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Historically, our technological progress has resulted from the 
challenging design requirements of advanced aerospace systems which 
have led to the evolvement of new materials, new applications, and a 
complementing family of joining processes, Mission profiles for ad- 
vanced systems continually emphasize the need for the highest possi- 
ble material strength to weight ratios at the higher speeds over a 

wide range of temperatures. 
cation their ability to be joined must be determined with processes 
and techniques developed to permit their practical use. 
tion of the material to be joined, the geometry of the component parts, 
their thickness and dimension, the required joint properties, and the 
environment which the assembly must withstand are essential to select- 
ing the joining or-fastening process. 
joining is recognized as vital to the production of advanced Air Force 
systems since joints of high integrity with properties approaching 
those of the parent material are essential for maximum utilization of 
the required materials. 

As these new materials emerge for appli- 

Characteriza- 

The technical area of metals 

A sizeable number of joining processes exist some of which are 
relatively new and are gaining substantial application for meeting the 
joining requirements of current and future production. 
are categorized as fusion welding, solid state joining and specialized 

The processes 



combinations an example of which is the weldbond process. This is a 

resis tance spot weld-adhesive bond process working i n  combination t o  

obtain the  benefi ts  of each process. 

selected for  discussion herein have gained s igni f icant  gavernment and 

industry developkent and have evolved for  production use. 

e lectron beam welding, plasma arc welding, diffusion bonding, i n e r t i a  

welding, and weldbond. 

ELECTRON BEAM WELDING 

The par t icu lar  processes 

These are 

Electron beam welding is defined i n  the  Welding Handbook as a fusion 

joining process i n  which the workpiece is  bombarded with a dense stream 
of high veloci ty  electrons,  and v i r t u a l l y  a l l  of the k ine t i c  energy of 
the  electrons is transformed i n t o  heat on impact. (Reference 1)  

Beam welding as a fusion process of fe rs  the advantages of high depth t o  

width r a t io s ,  small heat affected zones, reduced residual  stress and 

d is tor t ion .  

opposed t o  the conventional multi-pass arc welding processes. 

Beam welding i s  continually gaining new application fo r  productron and- 

has been demonstrated for  joining cri t ical  s t ructures .  North American 

Aviation made an electron beam close out weld on the  wing t o  s tub wing 

fuselage attachment i n  the B70 program. 

Harvester e lectron beam welded the ro tor  hub from 2.250 inches thick 

Ti-6A1-4V for  the Cheyenne Helicopter program. (Figure 1) 
applying electron beam welding t o  wing f laps  and slat t racks on the 

Lockheed L l O l l  airplane. 

electron beam welding the wing center box of the  F-14 airplane from 

titanium 6A1-4V alloy. (Figure 2) 

Electron 

It i s  conducted i n  a s ingle  pass f u l l  penetration mode as 
Electron 

Solar Division of Internat ional  

Solar is a lso  

Grunnnan Aerospace Corporation i s  currently 

The Grumman commitment t o  electron beam weld the F-14 titanium 

center wing box s t ruc ture  represents the most advanced application of 
the electron beam welding process t o  primary critical a i r c r a f t  structure.  

The commitment t o  e lectron beam weld titanium was based on a s igni f icant  
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weight savings poten t ia l  (estimated a t  50% less than s t e e l ) .  The 

s t ruc ture  is fabricated from 45 machined par t s  and fhe completed 

assembly has approximately 70 welds a l l  made i n  a vacuum environment 

by electron beam welding. 

I n  primary c r i t i c a l  a i r c r a f t  s t ruc ture ,  e lectron beam welding 

it is  a may be considered t o  o f f e r  a ce r t a in  amount of r i s k  s ince 

r e l a t ive ly  new process with no previous application t o  wing carry 

through s t ructure .  

through s t ruc ture  of D6ac steel w a s  gas tungsten a r c  welded by using 

multi-pass welding techniques. Without belaboring the point, the  

welded F-111 carry through s t ruc ture  w a s  never determined t o  be  a 

problem area. 

advantages over the gas tungsten arc welding process. 

welding advantages of high depth t o  width r a t io ,  smaller heat affected 

zones, reduced residual  stress and d i s to r t ion  are desirable.  The 

a b i l i t y  t o  complete a weld i n  a s ingle  pass a t  reduced heat input, 

compared with a multi-pass gas tungsten a r c  weld is a desirahle  objec- 

tive. 

It should be noted tha t  the F-111 wing carry 

The electron beam welding process of fe rs  s ign i f icant  

Electron beam 

1 

The electron beam process is  not a utopian push button autamated 

For successful application t o  complex s t ruc tures  during the  process. 

course of fabrication, the process requires a cooperative e f f o r t  between 

designers, welding engineers, metal lurgis ts ,  qua l i ty  assurance and 

s t r e s s  engineers. 

Large s t ructures  d i c t a t e  a requirement fo r  large electron beam 

welding equipment and accompanying large vacuum chambers. (Figures 3 

and 4) 
f ixtur ing,  j o i n t  f i t  up, gun t o  workpiece alignment and seam tracking 

must be precise. 

weld ( .020 t o  .060 approx.) j o in t ,  f i t  up must be precise. The possi- 

b i l i t y  of the beam missing the j o i n t  ex is t s .  

Grumman uses what is referred t o  as a 'b i tness  l ine" technique t o  
assure the desired weld width and penetration. 

