
				Volts						Volts		800	1000	200	400	500	600	800	1000
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000						
Armature	11	0	0	0	· 0	0	·0 ·	0	0	0	0	0	0	0	0	0	0	0	0
Conductor-to-	ZT	ŏ	ő	0	0	0	0	0	0	0	0	0	0	0	. 0	0	U	0	0
Frame	3T	ŏ	Ô	0	.75	1.0	1,25	. 0	0	0	.5	1.25	1.6	0	0	0	. 25	1.5	20
Frame	4T	ŏ	õ	.75	1.5	3.5	2.5	0	0	. 75	1.0	2.5	3.0	0 '	0	.5	1.5	2.5	4.0
	5T	ŏ	ō	.6	1.5	25	185	0	0	.75	1.0	20	160	0	~0	0	1.0	25	180
	6T	ŏ	.5	1.5	2.0	4.5	25	0	.75	1.75	3.0	6.0	35	.5	.75	1.5	3.5	6.0	25
	7T	ŏ	0	0	0	.5	3.0	0	.5	1.0	1.5	2.5	4.5	0	. 25	1.0	1.65	2.5	3.5
	8T	ō	0	.75	1.75	4.0	6.5	0	0	.5	1.5	6.5	.5	0	0	.5	1.5	8.0	1.5
	91	o	0	0	0	.5	1.5	0	0	0	0	.5	1.75	0	0	0	0	1.0	1.5
	IOT	ō	0	0	0	1.0	6.5	0	0	0	0	1.0	8.0	0	0	0	0	1.5	
1	liT		_	-	-	-		-	-	-	-	-	-	-	-		- 3.0.	4.0	55
	1B	0	. 75	1.0	1.5	3.5	4.5	0	. 5	. 75	1.0	2.5	3.5	. 25	.75	1.5	3.0.	4.0	0
	2B	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ŭ		
	3B	-	-	-	-	-	-	-	· -	-	-	1		-	- 0	1.5	1.65	2.5	3.5
	4B	0 -	0	.5	.75	1.5	2.5	0	0	1.0	1.5	1.75	2.75	0	185	500	1.05 F	2.3	1
	5B	15	50	250	400	500	650	25	120	185	350	F	0	120	185	3.5	7.0	15	30
	6B	0	, 25	3.0	4,5	6.5	11	0	0	2.5	6.5	12	25	0	-	3.5	1.0		-
	7B	-	-	-	-	-	-	· -	-	<u> </u>	-	-	75	- 8	- 15	35	45	85	90
	8B	2.O	3.5 [·]	8.0	15	35	50	6.0	15	25	55	60	165	35	65	120	185	350	375
	9B	0	.75	3.5	65	85	120	30	65	100	115	135	165	0		120	0	0	. 25
	10B	0	0	0	0	0	0	0	0	0	0		0	0	ŏ	0	ŏ	0	0
	11B	0	0	0	0	0	0	0	0	25	40	65	110	. 25	.75	30	55	65	90
Armature	1T-1B	· 0	1.5	18	30	55	90	.5	2.0		40	- 05	-						-
Conductor-to-	2T-2B	-	-	-	-	- 1	- 1	-	-	- 1	-					l _	-	_	-
Conductor	3T-3B	-	-	-	-	-	-	-	-	.75	1.5	11	15	0	0	.85	1.5	8.0	12
	4T-4B	0	0	1.0	10	15	30 350	0 25	0 40	55	85	165	325	35	65	90	150	185	250
	5T-5B	15	25	50	75	185	4.5	25	40	95	2.5	6.0	9.0	l õ	0	0	3.5	7.5	12
	6T-6B	0	0	0	.75	3.0	4.5		0	Ö	1.5	2.0	2.25	ŏ	Ō	0	1.0	1.5	2.0
	7T-7B	0	0	0	.75	1.0			0	0	1.5	1 0	0	ŏ	0	0	0	0	0
	8T-8B	0	0	0		0	0		.5	2.0	2.5	3.5	6.0	ŏ	1.5	3.5	6	10	20
	9T-9B	<i></i> 0	.6	1.5	1.75	3.0	4.5	0		2.0	1.5	1	1.1				-	-	-
	10T-101		l·				15	.5	1.5	3.5	6.0	12	18	1.0	3.0	6.5	8.0	15	25
	11 T- 111	3 .25	1.0	4.0	8.5	15	1.5	1 . 2	1 1. 2	1 3.3	10.0	<u>+</u>							

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2000 micro-amperes

. *

Sheet	1	of	5
-------	---	----	---

						DC Lea	kage, M	licro-an	nperes				•
Test Componen	nt Posi-	Cycle			1		_			· 1			
tion, Measure	ement	Accumu Hours	lated	_	6					24			
				Volts	, dc					Volts	, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6т	5	12	15	18	. 22	27	6.5	13	15.5	23	30	35
Conductor-to-	7T	4	8	10	12	16	25	5.75	10.5.	13.5	16	25	32
Frame	8T	4.5	7.5	9.2	11	15.5	25	6.0	13	16	25	33	40
	6B	20	35	40	47	62	75	11.5	25	30	35	45	53
	7B	12	28	35	40	55	72	8	15.75	25	30	40	50
	8B	15	25	35	40	50	60	5	10	12.5	16	28	40
	6T-6B	2.5	5	6.5	8.0	10	13	3.75	7.0	10.5	11	14.5	20
Armature	7T-7B	2.5	4.5	5.75	7.0	10	13.75	3.5	7.5	9.0	10	14	23
Condto-Cond.	8T-8B	2.5	4.2	5.5	6.5	9	11.2	3	6	7.75	9	12.5	15.75

<u></u>						DC Lea	kage, M	licro-an	nperes				
Test Componer	nt Posi-	Cycle			1					1			
tion, Measure	ment	Accumu Hours	lated		48					72			
				Volts	, dc					Volt	s, dc	•	
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800_	1000
Armature	6Т	6	11	13.5	16	30	35	5.0	8.2	9.2	11.0	15.5	25
Conductor-to- 7T		5	9.2	11	14.5	25	30	4.0	7.5	8.5	10.5	15	20
Frame	8T	5.75	11	14	16.5	30	38	5.0	10.6	14.0	22.	30	38
	6B	8.5	16	25	30	38	50	8.5	14.8	25	28	`37	48
	7B	6.5	13.75	17	25	38	48	6.2	12.8	20	25	32	45
	8B	4.5	9.2	11.75	13.5	28	38	4.0	9.25	11	13.5	25	38
Armature	6T-6B	3.0	6.0	7.75	9	12.25	15.75	2.5	4.8	5.6	7.0	9.5	12
	7T-7B	3,25	6.25	8	9	12	15.5	3.0	5.0	5.8	7.2	9.2	12
Joing 10-0010.	8T-8B	2.75	5.5	6.5	7.75	10.5	9	2.0	5.0	5.3	7.5	10	13.75

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet	Z	of	5

1

	· · · · · · · · · · · · · · · · · · ·					DC Lea	kage, M	icro-am	peres				
Test Componer	nt Posi-	Cycle			1					1			
tion, Measure		Accumu Hours	lated		144					168	f		
				Volta	, dc					Volta	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T	3.5	5.5	6.0	7.5	10.75	14.5	3,5	6.0	6.5	7.5	11	15
Conductor-to-	7Т	3.5	5.0	6.25	7.0	10.5	14.0	3.0	5.75	6.5	7.5	10.5	14.75
Frame	8T	3.5	7.0	8.5	10.0	15.0	25.0	3.5	7.5	8.5	11.0	16.0	25
	6B	3.5	7.5	9.5	11.0	16.0	30.0	3.5	8.,0	9.75	12.0	18.0	30
	7B	3.0	7.0	10.75	12.0	18.0	30.0	3.5	6.5	11.0	11.75	17.0	25
	8B	2.5	4.5	6.25	7.75	11.5	15.5	2.75	5.0	6.75	7.5	12.0	13,75
	6T-6B	1.5	2.5	3.25	4.0	5.5	7.2	1.5	2.5	3.5	4.0	5.0	6.75
Armature	7T-7B	1.5	2.5	3.5	4.0	5.5	7.75	1.5	2.75	⁻ 3.75	4.5	5.5	8.0
Condto-Cond.	8T-8B	1.5	3.0	3.75	4.5	6.0	8.25	1.75	3.5	3.8	4.25	5.75	7.75

						DC Lea	kage, M	icro-am	peres				
Test Componen	nt Posi-	Cycle			1			-		1			
tion, Measure		Accumul Hours	lated		192					216	-		
				Volts	, dc					Volts	, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600.	800	1000
Armature	6T	2.75	3.5	4.25	5.0	7.25	10,25	1.5	3.0	4.0	4.5	6.75	9.5
Conductor-to-	71	1.75	3.5	4.25	5.25	7.5	10.0	2.0	3.0	3.75	5.0	6.75	9.0
Frame	8T	2.5	5	6.25	8.0	11.0	15.0	2.0	4.5	5.5·	7.0	10	12.5
	6B	3.5	7.0	8.5	12	² 22	38	3.0	6.0	7.25	9.5	18	25
	7B	3.0	7.25	9.0	11.25	15	38	2.75	5.0	6.75	8,5	13	25
	8B .	2.0	4.5	⁄5.75	7.5	10	- 14	1,75	3,75	4.75	6.0	8.75	11.75
Armature	6T-6B	1.0	2.25	3.0	3.75	5.0	6.75	1.5	2.0	2.5	3.25	4.0	5.25
Armature	7T-7B	1.0	2.25	3.0	3.8	5.25	6.75	1.0	2.0	3.25	4.25	5.5	6.0
Court - 00- Court	8T-8B	1.0	2.25	3.0	4.0	5.25	7.0	1.0	2.0	2,75	3.50	4.75	6.0

