NASA TECHNICAL NOTE

VASA TN D-7638

NASA TN D-7638

CASE FILE COPY

PRESSURANT REQUIREMENTS FOR DISCHARGE OF LIQUID METHANE FROM A 1.52-METER- (5-FT-) DIAMETER SPHERICAL TANK UNDER BOTH STATIC AND SLOSH CONDITIONS

by Richard L. DeWitt and Thomas O. McIntire Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MAY 1974

1. Recipient No. 2. Government Accession No. 3. Recipient's Catalog No. 4. Tits and Subtle PHESSURANT REQUIREMENTS FOR DISCHARGE OF LIQUID 8. Performing Organization Code 1. ALL TANK UNDER BOTH STATIC AND SLOSH CONDITIONS 8. Performing Organization Report No. 8. Performing Organization Report No. 2. Author(4) 7. Author(4) 8. Performing Organization Report No. 8. Performing Organization Report No. 3. Author(4) 6. Performing Organization Report No. 8. Performing Organization Report No. 5. Performing Organization News and Address 6. Performing Organization Report No. 1. Source and Aeronautics and Space Administration 10. Work Unit No. 12. Source and Aeronautics and Space Administration 11. Type of Report and Period Covered 12. Source and Aeronautics and Space Administration 13. Type of Report and Period Covered 13. Supplementary Notes 14. Source Report and Period Covered 14. Aberract Pressurized expulsion tests were conducted to determine the effect of various sphysical parameters and parameters with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurat requirements orizous sloba Recitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions because of the analytical program agreed well with the actual pre	·····			
4. Tite and Subtrite PRESSURANT REQUIREMENTS FOR DISCHARGE OF LIQUID METHANE FROM A 1, 52-METER- (5-FT-) DIAMETER SPHER- (CAL TANK UNDER BOTH STATIC AND SLOSH CONDITIONS 5. Reforming Organization Code 2. Authoridy 6. Performing Organization Report No. E-7687 6. Performing Organization Report No. E-7687 3. Authoridy 10. Work Unit No. E-7687 10. Work Unit No. E-7687 10. Work Unit No. E-7687 4. Torganization Report and Address Lewis Research Center 10. Work Unit No. E-7687 10. Work Unit No. E-7687 11. Contract or Grant No. Cleveland, Ohio 44135 11. Contract or Grant No. 11. Contract or Grant No. 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546 13. Type of Report and Period Covered Technical Note 14. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546 13. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 14. Sponsoring Agency Code 16. Adstract Pressurized expulsion tests were conducted to determine the effect of various physical param- eters on the pressurant gas (methane, helium, and hydrogen show that the prediction of the analytical program agreed well with the adrul pressurant requirements for static tank expul- sions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissorte in liquid methane. Under slosh conditions, a pronounced increase in ga	1. Report No. NASA TN D-7638	2. Government Accession No.	3. Recipient's Catalo	g No.
METHANE FROM A 1. 52-METER- (5-FT-) DIAMETER SPHER- ICAL TANK UNDER BOTH STATIC AND SLOEH CONDITIONS 6. Performing Organization Report No. E-7687 Author(a) 0. Work Unit No. E-7687 10. Work Unit No. E-7687 * Performing Organization Name and Address Lewis Research Center 10. Work Unit No. E-7687 10. Work Unit No. E-7687 * National Aeronautics and Space Administration Cleveland, Ohio 44135 11. Contract or Grant No. 11. Contract or Grant No. 12. Sponoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546 13. Type of Report and Period Covered Technical Note 15. Supplementary Notes 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 14. Sponsoring Agency Code 16. Aburset Pressurized expulsion tests were conducted to determine the effect of various physical param- eters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter - (5-f-1) diameter spherical tank and to com- pare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements for static tank experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expul- sions. The analytical program could not be used for gaseous nitrogen expulsions because of the analytical program agreed well with tha durid sphydrogen show that the predictions, a prono	4. Title and Subtitle PRESSURANT REQUIREMENTS FOR DISCHARGE OF LIQUID		5. Report Date MAY 1974	
2. Authorid Richard L. DeWitt and Thomas O. McIntire 8. Performing Organization Report No. E-7687 9. Performing Organization Name and Address E-7687 10. Work Unit No. 502-24 11. Contract or Grant No. 502-24 12. Spontoring Agency Name and Address 13. Type of Report and Period Covered Technical Moto 12. Spontoring Agency Name and Address 13. Type of Report and Period Covered Technical Note 13. Supplementary Notes 14. Sponsoring Agency Code 14. Start Pressurized expulsion tests were conducted to determine the effect of various physical param- eters on the pressurant gas (methane, helium, hydrogen, and mitrogen) requirements during the expulsion of liquid methane from a 1.52-meter - (5-ft-) diameter spherical tank and to com- pare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slobs excitation frequencies and amplitudes, both with and without slobs suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expul- sions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slobs conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions. <t< td=""><td colspan="2">METHANE FROM A 1.52-METER- (5-FT-) DIAMETER SPHER- ICAL TANK UNDER BOTH STATIC AND SLOSH CONDITIONS</td><td>6. Performing Organ</td><th>ization Code</th></t<>	METHANE FROM A 1.52-METER- (5-FT-) DIAMETER SPHER- ICAL TANK UNDER BOTH STATIC AND SLOSH CONDITIONS		6. Performing Organ	ization Code
9. Performing Organization Name and Address 10. Work Unit No. 502-24 Lewris Research Center 11. Contract or Grant No. National Aeronautics and Space Administration 13. Type of Report and Period Covered Technical Note 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Technical Note 15. Supplementary Notes 14. Sponsoring Agency Code 16. Astract Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and mitrogen) requirements during the expulsion of liquid methane from a 1.52-meter (5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nethane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions. 17. Key Words (Suggested by Author(d)) 18. Distribution Statement Unclassified 21. No. of Page 18. Security Classif. (of this report) 20. Security Classif. (of this perior) 22. Price*	7. Author(s) Richard L. DeWitt and Thomas O. McIntire		8. Performing Organi E-7687	zation Report No.
11. Contract or Grant No. National Aeronautics and Space Administration Cleveland, Ohio 44135 12. Sponoring Agency Name and Adress National Aeronautics and Space Administration Washington, D. C. 20546 15. Supplementary Notes	9. Performing Organization Name and Address		10. Work Unit No. 502–24	
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Technical Note 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1. 52-meter - (5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions, 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Unclassified - unlimited 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Unclassified - unlimited 17. Key Words (Suggested by Aut	National Aeronautics and Space Administration		11. Contract or Grant	t No.
National Aeronautics and Space Administration Washington, D.C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes	Cleveland, Ohio 44135 12. Sponsoring Agency Name and Address		13. Type of Report a Technical No	nd Period Covered ote
15. Supplementary Notes 16. Abstract Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter - (5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expul-sions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions. 17. Key Words (Suggested by Author(a) Aircraft fuel systems; Cryogenic propellant; Cryogenic rocket propellant; Fuel systems; Fuel tank pressurization; Puel tank pressur; Fuel tank pressurization; Fuel tank pressurization; Propellant transfer; Rocket propellants; Liquid sloshing; Methane; Pressurization; Propellant transfer; Rocket propellants 18. Security Cassified 20. Security Cassified 21. No. of Pages 10.6 22. Price* \$4.25	National Aeronautics and Space Administration Washington, D.C. 20546		14. Sponsoring Agenc	y Code
16. Abstract Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter- (5-ft-) diameter spherical tank and to compare results with those predicted by an analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Aircraft fuel systems; Cryogenic propellant; Erul systems; Fuel tank pressurization; Fuel tank pressurization; Fuel tank pressurization; Fuel tank pressurization; Statement, Iuquid sloshing; Methane; Pressurization; Fuel tank pressurization; Propellant; Suggested by Author(s) 19. Security Classified 20. Security Classified 21. No. of Pages 12. Price* 19. Security Classified 20. Security Classified 21. No. of Pages 12. Price*	15. Supplementary Notes	**************************************	L	
16. Abstract Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas (methane, helium, hydrogen, and nitrogen) requirements during the expulsion of liquid methane from a 1.52-meter - (5-ft-) diameter spherical tank and to compare results with those predicted by analytical program. Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane. Under slosh conditions, a pronounced increase in gaseous methane requirements was observed relative to results obtained for the static tank expulsions. Slight decreases in the helium and hydrogen requirements were noted under similar test conditions. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 19. Distribution Statement 18. Distribution Statement Unclassified 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pager 22. Price* 19. Security Classified 20. Security Classified 21. No. of Pager 22. Price* \$4, 25				
17. Key Words (Suggested by Author(s)) Aircraft fuel systems; Cryogenic propellant; Cryogenic rocket propellant; Fuel systems; Fuel tank pressurization; Fuel tank pressur- ization system; Liquid rocket propellants; Liquid sloshing; Methane; Pressurization; Propellant transfer; Rocket propellants 18. Distribution Statement Unclassified - unlimited 19. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified 21. No. of Pages 106 22. Price* \$4.25	Pressurized expulsion tests we eters on the pressurant gas (m the expulsion of liquid methane pare results with those predict methane, helium, and hydrogen and amplitudes, both with and y results when using gaseous me analytical program agreed well sions. The analytical program large quantities of nitrogen whi pronounced increase in gaseous for the static tank expulsions. noted under similar test condition	are conducted to determine the effec- ethane, helium, hydrogen, and nitra from a 1.52-meter-(5-ft-) diameter ed by an analytical program. Also in pressurant requirements of vario without slosh suppressing baffles in thane, helium, and hydrogen show with the actual pressurant require could not be used for gaseous nitra ch can dissolve in liquid methane. Is methane requirements was observe Slight decreases in the helium and ions.	et of various physicogen) requirements studied were the us slosh excitation the tank. The ethat the prediction ements for static ogen expulsions b Under slosh con- ved relative to re- hydrogen requir	sical param- nts during k and to com- e effects on on frequencies experimental ons of the tank expul- because of the aditions, a esults obtained ements were
19. Security Classif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. Price*Unclassified106\$4.25	 17. Key Words (Suggested by Author(s)) Aircraft fuel systems; Cryoger Cryogenic rocket propellant; F Fuel tank pressurization; Fuel ization system; Liquid rocket p Liquid sloshing; Methane; Pres Propellant transfer; Rocket propellant 	ic propellant; uel systems; tank pressur- propellants; ssurization; ppellants	nt unlimited	CAT.27
	19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 106	22. Price* \$4.25

à

* For sale by the National Technical Information Service, Springfield, Virginia 22151

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	2
SYMBOLS	3
APPARATUS AND INSTRUMENTATION	6
Facility	6
Test Tank	8
Pressurant Gas Injector Geometry	10
Test Tank Instrumentation	10
Concentrations.	14
PROCEDURE	16
DATA REDUCTION	17
Physical Description of Problem	17
Mass Balance	17
Pressurant gas added $M_{G_{i-f}}$	17
Ullage mass. \ldots	18
Mass transfer.	19
Energy Balance	19
Energy input by pressurant gas inflow	20
Energy leaving by liquid outflow	20
Energy input from environment	20
Change in system energy	21
Change in ullage energy	21
Change in liquid energy	21
Change in wall energy	22
Total energy change of system	22
RESULTS AND DISCUSSION	23
Static Tank Expulsions	23
	23
Methane pressurant,	24
GHe and GH_2 pressurants \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	30
Nitrogen pressurant	42
Slosh Expulsions, Unbaffled Tank	45
General	45

	Page
Methane pressurant ••••••••••••••••••••••••••••••••••••	. 45
GHe and GH_2 pressurants	52
Slosh Expulsions, Baffled Tank	59
General	59
Methane pressurant	60
GHe pressurant	64
Variable Amplitude Slosh With and Without Baffles	68
General	68
Unbaffled tank	69
Baffled tank	73
Partial Tank Expulsions	77
General	77
5 to 50 percent ullage expulsions	77
50 to 95 percent ullage expulsions \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	78
SUMMARY OF RESULTS	79
Static Tank Expulsions	79
Slosh Expulsions at Natural Frequency and ± 2.23 -Centimeters (± 0.88 -in.)	
Amplitude With and Without Baffles	80
Slosh Expulsions With Variable Amplitude and Frequency Excitation With	
and Without Baffles	81
Partial Expulsions, Static Tank	82
REFERENCES	82

l

PRESSURANT REQUIREMENTS FOR DISCHARGE OF LIQUID METHANE FROM A 1. 52-METER- (5-FT-) DIAMETER SPHERICAL TANK UNDER BOTH STATIC AND SLOSH CONDITIONS by Richard L. DeWitt and Thomas O. McIntire Lewis Research Center

SUMMARY

Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas requirements during the expulsion of liquid methane (LCH₄) from a 1.52-meter- (5-ft-) diameter spherical tank. Methane, helium, hydrogen, and nitrogen were used as pressurant gases. The necessary quantities of these gases to expel 90 percent of the LCH₄ propellant were studied as a function of expulsion time at a nominal operating pressure of 34.47×10⁴ newtons per square meter (50 psia) using nominal inlet gas temperatures of 222 and 333 K (400[°] and 600[°] R). Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies and amplitudes, both with and without slosh suppressing baffles in the tank. The experimental results for the static tank (nonslosh) expulsions were compared with results predicted by a previously developed analytical program.

The experimental results when using gaseous methane, helium, and hydrogen show that the predictions of the analytical program agreed well with the actual pressurant requirements for static tank expulsions. The analytical program could not be used for gaseous nitrogen expulsions because of the large quantities of nitrogen which can dissolve in liquid methane.

Unbaffled tank sloshing caused an increase in the amount of gaseous methane needed for expulsion. A slight decrease in requirements was encountered using gaseous helium and hydrogen because of LCH_A propellant evaporation.

The addition of slosh suppressing baffles resulted in a further increase in the amount of gaseous methane pressurant. The quantities of noncondensible helium fell between the static tank and the unbaffled slosh expulsion requirements.

INTRODUCTION

During the past several years, a great deal of effort has been devoted to the problems associated with the pressurized discharge of a cryogenic liquid from a tank. The main objectives of these efforts have been toward optimization of a propellant tank pressurization system. One phase of this optimization is a precise determination of pressurant requirements for any given set of operating parameters (e.g., tank pressure, type and temperature of pressurant gas, liquid outflow rate, static tank or slosh conditions, etc.). This knowledge would allow the design of a pressurization gas storage system that carried only the weight of gas necessary to accomplish the mission.

Several investigators have developed analyses (e.g., refs. 1 and 2) which attempt to predict the pressurant gas requirements during the pressurized discharge of a cryogenic fluid from a static tank. These analyses, however, are either burdened with simplifying assumptions or involve parameters and terms about which little is generally known ''a priori.'' Because of these limitations the validity of the analytical results has to be verified largely by correlations of experimental results. The dependence on experimental results becomes even greater when pressurant gas requirement predictions are considered for tank expulsions under liquid slosh conditions. No analytical effort was found in the literature to even generally predict pressurant requirements for this case.

Previous investigators at Lewis Research Center (refs. 3 to 7) have studied pressurant requirement predictions for expulsion of liquid hydrogen from static tanks of varying size and shape. The analysis of reference 1 was revised and extended (see appendixes A, B, and C in ref. 4) to serve as a correlating tool for the experimental data.

Considerable effort has recently been devoted to studying the future use of liquid methane (LCH_4) in land, air, and space vehicle applications because of its high density and handling characteristics. However, it was not known if the results of the previous liquid hydrogen expulsion investigations could be used for the case of gaseous methane (GCH_4) pressurant requirement predictions. Further, no data at all has been published with regard to pressurant requirement magnitudes and trends as functions of slosh frequencies and amplitudes imposed on the test tanks.

Therefore, an investigation was conducted at Lewis Research Center to experimentally determine the effect of various physical parameters on the pressurant gas requirements during the expulsion of LCH_4 from a 1.52-meter- (5-ft-) diameter spherical aluminum tank. The primary objective of these tests was to obtain experimental results (pressurant mass requirements as well as heat and mass transfer data) for static tank expulsions and correlate them with the analysis detailed in reference 4. Both complete and partial tank expulsions were conducted toward accomplishment of this objective. The second objective of the program was to obtain experimental data for expulsions under liquid slosh conditions and analyze these to determine the major reasons for the magnitudes and trends of the results. All tests were performed at a nominal tank pressure

of 34.47×10^4 newtons per square meter (50 psia). A diffusing-type pressurant gas injector was used for all tests. Four different pressurant gases were used during these tank expulsion studies. The main test variables were as follows:

Variable	Range			
Static tank expulsion				
Pressurant gas Inlet gas temperature, K (^O R) Liquid outflow rates, kg/sec (lb/sec) Initial ullage (complete expulsions), percent Initial ullage (partial expulsions), percent	CH ₄ , He, H ₂ , and N ₂ 222 and 333 (400 and 600) 1.01 to 2.93 (2.22 to 6.46) 5 5 or 50			
Sloshing tank expulsion				
Pressurant gas Inlet gas temperature, K (^O R) Liquid outflow rates, kg/sec (lb/sec) Initial ullage (complete expulsions), percent Internal tank hardware	CH_4 , He, and H_2 222 and 333 (400 and 600) 0.99 to 3.01 (2.170 to 6.630) 5 bare three concentric ring baffles			
Slosh excitation frequency { Slosh excitation amplitude, cm (in.)	0.716 Hz (constant) Natural throughout expulsion 0.0 to ± 2.23 (0.0 to ± 0.88)			

SYMBOLS

- A₀ constant in Benedict-Webb-Rubin equation, $(atm)(m^6)/[(kg)(mole)]^2$; (lb)(ft⁴)/ [(lb)(mole)]²
- a constant in Benedict-Webb-Rubin equation, $(atm)(m^9)/[(kg)(mole)]^3$; $(lb)(ft^7)/[(lb)(mole)]^3$
- B_0 constant in Benedict-Webb-Rubin equation, $m^3/(kg)(mole)$; $ft^3/(lb)(mole)$
- b constant in Benedict-Webb-Rubin equation, $m^6/[(kg)(mole)]^2$; $ft^6/[(lb)(mole)]^2$
- C orifice coefficient
- $\begin{array}{c} C_{o} \quad \text{constant in Benedict-Webb-Rubin equation, } (atm)(K^{2})(m^{6})/[(kg)(mole)]^{2}; \\ (lb)(^{O}R^{2})(ft^{4})/[(lb)(mole)]^{2} \end{array}$
- c constant in Benedict-Webb-Rubin equation, $(atm)(K^2)(m^9)/[(kg)(mole)]^3$; (lb)(${}^{^0}R^2$)(ft⁷)/[(lb)(mole)]³

 c_p specific heat at constant pressure, J/(kg)(K); $Btu/(lb)(^{O}R)$

°v	specific heat at constant volume, $J/(kg)(K)$; $Btu/(lb)(^{O}R)$
D	orifice diameter, m; ft
F	molecular fraction
g	gravity acceleration, m/sec^2 ; ft/sec ²
h	specific enthalpy, J/kg; Btu/lb
М	mass, kg; lb
М	mass flow rate, kg/sec; lb/sec
ΔM	differential mass, kg; lb
m	molecular weight
N	number of volume segments
Р	pressure, N/m ² or atm; lb/in. ² or lb/ft ²
ΔP	differential pressure, N/m ² ; lb/in. ² or lb/ft ²
∆ P*	orifice ΔP , N/m ² ; lb/in. ²
Q	heat transfer, J; Btu
Ġ	heat transfer rate, J/sec; Btu/sec
R	gas constant, $(atm)(m^3)/(kg)(mole)(K)$; $(psfa)(ft^3)/(lb)(mole)(^{O}R)$
Т	temperature, K; ^O R
t	time, sec
Δt	time increment, sec
U	internal energy, J; Btu
ΔU	differential energy, J; Btu
v	volume, m ³ ; ft ³
ΔV	volume increment, m ³ ; ft ³
$\overline{\mathbf{v}}$	velocity, m/sec; ft/sec
v	specific volume, m ³ /kg; ft ³ /lb
W	work, J; Btu
x	percent of gas by weight
Y	expansion factor
Z	elevation, m; ft
α	constant in Benedict-Webb-Rubin equation, $m^9/[(kg)(mole)]^3$; $ft^9/[(lb)(mole)]^3$

- γ constant in Benedict-Webb-Rubin equation, $m^6/[(kg)(mole)]^2$; $ft^6/[(lb)(mole)]^2$
- δ finite increment
- μ specific internal energy, J/kg; Btu/lb
- ρ density, kg/m³; lb/ft³

 $\overline{\rho}$ effective density of gas in volume segment, (kg)(mole)/m³; (lbm)(mole)/ft³ Subscripts:

- BL bulk liquid
- cond condensed
- D dissolved gas
- e expulsion period
- f final state or condition
- G gas added to tank
- GCH_{4} gaseous methane
- h hold period
- i initial state or condition
- L liquid
- n summing index
- P analytical prediction
- r ramp period
- SG saturated gas
- SL saturated liquid
- T total quantity
- t transferred
- U ullage
- w wall
- X experimental
- 1 component designation

APPARATUS AND INSTRUMENTATION

Facility

All tests were conducted inside a 7.61-meter - (25-ft) diameter spherical vacuum chamber (fig. 1) to reduce the external heat leak into the propellant tank to a low value. The vacuum capability of this chamber was approximately 8×10^{-7} torr. A general schematic of the test tank and associated equipment is shown in figure 2. A heat exchanger and blend valve subsystem capable of delivering pressurant gas at temperatures of 167 to 405 K (301° to 729° R) were used to control pressurant gas inlet temperature. The three-way bleed valve, immediately upstream of the test tank, was used prior to an expulsion to temperature condition the pressurizing gas and lines without contaminating the tank ullage. The LCH₄ outflow rate was controlled by remotely operated variable flow valves. The propellant outflow from the tank was returned to a storage Dewar. A ramp generator and control valve were used for controlling the initial rate of pressurization of the propellant tank. A closed loop pressurant gas flow control circuit was used to maintain constant tank pressure during the expulsion period.

Tank sloshing was accomplished using a hydraulically operated shaker controlled by a function generator which specified amplitude and frequency. The shaker was of sufficient size that the motion was independent of the tank and its contained propellant.

Liquid methane outflow rates were measured using a turbine-type flowmeter located

Figure 1. - 7.61-Meter- (25-ft-) diameter vacuum chamber.

Figure 2. - General schematic of facility.

CD-11613-27

in the transfer line. The flowmeter was calibrated with water and the calibration projected for LCH_4 . Pressurant gas inlet flow rates were determined by the use of an orifice located in the pressurant supply line. Tank, line, and differential pressures were measured with bonded strain-gage-type transducers.

Test Tank

The experimental work was conducted using a 1.52-meter- (5-ft-) diameter spherical aluminum tank. Figure 3 is a photograph of the test tank installed inside the vacuum chamber; and figure 4 is a closeup view of the same installation. The tank wall had an average thickness of 0.762 centimeter (0.30 in.). The lid housed the pressurant inlet and vent pipes and the electrical connections for all internal tank instrumentation. The lid, made of stainless steel, was 0.457 meter (18 in.) in diameter and 3.18 centimeters (1.25 in.) thick. The inner surface of the lid conformed to the contour of the tank and was covered with a 0.63 centimeter (0.25 in.) thick layer of cork to reduce absorption

Figure 3. - 1.52-Meter- (5-ft-) diameter tank installed in vacuum chamber.

Figure 4. - Closeup of installed 1.52-meter- (5-ft-) diameter tank.

of heat from the pressurant gas in the ullage.

A view port and television camera were installed on the tank to allow observation of any physical processes occurring in the tank. Lighting of the tank interior was accomplished using 250-watt light bulbs mounted on the inner surface of the tank wall. Because of a fogging problem, as well as extraneous heating of the ullage and the liquid propellant, visual observation was limited to only short periods during the expulsion tests.

For a selected group of expulsion tests, slosh suppressing baffles were mounted inside the test tank. Of the three concentric ring baffles, the center one was located in the horizontal plane marking the middle of the tank; the upper and lower baffles were located 21.51 centimeters (8.47 in.) above and below the middle baffle.

The test tank was suspended, at its horizontal midpoint, by four flexure plates attached to the twin support rails of the environmental chamber. During slosh runs, the hydraulically operated shaker moved the test tank along a horizontal centerline directed from the front of the chamber to the back. Slosh input amplitudes were such that vertical movement of the tank during a slosh cycle was considered negligible. A hemisphere injector (fig. 5) was used for all tests reported herein. This particular geometry was selected because it injects the pressurant uniformly in all directions into the ullage volume. This flow pattern minimizes ullage gas mixing and reduces heat transfer to the surface of the liquid propellant. The use of this injector was also encouraged by the favorable comparisons obtained between analytical predictions and experimental results during outflow testing conducted using liquid hydrogen (refs. 3 to 7).