This necessi ta tes  during the welding process t h a t  the  tooling, 

Since the  electron beam process produces a narrow 

I n  the  case of the F-14 

This witness l i n e  tech- 
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nique involves the  scr ibing of l i nes  p a r a l l e l  t o  the  weld j o i n t  on 

both the surface and underside of the jo ih t .  The weld is made along 

the  jo in t  i n  a f u l l  penetration pass. 

weld is  v isua l ly  inspected to  determine i f  the witness l ines  are 
obl i terated by the  weld bead on both the surface and underbead side. 

If the l i nes  are wiped out it provides assurance tha t  the  j o i n t  has 

been fu l ly  penetrated and width of weld is acceptable. 

appear t o  be a crude seam tracking approach t o  assure weld width and 

penetration, but i t  does work. 

as probes r id ing  i n  o r  p a r a l l e l  t o  the j o i n t  and depending on trans- 

ducer correction thru servo controls have not established confidence 

levels equal t o  the "witness l ine" technique. 

Subsequent t o  welding, the  

This may 

Other EB seam tracking techniques such 

There are other concerns regarding precautionary measures with 

the EB process t o  avoid defects. 

can occur. 

porosity, undercutting and lack of fusion. 

extinguished) usually occurs during a welding operation as a r e s u l t  Df 

contamination of the electron beam welding gun components. 

glow discharge cleaning procedure is u t i l i zed  regularly and is ef fec t ive  

i n  keeping filaments clean fo r  welding. 

ing a t  high power inputs o r  when the beam is operated continuously for  

long periods of t i m e .  Defects caused by arc outs can be repaired i n  

titanium by rewelding with precise control  of slope out of the  beam. 

As i n  any arc welding process defects  

Some of the more s igni f icant  defects  include a rc  outs, 

Arc out (electron beam is 

A spec ia l  

Most arc outs occur when weld- 

The foregoing types of defects  tha t  may occur i n  EB welding 

d i c t a t e  a requirement f o r  highly r e l i a b l e  nondestructive inspection 

techniques, fo r  assured qua l i ty  control. Grurmnan i n  t h e i r  F-14 program 

has placed major emphasis on nondestructive inspection techniques, 

including dye penetrant, X-ray, C-Scan ul t rasonic  techniques and d e l t a  

ul t rasonics .  

standards t o  assist i n  the in te rpre ta t ion  of ul t rasbnic  scan patterns.  

A continued e f f o r t  is i n  progress t o  develop more r e l i a b l e  

I n  the  F-14 program Grumman generated 

.for the titanium 6A1-4V a l loy  and titanium 

mechantcal properties da ta  

6A1-6V-2Sn. Grumman welded 



fhe titanium a l loys  by electron beam and gas tungsten arc i n  varying 

thicknesses. I n  general the t ens i l e  strengths,  elongations, and 

j o i n t  e f f ic ienc ies  of the electron beam welds were b e t t e r  than the 

gas tungsten arc welds. 

i n  0.50 inch T i  6A1-4V were b e t t e r  than gas tungsten arc welds of the 

same thickness made i n  4 passes with f i l l e r  w i r e .  
a substantialeamount of surface flaw crack growth da ta  under constant 

amplitude for  one inch thick EB welded, annealed Titanium 6A1-4V plate .  

Grumman a l so  conducted F-14 wing spectrum fat igue loadfng tests on one 

inch thick Ti-6A1-4V i n  order t o  be able  t o  relate f rac ture  toughness 

var ia t ions with f l a w  growth rate and es tab l i sh  r e a l i s t i c  l i m i t  loads 

f o r  s t ruc tu ra l  designs. 

a .  

Tension-tension fat igue properties of EB welds 

Grwman generated 

An A i r  Force Materials Laboratory, Manufacturing Technology Division 

sponsored program is current ly  i n  progress at  Grumman fo r  evaluation 

of s l i d ing  seal electron beam welding system.(Figure 5) 
T 651, Titanium 6Al-4V and HY 130 steel i n  p l a t e  thickness have been 

welded and the capabi l i t i es  of the s l i d ing  seal electron beam-welding 

equipment t o  produce weldments with qua l i ty  acceptable for  aerospace 

s t ruc ture  have been determined. (Figure 6) 

Aluminum 2014- 

I 

The s l id ing  seal electron beam welding system w a s  produced by Sciaky 

Bros. under a previous A i r  Force contract. 

vacuum, moving electron beam welding head tha t  i s  mounted on a ram 
manipulator, back up tooling and associated power supply and controls. 

The power capacity of t h i s  un i t  is 30 kilowatts (60 KV, 500 ma) wfth 

vacuum pressures ranging between 1 X 1 0 4  t o r r  and 100 microns of Hs. 
This vacuum is obtained by pumping between two nonmetallic seals i n  

the  welding head. 

It cons is t s  of a portable 

Under a recently completed AFML contract at B e l l  Aerospace electron 

beam welding of HY 130 steel, D6ac low a l loy  high s t rength steel fu l ly  

heat t reated,  9 Ni-4Co-.30C steel, and titanium 6A1-6V-2Sn i n  a range 

of thicknesses from 0.125 through 1.0 inches w a s  conducted. 

mechanical properties of e lectron beam welds were comparable t o  base 

The 



metal properties and exceeded the properties of other competing fusion 
welding processes. (Figure 7) 

Electron beam welding will continually gain new applications in * .  

large structures built up from smaller segments. The-joining of plate 
materials, smaller forgings and the advantages of the single pass full 
penetration capability enhances consideration for using the process. 
The weight reduction realized by eliminating the penalty associated with 
mechanical fasteners and hole generation in thick plate stimulates 
consideration of the process for weight critical structures. 