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

F = Failure, leakage current in excess of 2,000 micro-amperes

Sheet <u>3</u> of <u>5</u>

	est Component Posi- Cycle					DC Lea	kage, M	icro-am	peres				
Test Componen	nt Posi-	Cycle			1					1			
tion, Measur	ement	Accumu Hours	lated		240					317	2		
				Volts	, dc					Volts	, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T	1.25	2.75	3.5	4.75	6.25	8.5	1.0	2,5	3.0	4.5	6.0	7.5
Conductor-to	7T	1.5	2.5	3.5	4.0	6.5	8.5	1.5	2.5	3.0	3.5	3.75	5.5
Frame	8T	1.5	4.0	5.25	6.5	9.0	11.5	1.5	2.75	3.0	3.75	6.0	6.5
	6B	2.5	5.0	6.25	7.75	13.75	24	2.5	4.5	4.75	5.5	7.75	10.0
	7B	2.5	4.75	6.0	7.0	12.25	25	2.0	4.25	5,25	6.0	7.25	8.25
	8B	2.0	3.25	4.0	5.25	7.75	10	1.75	2.75	3.75	5.0	6.5	7.0
	6T-6B	1.0	2.0	2.5	2.75	4.0	5.5	1.0	1.75	2.5	3.0	3.75	5.0
Armature	7T-7B	1.5	1.75	2.5	3.0	4.0	5.25	1.25	1.5	2.25	2.75	3.5	4.75
Condto-Cond.	8T-8B	1.5	2.0	2.75	3.0	4.25	5.75	1.5	1.75	2,5	2.75	3.5	4.75

						DC Lea	kage, M	icro-am	peres				
Test Componer	nt Posi-	Cycle			1					2			
tion, Measure	ment	Accumu Hours	lated		336					432			
				Volts	, dc					Volts	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6Т	1.0	1.75	2.0	2,75	3.75	5.0	0	0	0	0	.5	. 5'
Conductor-to-	7T	1.5	1.75	2.75	3.0	4.0	5.5	0	0	0	.5	. 75	1.0
Frame	8T	1.5	2.5	3.25	4.0	5.75	7.5	.5	8	45	200	F	-
	6B	1.0	2.25	3.25	4.0	5.25	7.5	. 25	.5	.5	.5	•. 75	1.0
	7B	1.75	2.5	3.25	4.25	5.25	7.5	0	0	0	0	.5	.75
	8B	1.0	2.25	2.75	3,5	4.75	6.0	0	0	0	.5	. 75	.75
Armature	6T-6B	. 75	1.5	2.0	2,25	2.75	3.75	0	0	.5	.75	1.0	1.5
Armature (7 T -7B	1.0	1.25	2.5	3.0	3.5	3.75	0	0	0	0	.5	.5
0011010-00110.	8T-8B	.75	1.5	2.0	2.5	3.5	4.75	0	0	0	0	. 25	.5

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet 4 of 5

						DC Lea	kage, M	icro-an	ipe res				
Test Componer	nt Posi-	Cycle	1		2					2			
tion, Measure		Accumu Hours	lated		600					67	2		
				Volts	, dc					Volts	, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T	0	0	0	1.0	1.5	3.25	0	0	0	0	. 25	.5
Conductor-to-	7T	0	0	. 25	.5	.5	8.0	0	0	0	0	. 25	.5
Frame	8T	6.0	11	16	30	65	F	0	0	. 25	.6	12	F
	6B	0	0	0	0	0	.5	0	0	0	0	. 25	.5
	7B	0	.5	1	8.5	F	-	0	0	0	0	. 25	.5
	8B	0	0	0	0	.5	. 75	0	0	0	0	0	.5
	6T-6B	0	0	0	0	.5	.75	0	0	. 25	.25	. 25	. 25
Armature	7T-7B	0	0	0	0	0	.5	0	0	0	0	0	. 25
Condto-Cond.	8T-8B	0	0	0	0	0	.5	0	0	0	0	0	. 25

						DC Lea	kage, M	icro-am	регея				
Test Componer	nt Posi-	Cycle			3					3			
tion, Measure		Accumu Hours	lated		902					1008			
				Volts	, dc					Volts	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6Т	0	0	.5	1.0	1.25	2.5	0	.5	.5	.5	1.5	4.0
Conductor-to-	71	0	.5	.75	1.0	1.5	2.75	0	.6	.75	2.5	2.75	3.0
Frame	8T	0	.5	.6	1.0	1.5	3.0	. 25	. 5	.6	.75	1.5	3.0
	6B	0	0	0	<u>0</u>	0	. 25	0	0	0	0	0	. 25
	7B	0	0	0	0	0	.5	0	0	0	0	0	.5
	8B	0	0	0	0	0	.5	0	0	0	0	0	.5
• •	6T-6B	0	0	0	0	0	0	0	0	0	0	0	0
Condto-Cond.	7T-7B	F	-	-	-	-	-	-	-	-	-	-	- !
	8T-8B	0	0	0	0	0	0	0	0	0	0	0 .	0

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

Sheet	5	of	5

						DC Lea	kage, M	icro-am	peres				
Test Componer	nt Posi-	Cycle			4					5			
tion, Measure		Accumu Hours	lated		1344					1680)		
		110 0-0	Volts, dc							Volts	s, dc		
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T	0	0	0	. 25	. 25	.5	0	0	0	. 25	.5	.5
Conductor-to-	7T	0	0	0	0	0	0	0	0	0	. 25	.5	.75
Frame	8T	0	. 25	.5	.75	1.5	4.5	. 25	.5	.75	1.0	2.0	4.25
	6B	0	0	0	0	.5	.75	0	0	. 25	. 25	.5	1.0
	7B	0	0	. 25	.5	.5	.75	0	. 25	.5	.6	.75	1.25
	8B	0	0	0	0	0	0	0	0	.25	. 25	.5	.6
	6T-6B	0	0	0	0	0	0	0	F	-`	-	-	-
Armature Condto-Cond	7T-7B	- 0	- 0	ō	- 0	- 0	0	<u> </u>	-0	0	ō	ō	0

						DC Leal	cage, M	licro-am	peres				
Test Componer	nt Posi-	Cycle			6					7			
tion, Measuren	ment	Accumul Hours	lated		2016					2352			
•		110 01 0		Volts	, dc					Volts			11000
	Cond. No.	200	400	500	600	800	1000	200	400	500	600	800	1000
Armature	6T	0	.5	. 75	1.25	4.0	6.5	0	0	0	. 25	.5	.75
Conductor-to-	71	.6	1.5	2.0	3.0	4.25	7.0	0	. 25	. 25	. 25	.5	1.0
Frame	8T	.5	1.5	1.75	3.0	4.75	6.5	0	.5	.6	. 75	1.0	1.75
1.0	6B	0	.25	.6	1.0	2.0	2.0	0	. 0	0	0	0	. 25
	7B	0	.25	.4	.5	1.0	2.0	0	0	0	0	0	0
	8B	0	.25	. 25	. 25	.4	. 6	0	0	0	0	0	0
	6T-6B	-	-	-	-	-	-	-	-	- '	-	-	-
Armature	77-78	- 1	-	-	-	-	-	-	- '	-	-	- 1.0	1.5
Condto-Cond.	8T-8B	.25	.5	.75	1.5	10	25	0	0	0	<u> </u>	<u> </u>	<u> </u>

T = Top conductor in slot (Bore side) B = Bottom conductor in slot (Frame side) Measurements discontinued after the 7th cycle

TABLE XXVIII - STATORETTE ACCELERATED AGING - 250°C INSULATION RESISTANCE MEASURED AT AGING TEMPERATURE STATORETTE NO. 2

ļ,

Sheet	1	of	2

	· · · · · · · · · · · · · · · · · · ·		Ins	ulation Resis	tance at 500	Vdc, ohms		
Test Componen		Cycle	0	1	1	1	l	1
tion, Measure	ment Cond. Na	Accumulated Hours	0	6	24	48	72	144
Armature	6T		Infinity	$50 \times 10^{6}_{6}$	32×10^{6}	40×10^{6}	75×10^{6}	125×10^{6}
Conductor-to-	7T		Infinity	$50 \times 10^{6}_{6}$	32×10^{6}	40×10^{6}	70×10^{6}	125×10^{6}
Frame	8T		Infinity	$50 \times 10^{6}_{6}$	$28 \times 10^{\circ}$	32×10^{6}	35×10^{6}	$75 \times 10^{\circ}$
	6B		Infinity	$16 \times 10^{6}_{4}$	18×10^{6}	20×10^{6}	28×10^{6}	50×10^{6}
	7B		Infinity	18×10^{6}	18×10^{6}	22×10^{6}	26×10^{6}	50×10^{6}
	8B		Infinity	45×10^{6}	$30 \times 10^{\circ}$	38×10^{6}	$40 \times 10^{\circ}$	85 x 10 ⁰
	6T-6B		Infinity	85×10^{6}	50×10^{6}	75×10^{6}	100×10^{6}	200×10^{6}
Armature	7T-7B		Infinity	85×10^{6}	50×10^{6}	75×10^{6}	100×10^{6}	200×10^{6}
Condto-Cond.	8T-8B		Infinity	100×10^{6}	75×10^{6}	90×10^{6}	90×10^{6}	200×10^{6}

