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SOUND RADIATION FROM A HIGH-SPEED AXIAL-FLOW FAN DUE

TO THE INLET TURBULENCE QUADRUPOLE INTERACTION

by Marvin E. Goldstein, Burt M. Rosenbaum, and Lynn U. Albers

Lewis Research Center

SUMMARY

One of the dominant sources of broadband noise (and possibly also of pure tones) in

aircraft engine fans is the turbulence drawn into the fan inlet. A number of investiga-

tions have analyzed this noise source by using a dipole model. However, at the high

subsonic Mach numbers at which some current engine fans operate, the quadrupole

mechanism may be dominant over the dipole mechanism. In such a case, analyses based

on the dipole model are unsatisfactory. No analysis of this noise source which is based

on the quadrupole model and is suitable for high subsonic Mach numbers has been given.

The present report is written to fill this gap.
A formula is obtained for the total acoustic power spectra radiated out the front of

the fan as a function of frequency. The formula involves the design parameters of the

fan as well as the statistical properties of the incident turbulence. Numerical results

are calculated for values of the parameters in the range of interest for quiet fans tested

at the Lewis Research Center. As in the dipole analysis, when the turbulence correla-

tion lengths become equal to the interblade spacing, the predicted spectra exhibit peaks

around the blade passing frequency and its harmonics. There has recently been con-

siderable conjecture about whether the stretching of turbulent eddies as they enter a

stationary fan could result in the inlet turbulence being the dominant source of pure

tones from nontranslating fans (i. e., fans in nonmoving aircraft). The results of the

current analysis show that, unless the turbulent eddies become quite elongated, this

noise source contributes predominantly to the broadband spectrum.

INTRODUCTION

The noise generated by single-stage subsonic fans consists of a number of discrete

tones (predominantly at the blade passing frequency) superimposed on a broadband spec-
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trum. It is generally accepted that the broadband noise is generated by such factors as

interaction of the blades with patches of inlet turbulence, irregular vortex shedding by

the fan blades, and random modulation of rotor wakes impinging on a downstream stator.
The discrete tones are believed to be caused by periodic spatial nonuniformities entering
the fan and by the passage of its wakes across the stator. However, if the blade passing

frequency is large compared with the characteristic turbulence frequency, the sound

generated by the inlet turbulence interaction will be concentrated around the harmonics

of the blade passing frequency and the spectrum will appear to contain tones of finite

width. Thus, the inlet turbulence interaction may also contribute to the pure tones.

This report is concerned with the sound generated by the interaction of inflow tur-

bulence with a high-speed compressor fan. The turbulence in the flow entering a com-

pressor fan (both in the casing boundary layer and in the main stream) can produce noise

through two mechanisms. One is a quadrupole-like mechanism which is the result of the

fluctuating Reynolds stresses in the volume exterior to the blades produced by the inter-

action of the turbulence with the potential-flow field of the rotor. The other is a dipole-

like interaction which is the result of the fluctuating lift on the fan blade resulting from

the fluctuations in angle of attack caused by the turbulence.

Until fairly recently, all analyses of fan noise considered only the dipole mechan-

ism. However, at the operating Mach numbers of modern fans the quadrupole interac-

tion is probably dominant.

Analyses of the inlet turbulence noise generated through the dipole mechanism have

been given by Sevik (ref. 1) and Mani (ref. 2). The possibility that this noise is gener-

ated through a quadrupole mechanism was first pointed out by Ffowcs-Williams and

Hawkings (ref. 3) and was later investigated in detail for a low-speed fan by Chandra-

shekara (ref. 4). Chandrashekara carried out a combined theoretical and experimental

investigation of a low-speed (tip Mach number less than 0. 3) unducted fan. He compared

the "tone" noise predicted by both his analysis and the dipole analysis of Mani (ref. 2)

with his measurements and found that the level of the tones predicted by the quadrupole

model was considerably below the experimental values, while the dipole model predicted

the correct level. However, the ratio of the quadrupole noise to the dipole noise should

vary as Mach number squared and should increase with increased blade loading (ref. 4).

Hence, at the high tip speeds and blade loadings at which current jet engine fans oper-

ate, it is likely that the quadrupole mechanism will dominate. However, even though
inlet turbulence is a dominant noise source in fans, no quadrupole model suitable for

high subsonic Mach numbers is available for calculating this noise. The present report

is written to fill this gap.

In order to construct a model which applies to a ducted fan at these high speeds, it
is necessary to use a model which differs from the one used by Chandrashekara in a

number of important respects. First, the present model considers a fan operating in an
infinite duct containing a mean axial flow and not in free space with zero mean flow. In

2



Chandrashekara's analysis the variation in retarded time across the turbulent eddy was

neglected. However, as pointed out by Ffowcs-Williams and Hawkings (ref. 3), this is

not a good approximation at high tip Mach numbers, especially for the "tone" noise,
since the sound is concentrated at the blade passing frequency, which is quite high, and

hence corresponds to a condition where the wavelength of the sound can be smaller than

the "eddy" size. Thus, this omission also serves to limit Chandrashekara's analysis

to low Mach numbers. The present analysis also explicitly accounts for the convection

of the eddies by the mean flow, which from studies of jet noise is found to be important

for properly modeling the turbulence. In the present analysis the effects of compres-

sibility on the rotor potential-flow field are included. This is important because of the

high Mach numbers of interest. A more detailed model of this flow field is also adopted.

In real turbulent flows the turbulence is not isotropic, but the eddies tend to be elon-

gated in the direction of flow. Since the flow into a stationary inlet involves a large con-

vergence of the streamlines, it has been argued that the turbulent eddies can become

quite elongated in the direction of flow. We have therefore adopted a turbulence model

which is general enough to account for this effect.