Figure 5. - Injector geometry for hemisphere injector. Open area, 176.8 square centimeters (27. 4 in.²). (All dimensions are in cm (in.).

Test Tank Instrumentation

Ullage gas temperatures, together with gas concentration measurements, were used to determine the mass and energy content of the tank ullage. Temperatures were measured with thermopiles and with platinum resistance sensors. Internal tank instrumentation is illustrated in figure 6.

A typical three-element thermopile unit and its associated wiring schematic are illustrated in figure 7(a). The thermopile units were constructed of 0.202 millimeter (0.008 in.) Chromel constantan wire. Vertical ullage gas temperature profiles were obtained by stacking the individual thermopile units as shown in figure 7(b). The support structure was made of thin perforated stainless steel to minimize heat conduction between thermopile stations as well as to minimize the total heat capacity of the rake. The spac-

Figure 6. - Test tank instrumentation. (All dimensions are in cm (in.).)

ing between the reference and measuring levels for the top 30 thermopile units of the vertical rake was 3.8 centimeters (1.5 in.). The three units at the bottom of the rake had a spacing of 2.5 centimeters (1.0 in.). The purpose of the closer spacing was to obtain a better definition of ullage gas temperature near the interface at the end of expulsion.

Platinum resistance sensors, which were located at least every eighth station starting from the bottom of the rake, sensed the absolute temperature at their location and provided a reference for the thermopile above the location.

The horizontal instrumentation was composed solely of platinum resistance sensors spaced a maximum distance of 12.70 centimeters (5.00 in.) apart in a radial direction. Two platinum resistance sensors were used at most locations to measure liquid and/or gas temperatures for the ranges 105.6 to 133.3 K (190° to 240° R) and 39 to 278 K (70° to 500° R). These dual sensors permitted more accurate measurement of liquid and gas temperatures than could be achieved with one sensor covering the entire range. When ullage gas temperatures were higher than the upper limit of the 39 to 278 K (70° to

500⁰ R) range, the range was extended by using a data channel of greater millivolt capacity. This ''span selection'' capability of the platinum resistance sensors also allowed close temperature measurements to be made in the liquid. This capability was needed inasmuch as a small error could influence the energy balance because of the high heat capacity of the liquid methane propellant. Figure 8 is a photograph of the vertical and horizontal temperature sensor rakes installed inside the test tank.

The initial static temperature profile near the liquid surface was determined by a fixed interface rake located either at the 5 or 50 percent level, depending on the type of run. This rake contained nine platinum resistance sensors spaced 0.76 centimeter (0.3 in.) apart. The normal range of these sensors was 105.6 to 133.3 K (190[°] to 240[°] R) over a 10-millivolt span. An accompanying set of liquid level sensors was used to verify that the initial propellant level was within range of the interface temperature rake. The final level of the propellant, at the end of expulsion, was also determined using a set of fixed hot wire level sensors.

Platinum resistance sensors were also used to determine tank wall temperatures at 14 locations and the liquid methane temperature at the flowmeter. In addition, there were two copper-constantan thermocouples on the neck of the tank and three on the tank lid.

Inlet pressurant gas temperatures were measured by a copper-constant thermocouple mounted in the gas diffuser pipe at a location inside the tank.

All measurements were recorded on a high-speed digital system at a rate of 3125

Figure 8. - Major internal tank instrumentation rakes.

channels per second. Each channel was sampled every 0.064 second.

Concentrations

The concentration of ullage gas at five positions in the tank (fig. 6) was obtained by a gas sampling and analyzer system. A general schematic of this system is shown in figure 9. The sampling tubes had 0.157-centimeter (0.062-in.) outside diameters with a wall thickness of 0.030 centimeter (0.012 in.). To prevent liquid from entering the sampling tubes, a small helium gas purge was maintained in the tubes that were initially submerged in the liquid methane.

The operation of a typical sampling tube was as follows: After liquid passed the entrance of the sampling tube (during expulsion), the helium purge was stopped. The tank pressure then forced the gas sample through the tube to a flow regulator which maintained a flow of 500 cubic centimeters per minute into the thermal analyzer. The analyzer then compared the thermal conductivity of the ullage gas sample with that of 100 percent pure pressurant gas (also entering the analyzer at 500 cu cm/min). The output of the analyzer was continuously recorded on a direct reading oscillograph. The ullage gas concentration was then obtained by comparing the analyzer output with the output previously obtained when using known sample concentrations.

An attempt was made to determine the concentration of pressurant gas which dissolved into the liquid methane propellant. A general schematic of this system, which had a capacity of five discrete samples, is also shown in figure 9. The operation of taking a liquid sample was as follows: At some preselected time after the beginning of expulsion, the solenoid valve in a given sample line would be opened for approximately 2 seconds admitting some of the contaminated liquid methane into an electrically heated evaporating chamber. After pressure in the chamber had risen, indicating some sample vaporization, part of the gas was permitted to pass into an evacuated sample bottle. The remaining gas was then vented from the evaporation chamber. Samples were taken throughout the course of the test program. However, because of valve leakage and fractionation of the vaporized liquid, analysis of the sample bottles gave only a rough qualitative measure of liquid contamination. Since the data obtained were not usable for detailed analysis of dissolved pressurant, they will not be discussed further.

Figure 9. - Ullage gas and liquid propellant sampling systems.

PROCEDURE

The spherical test tank was filled from the bottom to approximately a 2 percent ullage condition. It was then topped off as necessary while the tank lid and peripheral support hardware reached steady-state temperatures.

Temperature conditioning of the pressurant inlet line was then started. Gas flow was established through the heat exchanger loop, through the control valves and orifice arrangement, and then up to the three-way bleed valve at the test tank inlet from where it was vented to the outside as shown in figure 2. The temperature control circuit shown in figure 2 was used to get the desired pressurant gas temperature level during the flow period. When the gas temperature conditioning was almost complete, the liquid level in the test tank was adjusted to a desired value (\approx 5 percent ullage) by either topping or slow draining. The hot wire liquid level sensors were used to check the propellant level. The pressurant gas flow was then stopped, and the test tank was vented in preparation for an expulsion run. The automatic controllers and timers were preset with all the desired run and operating conditions (i.e., tank pressure level, length of ramp period, length of hold period, liquid outflow valve position, start time of the data recording equipment, slosh amplitude and frequency, etc.).

After starting the data recording equipment, the next step of the automatic run sequence was to take electrical calibrations on all pressure transducers. Immediately following this, the test tank was pressurized over a predetermined time period to the nominal operating pressure of 34.47×10^4 newtons per square meter (50 psia). Tank pressure was held constant for almost 25 seconds to stabilize internal temperatures. The tank expulsion period was then started. If the expulsion was to be made under slosh conditions, tank motion was initiated concurrent with the beginning of propellant outflow. During the expulsion, the pressurant gas temperature could be controlled either manually or by the closed loop automatic temperature control circuit. When the desired final propellant level in the tank had been reached, the expulsion was terminated. Hot wire liquid level sensors were used to determine this point in the expulsion period. The automatic sequencer then stopped the data recording equipment. The tank was vented and refilled in preparation for another test.

A set of partial tank expulsions was made during which only half the liquid propellant in the tank was expelled. The first set of these runs dealt with expulsion of only the upper half of the tank contents. The only difference between these runs and full tank expulsions was that propellant outflow was stopped at the 50 percent ullage level. For the second set of runs, starting at 50 percent ullage and expelling the tank until only 5 percent of the methane remained, a slightly different procedure was used. The tank was filled to approximately the 5 percent level while a small backpressure was maintained over the liquid. The methane was then drained, by self-pressurization, to the 50 percent

ullage level in about 5 minutes. The tank was vented and the automatic run sequence was started. Because no pressurant was added during this draining period, the procedure ensured a 100 percent methane ullage and uniformity of wall temperatures from run to run.

DATA REDUCTION

Physical Description of Problem

An initially vented tank containing two-phase methane was ramp pressurized from 1 atmosphere to a new pressure by adding either GCH_4 , gaseous helium (GHe), gaseous hydrogen (GH₂), or gaseous nitrogen (GN₂). The system was then allowed a short time (approximately 25 sec) to equilibrate after which liquid outflow was started. During the expulsion period, pressurant gas (at almost constant temperature) was added to the tank at a rate that maintained a constant tank pressure while expelling the liquid at a desired rate. The amount of pressurant gas required during the expulsion (or pressure ramp) is dependent on (1) the type of pressurant, (2) the volume and outflow rate of liquid displaced, (3) the heat transfer to the wall and liquid, (4) the amount of mass condensed or evaporated, (5) the presence or absence of tank movement (i.e., sloshing), and (6) the amplitude and frequency of slosh.

Mass Balance

A mass balance was performed on the ullage volume from an initial time t_i to a final time t_f as follows:

$$^{M}U, f = ^{M}U, i + ^{M}G, i - f \bullet ^{M}t, i - f$$
(1)

A discussion of how the terms of equation (1) were determined appears in the next three sections.

Pressurant gas added $M_{G, i \rightarrow f}$. - The weight of the actual pressurant gas added from any initial time t_i to any final time t_f was determined by numerical integration of the gas orifice equation

$$M_{G,i \rightarrow f} = \int_{t_i}^{t_f} Y D^2 C \sqrt{\rho \Delta P^*} dt$$
 (2)

<u>Ullage mass</u>. - The initial ullage mass $M_{U,i}$ and final ullage mass $M_{U,f}$ were obtained by numerical integration of the particular density profiles as follows:

$$M_{U,i} = \int_{V_{U,i}} \rho \, dV \cong \sum_{n=1}^{N_i} \rho_{1,n} V_n + \sum_{n=1}^{N_i} \rho_{GCH_4} V_n \qquad \rho = f(T, F)$$
(3)

$$M_{U,f} = \int_{V_{U,f}} \rho \, dV \simeq \sum_{n=1}^{N_f} \rho_{1,n} V_n + \sum_{n=1}^{N_f} \rho_{GCH_4} V_n \qquad \rho = f(T,F)$$
(4)

The internal tank volume was considered as 36 horizontal disk segments (corresponding to thermopile and other sensor locations). Each of these segments was in turn divided radially into a series of concentric rings, the number of which depended on the location of the radial temperature sensors and the vertical position of the disk segment being considered. These rings (202 in all) and the thin disks which were used near the starting interface comprised the V_n 's in the previous calculations. In this manner, vertical temperature as well as radial temperature gradients could be incorporated into the mass calculations. The position of the liquid level prior to and after expulsion determined the number of gas volume rings (N_i and N_f) used in the ullage mass calculations.

In the case of a two-component ullage, the density is a function of mixture concentration as well as temperature. Using concentration data obtained from the ullage gas sampling tubes, the molecular fraction of each gas was computed. These fractions were then used to obtain a set of weighted coefficients for the Benedict-Webb-Rubin (BWR) equation of state. The BWR equation, which is

$$\mathbf{P} = \mathbf{RT}\overline{\rho}_{\mathrm{T}} + \left(\mathbf{B}_{\mathrm{o}}\mathbf{RT} - \mathbf{A}_{\mathrm{o}} - \frac{\mathbf{C}_{\mathrm{o}}}{\mathrm{T}}\right)\overline{\rho}_{\mathrm{T}}^{2} + (\mathbf{b}\mathbf{RT} - \mathbf{a})\overline{\rho}_{\mathrm{T}}^{3} + \mathbf{a}\alpha\overline{\rho}_{\mathrm{T}}^{6} + \frac{\mathbf{c}\overline{\rho}_{\mathrm{T}}^{3}}{\mathrm{T}^{2}}\left[\left(1 + \gamma\overline{\rho}_{\mathrm{T}}^{2}\right)e^{-\gamma\overline{\rho}_{\mathrm{T}}^{2}}\right]$$
(5)

was used to calculate the total molecular density $\bar{\rho}_T$ for each volume segment. This molecular density was converted to a mass density by the equation

$$\rho_{\mathbf{T}} = (\mathbf{F}_1 \mathbf{m}_1 + \mathbf{F}_{\mathbf{GCH}_4} \mathbf{m}_{\mathbf{GCH}_4})\overline{\rho}_{\mathbf{T}}$$
(6)

The densities of each pure component in each volume segment were then determined by

$$\rho_1 = \mathbf{F}_1 \mathbf{m}_1 \overline{\rho}_{\mathrm{T}} \tag{7}$$

and

$${}^{O}GCH_{4} = {}^{F}GCH_{4}{}^{m}GCH_{4}{}^{\overline{\rho}}T$$
(8)

These densities were used in the ullage mass equations (3) and (4).

<u>Mass transfer</u>. - The mass transfer was calculated from equation (1) as a result of knowing $M_{U,i}$, $M_{U,f}$, and $M_{G,i \rightarrow f}$; that is,

$$M_{t,i \rightarrow f} = M_{U,i} + M_{G,i \rightarrow f} - M_{U,f}$$
(9)

If $M_{t,i \rightarrow f}$ was a positive quantity, mass was considered leaving the ullage volume (i.e., condensation and/or solution).

Energy Balance

For the thermodynamic system consisting of the entire tank and its contents (tank + ullage gas + liquid), the first law of thermodynamics for an increment of time Δt may be written as

$$dU_{T} = (\delta M_{G}) \left(\mu_{G} P_{G} v_{G} + \frac{\overline{v}_{G}^{2}}{2g} + z_{G} \right) - (\delta M_{L}) \left(\mu_{L} + P_{L} v_{L} + \frac{\overline{v}_{L}^{2}}{2g} + z_{L} \right) + \delta Q - \delta W$$
(10)

The kinetic and potential energy terms are small in comparison with the other energy terms and are neglected in this development. If $h = \mu + Pv$ is substituted, equation (10) becomes

$$dU_{T} = (\delta M_{G})h_{G} - (\delta M_{L})h_{L} + \delta Q - \delta W$$
(11)

For this system, there is no external work done so $\delta W = 0$ and the final form of equation (10), therefore, becomes

$$dU_{T} = (\delta M_{G})h_{G} - (\delta M_{L})h_{L} + \delta Q$$
(12)

Equation (12) can be integrated over any time period. The physical interpretation of the quantities in equation (12) is as follows:

A discussion of how the terms of equation (13) were evaluated follows.

Energy input by pressurant gas inflow. - The first term in equation (13) may be evaluated as follows:

$$\int_{t_{i}}^{t_{f}} \dot{M}_{G}h_{G} dt \approx \sum_{n=1}^{n=(t_{f}-t_{i})/\Delta t} \dot{M}_{G,n}h_{G,n} \Delta t$$
(14)

The pressurant flow rate M_G was determined from equation (2). The specific enthalpy of the inlet gas was evaluated at the inlet temperature and pressure at each time increment Δt .

Energy leaving by liquid outflow. - The energy of the liquid that leaves the system can be evaluated as follows:

$$\int_{t_{i}}^{t_{f}} \dot{M}_{L}h_{L} dt \approx \sum_{n=1}^{n=(t_{f}-t_{i})/\Delta t} \dot{M}_{L,n}h_{L,n} \Delta t$$
(15)

The liquid flow rate \dot{M}_{L} was determined from the turbine flowmeter. The specific enthalpy of the liquid was evaluated at the outlet temperature. The reference statepoint for liquid enthalpy was chosen so that the previous summation would be small when the outlet temperature equalled the original liquid temperature. This was done to eliminate the problem of using the difference of large numbers.

Energy input from environment. - The rate of energy input into the tank from the environment was assumed to be the same for all cases and was determined from a boiloff test. This test indicated a nominal value of 0.685×10^3 joules per second (0.65 Btu/sec) should be used. This value included heat input by radiation, convection, and conduction through pipes and supports. Therefore

$$\int_{t_i}^{t_f} \dot{Q} dt \approx 0.685 \times 10^3 (t_f - t_i)$$
(16)

Change in system energy. - The change in system energy can be separated into three categories: (1) change in ullage energy, (2) change in liquid energy, and (3) change in wall energy. Stated mathematically,

$$dU_{T} = dU_{U} + dU_{L} + dU_{w}$$
(17)

<u>Change in ullage energy</u>. - The change in ullage energy over any given time interval $t_i - t_f$ is obtained by subtracting the internal energy at time t_i from the internal energy at time t_f ; that is,

$$\int_{U_{U_{i}}}^{U_{U_{f}}} dU_{U} = \Delta U_{U} = \left(U_{U}\right)_{t_{f}} - \left(U_{U}\right)_{t_{i}}$$
(18)

Making use of the relation $\mu = h - Pv$ gives

$$\int_{\mathbf{U}_{\mathbf{U}_{\mathbf{i}}}}^{\mathbf{U}_{\mathbf{U}_{\mathbf{f}}}} d\mathbf{U}_{\mathbf{U}} = \sum_{\mathbf{V}_{\mathbf{f}}} \rho_{\mathbf{U}} \left(\mathbf{h} - \frac{\mathbf{P}}{\rho_{\mathbf{U}}} \right) \Delta \mathbf{V}_{\mathbf{U}} - \sum_{\mathbf{V}_{\mathbf{i}}} \rho_{\mathbf{U}} \left(\mathbf{h} - \frac{\mathbf{P}}{\rho_{\mathbf{U}}} \right) \Delta \mathbf{V}_{\mathbf{U}}$$
(19)

The ullage gas density was determined using equations (5) and (6). The enthalpy values for equation (19), in the case of a two-component ullage, were determined by summing the products of the weight fraction of each pure component and its specific enthalpy at the temperature and pressure conditions existing in the particular volume segment being considered.

<u>Change in liquid energy</u>. - The change in energy of the liquid in the tank can be determined in a manner similar to the change in ullage energy; that is,

$$\int_{U_{L_{i}}}^{U_{L_{f}}} dU_{L} = \Delta U_{L} = \left(U_{L}\right)_{t_{f}} - \left(U_{L}\right)_{t_{i}}$$
(20)

$$\int_{U_{L_{i}}}^{U_{L_{f}}} dU_{L} = \sum_{V_{f}} \rho_{L} \left(h_{L} - \frac{P}{\rho_{L}} \right) \Delta V - \sum_{V_{i}} \rho_{L} \left(h_{L} - \frac{P}{\rho_{L}} \right) \Delta V$$
(21)

The liquid density and enthalpy are functions of pressure and temperature. However, in some of the expulsions, mass transfer contaminated the liquid with nonmethane pressurant. Since the integrating routines assume the liquid to be pure methane, the extra heat of solution due to the mass transfer must be accounted for separately. The mass of dissolved gas was calculated by knowing how much pressurant was added to the tank during the entire pressurization expulsion process as well as the quantity of pressurant specie in the ullage at the end of expulsion. Because of the small range of temperatures involved, the dissolved gas was assumed to be at a single temperature of 112 K (202° R). The energy contribution of the nitrogen pressurant was assumed equal to the specific energy of liquid nitrogen (LN₂) at the LCH₄ bulk temperature value. For lack of better information, the energy contribution of the hydrogen pressurant was taken equal to the specific energy of hydrogen gas at the LCH₄ bulk temperature.

<u>Change in wall energy</u>. - The change in wall energy was determined by applying the first law of thermodynamics to an element of the wall:

$$\int_{U_{w_i}}^{U_{w_f}} dU_w = \Delta M_w \int_{T_i}^{T_f} c_v dt, \quad c_v = c_v(T)$$
(22)

The total change of the wall is then

$$\Delta U_{\mathbf{w}} \cong \sum_{\mathbf{M}_{\mathbf{w}}} \left[\Delta M_{\mathbf{w}} \int_{\mathbf{T}_{\mathbf{i}}}^{\mathbf{T}_{\mathbf{f}}} c_{\mathbf{v}}(\mathbf{T}) d\mathbf{T} \right]$$
(23)

Total energy change of system. - For convenience, equation (17) is substituted into equation (13)

$$\int_{t_i}^{t_f} \frac{d}{dt} (U_U + U_L + U_w) dt = \int_{t_i}^{t_f} \dot{M}_G h_G dt - \int_{t_i}^{t_f} \dot{M}_L h_L dt + \int_{t_i}^{t_f} \dot{Q} dt \qquad (24)$$

Rearranging terms gives

$$\underbrace{\int_{t_{i}}^{t_{f}} (\dot{M}_{G}h_{G} + \dot{Q})dt}_{(\Delta U_{T})} = \underbrace{\int_{t_{i}}^{t_{f}} (\dot{M}_{L}h_{L} dt + dU_{L})}_{\text{Total change in liquid}} + \underbrace{\int_{t_{i}}^{t_{f}} dU_{U}}_{\text{Total change in liquid}} + \underbrace{\int_{t_{i}}^{t_{f}} dU_{w}}_{\text{Total}} + \underbrace{$$

Dividing through by ΔU_{T} gives

$$1 = \frac{\Delta U_{L}}{\Delta U_{T}} + \frac{\Delta U_{U}}{\Delta U_{T}} + \frac{\Delta U_{w}}{\Delta U_{T}}$$
(26)

The data presented herein are in the form of these ratios which show the relative distribution of the total energy input.

RESULTS AND DISCUSSION

Static Tank Expulsions

<u>General.</u> - Complete tank expulsions were made using GCH_4 , GHe, GH_2 , and GN_2 pressurants. The test parameters were inlet gas temperature and expulsion time. Expulsion time is the total time required to expel liquid from a 5 to a 95 percent ullage condition. Therefore, each data point represents a complete expulsion.

The experimentally determined pressurant gas requirements, as well as heat transfer data, were compared to analytically predicted results to determine the range of application of the analytical program. The analysis used is detailed in appendixes A, B, and C of each of the references 4 to 7. Two modifications were made to the contents of these appendixes. First, the ramp analysis was not employed at all; and secondly, a mass condensation term was added for the expulsions made using GCH_4 pressurant. The mass condensed was assumed equal to the tank wall mass exposed during expulsion times its integrated specific energy over the range between the bulk and saturation temperatures divided by the latent heat of evaporation; that is

$$M_{t, P} = \frac{\sum \left[\Delta M_{w} \int_{T_{BL}}^{T_{SL}} c_{p} dT_{w} \right]}{{}^{h}_{SG-SL}}$$
(27)

The analytical results are presented in figures together with the corresponding experimental results. Comparisons are generally given in terms of an average deviation which is defined as

$$\frac{1}{\bar{N}} \sum_{\bar{N}} \left[\frac{|(\text{Experimental value}) - (\text{Analytical value})|}{(\text{Experimental value})} \right] (100)$$
(28)

where \overline{N} is the number of data points in a given set of test conditions.

The results obtained using GCH_4 will be discussed first; the tests employing GHe and GH_2 will follow, and the three expulsions using GN_2 will conclude discussion of static tank expulsions. The test parameters, as well as the mass and energy balances for all four groups of data, appear in tables I and II.

<u>Methane pressurant</u>. - The quantity of GCH_4 required for the expulsion period is shown in figure 10 for two different inlet temperatures. For a given inlet gas temperature, there is an increasing pressurant requirement for increasing expulsion time. The longer the pressurant gas is exposed to cold surroundings, the greater the loss in pressurant energy. Also noteworthy on the figure is the amount of GCH_4 condensed. The quantities shown are between 27.7 and 32.6 percent of the total pressurant required for the expulsion period. The reason for this high condensation value is due to the considerable difference between the bulk liquid temperature and the saturation temperature corresponding to the 34.5×10⁴-newton-per-square-meter (50-psia) ullage pressurant gas. As the tank wall is uncovered by the receding liquid during expulsion, it is still essentially at bulk liquid temperature. Methane pressurant in the ullage can condense on this wall until enough heat has been transferred to raise the wall temperature above the saturation temperature corresponding to the ullage gas.

The analytical predictions for the pressurant required for each expulsion are shown as solid symbols in figure 10. The best agreement between the analytical and experimental mass added curves is obtained for the fastest expulsion times. As expulsion time increases, the analysis underpredicts the amount of gas needed. The average deviation, however, of the analytical predictions from the experimental values is only 8.2 percent; the maximum deviation is 12.9 percent. The prime reason for this disagreement is the lack of a good analytical model for the mass transfer. The estimated amount (eq. (27)) of condensed pressurant was allowed to be a function of gas and wall properties only. It

pressurant as a function of expulsion time. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

did not allow for variations of expulsion time or pressurant inlet temperature. This is an admitted deficiency, considering the experimental data in hand.

The time history of the GCH_4 pressurant flow rate for a typical expulsion is shown in figure 11. Time histories for the other expulsion runs have the same general shape. Note that the flow rate is fairly constant with only a small rise near the middle of the run. This rise is believed due to the greater heat lost by the pressurant gas to the thickened girth section of the tank. In the next two sections of the RESULTS AND DISCUSSION, GCH_4 flow rates will be shown which are in sharp contrast with figure 11.