			Ins	sulation Resi	stance at 500	Vdc, ohms		
Test Componen		Cycle	1	1	1	11	1	1
tion, Measurer	nent Cond. No.	Accumulated Hours	168	192	216	240	312	336
Armature	6T		$.30 \times 10^{6}_{6}$	185×10^{6}	200×10^{6}	200×10^{6}	200×10^{6}	200×10^{6}
Conductor-to- Frame	7T 8T		$25 \times 10^{\circ}$ 80 x 10 ⁶	185×10^{6} 85 x 10 ⁶	200×10^{6} 125 x 10 ⁶	200×10^{6} 150 x 10 ⁶	200×10^{6} 200×10^{6}	200×10^{6} 200×10^{6}
	6B		$55 \times 10^{6}_{4}$	50×10^{6}	85×10^{6}	100×10^{6}	175×10^{6}	200×10^{6}
	7B 8B	•	$55 \times 10^{\circ}$ 80 x 10 ⁶	50×10^{6} 100 x 10 ⁶	85×10^{6} 150 x 10 ⁶	100×10^{6} 175×10^{6}	200×10^{6} 185 x 10 ⁶	200×10^{6} 200 x 10 ⁶
Armature	6T-6B 7T-7B	Ĩ	200×10^{6} 200×10^{6}	200×10^{6} 200×10^{6}	200×10^{6} 200 x 10 ⁶	200×10^{6} 200×10^{6}	200×10^{6} 200×10^{6}	Infinity Infinity
Condto-Cond.			200×10^6	200×10^{6}	200×10^6	200×10^{6}	200×10^{6}	200×10^{6}

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XXVIII - STATORETTE ACCELERATED AGING - 250°C INSULATION RESISTANCE MEASURED AT AGING TEMPERATURE STATORETTE NO. 2

Sheet <u>2</u> of <u>2</u>

			Ins	ulation Resi	stance at 500	Vdc, ohms		
Armature 6T conductor-to- 7T Trame 8T 6B 7B 8B Armature 6T-6B 7T-7B	t Posi-	Cycle	2	2	2	3	3	4
	ment Cond. No.	Accumulated Hours	432	500	672	902	1008	1 3 4 4
Armature	6т		Infinity	Infinity	Infinity	Infinity	Infinity	Infinity
Conductor-to-	7T		Infinity	Infinity	Infinity	Infinity	Infinity	Infinity
Frame	8T		0.05×10^{6}	200×10^{6}	200×10^{6}	Infinity	Infinity	Infinity
_	6B		Infinity	Infinity	Infinity	Infinity	Infinity	Infinity
	7B		Infinity	Infinity	Infinity	Infinity	Infinity	Infinity
	8B		Infinity	Infinity	Infinity	Infinity	Infinity	Infinity
• · ·	6T-6B		Infinity	Infinity	Infinity	Infinity	Infinity	Infinity
			Infinity	Infinity	Infinity	0	0	0
Condto-Cond.	8T-8B		Infinity	Infinity	Infinity	Infinity	Infinity	Infinity

			In	sulation Resi	stance at 50	00 vdc, ohms
Test Componention, Measurem		Cycle	5	6	7	
	Cond. No.	Accumulated Hours	1680	2016	2352	
Armature	6T		-	- ,	-	Measurements Discontinued
Conductor-to-	7T		-	200×10^{6}	-	after the 7th cycle
Conductor-to- Frame	8T		-	200×106	-	alter the rul cycle
	6B		-	-	-	
	7B		-	-	-	
	8B		-	-	-	
A	6T-6B		0	0	0	
Armature	7T-7B		0	0	0	
Condto-Cond.	8T-8B		-	-	-	

T = Top conductor in slot (Bore side)

B = Bottom conductor in slot (Frame side)

TABLE XXIX - STATORETTE ACCELERATED AGING - 250°C CORONA ONSET VOLTAGE AT ROOM TEMPERATURE AND SIMULATED ALTITUDE AFTER AGING AT 250°C STATORETTE NO. 2

Ļ

	Shee	t	1	of	1
--	------	---	---	----	---

		1		Corona Onset Vol	tage, Volts AC RMS		
Test Componer	nt Posi-	Cycle	1		2	4	
tion, Measure		Accumulated Hours	336		672	134	14
		Pressu	re at 23°C	Pressut	e at 23°C	Pressu	re at 23°C
	Cond. No.	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *
	6т	700**	450	700**	500	700**	500
Armature	71	700**	400	700**	400	700**	450
Conductor-to-	8T	700**	450	7.00**	375	650	400
Frame	6B	350	200	400	200	400	200
	7B	450	350	550	350	500	350
	8B	550	300	600	350	600	300
Armature	6T-6B	700**	400	650	350	650	300
Condto-Cond.	7T-7B	600	350	700**	350	700**	300
	8T-8B	700**	450	700**	450	700**	4.00

-		1	2	Corona Onset Vo	oltage, Volts AC RMS		
Test Componen	nt Posi-	Cycle	6				
tion, Measure		Accumu lated Hours	2016			_	
		Pres	sure at 23°C	Pressu	re at 23°C	Pressure	at 23°C
	Cond. No	. Sea Level	4.5 TORR *	Sea Level	4.5 TORR *	Sea Level	4.5 TORR *
	6T	700**	450				
Armature	7T	700**	450				
Conductor-to-	8T	600	250		Ĩ		
rame	6B	350	200		- Measurements disc	continued after 6th cycle -	
	7B	.450	300			· · · · · · · · · · · · · · · · · · ·	
	8B ·	550	200				
Armature	6T-6B	650	200				
ond to - Cond.	7T-7B	700**	300	1	· · · ·		
	8T-8B	700**	350	<u> </u>			

- * Equivalent pressure for 100,000 feet at 250°C
- ** 700 volt AC application limit to prevent possible insulation damage; corona was not observed.
 - T = Top conductor in slot (Bore side)
 - **B** = Bottom conductor in slot (Frame side)

ч	Accu	Accumulated							Agi	Aging Time - Hours	- Hours						
011	Fa	Failures		350°C	v		32!	325°C		90	°c		275°C	U		250°C	0
			L°I	To Failure		₽ ₽	To Failure		To I	To Fallure	•	ĥ	To Failure		To Failure	allare	
a	Ŷ	~	No.	Hre	Accumulated	No.	Hre	Accumulated	ź	Hrs.	Accompleted	Ż	HT8	Accumulated	ġ		Accumulated
	-	8										-	2184	2184	1	2688	2688
	2	18.18															
эt	-	27.27	•	52	156				~	1428	4284						
u	•	36.36	•			4	312	1248	-	1496	1496					-	
2.	u u	45.45	•	22	~		1	121	-	1004	1004	_			_		
1-	•		• •	83	271	-	Ŗ		•								
01	0		-	5	<u></u>	(
- •	~	63.64	-	89	3	N	408	816	N	20402	4080						
P.	æ	72.73										_			<u> </u>		
102	•	81.82	~	80	160	~	456	216									
5	10	90.90														_	
lo,	11	100.00	2	92	184	2	504	1 008							_	-	
L	Total Hours	bure			744			4320			11,764+			2184 +			2688+
	Total No	Total No. Failures	11			11			~			-			-		
	Avg. Hre	Hre to Failure		67.63	Ē		392.73			1680.5+			2184+			2688 +	
Γ		60 6				-	192	192		1 088	1088	1	504	504	-	4368	4368
1		18.18				,						-	1680	1680		5040	5040
ru	m	27.27				N	216	432	2	1156	2312	1	2016	2016	-	6048	6048
	•	*				-	288	288	1	1224	1224	T	2352	2352			
E.	• •	45 45					312	312	-	1428	1428		3192	3192			
- 03		1	Y	5	312	,				1496	1496	,		-			
1-	D 8				77		226	473		22.71	1427					-	
P	- (• •	33													
20	50	27.13	-	8	5			0.04 4	-	00.1	80.1						
2	•	81.82				-	200	200						_			
uic	2:	90.90	N	22	¥		429	429	_							-	
211	1	100.00	-	80	80		846	840							-		
٥đ	Total Hours	ours			656			4200			10,948+			9744 +			15,456+
	Total No.		=	:		=	C0 100		×0	. 3 9761		\$	1048 -		- -	5152.4	
	Avg. Hre	8		50. fc			70.100										
	-	60-6 1		2	1	,	;		1			,				3360	3360
	N	18.18	N .	<u> </u>	2	N .	:	887		818	1032	ч,		0107			0010
۰F	m	27.27		48	\$	-	168	168	-	1020	1020	-	2184	ZI 87	N	4704	9408
αο	*	36,36				-	192	261				-	2652	2962			
o)	ŝ	45.45							(-	9582	2856			
u	•	2.2				1			n	9611	3468	_					
011	~	63.64			-	m	216	8 7 5	,								
og	80	72.73					į	-	N	1224	2448	_					
-0	•	81.82				2	\$	825		2621	2621					_	
n) - (9	90.90		52 /	1 92	,	200	274		1428	1428						
10	1	100.00	-	ŝ	00		ş	010			102 11	1				_	1 0 7 2 1 1
I	Total Hours		:		540	:		2480	:		12,784+			+ 2016	•		12,766 +
	Total No	Total No. Failures	;	:		11			11			n			n		
1	AVE. HI	Avg. Hrs to Fallure		49.04	5		CE . C27			1102.24			1001.0+			1 0.07	

TABLE XXX - AGING TIME TO FAILURE SUMMARY Conductor Failures, All Positions

TABLE XXXI - AGING TIME TO FAILURE SUMMARY

.