The analysis leads to a formula for the power spectral density of the sound field

emitted through the fan inlet as a function of various aerodynamic and geometric param-

eters of the fan and the properties of the inlet, turbulence. This formula cannot only be

used for incorporating the quadrupole inlet turbulence noise into fan noise calculation

packages and acoustic liner design programs, but should also be useful for making pa-

rametric studies of the sound field produced by this noise source. Hence, numerical

results are computed for parameters covering the design range of the various Quiet Fans

which have been tested at Lewis. The predicted spectra exhibit a number of features

which are observed in the spectra of actual fans. But it is found that the width of the

tones predicted by the analysis will generally be broader than those observed in the fan

spectrum unless the turbulent eddies are quite elongated (typically of the order of a

couple of feet). However, there is mounting evidence that the turbulent eddies drawn

into a nontranslating fan do indeed become very elongated and as a result are the domi-

nant source of pure tones in turbojet engines on the ground. This elongation does not

occur during forward flight and, in fact, recent measurements by Cumpsty and Lowery

(ref. 5) indicate that the tones produced by aircraft engine fans are considerably reduced

in flight. The present analysis should be helpful in resolving this question.

ANALYSIS

Basic Formulas for Quadrupole Sound Emission

It is shown in reference 6 that the density fluctuation p'(x, t) at the point x and the

time t due to the quadrupole radiation from a fan in an infinite duct containing a uniform
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axial flow with velocity U is governed by the equation

P'(x t) =1 ( a2G T

cOf ayi a

where co is the speed of sound, 7 is the time,

Tt(, 7)- pviv + 6ij(p - c2 p - eij (2)

is Lighthill's stress tensor based on the relative velocity

v vi -6 iU (3)

instead of the actual velocity vi, p is the pressure measured above the ambient pres-

sure po, and eij is the viscous stress tensor. (All symbols are defined in appendix B.)

The volume v(7) over which the integration is carried out is the entire region of the duct

external to the blades. The uniformly moving medium, outgoing-wave, infinite-duct

Green's function G is given by (ref. 6)

G' O - i m, m n(Y2' Y3), (X2 3
47T Z xm, n

m,n

x ( l B d (4)
km, n

where k = w/c 0 , M = U/cO, = - M 2, and m, n denotes a doubly infinite set of

eigenfunctions with eigenvalues Ki, n determined by solving the Helmholtz equation

(2 4) 2 +nK 0 (5)
2 2 m,n m,n m, n

y2 43
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on the cross-sectional area A of the duct subject to appropriate homogeneous boundary
conditions on the duct surface. Thus, when the surface of the duct is rigid, we must

require that

mn 0 on S (6)
an

where a/an denotes the normal derivative to the duct surface S. The remaining quan-
tities in equation (4) are

rm, n m,n 2 dy 2 dy 3  (7)

and

n k 2  2m, n

where, in order to ensure that G represents the outgoing-wave Green's function, we

must choose the branch out of the square root to be as shown in figure 1.

When the observation point x is far enough from the source (i. e., in the far field),
the pressure and density fluctuations will be small and we can use the linear approxima-
tion

2,
p = cop (8)

Rectangular Duct Model

In order to model a real fan, the most appropriate cross-sectional shape of the duct
is an annulus such as that shown in figure 2(a). The eigenfunctions m, n will then bem, n
combinations of Bessel functions. The analysis can be considerably simplified, how-
ever, by assuming that the duct is "unrolled" into the rectangular strip shown in fig-

ure 2(b). (The larger the number of blades, the more closely the rotor approximates a

two-dimensional disturbance pattern with subsonic phase speed.) The width 6 of the
rectangular duct is equal to 2u times the mean radius R of the annular duct, and its
height b is equal to the outer radius minus the inner radius of the annular duct. In

this case we must require that 'm, n and its normal derivative take on the same values

on the surface Sa as they do on the corresponding points on the surface Sb (periodicity •
conditions). It is easy to verify that the eigenfunctions of equation (5) which satisfy this
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condition together with the boundary condition (6) on the upper and lower walls are given

by

n = 0, 1, 2, . . .
i2nmy2/6 nry f,n = e cos for

b m= 0, ±1, 2, . . .

where the y-coordinate system is shown in figure 3 and the corresponding eigenvalues

are given by

Km, n = 2+ 2 (9)

Hence,

= k/k2 2 T 2[ 2[! 2 + 2 (10)km,n = - + (10)

~0 5~c 2 nBY3 6b( 1 +

cs- d 2 dy3  , 0)

and

nUy 3  nrx3cos - cos - i2m7r(y 2 -x 2 )/6
G(y, T,t) 2rb b b e

2~6b ~1+n, O

m=- 0  n=0

00 expfi w(t-)- ( k )( ± km )(Y X) (11)

x 6d (11)
km, n
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where the upper sign corresponds to upstream propagation (x1 < y 1) and the lower sign

corresponds to downstream propagation (x1 > y 1 ).

Transformation to Rotor Coordinates

In order to make the limits of integration in equation (1) independent of time, we

introduce the ?I-coordinate system by

'i = Yi + 6i2UtT (12)

where Ut denotes the velocity of the blade row and-is taken as positive in the direction

shown in figure 3. But since for each value of (Y1, Y3 ) T! takes on the same value at

Y2 = -6/2 as it does at y 2 = +6/2, it can be extended to a continuous periodic function

from -- to +oo. And since the Green's function is also periodic, the integration with

respect to '02 can be carried out over any region v0 of fixed shape which coincides

with v(7) at some definite instant of time. Hence, equation (1) becomes

p(K, t) = 2 T!T ( 7, T)dcj d (13)

_0 ai aqj

where the linear approximation (8) has been used.

Derivation of Spectral Equations

Rather than deal with the pressure directly, it is convenient to deal with its spec-

trum P(w) defined by. the generalized Fourier transform

p = P(w)e - i t dw (14)

It then follows upon inserting equation (12) into equation (11) and using the result in equa-

tion (13) that
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P(w) = Pn(W)Cm, n() (15)
m=-o° n=0

where

I 2 (i &ll+a2 ) c i(w-2mUt/6)(
Pm, n 71 3e cos 3773) e Tt dr d7 (16)

P2

a 2 = 2mT/5 (17)

a3 = nr/b

cos n -Tx 3
Cm, n (1 + 6n exp i (Mk n, n)x + (18)

mn 26b (1 +6n, )km, n 6

and the plus sign corresponds to upstream propagation while the minus sign corresponds
to downstream propagation.

