ROTORCRAFT DYNAMICS

.




NASA 8P-352

ROTORCRAFT DYNAMICS

A confetence sponsored by
Ames Research Center and the American Helicopter Society
and held at Ames Research Center, Moffett Field, California
February 1315, 1974

Prepared at Ames Research Center

Scientific and Technical Information O ffice 1974
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C.




For sale by the National Technical Information Service
Springfield, Virginia 22151
Price $8.00 )



PREFACE

Events of recent years have clearly identified rotorcraft dynamics as one of the most critical technologies
pacing the helicopter industry’s efforts to develop new rotor concepts. And as rotary wing program
investments have escalated, the financial stakes in the technical risks have become tremendous. The rotor
dynamicist is suddenly very much in the critical path.’ '

Fortunately Research and Development efforts by industry in rotorcraft dynamics have been greatly
augmented in recent years by stepped up in-house efforts on the part of NASA and the U.S. Army. New -
computer tools and more complete experimental data coming from many quarters, are bringing us to the
threshold of a far more complete understanding of the problem. This increased R&D is reflected in the
number of high quality papers that have exceeded the capacity of the dynamics session at recent AHS
Annual Forums.

With these thoughts in mind, the Specialists’ Meeting on Rotorcraft Dynamics was organized to provide an
opportunity for the principal investigators in the field to dialogue in greater depth than is possible at the
American Helicopter Society Annual Forum. This is the first such meeting in the U. S. since the
CAL/TRECOM Helicopter and V/STOL Dynamic Loads Symposium in 1963.

This volume contains the formal presentations of the first four sessions of the meeting. Presentations of the
fifth session and transcriptions of questions and panel discussions are contained in the supplement to this
volume.

E.S. Carter, Jr.
Meeting General Chairman
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HINGELESS ROTOR FREQUENCY RESPONSE WITH UNSTEADY INFLOW

David A. Peters
Research Scientist
Ames Directorate
U.S8. Army Air Mobility R&D Laboratory

Moffett Field, Calif. 94035

Abstract

Hingeless rotor frequency response calcula-
tions are obtained by applying a generalized har-
monic balance to the elastic blade flapping equa-
tions. Nonuniform, unsteady induced flow effects
are included by assuming a simple three~degree-
of~freedom description of the rotor wake. Results
obtained by using various models of elastic blade
bending and induced flow are compared with exper-
imental data obtalned from a 7.5-ft diameter wind
tunnel model at advance ratios from 0.0 to 0.6.
It is shown that the blade elasticity and nonuni-
form, unsteady induced flow can have a signifi-
cant effect on the transient response character-
istics of rotor systems. Good correlation be~
tween theory and experiment is obtained by using:
(1) a single rotating mode shape description of
the elastic blade bending, (ii) an empirical form-
ula for the quasi-steady induced flow behavior,
and (iii) the apparent mass terms from potential
flow for the unsteady induced flow characteris-~
tics.

Notation

a two~dimensional lift-curve slope,
rad” i

harmonics of jth flapping mode

number of blades

B tip loss factor

c blade chord, ft

G steady value of thrust coefficient,

:jnsbjn

T steady thrust/pmQ2R*

Ct harmonic perturbation of thrust
coefficient

CL harmonic perturbation of roll moment

coefficient = roll moment/pwR2RS ,
positive advancing blade down

M harmonic perturbation of pitch
moment coefficient = pitch moment/
anZRs , positive nose up

e dimensionless flapping hinge offset

epc dimensionless radius of pocket
cutout

EI rotor blade bending stiffness, .
1b-ft2

{£} generalized response vector

F,G aerodynamic and inertial forces per

unit blade span, 1b/ft

B0s8ss8¢ nondimensional harmonics of inertial
forcing function, Eq. (12)

i /T :

Ip apparent inertia of air, slug—ft2

[1] identity matrix

k] index referring to mode number

Presented at the AHS/NASA-Ames Specialists' Meet-
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J
KpsKy
[X]

{1]
[Lgl

m
B, Tyy Dy

M1, [M']

dm
dm

{u}

Up,Up

Uees Voo

v(o,¥)

w
[w)
{x}
Yl
z

number of flap bending modes
nondimensional apparent mass and in~
ertia of impermeable disk

control feedback matrix

nonuniform induced flow matrix
empirical value for quasi-steady
portion of (L]

rotor blade mass distribution, slug/ft
nondimensional blade parameters '
: R R

1 . m dr, 1 f mr2 dr,
pacR2 o pacR” o

R

1 mr¢j dr
pacR3 é

rotor response matrix open loop,
closed loop

elemental apparent mass, slugs
elemental mass flow, slugs/sec
apparent mass of air, slugs

index referring to harmonic number
number of azimuthal harmonics
null matrix

first flap frequency divided by &
generalized coordinates

steady values of ¢

rotor blade radius coordinate, ft
rotor blade radius, ft

blade root moment, ft-l1b

" blade parameter

R

1
pacR2 f méy dr
[¢]

generalized control vector
<0,850.80858c orsrc>

perpendicular, tangential components of
air speed in undeformed blade coordi-
nate system, ft/sec

freestream airspeed perpendicular and
parallel to rotor shaft (Ve positive
down), ft/sec

induced flow parameter =

e + X3 + D162 +THHY?

blade root shear, 1b

rotor blade flap deflection, ft
frequency transform, Eq. (23)
physical control vector <0g0gfcz¢a>
control coupling matrix

hub plunge deflection divided by R,
positive down

hub pitch angle, positive nose up,
rad



Lock number, 1/m ]
equivalent Lock number, Eq. (35)
blade pitch angle = T + (8, + 64

sin ¥ + 6c cos y)elwd

e steady ‘collective pitch angle

rotor' pitch perturbations

total inflow (including induced flow)

D
*

Bos0g50¢
A

=1+ (A + Ag sinw

+ A, o coO8 ¢) eiww

Py steady inflaw ratio = Vo/0R + v

Ao inflow perturbations (including in-
duced flow), Eq. (10)

i advance ratio = U,/OR

v total induced flow =

v+ (v + vg —-sin P

_ + ve %-cos w) eiww

v induced flow due to steady rotor
thrust )

VosVgs Ve induced flow perturbations

p air density, slug/ft3

I3 rotor solidity, be/nR

7, Tg induced flow time constants, rad-l

hub roll angle, positive advancing
blade down, rad

¢j orthogonal functions

¥ rotor blade azimuth position, non-
dimensional time, rad

w "excltation frequency divided by Q

Q rotor blade angular velocity,
rad/sec

) a/or

() 3/8y

The dynamic response characteristics of
hingeless rotors are dependent upon the distrib-
uted structural properties of the rotor blades,
the local aerodynamic properties of the blade
sections, and the detailed description of the
aerodynamic environment. It is generally be-
lieved; however; that reasonable predictions of
rotor thrust and moments at low 1ift can be ob~
tained by using some appropriately simplified
models for the blade structure, section aero-
dynamics; and inflow distribution. The develop-
ment of these simplified rotor models is useful
for gaining insight into the basic dynamic mech~-
anisms of rotor response. Detailed calculations
of dynamic airloads, necessary for many applica-
tions, are usually too complex for use in basic
dynamic research or preliminary design calcula-
tions.

The formulation of a minimum complexity
rotor response model is the subject of several
recent papers. One area of interest 1s the ef~
fect of mode shape and mode number on rotor
flapping response.  Shupe™ addresses the effects
of ‘the second flap mode, Ormiston and Peters?
compare varlous mode shape models for firgt and
second flap modes, and Hohenemser and Yin® con-
sider the effect of using rotating rather than
nonrotating modes as generalized degrees of
freedom. The fundamental conclusion, as

clarified in Reference 3, is that for u < 0.8 a
single rotating mode shape is ddequate for model~
ing the steady rotor flapping response., = ° E

A second area of interest is the effect of
induced flow perturbations on rotor flapping
response. In Reference 1, a simpleé momentum
theory predicts a significant effect of induced
flow on steady rotor response. In Reference 2, a
comparison of steady experimental and theoretical
results indicates that, although there is a sig-
nificant effect due to induced flow, momentum
theory is inadequate for predicting this effect in
forward flight. Alternate induced flow models are
introduced and compared with the data, but no
clear choice for the best model is found. In
Reference 4, an unsteady momentum thebry is used
in hover to improve correlations with experimental
frequency response data.

The work in References 1 through 4 indicates
that a minimum complexity analytic model for
rotor dynamics must include appropriate degrees of
freedom for both structural and induced flow per-
turbations (certain flight dynamics programs
presently include a simplified dynamie treatment
of the induced flow?). Unfortunately, while some
success has been achieved using‘simple models of
the rotor induced flow in hover,' a  completely "
satisfactory induced flow model for forward flight
has not been found, not even for the condition of
steady response. In addition, neither the phy-~
sical values of the induced flow time constants
nor the frequency range in which they are impor-—
tant is known. The unsteady behavior of the in-
duced flow contributes directly to the low fre-
quency rotor control characteristics and to the
coupled rotor/fuselage aeroelastic stability. In
particular, induced flow perturbations contribute
to the rotor damping available in pitch and roll
(which is important for ground and alr resonance
calculations). It is consequently important to
understand the dynamic characteristics of the in-
duced flow.

The purpose of this paper is to provide ad-
ditional insight into the question of rotor
structural and induced flow modeling. To this
end, experimental rotor frequency response data
in hover and in forward flight are compared with
theoretical results that are calculated by using
several different models for the elastic blade
bending and induced flow. The frequency response
data provide a broad base of comparison so'that
the effects of mode shape and induced flow model
can be clearly determined throughout the fre-
quency range of interest.

Bagic Equations
Analysis

The mathematical technique used here is a
further generalization of the harmonic balance
approach of Reference 2. 1In addition to an arbi-
trary number of bending modes (with an arbitrary
number of azimuthal harmonics for each mode), the
generalized harmonic balance allows for a



rational treatment of reversed flow aerodynamics
and the possibility of harmonically oscillating
control inputs.

The linear equation of motion for the de-~
flection of an elastic beam subject to distrib-
uted aerodynamic and inertial loadings TF(r,¥)
and G(r,y) 1is

" " R
(EIv") + mR% + Qz(mrw' -w" jr mr dr)
x
= F(r,0) + 6(x,¥) (e
The associated expressions for bending moment and

shear at the blade root are
R

8(0,9) = f (F + ¢ ~ 9% - mR2w)r dr (2)
o
R
v(o,y) = f (F + G - m02W)dr (3)
. [e]

The blade root bending moment is transformed into
a stationary coordinate system to yield the pitch
and roll moment of the rotor. The solution of
Eq. (1) yields directly the blade deflections,
and substitution into Eqs. (2) and (3) then
yields the forces and moments.

Application of the harmonic balance involves,
first of all, an orthogonal expansion of w:

XD a0, @ 0}
1

For the present analysis, the ¢s are taken to
be the exact mode shapes of the rotating beam
without aerodynmamics. Galerkin's method is then
used to transform Eq. (1) into J ordinary dif-
ferential equations (with periodic coefficients)
for the modal coordinates qj.G ‘When the forcing
. terms contain a steady portion superposed onto
periodic functions that are modulated by an ex-
citation frequency  (cycles per revolution),
Floquet's theorem imglies that the q5 have a
solution of the form

-]

q:‘] = aj + 25, + zl [ajn cos(ny)
n=

+ bjn sin(nwﬂ ] eiw¢

(&)

where E are the steady coning displacements
and the ja jn and by, are complex quantities
indicating the magnizude and phase shift of each
modulated harmonic of the perturbation response.
The harmonic balance approach entails substitut-
ing Eq. (5) into the J ordinary differential
equations for 93 and setting coefficients of
like harmonics equal. When n 1s truncated at
the highest harmonic of interest N, then

(2 N+1) » 3 linear algebraic equations

are obtained for the a;, and bj,. Solution of
these equations, followed by a substitution of Eq.
(5) into Eqs. (2) and (3), results in the phase
and magnitude of all desired harmonics of the
flapping deflections and hub forces and moments.

Blade Loading

The aerodynamic loading of each bBlade is
given by

= Pac -
F =82 | |(us - vy (6)
where
UT = Qr + QRy sin ¢ (7)
U, = w + QRA + QRuw' cos ¥ 6))

Eq. (8) contains the primary contributions of mode
shape and induced flow to the flapping equations.
The details of blade mode shape become important
as u increases because Up depends upon both
the blade deflection w and its first derivative
w'. The induced flow is important because first
order perturbations to the inflow A create first
order changes to Up and F.