Conductor Failures, Combined; Top to Bottom, Top to Frame, Bottom to Frame

Acc	mulated								ging Tim	e - Hours	\$					
F	llures		350	'C		32	5°C			00°C			5°C	I		0°C
		To F	allure ·	1		Failure		To	Sailure			Failure			Failure	1
No.	- 5	No.	Hrs	Accumulated	No.	Hrs	Accumulated	No,	Hrs	Accumulated	No.	· Hrs	Accumulated	No.	Hrs	Accumulated
1 .	3.03										1	504	504	1	2688	2688
2	6.06	2	36	72	2	144	288	2	816	1632			4	1	3360	3360
3	9,09	1	48	48	ī	168	168	1	1020	1020	2	1008	2016	1	4368	4368
Ā	12.1	_				1		1	1068	1088	1.1	1680	1680			
5	15,1				2	192	384				1	2016	2016	2	4704	9408
6	18.2			1							· ·			1	5040	5040
7	21.2					1			•		2	2184	4368	1	6048	6048
8	24.2				1	1									1	
9	27.3							5	1156	5780	2	2352	4704		1	
10	30.3			1	5	216	1080	[1	2856	2856	-	Test	
11	33, 3				1			l l			1	3192	3192		T	erminated
12	36.4				2	264	528	3	1244	3672	-					
13	39.4					1		1	1292	1292						
14	42.4										1	Test				
15	45.4				3	288	864				ł	T	rminated			1
16	48.5				1											
17	51.5			1		ł										
18	54.5]	9	5	1428	7140						
19	57.6	16	52	832												
20	60.6				5	312	1560		1496	4488						
21	63.6						1	3	··· • ·	1632						
22	66.7	I .		224	3	336	1008		1632- 1768	1768	j			i		
23	69.7	4	56	LCA	3	330	1008		1904	1768	1					
24	72.7				2		816	•	1905	1904						
25	75.8	2	64 68	128	1	408		l _								
26	78.9	1	00	68 ·		1.00	012	2	2940	4080						
27	81.8	2	72	144	Z	456	912.									
28	84.8 87.9	'		1	1	480	480				ł			ł .		
29 30	87.9 90.9				2	504	1006				1					
	93.9	3	80	240	l ĩ	552	552	1	Test							
31 32	93.9 96.9	, '	1 ³⁰ -		li	624	624			rminated						
33	100.0	z	92	184	li	648	648	1								
		<u> </u>		L	+	1				35.40(21, 336 +			30.912+
Total Ho				1,940			11,000	~		35, 496 +	I	,	41, 330 +	7		
Total No	. Failures	33			33			26	÷ .		11			l '		
Avg. Hr	s to Fallure		58,78			333, 33		1	1,365.2	+		1.939.6			4,416.0	D+

121

		Conductor	Final Failure			Actual			Predicted *	
Statorette	•c	Measurement	or Test			3 Sigm	Limits	1	3 Sign	a Limits
No.	Aging	Positions	Completion	First	Mean	Lower	Upper	Mean	Lower	Upper
		a) Top-Frame	92	52	67.63	22.3	112.9			_
		b) Bottom-Frame	80	52	59.64	23.3	95.9	-	1 -	-
1	350	c) Top-Bottom	56	36	49.09	35.9	62.1	-	-	-
		d) Combined, (à), (b), (c)	92	36	58.78	18.8	102.8		1]	
			,2		50.10	10.0	102.0	_		
		a) Top-Frame	504	312	392.73	170.8	614.6	_	-	-
6	325	b) Bottom-Frame	648	192	381.82	-0-	857.9	-	-	-
0	363	c) Top-Bottom	288	144	225,45	72.1	378.7	-	-	-
:		d) Combined, (a), (b), (c)	648	144	333.33	-0-	730.5	-	-	-
		a) Top-Frame	2176+	1428	-	-	-	1870	555	6300
		b) Bottom-Frame	2176+	1088	-	-	-	1460	635	3800
4	300	c) Top-Bottom	1496	816	-	-	_	1160	770	1720
		d) Combined, (a), (b), (c)	2176+	816	-	-	-	1520	900	2580
		a) . Top-Frame	3192+	2184	-	-	_	<u> </u>		
•		b) Bottom-Frame	3192+	504	-		-	4200	100	200.00
3	275	c) Top-Bottom	3192+	1008	- 1	- 1	-	4500	75	300.00
		d) Combined, (a), (b), (c)	3192+	504	-	-	-	7900	76	840,00
		a) Top-Frame	6048+	2688		<u> </u>	<u> </u>			
	1	b) Bottom-Frame	6048+	4368		-	_	8250	1800	38,00
2	250	c) Top-Bottom	6048+	3360	1	l _	1 2	6300	1540	25,00
	1	d) Combined, (a), (b), (c)	6048+	2688	I .	1 _		30,000	300	2, 800, 00

TABLE XXXII - AGING TIME TO FAILURE AND FAILURE PREDICTION SUMMARY CONDUCTOR FAILURES, ALL CONDUCTOR MEASUREMENT POSITIONS

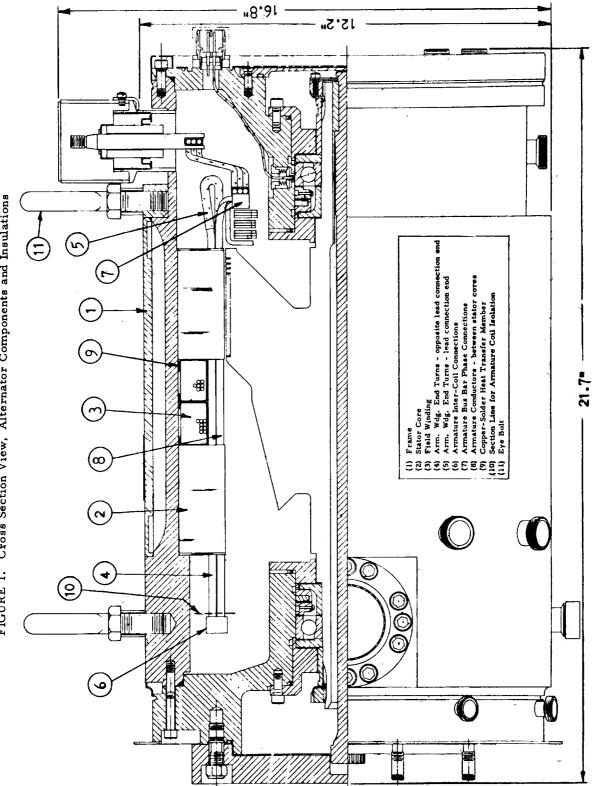

* - Read-out from Lognormal Plot of Failures, Figures 18, 19 and 20

TABLE XXXIII - STATORETTE COLL FAILURE LOCATION, 350°C AND 325°C TESTS

.

		Stato	rette No. 1 - 3						Stato	rette No. 6 - 3			
			Failure L							Failure L			
Conductor	Slot Po			Core Po			Conductor	Slot Po		<u> </u>		Position Middle	F.C.A.
No.	Bottom	Тор	C. E.	O.C.E.	Middle	F.C.A.	No.	Bottom	Тор	C.E.	0.C.E.	Middle	F.C.A.
3T-Frame		x			x		2T-Frame		x			x x x x	
5T-Frame		x]		x x		6T-Frame		x			x	
7T-Frame					-	x	8T-Frame		x		1	x	
9T-Frame		x	x				10T-Frame					x	
10T-Frame			i		x x		11T-Frame		X X	x			
11T-Frame		x x			х								
3B-Frame	x				x		2B-Frame	x			x		
5B-Frame	x			x			6B-Frame]		x
7B-Frame	х	1			x		8B-Frame	x				x x x	
9B-Frame	х				x		10B-Frame	x				x	
10B-Frame	x	1	х				11B-Frame	x				x	
11B-Frame	х			x									
3T-3B					x		2T-2B					x	
5T-5B					x		6T-6B		-			x	
7T-7B					x		8T-8B		1			x x x	
9T-9B					x		10T-10B					x	
10T-10B					x x		11T-11B					x	
11T-11B					x								
%/Position	6/6 = 100	5/6 = 83.3	2/18 = 11	2/18 = 11	13/18 = 72.5	1/18 = 5.5		5/6 = 83.3	6/6 = 100	1/15 = 6,60	1/15 = 6.66	12/15 = 80.02	1/15 = 6.66
% of Total			2/18 = 11	2/18 = 11	13/18 = 72.5	1/18 = 5.5		<u> </u>		1/15 = 6.66	1/15 = 6.66	12/15 = 80.02	1/15 = 6,66
									+		<u> </u>		
% of Total, 350°C,													
325°C				1		2/22 - (0(1			1	
Combined	l		3/33 = 9.09	3/33 = 9.09	25/33 = 75.75	4/33 = 6.06	L	1		1	1	L	L

C.E. = Stator Connection End; Statorette Measurement Lead End O.C.E. = Stator Opposite Connection End Middle = Between Core Ends F.C.A. = Field Coil Area