PUiSMA ARC WELDING 

Plasma arc welding is an arc welding process in which the heat is 
produced by a constricted arc between a nonconsumable electrode and a 
workpiece (transferred arc), or between a nonconsumable tungsten electrode 
and a constricting orifice, (nontransferred arc). (Reference 2) 
Plasma arc welding is closely related to gas tungsten arc welding. 
Plasma is present in all arcs. 
is placed around the arc, the amount of ionization, or plasma,-is - 

greatly increased. Thuresults in higher arc temperature, a more 
concentrated heat pattern, and higher arc voltage than can be obtained 
with a nonconstricted arc. 

If a constriction containing an orifice 

The plasma arc welding process has evolved in a manner typical of 
any new joining process considered for aerospace application. The equip- 
ment producing industry in recognizing the potentials of the plasma arc 
torch as an energy source for welding took the lead in designing and 
marketing plasma arc torches for mechanized welding. The Air Force 
Materials Laboratory, Manufacturing Technology Division realizing the 
potentials of the plasma arc process and the relative shortage of data 
and experience sponsored a program in July 1966 with the Aerojet-General 
Corporation for a comprehensive process development and evaluation for 
application to aerospace materials and structures . (Reference 3) Under 
this initial Air Force sponsored contract Aerojet developed substantial 
data describing the capabilities of the plasma arc welding process for 



making straight-seam and circumferential bu t t  welds i n  rocket motor 
cases and other weight-cr i t ical  pressure vessels. The matetials 

welded i n  t h i s  program were 18% Nickel maraging steel, 9 Nickel- 

4 Cobalt, and Titanium 6A1-4V over a range of thicknesses from 0.25 

inches through 0.62 inches. 

of applying the plasma arc welding process by producing g i r t h  welds 

i n  s ix ,  24 inch diameter spherical  pressure vessels.  

spheres were 0.25 inch thick 6A1-4V t i t a n i w :  a l loy,  and three were 
0.50 inch thick 18% N i  200 KSI grade steel. 
nondestructively inspected by visual ,  dye penetrant, X-ray and u l t r a -  

sonic techniques. The vessels were heat t reated,  then hydrostat ical ly  

pressurized t o  burst  fa i lure .  Hydrostatic pressure and related s t r a i n  
gage data were recorded for  a l l  tests and acoust ical  wave emission 

corresponding t o  incremental flaw gruwth were monitored for  two burst  

tests. (Figure 8) 

ve r i f i ed  the plasma arc process poten t ia l  for  producing high qua l i ty  

b u t t  welds reported i n  previously published l i t e r a tu re .  

Aerojet a l so  demonstrated the capabi l i ty  

Three of these 

The welded vessels were 

The r e s u l t s  of t h i s  pressure vessel test program 

Subsequent t o  the foregoing contract  an AFML program w a s  -awarded 

t o  Allison Division, GMC, f o r  development of the  plasma needle arc 
process (0.1 t o  10.0 amps) fo r  selected th in  gage engine materials and 

applications.  (Reference 4) Several a l loys  were welded including 

titanium 6A1-4V. 
approximately 0.030 inches i n  thickness. Under t h i s  contract  t h i n  gage 

engine components including exhaust co l lec tor  inner cones for  the  T 63 

engine, outer combu&on case for  the T 63 engLne (Figure 9 ) ,  ant i - ic ing 

compressor vane for  T 56 engine and a compressor a r c  discharge tube fo r  

the T 63 engine were welded. This program resulted i n  the conclusions 

tha t  low amperage plasma arc welds are equal t o  gas tungsten arc welds 

i n  respect t o  weld bead contour and weld travel speed. 

c e r t i f i e d  t o  MIL-T-5021 require no t ra in ing  fo r  use of low amperage 

plasma a r c  except for b r i e f  equipment operation explanation. 

arc system enabled the  welding operator t o  i n i t i a t e  the arc i n  exactly 

The needle arc process is  lfmfted t o  a maximum of 

Welding operators 

The p i l o t  



the  desired spot as he is  able  t o  see the p i l o t  a r c  and weld seam 
through a weld lens before t ransfer  t o  welding iurrent .  

vented s t r ay  arc s t r i k e s  and marks detrimental t o  th in  mater ia lweld-  

This pre- 

ing. This program resul ted i n  the  recommendations that plasma arc 

welding is an acceptable and advantageous process for  joining f o i l  

materials up t o  0.030 inches i n  edge, square but t ,  and flange m e l t  

down j o i n t s  . 
I n  sequel t o  the plasma needle arc (10 amp) process a program 

w a s  conducted by the Allison Division, GMC, for  a plasma arc process 
optimization of the Linde 100 ampere low current plasma arc welding 

process.(Reference 5) 

were welded. These included 310 s t a in l e s s  steel, 410 s t a in l e s s  steel, 
Inco 718, Titanium 6Al-4V and 4130 s t e e l  alloys.  Included were thick- 

nesses of 0.015 through 0.125 inchesTes t  panels for manual and machine 

welding included square but t ,  edge, lap, and T jo in ts .  Single pass, 

keyhole mode machine welding with the  addition of f i l l e r  material fo r  

square bu t t  j o i n t s  w a s  highly successful for  gages of -048 through-0.125 

inches. Keyhole mode welding provided assured penetration, s ign i f icant  

reduction i n  weld bead width, lower amperage requirements and higher 

t rave l  speed. Weld s t rength mechanical properties showed 100% jo in t  

eff ic iency by uniaxial  t ens i l e  tests. 

the same as seen i n  gas tungsten arc welds. 

cent penetrant examinations revealed welds essent ia l ly  f ree  of porosity 

and completely f r ee  of tungsten inclusions. It was  concluded from t h i s  

program t h a t  i n  comparison with gas tungsten arc welding plasma arc 
of fers  increased f l e x i b i l i t y  of operation, assured penetration i n  the  

keyhole mode, greater thickness capacity a t  100 amps, reduced need for  

operator s k i l l ,  improved qua l i ty  and poten t ia l  cost  savings. Applica- 

t i on  of t h i s  process w i l l  de f in i t e ly  render s ign i f icant  benefi ts  i n  

j o i n t  designs requiring square but t  and edge welds. 