Radiated Acoustic Power

The quantity which is perhaps of most interest is the total acoustic power per unit
frequency 9± radiated (upstream/downstream). This can be calculated by integrating
the axial component I (S) of the intensity spectrum over the cross-sectional area of the
duct. Thus, 1

1The factor 2 arises because both Iw and I contribute to the acoustic power
with frequency w. Since I arises as a Fourier transform, it is defined for positive
and negative frequencies. But since I. = Io and the experimental power is defined
only for positive frequencies, the factor of 2 must be included.

8



r6/2fb
':(w) = lim 2 ()dx (19)

Xl- -/2 )d 2

We shall suppose that the sound field is time stationary. Then it is shown in reference 6
that

S= lim 1T + M2)pV M c .pc 2+ 0cOMV2 (20)
T-- T P0co

where T is the integration time for the Fourier transform and V is the generalized
Fourier transform of the axial acoustic velocity vi(x, t). Thus, since p and vI obey
the linearized acoustic equations at large distances from the fan

- P = p0 + c0 M V
ax 1  1t x1

Hence,

-p .p0c0 k - M
ax P la x

Inserting equations (15) and (17) into this relation shows that

V 1 X P (w)C M (21)
Z . m, n m,n (  m, (21)

Poco m=-m n=O

where

Mk km(22 n
m, n = - (22)k ± n Mkmn

Since equation (18) shows that

/2 b Cm, nC q d dx 3  m, p6n,q
-6/2 J m, 826b n(1 + 6n, 0)
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Substituting equations (15) and (21) into equation (20) and using the result in equation (19)
show that

)= ' k m, n (23)
4v2 p 0 c0 6b (All and (1 + 6n Om, n(k ± Mk n 2

all n_0 with

k 2>/ 2K 2
m, n

where, since cutoff modes do not contribute to equation (23), the sum in this equation is
carried out only over propagating modes and

+ lim 2 P, n()
m, n T - - T m,

Inserting equation (16) into this relation shows upon using the Wiener-Khinchin relations
for stationary processes

n = 2 /4 exp i [C (l71  - 1)+ 2 (2 2) cos 3 3)cos( 3±3)Qm, n = 2 i 21Tj f7k 8 /'

-i(w-2mnUt/)r
x e -ij k t d d c '7 1 (2 4 )

where

ij ( ,' , Ti ' t) Tk (', t + ) (25)

and the overbar denotes the time average

'- 1 FT/2f im -T/2 f(t)dt (26)
T-o T J-T/2
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Source Model

In order to use these results to predict the sound emission, it is necessary to deter-

mine the source term ij . As in any aeroacoustic problem, this is extremely diffi-
cult to do exactly since it requires a knowledge .of the complete flow including the acous-
tic field. It is therefore customary in aeroacoustic problems to develop an approximate
model for the source term. In this section the general structure of this source model

will be evolved, and it will be used at the end of the section to simplify the equations de-
rived in the preceding section. The source model will involve contributions from the
turbulence and the phase-locked rotor velocity field. In the next section a model for the
rotor velocity field will be developed, and the results will be used in subsequent sections

to simplify the formulas for the sound field. A model for the turbulence correlation ten-
sor will then be introduced, and with this in hand the final equations will be derived in
the last section.

As a first step in evolving the source model, we shall replace Lighthill's stress

tensor T by the Reynolds stress (ref. 7). (This procedure is followed in most anal-

yses which do not involve combustion.)

T = p0 v j (27)

We shall further assume that the relative velocity v1 can be decomposed into the sum of

a random fluctuating velocity ui (with zero mean) associated with the inlet turbulence

and a velocity wi associated with the phase-locked rotor pressure field. Then wi is

independent of time in the V-coordinate system and

v(, t) = ui(T, t) + wi() (28)

u= 0 (29)

where ui and wi denote velocities relative to a coordinate system moving uniformly in

the yl-direction even though they are expressed as functions of the rotor-locked

T-coordinate system.

Inserting equation (28) into equation (27) and using the result in equation (25) shows

that
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ik= Rijk + Rikj + Rkw w + Ril jw + Rjl iw k
2 13k1 j ki

P0

+Rij, k + Rij, I + Ri, kIWj + Rj, kWi + Time-independent terms (30)

where

ijk i j k

Rijk.. =u.u.uu"

Rij, k = uiujuk

Ri, jk = uiuuk

Rij = uiu

are turbulence velocity correlations and the unprimed quantities are evaluated at
and t while the primed quantities are evaluated at 7 and t + T.

When the integral with respect to 7 in equation (24) is carried out over the time-
independent terms, it will yield a term proportional to 6(w - 2mlrUt/5). But as long as

relative Mach number iM 2 + (Ut/c 0 )2 is less than unity, k 2 will be less than 02 Km, n
with w = 2m7Ut/6 and all modes will be cut off. Hence, for subsonic rotors the time-
independent terms will make no contribution to the sound field and can be omitted.

We shall assume (as is usual in compressor analyses) that the phase-locked rotor
flow field is two dimensional so that wj is independent of y3 = 03. It is convenient to
introduce the new variables

711 - 7(31)

Y 1' 2' 7 +77

We shall now suppose that the turbulence is homogeneous. Then ik(considered
ijklas a function of and Y) will be independent of Y3 . We shall also suppose that the

region of integration can be extended to the interior of the blade row and that the turbu-
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lence correlation length in the y 2 - and y 3 -directions is small compared with the lengths
of 6 and b in those directions. Then the integration with respect to " can be carried
out over all space and the integration with respect to Y carried out over v0 . (Hence,
upon using the identity)

) lT n73 2nY3_
cos 3) cos - 3 )- (cos -- + cos -y)

b b 2 b b

equation (24) becomes

-i al l+a2 2 nv 3  2nY3

4" e os + cos
b7 b b

m, n a k a

0

roo
X c e i(w2mUt5)- ijk d7 d dY (32)

-o

where the notation j indicates that the integration is to be carried out over all space.

