

THE APPLICATION OF

THE ANALOG SIGNAL TO DISCRETE TIME INTERVAL CONVERTER TO THE SIGNAL CONDITIONER POWER SUPPLIES

TRW SYSTEMS

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Clevel and, Ohio 44135

Contract NAS 3-16797

[^0]
FOREWORD

This application program was sponsored under contract NAS12-2017 from the National Aeronautics and Space Administration to TRW Systems.

Acknowledgment is due to Dr. F. C. Schwarz, formerly of NASA/ERC and NASA/LeRC, who laid the foundation for this application program.

Our appreciation also goes to Mr. Vincent R. Lalli of NASA/LeRC, who provided assistance in the technical editing of this report.

TABLE OF CONTENTSPage

1. SUMMARY I
2. INTRODUCTION 2
3. POWER PROCESSOR FUNCTIONAL BLOCK DIAGRAM. 5
4. CONVERTER SCHEMATICS 6
5. DESCRIPTIONS OF POWER FUNCTIONAL BLOCKS 8
6. DESCRIPTIONS OF CONTROL FUNCTIONAL BLOCKS 13
7. BREADBOARD PERFORMANCES 23
8. CONVERTER PACKAGING 25
9. CONCLUSIONS 29
10. APPENDIX. 30
11. REFERENCES. 36

1. SUMMARY

The application of the microminiaturized ASDTIC (Analog Signal to Discrete Time Interval Converter) to the signal conditioner power supplies is discussed in detail.

The ASDTIC, conceived originally within NASA, was utilized as the basic control element for three buck switching regulators, which resulted in uniformly superior static and dynamic performances. For example, a $\pm 0.05 \%$ output voltage regulation was achieved for an input change of 18 V to 32 V , a load change of open to full load (10 W), and a temperature range of $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

A network to recover power-transistor switching loss was implemented to improve reliability, efficiency, and EMI control.

The successful application of the ASDTIC module has established the soundness of the ASDTIC control concept, and justified its further exploitation to utilize fully the inherent merits associated with the ASDTIC control.

A nondissipatively-regulated dc to dc converter generally employs high-frequency switching for size and weight reduction. The oscillation is achieved by cyclically operating the power switch of the converter in its conduction state and its nonconduction state. Consequently, the converter control system must be able to accept analog signals emanating from the power circuit and the control reference, and to convert them into discrete time intervals in controlling the conduction and nonconduction of the power switch. The ratio of conduction time to a switching-frequency period is known as the power-switch duty cycle.

A classical duty-cycle control based exclusively on the sensing and amplification of the converter output-voltage error generally suffers certain inherent limitations. These limitations are basically caused by the LC output filter of the converter, which introduces poor dynamic response and potential instability into the converter operation.

The ever-increasing demands of space programs have served to promote considerable research effort toward the development of an electronic control system capable of improving the power-processor performance. One such system was conceived within a NASA Internal Research Program by Dr. F. Schwarz [1], [2]. The controlling element in the system is basically an Analog-Signal-to-Discrete-Time-Interval converter (ASDTIC). In addition to the feedback control loop sensing the dc output voltage, the ASDTIC incorporated a second loop sensing an ac waveform inherent in the converter operation. This waveform can be either the voltage across the output-filter inductor or the current in the output-filter capacitor. Using this twoloop control, converter stability is enhanced, and its performance characteristics are greatly improved.

The ASDTIC control concept was subsequently reduced to a microminiaturized thin-film hybrid under contract NAS12-2017, and documented.

This report describes the application of the microminiaturized ASDTIC module to a number of dc to de converters. The packaged converters were used as signal-conditioner power supplies for the Brayton Cycle Space Power System. The power supplies consist of elght module frames, each of which contains three independent dc to dc chopper regulators; one 28 V to 10 V converter, one 28 V to 5 V converter, and one -28 V to -10 V converter. Each converter utilizes a microminiaturized ASDTIC module to achieve the desired regulating function. This report covers the design, development and fabrication of these converters. The work described here was performed from December 1969 to October 1970, under contract NAS12-2017, from NASA's Lewis Research Center.