Although the inflow is in general a compli-
cated function of radius and azimuth, as a first
approximation, the total inflow ¢an be represented
by

=X L r 1wy
A=2+ [AO + As R sin ¢ + Ac R cos ?]e )]

The steady portion of the total inflow X con-
tains contributions from the freestream velocity
V,/9R and from the steady induced flow due to
rotor thrust v. The unsteady inflow components
AosAgshe contain contributions from harmonic
plun%ing zelw¥, rolling ¢el¥¥, and pitching

of the shaft, as well as contributions -
from the unsteady induced f£low components

VosVgsVe due to perturbations in rotor thrust and
moments:
A = ~iwz +v_ - ua
o o
}\S = —imd) + \)s (10 a_c)
A = ~lwa + v
c c

The blade pitch angle 6 1is given by

=3 iwy
0=0+ {eo + es sin ¢ + ec cos w]e (11)

where 6 is the steady value of 6 and
605s0g,8, are control system perturbations. The
inflow perturbations Ay,Ag,A, are assumed to be



small compared with unity. This implies that the
induced flow perturbations vo,vs,vé and the con-
trol perturbations 04,05,0.,2,9,¢ are also small
quantities yielding linear perturbation equa-
tions.

The inertial loading of each blade is given
by

G = —mQZR[gO + gg -E— sin ¢ + go % cos lp] eiw‘p (12)

where

g = w2p + 2iwa (13 a-c)

g, = -2iw¢ + w2o

The inertial loading is a result of centrifugal,
Coriolis, and gyroscopic forces which occur in
the rotating reference frame of the blade due to
hub motions z,$,a in the inertial reference
frame.

When Eqs. (6) through (12) are combined and
appropriately integrated in Eqs. (1), (2), and
(3), the steady deflections and forces qs,Cp/oa
are obtained as linear functions of the steady
inputs 6,)A; and the perturbation blade deflec-
tions and hub forces and moments are obtained as
linear combinations of the generalized control
variables

<u> = <eoesecg°gsgcA°Asxc (14)
Although g,,85:8. are simply related to the
shaft motion through Eq. (13), they are retained
as generalized controls so that the generalized
controls can be separated into physical, in-
ertial, and aerodynamic groupings. This will
facilitate the calculation of rotor response when
induced flow is included later.

Interpretation of Results

The results of the harmonic balance can be
expressed in matrix form as

{£} = [M]{u} (15)

where {f} represents the perturbation harmon-
ics of thrust, moments, and generalized coordi-
nates. The elements of [M], therefore, have
direct physical significance. They are the par-
tial derivatives of each of the response harmon-
ics taken with respect to each of the generalized
controls uy4. The generalized control variables
are in turn”functions of the physical controls

X4,
<x> = <e°e Beczm > (16)
as evidenced in Egqs. (10) and (13).

The generalized control variables wus are
also coupled to the £y, because the thrust and

moments influence the induced flow. The induced
flow, therefore, is a feedback loop of Eq. (15),
causing the uy to depend upon the fj.

From the standpoint of calculation; it is con-
venient to express the coupling relation (between
the generalized controls, the physical controls,
and the rotor response) in matrix form:

{u} = [Y]{x} + [K]{f} an

Eq. (17) is simply a set of linear equations de-
scribing: (i) the generalized control perturba-
tions due to application of the physical controls
[Y] and (ii) the generalized control perturba-
tions due to the effect that rotor response has

on the induced flow [K]. The matrices [Y] and
[K] will be obtained later by using an appropri-
ate induced flow model. It follows that the par-~
tial derivatives of the f: with respect to the
physical controls x: can be found (including in-
duced flow effects) Trom Eqgs. (15) and (17). The
derivative matrix is designated [M'] and has the

properties
(£} = [M']{x} 18)
'] = [{11 - {MMK]]’l M1{¥] (19)

Although the higher harmonics are often necessary
in the harmonic balance calculation of [M], the
subsequent calculation of [M'] by Eq. (19) may
be performed for only those response and inflow
harmonics of interest. In this paper, five har-
monics are used in the calculation of [M], but
only first harmonicse are retained in Eqs. (18) and
(19), so that the £y are taken to be

C.,C. C
(L LM
<£> ca ga oa ajObjlajl‘> (20)
Induced Flow

Form of Induced Flow Model

A u;eful form of the induced flow model is
given by

v Cn/oa

T
ol = H Cp/oa (21)
Ve Cy/oa| aerodynamic only

Although not completely general, Eq. (21) can
accommodate a variety of induced flow models.
Only aerodynamic contributions are included on
the right-hand side, because they are the only
loads which produce reaction forces on the rotor
wake. Using Eqs. (2) and (3), these aerodynamic
forces and moments can be expressed in matrix
form as :



CT/aa CT/ca m l0 0 g 02
CL/oa = CL/oa +0 -~ 7 Ty 10 -5
CM/ca aero- CM/ca 0 0 - E'myy gcs
dynamic

W z . g :jo

- 1] 2% 51

0 0 ey myj ajl

(22)

" where
wz 0 0
Wl=]l0 «? 2iu (23)

0 -2iw w?

With the induced flow v described by Egs. (21)
and {22), the inflow relation follows directly
from Eqs. (10), (13), and (21). The matrices

[Y] and [K] of Eq. (17) may then be identified
as
e ]
B33 033
1 =) 033 33
(24)
m 0 0 iw 0 p
0 1
3x3 1] [wljo -y 10 -jo dw 0
0 o -gm, 0 0 iu
| N— ool
7
F)3x3 OSXBJ '
[K] =1 05,5 O3x35 (25)
s 0 0
i
(g -1} 0 -Fm, o
4] 0 -'fmyj 333

L b

Eq. (24) represents the control coupling be~
tween the physical controls x4 -and the general-
ized controls wus. The presence of [L] in this
matrix indicates that the A's are indirectly
_coupled (through the induced flow), as well as
geometrically coupled [Eqs. (10) and (13)] to the
rotor plunge, pitch, and roll motions. Eq. (25)
represents the iInduced flow caused by the de-
pendence of ) upon the thrust and first harmon-
ic flapping. 1If a suitable approximation to the
inflow can be modeled in the form of Eq. (21),
then Eqs. (24) and (25) may be substituted

. a sphere of air having radius R.

directly in Eq. (19) to obtain the complete rotor
response to physical control inputs.

Unsteady Momentum Theory

An approximation of the induced flow that is
suitable for Eq. (21) can be obtained as an ex-
tension of the momentum theory used in Reference
2. The differential force on an elemental area of
rotor disk is written as

dF = 20Rvdm + Q2Rvdm (26)

where 2QRv is the total change in velocity nor-
mal to the disk, dm is the differential mass flow
through the element, dm 1is the apparent mass
associated with the flow, and v 1is the time
derivative of v in the nonrotating system. The
differential mass flow relation

dm = oOR V2 + A2 r dr dy (27)

can be used to integrate the first term of Eq.

(26) over the disk to obtain a quasi-steady in-
duced flow relation for rotors that have combined
conditions of thrust and forward speed. The eval-
uation of the second term in Eq. (26) (the un~-
steady effect) requires the additional knowledge
of the apparent mass dm associated with the flow.

An approximation to the apparent mass terms
of a lifting rotor can be made in terms of the
reaction forces (or moments) on an ‘impermeable
disk which is instantaneously accelerated (or ro-
tated) in still air. This approximation was used
in Reference 8, giving good agreement with trans-—
ient thrust measurements for an articulated rotor.
The reactions on such an impermeable disk are
given from potential flow theory in terms of el-
liptic integrals which are evaluated in the lit~-
erature.? They result in apparent mass and in-~
ertia values

=8 g3 16 o5
m =3 pR , IA %5 pR (28)

(For v = v, r/R, a radial velocity distribution,
my = pR3.) These values represent 64 percent of
the mass and 57 percent of the rotary lmertia of
It is empha~
slzed that they are only approximations to the
actual values for a lifting rotor.

Using this approximation, the steady induced
flow equation and the unsteady induced flow per-
turbation equations can be derived from Eqs. (26)
through (28):

25 V2 + 32 = ET

(29a)
KV, ¥+ 2y, = Cp 3
KIG + l-vv = ~C
'8 2 s L (29b-d)

. 1
Rpve +3 Vv, = ~Cy



where

) -
-z us + A A_+ v ‘ (29¢)
uZ + )\2
and
m
K = A _ 8 _.8488
pr3 3r
. (30a-b)
K, =2 o126 _ 9113

pTR® 457

Eq. (29a) expresses the nonlinear relation be-
tween the steady thrust and the steady induced
flow v. Egs. (29b-d) are then the linear per-
turbation equations for small changes in thrust,
moments, and induced flow. In order for the per-
turbation equations to be valid, it is assumed
that vVg,Vg,Ve are much smaller than (u? + 22yk,

The time constants associated with the induc~
ed flow model in Eq. (29) are

m

T T 2v = 0.4244(v

1
(]

(for vo)

9 (31a-b)

—= = 0.2264/v
v

-
]

(for vs,vc)

In Reference 4, the steady induced flow v and
the time constant for vg,v, are cbtained by
correlating experimental hover frequency response
data. Two operating conditions are considered,
and the best fit in these cases is found to be

v = .0l4, 1g = 8 (with 8 = 2°) and v = .028,

tg = 4 (with € = 8°). From the v values indi~
cated for these cases, it can be shown that each
Tg dimplies the same value of Ky = 0.112. Thus,
there is some experimental evidence that the po-
tential flow value Ky = 0.113 is approximately
valid.

By assuming simple harmonic motion, Egs.
(29b-d) can be brought into the form of Eq. (21),
yielding the components of [L] for unsteady
momentum theory.

ga
P 0
m
_ -ga
(L = 0 viz + K iw 0 (32)
-ga
o 0 v/2 + K

(Lyp and L3 differ by a factor of 4/3 from Ref~
erence 2, because vg and v, are taken uniform
with r 1in that reference, whereas they are
taken linear with 't here.) The matrix [L]
from Eq. (32) may now be substituted into Egs.

(24), (25), and (19) to obtain the rotor response
tha; includes inflow. -

Empirical Model

Experimental data have shown that momentum:
theory, although particularly simple to use, is
qualitatively inaccurate for certain steady re~-
sponse derivatives in forward flight.2 Reference
2 introduces an alternate induced flow model for .
forward f£light in which the elements of {[L]
(with ® = 0) are chosen to give the best fit of
experimental response data for several configura-
tions at conditions of near zero lift. .If this
empirical inflow model, [Lgl], is taken for the
quasi-steady portion of the induced flow law, and
if the theoretical apparent mass terms (from po-
tential flow) .are taken as a model for the un-
steady portion of the induced flow law, then a
complete induced flow equation can be expressed as

E -0 0ffv, v, CT/ca
2o &, 0 [{v WL ]'1v = Jc foa ;
ga 1 s E s{ . L (33)
0 0 -K; Vo Ve CM/oa

The assumption that the apparent mass terms
may be superposed on the quasi-steady terms is not
rigorous, but it can be considered analogous to
unsteady wing theory in which the apparent mass
terms are theoretically independent of the free-
stream velocity. Under the superposition assump-
tion, the empirical inflow model modified for the
unsteady case is

-1
X 0 =k
= iw
[L] = 0 —KI 0 -é—a-+ LE (34)
0 -K

Although this particular formulation of [L] 1is
valuable for predicting the effects of induced
flow, ultimately a more consistent formulation of
[L] should be made, as discussed in Reference 10.

Equivalent Lock Number

Another method of accounting for the unsteady
induced flow is the use of an equivalent Lock num—
ber vy*, which can be derived from a single har-
monic¢ balance of.the root moment equation:

¥ | 1

qt-‘ l-{%evicat 16K iw/oa (35)
Although this approach is not a completely con-
sistent treatment of the induced flow, since it
does not give an exact harmonic balance of the
blade flapping and thrust equatioms, it yields
results which are nearly the_same as those ob-
tained from momentum theory.



The practical use of Eq. (35) is somewhat
limited because of the inaccuracies of momentum
theory in forward flight, but a y#* approach is
nevertheless a valuable conceptual tool for under-
standing the effects of induced flow. In particu-
lar, Eq. -(35) shows that one effect of induced
flow perturbations is to decrease the effective
Lock number (1.e., decrease the aerodynamic ef-
fectiveness). This decrease is most pronounced at
low values of v (i.e., low y and 6 ) and low
values of w. For example, rotor roll moment is
plotted in Figure 1 for two values of 6 and com-~
pared with the value from elementary theory
(steady induced flow only, induced flow perturba-
tions neglected, equivalent to 1im § » = )., The
curves for O = 0, 0.05 result in values of roll
moment well below the elementary value.
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Figure 1. Effect of induced flow on steady rotor

response in hover, u =0, w = 0,
o=0.1, a = 2%, p= .