Figure 12 shows the distribution of the total energy added to the tank via the incoming pressurant and the environment during the expulsion period. For the 222 K (400° R) runs, the greatest energy sink is the ullage gas ($\Delta U_{U,X}$), followed closely by the tank wall ($\Delta U_{w,X}$). For the 333 K (600° R) runs, these roles are reversed and the tank wall

becomes the largest energy sink. For all cases, between 72 and 80 percent of the total energy added to the tank was either absorbed by the tank wall or remained in the ullage. The correlation between analysis and experimental data, therefore, depends largely on the ability of the analysis to predict final wall and ullage gas temperature profiles. These temperature profiles are, in turn, used to determine the increase in wall and ullage energy and the final ullage mass. A comparison of the analytical and experimental temperature profiles are shown in figures 13 and 14 for the four extremes of expulsion time and temperature. The agreement is best for the 231-second 222 K (400° R) expulsion where the maximum deviation was only 7.8 K (15° R) for the gas temperature and 5.6 K (10° R) for the wall temperature. In the worst case, the 638-second 333 K (600° R) expulsion, the maximum deviation of the gas temperature was 28.9 K (52° R) and 25 K (45° R) for the wall. These differences are approximately the same as those

Figure 13. - Comparison of analytical and experimental gas and wall temperatures using GCH₄ pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet temperature, 222 K (400⁰ R).

obtained between analytical and experimental data for the work with LH₂ tanks described in references 4 to 7.

Figure 15 displays the agreement between the analytically predicted and experimentally determined energy gained by the tank wall $(\Delta U_{w,P} \text{ and } \Delta U_{w,X}, \text{ respectively})$. The agreement is considered good for the 222 K (400^o R) expulsions but only fair for the 333 K (600^o R) runs. The deviation for the higher temperature runs is attributed to the complicating effects of the neck, flanges, and tank lid which were hard to model anallytically. These portions of the tank constituted approximately 22 percent of the total tank mass.

The heat lost to the LCH₄ propellant is a small percentage of the total heat added to the tank during expulsion. Further, it is relatively constant over the range of test runs conducted. The average percentage of heat lost $\Delta U_{L,X}/\Delta U_{T,X}$ is 13.7; the range is between 10.9 and 15.1 percent (see fig. 12). Figure 16 displays the agreement between the approximated energy and the experimentally determined energy gained by the LCH₄ propellant ($\Delta U_{L,P}$, $\Delta U_{L,X}$). For purposes of analysis in this report, the approximate heat lost to the liquid $\Delta U_{L,P}$ was set equal to

$$P \Delta V + \frac{1}{2}$$
 (Environmental heating) + $M_t(\mu_{SL})$ (29)

This expression makes the approximated heat to the liquid independent of inlet gas temperature. The small differences in the approximated heat values for the 222 K (400[°] R) and the 333 K (600[°] R) runs in figure 16 are due to small differences in the tank pressure and the amount of LCH₄ expelled during each run. The experimentally determined liquid energy term $\Delta U_{L,X}$ includes the work energy of approximately 515×10^3 joules (488 Btu). When this work term and the environmental heating are subtracted from the experimentally determined liquid energy term $\Delta U_{L,X}$, the remaining energy is only 24 percent of that contributed by the amount of GCH₄ condensed during the run. This fact tends to support the contention of the analytical model that the tank wall is the primary medium for condensation.

The liquid outflow temperature-time histories for the 333 K (600° R) runs are plotted in figure 17. The lack of any substantial rise in temperature until the very end of expulsion (e.g., less than 0.28 K (0.5° R) after completion of 92 percent of the expulsion time), verifies that the layer of heated liquid is very thin. Later, in the second and third sections of the RESULTS AND DISCUSSION, LCH₄ outflow temperatures will be shown which are in sharp contrast with figure 17.

GHe and GH_2 pressurants. - The quantities of GHe and GH_2 required for the expulsion period are shown in figure 18 for two different inlet gas temperatures. The mass curves for the two pressurants are almost identical in trends and differ in magnitude by

Figure 17. - Temperature of liquid methane at tank outlet as a function of normalized time during expulsion. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet temperature, 333 K (600⁰ R).

Figure 18. - Mass required during static tank expulsions using GHe and GH₂ pressurant as a function of expulsion time. Tank pressure, 34.47×10^4 newtons per square meter (50 psia).

a factor of two due basically to the molecular weight difference. For a given inlet gas temperature, the expected trend of increasing pressurant requirements for increasing expulsion times is present. The effect on gas requirements for an increase of 111 K $(200^{\circ} R)$ is only a maximum of 5.3 percent for GHe and 7.7 percent for GH₂. The maximum increase in requirements due to the parameter expulsion time is only 10.3 percent for GHe and 13 percent for GH₂. The curves for mass added are tending to level off toward the 600-second expulsion time and both the 222 K $(400^{\circ} R)$ and 333 K $(600^{\circ} R)$ lines appear asymptotic to nearly the same value. The major reason for this is the fact that, for long expulsions, the ullage gas temperatures are in near equilibrium with the wall temperatures for most of the volume of the tank. Gas and wall temperatures will be dis-

cussed further later in this section.

The analytical predictions for mass added are also shown in figure 18. The agreement between analysis and experiment is considered good. The average deviation for all the GHe expulsions was 3.6 percent; the average when considering the GH_2 data was 6.3 percent. For the 222 K (400[°] R) inlet temperature runs, the average deviation was 2.8 percent for the GHe data and 5.7 percent for GH_2 . The maximum deviation was 3.3 percent when using GHe and 6.0 percent for GH_2 . The 333 K (600[°] R) cases are a little worse with the average deviation being 4.4 and 6.8 percent for GHe and GH_2 pressurants, respectively. The maximum deviation was 5.9 percent for GHe and 8.0 percent for GH_2 .

As stated earlier in the report, the composition of the ullage gas was determined by gas sample data at the end of each section of the complete pressurization cycle (i.e., at the ends of the ramp period, the hold period, and the expulsion period). Determination of the ullage composition at the end of the ramp and hold periods was, at best, difficult because only the outlet of the highest gas analyzer station was uncovered. At these two times in the pressurization cycle, the composition was determined by a three-point curve constructed as follows: the composition was defined as 100 percent pressurant gas at the top of the tank, equal to the analyzer reading at the level of the sampling station, and defined as 38 percent GHe or 23 percent GH₂ at the liquid methane interface. This last definition is an engineering approximation of the vapor equilibria for GHe-LCH₄ and GH₂-LCH₄ systems. The three data points were then connected by straight lines and the amount of mass of each component of the ullage gas was determined.

This technique was considered acceptable to furnish data for computing the energy content of the ullage gases at the start of expulsion since a 10 percent error in this energy hardly affected the total change of the ullage energy over the expulsion period (introduced less than 1 percent error). This technique was also used in the computation to determine the mass of liquid methane evaporated into the ullage during the expulsion period. However, when used to furnish data for computing the quantities of GHe and GH₂ dissolved in the LCH₄ propellant at the end of the ramp and hold periods, this technique led, in several of the runs, to the obviously erroneous conclusion that helium and hydrogen were evaporated out of the assumed pure LCH₄ propellant. This conclusion forced the calculation of dissolved GHe or GH₂ to be considered over the entire pressurization cycle (i.e., ramp time + hold time + expulsion time). As a result, the amount of helium or hydrogen dissolved was computed using only the end of expulsion data and the preramp data. The end of expulsion data was obtained using data from all the gas sampling tubes; the preramp data used the fact that only GCH₄ existed in the ullage prior to the beginning of the ramp period.

Figure 19 displays the ullage gas concentration curves for the 222 K (400° R) runs obtained from the gas sampling tubes at the end of expulsion. As can be seen in the figure, only the bottom sensor read any significant concentration of methane, and it was al-

ways a small amount. Using this data, and the fact that only GCH_4 existed in the ullage prior to the beginning of the ramp, the mass of GHe and GH_2 dissolved in the LCH_4 propellant was calculated. Figure 20 displays the amounts dissolved in a percentile manner relative to the total amount of pressurant added during the complete pressurization cycle. The authors consider these quantities accurate only within ±2 ordinate units. This figure is presented only to show that the amounts of pressurant gases dissolved are small and that there is a trend toward dissolving slightly more pressurant as expulsion time increases.

Figure 21 displays the mass of methane evaporated during the GHe and GH_2 pressurization runs. Because of the method of measurement, the authors consider these quantities accurate only within ±0.045 kilogram (±0.1 lb). As a result, small variations

Figure 20. - Percent GHe or GH_2 , dissolved in propellant, of total pressurant added during each complete static tank run as a function of expulsion time. Tank pressure, 34.47×10^4 newtons per square meter (50 psia).

Figure 21. - Mass of methane evaporated during static tank expulsions using GHe and GH_2 pressurants as a function of expulsion time. Tank pressure, 34.47×10^4 newtons per square meter (50 psia).

should not be considered significant. As expected, liquid methane was evaporated into the ullage during all runs, but the most significant thing is that all values are small. The maximum latent heat involved is only 14.2×10^4 joules (134 Btu). This amounts to, at the worst, 5.6 percent of the total heat added to the tank during expulsion. The averaged latent heat considering all 13 runs, is only 2.2 percent of the total heat added to the tank during the expulsion period.

Figures 22 and 23 show the distribution of the total energy added to the tank via both the incoming GHe or GH_2 pressurant and the heat input from the environment during the expulsion period. For the 222 K (400[°] R) GHe runs, the amount of heat lost to the tank

wall $\Delta U_{w,X}$ was approximately equal to the amount left in the ullage $\Delta U_{U,X}$ at the end of expulsion. When 222 K (400[°] R) GH₂ was used, the greatest energy sink was the ullage gas $\Delta U_{U,X}$ followed fairly closely by the tank wall $\Delta U_{w,X}$. For the 333 K (600[°] R) runs, the largest energy sink for both gases is the tank wall $\Delta U_{w,X}$. The absolute value of the ullage energy is nearly independent of expulsion time and pressurant inlet temperature. It should be noted, however, that the absolute value of the ullage energy is greater for hydrogen than for helium because of the greater specific heat of hydrogen. For all runs (GHe and GH₂), between 63 and 81 percent of the total energy added to the tank during expulsion was either absorbed by the tank wall $\Delta U_{w,X}$ or remained in the

Figure 24. - Analytical and experimental gas and wall temperatures at end of expulsion for static tank runs using GHe pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

ullage $\Delta U_{U,X}$. These results are consistent with those mentioned earlier for the gaseous methane runs.

Figures 24 and 25 display the agreement between analytically predicted ullage gas and wall temperatures against those experimentally measured. The plots are for the longest and shortest expulsions for both pressurants at 222 K (400° R) and 333 K (600° R) inlet temperatures. Generally, the analytical predictions agreed fairly well with experimental values for the long expulsions. As a result, fairly good agreement was obtained between predicted and experimentally determined mass requirements for these runs. The worst disagreement between predicted and experimental ullage gas temperatures occurs for the short expulsion runs. Further, this difference is in the region of the greatest gas mass (i.e., near the bottom of the ullage volume where the majority of the mass of ullage gas is concentrated). As a result, use of the analytically predicted temperature profile in determining the mass of ullage gas present for the short expulsions results in a smaller quantity than obtained when the integration is performed using experimental temperature measurements. This disagreement of temperature profiles is thought to be the major reason for underprediction of pressurant requirements for the fast expulsion runs.

The result of the differences between predicted and experimental tank wall heat gains

Figure 25. - Analytical and experimental gas and wall temperatures at end of expulsion for static tank runs using GH₂ pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

(b) inlet temperature, 333 K (600° R).

Figure 25. - Concluded.

Figure 26. - Energy gained by wall during static tank expulsions using GHe pressurant as a function of expulsion time. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

is shown in figures 26 and 27. The predicted amount of heat lost to the tank wall $\Delta U_{w,P}$ is always greater than that experimentally measured $\Delta U_{w,X}$. Further, this difference becomes larger as expulsion time increases. These same results could also be arrived at by considering the agreement between the analytically predicted and experimentally measured wall temperature profiles in figures 24 and 25. In all cases, the predicted wall temperature in the more massive lid area is higher than the experimentally measured values. Further, this difference also becomes larger for the longer expulsion time runs. The maximum deviation between predicted and experimental tank wall heat gains for the GHe pressurant runs is 25 percent; for the GH₂ runs, the value is 17 percent. The average deviation considering all runs was 18.3 percent.

The heat lost to the LCH₄ propellant is the smallest percentage of the total heat added to the tank during expulsion. The experimental $(\Delta U_{L,X})$ and predicted $(\Delta U_{L,P})$ values of heat transferred are plotted in figure 28 for both pressurant gases. For purposes of analysis in this report, the approximate heat lost to the liquid $\Delta U_{L,P}$ was set equal to

Figure 27. - Energy gained by wall during static tank expulsions using GH₂ pressurant as a function of expulsion time. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

The agreement between this approximation and experimental data verifies that this assumption is quite acceptable.

300

Figure 29. - Mass required during static tank expulsions using GN₂ pressurant as a function of expulsion time. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet

400

Expulsion time, sec

500

700

600

20

8∟ 100

200

temperature, 333 K (600° R).

<u>Nitrogen pressurant.</u> - Gaseous nitrogen was used to determine its suitability for use in ground facilities or where the cost of helium is prohibitive. The quantity of GN_2 required for the expulsion period is shown in figure 29 for an inlet gas temperature of 333 K (600[°] R). The rise in requirements as a function of expulsion time is very pronounced. The most noteworthy point in the figure is the amount of GN_2 which dissolves in the LCH₄ propellant. These quantities are between 61.2 and 72.5 percent of the pressurant gas added during the expulsion period. The analytical model used so far was in-

adequate regarding large mass transfer processes in the system. No attempt was made to correlate this difference between analysis and experiment.

Figure 30 displays the time histories of the GN_2 flow rates during the three expulsions. These curves show a high peak during the first part of the expulsion process as the GN_2 dissolves rapidly into the increasing liquid surface area. The flow rates then taper off as the remaining liquid propellant warms and becomes more saturated with nitrogen.

In the case of nitrogen-liquid methane mixtures, the density of the mixture is higher than the density of pure liquid methane. Figure 31 shows the density of a N_2 -LCH₄ mixture as a function of temperature and nitrogen concentration. Densities were calculated using reference 8. Further, equilibrium data for a completely mixed N_2 -LCH₄ system was obtained for a temperature of 116.7 K (210[°] R) from reference 9. Using the original

Figure 30. - Time history of GN₂ pressurant flow rate during static tank expulsions. Tank pressure, 34.47×10^4 newtons per square meter (50 psia); inlet temperature, 333 K (600⁰ R).

Figure 31. - Density of nitrogen-liquid methane mixtures as a function of nitrogen mass percent. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

amount of LCH_4 in the tank, as well as the mixture density calculation in reference 8, the density of the mixture at the 116.7 K (210^o R) equilibrium condition was computed. This mixture density can be considered the probable endpoint for the density changes going on in the LCH_4 propellant during nitrogen pressurized expulsion. Starting off with pure LCH_4 , and keeping in mind the endpoint of mixing, a probable density increase path can be added to figure 31. The resulting unstable density gradient caused by the addition of nitrogen to the mixture makes the liquid in the tank self-mixing. The total amount dissolved is limited by the rate of this mixing and by the fact that the equilibrium concentration decreases as the mixed liquid warms. The fact that pronounced mixing is occurring in the propellant is brought out in figure 32, which is a time history of the liquid temperature at the tank outlet. As can be seen in the figure, the outlet liquid temperature at the tank outlet.

This self-mixing characteristic of the nitrogen-methane mixtures just about precludes use of nitrogen as a usable pressurant in liquid methane fuel systems. Because of the mixing, pure methane cannot be expected at the entrance to a combustion device and, further, cavitation problems could be expected in the fuel system components between the pressurized propellant tank and the combustion device.

Figure 33 displays the distribution of the total energy added to the tank via the incoming pressurant and the heat input from the environment during the expulsion period. The greatest energy sink is the liquid $(\Delta U_{L,X})$ which absorbed, on the average, 48.0 percent of the heat added. The experimentally determined liquid energy term $\Delta U_{L,X}$ includes the work energy of approximately 515×10^3 joules (488 Btu). This work term, and the environmental heating term, constitute only 9 to 14 percent of the liquid energy term $\Delta U_{L,X}$. The rest of the energy to the liquid is due to the dissolved nitrogen and its heat of solution.

Figure 32. - Time history of LCH₄ temperature during static tank expulsions using GN₂ pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet temperature, 333 K (600⁰ R).

Figure 33. - Energy distribution in 1,52-meter- (5-ft-) diameter tank at end of expulsion period using GN₂ pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet temperature, 333 K (600⁰ R); static tank expulsions.

<u>General.</u> - Complete tank expulsions were made using GCH_4 , GHe, and GH_2 pressurants. The main test parameters were inlet gas temperature and expulsion time. All expulsions in this group were made while the tank was being oscillated at an amplitude of ± 2.23 centimeters (± 0.88 in.) and at a frequency corresponding to the natural frequency of the liquid remaining in the tank. Starting at the beginning of expulsion, the slosh amplitude was increased linearly from 0.0 to ± 2.23 centimeters ($0.0 \text{ to } \pm 0.88 \text{ in.}$) over approximately a 60-second time period. The purpose of the ramped amplitude was to allow the GCH₄ over LCH₄ expulsions to be made without a fall off in tank pressure at the beginning of expulsion. Excessive liquid propellant splashing resulted if the full slosh amplitude was imposed on the tank immediately at the start of expulsion. This splashing resulted in excessive cooling of the ullage gas and a dropoff in the tank pressure. The slosh amplitude of ± 2.23 centimeters (± 0.88 in.) was chosen so that the slosh force parameter given in reference 10 (and hence slosh wave height) would be at a maximum value.

The experimentally determined pressurant gas requirements, as well as heat and mass transfer data, for these slosh tests are compared to similar data for the static tank tests of the first section. The major objectives are to point out marked differences between the sets of data and the reasons for the differences. No analytical predictions were made for the slosh runs in this group.

The results obtained using GCH_4 will be discussed first, followed by the tests em -

ploying GHe and GH_2 . The main test parameters, as well as the mass and energy balances for the three major groups of data, appear in tables III and IV.

Methane pressurant. - The quantity of GCH_{4} required for the expulsion period is shown in figure 34 for the two different inlet temperatures. The requirements for static tank expulsions are also shown as a reference. As with the static tank expulsions, both increasing expulsion time and decreasing inlet gas temperatures cause a rise in the amount of required pressurant. Both of these parameters had a greater effect under slosh conditions in contrast to the small effects for the static tank cases. Compared to the static tank runs, the pressurant requirements for these slosh expulsions were increased, on the average, by a factor of 3.1 for the 222 K (400⁰ R) inlet temperature and a factor of 2, 7 at 333 K (600[°] R). Of prime interest is the quantity of condensed pressurant. On the average, condensation increased by a factor of 7.6 for the 222 K (400[°] R) runs and by a factor of 5, 7 for the 333 K (600[°] R) cases over values obtained for static tank work at comparable temperatures. These amounts of condensation are 74.3 and 67.7 percent of the total pressurant required during expulsion for the warm and cold inlet temperature runs, respectively. These percentages are up significantly from the 27 to 33 percent values obtained during the static tank runs. Condensed pressurant was the main reason for the large increase in expulsion pressurant requirements. The increased condensation is expected because the tank walls are continually being washed by the liquid propellant. An area of tank wall would be uncovered by the slosh wave and would provide

a condensing surface for the GCH_4 pressurant. Some of this heat transferred to the wall is then absorbed into the liquid propellant when a slosh wave again sweeps over that area of tank wall. Additional heat was transferred to the LCH_4 because of some propellant splashing. This splashing occurred mainly because of slosh wave "curl-over" forced by tank wall curvature in the upper hemisphere of the tank. This wave curling was visually observed over short viewing periods during tank expulsion. Figure 35 displays the experimental gas and wall temperature profiles for the shortest and longest expulsions at each of the two inlet gas temperatures. When these profiles are compared to those of figures 13 and 14, considerably less wall heating is evident. In addition, much colder ullage temperatures are present in the lower reaches of the tank indicating more heat loss by the pressurant than in the static tank runs.

The increase in propellant heating was the result of splashing (direct heat transfer from the gas to the liquid droplets) as well as condensation of the methane pressurant. There was no way in which to evaluate the magnitude of these additional heat gains. The net result of all these heat and mass transfer processes, coupled with mixing occurring in the liquid because of sloshing, was a significant amount of liquid heating - a fact dis-

Figure 35. - Experimental gas and wall temperatures at end of expulsion for unbaffled slosh expulsions using GCH4 pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

cussed later in this section.

The time history of the GCH_4 pressurant flow rate for a 333 K (600[°] R) fast expulsion is shown in figure 36. The flow rate required for a static tank expulsion (fig. 11) has been added for comparison purposes. Besides being considerably higher than the flow rate for a static expulsion, the flow rate for the unbaffled slosh condition is not linear. The majority of flow is required at the beginning of expulsion and the rate drops off as the expulsion proceeds. The initial peak would have been even higher except that the slosh amplitude was ramped over a 60-second period after the beginning of LCH, outflow. This ramping allowed the expulsion to reach a steady-state condition without an uncontrollable pressure collapse occurring in the tank ullage. For this run, the tank pressure dropped 24. 13×10³ newtons per square meter (3.5 psi) immediately after start of expulsion, then as the closed loop pressurant flow system responded, the pressure rose 13.79 \times 10³ newtons per square meter (2.0 psi) above the desired steady-state value. After this initial 10-second cycle of variation, the tank pressure rapidly attenuated to a cyclic variation of less than $\pm 3.45 \times 10^3$ newtons per square meter (± 0.5 psi). During the last third of the expulsion, the tank pressure remained steady at 33.4×10^4 newtons per square meter (48.4 psia). This flow history points out the fact that a GCH_A pressurization system design, when slosh conditions are expected in the tank, would have to be able to handle significantly higher flow rates than those which would be calculated by simply dividing the total gas requirement by the expulsion time.

Figure 37 shows the distribution of total energy added to the tank during the expulsion period via both the incoming pressurant and the heat input from the environment. In sharp contrast to the static tank runs, the majority of energy is lost to the liquid propel-

Figure 36. - Time history of GCH₄ pressurant flow rate during unbaffled slosh expulsion. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet temperature, 333 K (600⁰ R); run 29.

lant $\Delta U_{L,X}$. Figure 38 shows the total energy added as well as the amount lost to the LCH₄ propellant during expulsion. As can be seen, the energy absorbed by the liquid $\Delta U_{L,X}$ is not strongly dependent on pressurant temperature. This implies to the authors that the heat absorbed by the liquid is controlled essentially by the amount of wall washing and the amount of splashing occurring in the tank. Transferring this absorbed heat into a bulk temperature increase is dependent on the degree of mixing occurring in the liquid. This mixing was considered to be the same for both the cold and hot gas runs at a given expulsion time. Since the amount of energy lost is the same for both temperatures, the smaller amounts of pressurant required for the 333 K (600^o R) runs was, therefore, a direct consequence of the greater specific energy content of the gas at that temperature.

Figure 39 is a plot of the liquid outflow temperature-time histories for both the cold and hot inlet gas temperature runs. There is no major difference in the curves at 222 K $(400^{\circ} R)$ inlet temperature when compared with those for 333 K $(600^{\circ} R)$. The thermal lag in the liquid temperature rise is seen to be almost the same for all runs. The major point to be made is how much of the liquid is heated. This state point change in the liquid could very easily give rise to cavitation problems in a LCH₄ propellant system servicing a combustion device.

Figure 38. - Comparison of total energy added and energy added to liquid as a function of expulsion time for unbaffled slosh runs using GCH₄ pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

ы В

Tank outflow temperature, K

Tank outflow temperature, ^{OR}

230 L

230_L

_0 __0

118-116-

210-

GHe and GH_2 pressurants. - The quantities of GHe and GH_2 required for the unbaffled slosh expulsions are shown in figure 40 for the two different inlet gas temperatures. The requirements for static tank expulsions are also shown as a reference. The usual trends of increasing gas requirements for increasing expulsion time and decreasing inlet gas temperature are present. The significant point of the figure is that less pressurant is required for expulsion under slosh conditions compared to static tank expulsions. This is because of the evaporation of significant amounts of liquid methane propellant as will be shown in a later figure. The average decrease in GHe pressurant requirements for the slosh runs relative to static tank expulsions is 15.7 percent at 222 K (400[°] R) and 16.2 percent at 333 K (600[°] R). The average decrease in GH₂ requirements was 4.6 and 8.3 percent at 222 and 333 K (400[°] and 600[°] R), respectively.