Five materials common t o  gas turbine engines 

Microstructures were essent ia l ly  

Radiographic and fluores- 

With the  industry development and the  AEML sponsored development 

discussed above the plasma arc welding process became pr ior i t ized  



in aerospace company funded joining development programs. 
impressive development and application of the plasma arc welding 
process for large aircraft structure was conducted by The Boeing 
Company for SST prototype application. (Reference 6) The inherent 
characteristics of the plwma arc process were proven to be particu- 
larly 
supersonic transport. 

The most 

4 

advantageous in the welding of titanium components for the 
The significant advantages of plasma arc over gas 

tungs ten 
width to 
cleaning 
tion due 
and part 

arc and gas metal arc welding were found to be low weld bead 
depth ratio, narrow heat affected zone, less critical preweld 
required, considerably less porosity occurrence, less distor- 
to lower total heat input, less critical torch to work distance 
fit up requirement, faster welding speed, elimination of tungs- 

ten inclusions and electrode deterioration problems. 
over the electron beam welding process were found to be substantially 
lower original equipment cost, better operator visibility, and lower 
detail part and fabrication costs. 
arc welding development program beginning with a survey and tests of 
existing welding equipment. Their methodical evaluation included preweld 
cleaning requirements; evaluation of orifice and tungsten electrode life; 
relationship of amperage, orifice gas,orifice diameter and electrode dia- 
meter to part thickness; orifice to work distance in inches; maximum 
allowable joint mismatch, root opening and misalignment; weld bead depth 
to width ratio for keyhole mode welding; maximum allowable torch lead, 
lag and work anglesjand the minimum and maximum thickness weldable in 
the keyhole mode. As a result of this process evaluation Boeing evolved 
a plasma arc welding technique for fabricating integrally stiffened wing 
panels from titanium 6A1-4V approximately twenty-eight (28) feet long. 
(Figures 10, 11, and 12) 
6A1-4V plate and leaving a stub where the 'Z" shaped stiffeners 0.050 
to 0.125 inch thick were to be joined. The machined plate with stubs 
was fixtured in the vertical position. "I," shaped stiffeners were then 
plasma arc keyhole welded in the downhand position. During initial SST 

The advantages 

Boeing conducted an extensive plasma 

_- 

The set up involved machining a titanium 

I f 



prototype pa r t  fabr icat ion 7000 l inear  inches of plasma a rc  weld i n  

0.125 inch thick s t i f f e n e r s  were produced with no in t e rna l  defects  

indicated by X-ray inspection with 2% of thickness definit ion.  

commitment of plasma Arc welding for  the in tegra l ly  s t i f fened  panels 

on SST attests t o  the  high confidence levels for  the process. 

DIFFUSION BONDING 

The 

Diffusion bonding is  a so l id  state process fo r  joining d e t a i l  

pa r t s  i n t o  in tegra l  configurations with a continuous metallurgical 

structure.  (Reference 7) Bonding is accamplitehed by the  application 

of pressure and heat for  a predetermined period of t i m e  i n  an adequate 

environment. 

between the d e t a i l  pa r t s  and the  heat t o  activate the  migration of items 

across the in te r face  fo r  a su f f i c i en t  t i m e  cycle t o  develop a bond. 

With the use of su f f i c i en t  heat,  pressure and t i m e  the bond in te r face  

and the zone near the bond become.a s ing le  homogeneous microstructure. 

The material near and within the bond in te r face  has mechanical proper- 

t ies equal t o  the  base material with the r e su l t  t ha t  a diffusion bond 
can be the optimum s t ruc tu ra l  joint .  There have been many approaches 

evaluated t o  perform the diffusion bonding cycle depending on the  type 

of equipment used t o  apply the pressure. (Reference 8) 

included bar ro l l i ng  m i l l s ,  p l a t e  r o l l i n g  m i l l s ,  extrusi'on presses, 

hydraulic presses such as forging presses or sheet metal presses and 

resis tance seam welding equipment using both spot and wheel electrodes. 

Under a program at  North American Rockwell an H53 hel icopter  ro tor  

The pressure is  applied t o  es tab l i sh  intimate contact 

__ 

These have 

hub was selected for  diffusion bonding. 

from a forging of titanium 6A1-4V material. 
1000 pounds but the f in i sh  machined weight is about 230 pounds. 

p a r t  has been successfully diffusion bonded. (Figure 13) Two rotor  
hubs were sectioned and evaluated by the contractor and a th i rd  hub w a s  

evaluated by the A i r  Force Materials Laboratory. 

diffusion bonded and shipped t o  Sikorsky Aircraf t  where it was machined 

and dynamically fa t igue tes ted.  

The ro tor  hub had been made 

The forging weighs about 

This 

A-fpurth hub was 
. I .  

The test data  compared t o  forged hub 
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data indicates  t h a t  there  is no s igni f icant  difference between the 

diffusion bonded hub and production forged hubs. 