The effect of induced flow is most pro-
nounced in the response derivative (the slope of
the response curve at 6g = 0). For p = », the
derivative is given by

a[cL/oa] /ae s

indicating that +y*/y < 1 results in a reduction
of the roll moment response (or control power)
from the elementary value. When the rotor is in
hover with no lift (v = 0), a quasi~steady per-
turbation of €5 (w = 0) results in no response
because of the zero slope of the curve in Figure
1. The mathematical justification for the van-
ishing response derivative can be seen in Egs.
(35) and (36). With w=1v =0, vy*/y and the
response derivative must equal zero. As § in-
creases, however, Vv and v increase so that
v*/y approaches unity and the derivative ap-
proaches -1/16, as illustrated in Figure 2. With-
in the practical range of thrust coefficients,
however, the response derivative never recovers
more than about 80 percent of the elementary
value. Eq. (35) also implies that increasing ad-
vance ratio (which increases v) will result in a
partial recovery of vy*/y (and of the response
derivative). This recovery is evident in

: - Ilg %{’i (1' +3/2 pZ) (36)

6 =0
8

Figure 2.
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Effect of induced flow on steady rotor
response derivatives in hover, u = 0O,
=0, g = Q.l, a =21, p=

Figure 3, where the roll response is given versus
y; but no more than 90 percent of the elementary
value is reached in the practical range of thrust
and advance ratio.
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Figure 3. Effect of induced flow on steady rotor

response derivatives in forward
flight, w =0, ¢ = 0.1, a = 27, p = =,

The unsteady terms (apparent inertia K. )
also bring v*/y closer to unity, as seen by the
role of Ky in Eq. (35). This recovery with fre-
quency 1s illustrated in Figure 4, where, as w
becomes large, the response derivative approaches
the elementary value of =-1/16. The rate at
which the response approaches ~1/16 is dependent
upon the magnitude of the apparent inertia Ky
Large values of Ky result in a rapid return to
the elementary value, and small values of Ky re-
sult in a slow return. For Xy = 0.1132 and
w < 0.3, the unsteady terms provide only small
contributions to the response. Thus, the quasi-
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steady theory (with Ky = 0) would be adequate in
this range. In the frequency range 0.3 < w <
1.0, the unsteady terms have a more significant
effect. "Above w = 1.2, the total effect of in-
duced flow diminishes so that the elementary
theory and the unsteady theory give similar re-
sults; but the quasi-steady theory (with K1 = 0)
is in considerable error in this region.

The frequency range in which unsteady in-
duced flow is important is also dependent upon the
thrust or mean inflow v as shown in Figure 5.
For low values of v, the unsteady effects domi-
nate at low frequencies; and for large values of
v, the unsteady effects are delayed into the
higher frequencies. This effect is implicit in
Eq. (35) and is a direct result of the inverse
dependence of_time constant upon v, Eq. (31).
Thus, a low v dimplies a slow induced flow re-
sponse; and a high v implies a rapid induced
flow response. Equation (35) shows that advance
ratio (which also increases v) has a similar ef-
fect on the induced flow behavior. It follows
that the relative importance of the unsteady and
quasi-steady nonuniform induced flow terms de-
pends upon both the rotor operating conditions
and the frequency range of interest.

In Figure 6, the relative importance of
these terms is presented qualitatively through a
chart of the operating regimes in which (for no
induced flow or quasi-steady induced flow) ‘Y*!
differs by less than 10 percent from the unsteady
value. This is a subjective criterion and is
merely intended to illustrate the trends with
thrust, advance ratio, and frequency. Four
regions are defined: (i) at high o and v,
induced flow effects are small and either the
elementary or quasi-steady approximation is ade-
quate; (ii) at high o and low v, although in~
duced flow effects are small (no induced flow
belng a good' approximation), the quasi-steady
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Figure 6. Reglons of validity for steady (no
induced flow perturbations) quasi~-
steady (Ky = = 0), and unsteady
Ky = 0.1132,Ki%1 = 0.8488) induced
flow models based on: +y*, Eq. (35),

g =0.,1,; a = 2m,

theory alone will be in error; (iii) at low. w
and high - v, the opposite 'is true (i.e., the
quasi-steady nonuniform theory is required, where-
as neglecting induced flow results in error); and
(iv) for low -w 'and v, complete unsteady theory
is required.



Comparison of Theory and Experiment -

The ‘experimental data used in the following
correlations were obtained with a 7.5-ft-diameter
hingeless rotor model tested in the USAAMRDL-Ames
wind tunnel. The model configuration and test
conditions covered a wide range of parameters.
The resulte included here are for p = 1.15 and
advance ratios from 0.0 to 0.6.

Elastic Blade Bending

In Fig. 7, experimental values of roll and
pitch moments due to 65 are compared with theo-
retical results which are calculated neglecting
induced flow perturbations. Two sets of theory
are presented. The first theory employs a rigid
centrally-hinged blade with root spring to model
the elastic blade bending, and the second theory
uses a similar model, except that hinge offset is
llowed. The largest differences between the two
heories occur near resonant frequencies, i.e.,
= 0.15, 1.15. (The primary effect of mode
hape is aerodynamic, Eq. (8); it causes domi-
nce at resonance.) A surprising element in
Figure 7 is that the centrally hinged model gives
closer agreement with the high frequency response
than does the hinge offset model. This reversal,
however, is not a consistent trend in the data
and may be somewhat coincidental.
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Comparison of experimental data with
rigid blade approximations without
induced flow, p = 1.15, vy = 4.25,

B = 0.97, epe = 0.25, u = 0.60.

Similar frequency response comparisons have
been made when the blade is modeled by one or two
of the rotating elastic mode shapes. When
u <08 and w 1is at least once-per-revolution
below the second flap frequendy, the one- and two-
mode calculations are within a few percent of the
hinge-offset results. At higher advance ratios
and frequencles, the effects of second~mode bend-
ing can become significant; but in the range of
operating conditions considered here, a single ro~
tating mode is sufficient to model the blade.

Three major types of discrepancies between
theory and experiment which are found in Figure 7

cannot be explained in terms of flapping mode shape
effects. The first is the difference encountered
at frequencies near one and two per revolution.
This difference may be explained by the fact that

_the lead-lag frequency of this configuration is

near two per revolution, causing resonance at these
frequencies. The second discrepancy is the irregu—
larity in the pitch response at w = 0.6. Here, a
natural frequency of the rotor support stand is
being excited and contaminates the data.ll The
third discrepancy is found at « < 0.6, and will be
shown to result from unsteady inflow perturbations.

Effect of Induced Flow In Hover

The low-frequency hover data provide some in-
sight into the effects of unsteady induced flow.
In Figure 8, rotor roll and pitch moments versus
6, are presented., The experimental results are
for § = 4°, ¥V = 0.03. The theoretical results are
calculated using the actual blade rotating mode
shape as a generalized coordinate and using three
different representations of the induced flow., The
first representation is the elementary model, which
completely neglects induced flow perturbations.

The second representation is quasi-steady momentum
theory, which neglects the apparent inertia

(R = 0), assuming that nonuniform induced flow
perturbations instantaneously follow the blade dy-
namics. The third representation is unsteady mo-
mentum theory, which gives a time lag on the in-
duced flow perturbations. (The empirical model i1s
not applicable in hover.)

A comparison of theory and experiment reveals
that the elementary theory is unsatisfactory below
w = 0.6, failing to reproduce even the qualitative
character of the data. On the other hand, the
theories which include induced flow perturbations
account for most of the important features of the
response, The loss of aerodynamic effectiveness,
which is a result of induced flow perturbations,
causes a decrease in the excitation forces and an
overall decrease in the response. But the loss of
aerodynamic effectiveness also lowers the blade
damping, causing a resonant peak effect near the
blade natural frequency (with p = 1.15, w = 0.15).

The effect of the unsteady induced flow terms
is also evidenced in Figure 8. The major contri-
bution of Ky i1s the determination of how rapidly
with w the aerodynamic effectiveness returns to
the elementary value. Above w = 0.6, the theo-
retical value of Ky gives the proper amplitude
and phase for the hub moments, while the quasi-
steady theory (Ky = 0) faills to return to the con—
ventional value and does not agree with the data.
Below ® = 0.6 the comparison is less clear. In
the roll-moment phase and amplitude, a X1 less
than 0.1132 would give better correlation than
does this theoretical value. In the pitch-moment
response, however, a smaller Ky would give worse
correlation than does Ky = 0.1132. Further work
would be necessary to determine if this effect is
due to experimental difficulties (such as recir-
culation) or to an actual deficiency in the in-
duced flow model.
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In Figure 9, rotor roll and pitch moments
versus o are presented for the same test condi~-
tions as in Figure 8. Data are presented for
shaft excitations in both roll and pitch, since
in hover the response to these controls is
ideally symmetric. A comparison of the two sets

- of data gives an indication of the experimental
error due to test stand dynamics (and possibly
récirculation). Although the data are question-
able for w > 0.3, the lower frequency data sub-
stantiate three of the observations made from
Figure 8. First, the elementary theory is quali~
tatively inaccurate for amplitude and phase re~
sponse. Second, a major effect of induced flow
is a resonant peak effect near w = 0.15. Third,
Ky < 0.1132 would give better correlation than
the theoretical value at low . Figure 9 also
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Figure 9.

shows that although induced flow decreases the
blade damping, it can actually increase the rotor
pitch/rate damping = -Re[3(Cy/va)/3a] and also
increase the rotor pitch/roll coupling

= -Re[3(Cr,/oa)/da]. The damping and coupling can
be found by dividing the plotted curves by
~iw, 4 = iwe, which is approximately equivalent to
taking the slope of the plotted curves with a 90~
degree shift in phase angle. For this particular
configuration, the damping and coupling are in~
creased by induced flow effects, indicating that
induced flow perturbations can be important in
coupled rotor/fuselage dynamics.

Effect of Induced Flow in Forward Flight

In the next three figures, experimental data
at high-advance ratic (u= 0.51) and very low lift
(6 = 0.5°) are compared with theory using three
induced flow descriptions. The first description
is an analysils which neglects induced flow pertur
bations, the second description 1s the empirical
nmodel of Reference 2 with no time lag (quasi- :
steady, Ky = Ky = 0), and the third description;
is the empirical model of Reference 2 adapted to
the unsteady case according to Eq. (34) (with the
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rotating mode.

theoretical values of Ky and K;). The first
comparison of theory and experiment 1s shown in
Figure 10 for the roll- and pitch-moment response
due to 65. The elementary theory predicte a
roll moment of 0.017 at w = 0 and a near-zero
crossing (amplitude = 0, phase angle discontinu-
ous) at w = 0,4. The data, however, displays a
much lower steady value and completely avoids the
zero crossing. The unsteady and quasi-steady
empirical models provide a fairly accurate
description of this behavior, showing quantita~
tive agreement with phase and magnitude for

w < 0,6, TFor the pitch moment derivative, the
empirical models predict the qualitative (but not
the quantitative) aspects of the reduction in
moment (from the conventional value) due to
induced flow.

10



Another comparison of theory and experiment
is shown in Figure 11 for the roll- and pitch~
moment response due to 8g. The empirical models
predict a roll-moment derivative which 1s less
than the elementary value, exhibiting a near—zero
crossing at ® = 0.26. This characteristic is
clearly evident in the magnitude and phase of the
data, but it does not appear in the theory
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pitch in forward flight, p = 1.15,
= 4.25, B = 0.97, epc = 0.25,
= 0.51, ca = 0.72%, Vv = =0,
single rotating mode.

without induced flow. TFor the pitch-moment deriva-
tive, the elementary theory agrees with the data
only for w > 1.2; the quasi-~steady theory shows
good correlation for O < w < 0.6, and the unsteady
theory gives quantitative correlation at all fre-
quencies.

The third comparison is shown in Figure 12 for
the roli~ and pitch-moment response due to 0.
The data show that the roll-moment derivative is
less than the elementary value at .w = 0, display-
ing a resonant peak (near = 0.15) which is
greater than the elementary value and which is ac~
companied by a 10-degree phase shift, The empiri~
cal models predict the qualitative character of the
resonant peak and quantitative character of the
phase shift. The empirical models also correlate
well with the pitch-moment response, for which the
experiment shows the derivative to be greater than
the elementary value for o < 0.3 and less than
the elementary value for w > 0.3.

In general, the empirical inflow models show
this same degree of correlation at all advance
ratios considered (u = 0.27, 0.36, 0.51, 0.60).
This substantiates one of the qualitative
conclusions of Figure 6. For moderate advance
ratios and w < 1.0, an appropriate unsteady or
quasi-steady induced flow theory is adequate, but
the theory without induced flow is in consider-
able error. Of course, Figure 6 only implies in
which regions quasi-steady or unsteady terms may
be significant. It does not imply that any par-
ticular quasi-steady or unsteady model will be
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adequate. For example, in Figure 13, pitch mo-

ment derivates (as calculated using the theory
without induced flow, unsteady momentum theory,
and unsteady empirical theory) are compared with
the experimental data. The comparison shows that
unsteady momentum theory can be in qualitative
disagreement with the data even though empirical
theory shows good correlation. Even the empiri-
cal model, however, does not show complete quan-
titative correlation; and further refinements in
the induced flow model may be necessary.

Conclusions

1. On the basis of an equivalent Lock number

relation and p = », quasi-steady nonuniform in-
duced flow perturbations can have a significant
effect on rotor response throughout the entire

thrust/advance ratio range; but the time lag of
the induced flow is only important at low 1lift and

low advance ratio.

2. In hover, unsteady momentum theory with appar-
ent mass terms from potential flow provides a
significant improvement in data correlation over
the theory without induced flow perturbations;

but further work is required to refine the induced
flow model.