Figure 41 displays the experimental gas and wall temperature profiles for the shortest and longest GHe expulsions at each of the two inlet temperatures. When these profiles are compared to those of figures 24(a) and (b), less wall heating is evident. In addition, slightly colder ullage temperatures are present in the lower reaches of the tank indicating more ullage mixing than in the static tank runs. These results are also typical

Figure 41. - Experimental gas and wall temperatures at end of expulsion for unbaffled slosh expulsions using GHe pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

for the GH₂ expulsions.

Figure 42 displays the ullage gas concentration curves for the 222 K (400° R) runs obtained from the gas sampling tubes at the end of expulsion. As can be seen in the figure, significant percentages of GCH₄ are present throughout the ullage volume. A study of the figure will also reveal that the percentage of GCH₄ at a given location generally increases for longer expulsion time runs. Using this data, both the mass of GCH₄ in the ullage and the amounts of GHe and GH₂ dissolved in the LCH₄ propellant were calculated. Figure 43 displays the mass of methane evaporated during the expulsions for both the GHe and GH₂ pressurization runs. As can be seen in the figure, no significant differ ences exist in the quantities evaporated for the four sets of data. As per the concentra-

Figure 43. - Mass of methane evaporated during unbaffled slosh expulsion using GHe and GH₂ pressurants as a function of expulsion time. Tank pressure, 34.47×10^4 newtons per square meter (50 psia).

tion data curves, the trend of increasing evaporation with increasing expulsion time is present.

Because of solubility, the mass transfer is not just one way. Figure 44 displays the amounts of GHe and GH_2 dissolved in the LCH₄ propellant. The quantities are displayed in a percentile manner relative to the total amount of pressurant added during the complete pressurization cycle. Because the specification of instantaneous interface location added another degree of uncertainty to the mass balances, the authors consider the dissolved gas quantities accurate only within ± 3 ordinate units. As a result of this uncertainty, the authors did not consider any heat contribution to the liquid by the dissolved GHe. The data for dissolved GH₂, even though rough, indicates the expected trend of increasing dilution for longer expulsions. Further, a comparison of figure 44 with figure 20 shows that more hydrogen was dissolved during the slosh runs than during the static tank expulsions. The heat contribution to the liquid by this dissolved hydrogen was considered in the energy balance for these slosh runs.

Figures 45 and 46 show the distribution of the total energy added to the tank via both the incoming GHe or GH_2 and the heat input from the environment during the expulsion period. On a percentage basis, the ullage is the predominant heat sink for both pressurant gases. The results of the slosh runs show that the ullage and wall energy sinks account for between 53.3 and 73.0 percent of the total energy added to the tank during all runs. This is similar to the static tank case where the ullage and wall sinks were also predominant. The percentage gained by the wall during the slosh runs is sharply reduced when compared to static tank tests. Finally, the energy absorbed by the LCH₄ propellant is only slightly greater for the slosh runs compared to the static tank tests.

Figure 45. - Energy distribution for expulsion period for unbaffled slosh tests using GHe pressurant as a function of expulsion time. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

(b) Inlet gas temperature, 333 K (600⁰ R).

Figure 46. - Energy distribution for expulsion period for unbaffled slosh tests using GH₂ pressurant as a function of expulsion time. Tank pressure, 34.47×10^4 newtons per square meter (50 psia).

Figure 47 displays nominal 400-second time histories of the LCH_4 outflow temperatures. One history was taken from each of the four sets of expulsion runs. For all four curves, the increase in liquid temperature relatively early in the expulsion indicates that mixing in the LCH_4 extends significantly down into the propellant. Heat addition to the liquid propellant continued essentially throughout the 333 K (600⁰ R) expulsions. The 222 K (400[°] R) runs, however, begin to show a dropoff in outflow temperature starting about halfway through. Tank pressure variations, caused by the inherent response of the pressurant flow control system, can only account at most for a variation of 0.03 K $(0.06^{\circ} R)$ and hence were ruled out as a possible cause for the variations in the liquid outflow temperature histories. The temperature dropoffs exhibited by the 222 K (400⁰ R) inlet temperature runs imply to the authors that liquid cooling, because of methane evaporation, is predominating at least toward the last half of the expulsion period. The work term P ΔV of approximately 515×10³ joules (488 Btu) and half the environmental heating term are between 72 and 130 percent of the liquid energy term $\Delta U_{L,X}$ for these runs. Hence, for the 222 K (400[°] R) runs, the cooling effect on the propellant of the evaporating methane is either greater than, or nullifies a significant part of, the heat gained by the liquid because of continued washing of the tank wall and direct heat addition from the pressurant gas. In any event, the net change in temperature of the propellant is quite small as was the case for the static tank expulsions.

Figure 47. - Time history of LCH₄ outflow temperature during unbaffled slosh runs using GHe and GH₂ pressurants. Tank pressure, 34.47×10^4 newtons per square meter (50 psia).

Slosh Expulsions, Baffled Tank

<u>General</u>. - Three concentric ring slosh baffles were installed in the tank to retard liquid motion. The exact position of these baffles is shown in figure 6. Complete tank expulsions were made using only GCH_4 and GHe pressurants. The main test parameters were inlet gas temperature and expulsion time. All expulsions in this group were made while the tank was being oscillated at an amplitude of ± 2.23 centimeters (± 0.88 in.) and at a frequency corresponding to the natural frequency of the liquid remaining in an unbaffled tank (i.e., same conditions as used in the unbaffled tank). Slosh amplitude was also linearly ramped for these runs from 0.0 to ± 2.23 centimeters (0.0 to ± 0.88 in.) over approximately a 60-second time period.

The experimentally determined pressurant gas requirements, as well as heat and mass transfer data for these slosh tests, are compared to similar data for both the static tank tests and the slosh tests previously mentioned. The main objectives are to point out

Figure 48. - Mass required during baffled slosh expulsion using GCH_4 pressurant as a function of expulsion time. Tank pressure, 34.47×10^4 newtons per square meter (50 psia).

marked differences between the sets of data and the reasons for the differences. No analytical predictions were made for the slosh runs in this group.

The results obtained using GCH_4 will be discussed first followed by the tests employing GHe pressurant. The main test parameters, as well as the mass and energy balances for the two major groups of data, appear in tables V and VI.

<u>Methane pressurant</u>. - The quantity of GCH_4 required for the expulsion period is shown in figure 48 for the two different inlet temperatures. The requirements for both the static tank and the unbaffled slosh expulsions are shown for reference. As with all previous work, both increasing expulsion time and decreasing inlet gas temperatures cause a rise in the amount of pressurant. Further, the pressurant requirements and the mass condensed are significantly increased for baffled slosh over the unbaffled tank case. Compared to the static tank runs, the requirements for baffled slosh were increased, on the average, by a factor of 4.6 for the 222 K (400[°] R) inlet temperature and a factor of 3.9 at 333 K (600[°] R).

The quantity of condensed pressurant is again of prime importance. On the average, condensation increased during baffled slosh by a factor of 12.30 for the 222 K (400° R)

Figure 49. - Experimental gas and wall temperatures at end of baffled slosh expulsions using GCH₄ pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

runs and by a factor of 9.85 for the 333 K $(600^{\circ} R)$ cases over values obtained for static tank work at comparable temperatures. Condensed pressurant was again the main reason for the large increase in overall expulsion pressurant requirements. Figure 49 displays the experimental gas and wall temperature profiles for the shortest and longest expulsions at each of the two inlet gas temperatures. When compared to figure 35, it can be seen that more heat is lost to the tank wall during the baffled slosh runs. The temperature profiles in the ullage gas are generally warmer than in the unbaffled expulsions.

As in the unbaffled slosh case, washing of the tank walls was still encountered during baffled slosh. The tank wall area washed per unit time was reduced due to the presence of the baffles. A portion of this lost area was made up by the surface area of the baffles which were also periodically exposed and then submerged again as the liquid propellant was being expelled. However, the addition of the baffles resulted in more liquid splashing than was encountered in the unbaffled slosh runs. The extra splashing was, of course, visually observed over short viewing periods during tank expulsion. It is the opinion of the authors that even though the reduced washing would dictate a reduction in the amount of pressurant condensed on the tank wall, the extra splashing resulted in a significant additional amount of ullage gas condensation as well as some additional propellant heat gain because of direct heat transfer from the pressurant gas. This extra heat and mass gain by the propellant was rapidly mixed into the main bulk because of propellant agitation due to the presence of the baffles. The momentum energy of the slosh wave, after the wave would strike a baffle, was considered dissipated in greater eddy currents in the liquid propellant. Unfortunately, there was no way in which to evaluate the contribution of each of these extra mass and heat transfer effects. Their net result, coupled with the extra mixing occurring in the liquid propellant, was significantly more liquid heating than encountered during unbaffled slosh.

The time history of the GCH₄ pressurant flow rate for a 333 K (600° R) fast expulsion is shown in figure 50. The flow rate required for a static tank expulsion (fig. 11)

Figure 50. - Time history of GCH₄ pressurant flow rate during baffled slosh expulsion. Tank pressure, 34, 47x10⁴ newtons per square meter (50 psia); inlet temperature, 333 K (600⁰ R); natural frequency slosh input; slosh amplitude, ±2, 18 centimeters (±0,86 in.); run 324.

(b) Inlet gas temperature, 333 K (600° R).

Figure 51. - Energy distribution for expulsion period for baffled slosh tests using GCH_4 pressurant as a function of expulsion time. Tank pressure, 34.47×10^4 newtons per square meter (50 psia).

has been added for comparison purposes. The characteristics of this baffled slosh flow rate curve are comparable to those shown for the unbaffled tank expulsion (fig. 36). The majority of flow is required at the beginning of expulsion and the rate also drops off as the expulsion proceeds. The maximum flow rate is higher, however, and exists for a much longer period of time during baffled slosh. It should be noted that this peak flow rate would have been higher except the imposed slosh amplitude was ramped over a 60second period after the beginning of LCH₄ outflow. As in the case of the unbaffled slosh runs, a vehicle pressurization system designed for use under these conditions would have to be capable of handling a flow much greater than the rate calculated by simply dividing the total gas requirement by the expulsion time.

Figure 51 shows the distribution of total energy added to the tank during the expulsion period. Only minor differences exist between these distributions and comparable data for the unbaffled slosh tests. A slightly greater percentage of heat was lost to the liquid propellant and a smaller percentage was left in the ullage. These results were considered due to the extra splashing of the liquid propellant. The percentage of heat lost to the tank wall was slightly higher than that lost during unbaffled slosh. This result is expected because of less wall washing during the baffled expulsions.

Figure 52 is a plot of the liquid outflow temperature-time history for a baffled slosh expulsion. Histories for an unbaffled slosh run and a static tank expulsion have been added for comparison. The major points to be made are (1) how much of the liquid is heated and (2) that more liquid is heated for the run made with baffles. This figure serves to support the earlier hypothesis regarding greater liquid mixing occurring because of the presence of slosh baffles in the tank. Finally, the inference made in the

Figure 52. - Time history of LCH₄ outflow temperature during baffled slosh test using GCH₄ pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet temperature, 222 K (400⁰ R).

section Slosh Expulsions, Unbaffled Tank, with regard to possible cavitation problems in a LCH_A propellant system servicing a combustion device may be reiterated here.

<u>GHe pressurant</u>. - The quantity of GHe required for the expulsion period is shown in figure 53 for the two different inlet temperatures. The requirements for both the static tank and the unbaffled slosh expulsions are shown for reference. The usual trend of increasing gas requirements as a function of expulsion time and inlet temperature is present. The pressurant requirements for this set of runs are less than those required for static expulsions but slightly greater than the unbaffled slosh requirements. This was most probably due to the slightly greater heating of the tank walls. Gaseous methane evaporation is again the reason for these requirements being less than needed for the static expulsions. Slightly less evaporation was recorded for the baffled tank compared to the bare tank under slosh conditions. The average decrease in GHe pressurant requirements for these baffled slosh runs relative to the static tank expulsions is 12.9 percent at 222 K (400° R) and 14.1 percent at 333 K (600° R).

Figure 54 displays the experimental gas and wall temperature profiles for the shortest and longest expulsions at each of the two inlet gas temperatures. When compared to figure 41, it can be seen that the wall profiles are warmer indicating they absorbed more heat during the baffled runs because of the lesser amount of wall washing by the liquid propellant. The ullage gas profiles are very similar between the baffled and unbaffled expulsions. In fact, it is difficult to say that any significant difference exists.

Figure 53. - Mass required during baffled slosh expulsion using GHe pressurant as a function of expulsion time. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

Figure 54. - Experimental gas and wall temperatures at end of baffled slosh expulsions using GHe pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

Figure 55 displays the ullage gas concentration curves for both sets of GHe runs. These data show significant percentages of GCH_4 present throughout the ullage volume. However, these concentrations are slightly less than observed for similar runs made without baffles. Using this data, both the mass of GCH_4 in the ullage and the amount of GHe dissolved in the LCH₄ propellant were calculated. Table V lists the mass of methane evaporated during these expulsions. The results show slightly less evaporation for these baffled slosh runs compared to the bare tank slosh expulsions. The trend of increasing evaporation with increasing expulsion time is present.

Figure 56 displays the amount of GHe dissolved in the LCH_4 propellant. The quantities are displayed in a percentile manner relative to the total amount of pressurant added during the complete pressurization cycle. As in the case of the bare tank slosh runs, the authors consider the data in figure 56 accurate only within ±3 ordinate units. As a result of this uncertainty, the authors did not consider any heat contribution to the liquid by the dissolved GHe.

Figure 57 shows the distribution of the total energy added to the tank via both the incoming GHe and the environment. The major heat sink is the ullage gas $\Delta U_{U,X}$. The

(b) Inlet temperature, 333 K (600° R).

Figure 55. - End of expulsion ullage gas concentrations for baffled slosh expulsion using GHe pressurant. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

Figure 56. - Percent of GHe, dissolved in propellant, of total pressurant added during each complete baffled slosh run as a function of expulsion time. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia).

Energy distribution, percent

67

amount of heat left in the ullage for the baffled slosh runs was almost identical with the data observed for the bare tank slosh runs. The reduced wall washing caused by the presence of the baffles was considered to have resulted in more of a heat gain by the tank wall $\Delta U_{w,X}$, and a reduction of the quantity lost to the liquid propellant $\Delta U_{L,X}$, when compared to the unbaffled slosh tests.

Figure 58 is a typical time history of the LCH₄ outflow temperature for both a 222 K (400[°] R) and a 333 K (600[°] R) expulsion. The same trends relative to the histories during the unbaffled slosh runs are present. Also, as in the unbaffled slosh runs, tank pressure fluctuations can only account at most for a variation of 0.03 K (0.06[°] R) for these baffled slosh expulsions and hence were again ruled out as a possible cause for the trend in the temperature histories shown here. The increase in liquid temperature relatively early in the expulsion indicates that mixing in the LCH₄ extends significantly down into the propellant. The histories begin to show a dropoff about halfway through. This implies that liquid cooling, because of methane evaporation, is occurring. If the work term P ΔV of approximately 515×10³ joules (488 Btu) and half the environmental heating term are subtracted from the liquid energy term $\Delta U_{L,X}$, the result is again generally negative. This implies that the cooling effect on the propellant of the evaporating methane is generally greater than the heat gained because of wall washing and heat addition from the pressurant gas. The net change in temperature of the propellant is small as was the case for both the static tank and unbaffled slosh runs.

Variable Amplitude Slosh With and Without Baffles

General. - Since the effect of slosh excitation on the mass requirements for GCH_A pressurant is so large, it was decided to determine the effects of slosh excitation at conditions other than the very severe one imposed during the slosh expulsions covered in previous sections. The main test parameters for the following runs were inlet gas temperature, slosh input frequency, and slosh input amplitude. Complete tank expulsions were made, both with and without baffles, using only GCH₄ pressurant. Expulsion time was held to a nominal value of 389 seconds which corresponded approximately to the midrange point for all previous tests. The inlet gas temperatures were the nominal values of 222 K (400° R) and 333 K (600° R). Two different slosh input frequency schedules were employed. The first corresponded to the natural frequency of the liquid remaining in an unbaffled tank (i.e., same conditions as used in previous sections) and the second was a constant input frequency of 0.716 hertz. The 0.716-hertz value corresponds to the natural frequency of an unbailed tank one-half full. Slosh amplitude ranged from 0.0 to ± 2.23 centimeters (0.0 to ± 0.88 in.) for the series of runs. Once imposed, however, the slosh amplitude was kept constant throughout a complete expulsion. Slosh amplitude was also linearly ramped for these runs from 0.0 centimeter (0.0 in.) to the desired run
value during approximately a 60-second time period.

The main test parameters, as well as the mass and energy balances for the three major groups of data, appear in tables VII and VIII.

<u>Unbaffied tank.</u> - The quantity of GCH_4 required for the expulsion period is shown in figure 59 for the two different inlet temperatures and the two different slosh input frequency profiles. It is quite evident from the curves that there is a definite inflection point below which slosh effects on pressurant requirements are small and above which they are appreciable. This inflection point is taken as ± 0.51 centimeter (± 0.20 in.) of amplitude. The jump in pressurant requirements is much more sharply defined for the natural frequency profile slosh input runs than for the 0.716-hertz excitations. There is a less pronounced rate of rise in the pressurant requirements for the 0.716-hertz excitations. This is expected inasmuch as resonance effects occur during only part of these runs.

In the section Slosh Expulsions, Unbaffled Tank, the authors implied that the heat absorbed by the liquid propellant is controlled essentially by the amount of wall washing and the amount of splashing occurring in the tank. Transferring this absorbed heat into the bulk propellant is a function of mixing in the liquid. The curves in figure 59 show that a combination of both amplitude and a resonant point, or near resonant point, are

Figure 59. - Mass of GCH₄ pressurant required during unbaffled slosh expulsions for range of slosh amplitudes. Tank pressure, 34.47×10^4 newtons per square meter (50 psia); expulsion time, 389 seconds.

both needed to cause large increases in the quantities of required pressurant gas.

Figure 60 is a time history of the GCH_4 pressurant flow rate for three runs in the immediate vicinity of the inflection point for the 333 K (600[°] R) natural frequency profile runs. The flow rates shown are typical in trends, but slightly lower in absolute magnitude, than runs made at 222 K (400[°] R) inlet temperature. Each curve reaches its maximum very shortly after the steady-state slosh amplitude is reached (60 sec after the start of expulsion). It should also be noted that, as slosh amplitude increases, the pressurant flow rate required after the initial peak also increases and exists for a longer period of time. Based on this comparison, the authors postulate that the small slosh amplitude of ±0.51 centimeter (±0.20 in.) is evidently sufficient to break the stratification force in the liquid propellant and cause pronounced mixing to occur. This postulation is substantiated by figure 61 which displays the time histories of the liquid methane at the tank outlet for both the 222 K (400[°] R) and the 333 K (600[°] R) natural frequency ex-

(c) Run 91; slosh amplitude, ±0.37 centimeter (±0.15 in.).

Figure 60. - Time histories of GCH₄ pressurant flow rates during unbaffled slosh expulsions. Tank pressure, 34.47×10^4 newtons per square meter (50 psia); inlet temperature, 333 K (600⁰ R); natural slosh frequency input; runs 90, 89, and 91.

pulsions. Both sets of data show pronounced liquid heating occurring for runs having a slosh amplitude greater than ± 0.51 centimeter (± 0.20 in.).

Figure 62 displays the pressurant mass flow rates for three of the slosh runs made using a 0.716-hertz input. Run 88 (amplitude of ± 0.51 cm or ± 0.20 in.) and 87 (amplitude of ± 0.83 cm or $\bullet 0.33$ in.) are shown for a 222 K (400° R) inlet temperature. The main difference in the profiles of this type of run, relative to the natural frequency profile expulsion, is the pronounced flow increase when the liquid surface nears the center of the tank where the constant imposed frequency matches the natural frequency of the liquid remaining in the unbaffled tank. The gas flow peaks occur near the center of the tank over the expulsion time range. Comparison of runs 88 and 87 shows that, as the slosh amplitude increases, the pressurant flow rate starts rising earlier and stays up longer.

Also plotted in figure 62 is the flow rate for a 333 K (600° R) expulsion made at the same amplitude as the 222 K (400° R) temperature run 87. The flow characteristics for the 333 K (600° R) runs are identical in form with those made at the lower temperature. They differ only in that the absolute magnitude is lower.

Figure 63 displays the time histories of the liquid methane at the tank outlet for both the 222 K (400° R) and the 333 K (600° R) 0.716-hertz expulsions. As in the case of the natural frequency expulsions, these runs also show pronounced liquid heating at slosh

(b) Inlet temperature, 333 K (600⁰ R).

amplitudes greater than ± 0.51 centimeter (± 0.20 in.).

<u>Baffled tank.</u> - This group was run using only 222 K (400° R) GCH₄ pressurant. The three concentric ring baffles are the same units used in the section Slosh Expulsions, Baffled Tank testing and shown in figure 6. Mass requirements are shown in figure 64 as a function of excitation amplitude for both the natural frequency and 0.716-hertz excitation. The mass requirement for the 222 K (400° R) unbaffled tank runs have only been added for reference.

The effect of the baffles was to linearize the pressurant gas requirements over the range of test amplitudes. Relative to the unbaffled tank requirements, the difference shown by the baffled runs is due to the baffles damping resonance effects in the liquid. This fact is also applicable to explaining the relatively small difference observed between the two sets of baffled tank data. As noted in figure 64, considerable spray was visually observed to be occurring when the liquid hit the underside of the baffles at test amplitudes greater than approximately ± 1.02 centimeters (± 0.4 in.). Evidently, this spray served to cool the ullage gas and thereby increase the amount of condensation at the higher slosh amplitudes. This action resulted in the pressurant gas increase over the unbaffled tank runs for the higher slosh amplitudes. Similarly, the ''lack'' of splashing at test amplitudes ≤ 1.02 centimeters (± 0.4 in.) was probably the most significant reason for the smaller pressurant gas requirements in this range.

Figure 65 is a time history of the pressurant gas flow rates for three of the 333 K $(600^{\circ} R)$ natural frequency profile slosh runs. The direct effect of the baffles on pressurant gas requirements can be seen quite clearly, more so as test amplitude increases. Considering any one of the histories, the drop in the maximum flow from peak to peak is

Figure 64. - Mass of GCH₄ pressurant required during baffled slosh expulsions for range of slosh amplitudes. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet temperature, 222 K (400⁰ R); expulsion time, 389 seconds average.

73

. *А*,

to be expected since the liquid propellant is continuously warming. Near the end of expulsion, the liquid propellant is highly heated and, therefore, ullage gas condensation due to sprayed propellant is negligible.

Figure 66 displays the time histories of the liquid methane at the tank outlet for the 222 K (400° R) natural frequency expulsions. Comparison of these profiles with those in figure 61 reveals considerably more liquid heating for the baffled runs (compared to the unbaffled cases) for slosh amplitudes greater than ±1.052 centimeters (±0.42 in.). This relation has the same trend as that shown in figure 64 for the pressurant gas requirements.

Figure 67 is a time history of pressurant flow rates for two of the 0.716-hertz slosh

Figure 66. - Temperature of liquid methane at tank outlet as a function of normalized time during expulsion for baffied slosh expulsions over range of slosh amplitudes. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet temperature, 222 K (400⁰ R); natural slosh frequency input.

⁽b) Run 322; slosh amplitude, ±0.84 centimeter (±0.33 in.).

Figure 67. - Time histories of GCH₄ flow rates during baffled slosh expulsions. Tank pressure, 34.47x10⁴ newtons per square meter (50 psia); inlet temperature, 333 K (600⁰ R); 0.716-hertz slosh input frequency; runs 321 and 322.

runs. After the initial increase, flow requirements for these runs remains relatively constant for a longer period of time than those for the natural frequency runs. The net effect of this action, averaged out over the entire expulsion, is to reduce the total pressurant requirements only slightly.

Figure 68 is a summary figure for all the expulsions made in the section Variable Amplitude Slosh, With and Without Baffles. The main point to be made by this figure is the amount of propellant heating experienced for the range of slosh runs (both natural frequency profile and 0.716 Hz). In all cases, the presence of almost any liquid sloshing gives rise to at least some liquid heating so that the propellant, when delivered into an engine flow system, could obviate good system performance because of cavitation. It is very interesting to note that this statement can be made even when the tank has been baffled to reduce liquid motion.

Partial Tank Expulsions

<u>General</u>. - Twelve partial tank expulsions were made during which only half the liquid propellant in the tank was expelled. The first six of these runs dealt with expulsion of only the upper half of the tank contents. For the remaining six runs the expulsion was started at the 50 percent ullage level and continued until only 5 percent of the methane propellant remained (i.e., 95 percent ullage).

These partial expulsions were made using GCH_4 , GHe, and GH_2 pressurants. The test parameter was inlet gas temperature. Each half-tank expulsion was made over a nominal time period of 200 seconds.