The description starts with a converter block diagram, followed by a detailed discussion of each block in terms of the converter schematic. Breadboard performances are then presented to demonstrate the superb regulation accuracy obtained from the control loop. Packaging concepts including thermal consideration and component layout are discussed, and pictures of the fabricated power supply modules are given.

3. CONVERTER FUNCTIONAL BLOCK DIAGRAM

All three converters on each of the eight module frames have essentially the same block diagram shown in Figure 1. The dotted line shows the division between power and control circult functions. These functions are summarized in Tables 1 and 11 , respectively.

TABLE 1. POWER CIRCUIT FUNCTIONS

Blocks

Input Filter

Basic Power Configuration

Energy Recovery Network

Voltage
Booster

Its functions are: (1) to isolate the switching effect of the converter from the power bus, and (2) to absorb voltage transients on the bus.

Input Voltage E, transistor switch S, diode D, inductor L, capacitor C, and load R constitute the basic stepdown chopper regulator. By properly controlling the duty cycle of switch S , a constant load voltage V can be maintained against variations in E and R.

The network serves (1) to limit the inrush current curing the short interval when S is turned on and D is in the process of recovering its blocking capability, thus improving efficiency and reliability, and (2) to reduce the switching spike at the converter output.

The need for this network is predicated by the offnominal low input voltage specified for this particular converter. It adds a voltage in series with the converter input to ensure the proper operation of the converter control logic.

Figure 1. Converter Functional Block Diagram

Blocks
ASOTIC Voltage
Regulator

One-Shot Pulse
Generator

Overload Protection

Functions

Starting from point A at the tip of diode D and tracing clockwise, the ac voltage across L and the $d c$ voltage across C are separately sensed to become two input signals to the ASDTIC voltage regulator. The regulator processes the sensed signals, and provides the proper output to actuate a oneshot pulse generator for controlling the duty cycle of power switch S.

It determines the conduction time of switch S as a function of the converter input voltage E. The time interval is initiated by the output pulse from the threshold detector within the microminiaturized ASDTIC voltage regulator.

Overload protection is accomplished by sensing the inductor current. In the event of an overload, the combined function of the current sensor and the ASDTIC voltage regulator keeps S in switching-mode operation during current limiting; its duty cycle depends on the severity of the overload.

4. CONVERTER SCHEMATICS

The schematics for the three converters on each module frame are shown in Figure 2. From top to bottom, the converters are those providing a +10 V output, a -10 V output, and a +5 V output. Detailed descriptions of all blocks, based on the given schematics, are given in the next section.

The accompanying parts list for Figure 2 is presented in the Appendix.

Figure 2. Schematic Diagram of the Signal-Conditioner Power Supply

5. DESCRIPTIONS OF POWER FUNCTIONAL BLOCKS

Due to the similarity among the three converters, the +10 V converter will be used to describe circuit operations and designs associated with the functional blocks of all three converters.

5.1 INPUT FILTER

The input filter is physically located external to the fabricated converter module, and therefore is not shown in the schematic of Figure 2. The filter utilizes the two-stage configuration illustrated in Figure 3. The first stage containing L_{A}, R_{A} and C_{A} limits the resonant peaking of the entire filter. The second stage with L_{B} and C_{B} supplies most of the pulsed ac current required by the converter power switch. The combined function of both filter stages is to accomplish the two objectives stated in Table 1.

5.2 BASIC POWER CONFIGURATION

Shown at the top of Figure 2, the +10 V converter basic power configuration consists of power switch Q1, diode CR4, inductor L2, capacitors C6 and C7 in parallel, and the load. During the time when Q1 conducts, CR4 is back biased, input voltage E is supplied to the circuit containing inductor L2, capacitors C6 and C7, and the load. During the time when $Q 1$ is off, CR4 becomes conducting to keep the current continuity in L2. The LC filter maintains essentially a dc voltage across the load.

Normal Operation

In steady-state, the net energy storage in $L 2$ must be zero. Therefore,

$$
\begin{equation*}
(E-V) T_{\text {on }}=V T_{\text {off }} . \tag{1}
\end{equation*}
$$

Equation (1) is equivalent to

$$
\begin{equation*}
E T_{\text {on }}=V T \tag{2}
\end{equation*}
$$

where $\quad T=T_{\text {on }}+T_{\text {off }}$.