3. 1In forward flight and near-zero 1ift, the
empirical inflow model of Reference 2, whether
used with ‘the unsteady time-lag effect or with-
out the time-lag effect (quasi-steady), corre-
lates well with most qualitative and some quanti-
tative aspects of the data, while unsteady momen-—
tum theory and the theory without induced flow
provide little agreement with the data.

4, A single rotating mode is sufficieant for
flapping response calculations when u < 0.8 and
when the major excitation frequency is at least
once-per-revolution below the second flapping
frequency.
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Abstract

Two methods for modeling dynamic stall have
been developed at United Aircraft. The ¢, A, B
Method generates 1lift and pitching moments as
functions of angle of attack and its first two
time derivatives. The coefficients are derived
from experimental data for oscillating airfoils.
The Time Delay Method generates the coefficients
from steady state airfoil characteristics and an
associated time delsy in stall beyond the steady
state stall angle. Correlation with three types
of test data shows that the o, A, B Method is
somewhat better for use in predieting helicopter
rotor response in forward flight. Correlation
with 1ift and moment hysteresis loops generated
for oscillating airfoils was good for both models.
Correlation with test data in which flexibly
mounted two-dimensional airfoils were oscillated
to simulate the 1P pitch variation of a helicopter
rotor blade showed that both methods overpredicted
the response, and neither gave a clear advantage.
The ¢, A, B Method gave better ecorrelation of
torsional response of full scale rotors and re-
mains the method in general use. The Time Delay
Method has the potential to be applied more easily
end probably can be improved by consideration of
spanwise propagation of stall effects.

Stall-related phenomena limit the operation-
al capabilities of the helicopter. Power, blade
stress, and control system loads can all increase
substantially due to blade stall. To predict
such phenomena unsteady aerodynamics in stall must
be modeled in blade aerocelastic analyses. A num-
ber of unsteady aerodynamic models have been
developed. These include methods described in
References 1 and 2. Reference 3 is a recent
general survey sgrticle of rotor dynamic stall.

The o, A, B Method and the Time Delay Method are
two methods developed by United Aircraft. The
a, A, B Method was developed to use airfoil test
data obtained for a sinusoidally oscillating

Presented at the AHS/NASA-Ames Specialists!'
Meeting on Rotorcraft Dynamics, Februasry 13-15,
1974,

Based on work performed under U. S. Army Air Mobil-
ity Research and Development Lsboratory Contrsct
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two-dimensional model airfoil. The Time Delay
Method was developed to provide an empirical method
that would agree with the 1lift and pitching moment
hysteresis characteristies measured in oscillating
airfoil tests for a number of airfoils and test
conditions.

Evaluation of unsteady aerodynamic modeling
techniques generally proceeds from correlation with
data obtained in two-dimensional oscillating air-
foil tests to correlation of full scale rotor blade
torsional response. Two-dimensional rigid airfoil
results are compared on the basis of aerodynamic
pitch damping and 1ift and pitching moment hys-
teresis loops, and full secale correlation is judged
on the basis of agreement in blade torsional mo-
ments or control rod loads. Evaluation of an un-
steady model on the basis of full scale torsional
response is made difficult by uncertainties in
three~-dimensionzgl rotor inflow -and blade bending
and plunging motion. Correlation of the 1lift and
pitching moment time histories of rigidly driven
airfoils, on the other hand, is not the best method
of comparison becaguse it does not treat blade dy-
namic response to stall. As an intermediate ap-
proach, model test data were obtained for a flex-
ibly mounted model airfoil which was dynamically
scaled to simulate the dynamics of the first tor-
sional mode of a rotor blade. This paper summa-
rizes unsteady aerodynamic modeling techniques and
includes comparisons based on two-dimensional aero-
dynemic pitch damping, lift and pitching moment
hysteresis loops, two-dimensional flexured airfoil
response, and full scale rotor blade torsional
moments.

Description of the Unsteady Models

a, A, B Method

In the o, A, B method the aerodynemic moment
is assumed to be a function of angle of attack and
its first two time derivatives., Reference L4 demon-
strated that unsteady normal force and moment data
generated during sinusoidal alrfoil tests and tabu-~
lated as functions of o, A = bthand B = b2g

Vo Uoé
(vhere b is the sirfoil semiw-chord and U, is the
free stream velocity) could be used to predict the
aerodynamic response of an airfoil executing



a nonsinusoidal motion. In a limited number of
flexured airfoil tests described in Reference 4, -
good correlsgtion was achieved between measured
and predicted airfoil dynamic response. The o,

A, B 1lift and pitching moment data tabulations

of Reference Ut were used in the calculation of
torsional response for the dynamically scaled
model airfoil. As applied in this investigation,
two changes were made in the calculation. First,
to consider the pitch axis of the model airfoil as
& variable, provision was made to include pitching
moment due to chordwise offset of the aerodynamic
center from the pitch axis:

L (u,A,B)=cm h(a,A,B)+(XPA— «25)c, (a,4,B)

. C/
Xpa

The second change involved scaling the un-
steady data tables to account for differences in
wind tunnel characteristics. The steady state
1ift and moment data for the present test program
differed from the corresponding steady data
obtained in Reference 4 because the tests were
conducted in an open jet wind tunnel and because
the airfoil effective aspect ratio was much
higher. The method of scaling used for these’
analyses required a shift in the entire data tabu-
lation by constant values of angle of attack, un-
steady 1ift coefficient, and unsteady moment co-
efficient according to the following relations:

e1(08B) o get=0 (#4801 85B)p 5 + Sop
and

= . Se
cIu(m’{l"B)open jet cm(a+6um’A’B)TAB+ i}

The constants Say, Sop, 8¢y and Scp were es—

tablished for each airfoil and were equal to the
amount of shift necessary to make the open jet
steady state stall points in 1lift and moment
match the steady state stall points of the
airfoil of Reference k. ’

Time Delay Unsteady Model

. Wind tunnel airfoil dynamic response was
also calculated with the Sikorsky Time Delay un-
steady aerodynamic method. This formulation was
developed empirically by generalizing the re-
sults of a set of oseillating sirfoil test pro-
grems. It is intended to predict the unsteady
serodynamic characteristics of arbitrary airfoils.
Its aim is to provide the blade designer with un-
steady 1ift and pitching moment characteristics
of various airfoils without conducting extensive
oscillating airfoil tests. This model, based on
a hypothesis of the physical separation process,
does not depend on an assumed harmonic variation
of angle of attack. The basic assumption is that
there exists a meximum quasi-static angle of
attack at which the pressure distribution -and the
boundary layer are in equilibrium. During in-
creases in angle of attack beyond this statie
stall angle, there are finite time delays before
a redistribution of pressure causes first a moment

break and then a loss of lift corresponding to flow
separation. The relative phasing of the moment and
1ift bresks with angle of attack produces either
positive or negative damping of the motion.

. To test the Time Delay hypothesis, harmonie
datsa from Reference 5 were examined. It was noted
that the onset of stell can occur before, with, or
after maximum emplitude of the oscillation. In
accordance with the Time Delay hypothesis, the
spread between the static moment stall angle and
the dynamic 1lift bresk was evaluated in terms of
elapsed time nondimensionalized by free. stream
velocity and chord length, T#* =AtSEP(UO/c).

Typical results show that separation genersally
occurs when T¥# exceeds about 6.

Dynamic pitching moment stall has been
handled similarly. Test data showed, in general,
that the dynamic moment break occurred before the
1ift bresk. This has been noted in Reference 6
and attributed to the shedding of a vortex at the
airfoil leading edge at the beginning of the
separation process. Rearward movement of the vor-
tex over the surface of the airfoil tends to maein-
tain 1ift, but drastically alters the pitching
moment .

To apply the Time Delay Model to & given air-
foil, only static serodynamic data are required.
First, the airfoil static 1ift and pitching moment
data are used to define the spproximate variation
in center of pressure between the static moment
stall angle o, and an angle of attack o, above
which the cenfer of pressure is assumed fixed.
Secondly, an approximation is made to the ¢
versus o curve for fully separated flow. The se-
quence of events occurring during one stall-unstall
cycle is detailed in Figure 1, Briefly stated,
1ift and pitching moment are determined from po-
tential flow theory until the nondimensionsal time
Ty (which begins counting when the angle of attack

exceeds the static moment stell angle) reaches T _.
At this point the pressure distribution begins 8
change, leading to rearward movement of the center
of pressure and loss of potential flow pitching
moment. Later, when T, = T#*, the 1lift bresks from

the static line and decreases gradually with time
to the fully separated value, ¢ (¢). For

Lspp

T2>T* the center of pressure coincides with

C.P. At the point where ;1 = 0, the rates

sep(®)-
at which ey approa.ches‘ clSEP(oz) and C.P. approaches

C.P.SEP(Q) (if it does not alresdy equal C.P.SEP(OL))

are increased. When a falls back below the quasi-
static stall angle @, the center of pressure
returns to the quarter chord, potential flow
pitching moment effects are reintroduced and a
second time parameter T, is recorded to govern the
rate at which ey returiis to . .

POT
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Figure 1. Time Delay Unsteady Aerodynamic Model.
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Pitching Moment Hysteresis Loops.

Although additional correlation studies must
be made to identify the effects of elrfoil type on
the time delay constants and although refinements
to the present model msy be implemented, this
rather simple model represents well the essential
fegbures of the dynamic stall process, Correlation
typicdl of that claimed for other empirical methods
(References 2 and T) has been found with data from
References 4, 5, and 8. Only the a, A, B Method
has produced better correlation {Reference U), but
it suffers from the requirement for extensive
testing and data processing. Figure 2 compares
the NACA 0012 unsteady 1lift and pitching moment
hysteresis loops measured in Reference 4 with Time
Delsy results, This correlation was achieved by
setting the 1ift breek time constent T* equal to
4.0 instead of 6.0. Three-dimensional effects
encountered in this test apparently reduced the
time interval between static stall and dynemic
1ift stall. Also shown are the hysteresis loops
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predicted using the o, A, B Method. The a, A, B

Method correlstion is with the data from which the

o, A,' B coefficients were derived.

In addition to predicting the exact form of
1lift and moment hysteresis loops,; an unsteady
model should represent faithfully saserodynamic
pitch: damping. Accordingly, the Time Delay
Model was used to calculate two-dimensional sero-
dynemic damping for the reduced frequency/mean
angles of attack test points of Reference 9.
Sample results plotted versus airfoil mean in-
cidence angle of attack are shown in Figure 3.
Generally excellent correlation of measured and
"predicted damping is noted.

Other correlation of the Time Delay Method
with two-dimensional oscillating airfoil test
data has been good. During development of the
theory, correlation was carried out with forced
oscillating airfoil data for a range of airfoils,
frequencies of forced oscillation, Mach numbers,
and angles of attack. Typical examples of the
correlation obtained are shown in Figure L where
measured and calculated hysteresis loops are
shown for the V13006~T airfoil. These test data
taken from Reference 1 show the correlation with
the Boeing Theory of Reference 1 as well. Corre~
lation included hysteresis loops for different
airfoils and covered a Mach number range from 0.2
to 0.6. In all cases, the general character and
magnitude of the hysteresis loops were well match-
ed. In particular, the method provides the sharp
drop in pitching moment that is often found when
stall occurs. The oscillstion frequency in
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Figure 4 is constant for the two cases, but Mach
nunber and mean angle of attack are changed. The
1lift break occurs before the angle of attack reach-
es its meximum value. In terms of the non-dimen-
sional time parameter t¥, the t% value of 6 at
which 1ift stall occurs is reached before the maxi-
mum angle of attack is reached. The Time Delay and
Boeing Methods show comparable correlation for
1ift. For the Mach number 0.4 case (Figure kb) the
return to potentisl flow occurs earlier for de-
creasing angle of attack than the return given by
the Time Delay Method. Pitching moment correlation
is better for the Time Delay Method. The triple
loop characteristic is well duplicated. Similar
correlation obtained with the Time Delsay Method for
a wide range of conditions demonstrated its promise
as a practical method for analyzing unsteady aero-
dynamics. :

Dynamic Stall Tests

In order to obtain data useful in evaluating
the two unsteady aerodynamic methods dynamic stall
wind tunnel tests were run using a two-dimensionmal
airfoil model. The model was oscillated at a
frequency simulating the cyclic pitch variation on
a helicopter rotor blade. Torsional frequencies
representative of helicopter blade frequencies were
obtained by varying a torsionsl stiffness element
between the drive system and the airfoil section.
The airfoil models were made to be as stiff as
possible along their spen and light in weight to
approximate scaled helicopter blade mass and iner-
tia properties. Hence the non-dimensional coeffi-~
cients in the equation of motion of the model air~
foil were close to those of the helicopter blade
torsional equation of motion based on the aero-
dynamics of the three-quarter radius on the re-
tracting blade. Two different airfoils were fab-
ricated, an NACA 0012 and an 8C 1095.