Other A i r  Force Materials Laboratory, Manufacturing Technology 

Programs included two programs f o r  r o l l  bonding titanium a l loy  rrtmc- 
t u r a l  sections.  

using a bar ro l l i ng  m i l l  t o  apply the  pressure. 

Roche11 conducted a program and made an a i r f o i l  shape, "J" sections, 
"2" sections,  "L" sections,  and a "Hat -sect ion.  

made on a p l a t e  r o l l i n g  m i l l .  

McDonnell-Douglas made T-shapes and a complex shape 

North American 

These pa r t s  were 

The poten t ia l s  of diffusion bonding were recognized for  fabrica- 
t ion  of j e t  engine components. 

E lec t r ic  fo r  t he  development of a diffusion bonding process fo r  

assembling hollow titanium compressor blades. 

t i on  fo r  acceptable bonding parameters w a s  conducted. 

r e su l t s  of the  bonding parameter s tudies  was the determination tha t  t o  

obtain 100% bonding a controlled deformation of approximately 2 percent 

upset is  required regardless of thickness. (Reference 9 )  Also Signif i -  

cant w a s  the  surface f in i sh  evaluation which showed tha t  f o r  f inishes  

rougher than 32 RMS, higher deformations were required t o  obtain 100 

percent bonding. I n  t h i s  program hollow compressor blades were made 

from sheet plate,and bar  stock ra ther  than from forged ha lvee lGJ&& IJ-) 

(Reference 10) 

A program w a s  conducted by General 

A comprehensive evalua- 

Most s ign i f icant  

/ 

Essent ia l ly  the method consisted of 

a. Creep form a i r f o i l  shape 

b. Chem-Mill concave cavity 

c. Machine convex cavity 

d. Bond a i r f o i l  

e. Bond dovetai l  blocks 

f .  Finish machine 

The diffusion bonded blades were tes ted  t o  es tab l i sh  the  in t eg r i ty  Of 

a fabricated diffusion bonded a i r f o i l  by: 

1. Ballistic impact 
2. Bench fat igue 



3. Whirligig fat igue 

4. Stress def lect ion 

5. Micro-examination 

The test da ta  from the diffusion bonded blades were cornpared with the  
GE4 (SST) hollow blades produced using forging procedures. Results 

on a l l  the def lect ion tests indicate  tha t  f inished blades produced by 

both methods have physically similar characte 

engine a 175 pound per engine weight reduction was achieved by using 

hollow titanium compressor blades i n  stagesJthrough 4. (Reference 10) 

The use of sheet,  p l a t e  and bar stock fo r  manufacture of hollow blades 

enabled subs tan t ia l  cost  savings up t o  50% over prwious'methods for  

manufacturing large hollow blades. 

stics. On the GE% (SST) 

A program i s  currently being conducted a t  P r a t t  & Whitney for a 

diffusion bonded titanium al loy hollow fan disk. 

es tabl ishing a manufacturing method t o  produce hollow diffusion bonded 

titanium a l loy  fan disks  from titanium 6A1-2Sn-4Zr-6Mo0 

program the hollow r i m  of the  disk w i l l  be produced by diffusioa-bonding. 

The hub and spacer w i l l  be made in t eg ra l  with the disk by i n e r t i a  bonding 

which i s  a l so  a so l id  state joining process. 

and tes ted i s  the f i r s t  stage fan disk of t he  TF-BP7  engine. 

This contract  is  

Under t h i s  

The disk being fabricated 

Another method of diffusion bonding is  based on the concept of 

conventional res is tance spot o r  seam welding using resis tance welding 

equipment. 

diffusion bonding machine w a s  constructed. 

res is tance welder modified, and includes a closed loop control f o r  

pressure and temperature. (Reference 11) Bonding of titanium and i ts  
al loys w a s  demonstrated with the  manufacture of s ingle  and double web 

I beams, r i b  reinforced panels, box beams and other shapes. 

qua l i ty  of I beams were evaluated by t ens i l e  tests, end compression 

tests, four point loading bend tests and fat igue tests. 

s e a m  bonding technique has advanced t o  the extent tha t  it is  currently 

being used i n  advanced systems application. 

Under an AFMT, program a t  Solar,  San Diego,a continuous seam 

The machine is based on a 

Jo in t  

This continuous 

A titanium vane is being 



CSDB bonded f o r  P r a t t  & whitney and engine seals fromHastelloy X 
are being fabricated fo r  the CF6 engine a t  General Electric. 
(Figures 15 and 16) 

Diffusion bonding is  intended fo r  extensive use on the  B 1  program 

A large number of components have been a t  North American-Rockwell. 

ident i f ied  and North American's press bonding capabi l i ty  w i l l  be 

u t i l i z e d  

There is continued concern mer theaondes t ruc t ive  inspection of 
diffusion bonded par ts .  The major concern i s  whether o r  not u l t rasonic  

t e s t ing  methods o r  any other nondestructive t e s t i n g  techniques are good 

enough t o  assure a sound product especial ly  with reference t o  unbonded 

or p a r t i a l l y  bonded areas. This condition d i c t a t e s  tha t  there  must be 

precise  control  of the  diffusion bonding process. Cleanliness of par t s  

is c r i t i c a l  and bears emphasis, control  of the amount of deformation is 

c r i t i c a l  during the  bonding cycle. 

mechanical t e s t ing  w i l l  continually be required over a sampling plan 

t o  assure  reproducible acceptable qual i ty .  