By maintaing a constant product of $E T_{\text {on }}$, the converter having a regulated V would operate essentially at a constant frequency $1 / T$. This feature is utilized to its advantage in the power converters.

Light-Load Operations

The light-load condition is defined as that causing the current in L2 to become zero during each steady-state operating cycle, and to remain zero for an interval $T_{o f f}^{\prime}$.

While equation (1) concerning zero net energy storage is still valid under this condition, the introduction of $T_{\text {off }}^{\prime}$ has caused a new switching period $\mathrm{TI}^{>} \mathrm{T}$. The triangular input current averaged over a cycle is

$$
\begin{equation*}
I_{\text {ave }}=\frac{(E-V) T_{o n}}{2 L_{2}} \cdot \frac{T_{o n}}{T^{\prime}} \tag{3}
\end{equation*}
$$

Multiplied this current by input voltage E and converter efficiency e gives output power V^{2} / R, from which one obtains

$$
\begin{equation*}
T^{\prime}=T_{o n}+T_{o f f}+T_{o f f}^{\prime}=\frac{E e R T_{\text {on }}^{2}(E-V)}{2 L_{2} v^{2}} \tag{4}
\end{equation*}
$$

Therefore, the lighter the load R and/or the smaller the inductance $L 2$, the lower will be the operating frequency $1 / T^{\prime}$.

Critical Load Resistance.
The critical resistance, R_{K}, is defined as the particular light load at which the previously described T^{\prime} off emerges. Period T of (2) and T^{\prime} of (4) are identical at this load, thus giving

$$
\begin{equation*}
R_{K}=\frac{2 L_{2} V}{(E-V) e_{\text {on }}} \tag{5}
\end{equation*}
$$

Notice that R_{K} increases with $L 2$ and decreases with $T_{o n}$ and e.

In the signal-conditioner converters, $L 2$ and T on are so designed that, within the specified line and load variations, the converters never encounter a nonzero T^{\prime} off. However, all converters are capable of maintaining regulation at light loads. Indeed, each converter provides stable operation into no load without exceeding the required regulation limit.

Output Voltage Ripple

The current excursion through inductor L2 is given by

$$
\begin{equation*}
\Delta i=\frac{(E-V) T_{o n}}{L_{2}} . \tag{6}
\end{equation*}
$$

The ripple voltage across $C 6$ and $C 7$ and the ripple current in them are generally in phase, suggesting that the rlpple voltage is due largely to the equivalent series resistance R_{c} of the two paralleling capacitors. The equation for Vpp becomes

$$
\begin{equation*}
V_{p p} \cong R_{c} \Delta 1=\frac{(E-V) T_{o n} R_{c}}{L_{2}} \tag{7}
\end{equation*}
$$

5.3 ENERGY-RECOVERY NETWORK

If no energy-recovery network were used, the finite recovery time associated with diode CR4 of Figure 2 would cause a sharp current pulse to pass through the source, Q1, and CR4 at the start of each $T_{\text {on }}$ interval, causing peak power dissipation in Q1 and CR4. This sudden increase of current also induces RFI, which not only propagates to the regulator output, but in addition, it can cause other spacecraft electromagnetic compatibility problems.

For the regulator to meet the peak-peak noise specification, the networks composed of inductor Ll and diode CR3, shown in Figure 2, are used. During the on-time of Q 1 and the recovery time of CR4, input voltage E is absorbed by reactor Ll. Diode CR3 is reverse biased, and energy is stored in Ll. The rate of the current increase at the beginning of $T_{\text {on }}$; the energy stored in it during $T_{o n}$ is returned to the source via diode CR3.

For the signal-conditioner converters, Ll is designed to be $12.5 \mu \mathrm{H}$. At a maximum E of 32 V , the rate of current increase is $32 / 12.5$, or $2.56 \mathrm{amp} / \mu \mathrm{s}$. It therefore takes approximately $1 \mu \mathrm{~s}$ for the turn-on current to rise from zero to the 2 -amp average loadcurrent level. By that time, diode DI will have been fully recovered. The RFI associated with the turn-on of power switch Ql is thus minimized. Pictures of output-voltage switching spike, with and without this suppression network, are given in Figure 4 to illustrate the utility of the network. The upper trace, representing the output-voltage ripple when no energy-recovery network was used, exhibits a considerably higher switching spike at the beginning of Ton interval as compared to the lower trace when the energy-recovery network was used. The higher switching spike of the upper trace is directly related to the sharper current rise previously described.