The model airfolls and drive system were
designed to permit investigation of the effects on
torsional response of torsionsl natural frequency,
chordwise pitch axis location and torsional inertia
over a range of 1P freguencies for an NACA 0012
airfoil and a cambered SC 1095 airfoil. The
oscillating mechanism provided an 8-degree ampli-
tude of motion of the model with an adjustsble
mean angle of attack. The model has a span of
1.75 feet and a chord of 0.5 feet. The wind tunnel
veloecity was 275 fps for all tests. Time histories
of the model angular motion were recorded at
nominal driving frequencies of 8.0, 10.0, and 12.5
cps. Tests were run for the full range of angle of
attack for all the combinations of piteh axis,
torsional inertia, torsional natursl frequency and
agirfoil type. A typical set of time histories
for m basic reference condition (NACA 0012 sirfoil,
25 percent pivot axis, nominal blade inertia, snd
5P natural frequency ratio) is shown for four mean
angles of attack in Figure 5. These time histories
represent the time average of ten cycles.

The elastic torsiongl deflection of the
airfoil (difference between total angular motion
and input angular motion) was obtained for each
test condition by subtracting the input angular
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position time history from the averaged airfoil
engular position time history:

o(t) = alt) - (um + weinlaT).

where 0(1) is the difference between the measured
non=-dimensional angular “bime history responae alt)
and the input driving motion. The non-dimensional.
time t is given by t/T, where the period, T, wes
established from the ten-cycle time-sveraging
process for that run. Some statistical variation
in measured response was noted when stall flutter
oceurred, but in genersl the ten cycle time-
averaged response waes representative of the
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measured data. Two measures of stall response
amplitude were extracted from each of the 0(7) time
histories. These were A9 which is one-half of"
thé initial response to stall and @ ;ﬂ:rﬂ: which is
one-half of the overall pea.k-to-peak ela.stic de~
flection. '

It was found that the initial stall response
paremeter AG, gave the most consistent indicsation
of susceptibility to stall flutter. The possible
reduction in flutter amplitude introduced by the
time sveraging procedure when there was cycle-to-
cycle variation in phese made it somewhat difficult

to assess the amplitude of flutter response. TFor-
tunately, the initial stall deflection showed
virtually no cycle~to-cycle variation. Figure 6

compares measured initial deflection angles for an
excitation frequency Q of 10 cps for the two air-
foils at all combinations of airfoil natural )
frequency ratio (uy = me/s’Zl torsional inertis, and
pitch axis. Certain general trends of deflection
angle can be identified in the test results. ‘

1. Elastic deflection inc:gea.ses with mea.n
incidence angle.

2. For the same torsional inertisa, response
is generslly greater for the lower
frequency airfoll section.

3.. The amplitude of response is inversely
-related to torsional inertia.

4. Forwsrd movement of the pitch axis leads
to & decreasse in deflection.

5. SC 1095 elrfoil dynemic stall response
begine to bulld up at a higher meen
ineidence angle than the 0012, but the
two airfoils have comparable responses
once stall is penetrated.

Correlation Study of Two-Dimensional Results

The two-dimensioneal flexured airfoil test
data were compared with predictions based on
various unsteady eerodynemic methods. The single
torsional degree of freedom differential equation
of motion for the flexibly mounted sirfoil section
oscillating in the wind tunnel test section is
glven vy

Ia+ ca + K(a-op) = M(t) +KG sin Qt
where ¢ = equivalent mechanical damping per unit
span
airfoil torsionael inertie per unit spen
torsional spring constent
applied serodynemic moment
“time

cg-=-slrfoil sngle of sattack
o = amplitude of angular oscillation
cwr mean angle of the oscillation
= angular frequency of the applied toifque-

I

nnu

This equation was solved numerically using
the unsteady aserodynamic models to celculste the -
applied serodynamic moment M(t). For the a, 4, B’

Method unsteady data tables obteined from earlier

oseillating airfoil tests, Reference k4 were scaled
for both airfoils. The measured steedy state 1lift



and pitching moment date served as inputs in the
Time Delay calculstions, Additionally, the air-
foil mean incidence angle used in the Time Delay
solution was two degrees less than that set in
the wind tunnel. The open jet flow deflection
experienced at high unsteady 1ift coefficients was
sufficient to decrease actual peak angles of
attack to a value somewhat lower than the geo-
-metrically impressed pitch angle. The two-degree
correction to gave consistently better corre-
lation of the initial stall time.

Correlation between mesasured wind tunnel
" model response and response calculated with the
unsteady models was examined for thirty-six test
conditions. The set of cases studied was suffi-
cient to evaluate the independent effects on air-
foil stall response of mean incidence angle,
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torsional natural frequency, chordwise piteh axis,
torsional inertia, and airfoil type. Relative to
a baseline case teken to be the NACA 0012 airfoil
at oy = 14°, we/2 = 5, = 0.25and I = I__ .,
Figure T shows measured and predicted effecggF of
mesn angle, torsional natural frequency, pitch exis,”
and airfoil type on time histories of elastic de~-
flection. Comparison of the measured and predicted
effects of airfoil mean angle of attack indicates
that deeper penetration into stall results in
sharper initial stall deflection and larger resid-
ual stall flutter response. The two analyses pre-
dict these effects gqualitatively, but each -
especially the Time Delsy model - overpredicts the
amplitude of response. The main effects of sn in~-
crease in torsional natural frequency are a shift
in response frequency and a decresse in the am-
plitude of elastic deflection. Figuyre T shows
good correlation of response a.mplituae, although
both analyses predict an initial stall response
egrlier than that measured. Moving the airfoil
pitech axis forward causes delay in initial stall
time and reduction in amplitude of response. The
analytical results do predict the reduction in
response amplitude, but thée Time Delay model still
results in overpredicted response. Finally, a
comparison between the NACA 0012 and the SC 1095
alrfoils shows a deélsy in the initial stall time
for the SC 1095 airfoil, which had a static stall
angle measured in this wind tunnel to be about
three degrees higher than that of the NACA 0012.
However, the SC 1095 stall flutter amplitude was
comparable to that experienced by the NACA 0012

st this condition.

The time history correlation was good in
that the initial response and the frequency of the
subsequent oscillations were predicted. The trends
observed in test were well matched by the analysis,
although,the Time Delay model generally overpre-
dicted stall flutter response. The basic effects
of structural changes on blade response time
histories were well predicted by elther analysis.

Although torsional elastic deflection is
important in determining rotor stability and per-
formance, the torsional moments resulting from
stall flutter are the designer's primary concern.

To measure the trends of torsional moment with
parsmeter changes, the twisting moment experienced
by the flexible connector in the model sairfoil
drive system was calculated for each test condition.
The torsion moment Mg was calculated using the
equivalent spring stiffness of the connector:

MG N Keq6 - (Iairfoil “’e ) e
The torsional moments corresponding to the initial
stall deflection angle AB, were used to show the
effects of blade paramete¥s on structural moments.
Figure 8 presents typical results for three com-
binations of airfoil type and mean angle of attack.

‘It was generally found thet decreasing torsional

natural frequency reduced stall flutter moments.
Although the stiffer system experienced lower
response amplitudes, the corresponding structural
moments were increased:
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Forward placement of the airfoil pitch axis gener-
ally decreased vibratory torsiongl moments. The
two analyses predicted this trend with comparable
accuracy. That forward movement .of the airfoil
pitech axis relative to the aerodynamic center
reduces stall flutter moments can be understood
based on lift and pitching moment hysteresis
loops. TFor an airfoil with pitch axis forward
of the center of pressure, positive 1ift forces
csuse negative moments about the piteh axis.

For positive 1lift, the 1ift hysteresis loop is
usually traversed in the clockwise direction,
which contributes a negative pitching moment

loop ih the counterclockwise (stabilizing)
direction. A decrease in torsional moment am-
plitude with decreasing torsional inertia was
generaglly found throughout the testing. This
trend, evident in two of the conditions shown in
Figure 8, is predicted somewhat more correctly
by the Time Delay Analysis. Finally the two
airfoils are compared in Figure 9. For two
different combinations of inertia and pitch axis,
high stall flutter moments are delsyed in mean
angle with the SC 1095 airfoil.
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Flight Test Correlation

Flight test data were correlated with the
Normal Modes Blade Aeroelastic Analysis for both
the CH-53A and CH-54B aircraft. Both models of
unsteady aerodynamics were used., Information on
the blade analysis used can be found in Refer-
ence 10.

Correlation of CH~53 control system loads,
blade stresses and required power was studied at
a nominal aircraft gross weight of 42,000 1b
(Cm/o = 0.083), a tip speed of T10 ft/sec, and a
3000 ft density altitude for airspeeds ranging from
100 knots to 170 knots. Inclusion of variable in-
flow was found to be essential in calculating the
proper levels of blade bending moments. It also
provided some improvement in the correlation of
blade torsional moments.

The o, A, B and Time Delay aerodynamic models
are compared at 137 knots in Figure 10. Figures
10a and 10b shows that the computed blade stresses
are comparable for the two methods. However, the
push rod loads calculated with the Time Delay
Model are much less than values calculated with the
a, Ay B Method and measured values. The Time



8000

(a)

r/R=0.8 TéST
————— a,A,B
- —— = TIME DELAY
'f:; 4000 ,/;9&“
g | V/R\
5 o LN N A
s TN SN
54000 //\ P \Q\ N {7// \\//\ A
: N = _
-8000 .
() ey
D e -
a / /L-Q /
2 o 1A h\ ////A\?‘ ;‘:;\\\ y N\ //1,
& \:/‘/ N1/ ~T N /|
8, 1/ NS \udlV
é’-«;ooo / = .
N \_V/ \ L/
-8000
(c) 2000 —
————— g AB
————— TIME DELAY
% 1000 ﬁ/\ ; {I ™\ /,\\‘
;AR | [
~ =~
3, \’IL_I/ AEANN. ‘ /N A ;\\\ /f“ /
g N/ | \v%\ L\ 4r1l\\\/! [A NN
2 000 | ‘ i C \\%/\:\ ,./I \\ II l
| LML) VA
! T T\ \J
~2000 7 60 120 B0 240 300 360 60
BLADE AZIMUTH ANGLE,DEGREES
Figure 10. Correlation .of CH-53A Blsde Stresses and Pushrod Loads.

Delay results generally do not give sufficiently
large oscillations in stall. :

That better correlation of stall flutter
moments was possible with the a, A, B Method is
evident in Figure 1la which shows the buildup
of vibratory pushrod load amplitude with airspeed.
The ¢, A, B model prediects a buildup rate almost
identical with the mean of the  test data., A
discrepancy of no more than 10 knots in the knee
of the control load curve is evident at this thrust
coefficient.  Figure 11lb shows the correlation of
pushrod ‘load amplitude achieved with the o, A, B
Method at three thrust coefficients., .

Calculated CH~S5LB control loads were .also
generally less than measured vealues.: Figure 12
indicates that a definite stall boundary is pre-
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dicted by the analysis. Relative to the CH-53A
calculations, a decreased control load stall
speed and an incressed rate of buildup with air-
speed are clearly predicted. Again, higher loads
are computed based on the a, A, B Model. The
comparison of measured end predicted push rod
load time histories indicates that the a, A, B
results reflect a buildup in the higher fre-
quency loads much more accurately than do the
Time Delay calculations.

It is not entirely clear why, relative to
the oy A, B method, the Time Delay model under-
predicts helicopter control loads while over-
predicting the stall flutter oscillations of the
two~dimensionsl wind tunnel model. Examination
of several blade section pitching moment/angle
of attack hysteresis loops'indicates not so much
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that more negative pitch demping is present in the
oy A, B results. - Rather pitching moments along the
blade sre more in phase with each other, leading to
larger modal excitation. ' In the a, A, B formu-
lation, pitching moment coefficients are tabulated
as functions of a, & and § values all along the
blade.  This Fformulstion leads to similarly phased
pitching moments. . In the Time Delsy Model, moments
are calculated based on the angles of attack ex~
ceeding the steady state stall angle for a certain
interval of time and are not solely dependent on
the instantaneous angle of attack characteristics.
For smeall differences in calculsted angles of
attack, computed pitching moments for adjacent.
blade sections can be different in phase, Because
the two-dimensional wind tunnel airfoil was modeled
as a single panel for the calculstion of aerodynamic
foreces, the effects of simultaneous spanwise stall-
ing were not a factor in the correlation with that
data.

Comparison of Methods:

Because the o, A, B Method has demonstrated
better correlation with flight test data, it con=-
tinues to be the method in use for blade design
anglysis, However; development of both methods
continues. The o, A, B Method provides s relative-
ly direect and simple procedure for calculating un-
steady serodynamic loads. Correlation has been
good with test data but its disadvantage centers
largely on the epparent need for extensive tests
to provide the body of tabulated data required for
each airfoil. Some success has been obtained by
scaling the NACA 0012 unsteady aerodynamic tables
based on steady state differences between airfoils.
Work is also being done on developing analytical
expressions to replace the tabulated data. These
may lead to the ability to synthesize the data
required for a given airfoil, which would meke the
method more desirsble for general applications.