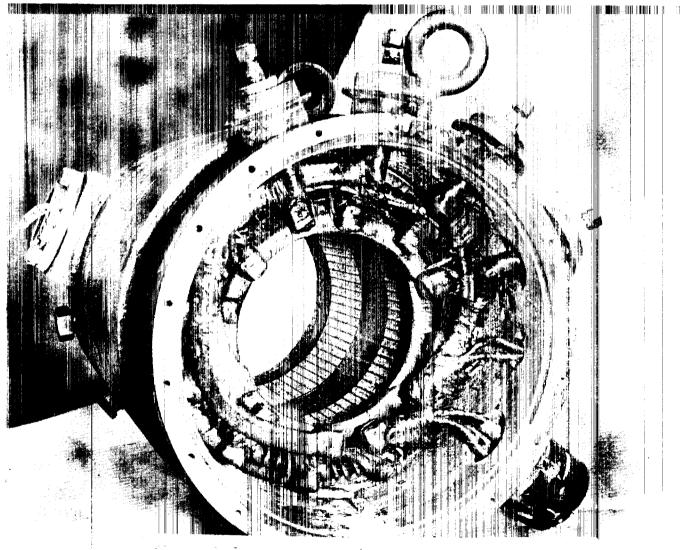
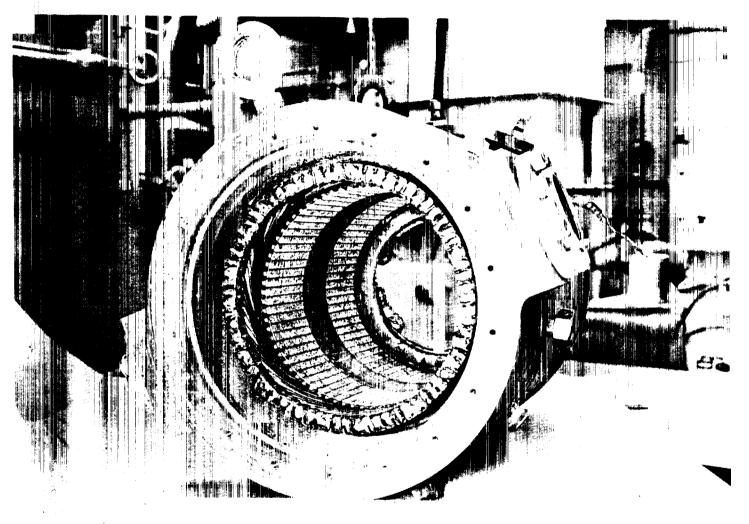
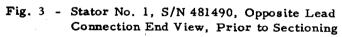
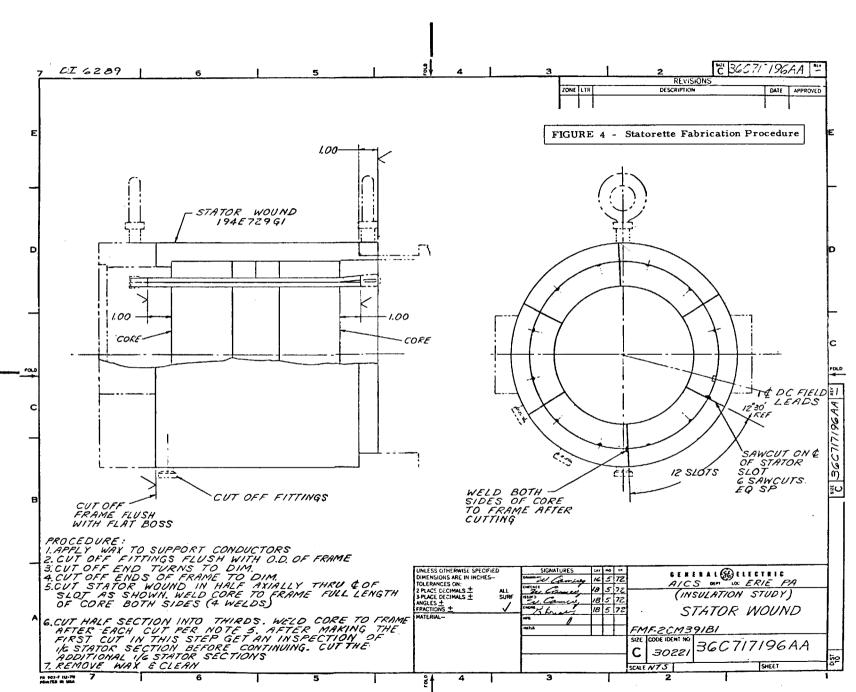
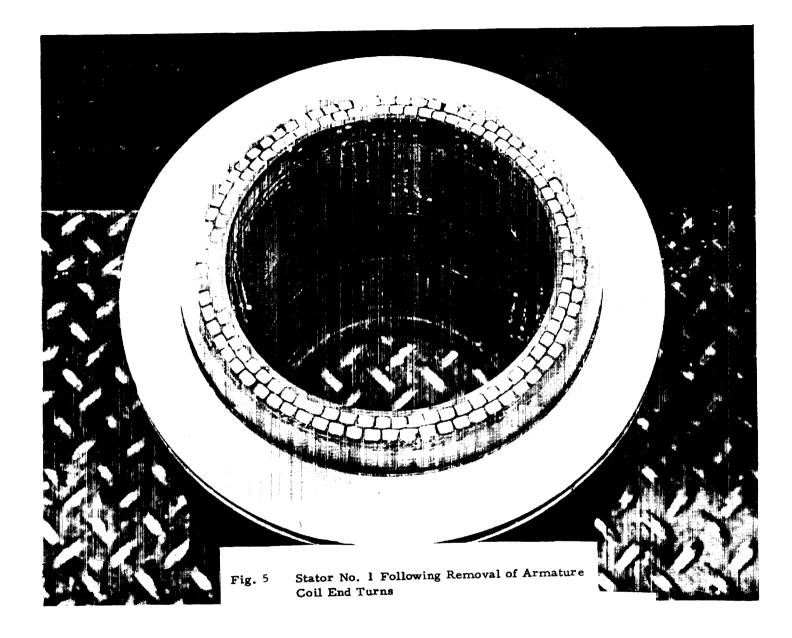
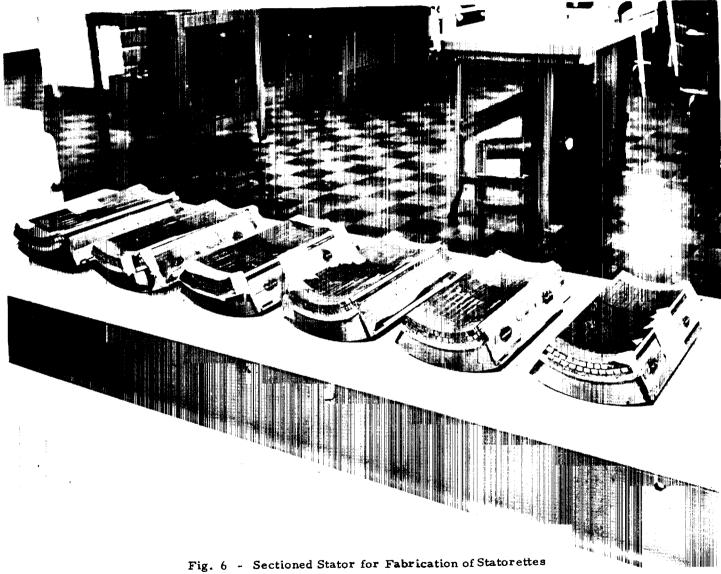




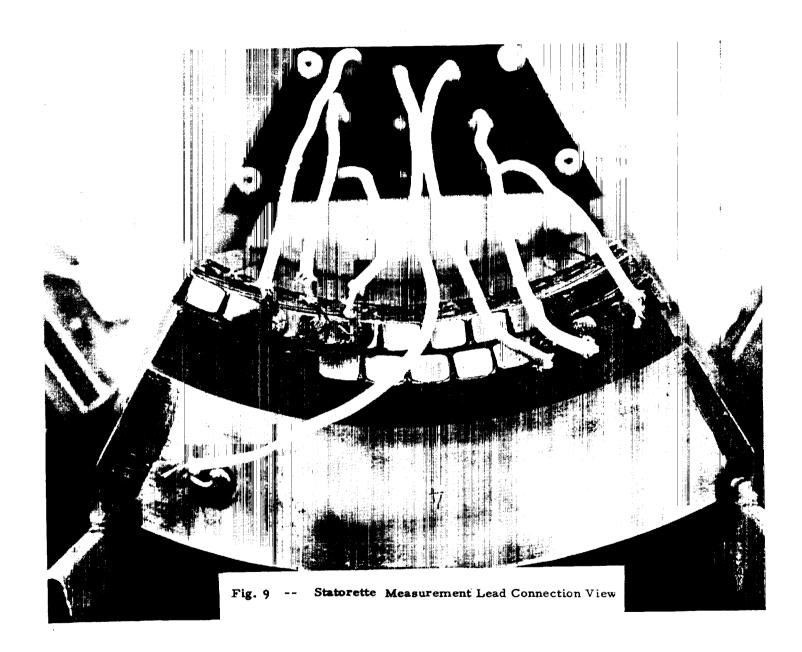
Fig. 2 - Stator No. 1, S/N 481490, Lead Connection End View, Prior to Sectioning






.

127



.