In addition to noise reduction, the network also improves the converter efficiency. For without choke Ll, transistor switch Q1 would experience high dissipation due to the simultaneous high current and high voltage (i.e., essentially input voltage E) during the recovery time of diode CR4. However, the network enables most of this otherwise-lost energy to be conserved and returned to the power source.

5.4 VOLTAGE BOOSTER

The ASDTIC module requires a minimum bias supply of 22 V . However, the input voltage E is only 18 V during off-nominal operations. A winding N_{34}, shown schematically near the converter input, is therefore provided from output choke L2 to boost the supply voltage. This winding, along with the associated diodes CR1, CR2 and capacitor C1, are shown schematically in Figure 2. The phase relation between N_{12} and N_{34} of L ? is such that, in conjunction with input E and the peak charging of capacitor Cl , a minimum of 22 V is maintained for supplying the ASDTIC bias when E becomes 18 V during off-nominal operations.

Figure 3. The Two-Stage Input Filter

Vertical: $20 \mathrm{mV} /$ Div. Horizontal: 5 $\mathrm{s} / \mathrm{Div}$.

Figure 4. Converter Output-Voltage Switching Spike
(a) Without the Energy Recovery Network
(b) With the Energy Recovery Network
6. DESCRIPTIONS OF CONTROL FUNCTIONAL BLOCKS

The +loV converter shown in Figure 2 will again be used for control-circuit description.

6.1 ASDTIC VOLTAGE REGULATOR

The central component of the ASDTIC voltage regulator is the microminiaturized ASDTIC Module Ul. Detail description of the thin-film module can be found in Reference [3]. The module, shown schematically in Figure 5, contains the following basic elements:

- Unity-Gain Amplifier
- Integrator Amplifier
- Threshold Detector
- Series Regulator

The first three elements are shown in the converter block diagram of figure 1. The series regulator is used to provide a regulated bias voltage for the first three elements. The terminal numbers shown in Figure 5 correspond exactly with those of Ul in Figure 2.

Before entering the detail description of the ASDTIC voltage regulator in Figure 2, it is noted that the +10 V converter components are packaged in two boards - a main board and a baby board. The baby board, Board Al, contains those components within the rectangular dotted enclosures of Figure 2. Thus, the Rl and $Q 1$ on the main board, for example, are not to be confused with the RI and Q1 on the baby board. With the packaging details being reserved in Section 8 to be presented later, the +1OV ASDTIC voltage regulator processing control signals from a de loop and an ac loop are now described.

The dc loop senses the load voltage. The voltage is divided down by RI of the main board (near the converter input ground) and the parallel combination of R1 and R2 on board Al. The divided signal is fed to pin 24 of the ASDTIC, which is the input terminal of the unity-gain amplifier used for impedance-matching. The output

Figure 5. ASDTIC Module Schematic Diagram
from the unity-gain amplifier, derived from pin 18 and pin 20, connected in common, is fed to the "inverting" terminal of the integrator, pin 30, through a gain-controlling resistor R4.

The ac loop senses the instantaneous ac voltage across the inductor L2. Through gain-controlling resistors R3 and R5, the signal is fed differentially into the "inverting" and the "noninverting" integrator terminals, pin 30 and pin 32. The algebraic sum of this ac signal and the dc output signal from the unity-gain amplifier are compared to reference VRI applied to pin 32. The error is integrated by the integrating amplifier with time constant $C_{3}\left(R_{3}+R_{5}\right)$, where C_{3} is the feedback capacitor of the integrator amplifier connecting between pin 10 and pin 30.

The amplitude of the sensed ac inductor voltage is determined by the turns ratio N_{56} / N_{12} on L2. Its phase in relation to the integrator terminals is such that a ramp voltage with a positive or negative slope exists during the off or on time of power switch Q1. When the instantaneous value of the ascending ramp reaches an internal reference, E_{T}, of the threshold detector, the pulse output from the detector available at pin 37 will actuate the one-shot pulse generator through diode CRI on board Al, which in turn controls the power transistor to conduct for a predetermined time interval $T_{o n}$. During $T_{\text {on }}$, slope of the ramp voltage at the integrator output is negative. In steady-state operation, the positive excursion of the integrator output voltage during $T_{\text {off }}$ is identical to its negative excursion during $T_{\text {on }}$.