Now the only term depending on Y3 is cos(2nnY 3/b), and the integration with respect to

this variable is from 0 to b. But since cos(2n7Y 3/b) and all its derivatives integrate to

zero over this range whenever n * 0, we can carry out the integration with respect to
Y3 in equation (32) to obtain

, n = 7(1 + 5 0 )b cos c343
amn n, agi aj ask aI

Aa0

00 -i(w-2mnUt/5)T

x e ijkl d- d d72 dy 1  (33)

where AO denotes the cross-sectional area of any plane, y3 = Constant, included be-

tween the duct walls and the exterior of the blades.

13



The first term on the right side of equation (30) represents the effect of the interac-

tion of the turbulence with itself. This noise generation mechanism is the same as that

which produces jet noise and is known to be a highly inefficient producer of sound rela-

tive to the other noise mechanisms which are present (refs. 3 and 7). We shall there-

fore neglect this term. When equation (30) is substituted into equation (33), we therefore

obtain after interchanging dummy indices

84e  cos a3 3+= 4ip 2b(1 + 6 ) / 1  
1+ 2 2  o

m, n 0 ( +n,O aj ak N

SR e-i(w -2mnUt/6)T 1 -i(w -2m TUt/b)-

1 , m -i""-mrU )

+ Hl Ri, k e -2mUt/ d d (34)
2 ij,k

0
(36)

H! w! d2 d7l

Rotor Velocity Field Model

We shall now develop an approximate model for the phase-locked rotor velocity field
wj . Most fan blades have fairly small camber, and linearized theory can be used. But

14



since the quadrupole source is of interest at high subsonic Mach numbers, we must take

into account the effects of compressibility. It is convenient to introduce the X-

coordinate system, which is alined with the blades as shown in figure 4. It is well known

that the potential-flow field about such a blade row can be represented by a uniform ve-

locity plus a distribution of line vortices along the blade chords. In order to simplify

the analysis, we replace this vortex distribution by a discrete set of concentrated vor-

tices lying at the midchord point. Let V1 and V2 denote the velocity components along

the X1 - and X2 -directions, respectively (relative to the blades). Then according to

linearized theory the velocity induced by a single compressible vortex of strength r 0 at

the origin is given by

V2 ro 1
V 1 -i -

pr 27 i Z

where

(37)

and

Z = X1 + iPrX2  (38)

Hence, the concentrated vorticity approximation to the velocity field about the cas-

cade is given by

V1 - i - =U r - i- + -- - (39)

Pr r 2i Z - i0nn=-oo

where v0 is the uniform (in general, complex) velocity (which will be chosen to make

the flow far upstream of the cascade equal to Ur) and

A0 = A(3r cos y - i sin y) (40)

where A is the interblade spacing and y is called the stagger angle. But upon using

the relation (ref. 8)
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= coth Z
Z - inr

n=-o

equation (39) becomes

V v 0V 1 - i -U r - i  + c o t h Z- r r 2A0i A0

But since

lim coth Z= -1

X1 --0 A 0

we must put

V0  r0

Or 2A 0

Hence,

V1 -i- Ur + + coth T- (41)
r i2A0  0 )

It can be seen from figure 4 that the X 1, X2 coordinate system is related to the
rotating r71' q2 duct alined coordinates by

X1 = 171 cos - + 72 sin y

2 = - 1 sin y + 72 cos Y

Hence, it follows from equations (38) and (40) that

16



Z 91(cos y - 1ir siny) . 72

A0  A(r cos y - i sin A)

1r y + i 1 -r sin y cosYI 12

A2I c0s 2y + sin 2 ) A

But upon using the velocity triangle in figure 4, this can be written as

Z z (42)

where

z = 71D + iq 2  (43)

D r + iMMt

#2

and

utMt - (45)
Co

is the Mach number of the blade row.

The velocity components w 1 and w2 are in the 71- and 772 -directions and are

measured relative to a reference frame moving with a uniform velocity U in the r71-
direction, while the velocities V 1 and V2 are in the X 1 - and X2 -directions and are

measured in a reference frame moving with the cascade velocity Ut . Hence, it follows

from figure 4 that

V1 = (w 1 + U)cos y + (w2 + Ut)sin y

V2 = (w2 + Ut)cos y - (w 1 + U)sin y

= w2 cosy - w sin y

17



Then

V2 _ U W1- iw2D
(or cosy - i sin Y) ( 1 - i 2  ) U

Multiplying equation (41) through by (p3r cos y - i sin Y)3r and using equations (40)
and (42) show that

2(w1 - iw 2D) =r--- 1+ coth- (46)
2iA

Then

2 o0lim 23 (w 1 - iw 2D) -

71-+00 2iA

Equating the imaginary parts of this expression shows that Aw 2 , the change in w2across the blade row, is related to r 0 by

= Aw 2 = - Ute

where 0 = -Aw 2/Ut is called the work coefficient of the ran. Hence, equation (46) can
be written as

i(w= rUt

2(w1 - iw 2D) - 2 + coth

i0prUt ez/

2 sinh TZ
A

By using the geometric series

o

1 - z for Izl <1
1 -z

p=O

18



(with z - exp(±27z/A)), this becomes

iUtrO92 e2 p z/ A  if 1l < 0

p=l

02 (w 1 - iw2 5)

iUtfpr Z e - 2 7pz/A if q1>0
p=0

Equating real and imaginary parts now shows that

w1 2 - w2MtM - , (e iU 2 p z /A e2Z p/d) for 71 < 0
2 p

Ut 00

w2= - Z (e2n p z / A + e2n z/) for 7 < 0 (47)2
p=1

Or adding the results

-iUt0 0

w= Z (De2pz/A - Be2n7pz / A) for 71 < 0 (48)

p=l

The noise generated by inlet turbulence probably has its largest effect on the sound field
passing through the fan inlet. We shall therefore restrict our attention to the upstream-

propagating waves. We shall also suppose that only the front half of the cascade
potential-flow field is effective in interacting with the inlet turbulence and generating
sound which propagates upstream. Hence we set

w1 = w2 = 0 for 71 > 0 (49)