The experimentally determined pressurant gas requirements were compared to analytically predicted values. The exact test conditions, as well as the mass and energy balances for all six groups of data, appear in tables IX and X. The mass requirements data are plotted in figure 69.

<u>5 to 50 percent ullage expulsions</u>. - The pressurant required for these runs was slightly less than half the amount needed for comparable full tank expulsions discussed in the section Static Tank Expulsions. As was the case for the complete tank expulsions, agreement between experimental and predicted gas requirements is good. All detailed run characteristics such as pressurant flow rate, liquid outflow temperature, ullage gas and tank wall temperatures, amount of mass transfer, and so forth, will not be discussed since these expulsions are identical to the first half of complete tank runs.

The results of the experimentally determined energy balances are shown in table X. For all three pressurants the heat added via both the incoming gas and the environment is slightly less than half of the same category for complete expulsions. The heat left in the ullage after these partial expulsions, compared to the complete tank runs, was slightly

Figure 69. - Mass required for partial static tank expuisions using GCH4, GHe, and GH2 pressurants.

less than half for the condensible pressurant and slightly more than half for the noncondensibles. As a general rule, the heat absorbed by the tank wall, and the heat transferred to the liquid propellant, were also slightly less than half of the full expulsion values. The energy gained by the liquid is not highly accurate, however, due to the large surface area of stratified liquid existing at the end of a partial expulsion. The large area makes the calculated energy content very sensitive to temperature immediately below the liquid interface.

50 to 95 percent ullage expulsions. - The pressurant required for these runs was slightly greater than half the amount required for comparable full tank expulsions. The analytically predicted results are also low. The several factors which made it more difficult for the analysis were higher initial ullage energies, a higher ratio of total to added mass, and the condensation which was present in all of these runs. In the cases where GHe and GH₂ were the pressurants, over half of the original methane in the ullage at the beginning of expulsion ended up being condensed. The marked difference in molecular weights between GHe or GH₂ and GCH₄ contributed to the normal stratification at the beginning of expulsion. At the end of the ramp pressurization the partial pressure of methane vapor, because of the higher concentration of GCH₄ near the interface, is greater than the vapor pressure of the interface and hence some of the GCH₄ condenses. This effect is also present during complete expulsions, however, the amount of GCH₄ in a 5 percent ullage is only one tenth of that present in these expulsions.

The results of the experimental energy balance are shown in table X. For all three pressurants the heat added via both the incoming gas and the environment is greater than

half of the same values corresponding to a complete tank expulsion. The energy left in the ullage was slightly greater using GCH_4 , and slightly less when using GHe and GH_2 , than half of the same values corresponding to a complete tank expulsion. As a general rule the heat absorbed by the tank wall, and that transferred to the liquid, were slightly greater than that required during half of the full expulsion values.

SUMMARY OF RESULTS

Pressurized expulsion tests were conducted to determine the effect of various physical parameters on the pressurant gas requirements during the expulsion of liquid methane (LCH₄) from a 1.52-meter- (5-ft-) diameter spherical tank. Methane, helium, hydrogen, and nitrogen were used as pressurant gases. The necessary quantities of these gases to expel 90 percent of the LCH₄ propellant (an average of 651 kg or 1435 lb) were studied as a function of expulsion time at a nominal operating pressure of 34.47×10⁴ newtons per square meter (50 psia) using nominal inlet gas temperatures of 222 and 333 K (400⁰ and 600⁰ R). Also studied were the effects on methane, helium, and hydrogen pressurant requirements of various slosh excitation frequencies, and amplitudes, both with and without slosh suppressing baffles in the tank.

Several partial tank expulsion runs were also made. The first six of these runs dealt with expulsion of only the upper half of the tank contents. For the remaining six runs, the expulsion was started at the 50 percent ullage level and continued until only 5 percent of the methane propellant remained.

The experimental results for the static tank tests (i.e., nonslosh) were compared with predicted results obtained from an analytical program previously developed at Lewis Research Center. The following general results were found.

Static Tank Expulsions

1. With GCH_4 pressurant, a significant amount of condensation takes place. The quantities of GCH_4 required to expel the LCH_4 propellant were between 7.0 and 10.1 kilograms (15.5 and 22.2 lb) for an expulsion time range of 231 to 638 seconds. The amounts of pressurant condensed were between 1.9 and 3.2 kilograms (4.3 and 7.0 lb); these quantities represent between 28 and 33 percent of the pressurant added during expulsion.

2. Gaseous nitrogen is unacceptable as a pressurant because of its high solubility in liquid methane. The quantities of GN_2 required to expel the LCH₄ propellant were between 20.7 and 32.9 kilograms (45.7 and 72.5 lb) for an expulsion time range of 232 to 568 seconds. The amounts of pressurant dissolved were between 12.7 and 23.8 kil-

ograms (28 to 52.5 lb); these quantities represent between 61 and 73 percent of the pressurant added during expulsion.

3. With the noncondensable pressurants, GHe and GH_2 , neither inlet gas temperature nor expulsion time had a large effect on gas requirements. The quantities of GHe required during expulsion were between 1.76 and 1.98 kilograms (3.88 and 4.36 lb) for an expulsion time range of 223 to 622 seconds. The GH_2 requirements were between 0.85 and 1.00 kilograms (1.88 and 2.20 lb) for a time range of 219 to 567 seconds. The maximum change in pressurant gas requirements due to both inlet gas temperature and expulsion time was only 17.7 percent and occurred with hydrogen. The amounts of noncondensable pressurant dissolved in the LCH₄ propellant were small, being a maximum of 0.10 kilogram (0.21 lb) of GHe and 0.05 kilogram (0.101 lb) of GH₂.

4. The comparison between the analytical predictions and the experimental results for helium, hydrogen, and methane pressurants were good. The predictions for nitrogen pressurant were meaningless because of its large solubility.

Slosh Expulsions at Natural Frequency and ± 2.23 -Centimeters (± 0.88 -in.)

Amplitude With and Without Baffles

1. Using GCH_4 , pressurant mass requirements for unbaffled slosh expulsions are greatly increased over those required for a static tank. The increase was a factor of between 2.7 and 3.1.

2. Using GCH_4 , the requirements for baffled slosh expulsions were increased by a factor of between 3.9 to 4.6 over those required for a static tank. (N.B. The addition of baffles increased gas requirements for this condensable pressurant.)

3. Using GCH_4 , significantly larger amounts of condensation were observed. The increase was a factor of 5.7 to 7.6 in the case without baffles and 9.9 to 12.3 for the case with baffles.

4. Both with and without baffles, using GCH_4 pressurant, severe liquid heating was observed. The greatest effect was observed for the tank with baffles. At least 50 percent of the liquid showed some heating for the unbaffled tank (37 percent or more was within 5.5 K (10° R) of being saturated). At least 70 percent of the liquid showed heating for the baffled configuration (59 percent or more was within 5.5 K (10° R) of being saturated).

5. The GCH_4 flow rate is not constant throughout a given expulsion as it was for the static tank cases. A large peak was required at the beginning of each slosh expulsion with a succeeding dropoff in pressurant flow requirements as the expulsion continued.

6. The difference in GCH₄ requirements for the 222 and 333 K (400° and 600° R) inlet temperatures can be directly correlated with inlet temperature. 7. Using the noncondensable pressurants, GHe and GH_2 , the pressurant requirements were reduced by a factor of 0.05 to 0.16 (5 to 16 percent) in the case without baffles.

8. Using the noncondensable pressurant GHe, the pressurant requirements were reduced by a factor of 0.13 to 0.14 (13 to 14 percent) in the case with baffles. (Note that the requirements for the baffled tank expulsions were between the requirements for the static tank and those for the unbaffled tank.)

9. Using the noncondensable pressurants, GHe and GH_2 , considerable evaporation of LCH_4 propellant took place during the expulsion period. This evaporation reduces the noncondensable pressurant requirement.

10. For the noncondensable pressurant, GH_2 , solution into the LCH₄ propellant caused some propellant heating.

Slosh Expulsions With Variable Amplitude and Frequency Excitation

With and Without Baffles

In this section, f_n denotes a slosh frequency input profile which corresponds, at all times, with the natural frequency of the liquid remaining in an unbaffled tank and f_0 denotes a constant slosh frequency input equal to the natural frequency of the tank when half full of propellant.

1. For the unbaffled case, there is a definite excitation amplitude below which slosh effects are small and above which they are large. This amplitude was essentially the same for both f_n and f_0 frequency profiles and was approximately ±0.5 centimeter (±0.2 in.).

2. The addition of antislosh baffles generally increased GCH_4 pressurant requirements over the range of test amplitudes. The addition of antislosh baffles resulted in greater GCH_4 pressurant requirements than for the unbaffled tanks at slosh amplitudes greater than ±1.13 centimeters (±0.5 in.).

3. The addition of antislosh baffles resulted in a linear relation between GCH_4 pressurant requirements for complete expulsions and slosh amplitude.

4. The GCH₄ flow rate was not constant through any of the expulsions over the range of test amplitudes. A large peak was required at the beginning of each f_n slosh expulsion; a large peak was encountered approximately halfway through each of the f_0 slosh expulsions.

5. Because of compensating heat transfer mechanisms, the total GCH_4 pressurant requirement is only slightly less for the f_0 slosh expulsions compared to the f_n runs.

1. Gaseous methane, helium, and hydrogen requirements for the 5 to 50 percent ullage expulsions were slightly less than half of the requirements necessary for complete tank expulsions.

2. The comparison between analytical predictions and the experimental results for the 5 to 50 percent ullage expulsions was good.

3. Gaseous methane, helium, and hydrogen requirements for the 50 to 95 percent ullage expulsions were slightly greater than half of the requirements necessary for a complete tank expulsion.

4. Gaseous methane condensation was observed in all 50 to 95 percent ullage expulsions.

5. Analytical predictions for the 50 to 95 percent ullage expulsions were less than the experimental requirements for all three pressurants. Methane condensation from the ullage was the reason.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, November 27, 1973, 502-24.

REFERENCES

- 1. Roudebush, William H.: An Analysis of the Problem of Tank Pressurization During Outflow. NASA TN D-2585, 1965.
- Epstein, M.; Georgius, H. K.; and Anderson, R. E.: A Generalized Propellant Tank-Pressurization Analysis. Advances in Cryogenic Engineering. Vol. 10, Sect. M-U. K. D. Timmerhaus, ed., Plenum Press, 1965, pp. 290-302.
- DeWitt, Richard L.; Stochl, Robert J.; and Johnson, William R.: Experimental Evaluation of Pressurant Gas Injectors During the Pressurized Discharge of Liquid Hydrogen. NASA TN D-3458, 1966.
- 4. Stochl, Robert J.; Masters, Philip A.; DeWitt, Richard L.; and Maloy, Joseph E.: Gaseous-Hydrogen Requirements for the Discharge of Liquid Hydrogen from a 1.52-Meter- (5-Ft-) Diameter Spherical Tank. NASA TN D-5336, 1969.
- Stochl, Robert J.; Masters, Philip A.; DeWitt, Richard L.; and Maloy, Joseph E.: Gaseous-Hydrogen Pressurant Requirements for the Discharge of Liquid Hydrogen from a 3.96-Meter- (13-Ft-) Diameter Spherical Tank. NASA TN D-5387, 1969.

- Stochl, Robert J.; Maloy, Joseph E.; Masters, Philip A.; and DeWitt, Richard L.: Gaseous-Helium Requirements for the Discharge of Liquid Hydrogen from a 1.52-Meter - (5-Ft-) Diameter Spherical Tank. NASA TN D-5621, 1970.
- Stochl, Robert J.; Maloy, Joseph E.; Masters, Philip A.; and DeWitt, Richard L.: Gaseous-Helium Requirements for the Discharge of Liquid Hydrogen from a 3.96-Meter - (13-Ft-) Diameter Spherical Tank. NASA TN D-7019, 1970.
- Klosek, J.; and McKinley, C.: Densities of Liquefied Natural Gas and of Low Molecular Weight Hydrocarbons. Proceedings of the First International Conference on Liquefied Natural Gas. J. W. White and A. E. S. Neumann, eds., Institute of Gas Technology, Sess. 5, Paper 22.
- Stewart, Richard B.; and Johnson, Victor J., eds.: A Compendium of the Properties of Materials at Low Temperature. Phase II. National Bureau of Standards, Cryogenic Eng. Lab. (WADD TR-60-56, pt. 4), Dec. 1961.
- 10. Sumner, Irving E.; and Stofan, Andrew J.: An Experimental Investigation of the Viscous Damping of Liquid Sloshing in Spherical Tanks. NASA TN D-1991, 1963.
- 11. Bird, R. Byron, Stewart, Warren E.; and Lightfoot, Edwin N.: Transport Phenomena. John Wiley & Sons, Inc., 1960.
- 12. Sinor, J. E.; Schindler, D. L.; and Kurata, F.: Vapor-Liquid Phase Behavior of the Helium-Methane System. AIChE J., vol. 12, no. 2, Mar. 1966, pp. 353-357.
- Benedict, Manson; Webb, George B.; and Rubin, Louis C.: An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures. Chem. Eng. Progr., vol. 47, no. 8, Aug. 1951, pp. 419-422.

TABLE I. - MASS BALANCE FOR STATIC TANK EXPULSIONS

(a) SI units

- Expulsion -

1

٦

- Ramp -

1

່ <u>ບ</u> ເວ	1 7 9	p (ĥ		6						,	,	,	,	,	,		,	,	<u> </u>			,			
Predi ted mas	trans ferre durir	expul	M _{t,e} ,	ка Ка	2.30				-	•	;	;	;	;	;	}	}			1						
Predic- ted pres-	surant required durine	expul - sion.	M _{G,e, P} ,	Бд Э	8.029	8. 396	8. 754 6. 004	0.304	7.425	7.820	1.792	1.871	1.939	1.653	1.792	1.862	. 874	. 908	, 939	. 785	. 854	668.	.907			
Increase in added specie	in ullage during	síon, ko									1.871	1, 944	1.938	1. 770	1.902	1.916	.917	. 956	.973	. 857	.914	. 958	. 951	7.945	8. 353	8.906
Mass of added	pres- surant	in ul- lage at	end of	expul- sion, kg							1.969	2.064	2.050	1.863	1.995	2.025	. 978	1.016	1.033	206,	. 963	1,009	1.004	8, 368	8.785	9.329
Final ullage mass.	M _{f,e} , kg				6.458	6, 807	7.259	124.c	5, 909	6. 392	2.148	2.297	2.470	1.983	2.227	2.291	1.113	1.203	1.267	1.048	1.154	1.251	1.237	8.505	8.936	9.547
Mass trans- ferred	during expul- sion	Mt, e'	f		2.477	2.780	3. 196	1.940	2.463	2.909	a. 131	a. 177	. 2 96	a.061	a. 206	a. 159	a. 078	a. 123	a. 153	. 097	a. 141	a. 196	a. 166	12.703	18.600	23.792
Mass added durine	expul - sion, M	kg e			8. 522	9.184	10.056	7. 027	8.028	8.935	1. 850	1.934	1.977	1. 758	1.857	1. 936	.921	. 963	866.	. 853	. 918	. 956	.968	20. 725	27.054	32.864
Mass of added	pres- surant	in ul -	end of	hold, kg		1	;	;	;	;	0.098	. 120	. 112	. 093	. 093	. 109	. 061	.060	. 060	. 050	.049	. 051	. 053	.423	.432	.423
Ullage mass after	hold, M _{i, e} ,	ę.	-		0.413	.403	. 399	.340	. 344	.366	. 167	.186	. 197	. 164	. 164	. 196	.114	. 117	. 116	.098	. 095	.099	. 103	.483	.482	.475
Mass trans- ferred	during hold,	kg kg			0.135	. 122	. 150	901.	. 131	. 113	.010	a. 006	.011	.012	.013	a. 009	a. 003	a. 009	a.001	.004	.008	.006	.008	.877	.769	. 843
Mass added during	hold, M _{G,h} ,	<u>م</u>			0. 181	. 167	. 209	. 212	. 180	. 169	. 028	. 038	. 038	. 029	. 030	. 039	. 016	. 017	. 015	. 014	.014	. 014	. 016	. 904	. 807	. 877
Mass of added	pres- surant	in ul -	end of	kg							0.086	.092	. 096	.082	.082	.083	.049	.048	.052	.044	.044	.046	.047	.319	.347	.326
Ullage mass after	mamp, M _{i,h} ,	10 4			0.367	. 358	. 340	. 284	. 295	. 310	. 149	. 142	. 170	. 147	. 147	. 148	. 095	.091	. 100	. 088	. 089	.091	. 095	.456	. 444	.441
Mass trans- ferred	during ramp,	kg			0.369	. 390	. 447	c16.	. 361	. 382	. 105	. 135	. 112	. 113	. 118	. 119	. 119	. 126	. 118	. 113	. 112	. 118	. 102	. 575	. 589	. 604
Mass added during	ramp, M _{G,r} ,	8			0.578	. 593	. 639	. 625	. 503	. 535	. 112	. 124	. 130	. 108	. 113	. 116	.064	. 065	. 066	. 055	. 054	. 056	.058	. 867	. 881	. 891
Initial ullage mass	M _{i,r} , kg				0. 158	. 155	. 148	. 174	. 153	. 157	. 142	. 153	. 152	. 152	. 152	. 151	. 150	. 152	. 152	. 146	. 147	. 154	. 139	. 164	. 152	. 154
Expul- sion time	sec		.,		230.7	404.9	632.8	233, 5	410.0	637, 6	223.4	389.2	622.3	223.7	390, 3	598.5	219.3	372.8	561.7	221.6	377.3	566.1	567.4	232.2	377.7	567.9
Hold time,					24.1	23.0	24.4	24.1	24.0	23. 2	25.8	25.7	24.7	25.2	26.8	26.2	25.4	26.0	26.0	26.4	26.1	26.7	27.4	26.7	27.1	26.8
Ramp time,	2 2 2				33.0	33.8	32.7	33.2	33.4	33.9	31.9	31.9	32.1	32.1	30.8	30.9	31.9	31.9	31.7	30.7	31.0	31.2	30.6	30.8	30.3	30.8
Inlet gas tem_	pera- ture,	4			226	227	226	338	344	339	229	226	231	324	331	311	223	226	224	338	333	334	332	335	335	337
Mass of LCH	ex- ex- pelled,	20 4			650	647	644	650	645	642	646	639	633	646	642	633	643	638	635	647	644	642	640	629	655	660
Tank pres- sure	N/m ²				33.9×10 ⁴	33.6	34.1	33.9	33.7	33.5	34.0	34.0	34.0	34.1	34.1	34.1	33.9	33.9	33.9	34.1	34.0	34.1	34, 1	34.1	34.1	34.1
Type of pressu-					GCH,	r			_	-	GHe	_				•	СН,	·					-	GN,		-
Run					8	7	9	II	10	6	37	36	33	42	41	40	63	62	61	68	99	69	65	98	66	97

TABLE I. - Concluded. MASS BALANCE FOR STATIC TANK EXPULSIONS

(b) U.S. customary units

	Predic- ted mass trans- ferred during expul- sion, lb	5.07			
	Predic- ted pres- surant required during expul- sion, MG, e, P,	17.70 18.51 19.30 15.22 16.37 16.37	3.950 4.125 4.275 4.275 3.645 3.951 4.105	1.926 2.002 2.070 1.731	1. 883 1. 982 2. 000
	Increase in added specie during expul- sion, 1b		4.124 4.287 4.272 3.903 4.193 4.225	2.023 2.106 2.146 1.889	2.014 2.113 2.097 2.097 17.517 18.416 19.635
	Masss of added pres- surant specie in ul- lage at expul- expul- sion, Ib		4. 340 4. 551 4. 519 4. 519 4. 399 4. 465	2. 157 2. 239 2. 239 2. 278 1. 999	2. 122 2. 225 2. 213 2. 213 18. 449 19. 363 19. 367 20. 567
	Final uulage mass, ff, e' lb	14.237 15.007 16.033 11.951 11.951 13.027 14.091	4.736 5.065 5.446 4.371 4.910 5.050	2.453 2.653 2.794 2.310	2. 544 2. 759 2. 728 2. 728 18. 750 19. 701 19. 701
Expulsion	Mass trans- ferred during expul- sion, Mt, e, lb	5.461 6.127 7.016 4.290 5.429 6.415	a. 289 a. 392 a. 652 a. 134 a. 454 a. 454 a. 352	a. 170 a. 273 a. 338 a. 213	a. 312 a. 432 a. 432 a. 365 a. 365 28. 005 41. 004 52. 451
	Mass added during expul- sion, lb	18.787 20.246 22.169 15.491 17.698 19.699	4.078 4.264 4.359 3.875 4.094 4.267	2. 031 2. 123 2. 201 1. 881	2.023 2.108 2.135 45.690 59.643 72.451
	Mass of added pres- surant specie in ul- lage at end of hold, lb		0.216 .264 .247 .204 .206 .206	. 134 . 133 . 132 . 132	.108 .112 .116 .116 .932 .932
	Ullage mass after hold, lb	0.911 .888 .880 .750 .758 .758	.369 .409 .435 .362 .362 .362	. 252 . 257 . 255 . 255	.209 .219 .228 1.065 1.062 1.048
- 	Mass ferred during hold, lb	0.296 271 330 345 289 289	.022 .014 .024 .027 .027 .028 .019	a. 006 a. 018 a. 018 a. 002 . 010	.019 .013 .016 .016 1.933 1.694 1.694
Hol	Mass added during hold, M _G , h'	0.398 .369 .461 .468 .367 .373	.062 .083 .084 .064 .066	.036 .038 .033 .033	.031 .031 .035 .035 1.998 1.778
	Mass of added pres- pres- spres- in ul- lage at end of ramp, lb		0.190 .203 .211 .180 .180 .183	. 109 . 106 . 114 . 098	. 098 . 101 . 104 . 704 . 766
	Ullage mass after Ib	0.809 .190 .749 .627 .627 .683	.329 .312 .375 .325 .325 .327	. 210 . 201 . 220 . 195	.197 .201 .209 .209 1.005 .978
Ramp –	Mass ferred during M _t , r, Ib	0.814 .860 .986 .986 1.135 .796 .842	. 229 . 298 . 248 . 250 . 262	. 262 . 277 . 261 . 261	.247 .261 .226 1.267 1.298 1.332
	Mass added during M _G , r' lb	1.274 1.308 1.408 1.408 1.378 1.378 1.109 1.179	.246 .273 .287 .239 .239 .249	. 141 . 144 . 146 . 122	.119 .123 .128 .128 1.911 1.942 1.942
	Initial ullage mass, li, r' lb	0.349 .342 .327 .327 .384 .384 .384 .384	.312 .337 .336 .336 .336 .336 .336	.330 .334 .335 .335	.325 .339 .307 .307 .361 .334 .334
	Expul - sion time, sec	230.7 404.9 632.8 233.5 233.5 637.6	223.4 389.2 622.3 390.3 390.3 598.5	219.3 372.8 561.7 221.6	377.3 566.1 567.4 567.4 232.2 377.7 567.9
	Hold time, sec	24.1 23.0 24.4 24.1 24.0 23.2	25. 8 25. 7 24. 7 25. 2 26. 8 26. 2	25.4 26.0 26.0 26.0	26.1 26.7 27.4 27.4 26.7 26.8
	Ramp time, sec	33.0 33.8 32.7 32.7 33.2 33.2 33.9	31.9 31.9 32.1 32.1 30.8 30.9	31.9 31.9 31.7 30.7	31.0 31.2 30.6 30.8 30.8 30.3
	Inlet gas tem - pera- ture, ⁰ R	407 409 407 608 619 619 610	412 407 416 583 583 596 560	401 407 403 608	599 601 598 603 603 603
	Mass of LCH4 ex- pelled, lb	1433 1426 1426 1420 1433 1433 1415	1424 1409 1396 1424 1415 1396	1418 1407 1400 1426	1420 1415 1411 1413 1453 1444 1455
	Tank pres- sure, psia	49.2 48.7 49.5 49.2 48.9 48.9	49.3 49.3 49.3 49.5 49.5 49.5	49.2 49.2 49.2 49.5	49.3 49.5 49.5 49.5 49.5 49.5
	Type of pressurant	GCH ₄	GHe	⁶	z
	Run	8 6 11 10	37 36 33 42 41 40	63 62 61 68	66 65 93 93
	L <u>m</u>	l	· · · · · · · · · · · · · · · · · · ·		

^aEvaporated. (All other values are condensed.)