It is noted that the ac luop ensures equal volt-seconds for the positive and negative half-cycle of the inductor voltage, thus securing zero net energy storage per cycle in the inductor during converter switching operation. Compared with the dc loop which senses the converter output voltage averaged by a low-frequency LC filter containing L2, C6 and C7, the control action of the ac is instantaneous.

To illustrate this fast action graphically, waveforms at several key points along the control-signal path are identified in Figure 6. Here, the converter input voltage is assumed to have a step increase, with the corresponding voltage across inductor L2 shown as E_{L}. The ascending integrator output ramp voltage E_{I} intersects the threshold level E_{T} to effect the threshold-detector output pulses $E_{T D}$. Each of these output pulses initiates a conduction interval $T_{o n}$ through the pulse generator represented by $E_{P G}$.

With the qualitative description of the ASDTIC voltage regulator now presented, attention is now drawn to two important integrator performance considerations - its output voltage waveform and a functional subtlety associated with its frequency response.

Integrator Output Waveform

For convenience, the inductor voltage E_{L}, and the integrator output E_{I} are given in Figures $7(A)$ and $7(B)$. The straight line in Figure $7(B)$ passing $\left(T, e_{T}\right)$ with a slope $N V /(R 3+R 5) C_{3}$ can be expressed as

$$
\begin{equation*}
e=e_{T}-\frac{N V}{\left(R_{3}+R_{5}\right) C_{3}}(T-t) \tag{8}
\end{equation*}
$$

where $N=\left(N_{56} / N_{12}\right.$ on inductor L2) is the ac signal sensing ratio, and $T=\left(T_{\text {on }}+T_{\text {off }}\right.$) is the converter switching period. Combining (2) and (8) at $t=T_{\text {on }}$ gives

$$
\begin{equation*}
e=e_{T}-\frac{N T}{\left(R_{3}+R_{5}\right) C_{3}} \quad(E-V) \tag{9}
\end{equation*}
$$

(a) BASIC CIRCUIT DIAGRAM.

TIME, $\mu S E C$
(b) WAVEFORMS.

Figure 6. Step-Down Chopper Regulator and ASDTIC Control Waveforms

Figure 7. ASDTIC Integrator-Amplifier Output Voltage
(A) Inductor Voltage
(B) Integrator Output Voltage

Thus, the integrator output swing Δ e of Figure $7(B)$ is

$$
\begin{equation*}
\Delta e=\frac{N T_{\text {on }}}{\left(R_{3}+R_{5}\right) C_{3}}(E-V) \tag{10}
\end{equation*}
$$

Equation (10) is used in designing Δe so that it is being limited to 2 volts, which is well within the threshold level e_{T}, thus always maintaining a linear regulator operation.

6.2 THE SIGNIFICANCE OF CAPACITOR C2 MAIN BOARD

As discussed previously, the ASDTIC regulator has two feedback loops; the dc loop sensing the load voltage, and the ac loop sensing the inductor voltage. These two loops tend to interact in such a way as to form an extremely underdamped second-order system at a particular frequency. Consequently, any transient line or load change would introduce to the regulator output a damped yet prolonged oscillation at that frequency, giving rather undesirable dynamic performances.

Mathematically, the frequency response of the ASDTIC regulator can be expressed as the following:

$$
\begin{equation*}
F(s) \cong\left[\frac{K}{1+S A}\right]\left[\frac{1}{1+S B+s^{2} C}\right]\left[1+S D+s^{2} E\right] \tag{11}
\end{equation*}
$$

The first bracket on the right-hand side of equation (11) is the frequency response of the integrator, with the numerator as its dc gain. The second bracket represents the characteristic of the output LC fllter and the load. The third bracket illustrates the interaction between the dc loop and the ac loop.