The Time Delay Method has the great advantage
of requiring only steady state airfoil data for its
application. The correlation with forced oscil~
lations of two-dimensional airfoils demonstrated
its applicability over a wide range of conditions.
Correlation with the tests described in this paper
showed no clear advantage of the Time Delay Method
over the a, A, B Method, and correlation with
flight test data was definitely poorer with the
Time Delay Method. Further work must be done to
investigate the reasons for the poor flight test
correlation. The problem may result from the
assumption in the analysis that, on a blade, each
radial section acts: independently of its neighbor-
ing sections.  This causes & more random: stalling
along the span with. time, which smoothes out:the
changes in blade loading. The propagation of stall
along the span for the three-dimensional case of a
helicopter blade must be added to the Time Delay
Method. The o, A, B Method does provide spanwise
correlation in loading by use of torsionsal mode
acceleration to calculate the B: parameter. This
accelergbion is in phase for each point slong the
blade spen. Incorporation. of a suitable radial
propagation model- in the Time Delay Method may meke
this a more versatile, more easily applicable, and
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more accurate model of unsteady saserodynamics.
Until this can be shown the a, A, B Method
continues in use in blade design.

Conclusions

The @, A, B and Time Delsy unsteady aerodynamic

models predict with good accuracy the 1ift and
pitching moment hysteresis loops snd the aero-

dynamic pitch damping of rigidly driven os-
cillating airfoils.

Two-dimensional stall flutter tests indicate
that reducing blade torsional stiffness, re-
ducing blade torsional inertia and moving

blade pitch axis forward decresse stall flutter

induced moments., Inception of stsll flutter
was delgyed with the SC 1095 airfoil relative
to the NACA 0012 airfoil; however, once
initisted, stall flutter loads for the two
girfoils were generally comparsble.

Stall flutter response of the two-dimensional
model airfolils and the effects of airfoil

structurel design parameters on blede torsion-

sl moments cen be calculated using both un-
steady models. The Time Delsay method gives &
high prediction of response amplitude.

Good correlation of CH-53A and CH-54B blade
stresses and control loads was cbtained with
a rotor seroelastic anelysis employing vari-
able rotor inflow and unsteady serodynamics.
Best correlation was echleved using the «,
A, B unsteady model. The Time Delasy method
generally underpredicted full scale rotor
stall flutter response.

The o, A, B model is in use for blade design
analysis.
mey meke it & more versatile end more easily
applied unstesdy serodynamic model.
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COMPUTER EXPERIMENTS .ON PERIODIC SYSTEMS
IDENTIFICATION USING ROTOR BLADE TRANSIENT
FLAPPING-TORSION RESPONSES AT HIGH ADVANCE RATIO

K. H. Hohenemser and D. A.
Washington University, St. Louis, Missouri

Abstract

Systems identification methods have
recently been applied to rotorcraft to
estimate stability derivatives from
transient flight control response data.
While these applications assumed a
linear constant coefficient representa-
tion of the rotorcraft, the computer
experiments described in this paper used
transient responses in flap-bending and
torsion of a rotor blade at high advance
ratio which is a rapidly time varying
periodic system. It was found that a
simple system identification method ap-
plying a linear sequential estimator
also called equation of motion estimator,
is suitable for this periodie system and
can be used directly if only the accel-
eration data are noise polluted. 1In the
case of noise being present also in the
state variable data the direct applica-
tion of the estimator gave poor results,
however after prefiltering the data with
a digital Graham filter having a cut-off
frequency above the natural blade torsion
frequency, the linear sequential estima-
tor successfully recovered the parameters
of the periodic cocefficient analytical
model.

Notation®

Blade tip loss factor

B
F = (I1/16I¢)(c/R)2 First blade tor-
sional inertia

number

F(x,t) .State matrix

G(t) Process noise modulating
matrix

H(w) Fourier transform of
weighting function

H(x,t) Measurement matrix

H(g ,a) State matrix = measurement

matrix

Presented at the AHS/NASA-Ames Special-
ists' Meeting on Rotorcraft Dynamics,
February 13-15, 1974. This work was
sponsored by AMRDL, Ames Directorate,
under Contract No. NAS2-u4151.
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Blade flapping moment of
inertia.

Blade feathering moment
of inertia.

Quadratic cost function.

Covariance matrix of
conditional state vector
probability distribution
given measurements.

Blade flapping natural
frequency.

Second blade torsional
inertia number.

Measurement noise co-
variance matrix.

Blade radius

Unknown parameters to be
estimated in flapping-
torsion problem.

Parameter vector.
Blade chord.

Blade torsional natural
frequency.

Non-dimensional time.
Measurement noise vector
Smoothing weights.
Process noise vector
State vector

Measurement vector.
Flapping angle.

Blade Lock number.

Blade torsion deflection
Acceleration vector.

Rate of displacement
vector.

Blade pitch angle.

Rotor inflow ratio, con-
stant over disk.

Rotor. advance ratio.
Displacement vector.

“In order to retain the conventional sym-
bols in helicopter aerodynamics {(Ref-
erence 7) and in systems analysis (Ref-
erence 9) some symbols are used in two
different meanings.
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Notation
cont

Standard deviation.
Circular frequency.

Subscripts

o Initial or mean value.

c,t Beginning and end of fil-
ter cut-off frequencies.

Superscripts

* Time differentiation.

- Smoothed data after fil-
tering.

. Estimate

T Matrix transpose

The question often arises, how to
best select some parameters of a given
analytical model of a dynamic system on
the basis of transient responses to
certain inputs either obtained analyti-
cally with a more complete math model or
obtained experimentally. In rotorcraft
flight dynamics one may want to use a
linear constant coefficient math model
and select the state matrix in an opti-
mal way from the measured data ob-
tained in a number of transient flight
maneuvers. One also may have a more
sophisticated non-linear analytical
model of the rotorcraft. The problem
then is how can the simpler linear math
model be selected to best represent the
responses of the more complete analyti-
cal model; or one may have the dynamic
equations of a rotorcraft without the
effects of dynamic inflow and one de-
sires to modify some of the parameters
in such a way that dynamiec inflow ef-
fects are best approximated. It is
known from theoretical studies, for
example Reference 1, that a reduction in
blade Lock number can approximately
account for rotor inflow effects in
steady conditions. The question then is
whether changes in parameters can also
account for inflow effects during
transient conditions.

The idea of using transient re-
sponse data to determine parameters of
an analytical model is certainly not
new. Recently, however, considerable
interest in this area has been de-
veloped and a number of approaches have
been studied which are unified under the
title of "system identification". There
is a considerable and rapidly growing
literature in this field. System iden-
tification methods generally fall into

two classes: (1) deterministic methods -
usually some variation of the classical
least squares technique and (2) proba-~
bilistic methods which determine the
parameters as maximum likelihood esti-
mates of random variables. Some methods
can also be interpreted either on a
deterministic or on a probabilistic
basis. References 2 and 3 are typical of
recent work using deterministic methods.
Both of these studies illustrate the
feasibility of determining coefficients
in time invariant linear systems from
transient response data. Reference 4 de-
scribes many of the probabilistic tech-
niques. Reference 5 gives a detailed
discussion of the various methods in
their application to V/STOL aircraft and
Reference 6 presents an identification
method suitable for obtaining stability
derivatives for a helicopter from flight
test data in transient maneuvers. The
studies of References 5 and 6 assume a
linear constant coefficient representation
of the system. A rotorcraft blade is,

- however, a dynamic system with rapidly

changing periodic coefficients. It ap-
peared, therefore, desirable to try out
methods of system identification for a
periodic dynamic system.

Selection of Identification Method

If one assumes that only the state
variables have been measured but not the
accelerations, one must use a non-linear
estimator since the estimate of a system
parameter and the estimate of a state
variable appear as a product of two un-
knowns. A non-linear sequential esti-
mator was tried on the simplest linear
periodic system described by the Mathieu
Equation. It was found that the non-
linear estimating process diverged in
most cases, unless the initial estimate
and its standard deviation were selected
within rather narrow limits. Reference 6
uses a sequential non-linear estimator
but initializes the process by first ap-
plying a least square estimator, which
needs in addition to the state variable
measurements also measurements of the ac-
celerations. In the case of the problem

.of Reference 6 the least square estimator

yielded a rather good set of derivatives
and the improvement from the much more
involved non-linear estimation was not
very pronounced. From this experience
it would appear that one needs to apply
the least square or an equivalent linear
estimator any way and that in some cases
it is doubtful whether or not the sub-
sequent application of a non-linear es-
timator is worth the considerable effort.

After conducting the rather unsatis-
factory computer experiments to identify
a simple periodic system with the



non-linear estimator, all subsequent work
was done with a linear sequential esti-
mator. This estimator is equivalent to
least square estimation but has the ad-
vantdge of being usable for "on-line"
system identification. The inversion of
large matrices is avoided and replaced by
numerical integration of a numbér of
ordinary differential equations. The
computer experiments were conducted with
the system equations of Reference 7 for
the flapping ~ torsion dynamics of a
rotorblade operating at advance ratio 1l.6.
Reference 7 assumes a straight blade
elastically hinged at the rotor center
and stipulates linear elastic blade twist.
The system used here for the computer ex-
periments represents only a relatively
crude approximation, since at 1.6 advance
ratio blade bending flexibility is of im-
portance, see for example Reference 8.
The coefficients in the system equations
are non-analytic periodic functions which
include the effects of reversed flow.

The identification algorithm used in
this report is easily derived using -the
extended Kalman filter discussed in the
next section. Although the algorithm
does not provide for noise in the state
variables, one can nevertheless use it
also for noisy data if one interprets the
-estimate, which normally is a determinis-
tic variable, as a sample of a random
variable. The effects on system identi-
fication of computer generated noise in
both the acceleration data and in the
state variable data were studied. Howeven
no errors in modeling were introduced
since their effects can only be evaluated
on a case by case basis.

Extended Kalman Filter

The extended Kalman filter is an
algorithm for obtaining an estimate % of a
state vector x satisfying

F(x,t) + G(t)w

X Process Equation(l
given noisy measurements z related to x
via

z H(x,t) +' v Measurement Equation(?2
In the above equations w represénts zero
mean white Gaussian process noise with
covariance matrix Q, v represents zero
mean white Gaussian measurement noise

with covarlance matrix R. An optimum es-
timate X of x can be obtained by solving
the extended Kalman filter equations

(see Reference 9)

% = F(x,t) + P(3H>TR'1 z - H(R,t)
' Filter Equatidn (3)
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. \T T
_. 9F aF T _ oH -1 °H
P = 3% P + P(;;) + GQG P( ) R X P

Covariance Equation (4)

%(0) = P(o) = P,

Initial Conditions (5)

X0 ’

% and P can be interpreted as vector mean
and covariance matrix of a conditional
probability distribution of the state
vector x, given the measurement vector z.

However, since the extended Kalman
filter is a biased estimator (see Refer-
ence 5) and since the correct value of
Py is not known, P cannot be used as a
measure of the quality of the estimate.
Rather, the rate of decrease of P is an
indication of the amount of information
being obtained from the data. When P
approaches a constant value then no
further information is being obtained.

The extended Kalman filter may also
be 1nterpreted as an algorithm for ob-
taining a least square estimate recur-
sively. The estimate is such as to
minimize the following quadratic cost
function

J = 1/2 {(xo ~ 2)TPSY (xg - #0) +

t
(z -H(x, t)>T -1

wTo Ly +

[

(? - H(x,t)dt%

where now Py, R and Q are arbitrary
weighting matrices, which may be se-
lected for good convergence of the
algorithm. Since 1.) numerical methods
for solving ordinary differential equa-
tions are well developed and 2.) R is
usually a diagonal matrix so that R-1 is
easy to obtain, this algorithm is compu-
tationally very efficient.

Cost Function (8§)

Estimation of Unknown Parameters

If we wish to estimate the vector a
of unknown parameters we substitute a for
x in the Kalman filter Eq. 3. For con-
stant parameters we have

a=o Process Equation (7)

so that F(x,t) = w = o. The system equa-
tion is then used as the measurement
equation

Measurement thation

[4 H(Eaa) + V‘

System Equation (8)



t is the vector of measured accelerations,
g is the measured state vector and v can
be interpreted as acceleration measure-
ment noise or as system noise (including
modeling errors). The Kalman filter
equations are then

T
P(iﬁ> RY [ - Hg,A)]

1

’a
Filter Equation (9)

P

_pf2H\ -1 2H
3a 3a
Covariance Equation (10)

For P + o the measurements lose influence
on the estimate and one obtains

-~

a

o Asymptotic Filter Equation (11)
which agrees with the process equation.
Again P, and R may be selected for good
convergence. A convenient choice for the
initial estimate is 4(o) = o. The ele-
ments of R should be large enough to pre-
vent the elements of P from becoming
negative due to computation errors in the
numerical integration.