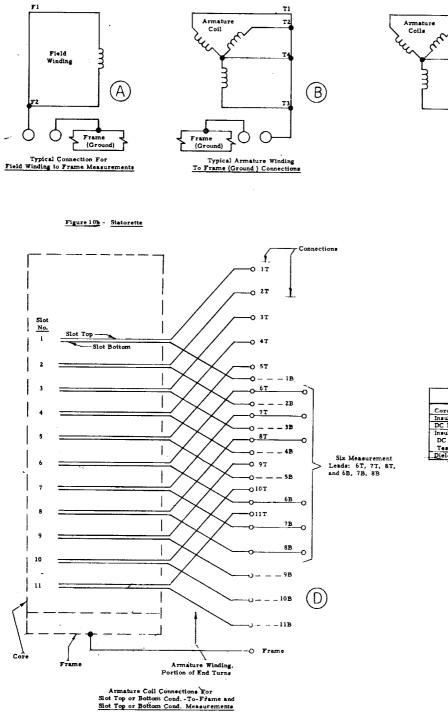


Figure10a - Stator

Measurement	Schematic
Corona Onset Voltage	A, B, C, D
Insulation Resistance	A, B, C, D
DC Leakage Current	A. B. C. D
Insulation Resistance and DC Leakage Current at Test Temperature	D
Dielectric Breakdown	p

T1

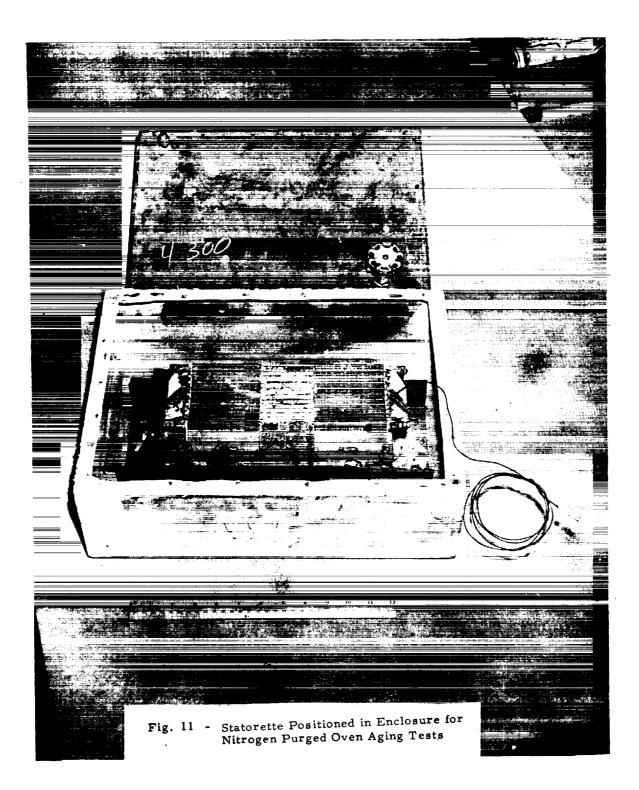
TZ

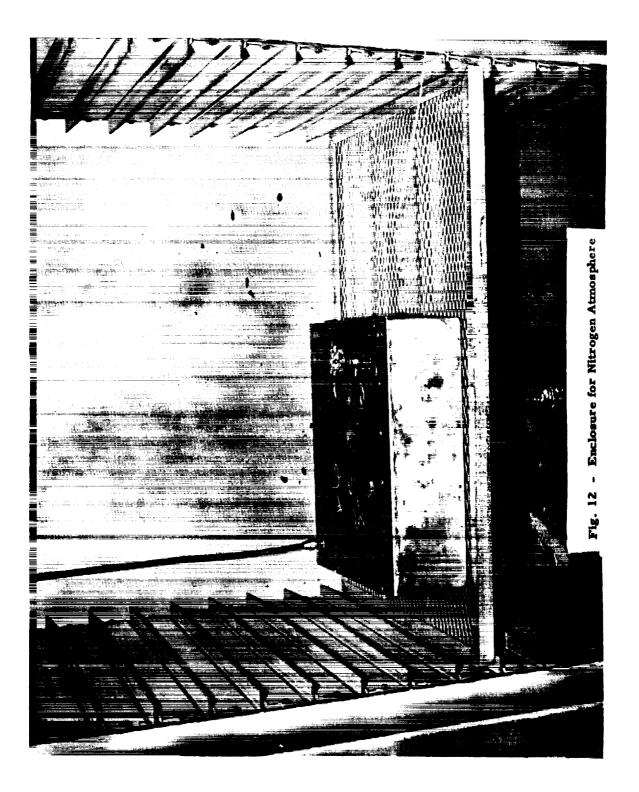
T

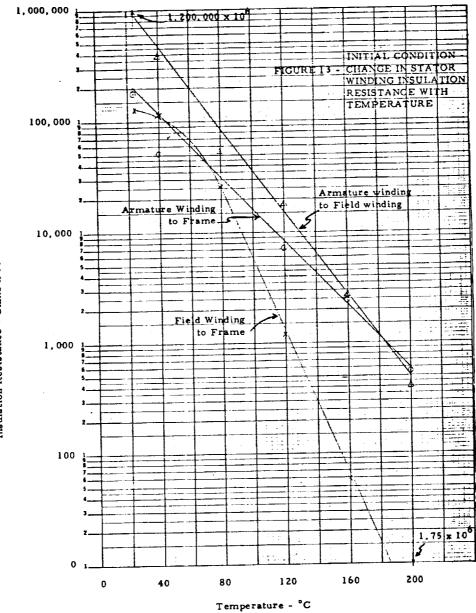
Ó

Armature Winding To Field Winding Connections

71

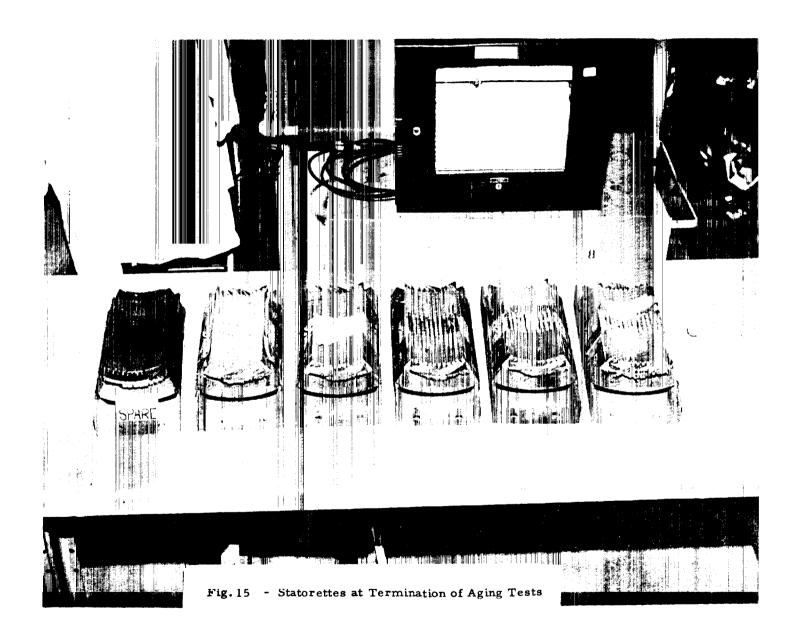

Ċ


Field Winding


LL.