Unlike the conventional second-order filter response in which the second-order equation in "s" appears in the denominator, this secondorder interaction appears in the numerator. Plotted on a Bode diagram, this term introduces a negative-going valley, tentered at frequency F, where F is a function of the filter as well as the control-circuit design. Specifically, F can be shown to be the following:

$$
\begin{equation*}
F \cong F_{f}\left(\frac{g_{R_{a c}}}{N R_{d c}}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Here, F_{f} is the resonant frequency of the output LC filter, g is the de voltage-divider ratio, $R_{a c}$ is the ac loop gain-controlling resistance, $R_{d c}$ is the $d c$ loop gain-controlling resistance, and N2 the inductor-voltage sensing turns ratio. Corresponding to the +10 V converter schematic,

$$
\begin{aligned}
& g=\frac{\left(R_{1}\right)_{\text {on mainboard }}}{\left(R_{1}\right) \text { on mainboard }+\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right) \text { on Al board }} \\
& R_{a c}=R_{3}+R_{5} \\
& R_{d c}=R_{4}
\end{aligned}
$$

and

$$
N=N_{56} / N_{12} \text { on } L 2
$$

Depending on the damping value of " D " in the third bracket of equation (11), the negative-going valley can be of very high amplitude, causing significant gain reduction. A sudden disturbance in either the line or the load condition would cause the regulator output to engage in prolonged osillation, yielding undesirable line and load dynamic response and poor audio-susceptibility. performance within a frequency band centered at F.

To mitigate this undesirable characteristic, capacitor C2 is used, connecting between the converter output and the integrator input (Pin 30 of ASDTIC module). This greatly increases the damping value of " D " in equation (11), thus reducing the amplitude of the negativegoing valley and its detrimental consequence. The effect of $C 2$ has been substantiated both mathematically and experimentally. In addition, the use of C2 allows stable converter steady-state operation to be maintained when load resistance increases beyond R_{K}, defined previously in equation (5).

6.3 ONE-SHOT PULSE GENERATOR

As shown in Figure 2, the pulse generator is located on the Al board. To start with, the converter input voltage E drives a base current $E /\left(R_{4}+R_{6}\right)$ to keep $Q 2$ in conduction. Resister $R 3$, on the other hand, keeps Q1 off. The Q1, Q2, R3, R4, and R6 here are those on board Al, and should not be confused with those on the main board.

When a positive pulse is applied to the base of Q1 through diode CRI, the sudden decrease of $Q 1$ collector voltage causes $Q 2$ to come out of saturation. The consequent current in Cl resulting from an increase in the collector voltage of $Q 2$ regenerates itself rapidly until $Q 1$ conducts and $Q 2$ turns off and remains off. Transistor $Q 1$ is kept in conduction by the current path composed of E, R5, and C1, and base-emitter junction of $\mathbb{Q} 1$. This state continues until Cl is charged to the zener breakdown voltage of VRI, when $Q 1$ is suddenly deprived of its base drive and turns off, which, in turn, initiates the turnon of Q2. Following the complete turn-on of $Q 2$, the one-shot pulse generator is ready for another trigger pulse. The on time of $Q 1$, which is concurrent with the conduction of CR3 (on board A1) and Q1 and Q2 on the main board, determines on-time $T_{\text {on }}$ of the chopper-regulator power switch. To charge Cl through R 5 from voltage E , the time required for $V_{c l}$ to reach VRI is:

$$
\begin{equation*}
T_{\text {on }}=R_{5} C_{1} \ln \left(\frac{E}{E-V R 1}\right) . \tag{13}
\end{equation*}
$$

6.4 OVERLOAD PROTECTION

The overload protection is physically placed on the main board. Current in inductor L2 is sensed by R14. The voltage ${ }^{L_{L 2}}{ }^{R} 14$ during normal operation is insufficient to turn on $Q 3$ and $Q 4$. The pulse generator therefore receives command pulses from the ASDTIC exclusively to control the cyclic on-off of power switch Ql for as long as a regulated load voltage is maintained.

As load resistance diminishes during overload, the load-voltage regulation is eventually lost. The dc error applied to the ASDTIC is of such a phase relation that the output voltage from the threshold detector is high, thus always providing a signal for the one-shot to turn on the power
switch for the $T_{\text {on }}$ interval defined by equation (13). At the start of and throughout the interval $T_{\text {on }}$ when the instantaneous current of $i_{L 2}$ is increasing, the voltage drop $i_{L .2} R_{14}$ is sufficiently high to keep Q3 and Q4 in conduction.