Evaluation of Rotor Velocity Field Integrals

The results of the previous section will now be used to evaluate the integrals defined

by equations (35) and (36). It follows from equations (47) and (48) and the orthogonality

properties of the complex exponentials that
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H = H = 0 (50)

Next (in order to facilitate the analysis) we define the rotor velocity correlations by

6/2
Lj/ -/2 wj ()wl(+ )d7 2  (51)

Equation (35) shows that

Hjl = Ljl dl 1  (52)

provided we extend the region of integration to the interior of the blades. Inserting
equations (47) and (48) into equation (51) now shows that for

71 < min{- 1, 0}

00

L2 1  exp r1 + D1 + i]

6U 2 02 
00

L2 t f exp 1 + D 1 + i22 A 2

p=l

L 2 2 e exp 2lnP 2r71 + D 1 +i2

p=l

S1 m2
2 1-Mt2

L 1 1 = D 2 L2 2  - L22
P2

and

Lj =0
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otherwise. Inserting these results into equation (52) now shows that

2
i-Mt

H11 tH22
2

U2 2  exp [ i Re exp 1
2 p= 4 p 2) 12J

(53)

2 2 2  00
H2 1  6U- 0 exp 1 xp 9#Dxp i2 ) 1 + 

2] (54)

H12 U 2 exp I1 Y m exp ( +

" p=1  p (55)

Development of Equation for Upstream Sound Propagation

Inserting equation (50) and equations (53) to (55) into equation (34) (with the plus sign
only) now shows that

00oo

S2 + 2p (56)m,n m,n (56)
p= 1

where

-P 2rnp6bUt22 (1+ 6  oo k J e-i(a11+a22) 1 [-ia33 + i(a33+63i+63kn b (1 +6n0) 2aiek e - + em, n Or n, 0 2

xf 0 0 RikeUt/ A e) r// 2 )I 2(2up/A)c 2 (MMt +

x Rike -e -(o1 Cs2 d5 d

(57)
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and

O0 = aI + a 2 - (Ma 2 - Mtal 2  (58)

In order to develop a model for the turbulence correlation tensor Rik, it is conven-

ient to introduce a coordinate system which "moves with the turbulent eddies. " Thus,

we introduce the C-coordinate system by

C1 =  1 - Uc7

2 = t2 - UtT

3 = 43

where Uc denotes the convection velocity of the turbulent eddies. It is not necessarily

equal to the axial velocity U. Equation (7) can now be written as

UP 27rp2U2286b(1+ 6n, 0)~a2tiak -i(cll+a 2 2 ) 1 e - i a 3 3  i(a 3 3 +6 &i +6 3 k
m, n e 2e

x .ik(f, 7) exp -i(w +lU - 1 U co (U7 + 1+ 2 + Ud d

(59)

where

ik(, 7) Rik(Q, 7) (60)

is the moving-axis turbulence correlation tensor.

Model for Turbulence Correlation Tensor

In order to proceed, it is necessary to determine the turbulence correlation tensor.

We first assume that the moving-axis turbulence correlation tensor factors into space-

and time-dependent parts. Thus, we put
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Mik k(()e- I (61)

where wf 1 is the decay time of the moving-frame turbulence correlation. Perhaps the

simplest assumption which can be made is that the turbulence is isotropic. The most

general form of ik which satisfies the requirements of continuity (i. e., which is kine-

matically possible) is

R0 1 df 1 8f
ik (f 2 d ik i a k

2 d, 2r ai

where f can be any function of the magnitude of F only. A reasonable assumption

in the moving frame is that

f = 2 e2/ 2 (62)

where i is the turbulence correlation length. The turbulence in the inlet of a real fan

is probably not at all isotropic, with the eddies probably being elongated in the direction

of flow. In order to develop a kinematically possible turbulence model with scale an-
0

isotropy, we follow Kraichnan (ref. 9) and note that the correlation tensor ik is a

contravariant tensor of second rank that satisfies the continuity condition

0k- 0 (63)
ak

which is a tensor equation. Then corresponding to the transformation of coordinates

~ -1
t1 = r 1l

=2 2 (64)

3 3

the transformation
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0 -2 0
11 = r 11

0 = r-1 ?k for k * 1 (65)1k 1k

0 for i, k * 3ik ik for i,k3

ensures that if 0k obeys the equation a i/W k= 0, then wik will obey equation (63)

and hence be kinematically realizable. Thus, if we put

k = 1 2 6 ik + - /1 (66)

the correlation tensor k() will be kinematically realizable (i. e., satisfies continu-

ity) and will represent a turbulent flow where correlation length in the axial (y1) direc-

tion is rl while the correlation length in the transverse direction is 1.

Rearrangement of Equation for Upstream Sound Propagation

Substituting equations (61), (65), and (66) into equation (59) yields

2 22 2 2 ,,-
n = 27rnpobUt Ul0 (1 + 6n 0) aoaiak

m, n 2
rr2

-i(l 1+a22) 1 e-ia3+3 i(a3 3+63ir+63k k /12 MP,

e2 e +e 1 - ik + I m, n 1'C2)d

(67)

where

Mp f exp i(+ + lUc)T -f - 1U cosI I(U + + U dTmn co s7T +  I' + 2 + Ut-

(68)
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r 0i for i= 1

i for i 1

Equation (67) can be written as

S27Tp26bU u 2 2(1 + 6  a2In, 0) 1
m,n x-1 Brr2 2 a 2  \ 2

xfe-i(a11+2C2)X 1(-ia3i 3 ia3X3) e- 2/1 2 M nd

where

22 r 2 2 2 2 2(70)
S= r 1 + 2 + 3 (70)

Upon carrying out the integration with respect to C3, this becomes

2n p 26bU 2u2 02(1 n, O2 F 1 2 ii ~-3Xl/2)2
P t 1 y lim a2 (1 1la 1ea;
m,n 2  X1 2 2 2

x exp i(a2 2 + -12 1 M n d 1 d 2 (71).