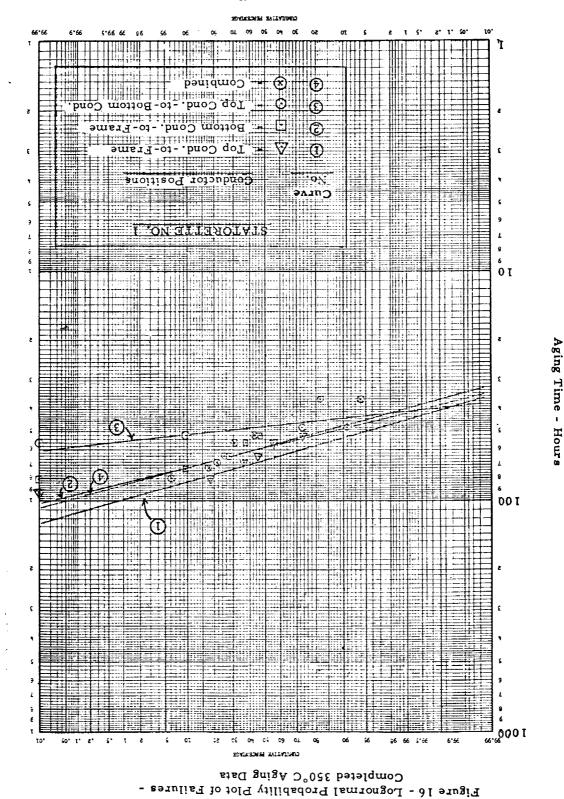
 \bigcirc

5

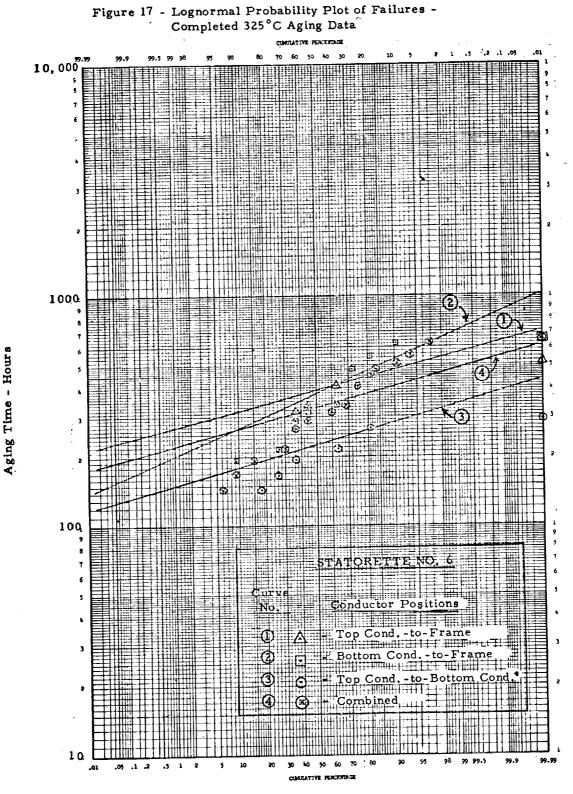


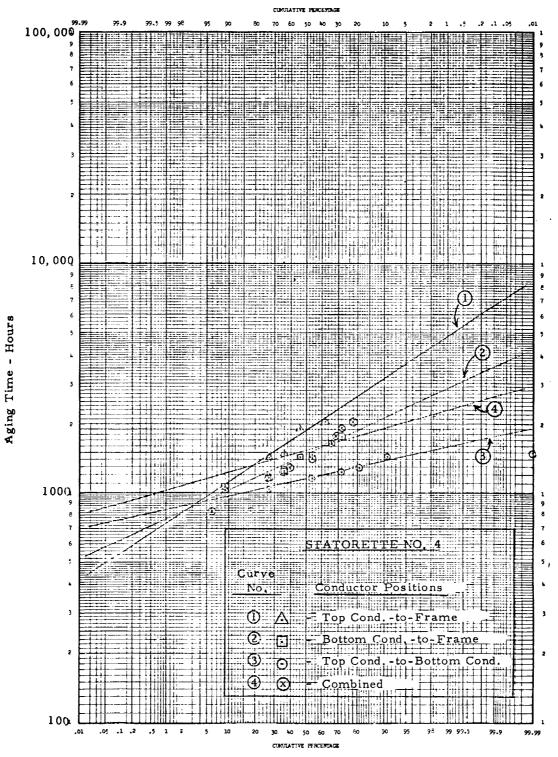
Insulation Resistance - Ohms x 10⁶

:


e Series Series

139


. ...


Conductor Failures

0₽I

Hours

Conductor Failures

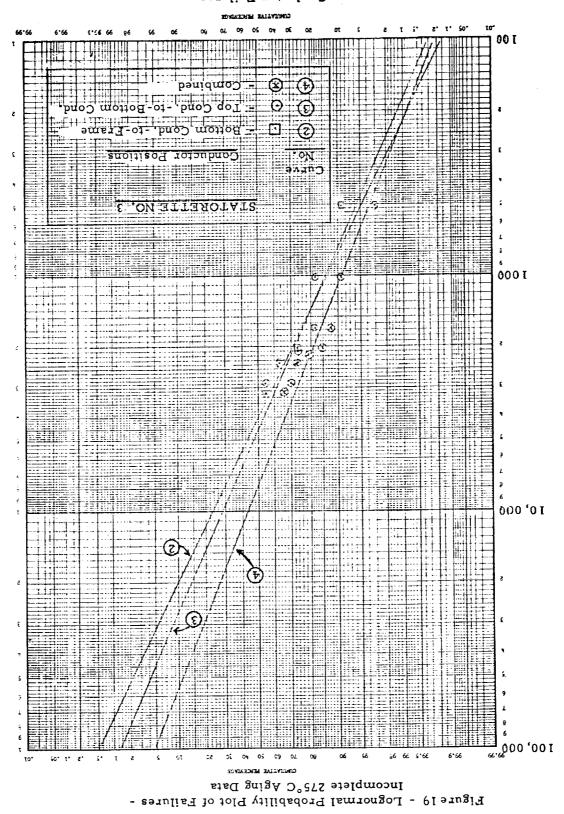
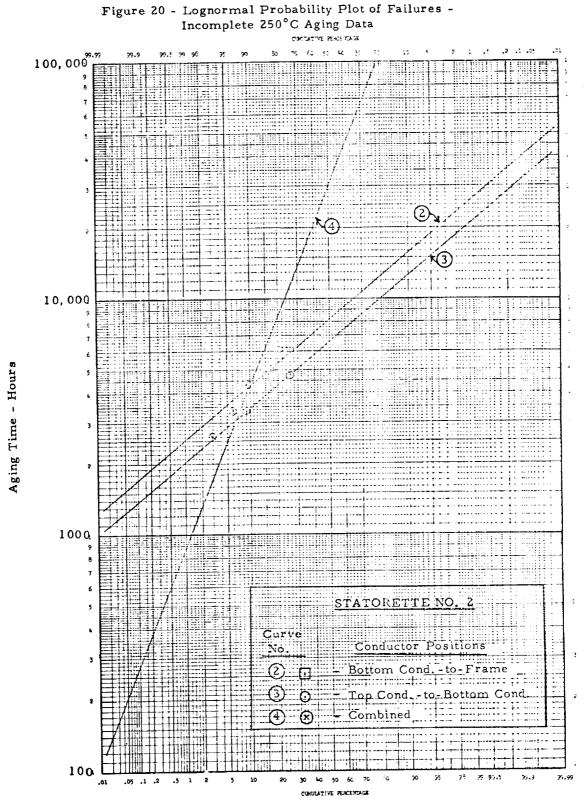


Figure 18 - Lognormal Probability Plot of Failures -Incomplete 300°C Aging Data


Conductor Failures

1₫3

Conductor Failures

Aging Time - Hours

Conductor Failures

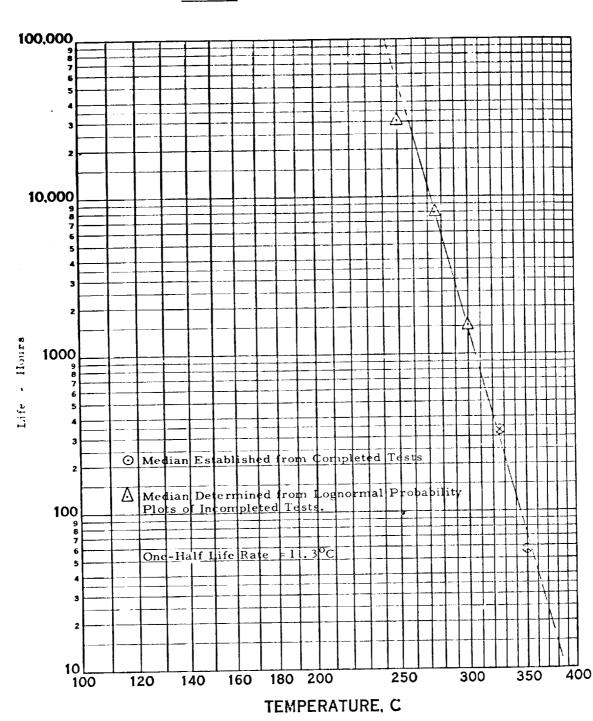
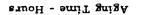
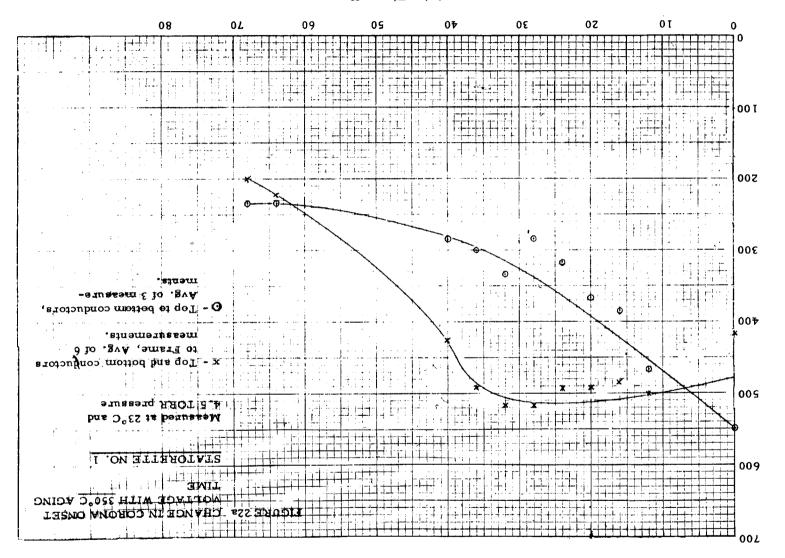
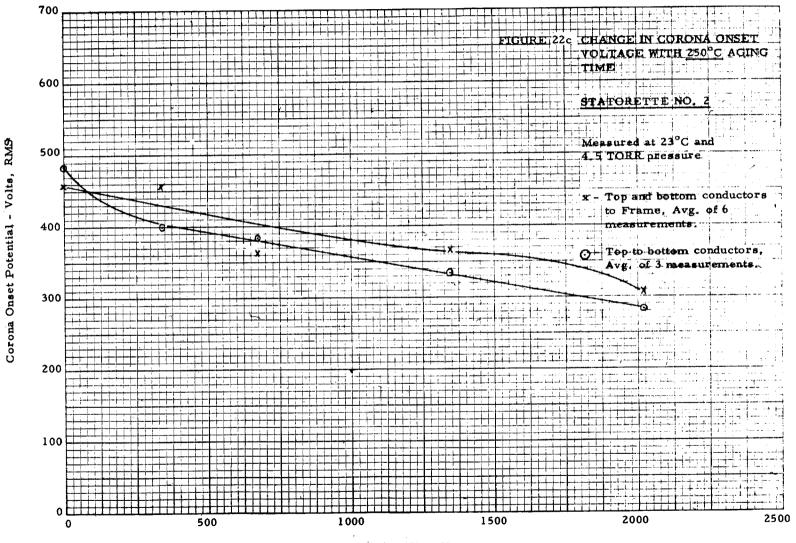
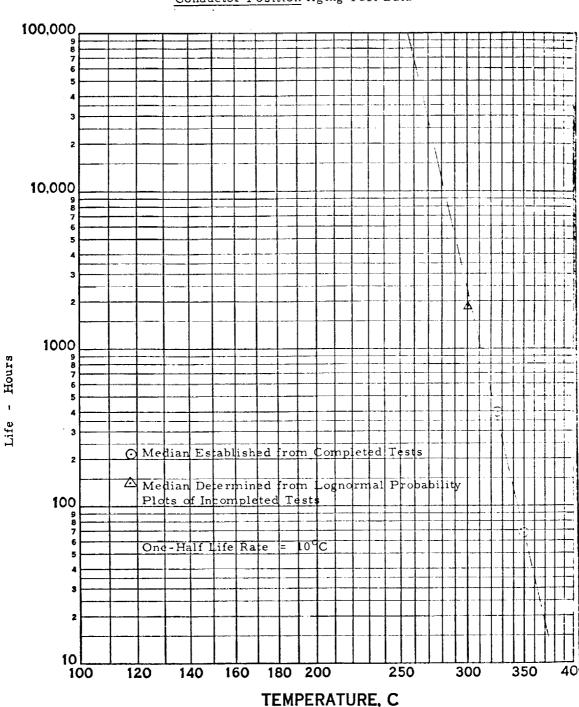