TABLE II. - ENERGY BALANCE FOR STATIC TANK EXPULSIONS

(a) SI units

						6	5	,
temnerature.	time	ΔU	, 1	tank wall	during	gained	liquid	huring
K	Sec			expulsi	on, J	by ullage,	expuls	on, J
4	2	Energy added	Energy added			ΔU,, ν,		
		by pressurant	by environ-	Experi-	Predicted	, v, r	Experi -	Predicted
		gas during	ment during	mental	ΔU _w ,p		mental	ΔUL,P
		expulsion	expulsion	AUw,X			Δ ^U L,X	
		(experimental)	(experimental)					
226	230.7	635.0×10 ⁴	15. 8×10 ⁴	195.4×10 ⁴	197. 0×10 ⁴	328, 5×10 ⁴	94.4×10 ⁴	^a 69.9×10 ⁴
227	404.9	688.1	27.7	233.6	228.8	338.0	108.4	a76.5
226	632.8	750.2	43.3	261.1	257.9	354.3	115.9	⁴ 87.0
338	233.5	779.5	16.0	275.3	306.2	300.9	86.6	⁴ 67.9
344	410.0	813.3	28.2	363.2	377.0	313.8	108.6	⁴ 75.6
339	637.6	892.0	43.7	414.5	420.4	325.8	129.7	^a 84.8
066	4 200	230 4	15.3	76.6	92.9	83.6	71.3	^b 59.4
522 966	389 2	229.3	26.7	90.8	112.1	85.2	55.5	^b 64.6
231	622.3	239.2	42.6	108.5	134.9	91.4	64.2	^D 72.6
324	223.7	298.7	15.3	130.4	159.7	81.7	62.7	⁰ 59.6
331	390.3	320.7	26.7	162.5	199.7	85.9	60.7	.65.3
311	598.5	314.7	41.0	171.6	215.3	85.8	71.3	⁰ 72.0
		6 000	15.0	00	101 7	134 2	66.4	b _{58.7}
223 896	279.8	306.9	25.5	112.0	128.2	136.7	70.4	b _{63.8}
077 077	561 7	315.7	38.5	125.6	144.2	138.9	69.9	^b 70.3
338	221.6	406.8	15.2	180.5	205.4	135.0	72.9	^D 59.6
333	377.3	431.8	25.8	210.9	244.8	137.9	62.9	064.6
334	566.1	450.2	38.8	252.2	287.4	141.1	71.2	^D 71.4
332	567.4	453.5	38.9	242.2	284.4	140.1	72.4	⁰ 71.2
335	232. 2	1038.9	15.9	244.5		251.1	473.6	
335	377.7	1357.4	25.9	348.1		258.2	673.4	
397	5.67 Q	1663 9	28 0	450 5	1	268.6	893.4	
	temperature, K K 226 338 344 339 339 339 331 331 332 333 332 333 333 335 335 335	temperature, time, ksc k sec sec 226 530.7 226 632.8 339 637.6 532.8 339 637.6 532.8 339 637.6 532.8 339 532.5 331 598.5 331 598.5 333 3324 223 77.3 333 377.3 335 567.4 566.1 335 567.4	temperature,time, ΔU_T KsecEnergy addedby pressurant gas during expulsion226230. 7635. 0×10^4 226230. 7635. 0×10^4 226632. 8750. 2338233. 5779. 5344410. 0813. 3339637. 6892. 0226532. 4233. 5779. 5339637. 6892. 0339223. 4229223. 4229223. 4229223. 7229223. 7229223. 7229223. 7229223. 7331598. 5311598. 5311598. 5312. 8314. 7333219. 3229221. 6406. 8306. 2334561. 7335567. 4453. 5335377. 7335377. 7335567. 4453. 5336567. 4453. 5337. 71357. 4335567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 4567. 5567. 4567. 6567. 4567.	temperature,time, ΔU_T , JKsecEnergy addedEnergy addedby pressurantby pressurantby environ-gas duringexpulsionexpulsioncexpulsion(experimental)(experimental)226230, 7635, 0×10^4 15, 8×10^4 227404, 9688, 127, 7228233, 5779, 516, 0339637, 6892, 043, 7229223, 4239, 415, 3331537, 6892, 043, 7228339, 2239, 415, 3331592, 2339, 2286, 7331598, 2239, 415, 3331598, 2239, 415, 3333339, 2239, 726, 7331598, 5314, 741, 0333336, 2239, 726, 7333330, 3230, 726, 7331598, 5314, 741, 0333336, 2236, 2338, 5333377, 3316, 7316, 7333336, 2336, 225, 5333336, 2239, 315, 0333336, 2239, 315, 0333336, 2336, 2336, 2333336, 2336, 2336, 2333333336, 2336, 2333333336, 2336, 2334566, 1466, 8336, 2335567, 4453, 5 <td>temperature, time, ΔU_T, J tank wall K sec Energy added Energy added Experi- by pressurant by pressurant by environ- Experi- gas during ment during mental gas during expulsion AU_W, X gas during espulsion AU_W, X gas during espection especion gas during especion especion gas during</td> <td>time ΔU_T, J tark wall during expulsion, J sec by pressurant by environ- Experi- Predicted by pressurant by environ- sec by pressurant by environ- Experi- Predicted by pressurant by environ- 226 230. 7 635. 0×10^4 15. 8×10^4 195. 4×10^4 197. 0×10^4 226 233. 5 779. 5 16. 0 275. 3 256. 2 233. 6 228. 8 233 688. 1 27. 7 233. 6 233. 6 258. 8 9 9 234 410. 0 892. 0 43. 7 414. 5 420. 4 9 9 9 112. 1 233 537. 6 233. 4 10. 0 892. 0 43. 7 414. 5 420. 4 4 234 537. 6 233. 4 15. 3 16. 0 275. 3 367. 0 2 9 9 9 1 1 1 4 9</td> <td>There ΔU_T, J tank wail during eximed by pressurant by environ- <math>Expery added gas during ment during mental expulsion ΔU_u, X ΔU_u, X 226 E30.7 635, $\infty t 0^4$ 15, 8×10^4 197, $\infty t 0^4$ 238, 5×10^4 240, 4×10^4 238, 5×10^4 238, 5×10^4 240, 4×10^4 238, 5×10^4 2226 532, 5×10^4 239, 5×10^4 240, 4×10^4 238, 5×10^4 240, 4×10^4 238, 5×10^4 2321 5322 239, 5×12^4 232, 5×12^4 240, 4×10^4 </math></td> <td>temperature, K ΔU_T, J tank wall during exputsion, J ΔU_T, F exputsion, J py ulage, exputsion exputsion, J 226 230.7 635.0×10⁴ 15.8×10⁴ 197.0×10⁴ 238.5×10⁴ 94.4×10⁴ 227 404.9 688.1 27.7 233.6 228.8 338.0 105.9 226 230.77 655.0×10⁴ 15.8×10⁴ 195.4×10⁴ 94.4×10⁴ 227 404.9 688.1 27.7 233.6 228.8 338.0 108.6 239 637.6 892.0 15.3 261.1 257.9 355.8 115.9 239 637.6 892.0 43.7 261.1 277.0 315.9 215.9 239 637.6 892.0 43.7 261.1 157.0 315.9 116.9 239 531.6 239.3 367.1 15.3 366.2 555.5 555.5 339 637.6 892.3 367.0 313.8 108.6 6.7.3 239</td>	temperature, time, ΔU_T , J tank wall K sec Energy added Energy added Experi- by pressurant by pressurant by environ- Experi- gas during ment during mental gas during expulsion AU_W, X gas during espulsion AU_W, X gas during espection especion gas during especion especion gas during	time ΔU_T , J tark wall during expulsion, J sec by pressurant by environ- Experi- Predicted by pressurant by environ- sec by pressurant by environ- Experi- Predicted by pressurant by environ- 226 230. 7 635. 0×10^4 15. 8×10^4 195. 4×10^4 197. 0×10^4 226 233. 5 779. 5 16. 0 275. 3 256. 2 233. 6 228. 8 233 688. 1 27. 7 233. 6 233. 6 258. 8 9 9 234 410. 0 892. 0 43. 7 414. 5 420. 4 9 9 9 112. 1 233 537. 6 233. 4 10. 0 892. 0 43. 7 414. 5 420. 4 4 234 537. 6 233. 4 15. 3 16. 0 275. 3 367. 0 2 9 9 9 1 1 1 4 9	There ΔU_T , J tank wail during eximed by pressurant by environ- $Expery added gas during ment during mental expulsion \Delta U_u, X \Delta U_u, X 226 E30.7 635, \infty t 0^4 15, 8 \times 10^4 197, \infty t 0^4 238, 5 \times 10^4 240, 4 \times 10^4 238, 5 \times 10^4 238, 5 \times 10^4 240, 4 \times 10^4 238, 5 \times 10^4 2226 532, 5 \times 10^4 239, 5 \times 10^4 240, 4 \times 10^4 238, 5 \times 10^4 240, 4 \times 10^4 238, 5 \times 10^4 2321 5322 239, 5 \times 12^4 232, 5 \times 12^4 240, 4 \times 10^4 $	temperature, K ΔU_T , J tank wall during exputsion, J ΔU_T , F exputsion, J py ulage, exputsion exputsion, J 226 230.7 635.0×10 ⁴ 15.8×10 ⁴ 197.0×10 ⁴ 238.5×10 ⁴ 94.4×10 ⁴ 227 404.9 688.1 27.7 233.6 228.8 338.0 105.9 226 230.77 655.0×10 ⁴ 15.8×10 ⁴ 195.4×10 ⁴ 94.4×10 ⁴ 227 404.9 688.1 27.7 233.6 228.8 338.0 108.6 239 637.6 892.0 15.3 261.1 257.9 355.8 115.9 239 637.6 892.0 43.7 261.1 277.0 315.9 215.9 239 637.6 892.0 43.7 261.1 157.0 315.9 116.9 239 531.6 239.3 367.1 15.3 366.2 555.5 555.5 339 637.6 892.3 367.0 313.8 108.6 6.7.3 239

^aP $\Delta V + (1/2)Q_{added}$ by environment + $M_{cond}(U_{SL})_{112}$ K[·] ^bP $\Delta V + (1/2)Q_{added}$ by environment[·] TABLE II. - Concluded. ENERGY BALANCE FOR STATIC TANK EXPULSIONS

Run	Type of	Inlet gas	Expulsion	Total ener	'gy added,	Energy	gained by	Energy	Energy {	gained by
	hi essui ailt	op	con d	,Tut	nia	Larik wa.	uring	gained		
		4	2000	Energy added	Energy added	Istndxa	on, bu	by ullage,	Isindxa	on, Btu
				by pressurant	by environ-	Experi-	Predicted	Δ ^U U,X' Btu	Experi-	Predicted
				gas during	ment during	mental	$\Delta U_{w,P}$	1	mental	AUL.P
_				expulsion	expulsion	ΔU _{w.X}	- k		$\Delta U_{I, X}$	i Î
				(experimental)	(experimental)				Î	
8	GCH4	407	230.7	6023	150	1853	1868	3116	895	a ₆ 63
5		409	404.9	6526	263	2216	2170	3206	1028	a _{'7} 26
9		407	632.8	7115	411	2476	2446	3360	1099	a ₈₂₅
11		608	233.5	7393	152	2611	2904	2854	821	a ₆ 44
10	;	619	410.0	7714	267	3446	3576	2976	1030	a ₇₁₇
<u>ი</u>		610	637.6	8460	414	3931	3987	3090	1230	a ₃₀₄
37	GHe	412	223.4	2271	145	727	881	793	676	b ₅₆₃
36		407	389.2	2175	253	861	1063	808	526	b ₆₁₃
33		416	622.3	2269	404	1029	1279	867	609	b ₆₈₉
42		583	223.7	2833	145	1237	1515	775	595	b565
41		596	390.3	3042	253	1541	1894	815	576	b619
40	-	560	598.5	2985	389	1628	2042	814	676	b ₆₈₃
63	GH ₂	401	219.3	2744	142	855	965	1273	630	b ₅₅₇
62	I 	407	372.8	2904	242	1062	1216	1297	668	b605
61	t	403	561.7	2994	365	1191	1368	1317	663	b667
68		608	221.6	3858	144	1712	1948	1280	691	b565
99	- · ·	599	377.3	4095	245	2000	2322	1308	597	b ₆₁₃
69	~ 1	601	566.1	4270	368	2392	2726	1338	675	b ₆₇₇
65	-	598	567.4	4301	369	2297	2697	1329	687	^b 676
98	GN,	603	232.2	9853	151	2319	1	2382	4492	
66	 	603	377.7	12874	246	3302	1	2449	6387	
97	-	607	567.9	15680	369	4273		2548	8473	1 1 1 1
^a P ∆	.V/777.6 + (1	/2)Qadded by e	environment	+ $M_{cond}(U_{SL})_{20}$	02 ⁰ R·					

(b) U.S. customary units

^bP $\Delta V/777.6 + (1/2)Q_{added}$ by environment[.]

TABLE III. - MASS BALANCE FOR SLOSH CONDITIONS WITHOUT BAFFLES

(a) SI units

							┸		Ī	Ramp —		T		┸			Î	Expulsio	- u		
										T			Hold			T					
6	Tune of	Tool	Mage	Tulat	Bamn	Hold F		nttial 1	Aase N	MARS U	llage	Mass	Mass 1	Mass U	Ilage 1	Mass	Mass	Mass	Final	Mass 1	Increase
	nressu-	-ser	Ju	6738	time. It	time.	sion	ullage a	dded ti	rans- n	nass	ofa	idded t	rans-	nass	of	added	trans-	ullage	of	in added
	rant	GITE	LCH.	tem-	Sec.	sec	time.	nass. d	uring fe	erreda	ufter a	dded d	luring f	erreda	ufter a	ndded (during	ferred	mass,	added	specie
		N/m2	- xe	nera-			sec	N.	amo, d	uring r	amp. p	res- 1	bold. d	luring t	iold, p	res- (expul -	during	M, e,	pres- 1	in ullage
		1	pelled.	ture.	_			kg N	<u>יי</u> ג'יי	amp, M	1, h, s	urant A	MG 1, 1	hold, N	4, e, 5	surant	sion,	- Indxa	kg	surant	during
			ke	K)	<u>م</u>		kg .	pecie	kg.	М, Ъ,	kg 's	specie	MG e,	sion,		specie	expul-
			p						•	κ k		n ul -		kg.		- In ul	39	M _{t e} ,		in ul-	slon,
										1	Ţ	age at			1	age at		kg.		lage at	kg
							,					ind of				end of		-		end of	
							·					amp.				hold,	_			expul-	
												, a				kg				sion,	
												p								kg	
5	a	32 42104	A.A.O	230	33 7	22.8	297.5	0. 152 (0.688 6	3.485 0). 355		0. 203	0. 145 (0.413		26.676	19.092	7.997		
1, 0	• •	33.4	662	230	34.0	23.4	371.8	. 155	678	.479	. 354		. 196	. 136	.414		28.475	21.226	7.663		*
18		33.0	860	231	33.7	24.4	442.7	. 155	610	.400	. 365		. 181	. 126	.420		29.604	22.545	7.479		
2 2		33.0	864	31	33.4	23.2	674.4	. 149	. 651	464	. 336		, 198	. 143	.391		31.617	23.771	8.237		
2		33.4	659 659	349	33.7	24.0	206.3	149	503	353	. 299		. 157	. 109	.347		19.082	11.918	7.511		
0		33.6	652 652	347	34.0	24.1	360.9	. 155	532	373	. 314		. 168	. 116	.367		20.639	14.362	6.644		
- u		23 B	AFO	244	22 0	7 20	438 9	147	582	433	296		. 176	. 132	.340		22.470	16.249	6.561		
3	*	0.00					957 9	150		101	205		148	115	348		23 003	15 367	7.984		
53	•	33.2	069	342	2.40	23.0	1 1.00	001.	. noc .	172.	C 07 .		. 100						5		
45	GHe	34.0×10 ⁴	635	226	31.7	25.9	217.4	. 154	. 132	. 133	. 153 (0.104	. 039	.014	. 178	0. 122	1. 582	^b 1.715	3.475	1. 761	1.639
44		34.0	640	226	31.4	25.6	398.8	. 154	. 134	. 140	. 148	. 101	. 038	600	. 177	. 121	1.631	⁰ 1.921	3.729	1.755	1.634
43		34.0	632	228	31.7	25.3	591.9	. 169	. 139	. 144	. 164	. 111	. 039	.018	. 185	. 126	1. 639	2.071	3. 895	1.751	1.625
48		33.9	639	333	32.4	24.8	218.8	. 146	. 119	. 125	. 140	. 086	. 032	.005	. 167	. 102	1.465	1.706	3, 338	1. 625	1.523
47		33.9	640	318	32.3	26.0	383.4	. 150	. 124	.129	. 145	. 092	. 037	900.	. 176	. 112	1.557	, 1. 909 5	3.642	1.694	1.582
46	-	33.9	638	311	32.2	25.3	608.7	. 149	. 121	. 118	. 152	. 092	, 038	.024	. 166	. 106	1.623	71.893	3.682	1.729	1.623
78	EH.	34_0×10 ⁴	646	224	30, 8	26.8	223.2	. 147	. 063	.127	. 083	. 044	. 014	.004	. 093	. 050	. 886	b1.641	2.620	. 881	. 831
2 12		33.9	640	223	30.8	26.6	300.0	. 152	. 064	. 125	.091	. 048	.015	.005	. 101	. 054	. 897	b1.696	2.694	. 889	. 835
76		33.9	643	224	31.1	26.2	374.7	150	, 064	.111	. 103	. 046	. 015	,004	. 114	. 051	. 928	^b 1,979	3.021	. 861	.810
22		33,9	636	225	30.7	27.2	561.1	. 166	. 065	. 114	. 117	. 050	. 015	600.	. 123	. 054	. 934	^b 2.020	3.077	. 858	. 804
74		34.1	646	340	30.9	26.3	228.8	. 149	. 054	.110	. 093	. 042	.014	.006	. 101	. 047	. 794	01.735	2.630	. 796	. 749
73		34.1	643	339	30.1	27.1	302.5	. 155	. 054	.130	670.	.037	.014	900.	.087	. 042	. 812	008.1°	2.805	. 793	. 751
72		34.1	642	340	30.1	27.3	372.1	. 148	. 058	.111	.095	. 043	.016	.010	. 101	. 047	. 842	^D 2.007	2.950	, 810	. 763
11		34.1	637	339	31.0	26.9	563.6	. 138	. 055	. 106	, 087	, 039	. 015	.003	660.	. 045	. 872	⁰ 1.959	2.930	. 826	. 781
							_				-	-									

^aAll runs were made under natural frequency slosh input and a slosh amplitude of ± 2.23 cm (± 0.13 cm). ^bEvaporated. (All other values are condensed.)

TABLE III. - Concluded. MASS BALANCE FOR SLOSH CONDITIONS WITHOUT BAFFLES

	ded ded ded ded ded	Τ:	:	;		1 !			!			2 9	2 α	2 9		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		v a	, e	. –		
	Incre In addition add									2 61	5.0	2.0	35.0	3 48	3.57	1 83			1 77	1.65	1.65	1 68
	Mass of added pres- surant specie in ul- lage at end of expul- sion, lb									3 887	700 °	3 861	3 583	3 735	3, 812	1 043	1 080	1 800	1 801	1, 754	1, 749	1 786
	Final ullage mass, 	17. 630	16.894	16.487	18, 159	16.558	14 648	14 464	17. 602	2 689	0000	8 587	7.359.	8,030	8. 117	5 777	5 044	6 860	6 784	5. 79.8	6.184	6 504
	Mass ferred furing ston, fb fb	2.090	6.794	9.703	2.406	6. 276	1.660	5, 823	3.878	3 782	4 934	4 585	3. 762	4.210	4. 175	3, 617	3 745	4 362	4.454	3.824	4.202	4 4 9 4
	Mass Iuring i iuring i iuring i iuring i iuring i luring i luring i luring i	8.810 4	2. 775 4	5. 264 4	9. 702 5	2.069 2	5. 500 3	9.537 3	0. 713 3	3.487 b	a soc b	3.614 b	3. 229 b	3.433 b	3. 577 b	1.954 b	d 779	d BHO	0.058 b	l. 751 b	(, 791 b.	REA b
T	Mass of of dded cded cded cded cded nul- hole, lb		9		9	4	4	4	2	268	2.67	278	. 225	247	234	110	118	113	119	103	092	12
	Illage A Transferrence a Trans	. 910	. 913 -	. 926 -	. 863 -	. 765 -	- 808.	. 750 -	. 787 -	393 0	39.0	408	.368	. 387	. 365	206	222	252	272	. 223	. 191	000
	Mass I rans- erred 2 wring 1 hold, h lb hold, h	. 319 (. 299	.277	.315	. 242	. 256	.289	. 254	. 030	021	. 039	.010	.013	. 054	600	.011	007	.018	.012	.014	022
Hold	Mass Wass Wuring f B, h B, h B, h B, h	. 447	.431	. 398	. 437	. 347	. 370	. 388	. 370	. 085	.084	. 086	. 070	. 081	. 083	031	032	032	032	031	031	035
	Mass] of a dided a tres- tres- pecte b d of tun f b d of tun f l b								-	230	223	244	189	203	203	860	106	101	111	092	081	094
	Llage 1 Ther as the 1 Li, h, 9 Li, h, 9 Li, 1 La 1 La 1 La 1 La 2 La 1 La 2 La 2 La 2 La 2 La 2 La 2 La 2 La 2	. 782 -	. 781 -	. 805 -	. 741 -	. 660	. 693 -	. 652 -	. 651	.338 0.	327	361	308	319	336	184	201	227	258 .	204	174	209
<u> </u>	Lass Tred br, why, where br, why, where br, where the second	010	056	880	023	777	820	956	929	203	309	318	275	284	259	280	274 .	244 .	252	244 .	285	245
	b,r, radiustry	517 1.	495 1.	344	436 1.	108	172 .	283 .	235	291	296	306	262	273 .	267	139 .	141	140	143	120	118	27
	b ^r , ^r , ^r	335 1.	342 1.	341 1.	328 1.	329 1.	341 1.	325 1.	345 1.	340	340	373 .	321	330	328	325	134	31	. 19	28		27
		.5 0.	<u>.</u>	-	4 ,	<u></u>	 6.	6.	F	4	 80.	6.	8.	4.	. 7	.3	0.	. 7	.1	. 8		.11 .3
	Exp sec sec	297	371	4	674	296	360	438	657	217	398	591	218	383	608	223.	300	374.	561.	228.	302.	372.
	Hold sec	22.5	23.4	8	23.7	24.C	24.1	23.7	23.0	25.9	25.6	25.3	24.8	26.0	25.3	26.8	26.6	26.2	27.2	26.3	27.1	27.3
	Ramp sec	33.7	34.0	33.7	33.4	33.7	34.0	33.9	34.2	31.7	31.4	31.7	32.4	32.3	32.2	30.8	30.8	31.1	30.7	30.9	30.1	30.1
	Inlet gas tem - pera- ture, oR	414	414	416	416	628	625	619	616	407	407	410	599	572	560	403	401	403	405	612	610	612
	Mass of LCH4 ex- pelled, lb	1455	1459	14 55	1464	1437	1437	1453	1433	1400	1410	1393	1409	1411	1407	1424	1411	1418	1402	1424	1418	1415
	Tank pres- psia psia	48.4	48,4	49.2	49.2	48.4	48.7	48.7	48.2	49.3	49.3	49.3	49.2	49.2	49.2	49.3	49.2	49.2	49.2	49.5	49.5	4 9. 5
	Type of pressu- rant	GCH4		_				_	•	GHe		_	_		•	GH ₂						-
	Run ^a	21	19	01 9	71	29	1.2	25	23	45	44	43	48	47	46	78	77	16	75	74	5	7

^aAll runs were made under natural frequency slosh i**nput and a slosh amplitude of** ±0.88 in. (±0.05 in.). ^bEvaporated. (All other values are condensed.) TABLE IV. - ENERGY BALANCE FOR SLOSH CONDITIONS WITHOUT BAFFLES (a) SI units Energy gained | Energy gained | Energy gained | Energy due to environment, 58. 8×10⁴ work term plus half of energy added by ----65.0 70.7 59.9 62.8 64.8 71.3 71.4 59.0 72.2 59.7 62.0 64.664.4 r 1469×10^{4} ΔU_L, X, by liquid expulsion, during $b_{74.1}$ b₁₃₃.1 b₁₄₈.6 ^b104.0 ^b130.8 ^b207.6 81.9 83.1 105.9 ^b85.1 54.3 51.554.7 b_{71.7} 1666 1551 1640 1822 1525 1781 1424 372.0×10⁴ by ullage, ΔU_U,X, 196.8 200.4 199.5 202.5 189.6 188.8 190.6 201.4 140.2 149.5 140.0 148.3 148.9 363.9 334.3 333.6 373.6 155.4 358.1 383.3 360.4 by tank wall 130.4×10⁴ expulsion, ΔU_w,x, during 65.0 69.2 -3.0 59.9 43.2 184.8 8.2 17.5 37.0 45.0 43.0 12.2 14.4 163.6 153.2 287.6 17.1 234.7 0 143.5 124.1 .0 (experimental) Energy added ^a23. 8×10⁴ ment during by environexpulsion 15.320.6 25.7 38.4 15.7 20.7 25.5 38.6 40.515.0 26.3 41.7 25.5 20.3 14.9 27.3 30.3 46.2 30.1 45.1 Total energy added, 24.7 ۵u_T, J (experimental) Energy added by pressurant gas during 2018×10⁴ expulsion 293.5 295.5 389.4 403.9 417.0 282.5 381.4 263.9 279.4 193.4 196.3 255.7 258.4 19462277 2319 187.9 2152 2244 2400 2101 Expulsion 563.6 561.1 228.8 302.5 223.2 300.0 374.7 398.8 591.9218.8 383.4 608.7 372.1 217.4371.8 442.7 296.3 360.9 438.9 657.7 297.5 674.4 time, sec pressurant [temperature, Inlet gas 339 340 340 224 223 224 225 339 318 228 333 311 342 226 226 349 347 344 230 230 231 231 м Type of GH₂ GCH₄ GHe 72 78 77 76 75 75 74 73 48 47 46 Run 43 16 12 29 25 25 23 45 44 21 19

 $^{\mathrm{b}\mathrm{Includes}}\left(\mathrm{M}_{\mathrm{GH}_{2}},\mathrm{D}\right)\left(\mathrm{h}_{\mathrm{GH}_{2}}\right)_{112}\mathrm{K},\;34.47\times10^{4}\;\mathrm{N/m}^{2}\left(\mathrm{i.e.},\;\mathrm{data\;reduction\;equation\;+\;Mh}_{\mathrm{GH}_{2}}\right)$ ^aIncludes 3. 4×10^4 J from television lights.