Note that &, the state vector, is
also a measured quantity. If measurement
errors are present then this estimation
algorithm is biased by an amount approxi-
mately proportional to the noise to sig-
nal ratio in the state variable measure-
ments, see Reference 5. It is therefore
advantageous to reduce the noise ratio
before using the estimator. Methods for
doing this are discussed in a later sec-
tion on filtering of the response data.

In practice, one can almost always
choose the parameters to be identified in
such a way that H(f,a) is a linear func-
tion of a. The estimator (8), (10) is
then linear and problems of nonuniqueness
and filter divergence are easily avoided.
For this case, we call the algorithm the
linear sequential estimator.

The extended Kalman filter assumes
that the noise processes w and v are
white and Gaussian. This will never be
the case in practice especially if w must
account for the effects of modeling er-
rors. Because the extended Kalman fil-
ter may also be interpreted as yielding a
least squares estimate for a given sample
of the state & and acceleration ¢, we can
regard the resulting estimate as a sample
from a random variable. Determination of
this random variable would necessitate a
complete simulation, i.e., mean and
variance determined by averaging over
many runs. Since this approach is
expensive of computing time, efforts here
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have been directed toward recovering para-
meters from a single run of computer gen-
erated response data.

- The above approach to parameter es-
timation allows the use of high order of
accuracy numerical integration (i.e., pre-
dictor corrector) schemes to solve the
system of ordinary differential equations
provided that the response data are suf-
ficiently smooth. The parameter estima-
tion is rapid and requires little com-
puter time. R and P, can be freely se=~
lected to obtain good convergence. The
reason for this benign behavior of the
estimation method is the linearity of the
filter equations in the unknowns. If the
accelerations of the system are not

“measured, one must estimate state vari-

ables and parameters simultaneously from
a nonlinear filter equation. This non-
linear estimation requires an order of
magnitude more computer effort and it is
very sensitive to the initializations and
to the correct assumptions of process
noise and measurement noise. As
mentioned before, we began by applying
the nonlinear estimator to the identi=-
fication of parameters in Mathieu's
equation for a periodic system. The re-
sults were unsatisfactory since filter
divergence occured for many choices of
Po and R. However, for the linear
sequential estimator divergence could be
avoided by following simple rules in
selecting %(o), P, and R.

Identifiability of System Parameters

It is obvious from the filter
equation (9) that 4 will asymptotically
approach a constant value provided that
P » o. The covariance eguation (10) can
be solved explicitly (see Appendix A) to
yield

t -1

T
P = p, "1+ ./ (ﬁﬂ) R A ae
o

= Y 3a (12)

If the integral is replaced by a sum, this
is the error equation for the standard
least square method. If Py # o, then

P(t) + o whenever the integrand in the
above equation is positive definite for

all t. This is then a sufficient condi-
tion for identifiability. Note that
9H

?a is a function of the system response
and hence also of the excitation, so that
the identifiability depends not only upon
the system but also upon the type of ex-
citation. From the measurement equation
(8) we see that the matrix 3H is a

Ja

measure of the sensitivity of acceleration



measurements to changes in the parameters.
For estimating parameters, a well designed
" excitation is obviously one which causes
the elements of the P matrix to decrease
rapidly. If any elements of P are de-
creasing slowly or not at all, then a dif-
ferent type of excitation is needed. A
look at which elements of P are causing
the trouble will give a clue as to which
modes of the system are not being properly
excited.

Filtering the Response Data

In practice, we usually have some
knowledge of the character of the re-
sponse data. Tor example, because of the
damping present in physical systems, the
true response will not contain much
energy at high frequencies. We also know
that the &dcceleration is the derivative
of the veloecity which is in turn the de-
rivative of the displacement, etc. so that
these responses are not independent.

To remove high frequency noise with-
out effecting the signal a zero phase
shift low band pass digital filter was
used. This filter completely removes all
of the signal and noise above a certain
termination frequency w¢ without phase or
amplitude distortion below a cutoff fre-
quency we. The digital filter used, due
to Graham, Reference 10, generates the
smoothed data as a numerical convolution
of the raw data and a set of numerical
smoothing weights, i.e.,

N .
}E: w(IA)E(tg +
§=N

F(ty + iat) =

(13)
(i + jlat)
where f(t, + (i + j)at) are the sampled
values of the signal, f(ty + iAt) are the

smoothed sampled values and where the
smoothing weights are given by

sin wyjat + sin wgjat

w(jat) = 5o 5
2IMT 12 (egmug)?3at
j o= =Nyeoos+ N
j#o
clug + wg)
w(o) = -———7“_——— Wen < 04

(14)
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where the constant ¢ is chosen to satisfy
the constraint
+N

Z w(jat) = 1

j=N

(15)

The continuous weighting function
w(t), of which w(jat) is a discretization,
has the Fourier transform, i.e., fre-
quency domain representation, shown in
Figure 1. Convolution of this function
with an arbitrary signal will obviously
result in a smoothed signal which has all
frequencies above w¢ completely sup-
pressed and all signal components below
we undistorted. If w, and w¢ are pro-
perly selected then response data with
low frequency signal and high frequency
noise can be improved via digital fil-
tering, that is, signal to noise ratio
can be significantly increased.

In using the digital filter, it is
tempting to achieve a "sharp" filter by
taking v, ¥ wg. Graham, Reference 10,
has determined empirically that the
number of points N needed to achieve a
given accuracy is approximately inversely
proportional to |wiy-wg| at least over a
limited frequency range. Since N = 40
points were used to filter the data, we
selected |wi-w, |> 1 which according to
Graham is sufficient to yield 2% accuracy.

In this study, the numerical convo-
lution was accomplished by using a moving
average, i.e., £(ty, + iAt) was computed
separately for each i using Eq. (13). For
long data records it is possible to
achieve considerable savings in computer
time by using the Fast Fourier transform
algorithm to do this convolution, see
Reference 11.

Improvements in the response data
can also be obtained by making use of
relationships among the various response
signals. For the coupled flapping-torsion
system considered in the next section the
displacements &, velocities n and accel-
erations g are related by

E=n
(16)

.

n=r+v

We can use these equations as process
equations in a Kalman filter along with
measurement equations

14 . £ Vi
17)
w n Vo



where £ and W denote smoothed measured
values. In the process equation (16)
replace ¢ by its smoothed measured value
T and let R, the process noise covariance
matrix account for remaining errors.

Then the Kalman Filter is given by

e
=
L
iy

+ pr-l

PR (18)

=3

3
Ca 24
3|

Note that n is available when solving the
above equations and can be used as an
improved estimate of T. Although this
technique has not been used in this
study, a similar procedure has been used
successfully in Reference 6 for heli-
copter derivative identification.

Computer Experiments

Coupled flapping-torsion vibrations
of a rotor blade at high advance ratio
are governed by the equations

. 2
B+ Pg =L Mg, (£)6+ M1 +

Mg (t)og - C(t)e - K(t)gl

§

. 2 3 .
8+ £6 = 58, - 3wF [C_ (t)og +

Cs (£)5]
- 3YQ[zré(t)é + Lpg(t)B + 2, (B2 +

%rg, (t)0o + Kg(t)s]
(20)

where the periodic coefficients are
defined in Reference 7. Responses to the
gust excitations shown in Figure 2 were
generated by solving Eq. (20) numerically
using a fourth order Adams Moulton method
with a time step of .05 and the following
parameter values:

p2 = 1.69 y = 4.0 Q = 15.
£2 = 6y, w=1.6 8, 0. (21)
B = .97 F = .24

Simulated noisy measurements were obtained
by adding samples from zero mean computer
generated Gaussian random sequences to

the computer generated responses. TFirst
the noise was added only to accelerations
using the standard deviations

of = 1.0 o5 = 10 (22)

The following three parameters with the
values
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a= y/2 = 2.0
b = ~3yF = -2.88 (23)
¢ = -3yQ = -180

were assumed to be unknown.

They represent blade flapping and
torsional inertia numbers. Unsteady ;
aerodynamic inflow effects may possibly
be considered by modifications of these.
inertia numbers from transient rotor
model wind tunnel tests. The linear
sequential estimator was started with
the initial values of the estimates and
errors of the estimates ‘

a(o) 40 0 0

bo)| = o P(o) =} 0 55 0

c(o) 0 0 4000
(24)

The linear sequential estimator is, as
mentioned before, quite insensitive to
the initial standard deviations which
could have been selected still much

larger. The values for R used are the
following
10 0
R = (25)
0 10

The method allows wide variations in the
assumptions of the noise covariance
matrix R. The integration scheme for
solving filter and covariance Eqs. (9)
and (10) was again a 4th order Adams
Moulton method with a time step of .05.
Fig. 3, shows the estimates a, b, ¢
normalized with the true values and the
3 diagonal terms of the error covariance
matrix P normalized with the initial
values vs. non-dimensional . time t. The
excitation for this case was a unit step
gust at time t 0, as indicated in Fig.
2 by the dash line. In about one
revolution (t 2n) the diagonal compo-
nents of the covariance matrix Py Pp Pg
are approximately zero and further
improvements of the parameter estimates
a & are not obtained. There is a
small bias error (deviation from the
value 1) in two of the parameters, which
have been recovered within about 5% error.

The next case assumes that not only
the accelerations but also the state
variables are noisy. The following
standard deviations were used



og = .2 S5 = .5
o = .6 g5 = 3.0 (22a)
og = 1.0 ogs = 10

The linear sequential estimator was first
applied to the raw data. 1In this case
the responses are far from smooth so that
the use of a high order numerical inte-
gration scheme was unjustified. A first
order Euler's method was used for the
integration of the estimator equations.
The initial values were

a<o>' 30 0 0

b | =0 Pl =| 0 35 0

el | 0 0 1000
(242

The values for the R used in the
estimator were

16 0
R = (25a)
] 225

The excitation consisted of a upward unit
step gust at t = 2.0 followed by a down
step gust to A ® -1 at t = 6.0, as
indicated in Fig. 2. The second gust

was added in order to provide to the
system another transient useful for the
estimator process. Fig. 4 shows that
though two of the diagonal covariance
terms go to zero after the second gust,
the associated parameter estimates

remain quite erroneous. The linear
sequential estimator cannot be used if
noise is present in accelerations as well
as in the state variables.

Next the same data were passed
through a digital filter with cut-off
frequencies wg = 12, wt = 13, see Fig. 1.
These cut-off frequencies are about 50%
higher than the torsional frequency of
f = 8. Applying now the 1linear
sequential estimator to the filtered data,
the initial values were the same as
before, Eq. (24a), however R was reduced:

1 0
R = (25b)
o 9]

The results of the estimation are shown
in Fig. 5. All diagonal terms of the
covariance matrix go to zero soon after
the second gust, the estimateg stabilize
in less than 2 rotor revolutions and have
only a small bias error of about 5%; same
as for the case with zero noise in the
state variables. Digitally filtering the

data to remove high frequency noise has
thus appreciably extended the range of
applicability of the linear sequential
estimator. It might be argued that the
success of the digital filter is due to
the "white" character of the computer
generated noise whereas real data will
contain energy only at finite frequencies.
It should be noted that the digital
filter removes all of the signal above
the truncation frequency and hence
would be equally successful for any
other distribution of the energy above
Wt

In selecting the parameters for the
digital filter it is important to keep
we large enough so that the responses
are not significantly distorted.
Initially, the noisy data was pro-
cessed using different digital filters
for the torsion and flapping responses.
A digital filter with high cut-off
frequency i.e., we = 12. and wy = 13,
was used for torsion responses while a
lower bandpass filter with w, = 2. and
wy = 3. was used to filter ffapping
résponses. This resulted in poor identi-
fication of the parameter & in the
flapping equation. When the same
filter with high cut-off frequency was
used for all of the data, adequate
identification of all parameters was
obtained. Although wg = 2. is above the
natural frequency of flapping vibration,
the flapping response obviously contains
higher frequency components because of
the coupling with torsion. This can
easily be seen by inspection of the
flapping response.in Figure 6. Tor a
good identification it is necessary that
these higher frequency components not
be removed from the signal. TFig. 6
compares the response without noise to
the response with noise but after
filtering. Also indicated are the
standard deviations for flapping and
torsion before filtering. It is seen
that the filter was very effective in
removing the noise corruption from the
data.

Conclusions

1. The linear sequential estimator, also
called equation of motion estimator,
has been successfully applied to
recover the system parameters of a
periodic system representing rotor
blade flapping-torsion dynamics at
high rotor advance ratio with noise
contaminated accelerations.

Filtering of the noisy acceleration
data was found to be not necessary.

2. 1If noise is present in the state
variables as well as in the acceler-
ations, the linear sequential



estimator performed very poorly.
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P =-PA - DP - PBP + C (A-2)



of which (A-1) is a special case, has the
solution

P = vl (A-3)
where U and V satisfy

V=CU~- DV

. (A-4)

U = AU + BV

This and other aspects of matrix Ricatti
equations are discussed in Reference 12.