INERTIA WELDING 

Metallographic sectioning and 

a 

I n e r t i a  welding is a process where one workpiece i s  fixed i n  a 

s ta t ionary holding device and the other  workpiece is clamped i n  a 
spindle chuck with attached flywheel. The flywheel is accelerated t o  

a predetermined speed, driving power is cut and the  ro ta t tng  pa r t  is 
thrus t  against  the fixed piece. 

the flywheel converting stored energy t o  f r i c t i o n a l  heat and a so l id  

state jo in t  resu l t s .  

General E lec t r i c  i n e r t i a  welding was established as an improved method 

of jet engine compressor manufacture and demonstrated by the fabrication 

of TF39 s tages  14-16 of the  compressor rotor  spool. 

stages 14-16 compressor rotor  w a s  f i n i sh  machined. 

costs  and overal l  component weight reduction are s igni f icant  benefits .  

Based on the  mechanical properties da ta  evolved i n  the TF39 stages 14-16 

and the  tolerances a t ta inable  fo r  ro to r  spools General Electric has 

Fr ic t ion  between the  par t s  decelerates 

Under a manufacturing technology contract  a t  

One of the  TF39 

Reduced machining 



committed the  i n e r t i a  welding process for  use i n  fabr icat ion of 

compressor ro tors  f o r  the B 1  engine. 

I n  the  contract  at  General Electric welding parameters were 
developed for  Inconel 718 cross ro l led  p la te ,  (Reference 12) 

With an established flywheel s i z e  there  are only two parameters t o  

control,  namely, t h rus t  and surface speed. Once correct  weld condi- 

t ions  have been established based on mechanical property tests, micro- 

examination and v i sua l  examination of the 
and nondestructive inspections, the amount of weld upset by length 

reduction of the weldment can be the basic  process control technique. 

The process being automatic i s  in t r in s i ca l ly  very reproducible. 
s ta t is t ical  test plan w a s  used t o  arrive a t  welding parameters for  the 

Inconel 718. 

cylinders were specimen s izes  used. 

data  showed tha t  the flywheel moment of i n e r t i a  had l i t t l e  influence 

on the amount of upset o r  weld qual i ty ,  

fabricated from both Inconel 718 p l a t e  which had been cold flanged t o  

provide outs ide edge preparation and from Inconel 718 forged disks. 

Rotors made from p la t e  stock were found t o  contain cracks a f t e r  machining. 
While the cause of the  cracking w a s  not conclusively determined, it is 
believed t h a t  the  following were a l l  contributing factors:  

i ze  and nature of the  f lash,  

A 

One inch outside diameter by 0.100 and 0.200 inch w a l l  

Statistical analysis of the test 

Rotors were experimentally 

/ 

1. 
2. 
3. Improper acid etch cleaning 

Excessive grain size of cross-rolled p l a t e  

Improper machining of weld f l a sh  

All of these fac tors  can be controlled or  modified, and, therefore,  the 

cracking should be preventable. 

Sound experimental ro tors  were made from forged disks. Since 

previous metallographic s tudies  had shown the presence of liquated 

phases i n  Inconel 718 i n e r t i a  welds made a t  high angular ve loc i t ies ,  

the  flywheel moment of i n e r t i a  w a s  increased from 26,038 t o  32,500 lb- 

sq f t ,  thereby allowing some reduction i n  welding speed. Three sets 
of 24-in. d ia . tes t  r ings welded i n  the w a l l  thickness-diameter study 



were cut apa r t  and remachined for  addi t ional  test piece welds. 
Welding of the  three  r ing  sets and test disks from two forgings 

showed no s igni f icant  changes i n  the  welding parameters, 

energy and welding pressure, from those used f o r  cross-r 

The two ro tor  welds were then made with good dimenskonal and upset 

resu l t s .  

The ro tor  was  machined and then aged i n  vacuum using controlled 

heating and cooling rates of 200 F/hr t o  reduce any poss ib i l i t y  of warpage 

o r  d i s to r t ion  of the nearly finished machine rotor .  

718 aging cycle of 8 h r  a t  1325 F + 8 h r  a t  1150 F w a s  used. 

inspection a f t e r  aging showed tha t  no s igni f icant  changes o r  d i s to r t ion  

had occurred, and zyglo inspection showed no defect  indications.  The 

finished machined rotor  is shown i n  Figure 17. 

The standard Inconel 

Dimensional 

I n e r t i a  welding w a s  one of several  processes evaluated under an 

A i r  Force sponsored program a t  P r a t t  & Whitney Aircraf t  for  joining of 

bimetal shaf ts .  The idea l  low pressure turbine shaf t  would be'made 

from two joined materials using an al loy with high fat igue and high 

yield s t rength a t  the cold end, and a material with high fat igue strength,  

high creep strength,  and corrosion resis tance a t  the  hot end. (Reference 

13) Such a bimetal shaf t  would be l i gh te r  i n  weight, and, with no cool- 

ing  requirement, the complexity of the cooling air  system would be 

e f fec t ive ly  reduced. 

w a s  selected for  joining the bimetal shaf ts .  For the  AMS 6304 steel 

t o  Inconel 718 bimetal combination it was  determined tha t  a value of 

130 KSI i n  tension a t  room temperature w a s  assigned as the acceptance 

level a t  the jo in t .  This value was  expected t o  provide a j o i n t  s u i t -  

able  for  engine operating conditions. The r e su l t s  of test specimens 

i n  tension and shear showed tha t  coextrusion w a s  the best  method for  

making bimetal shaf t s  i n  the materials combination selected. The 

coextrusion process produces a metallurgical bond between the two 
materials being joined by forcing the materials through an extrusion 

d i e  a t  an elevated temperature and reducing the cross sect ional  area. 