With the completion of $T_{\text {on }}$, inductor current $i_{L 2}$ decays through R_{14}, $C 6$ and C7, and CR4. During the decay, $Q 3$ and Q4 maintain conduction, thus clamping pin 37 of the micro-ASDTIC unit and inhibiting the oneshot from turning on the power switch. The decay continues until $i_{L 2}{ }^{R} / 4$ becomes small enough to allow Q3 (and therefore Q4) to turn off. Upon removal of this inhibition, the signal from ASDTIC Immediately actuates the one-shot to start another $T_{\text {on }}$.

Consequently, the switching action is maintained In the event of an overload. The on-time $T_{\text {on }}$ of the power switch is identical to that during normal operation without an overload. The $T_{\text {on }}$ interval starts as soon as the decaying $i_{L 2}$ during $T_{\text {off }}$ causes ${ }^{L_{L 2}}{ }^{R} 14$ to become insufficient to keep Q4 in conduction. The length of $T_{\text {off }}$ therefore depends on the load resistance during overload. The longest $T_{\text {off }}$ occurs when the output is short circuited. Under this condition and neglecting the small voltage drop across R_{15}, the inductor current decays at a rate of $\left[V_{C R 4}+V_{C R 5}+\left(V_{Q 3}\right){ }_{B E}\right] / L_{2}$. Since the current excursion during $T_{o n}$ and $T_{\text {off }}$ is equal to $E T_{o n} / L_{2}$, the longest $T_{\text {off }}$ is therefore:

$$
\begin{equation*}
\left(T_{\text {off }}\right) \max . \approx \frac{E T_{\text {on }}}{\approx} \frac{V_{C R 4}+V_{C R 5}+\left(V_{Q 3}\right)_{B E}}{} \tag{14}
\end{equation*}
$$

7. BREADBOARD PERFORMANCES

The $+5 \mathrm{~V},+10 \mathrm{~V}$, and -10 V converters were breadboarded and tested. Their performance characteristics were similar due to the use of identical ASDTIC control. To illustrate this uniformly-high performance capability offered by the ASDTIC, the requirement versus capability of the +5 V converter breadboard, using the microminiaturized ASDTIC, is presented in Table 111.
table 111
REQUIREMENT VERSUS CAPABILITY
+5V SUPPLY USING MICROMINIATURIZED ASDTIC CONTROL MODULE
Temperature Range $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

	CHARACTERISTIC	REQUI REMENT	CAPABILITY
Nominal Operation $E_{i}=28 \pm 4 V$	Voltage Regulation (mV) Maximum Output Current (A) Minimum Output Current (A) Output Center of Nominal Voltage Output Ripple ($p-p$) ($m V$) Output Noise (mV) Maximum Short-Cir- cuited Current	4.8-5.2 100 100 6	$\begin{gathered} \pm 2.5 \\ 2 \\ 0 \\ 5.034-5.039 \\ 30 \\ 40 \\ 5.4 \end{gathered}$
Off- Nominal Operation $E_{i}=28 \pm 10 \mathrm{~V}$	Voltage Regulation (mV) Output Center of \quad Nominal Voltage (V) Output Ripple (mV) Output Noise (mV)	$+250$ 4.6-5.4 200 100	$\begin{aligned} & \pm 3 \\ & 5.033-5.039 \\ & 30 \\ & 40 \end{aligned}$

From Table III, the following conclusions can be drawn:
(1) The measured output-voltage regulation of $\pm 0.05 \%$ is an order of magnitude better than that required throughout the specified line, load and temperature range, including off-nominal operations when $E=$ $18 y$ and at no load.
(2) During normal operation, the output ripple and the noise spike are both within the allowed limits, each being specified at 100 mV . Also, their amplitudes do not increase during off-nominal operations.
(3) The short-circulted current for each supply is limited to 5.4 A , which is less than the 6 A allowed.

8. CONVERTER PACKAGING

A geometric layout was made to fit a +10 V , a -10 V , and a +5 V supply into each of the eight module frames furnished by NASA/LeRC.

Each module frame contains three major packaging portions: (1) metal frame, (2) baby board, previously referred to as Board Al, and (3) sheet metal base.