TABLE IV. - Concluded. ENERGY BALANCE FOR SLOSH CONDITIONS WITHOUT BAFFLES

Energy gained Energy gained Energy gained Energy due to environment, work term of energy plus half added by 557.3 677.3 685.2 566.3 -----616.1 559.4 610.4 588.2 612.4 567.8 595.9 614.3 Btu 670.4 676.4 i i expulsion, by liquid ΔU_{L,X}, Btu during ${}^{b_{680.0}}_{b_{702.8}}$ 13 935 14 706 15 558 17 277 13 506 14 466 15 804 515.0 488.8 518.8 777.1 788.0 16 891 ^b986.3 1004 ^b1241 $^{b_{1262}}_{b_{1409}}$ by ullage, ΔU_{U,X}, Btu 3418 3396 3635 3164 3543 1418 3451 3171 1330 1328 3528 1474 1407 1412 1808 1910 1791 1921 1798 1867 1901 892 by tank wall expulsion, ΔU_{w,X}, Btu during 350.8 1552 1453 2728 408.0 1177 2226 1753 57.3 78.1 l65.9 427.2 161.8 115.8 136.3 568.5 616.8 1237 1361 -28.9 656.7 409.5 (experimental) Energy added ment during by environexpulsion ^a225.7 241.9 287.4 438.2 192.5 234.3 285.5 427.8 141.3 384.1 395.5 243.8 258.9 142.3 249.4 148.9 145.1 195.4 364.2 196.3 241.9 366.1 Total energy added, ΔU_T, Btu by pressurant experimental) Energy added gas during expulsion 19 138 20 415 21 285 22 759 18 454 19 923 21 594 21 996 2425 1782 1834 1862 2679 2451 2503 2650 2784 2803 3693 3617 3831 3955 Expulsion ^aIncludes 32. 3 Btu from television lights. 371.8 297.5 442.7 674.4 296.3 360.9 438.9 657.7 398.8 591.9 time, 217.4 218.8 383.4 608.7 223.2 300.0 374.7 228.8 302.5 561.1 372.1 563.6 sec pressurant temperature, Inlet gas °, 114 **116** 416 628 625 619 616 410 572 114 407 407 599 560 403 610 610 401 403 405 612 612 Type of GCH4 GHe GH_2 Run 21 19 16 12 29 29 27 25 23 45 44 48 47 78 76 75 73 72 43 46 74 71

(b) U.S. customary units

91

(i.e., data reduction equation + Mh_{GH2})

 $^{\mathrm{b}\mathrm{Includes}}(\mathrm{^{M}GH}_{2},\mathrm{^{D}})(^{\mathrm{h}\mathrm{GH}}_{2})_{\mathrm{202}^{\mathrm{O}}}\mathrm{_{R}},$ 50 psia (

TABLE V. - MASS BALANCE FOR SLOSH CONDITIONS WITH BAFFLES

units	
S	
a	

Ă

- Expulsion ---

1

Å

- Ramp -

1

				!						4			10H	d		T					
Run ^a	Type of pressurant	Tank pres- sure, N/m ²	Mass of LCH4 ex- kg kg	Inlet gas tem - pera - ture, K	Ramp time, sec	Hold time, sec	Expul- sion time, sec	Initial Mass, kg	Mass added during G, r' kg	Mass ftrans- ferred during : tramp, j kg	Ullage mass after ramp, kg	Mass of of pres- surant specie in ul- lage at end of kg	Mass added hold, kg, h	Mass trans- ferred during kg, h, kg	ullage mass after hold, t, kg	Mass of pres- surant specte in ul- lage at end of hold, kg	Mass added during expul - sion, kg, kg,	Mass ferred during expul- sion, kg	Final ullage mass, kg kg	Mass of of pres- surant specie in ul- lage at end of expul- sion, kg	Increase in added specie in ullage during expul - sion, kg
29.8	GCH,	34.0×10 ⁴	674	229	33.0	23.5	402.5	0.155	0.776	0.560	0.371		0.178	0. 143	0.406		11. 633	34.505	7.564		
299	* 	34.0	069	214	33.2	24.1	486.5	. 154	.645	.427	.372		. 154	. 124	.402	4	44.113	36.813	7.702		1
296		34.0	663	229	33.0	25.3	616.5	.161	. 779	. 561	. 379		. 207	. 173	.413		15. 120	37.424	8.109		
324		33.9	666	338	32.6	24.7	395.6	. 158	.648	.521	. 285		. 215	. 166	.334		30.604	24.273	6.665		
338		33.9	667	332	32.5	24.5	474.9	. 157	.667	. 535	. 289	1	. 242	. 191	.340	1	32.692	26.058	6.975		
323	•	33.9	660	338	32.6	24.6	597.8	. 155	. 564	.429	. 290		. 198	. 155	. 333		34.307	27.159	7.481		1
265	GHe	33. 8×10 ⁴	636	219	32.4	25.4	211.6	. 145	. 124	. 118	. 151	0.093	. 020	. 005	. 166	0.103	1.625	b1.577	3.368	1. 792	1.689
264		33.7	637	219	31.6	26.1	366.4	. 145	. 124	.114	. 155	960.	. 020	. 007	. 168	. 105	1. 690	^b 1.622	3.480	1. 808	1.703
263		33.9	645	217	32.4	25.1	530.6	. 150	. 133	.128	. 155	960.	. 022	.010	. 167	. 104	1.718	^b 1. 646	3.531	1. 840	1. 736
279		33.8	636	222	32.8	24.1	555.1	. 143	.126	. 111	. 158	. 103	. 020	. 002	. 176	. 108	1. 673	^b 1.841	3.690	1. 789	1.681
295		34.1	644	342	31.6	25.5	214.3	. 157	.112	.129	. 140	.087	. 023	. 003	. 160	.098	1.515	^b 1.664	3.339	1.640	1. 542
281		34.0	642	336	31.1	26.1	364.9	. 157	. 116	. 133	. 140	.088	. 023	.004	. 159	160.	1.607	^b 1.667	3.433	1. 736	1. 639
280	¥	34.1	640	328	31.7	25.5	576.6	. 150	.114	. 126	. 138	.086	. 023	. 005	. 156	960.	1.615	^b 1. 893	3.664	1. 728	1.632
^a All ^b Eva	runs were porated.	e made und (All other	er naturs values ai	ul frequ re conde	ency sl(ensed)	osh inpı	ıt and a	slosh an	nplitude	of ±2.23	3 cm (±0	. 13 cm)				:		-			

•

TABLE V. - Concluded. MASS BALANCE FOR SLOSH CONDITIONS WITH BAFFLES

autor a particular

(b) U.S. customary units

										Ramp -		T					Ī	Expulsion	-		
													Holt			T					
Run ^a	Type of	Tank	Mass	Inlet	Ramp	Hold	Expul-	Initial	Mass	Mass	Ullage	Mass	Mass	Mass	Ullage	Mass	Mass	Mass	Firal	Mass	Increase
	pressu-	pres-	o	gas	time,	time,	sion	ullage	added	trans-	mass	j	added	trans-	mass	of	added	trans-	ullage	of	in added
	rant	sure,	LCH4	tem-	sec	sec	time,	mass,	during	ferred	after	added	during	ferred	after	ndded (during	ferred	mass,	added	specie
		psia	-x-	pera-			sec	M _{1, r} ,	ramp,	during	ramp,	pres-	hold,	during	hold, 1	res-	expul-	during	M _{f.e} ,	pres-	in ullage
			pelled,	ture,				9	M _{G. r} ,	ramp,	M _{i b} ,	surant	M _{G, h} ,	hold,	M _{i.e} , k	surant	sion,	expul-	 6	surant	during
			ଣ	æ,					ĥa	Mt.r.	P	specie	í g	M _{t.h} ,	e e	specie .	M _{G.e} ,	sion,		specie	expul-
										, qI		in ul-		q		in ul-	e	M, e,		in ul-	sion,
	-											lage at			<u> </u>	age at		्व		lage at	qI
												end of				end of			_	end of	
												ramp,				hold,				expul -	
												q				lb I				sion,	
															,			-		qI	-
298	GCH4	49.3	1486	412	33.0	23.5	402.5	0.341	1.711	1.233	0.819		0.392	0.317	0.894		91.850	76.069	16.675		
299	•	49.3	1521	385	33.2	24.1	486.5	. 340	1.421	.940	. 821		. 339	. 273	. 887		97. 251	81.158	16.980		
296		49.3	1462	412	33.0	25.3	616.5	. 356	1.717	1.237	. 835		.457	. 382	.910		99.471	82.505	17.876	1	
324		49.2	1468	608	32.6	24.7	395.6	. 349	1.429	1.149	. 629		.473	. 366	. 736		67.470	53.512	14.694		
338		49.2	1470	598	32.5	24.5	474.9	. 346	1.471	1.179	. 638		. 534	.422	. 750		72.072	57.446	15.376		
323	►	49.2	1455	608	32.6	24.6	597.8	. 342	1.244	.946	. 640	1	.437	. 342	. 735		75. 633	59.876	16.492		
265	GHe	49.0	1402	394	32.4	25.4	211.6	. 319	. 273	. 259	. 333	0.206	. 045	. 013	. 365). 227	3, 582	b _{3.477}	7.424	3.951	3. 724
264		48.9	1404	394	31.6	26.1	366.4	. 320	. 274	. 252	. 342	.211	. 043	.015	.370	. 231	3. 725	^b 3.576	7.671	3.985	3. 754
263		49.2	1422	391	32.4	25.1	530.6	. 330	. 294	. 283	. 341	. 211	.048	. 020	.369	. 230	3. 788	b3. 627	7.7.84	4.057	3. 827
279		49.0	1402	400	32.8	24.1	555.1	. 315	. 278	. 245	. 348	.227	.045	.004	.389	. 238	3.689	^b 4.058	8, 136	3.945	3. 707
295		49.5	1420	616	31.6	25.5	214.3	. 346	. 247	. 285	. 308	. 192	.051	. 006	.353	. 215	3. 341	^b 3.668	7.362	3.615	3.400
281		49.3	1415	605	31.1	26.1	364.9	. 347	. 255	. 293	. 309	. 193	.050	. 008	.351	. 215	3.542	03.675	7.568	3.828	3.613
280	-	49.5	1411	596	31.7	25.5	576.6	. 331	. 251	. 278	. 304	. 190	. 050	600 .	. 345	. 211	3. 560	^b 4. 173	8.078	3.809	3. 598
a 111	Such Sulla	- opour -	an and an						1:1			10 0 ,	-								

"All runs were made under natural frequency slosh input and a slosh amplitude of ±0.88 in. (±0.05 in.). ^DEvaporated. (All other values are condensed.)

BAFFLES
WITH
CONDITIONS
FOR SLOSH
BALANCE 1
- ENERGY
Ŀ.
TABLE V

units
SI
(a)

				_									_	
Energy due to work term	of energy added by environment, J		1					58.8×10 ⁴	64.0	70.0	70.4	59.5	64.4	71.9
Energy gained by liquid	$ \begin{array}{c} \text{expulsion,} \\ \Delta U_{L}, X^{\prime} \\ J \end{array} $	2381×10 ⁴	2593	2586	2294	2458	2614	29.6	36.6	44.8	59.0	38.9	70.0	97.3
Energy gained by ullage,	J,X,	362. 5×10 ⁴	366. 7	378.6	337.7	346.7	361.9	134.9	138.3	139.4	146.2	140.2	140.0	148.9
Energy gained by tank wall	$\begin{array}{c} \operatorname{auring}_{w,X},\\ \Delta U_{w,X},\\ J \end{array}$	250. 1×10 ⁴	236.5	237.4	364.3	392.7	378.4	24.8	25.4	23.6	7.6	82.4	87.3	68.1
gy added, , J	Energy added by environ- ment during expulsion	97 6×10 ⁴	33.3	42.3	27.1	32.5	40.9	14.5	25.1	36.3	38.0	14.7	25.0	39.5
Total ener ΔU _T	Energy added by pressurant gas during expulsion	andnx10 ⁴	3187	3289	3043	3215	3396	187.3	193.9	195.8	195.5	271.3	282.4	276.8
Expulsion time,	e e s	409 F	486.5	616.5	395.6	474.9	597.8	211.6	366.4	530.6	555.1	214.3	364.9	576.6
Inlet gas temperature,	×	066	214	229	338	332	338	219	219	217	222	342	336	328
Type of pressurant		HUU					-	GHe						•
Run		000	062	296	324	338	323	265	264	263	279	295	281	280

ES
FFL
BA
WITH
CONDITIONS
HSOTS
FOR
ANCE
BAL
ENERGY
- Concluded.
ц.
TABLE V

units
ary
tom
cus
s.
D C
e

_

			_				_	_						
Energy due to work term	pius naur of energy added by environment, Btu	1						557.2	606.5	662.6	666.5	563.1	609.9	680.7
Energy gained by liquid	auring expulsion, AU _L , X' Btu	22 585	24 594	24 527	21 762	23 309	24 788	280.7	347.0	424.5	559.4	369.3	664.0	922.4
Energy gained by ullage,	AUU,X' Btu	3438	3478	3591	3203	3288	3432	1279	1312	1322	1387	1330	1328	1412
Energy gained by tank wall	auring expulsion, $\Delta U_{w}, X^{\prime}$ Btu	2372	2243	2252	3455	3725	3589	235	240.5	224.3	71.7	781.4	827.7	646.1
'gy added, Btu	Energy added by environ- ment during expulsion (experimental)	261.8	315.8	401.2	257.0	308.2	387.9	137.5	238.1	344.3	360.4	139.4	237.1	374.6
Total ener AU _T ,	Energy added by pressurant gas during expulsion (experimental)	28 834	30 227	31 198	28 865	30 494	32 214	1776	1839	1857	1854	2573	2678	2625
Expulsion time,	D D D D	402.5	486.5	616.5	395.6	474.9	597.8	211.6	366.4	530.6	555.1	214.3	364.9	576.6
Inlet gas temperature, on	4	412	385	412	608	598	608	394	394	391	400	616	605	590
Type of pressurant		GCH4					•	GHe						•
Run		298	299	296	324	338	323	265	264	263	279	295	281	280

TABLE VII. - MASS BALANCE FOR SLOSH CONDITIONS WITH AND WITHOUT BAFFLES, VARIABLE FREQUENCY AND AMPLITUDE

(a) SI units

_

_											T									· - T						_			<u> </u>
1		Final ullage mass, kg kg		6.807 6.806	7.006	6. 758	6.915	000 J	0.009 6.753	7.476		5.909	6.113	0.003 5 631	5.676	6.644	5.777	5.589	6.602		7.224	6.789	6.523	6.676	6.742	6.936	7.564	6.63	0.052 7.053
1		fass ans - arred uring kpul - sion, kg	Γ	2. 780 950	5.863	9.565	1.970	1. 220	6.585	2.977		2.463	5.626	0. 731	5.890	4.362	5.327	2.616	5,957		2.455	0.010	4.688	6. 399	1.951	6.560	4.505	15.379	13. 313 10. 678
xpulsic		wul-druced tr be dr e, e, e	ŀ	181	466	923 1	511 2	2 01.4	932 1	051 2	ŀ	028	426	407 646 1	238 1	639 1	800	870 1	236 1	ŀ	266	393 1	803 1	645 1	284 2	084 2	. 663 3	601	614 2 298 3
ia ∖		Ma add dur exp sio k		6	13.	25.	<u>3</u> 8	87	22.	30.		<u></u>	Ξ.	::	21.	20.	10.	17.	22.		<u>б</u>	16.	ŝ	52.	28.	33.	41	51	37.29
	T	Ullage mass after hold, kg		0.403 125	.403	.400	374	414	406	.402		0.344	. 313	. 339	. 328	.367	. 304	. 335	. 323		0.413	.406	.409	.430	.409	.415	.406	.409	.411
-	p	Mass trans- ferred during hold, k _t , h, kg		0. 122	. 187	. 179	. 225	. 136	. 167	. 194		0. 131	. 201	. 149	. 173	. 115	. 206	. 180	. 200		0.119	. 185	. 131	. 228	. 251	. 204	. 143	. 193	. 193 . 182
	IoH	Mass added during hold, kg, h' kg		0. 167	. 235	. 221	. 273	. 196	204	. 240		0.180	. 255	. 181	215	. 168	. 257	. 250	. 255		0. 153	. 231	. 168	. 269	. 283	. 248	. 178	. 231	. 248
T		Ullage mass after ramp, kg		0.358	.355	. 358	.326	. 354	. 365	.356		0.295	. 259	. 307	286	.314	. 253	. 265	. 268		0.379	.360	. 372	.389	.377	.371	.371	.371	.369
 	-	Mass trans- ferred during tramp, kg	222 K)	0.390	. 634	.376	. 512	. 479	374	.446	, 333 K)	0.361	. 533	. 245	.473	. 373	. 512	.486	. 523		0.364	. 616	. 361	. 706	. 612	. 585	. 660	. 616	.617
Rar		Mass added during ramp, kg, r'	erature,	0.593	. 843	. 580	. 687	. 678	. 585	.648	erature	0.503	.640	. 399	. 605	. 532	.612	. 590	. 634		0.590	. 819	. 583	.924	. 829	. 795	. 776	. 826	. 831 . 820
		Initial ullage mass, M _{1, r} , kg	et temp	0.155	. 153	. 154	. 151	. 155	. 154	. 154	let temp	0.153	.152	. 153	. 166	. 155	. 153	. 161	. 157	ffles	0.153	. 157	. 150	. 171	. 160	. 161	. 155	. 161	. 155
-		Expul - sion time, sec	oinal inl	404.9	374.0 377.8	390.2	393.3	371.8	378.2	399.8	ninal in	410.0	386.8	386, 2	381.9 306 0	360.9	385.9	394.6	402.8	With ba	363.8	386.5	389.7	374.1	390.2	393.3	402.5	390.6	390.9 400.8
		Hold time, sec	les (nor	23.0	25.8 26.2	26.0	26.9	23.4	27.4	26.4	les (noi	24.0	26.6	27.5	26.4	24.1	27.7	27.6	27.1		24.6	25.3	25.0	25.3	25.7	25.7	23.5	24.2	24.2
		Ramp time, sec	out baff	33.8	31.5	30.8	30.8	34.0	30.5	30.8	out baff	33.4	30.8	30.4	30.8	34.0	30.3	30.2	30.4		32.9	32.8	32.0	32.3	31.9	32.1	33.0	33.0	33.0
		Inlet gas tem - pera- ture, K	With	227	223	222	221	230	222	223	With	344	339	338	338	347	338	332	338		220	220	219	220	218	220	229	219	220
		Mass of LCH4 ex- kg		647	646 669	664	654	662	656	671		645	653	653	654	652	653	662	663		645	999	656	655	665	666	663	668	669 673
		Tank pres- sure, N/m ²		33.6×10 ⁴	34.1 34 2	34.2	34.2	33.4	34.2	34.1 34.2		33 7×10 ⁴	34.1	34.1	34.1	33.6	34.1	34.1	34.1		33 9×10 ⁴	33.8	33.4	34.0	33.9	33.9	34.0	33.9	33.8 33.8
		Ampli- tude, cm		0.000	. 178	.660	. 853	2.388	. 510	. 833 2.217		000 0	. 249	.373	.495	CEL .	396	. 820	2.205		000 0	483	.625	. 813	1.052	1.359	2.210	. 841	1.364
		Frequency profile			Natural			-	0.716 Hz				Natural				0 716 Hz					Natural	I I				-	0.716 Hz	
		Type of pressu - rant		GCH_								nuu	1 4								нJU	4 							
		Run	1	7	81	5 5	3 8	19	88	87 86		5	96	91	8	90	5 6	3 6	95		9.19		315	314	316	317	298	322	321

TABLE VII. - Concluded. MASS BALANCE FOR SLOSH CONDITIONS WITH AND WITHOUT BAFFLES, VARIABLE FREQUENCY AND AMPLITUDE

	Expulsion	Ţ	Ullage Mass Mass Final mass added trans- ullage i after during ferred mass, bold, expul- during M _f ,e, M _i ,e, sion, expul- lb M _f ,e, sion, lb M _f ,e, lb M _f ,e, l		0.888 20.246 6.127 15.007	888 22.953 8.709 15.202 888 29 686 15 190 15 445	. 881 57. 150 43. 133 14. 898	. 825 62. 854 48. 434 15. 245	.913 62.775 46.794 16.894	. 896 50. 556 36. 565 14. 887	. 887 66. 249 50. 655 16. 481		0.758 17.698 5.429 13.027	. 689 25.190 12.403 13.476	. 748 25. 148 12. 648 13. 248	755 41.106 29.446 12.415 704 46 000 55 001 10 515	. 808 45. 500 31. 660 14. 648	. 671 23. 810 11. 745 12. 736	. 738 39. 397 27. 814 12. 321 . 711 49. 022 35. 178 14. 555		0.910 20.405 5.390 15.925	. 896 36. 140 22 069 14. 967	.901 45.861 32 381 14.381	.949 49.922 36 154 14.717	. 902 62.355 48. 394 14.863	.915 72.937 58.554 15.298	. 894 91. 850 76. 069 16. 675	.901 47.622 33.905 14.618	AUD 09. 200 31. 320 14. 000
		Hold	Mass Mass added tran during ferr hold, duri MG, h, Mt, J lb lb		0.369 0.2'	519 6	.487 .3	. 601 . 4!	.431 .2	. 504 . 3	. 528		0.397 0.2	. 563 . 4	.400 .3	.610 .5	. 370 . 2	. 566 . 4	. 552 . 3 . 563 . 4		0.338 0.2	. 510 . 4	.370 .24	. 594 . 50	. 624 . 5!	. 547 . 44	. 392 . 3	. 510 . 4	JY 110.
	T		Ullage mass after ramp, N _{1,} h,	8	067.0	. 850	. 790	. 718	. 781	. 789	. 785	R)	0.650	.572	.676	. 658	. 693	. 558	. 591		0.836	. 794	. 821	. 857	.831	. 817	. 819	819	000
ţs	dur		Mass trans- ferred during ramp, M _t , r'	re, 400 ⁰	0.860	1.399	. 828	1.129	1.056	. 839	.983	re, 600 ⁰	0.796	1.174	.540	1.014	. 820	1.129	1.071		0.803	1.358	. 794	1.558	1.349	1.291	1.233	1.359	1 250
nary uni	22 		Mass added during ramp, MG, r, lb	nperatu	1.308	1.858	1.279	1.514	1 495	1. 290	1.428	nperatu	1.109	1.410	. 879	1.334	1. 172	1. 350	1.300		1.301	1. 805	1. 285	2.037	1.827	1. 752	1.711	1.820	1 202
. custon			- Initial ullage M _j r'	inlet ter	0.342	. 391	. 339	. 333	. 342	. 338	340	inlet ter	0.337	. 336	. 337	. 365	.341	. 337	355	baffles	0.338	. 347	. 330	. 378	. 353	. 356	. 341	145	356
(b) U.S			Expul sion time, sec	nominal	404.9	374.0 377.8	390.2	393. 3	371.8	388.2	399.8	lominal	410.0	386,8	386.2	381.9	360.9	385.9	394.6 402.8	With	363.8	386.5	389.7	374.1	390.2	393.3	402.5	390.0	400 8
			p Hold time, sec	affles (r	23.0	25.8	3 26.0	26.9	23.4	27.3	26.4	affles (r	24.0	26.6	27.5	26.4	24.1	27.7	27.6		24.6	25.3	25.0	25.3	25.7	25.7	23.5	24.2	24.6
			Ram	thout b	33.8	31.5	30.8	30.8	34.0	30.7	30.8	thout b	33.4	30.8	30.4	30.8	34.0	30.3	30.2		32.9	32.8	32.0	32.3	31.9	32.1	33.0	23.0	32.8
			Inlet gas gas tem - pera oR	Wi	409	401 398	400	398	414	396	401	Wi	619	610	608	608	625	608	598 608		396	396	394	396	392	396	412	180 906	389
			Mass of LCH4 ex- pelled lb		1426	14 24 14 75	1464	1442	1459	1455	1479		1422	1440	1440	1455	1437	1440	1459 1462		1422	1455	1446	1444	1466	1468	1462	14.75	14.84
			Tank pres- sure, psia		48.7	49.5	49.6	49.6	48.4 40.6	49.5	49.6		48.9	49.5	49.5	49.5	48.7	49.5	49.5		49.2	49.0	48.4	49.3	49.2	49.2	49.3	40.0	49.0
			Ampli- tude, in.		0.000	. 199	. 260	. 336	. 940	. 328	. 873		0.000	.098	. 147	. 195	.920	. 156	.324		0.000	. 190	. 246	.320	.414	. 535	.870	537	. 882
			Frequency profile			Natural			0.716 Hz		-			Natural			-	0.716 Hz	>			Natural					7 716 H-	0.110 112	
			Type of pressu- rant		GCH4						-		GCH4								GCH4								
			Run		1	84	85	83	88	87	86		10	96	91	60	27	92	93 95		313	319	315	314	316	317	202	321	320