I n  t h i s  par t icu lar  program the coextrusion process 

(Figure 18) 



The finished shaf t  w a s  assembled i n t o  a TF30-P-3 engine which was 
run i n  a 150 hour endurance test. The test consisted of 25 six hour 

cycles. (Figure 19) 

fa t igue s t rength than the  coextruded j o i n t s  it is  bel’iwed tha t  the 

i n e r t i a  welding process of fe rs  considerable poten t ia l  f o r  joining 

bimetal shaf ts .  

combinations the  i n e r t i a  weld can be  shown t o  possess mechanical 

properties,  including tors iona l  fa t igue s t rength equal t o  coextruded 

jo in ts .  

more cost  e f fec t ive  because of reduced s teps  i n  processing t o  the  finished 

condition. 

Though test specimens i n  t h i s  program showed l o w e r  

It is  f e l t  t h a t  by changing j o i n t  designs and material 

It is expected tha t  i n e r t i a  welded shaf t s  would be considerably 

Cherrybuck @ fasteners  produced by the Cherry Rivet Division of 

Townsend, Santa Ana, California,  producd bimetal so l id  titanium 

fasteners by i n e r t i a  welding. The fastener  i s  made from Ti 6A1-4V 

i n e r t i a  bonded t o  a commercially pure duc t i l e  t a i l .  (Reference 14) 

WELDBOND 

This process represents the marriage suggested i n  the  title of - 

The process uses resistance welding i n  complement with this paper. 

adhesive bonding. 

ance spot welding through the  adhesive. In  process application the 

force of the  electrodes moves the adhesive from the  spot weld so a 
resis tance weld nugget is formed with adhesive surrounding the nugget 

and covering the  remainder of the faying surface. 

Most of the  work conducted thus f a r  has been resist-’ 

Lockheed-Georgia began experimental process studies of res is tance 

welding through high s t rength adhesives i n  the  mid 1960’s. 
s t a t i c ,  axial load fatigue,  and sonic t e s t ing  produced weldbonded 

s t ructures  superior both i n  s t rength and i n  weight advantage t o  those 

joined by high s t rength tapered fasteners. 

indicated tha t  the automatic weldbonding process would r e s u l t  i n  a 
large cost  savings i n  the  t o t a l  production process. 

A i r  Force Materials Laboratory, Manufacturing Technology Division, 

awarded a contract  t o  Lockheed-Georgia for  fabr icat ion of a f u l l  scale 

Extensive 

Preliminary cost  s tudies  

I n  July 1969 the  



fuselage ba r re l  sect ion by the resis tance spot weld-adhesive bonding 

process. 

120 inches long from 2024 and 7075 aluminum al loys,  was  fabricated 

during the program. (Reference 15 - Figure 22) 

A f u l l  scale fuselage ba r re l  sect ion 85-inches i n  diameter by 

Actual joining of par t s  using a combination of res is tance spot 

welds and adhesive is  r e l a t ive ly  s t r a igh t  forward. 

of the processing s teps  involved i n  res is tance spot welding are applica- 

b l e  t o  weldbonding. The pa r t s  are chemicallu: cleaned as for  spot weld- 

ing,  wrapped and stored up t o  36 hours i f  required, and removed for  

welding . 

To begin with most 

The paste  adhesive is applied t o  the parts.  The par t s  are then 

The pa r t s  are then placed brought together and temporarily clamped. 

between the electrodes of a conventional three phase, var iable  pressure 

type spot welder and are welded together. 

i s  placed i n  a low temperature Oven and the  adhesive i s  cured fo r  approxi- 

mately one hour. 

used and the al loy being weldbonded. 

After welding the s t ruc ture  

Time and temperature is  dependent on the type adhesive 

The fuselage ba r re l  sect ion was subjected t o  upbending, doTinbending, 
9 and tors iona l  loads t o  the C140 test spectrum. These loads represented 

l i m i t  loads sustained by the fuselage. 

maximum torque. 

loading. 

s t ressed during the static loading sequence. 

load the fuselage was subjected t o  pressure cycling with the pressure 

ranging from 1 PSI t o  12 PSIG (1 cycle being equivalent t o  1 f l i g h t  

pressurization).  

approximately 4 l i fe t imes of an a i r c r a f t  before f a i lu re  occurred. 

f a i l u r e  w a s  a three  (3) foot long tear through mechanical fasteners. 

This test dramatically demonstrated the  improved s t rength of the weld- 

bonded s t ruc ture  when compared with the mechanically fastened jo in t .  

Figure 23 
Note the shear buckles t h a t  were produced during this 

shows the fuselage a t  

Thick buckling demonstrated tha t  the weldbond joints were highly 

Subsequent t o  the  torque 

The fuselage was subjected t o  48,000 cycles which is 
The 

Fabrication and test of the fuselage ba r re l  sect ion confirmed and 

substantiated data  obtained during earlier development of the weldbond- 
.ing process. Some of these data  are as follows: 

. .  
I 



1. Radiographically clear spot welds could be con- 

s i s t e n t l y  obtabed  when welding through paste  

adhesive. 

High qua l i ty  welds could be made i n  high s t rength 

aluminum a l loy  up t o  72 hours a f t e r  layup of the 

pa r t s  with adhesives at  the pa r t s  interface.  

Axial load fat igue endurance had been increased 

many times over tha t  of mechanical fasteners.(Figure 20) 

Joint  s ta t ic  s t rength of weldbond was superior t o  

a l l  other j o in t s  tested.  (Figure 21) 

2. 

3.  

4. 