To provide proper heat-sinking, power elements including power transistors, output filter chokes, current-sensor resistors, and power diodes, are placed on the metal frame. The frame is fastened mechanically to the external sheet metal base. Service to these components can be made readily without disassembling the frame and the PC board. Separate feeders were used for input and output ground leads to maintain a clean output voltage ripple.

A baby board, identified previously as board Al, containing three pulse generators and voltage-divider trim pots,is employed to relieve component congestion and to obtain easy accessibility for output-voltage adjustments. The baby board and the PC board are separated from either side of the metal frame by spacers. Their total height is within the specified space envelope.

All other circuit parts, including the microminiaturized ASDTIC's, are placed on the sheet metal base. While all circuit components are placed on one side of the PC board, the component density on the board has necessitated the use of printed circuits on both sides. In planning the printed circuits, considerable attention was given to the maintenance of relatively noise-free surroundings for all sensor leads, all load output leads, and all voltage references. The PC board is planned so that no element generating significant amount of heat exists in the vicinity of the microminiaturized ASDTIC.

A picture of a fabricated converter board containing the $+10 \mathrm{~V},-10 \mathrm{~V}$, and +5 V converters is shown in Figure 8 , in which the power inductors, transistors, diodes, and current sensing resistors for the three corresponding converters are easily seen. Board Al, the baby board, is shown in the foreground. The three microminiaturized ASDTIC's are located on the sheet metal base under the baby board, and are therefore invisible in Figure 8. The converter module's sheet metal base, with the baby board removed, is shown in Figure 9 . The three microminiaturized ASDTIC modules are clearly identified.

Performances of the packaged converter met all the specified requirements. The regulation is not as precise as that of the converter breadboard, due to (1) the finite printed-circuit resistance between the regulator sensing point and the actual packaged converter output terminals, and (2) the temperature coefficient of the trimming potentiometer for packaged converter output-voltage adjustment, which replaced the precision resistor used in the converter breadboard to avoid any test-select implementation.

Figure 8. A Fabricated Signal-Conditioner Power Supply Board Containing Three Independent Converters

1	1	1	1	\mid	1	1	
0 miu	1	2	3	4	5	6	

Figure 9. Converter Modules Sheet Metal Base

9. CONCLUSIONS

The microminiaturized ASDTIC module was applied successfully to control three dc to dc converters of the signal conditioner power supplies within the Brayton Cycle electrical subsystem.

Eight converter boards, each containing three independent dc to de converters, were built, tested, and delivered to NASA Lewis Research Center.

The successful application of the ASDTIC module resulted in superb static and dynamic performances of each converter. For example, a $\pm 0.05 \%$ output voltage regulation was achieved for an input change of 18 V to 32 V , a load change of open to full load (10W), and a temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The application not only substantiated the soundness of the two-loop ASDTIC control concept, but it also justified further exploitation with the objective of utllizing fully the inherent merits offered by the two-loop control as applied to converter regulators.

10. APPENDIX

Presented in this appendix is the parts list for the schematic diagram shown in Figure 2. The list on Page 31 describes those components located on the Al board of Figure 2 (i.e., the baby board). All other power processor electrical parts are given on pages 32 and 33.

Certain semiconductors are described in terms of TRW's in-house parts designation. For convenient cross-reference, the equivalent generic number of these components are given below:

TRW Designation	Generic Equivalen
PT4-2273	1N4573A(-03A)
2277	PD9050
2350	UTR294
7157	2N2920
7161	2N3467
7163	2N2222A
7164	2N2907A
7165	2N2851
7176	2N2880

Figure 2. Parts List for Al Board

11. REFERENCES

[1]. F. C. Schwarz, "Power Processing," NASA SP-244, 1971.
[2]. F. C. Schwarz, "Analog Signal to Discrete Time Interval Converter (ASDTIC)," U. S. Patent 3659184, 1972.
[3]. A. D. Schoenfeld and K. K. Schuegraf, "Design, Development and Fabrication of a Microminiaturized Electronic Analog Signal to Discrete Time Interval Converter," TRW Systems, NASA CR-120905, 1972.
[4]. V. R. Lalli and A. D. Schoenfeld, "ASDTIC DutyCycle Control for Power Converters," NASA TM x-68066.

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22151