It is shown in appendix A that

1 (2np/A)i 2  -(2 7p/A)i 2
Mm, n 2 epl, n, pt 1) + n 1

where , n' n, p are given by equation (A2). Inserting this into equation (71) and carry-

ing out the integration over C2 shows that
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- 7 p06bul u10(1 + 6n, O 2 2 22 1 2 -(a3k1/2)

m n a0 lim a .+
O r 2  ax 2 2
r

x [e - 1 2( a2 - 2 P / A ) 2/ 4 f e I / r l ) 2 - i a cl i Km, n,p d(I

+ e-12(a2X+2rp/A)2/4 e- Y/rl)2-il , n, p dC 1 (72)

But

e-  Ar 2 12 - i  1 m, n, p dC1

r212
expr - il erfc D - ial,

× erf I r (i " 4 2 ( A

2 r2PDUC - i w + alUe 2 Ut 2W2

U 21 W + i w + a l(1 - )U
(r2exp 2

2 4U
+c

f + i + alUc - + U 2 - 2

x erfe ir 2  f + +l(l -X)U 27Tp Ut c.c.
2U A

where c. c. denotes the complrex conjugate of the preceding expression. A similar ex-

pression holds for the integral over K, n, p It can be obtained from the preceding

equation by replacing p by -p. Hence, equation (72) can be written as
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Op 0 2 bU I (1+ 6n 0) 2
m,n crr 0

xlim 1 2 2 (1 1 13 (a3X/2)2 (73)
X-1 2 2  -2 1 3f , n m , n

where

-12(2n 2_ AW 'J D - ialX) sgn p]

rpm, n exp x )

t4 DU - io + a l U - p ] 2

cO)rU Wi' r f + i W + l1(l - X)U - (4)

+ 32 A(74)

S+ i c _2 PTP P 2
it1_+ 2- I 0 2

where al is the same as ot1 defined by equation (17), W(Z) is defined in refer-
ence 9 by

W(Z) e Z 2 erfc(iZ)

and

sgn(x) = if x> 0

-1 if x<0

Derivation of Final Sound Power Equation

Substituting equation (73) into equation (23) (with the upper sign) and using equa-

tions (17) and (58) show that
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S2P0UU2 2  1 + An . - (M - MtAm n 2

2 6km, n
4crr (All m and

n 0 with

k 2 >2K2, n)

_ rn 1 a2' 13 e-(nX/2b)2  75
X lim. _1 CV e- Z rp, n (75)

;k+ 1 1 2 aX 2 2t1) m0

p*o

where rPm, n is given by equation (74)m, n

2mr3

Am, n M 6 (76)
Mk + kin, n

and equations (17) and (70) show that

2 2  22m 2 2

DISCUSSION OF RESULTS

Equations (74) to (77) are the final results. They can be used to calculate the power

spectral density of the quadrupole sound emitted by a fan as a result of inlet turbulence.

In order to do this, it is necessary to specify the longitudinal correlation length 1 of

the turbulence in the direction transverse to the flow, the ratio r of the longitudinal

correlation length in the axial direction to the transverse longitudinal correlation length,

the mean square turbulence velocity u2
1 , the turbulence convection velocity Uc, and the

characteristic frequency wf of the moving-frame correlation. The parameters b, B,
A, and 6 = BA characterize the geometry of the fan. The remaining parameters depend

on the operating conditions of the fan. They are the tip speed Ut, the through-flow

(axial) velocity U, and the work coefficient 8. The work coefficient is a measure of the

loading on the fan.
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In most high-Reynolds-number turbulent flows the characteristic frequency wf of
the moving-frame turbulence correlation tensor is quite small compared with the fre-
quency U /1 of the turbulence observed in a fixed frame (Taylor's hypothesis). In this
case we can set wf equal to zero and the first term in equation (74) vanishes. Since
the second term is only weakly dependent on wf, it can be associated with noise gener-
ated by the time unsteadiness of the turbulence. The second term therefore represents
the generation of noise by the spatial nonuniformities and the convection of these non-
uniformities by the mean flow. With wf equal to zero, equation (74) becomes

2 2 m X 2 7r p 2I r 2 p u
" 2COrU 2 -21 AW 2U W + a1 (1 - X)U 2PUt00 rUc

m,n 2 exp

4+ alU t 2 + U 2

(78)

The function W(Z/c) of Z exhibits a peak at Z = 0 whose width is equal to 2a. Hence,
it follows from equation (78) (with X = 1) and equation (75) that the spectrum will exhibit
peaks at frequencies

Ut Ut
w= 2p -=2pB -= pBS2 for p= 1, 2,

where 6 2rUt/6 is the angular velocity of the rotor. Thus, equation (75) does indeed
predict tone production at the multiple of the blade passing frequency. It can also be
seen that the width of the tone is 4U /lr. The convection velocities of'the eddies are
probably nearly equal to the axial flow velocity U, which for most of the Quiet Fans is
nearly equal to one-half the speed of sound. Typical fan spectra measured at Lewis
exhibit tones which are of the order of 100 to 200 hertz in width. Hence, the turbulent
eddies must be of the order of 1 to 2 feet in length in order to produce such tones. Since
the most intense turbulence entering the fan is in the casing boundary layer, whose width
is considerably less than this, it is fairly unlikely that the turbulence is producing the
tones unless an extremely large amount of stretching of the eddies occurs. Thus, it has
been postulated that when a nontranslating fan is operating out doors, large-scale turbu-
lence shed from buildings and nearby structures is drawn into the fan and, due to the
large convergence of the mean streamline, the eddies become very elongated in the di-
rection of flow. In any event the turbulence could still contribute to the broad sidebands
which are invariably observed in the tones of fan spectra.

29



In figures 5 to 9, dimensionless acoustic spectra are plotted against dimensionless

frequency for various values of the design and turbulence parameters. Since the work

coefficient 0 and the turbulence intensity u1I/U2 enter equation (75) simply as multi-

plicative factors, we absorb these into the dimensionless acoustic spectrum. Since, as

we have indicated, most of the subsonic Quiet Fans operated at the Lewis Research Cen-

ter have an axial-flow Mach number of approximately 1/2, all the plots are drawn with

M = 0. 45. It is also reasonable to assume that the convection velocity U of the turbu-

lent eddies is equal to the axial-flow velocity U. All figures are drawn for this case.