The weldbond process o f f e r s  the poten t ia l  of s ign i f icant ly  lower 

manufacturing costs.  

indicates t h a t  the cost  of a weldbonded fuselage s t ruc ture  i s  25 t o  50% 

of the cost  of a riveted assembly. 

i n  other applications 

The work performed a t  Lockheed-Georgia Company 

Similar cost  savings are anticipated 

- 
Currently i n  progress a t  Lockheed-Georgia is a weldbond program 

sponsored j o i n t l y  by the  A i r  Force Materials Laboratory and A i r  Force 

Fl ight  Dynamics Laboratory. 

process fo r  aluminum, generate s t ruc tu ra l  design and engineering data,  

fabr ica te  t e s t  specimens and f u l l  scale f l i g h t  '!hardware" for  the  C-130 

a i r c r a f t .  The fabricated aluminum component w i l l  be static and fat igue 

tes ted pr ior  t o  in s t a l l a t ion  of a panel sect ion on the C-130. (Figure 24) 

A service test w i l l  be conducted with continued surveil lance of perform- 

ance over an extended 

This program w i l l  optimize the weldbond 

t i m e  period. 

A r e l a t ive ly  small contract  w a s  AFpa sponsored a t  Lockheed-Georgia 

t o  es tab l i sh  weldbond parameters for  titanium. Titanium 6A1-4V i n  the 

solution t reated condition i n  thicknesses of 0.045 and 0.063 inches 

w a s  used i n  one series of tests. Titanium 6A1-4V i n  the annealed condi- 

t i on  i n  thicknesses of 0.020" and 0.025 inches was  used i n  other tests. 
The two b e t t e r  adhesives from several  evaluated were 3M Company EC 3419 

and 3M Company EC 2214 Hi-Flex. Rea l i s t ic  evaluation of weldbonded 



j o i n t s  i n  titanium required tha t  wherever possible weldbond jo in t  

s t rength would be compared d i r e c t l y  t o  s t rength of other type jo in ts .  

Jo in ts  were designed u t i l i z i n g  spot welds only, mechanical fas teners  

only, mechanical fas teners  with adhesive, and s t ruc tu ra l  adhesive bond 

only. Jo in t  configurations, j o in t  overlap, and j o i n t  thicknesses were 
kept i den t i ca l  i n  order t o  obtain a d i r ec t  s t rength comparison at room 

and elevated temperatures. 

SPEC W-6858-6 as a basel ine reference, From Rhe t e n s i l e  tests conducted 

fo r  each comparative process the  weldbond j o i n t s  show a superior s t rength 

a t  room temperature i n  a l l  types tes ted.  

t ha t  w e r e  consis tent ly  stronger than those of e i t h e r  mechanical fas teners ,  

s t ruc tu ra l  adhesive bonds, o r  mechanical fasteners with adhesiveeat the 

j o i n t  interface.  

bond j o i n t s  w a s  approximately f ive  times greater  than t h a t  of a bond 

jo in t  alone. 

"Development of the  Weldbond Process for  Joining Titanium. I t  (Reference 16) 
t o  be included i n  the publications from t h i s  symposium. 

Weld schedules were established using MIL 

Weldbond jo in t s  were produced 

The combined peel s t rength of spot welds and adhesive 

Detailed test da ta  are included i n  the paper e n t i t l e d  

Lockheed Missiles & Space Company, Sunnyvale, California,  %as 
conducted extensive work with the weldbond process, Their work is 
covered i n  the  paper en t i t l ed  "Weldbonding Sheetmetal Structures" and w i l l  
be included i n  the published a r t i c l e s  from t h i s  symposium. (Reference 17) 
They have conducted work for  evaluation of weldbond fo r  large propellant 

tanks a t  cryogenic temperatures. Lockheed-Sunnyvale has a l so  developed 

the process for  spacecraft  shroud applications using a resis tance wheel 

electrode concept. 

face sheet design. 

attached t o  the face sheet by rivets. 
rivets w i l l  produce a panel which i s  f a r  stronger and less cos t ly  t o  

make. 

This type of application is a corrugation t o  f l a t  

I n  the  previous design the  corrugated panel was 
The use of weldbond i n  place of 

NASA, Manned Spacecraft Center, Orbi ter  Procurement Center, Houston, 

recently awarded a contract  t o  Lockheed-Sunmale e n t i t l e d  "Weldbond 

Development Program for  Space Shut t le  Application." 

lead t o  the application of weldbonding t o  cryogenic pressure vessels 

(LH2 and L02, temperature range + 300°F t o  -4230F), atmospheric gas 

This program w i l l  



containers (crew cabin), and i n  general t o  space s t ruc tures . .  

Sikorsky Aircraf t  Division of United Aircraf t  Corporation has 
used a s igni f icant  amount of weldbond on t h e i r  S67-Blackhawk hel icopter  

particu1;ary i n  the  t a i l  cone section. 

Weldbond is a l so  being evaluated for  use i n  r a i l  car bodies, 
t r a i l e r  truck bodies, and metal cabinetseubject t o  high vibratbry 

conditions. 

The future  of weldbond looms big. The improved properties of the  

process over competing processes and reduced manufacturing cos ts  enhances 

i t s  poten t ia l  fo r  extensive production application. 

The foregoing discussion i s  but a summary of selected works with 
f ive  spec i f ic  joining processes. 
joining technology one can readi ly  envision the in te rd isc ip l inary  

involvement, t he  magnitude of the metals joining area and the need fo r  

continued development of technology by industry and government. 

Since it is but a erampling of metals 
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Figure 20. - Axial load fatigue strength of weld bond as compared to rivets. 
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Figure 21. - Static joint strength of weld bond as compared ta other type joints. 
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