Figure 21 - Arrhenius Life - Temperature Plot for Statorette Combined Conductor Position Aging Test Data




700. CHANGE IN CORONA ONSET FIGURE 22b WOLTAGE WITH 300 C AGING. TIME 600 STATORETTE NO. 4 Measured at 23°C and RMS 4.5 TORR pressure 500 - Volts, Top and bottom conductors to Frame: Avg. of 6 measurements. Corona Onset Potential 4000 4.1 dia an +O Top to bottom conductors, Avg. of 3 measurements. نا ال i tri 300 fin 10 : .1 200 †† 100 ! ... ÷ 4-71 : **:** : -----4. 700 800 600 0 100 200 300 400 500 .

Aging Time - Hours

147

Aging Time Hours

Figure 23 - Arrhenius Life - Temperature Plot for Statorette <u>Top Conductor-to-Frame</u> <u>Conductor Position</u> Aging Test Data

. .

REFERENCES

- 1. Penn, W. B., Schaefer, R. F. and Balke, R. L.: "Alternator Insulation Evaluation Tests", NASA CR-120901, April 1972.
- Thur, George M.: SNAP-8 Nuclear Electrical Generating System, Interagency Advanced Power Group, Project Brief PIC No. 84, April 1971.
- 3. IEEE Std. No. 117 Test Procedure for Evaluation of Systems of Insulating Materials for Random Wound AC Electric Machinery (November 1956)
- 4. IEEE Std. No. 275 Test Procedure for Evaluation of Systems of Insulation Materials for AC Electric Machinery Employing Form Wound Preinsulated Stator Coils (December 1966)
- 5. IEEE Std. No. 304 Test Procedure for Evaluation and Classification of Insulation Systems for DC Machines (August 1969)
- 6. Nice, A. W. and Luddy, C. T. : 60 KW Alternator for the SNAP-8 Program, IEEE Conference Paper No. 31PP66-499, 1966.
- Johnson, L. M., Campbell, F. J. and Brancato, E. L.: "Statistical Analysis of Truncated-Data Methods to Shorten Thermal-Aging Tests of Electrical Insulation", NRL Report 7468, September 19, 1972.
- 8. IEEE Std. 101-1972, IEEE Guide for the Statistical Analysis of Thermal Life Test Data (March 1972)

÷

DISTRIBUTION LIST

National Aeronautics and Space Administration 20546 Washington, DC Attention: P. R. Miller, Code RPD W. H. Woodward, Code RP National Aeronautics and Space Administration Lewis Research Center 21000 Brookpark Rd. 44135 Cleveland, OH Attention: Report Control, MS 5-5 Technology Utilization Office, MS 3-19 Library, MS 60-3 G. M. Ault, MS 3-13 R. L. Davies, MS 106-1 R&QA, MS 500-111 V. Hlavin, MS 3-15 N. T. Musial, MS 500-311 E. E. Kempke, MS 500-201 R. A. Lindberg, MS 105-1 A. W. Nice, MS 500-202 R. E. English, MS 500-201 C. Corcoran, MS 500-202 (5 copies) L. W. Schopen, MS 500-206 D. S. Repas, MS 500-120 D. R. Packe, MS 500-202 S. J. Kaufman, MS 500-201

National Aeronautics and Space Administration Ames Research Center Moffett Field, CA 94035 Attention: Librarian

National Aeronautics and Space Administration Manned Spacecraft Center Houston, TX 77058 Attention: Librarian ---

Bureau of Weapons Research and Engineering Material Division Washington, DC 20360 Attention: Librarian

U. S. Atomic Energy Commission Technical Reports Library Washington, DC 20545 Attention: Librarian G. Newby

Argonne National Laboratory 9700 South Cross Avenue Argonne, ILL 60439 Attention: Librarian

Brookhaven National Laboratory Upton, Long Island, NY 11973 Attention: Librarian

Oak Ridge National Laboratory Oak Ridge, TN 37831

Air Force Cambridge Research Laboratories L. G. Hanscom Field Bedford, MA 01731 Attention: CRZAP

Air Force Weapons Laboratory Kirtland Air Force Base New Mexico 87117 Attention: Library

Air Force Systems Command Aero-Propulsion Lab Wright-Patterson Air Force Base, OH 45438 Attention: Robert Supp Power Information Center University of Pennsylvania 3401 Market Street, Room 2107 Philadelphia, PA 19104

U. S. Army Electronics Command 225 South 18th Philadelphia, PA 19103 Attention: Librarian

U. S. Army Erdl Fort Monmouth, NJ 07703 Attention: Librarian

Army Ordnance Frankford Arsenal Pridesburg Station Philadelphia, PA 19103 Attention: Librarian

Office of Naval Research Power Division Washington, DC 20360 Attention: Librarian

Aerojet-General Corporation P. O. Box 296 Azusa, CA 91703 Attention: Librarian

AiResearch Manufacturing Company 2525 West 190th Street Torrance, CA 90509 Attention: Fred McCarty

AiResearch Manufacturing Company 402 South 36th St. Phoenix, AZ 85034 Attention: Librarian

Battelle Memorial Institute 505 King Ave. Columbus, OH 43201 The Boeing Company P. O. Box 3707 Seattle, WA 98101 Attention: Library

General Dynamics Convair Aerospace Division Interdivision Research Library P. O. Box 12009 San Diego, CA 92112 Attention: U. J. Sweeney, Chief, Librarian

Douglas Aircraft Company, Incorporated Missile and Space Systems Division 3000 Ocean Park Blvd. Santa Monica, CA 90406 Attention: Librarian

E. I. duPont de Nemours and Company, Incorporated 1007 Market St. Wilmington, DE 19898 Attention: Library

Ford Motor Company Aeronutronic Division Newport Beach, CA 92663 Attention: Library

General Dynamics P. O. Box 748 Fort Worth, TX Attention: Library

General Motors Corporation Research Laboratories 12 Mile and Mound Rds. Warren, MI 48092 Attention: Librarian

Hughes Aircraft Company Engineering Division Culver City, CA 90232 Attention: Library

IIT

10 West 35th St. Chicago, ILL 60616 Attention: Library

Lear-Siegler, Incorporated Power Equipment Division P. O. Box 6719 Cleveland, OH 44101 Attention: Library

Ling-Temco-Vought, Incorporated P. O. Box 5003 Dallas, TX 75222 Attention: Library

Litton Industries, Incorporated 336 North Foothill Rd. Beverly Hills, CA 94703 Attention: Library

Lockheed Missiles and Space Company P. O. Box 504 Sunnyvale, CA 94088 Attention: Library

The Martin-Marietta Corporation P. O. Box 179 Denver, CO 80201 Attention: Librarian

McDonnell Douglas Corp. P. O. Box 516 St. Louis, MO 63166 Attention: Library

McDonnell-Douglas Corporation Missile and Space Engineering Nuclear Research (A2-260) 3000 Ocean Park Blvd. Santa Monica, CA 90405 Attention: Library

Melpar, Incorporated 7700 Arlington Blvd. Falls Church, VA 22046 Attention: Librarian

3M Company Electrical Products Laboratory 2501 Hudson Rd. St. Paul, MN 55119 Attention: Librarian

North American Rockwell Corporation Los Angeles Division Los Angeles, CA Attention: Library

North American Rockwell Corporation Atomics International P. O. Box 309 Canoga Park, CA 91304 Attention: Librarian

Rocketdyne 6633 Canoga Ave. Canoga Park, CA 91303 Attention: Library

Solar Division International Harvester Company 2200 Pacific Highway San Diego, CA 92112 Attention: Library Stanford Research Institute Menlo Park, CA Attention: Library

TRW, Incorporated TRW Systems Group One Space Park Redondo Beach, CA 90278

TRW, Incorporated 23555 Euclid Ave. Cleveland, OH 44117 Attention: Library

United Aircraft Corporation Pratt and Whitney Aircraft Division East Hartford, CT 06108 Attention: Library

Westinghouse Electric Corporation Astronuclear Laboratory P. O. Box 10864 Pittsburgh, PA 15236 Attention: Library

Westinghouse Electric Corporation Research and Development Center Pittsburgh, PA 15235 Attention: Library

Westinghouse Electric Corporation Aerospace Electrical Division P. O. Box 989 Lima, Ohio 45802 Attention: N. W. Bucci