In all plots except figure 9, wf is taken to be equal to 10- 4 c0/A. This is essentially

equivalent to putting it equal to zero in equation (74) (which amounts to using eq. (78)).

The effect of varying the axial correlation length of the turbulent eddies is illus-

trated in figure 5. It can be seen from figure 5(a) that when the correlation length I in

the transverse direction is as small as one-half the blade gap A and when the ratio r

of the axial correlation length to the transverse correlation length is less than 1/2, there

is virtually no evidence of tones. It is not at all unreasonable to suppose that much of

the turbulence entering a full-size fan (most of which is in the casing boundary layer) is

of this size. When either of the turbulence correlation lengths starts to become equal to

the blade gap, the spectrum rapidly begins to form humps at the blade passing frequency

and its harmonics. These humps are formed chiefly through a decrease in the sound

power in the region lying between the harmonics of the blade passing frequency, with the

level of the tones remaining relatively constant. The tones are quite broad until the

correlation length is of the order of several blade gaps. Figure 5(b) shows that far nar-

rower tones can indeed be produced by eddies which are 10 blade spacings long.

It can also be seen from figure 5 that the power in the tone at the second harmonic

of the blade passing frequency is nearly equal to (or in some cases greater than) the

power in the fundamental. For most fans tested at Lewis the second harmonic is

about 5 decibels lower than the fundamental. This is an indication that inlet turbulence

may nzt be the chief producer of tones in these fans (at least through the quadrupole

mechanism).

The effect on the acoustic spectrum of varying the blade rotational Mach number Mt
is illustrated in figure 6. It can be seen from figure 6(b) that when the eddies are small,

increasing Mt tends to increase the power radiated in the tones while leaving that ra-

diated at intermediate frequencies unchanged. There also appears to be a tendency to

shift the spectrum to higher frequencies as Mt increases.

In figure 7 the effect of varying the blade number B is shown, while figure 8 shows

the effect of varying the blade height b. It can be seen from these figures that there is

very little change in the shape of the spectra as these parameters vary and that doubling

B or b roughly doubles (i. e., increases by 3 dB) the sound power radiated at each fre-

quency. But the cross-sectional area of the fan is proportional to B X b. Hence, the

30



power radiated per unit cross-sectional area of the fan remains roughly unchanged as B

or b is varied. This tendency is observed in the Quiet Fans tested at Lewis.

Finally, figure 9 shows the effect of varying the moving-frame turbulence frequency

Wf. In most cases which occur in practice, wf /c 0 will be very nearly zero, and the

value of 10-1 used in figure 9 is much too large. However, this large value was chosen

so that the effect of this parameter will show up. It can be seen that increasing Wf

merely fills in the spectrum between the tones.

CONCLUDING REMARKS

Inlet turbulence can be a dominant source of fan noise and at the high subsonic Mach

number where current aircraft engine fans operate, it is quite possible that this noise is

being generated through a quadrupole mechanism. But, for the high-subsonic-Mach-

number regime, no quadrupole analysis of this noise source has been developed. The

present report is written to fill this gap. The numerical results exhibit a number of

features observed in actual fan spectra. However, they also show that, unless the tur-

bulent eddies become extremely elongated as they enter the inlet of the fan, this mech-

anism contributes mainly to the broadband noise spectrum. But there increasing evi-

dence that such elongation does indeed occur when the fan is not translating and that as

a result inlet turbulence is the dominant source of the pure tones. The present results

may be helpful in resolving this question.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, March 7, 1974,
501-04.
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APPENDIX A

EVALUATION OF M , n

For C1 < 0 equation (68) becomes

MP 2 f exp i(w + alU) - wf - U expm, n 2 4afpA) f

x (xp [2 (2 + Ut) + (U7 + i) + exp ( 2i + Ut) + /M (U + ()

+ -/Uc exp{ (w + alU ) + Wf -(2 )r U exp[( )]

x exp i [(2 + Ur) +()(UC + (1)]}+ exp ( i( 2 + Ut?) + +

x xp{(2)i [(2 + Utr) + 0)(UcT + ~ 1)} + exp i () 2 + (Mt) (UcT + t

Upon carrying out the integrations this becomes
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[x~i exp 2irip Mt)t

exp(2~ ?P [' 2

r n , n 2 4 u ( M N , O~t u cI L2T ' / r \ - + I + i + !tUe ' +\1T U)

expl 2 + exP(2it [ 2 + x~ 21i)~

U -W - \C/ ++!u - -r t )c i[ + l1uC + u + MmtIJC

PA )(92)(3r~ +1 YlU + !!P~ ] M,21(ff)'rU

__~ ~x 2xf.AL~~ e!)4 +_ 2x{(w~~~

+ exp'\/ f -+ -~ + ~ Ut +~ VI (27P1)/3r[C -2ip( + r ~uc'
uc 2) ( A Au MMfC f + uc (u + lu -

mxn 24r rL1  ipU) I~f~ I

-~ ~ u IIL f - + vUC\~ O + J + i +2pf+

L(02)r)UIfi[w +Y -'U U~r ( Mt Lc)] + !! 2UP u i[lc+A ( Uc)

exp~~'[ Utf~~ 2_

\ IAIc iw lc A 212 )A

w+~U- 2Ut0Mt~] (c

exp /32A W Df ~ )i[ ~c2 :ut.!)]

fIcU A2 0 2

exp 2+ (!,M2 ) ex 233



Hence, upon simplifying the results, we find that

Mm, n - exp[(2 ) m, n, p1 )  + exp - (~i 2 K, n, p()

(Al)

where

xp 2 1 exp + alU T U + W 1 <xp t + 
i+MMt U

MM NI 2MM 22

C2alu ut - 2 i \+ a 2ue

p 2(A2)

e"p 2 (2 + + al\A

3MM\ 2

[L2 lf f 2 0 2
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APPENDIX B

SYMBOLS

iA, n defined by eq. (76)