TABLE VIII. - ENERGY BALANCE FOR SLOSH CONDITIONS WITH AND WITHOUT BAFFLES,

VARIABLE FREQUENCY AND AMPLITUDE

(a) SI units

Run	Type of	Inlet gas	Expulsion	Total ener	gy added,	Energy gained	Energy gained	Energy gained
	pressurant	temperature,	time,	ΔU	, J	by tank wall	by ullage,	by liquid
		К	sec	L		during	ΔU _{UX} ,	during
				Energy added	Energy added	expulsion,	J	expulsion,
				by pressurant	by environ-	$\Delta U_{w X}$,		$\Delta U_{I, X},$
				gas during	ment during	Ĵ, T		
				expulsion	expulsion			
				(experimental)	(experimental)			
			Without	baffles (nominal	l inlet temperati	ure, 222 K)		
7	GCH4	227	404.9	688.1×10 ⁴	27.7×10 ⁴	233.6×10 ⁴	338. 0×10 ⁴	108.4×10 ⁴
81		223	374.0	769.3	25.6	238.2	341.3	158.5
84		221	377.8	994.1	25.9	235.6	346.6	389.6
85		222	390.2	1914	26.7	238.8	339.3	1300
83		221	393.3	2099	26.9	245.5	345.4	1475
19		230	371.8	2152	25.5	143.5	363.9	1551
88		222	378.2	1069	25.9	236.4	343.2	473.0
87		220	388.2	1683	26.6	237.1	338.8	1098
86		223	399.8	2223	27.4	187.8	360. 8	1651
	L	· · · · · · · · · · · · · · · · · · ·	Without	baffles (nomina	1 inlet temperat	ure, 333 K)	•	· · · · · · · · · · · · · · · · · · ·
10	GCH4	344	410.0	813. 3×10 ⁴	28. 1×10 ⁴	363.3×10 ⁴	313.8×10 ⁴	108.6×10 ⁴
96		339	386.8	1139	26.5	364.9	323.3	423.6
91		338	386.2	1132	26.5	335.4	318.8	439.5
89		338	381.9	1860	26.2	380.7	307.1	1101
90		337	396.9	2111	27.2	374.7	309.6	1415
27		347	360.9	2101	24.7	234.7	334.3	1525
92		338	385.9	1075	26.4	372. 1	313.7	345.9
93		332	394.6	1756	27.0	363.1	307.2	1065
95	♥	338	402.8	2219	27.6	271.2	337.3	1063
	.	I	<u> </u>	With	n baffles			
313	GCHA	220	363.8	680.4×10 ⁴	24.9×10 ⁴	220. 4×10 ⁴	351. 8×10 ⁴	113.9×10 ⁴
319		220	386.5	1204	26.5	264.5	338.7	604.9
315		219	389.7	1528	26.7	272.5	328.7	905.9
314		220	374.1	1668	25.6	277.1	334.3	1027
316		218	390.2	2061	26.7	280. 7	337.2	1418
317		220	393.3	2425	26.9	277.0	343.1	1758
298		229	402.5	3040	27.6	250.1	362.5	2381
322		219	390.6	1584	26.8	274.3	333.7	1018
321		220	390.9	2172	26.8	276.3	334.2	1541
320	♥	216	400.8	2707	27.5	258.3	345.6	2061

TABLE VIII. - Concluded. ENERGY BALANCE FOR SLOSH CONDITIONS WITH AND WITHOUT BAFFLES,

VARIABLE FREQUENCY AND AMPLITUDE

Run	Type of	Inlet gas	Expulsion	Total ener	gy added.	Energy gained	Energy gained	Energy gained
	pressurant	temperature.	time.	ΔŪ _m .	Btu	by tank wall	by ullage.	by liquid
	P	° _B	sec			during	$\Delta U_{II} \mathbf{v}$	during
				Energy added	Energy added	expulsion,	Btu	expulsion,
				by pressurant	by environ-	ΔU, v,		$\Delta U_{T} \mathbf{v},$
				gas during	ment during	Btu		Btu
				expulsion	expulsion			
				(experimental)	(experimental)			
			Without	baffles (nominal	inlet temperatu	re, 400 ⁰ R)		
7	GCH4	409	404.9	6 526	263	2216	3206	1 028
81	1	401	374.0	7 296	242.8	2259	3237	1 503
84		398	377.8	9 429	245.6	2235	3287	3 695
85		400	390.2	18 154	253.2	2265	3218	12 3 29
83		398	393.3	19 908	255.1	2328	3276	13 990
19		414	371.8	20 415	241.9	1361	3451	14 706
88		400	378.2	10 138	245.6	2242	3255	4 4 87
87		396	388.2	15 96 2	252.3	2249	3213	10 4 15
86	•	401	399.8	21 088	259.9	1781	3422	15 659
	L		Without	baffles (nominal	inlet temperatu	ure, 600 ⁰ R)		
10	GCHA	619	410.0	7 714	267	3446	2976	1 030
96		610	386.8	10 80 1	251.3	3461	3066	4 018
91		608	386.2	10 736	251.3	3181	3024	4 168
89		608	381.9	17 64 1	248.5	3611	2913	10 444
90		607	396.9	20 025	258.0	3554	2936	13 4 24
27		625	360.9	19 923	234.3	2226	3171	14 466
92		608	385.9	10 192	250.4	3529	2975	3 281
93		598	394.6	16 653	256.1	3444	2914	10 101
95	•	608	402.8	21 047	261.8	2572	3199	15 203
	•	•		With	baffles	•		
313	GCH ₄	396	363.8	6 453	236.2	2090	3337	1 080
3 19		396	386.5	11 416	251.3	2509	3212	5 737
315		394	389.7	14 488	253.2	2585	3118	8 592
3 14		396	374.1	15 817	242.8	2628	3171	9 691
316		392	390.2	19 550	253.2	2662	3198	13 449
317		396	393.3	22 996	255.1	2627	3254	16 675
298		412	402.5	28 834	261.8	2372	3438	22 585
322		394	390.6	15 023	254.2	2602	3165	9 654
321		396	390.9	20 599	254.2	2621	3170	14 615
320		389	400.8	25 678	260.8	2450	3278	19 548

£

(b) U.S. customary units

TABLE DK. - MASS BALANCE FOR PARTIAL EXPULSIONS

(a) SI units

										Ramp –		T	:	1			ы́ 	xpul sion			T	
										<u> </u>			Hold			T				ŀ		ſ
	Type of pressu- rant	Tank pres- sure, N/m ²	Mass of LCH ex- pelled, kg	Iniet gas tem - pera- ture, K	Ramp sec	Hold time, sec	Expul- sion time, sec	Initial ullage M _{1, r} ' kg	Mass added thuring Kg, r' kg	Mass 1 trans- ferred during 1 kg	Ullage mass after a kg	Mass of added pres- surant in ul- in ul- lage at end of ramp, kg	Mass 1 added t during f hold, 0 kg, 1 kg	trans- 1 rans- 1 erred 2 turing 1 hold, h kg	Illage I nass atter a hie s kg s kg s kg s t t t t t t t t	Afass 1 of a doed a dided a dided a murant pecie 1 nul- nul- age at and of hold, kg	Mass 1 dded t iuring f iuring f iuring f kg, e ^{, 1} kg, e ^{, 1}	Mass] rans- u rans- u nuring Muring Muring Muring At, e' kg	Final A llage ass, a nass, a ff,e, p kg s s kg s s kg s i i lu	Mass I of i dded i dded i iurres- i iurant in ul- in ul- age at age at age at sion, kg	ncrease l specie n ullage during 1 expul- sion, kg 1	Predic- ted pres- surant equired during expul- sion, kg, e, P, kg
									5 t	50 Per	cent ull	age expu	lsions									
100 182	GCH4 GCH4	34. 1×10 ⁴ 34. 1	321 315	222 344	30.7 30.9	25.0 26.6	188. 7 182. 8	0. 154 . 160	0.771	0. 517 . 511	0.408		0.318	0.258	0.468 .345		4. 431 3. 653	1.222 .930	3. 677 3. 068			4. 232 3. 647
128 209	GHe GHe	34.1 33.9	320 315	230 347	30.8 31.0	27.5 26.2	187. 0 181. 8	. 164	. 130	. 146	. 148	0.100 .088	. 027	.015	. 160	0.110	.922 .850	a. 193 a. 213	1. 275	1.041 .982	0.931 .885	.928 .841
155 235	E E	34. 1 33. 8	321 329	219 349	30.1	26. 7 28. 5	187. 0 189. 5	. 171 . 151	. 067	. 137	. 101	. 053 . 048	.014 .012	.005 .008	. 110 . 052	. 057 . 052	.468 .433	a. 169 a. 234	. 747 . 719	. 515 . 488	. 458 . 436	. 458 . 412
									501	io 95 Pei	rcent ul	lage exp	ulsions			ľ	ľ	ŀ	ŀ	ľ		
127 208	GCH4 GCH4	34. 1×10 ⁴ 33. 9	322 321	223 336	31.6 31.1	21. 1 22. 5	189. 0 185. 2	1. 654 1. 579	2.259 1.744	0.620 .534	3. 293 2. 789		0. 735 . 586	0.612 .706	3.416 2.668		4.459	1. 205 1. 060	7. 071 6. 067			4.423 3.919
154 234	GHe GHe	34. 1 33. 9	321 319	222 336	29.8 31.8	25.9 21.5	184.0 184.6	1. 620 1. 585	. 537	. 318	1. 839 1. 361	0.513	. 182 . 162	. 554	1.467	0. 733 . 645	1. 108	. 388	2. 187 2. 204	1.818	1.085 1.039	. 984 . 953
181 261	GH ²	34.1 33.8	313 324	217 3 42	31.4 31.6	21.9 26.3	184. 3 185. 9	1. 692 1. 588	. 282	. 552 . 510	1.422 1.303	. 298	.078	.374	1. 126 1. 075	. 370 . 308	.555	. 293 . 281	1. 388 1. 311	. 809 . 831	. 529 . 523	. 484 . 472
^a Ev	aporated.	(All othe	r values	are col	ndense	2																

TABLE IX. - Concluded. MASS BALANCE FOR PARTIAL EXPULSIONS

(b) U.S. customary units

-Ramp -

T

1 Type of Tank Mass Inlet Ramp Hold pressu- pres- of gas time, time,	of Tank Mass Inlet Ramp Hold 10- pres- of gas time, time,	k Mass Inlet Ramp Hold :- of gas time, time,	Inlet Ramp Hold gas time, time,	Ramp Hold time, time,	Hold time,		Expul - sion	Initial ullage	Mass added	-Ramp Mass trans-	Ullage	Mass	Hc	Mass	Ullage	Mass	Mass	Expulsio Mass	n Final	Mass	terease	Predic-
rant sure, LCH ₄ tem- sec sec time, mass psia ex- pera- pelled, ture, lb ^o R	tt sure, LCH ₄ tem- sec sec time, mass psia ex- pera- pelled, ture, lb ⁰ R	a ex- pelled, ture, b b b b b b c R c time, mass sec b b b b c R t t b b c R t t c time, mass sec b era- b era- sec b era- b c b era- b c b era- c b era- c b c b era- c b c b c c c c c c c c c c c c c c c	tem- sec sec time, mass pera- ture, oR 1 b	sec sec time, mass sec M ₁ , r	sec time, mass sec M _{1, r} , ib	time, mass sec M ₁ , r'	M, r, B, L, r, S, L,		during MG, r' Ib	ferred during ramp, Mt,r' lb	after ramp, M ₁ , h' Ib	un added pres- surant specie in ul- lage at end of	aaaaa during hold, M _G , h' lb	trans- ferred during hold, M _t , h, Ib	mass after hold, M ₁ ,e, Ib	of added pres- surant specie fn ul- lage at end of	added during expul- sion, BG, e' Ib	ferred during expul- sion, lb	Mf, e, Ft Ib ss, a Ib ss, a Ib ss Ib ss Ib	of ir irres- in urrant c ppecie e age at	i added specie i ullage turing sion, lb	ted pres- suran suran requir durin durin expul sion,
												ramp, Ib				hold, lb				xpul- tion, 1b	a <u></u>	lb,e Ib
										5 to 50 I	Percent	ullage e	xpulsion	ß				1		-		
$ \begin{array}{cccc} GCH_{4} & 49.5 & 708 & 400 & 30.7 & 25.0 & 188.7 & 0.339 & 1 \\ GCH_{4} & 49.5 & 694 & 619 & 30.9 & 26.6 & 182.8 & .353 & 1 \\ \end{array} $	4 49.5 708 400 30.7 25.0 188.7 0.339 1 4 49.5 694 619 30.9 26.6 182.8 .353 1	708 400 30.7 25.0 188.7 0.339 1 694 619 30.9 26.6 182.8 .353 1	400 30.7 25.0 188.7 0.339 1 619 30.9 26.6 182.8 .353 1	30.7 25.0 188.7 0.339 1 30.9 26.6 182.8 .353 1	25.0 188.7 0.339 1 26.6 182.8 .353 1	188.7 0.339 1 182.8 .353 1	0.339 1.		. 699 392	1. 139 1. 126	0.899 .619		0.701 .566	0.568 .425	1.032 .760		9. 768 8. 054	2.693	8. 107 -			9.33
GHe 49.5 705 414 30.8 27.5 187.0 .361 GHe 49.2 694 625 31.0 26.2 181.8 .334	49.5 705 414 30.8 27.5 187.0 .361 49.2 694 625 31.0 26.2 181.8 .334	705 414 30.8 27.5 187.0 .361 694 625 31.0 26.2 181.8 .334	414 30.8 27.5 187.0 .361 625 31.0 26.2 181.8 .334	30.8 27.5 187.0 .361 31.0 26.2 181.8 .334	27.5 187.0 .361 26.2 181.8 .334	187.0 .361 181.8 .334	.361	•••	287 250	. 321	. 327	0.221	. 051	.03 4 .033	. 352	0. 242	2.032	471	2. 810 2 655 3	296 2	.054	8. 04 2. 045
GH2 49.5 708 394 30.1 26.7 187.0 .376 . GH2 49.0 725 628 31.1 28.5 189.5 .332 .	49.5 708 394 30.1 26.7 187.0 .376 . 49.0 725 628 31.1 28.5 189.5 .332 .	708 394 30.1 26.7 187.0 .376 . 725 628 31.1 28.5 189.5 .332 .	394 30.1 26.7 187.0 .376 . 628 31.1 28.5 189.5 .332 .	30.1 26.7 187.0 .376 . 31.1 28.5 189.5 .332 .	26.7 187.0 .376 . 28.5 189.5 .332 .	187.0 .376 . 189.5 .332 .	. 376 . . 332 .	•••	148 129	. 301	. 223	. 116	. 031	.012	. 242	. 125 . 114	1. 032 ⁶ . 955 ⁸	.372 1	. 646 1. . 586 1.	1 136 1 1	106. 110.	1. 855 1. 010
									2(0 to 95 F	ercent	ullage e:	xpulsion	8		1						
GCH4 49.5 710 401 31.6 21.1 189.0 3.647 4 GCH4 49.2 708 605 31.1 22.5 185.2 3.482 3 <th< td=""><td>49.5 710 401 31.6 21.1 189.0 3.647 4 49.2 708 605 31.1 22.5 185.2 3.482 3</td><td>710 401 31.6 21.1 189.0 3.647 4 708 605 31.1 22.5 185.2 3.482 3</td><td>401 31.6 21.1 189.0 3.647 4 605 31.1 22.5 185.2 3.482 3</td><td>31.6 21.1 189.0 3.647 4 31.1 22.5 185.2 3.482 3</td><td>21.1 189.0 3.647 4 22.5 185.2 3.482 3</td><td>189.0 3.647 4 185.2 3.482 3</td><td>3.647 4 3.482 3</td><td></td><td>981</td><td>1. 368 7 1. 178 6</td><td>7.260</td><td></td><td>1. 620</td><td>1.349</td><td>7. 531</td><td>1</td><td>0.714 2</td><td>. 656 15</td><td>. 589</td><td></td><td></td><td>9.75</td></th<>	49.5 710 401 31.6 21.1 189.0 3.647 4 49.2 708 605 31.1 22.5 185.2 3.482 3	710 401 31.6 21.1 189.0 3.647 4 708 605 31.1 22.5 185.2 3.482 3	401 31.6 21.1 189.0 3.647 4 605 31.1 22.5 185.2 3.482 3	31.6 21.1 189.0 3.647 4 31.1 22.5 185.2 3.482 3	21.1 189.0 3.647 4 22.5 185.2 3.482 3	189.0 3.647 4 185.2 3.482 3	3.647 4 3.482 3		981	1. 368 7 1. 178 6	7.260		1. 620	1.349	7. 531	1	0.714 2	. 656 15	. 589			9.75
GHe 49.5 708 400 29.8 25.9 184.0 3.571 1. GHe 49.2 703 605 31.8 21.5 184.6 3.495 1.	49.5 708 400 29.8 25.9 184.0 3.571 1. 49.2 703 605 31.8 21.5 184.6 3.495 1.	708 400 29.8 25.9 184.0 3.571 1. 703 605 31.8 21.5 184.6 3.495 1.	400 29.8 25.9 184.0 3.571 1. 605 31.8 21.5 184.6 3.495 1.	29.8 25.9 184.0 3.571 1. 31.8 21.5 184.6 3.495 1.	25.9 184.0 3.571 1. 21.5 184.6 3.495 1.	184.0 3.571 1. 184.6 3.495 1.	3.571 1. 3.495 1.		183	. 699 4 I. 523 3	l. 055 1 1. 001 1	1. 131 1. 259	. 401 1	1.221 3 .335 3	3. 235 1 . 023 1	. 616 423	2. 443 2. 443 2. 364	. 333 13 . 857 4 . 527 4	. 376	008	392	8.64 2.17
GH2 49.5 690 391 31.4 21.9 184.3 3.731	49.5 690 391 31.4 21.9 184.3 3.731	690 391 31.4 21.9 184.3 3.731	391 31.4 21.9 184.3 3.731	31.4 21.9 184.3 3.731	21.9 184.3 3.731	184.3 3.731	3.731		. 622 1	. 218 3	135	656	171	6 169	104	15			; 	4 	7 607	
GH2 49.0 714 616 31.6 26.3 185.9 3.501	49.0 714 616 31.6 26.3 185.9 3.501	714 616 31.6 26.3 185.9 3.501	616 31.6 26.3 185.9 3.501	31.6 26.3 185.9 3.501	26.3 185.9 3.501	185.9 3.501	3.501		.497 1	. 125 2	. 873	. 549	. 190	.692 2	. 371	089	l. 223	. 645 3. 490 9	060 1.	981 1.	166 1	. 068
porated. (All other values are condensed.)	I. (All other values are condensed.)	ther values are condensed.)	es are condensed.)	ondensed.)	ed.)						1			-				040 4	1 180	£32 T	152 1	. 040

(a) SI units

TABLE X. - ENERGY BALANCE FOR PARTIAL EXPULSIONS

<u>.</u>				-					
Energy gained by liquid during	expulsion, ∆U _L , X, J		70.94×10 ⁴ 39.93	28. 72 27. 25	22.57 23.45		59.61×10 ⁴ 45.80	45.74 39.64	46. 00 35. 95
Energy gained by ullage,	J,X,		170. 0×10 ⁴ 154. 8	46.95 46.04	72.70 75.13		181. 7×10 ⁴ 174. 5	24.29 29.74	56.61 56.43
Energy gained by tank wall	$\begin{array}{c} \operatorname{during}_{\mathbf{w},\mathbf{X}},\\ \Delta U_{\mathbf{w}},\mathbf{X},\\ \mathbf{J} \end{array}$	us	102. 0×10 ⁴ 152. 5	42.52 75.33	49.39 105.3	Suc	123.6×10 ⁴ 204.2	66.3 4 122.5	73.98 164.4
gy added, , J	Energy added by environ- ment during expulsion (experimental)	ullage expulsio	12.93×10 ⁴ 12.52	12.81 12.45	12.81 12.98	t ullage expulsic	12.95×10 ⁴ 12.69	12.60 12.65	12. 63 12. 73
Total ener ∆U _T	Energy added by pressurant gas during expulsion (experimental)	5 to 50 Percent	328.0×10 ⁴ 368.9	111.4 154.4	144.2 213.4	50 to 95 Percen	360.6×10 ⁴ 445.6	129.2 188.8	169.4 248.8
Expulsion time,	S S		188.7 182.8	187. 0 181. 8	187.0 189.5		189.0 185.2	184.0 184.6	184.3 185.9
Inlet gas temperature,	×		222 344	230 347	219 349		223 336	222 336	217 342
Type of pressurant			GCH_4 GCH_4	GHe GHe	GH ₂ GH ₂		GCH4 GCH4	GHe GHe	GH ₂ GH ₂
Run			100 182	128 209	155 235		127 208	154 234	181 261

TABLE X. - Concluded. ENERGY BALANCE FOR PARTIAL EXPULSIONS

(b) U.S. customary units

Run	Type of	Inlet gas	Expulsion	Total ener	rgy added,	Energy gained	Energy gained	Energy gained
	pressurant	temperature, ⁰ D	time,	ΔU _T	, Btu	by tank wall	by ullage,	by liquid
		4	ບ ນ ນ	Energy added by pressurant during expulsion (experimental)	Energy added by environ - ment during expulsion (experimental)	during expulsion, ∆U _w ,X, Btu	Δ ^U U, X [,] Btu	during expulsion, $\Delta U_{L}, X, Btu$
				5 to 50 Percen	t ullage expulsio	ns		
100	GCH4	400	188.7	3111	122.6	967.5	1612	672.8
182	GCH₄	619	182.8	3499	118.7	1446	1468	378.7
128	GHe	414	187.0	1057	121.5	403.3	445.3	272.4
209	GHe	625	181.8	1464	118.1	714.5	436.7	258.5
155	GH2	394	187.0	1368	121.5	468.4	689.5	214.1
235	GH ₂	628	189.5	2024	123.1	998.9	712.6	222.4
				50 to 95 Percen	t ullage expulsio	ůs		
127	GCH4	401	189.0	3420	122.8	1172	1723	565.4
208	GCH4	605	185.2	4226	120.4	1937	1655	434.4
54	GHe	400	184.0	1225	119.5	629.2	230.4	433.8
34	GHe	605	184.6	1791	120.0	1162	282.1	376.0
81	GH ₂	391	184.3	1607	119.8	701.7	536.9	436.3
61	GH ₂	616	185.9	2360	120.7	1559	535.2	341.0

☆ U.S. GOVERNMENT PRINTING OFFICE: 1974-739-160/123