A0  cross-sectional area of y3 = Constant plane

B number of blades

b blade height

Cm, n defined by eq. (18)

C0  speed of sound

D (Pr + iMM 2 )/ 2

eij viscous stress tensor

f function of t or turbulence generating function

G Green's function

Hjl, H, H rotor velocity integrals, eqs. (35) and (36)

IW axial component of acoustic intensity spectrum

fam imaginary part

i

k wave number, W/c O

k n propagation constant, k2 - 2K2n, nm, n

Ljl rotor velocity correlations, defined in eq. (51)

1 turbulence correlation length in direction transverse to flow

M axial Mach number, U/cO

Mt rotor tip Mach number, Ut/cO

MP, n defined by eq. (68)m, n

n normal direction to wall

P(w) sound pressure spectrum

P n(W0) modes contributing to pressure spectrum

f (w) power spectrum

p pressure measured above ambient pressure
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p 0  ambient pressure

R mean radius of annular duct

Rijkl ,
Rij, k turbulence correlation tensors

Ri, jk' Rij

-ijkl total velocity correlation

M k moving-frame turbulence correlation tensor

ik spatial part of moving-frame turbulence correlation tensor

Re real part

r ratio of correlation length in axial direction to correlation length in trans-

verse direction

S duct surface

T large time interval

Ti Lighthill's stress tensor relative to moving frame

t time (observer)

U axial velocity of flow entering fan

Uc eddy convection velocity

Ur relative velocity, U + U2

Ut  rotor blade-row velocity

ui  turbulence velocity

u2  mean square axial turbulence velocity

V spectrum of axial acoustic velocity, vl

Vi  rotor velocity components relative to blade

Vi  fluid velocity, acoustic velocity, i = 1, 2, 3

v0  constant reference velocity (complex)

v v i -i U

W(z) e- erfc(-iz)

w phase-locked rotor velocity field

X, Xi  coordinate system fixed to blades
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xi , x coordinates of observation point

Y17 1' "2' (3 + 73)/21

y, Yi coordinates of source point

Z X1 + iPrX2

z ?1D + iq2

a i  same as al

a defined by eq. (17), i = 1, 2, 3

a 0  defined by eq. (58)

-2
"'2 defined by eq. (70)

ai defined by eq. (69), i = 1, 2, 3

1 -M
2

r 1 - (Ur/c0)2

rm, n inner product of duct eigenfunctions

P, n defined by eq. (74)m, n

r 0  circulation

Y stagger angle

A interblade spacing

A0  defined by eq. (40)

6 transverse duct length, BA

ij Kronecker delta

6(x) delta function

ti, 5 turbulence moving-frame coordinates

i 7' '7i' rotor-locked coordinate system

0 work coefficient of rotor, -Aw 2/Ut

Km, n eigenfunction for transverse modes defined in eq. (9)

X parameter which approaches unity

Xm, n defined by eq. (22)

V(7) region of duct external to blades
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, i separation coordinate ' -

p' acoustic density fluctuation

p0  average density

7 time (source)

-m, n duct eigenfunctions

Q shaft rotational frequency, 2nUt/6

m, defined by eq. (24)

OP, n defined by eq. (57)

W frequency

Wf characteristic frequency of turbulence

Subscripts:

i integer 1, 2, 3

j integer 1, 2, 3

k integer 1, 2, 3

1 integer 1, 2, 3

m integer 0, ±1, ±2, .

n integer 0,1,2, . .

p integer ±1, 2, . .

q integer ±1, ±2, . .

Superscripts:

(-) complex conjugate or time average

Smeasured relative to a coordinate system moving with flow
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Figure 1. - Branch cut for k2 
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Figure 2. - Duct cross section.
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Figure 3. - Configuration of fan in rectangular geometry.
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Figure 4. - Blade-oriented coordinate system.
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(a) Turbulence correlation length in direction transverse to flow equal to
one-half interblade spacing, 1 1/2 A.
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(b) Turbulence correlation length in direction transverse to flow equal to
interblade spacing, I = A.

Figure 5. - Effect of eddy axial correlation length on acoustic spectra.
Number of blades, B, 30; ratio of blade height to interblade spacing,
blA, 4; axial Mach number, M, 0.45; rotor Mach number, Mt,
0.8; turbulence frequency parameter, wfAlco, 10-4

.
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(a) Turbulence correlation length in direction transverse to flow equal
aJ to one-half interblade spacing, 1 1/2 A.
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(b) Turbulence correlation length in direction transverse to flow equal
to interblade spacing, I = A.

Figure 6. - Effect of rotor tip Mach number on acoustic spectra. Number
of blades, B, 30; ratio of blade height to interblade spacing, blA, 4;
axial Mach number, M, 0.45; eddy correlation length ratio, r, 1; tur-
bulence frequency parameter, wfA/lc, 10- 4
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(b) Turbulence correlation length in direction transverse to flow equal to
interblade spacing, I = A.

Figure 7. - Effect of blade number on acoustic spectra. Ratio of blade
height to interblade spacing, blA, 4; axial Mach number, M, 0.45;
rotor Mach numoer, Mt, 0.8; eddy correlation length ratio, r, 1;
turbulence frequency parameter, wfAlcO, 10-4.
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N. (a) Turbulence correlation length in direction transverse to flow equal to
one-half interblade spacing, 1 = 1/2 A.
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(b) Turbulence correlation length in direction transverse to flow equal to
interblade spacing, I = A.

Figure 8. - Effect of blade height on acoustic-spectra. Number of blades,
B, 30; axial Mach number, M, 0.45; rotor Mach number, 0.8; eddy
correlation length ratio, r, 1; turbulence frequency parameter,
wf A/lco, 10-4
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Figure 9. - Effect of turbulence frequency (moving frame) on acoustic

spectra. Number of blades, B, 30; ratio of blade height to interblade
spacing, b/A, 4; axial Mach number, M, 0.45; rotor Mach num-
ber, Mt, 0.8; turbulence correlation length in direction transverse
to flow, 1, 1; eddy correlation length ratio, r, 1.
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