By comparing Eqs. (A-1) and (A-2) we
see that Eq. (A-1) is of the form of_ Eq:
(A-2) with A=C=D=0 and B = [3H\T R 3H .

da 3a

Therefore, from Eq. (A-u) V= V,, a con-
stant matrix and

U = BV, (A-5)
Integrating yields
t
U=z Uy + / B dtV, (A-6)
o
Now since from (A-3)
P. = -1
o = VoUo (A-7)

we can satisfy the initial_condition by

taking Vo, = I and Uy = Po~l. Hence
t
U=pt s / B dt (A-8)
o
and
| t T 7l
P = [Po_l + f(.gg) L dt] (a-9)
o

Minimizing the cost function Eq. (6)
with w = 0, X = a and z t, one obtains
the least square estimate

a=[po"L + _[("H) R 2 qeyip,7tay +

ol ) p-1
3a
where the first factor is the covariance P
from Eq. (A-9). Eq. (A-10) is the equiv-
alent of solving Eqs. (9) and (10) and
has been used in Ref. 6 with Po~l = o
after replacing the integrals by sums,

In this case the result is independent of
R which cancels out.

t

/

A (A-10)

zdt]

Even in the general case of finite
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P(o) the error covariance matrix R need
not be considered as a separate input.
If R is a diagonal constant matrix it is
evident that Eqs. (9) and (10) can be
written in the form

a=P"P ( ) [z- H(E,A)] (A-10)
T
. 3H\" 3H _
P, = - ?r(?;) o (A-11)
where P, = P R™L. This was pointed out

to the authors by John A. Molusis.
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DYNAMIC ANATLYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEMS
USING PHASING MATRICES

Richard 1. Bielawa¥

United Aircraft Research Laboratories
FEast Hartford, Comnnecticut

Abstract

A mathematical technique is presented for
improved analysis of & wide class of dynamic and
aeroelastic systems charecterized by several
degrees-of-freedom. The technique enables greater
utilization of the ususl eigensolution obtained
from the system dynamic equations by systematizing
the identification of destabilizing and/or
stiffening forces. Included, as illustrative
examples of the use of the technique, are analyses
of & helicopter rotor blade for bending-torsion
divergence and flutter and for pitch-lag/flap
instebility.

[A], [B], Inertia, demping and stiffness matrices, respec-
fe] tively, Eq. (1)

A‘Vk Pltch-leg coupling for k'th edgewise mode
(=A0/ Aq\l‘k)

A“m Pitch-rlap coupling for m'th flatwise mode
(=40/ Adyy,)

a Section 1ift curve slope, /rad

844s b3y, Elements of the [Ad, {B] end {¢] matrices
ci,j

Cey Viscous equivelent structurel demping of k'th
edgewise mode -
c Blade chord, in.

Ely, EI, Flatwise and edgewise bending stiffness, respec~
tively, lb-in.

Dynemic excitation force vector, Eg. (1)

fn Resultant driving force for n'th degree of freedom,
Eq. (5)

[6{A;)] Dynemic matrix for i'th eigenvalue, Eq. (3)

(53 Torsionel stiffness, 1b-in.?

K, Root feathering spring, in.-1b/red

kA Polar radius of gyrstion of spar ebout its center,
in. ’

Kyigs  Section thickness-wise and chordwise mass radii of

210 gyration, respectively, sbout spar center, in.

n Sectitn mess distribution, Ib-sec®/in.®

m,, Reference mass distribution, (= 0.000776 Ib~sec®/in.%)

¥Senior Research Engineer, Rotazy Wing Technology
Group.
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"Stability" Force Phesing Mstrices for i'th eigen-
velue, Egs. (6) through (8)

"gtiffneas" Force Fhasing Mairices for i'th
eigenvalue, Eqs. (10) through (13)

k'th edgewise modal response verisble

i'th flstwise model response verisble

j'th torsional modal response variable, (j = 1,
for rigid feathering)

Rotor redius, in.

Blade spanwise location, in,

Tension at », 1b

Time, sec

Vector of degrees of freedom

Chordwise positions forward of sper center of mess
center, quarter chord, end three-quarter chord,

in.

Spanwise variable section angle of attack about
which perturbations occur, red

Blade pre-coning angle, rad

Angle defined in Fig. 1 (= arg Ay)
k'th assumed edgewise mode shape
i'th essumed fletwise mode shepe
Jj'th assumed torsion mode shape

Coefficients describing quartic variation of profile
dreg coefficient with angle of attack

Kronecker delta
Nurber defined in Eq. (9)
Geometric {collective) pitch angle at r, rad
Elastic torsion deflection at r, rad
(Uniform) rotor inflow
i'th eigenvalue, /[sec
Alr density, Ib-sec?/int
Blaede solidity
Real part of i'th eigenvalue, /sec
i'th eigenvector of dynemjc matrix equation
Wr rotational speed, rad/sec

Tmaginary part of i'th eigenvaliue, [8ec



*) Differentiation with respect to (QOt)
Differentiation with respect to F

) Indicates quantity is nondimensionalized using
combinations of R, m;, &nd ), as appropriate

£ 3 Diegonal matrix

I. Inti‘od’uction

Dynamic and aeroelastic analyses of aerospace
structures typically involve deriving and solving
sets of linear differential equations of motion
generally written in matrix form:

s + Bz} + e}

In general, the A, B and C matrices are square
and real-valued. A recognized hallmark of rotary
wing and turbomachinery dynamics is an abundance
of nonconservative forces (usually involving rotor
rotation speed). Consequently, the resulting
analyses produce matrix equations of motion of
the above type which are highly nonsymmetrical,
and often of large orders.

e} @

Although a large part of the dymamic analyst's
job involves the calculation of dynamic loads and
stresses due to explicit excitations, the scope
of this paper will be limited to the equally
important eigenproblem (F(t) = 0):

-

[[A])\?.L + [BIng+ [c]]{q,(i)} - [G(xi)]{q,(b} = {o}
(3)
The eigenvalues A (= o *iw), which give stebility
and natural freguency information are cobtained
from the familiar charescteristic determinant:

[(a1® + BIA +[c]] = o ()

by a.n)( c))f various well-established methgds @) s
(2), 3), fThe "flutter" mode shapes, 1), are
obtained from Eq. (3) once the eigenvelues are
known.

- 36

This paper presents an easily implemented
technique for the improved analysis of dynamic
systems of the type described above. The technique
requires a reliasple eigensolution and involves -
manipulations of the given dynamic equations,
their eigenvaelues and eigenvectors. Specifically,
the technique systematizes the identification of
destabilizing and/or stiffening forces by the
calculation of "force phasing matrices™. Applica-
tions of the technique to analyses of bending-
torsion divergence and flutter and of pitch—lag/
flap instability of a helicopter rotor blade are
presented. Furthermore, this paper essentially
repre?ﬁtjts an expansion of a portion of an earlier
paper® /.

i

IT. Mathematical Development

The principal function of the force-phasing
matrix technique is to identify those force terms
in the equations of motion which, for an unstable
mode, are so phased by the mode shape as to be
drivers of the motion. The technique is perhaps
nothing more than a formalization of the intuitive
use an experienced dynamicist would meke of the
eigenvector information. The basis of the tech-
nique can be seen by writing any single equation
of the set represented by Eg. (3) as the sum of
the mass, demper and spring forces of the diagonal
degree~of=freedom and the remaining forces acting
as a combined exciting force.

2. (1) (i) (1)
ann)‘itpn +Db__A +e B

nn i
+ 0 22 ab A, re e < 0
j};;ﬁ nd"i * %3ttt Cny’% (5)
N o
fn

For the usual case anp, by, and cp, are all
posgitive numbers; that is, each mass when un-
coupled from the others is a stable spring-mass-
damper system. Since the root, A;, is generally
complex, Eq. (5) can then be interpretted as the
sum of four complex quantities or vectors in the
complex plane which must, furthermore, be in
equilibrium. Assuming that the root with
positive imaginary part is used throughout, the
argument of the root, Vi, is the angle by which
the inertia force vector is rotated relative to
the damper force vector and the damper force
vector is rotated relative to the spring force
vector. For an unstable root this angle will
be less than 90 degrees. If a purely imaginary
value is assigned to the spring force vector,
unstable motion is assumed and it is recalled
that the four vectors are in equilibrium, then



the real parts of the damper and inertia force
vectors will be negative and the driving force
must always have a positive real part., Figure 1,
which demonstrates this argument, shows the four
, force vectors in the complex plane for an
‘unstable oscillatory mode (Re()\;) = 03>0) and
for unit imaginary displacement:

o

Cnn P8)  (SPRING FORCE) °

-
R Yi
)‘i boa ¢|:(')<~L e — f,
(DAMPER FORCE) \y' (DRIVING FORCE)

¥ =arg(A;) < 90 deg.

)‘2| %an ¢n(i)
(INERTIA FORCE)

Figure 1. Force-Vector Diagram for n'th Degree-
Of-Freedom, 1'th Mode (Oscillatory

Instability)

A secondary function of the technique is to
identify those terms in the equations which, for
any coupled mode, act as stiffness so as to
increase the coupled frequency of the mode.
Reference to Figure 1 shows that driving forces
with positive imaginary parts will tend to rein-
force the diagonal spring term and, hence, raise
the frequency of the coupled mode.

for unstable motion, the diagonal damper force
alsc has a positive imaginary part. Hence, it
tends to stiffen the (unsteble) coupled mode in
contrast to the frequency lowering effect of
damping for stable motion.

Figure 2 shows the same forces as vectors
for an unstable aperiodic mode (divergence) for
negative unit real displacement:

An interesting
observation that can be made from Figure 1 is that,

DRIVING FORCE

B .
o

—
SPRING, DAMPER AND
INERTIA FORCES

Figure 2. TForce-Vector Diagram for n'th Degree-of-
Freedom, Divergence Instability.

Again, the driving force is always a positive
real number. Furthermore, for divergences, stif-
fening forces are by definition stabilizing; hence,
those components of the driving force which are
negative are also those that stiffen the coupled
mode.

These interpretations of unsteble motion can
be quantitatively implemented first,by multiplying
each of the dynamic equations (i.e., each row of
the equation (1)) by a quantity which makes the
diagonal stiffness force (stiffness matrix element
x displacement) become pure imaginary and second,
by representing the modal vector as a diagonal
(square) matrix. This latber operation has the
effect of evaluating the magnitudes of the com-
ponent dynamic equation forces without numerically
adding them together. The resulting "stability™
force phasing matrices are then readily written as:

(py,] = Gel /¢ DDEMIL ¢ 1] (6)
[r, ] = Geln/¢ D INIIE ¢ D) )
(e, 1 = @eln/¢ Il ¢ 13 (8)
i
where
‘ i , for oseillatory instebilities
Te - (9)

l..l. , for divergences

and vhere the eigenvalue in the upper half plane
1s used.
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In all cases, the real parts of the sbove
indicated matrix expressions give instability
driving force information. Forces defined by
elements of the A, B and C dynemic equation
matrices which are phased by the mode shape so
as to be drivers of the motion then cause the
corresponding elements of the Pa;, Pg; and Py
"stability" force phasing matrices, respectively,
to be positive and proportional to their strength
a8 drivers.

Stiffening driving force information is
obtained differently for oscillatory motion and
for aperiodic motion. Those elements of the
dynamic equation matrices which are phased so as
to be stiffeners of the coupled mode will cause
the corresponding elements of the metrix expres-
gions to be either positive imeginary for oscil-
latory motion, or negative real for aperiodic
motion. The resulting "stiffness" force phasing
matrices are then expressed as:

[Bag] = af M0l o) (0
[85,] = dul (L) [BIE o(1)] (11)
[Be,] = dnf 1/ relr o3 (12)

for oscillatory motion, and:

[f’( )i] = [P )i] (13)

for aperiodic motion.

It should be stressed that these force
phasing matrices are no more than a more system-
atic and efficient interpretation of the all too
often voluminous eigensolution information. The
following sections illustrate the usage of the
force phasing matrix techmique in substantiating

what is generally known of some rather fundamental,

classical helicopter rotor blade instabilities.

IITI. Description of Illustrative
Rotor Blade Example

For illustrative purposes, relatively simple
linear equations of motion were formuleted for a
generalized untwisted helicopter rotor blade and
then applied to a realistic nonarticulated rotor
configuration. The blade is assumed to be oper-
ating in an unstalled hover condition at some
collective angle and with a built-in coning angle.

Perturbative elastic flatwise, edgewise and torsion

motions are assumed to occur about the preconed
position. The resulting linea%- %erczg%astic
equations are fairly standard 5)s 3 Qquasi-
static serodynemics (uniform inflow) is assumed
and & normal mode description of the blade
elasticity is employed. Thus, for the chosen
configuration, two flatwise bending modes, one
edgewise bending mode, and the rigid feathering
degree~of-freedom are assumed. The resulting
response vector, {x} » consists of the quantities
dwl, Qwp, Qvy, and dg, whose detailed dynamic
equations are given in the Appendix. The dynamic
equations then comprise & set of four differential
equations written as a 4 x 4 matrix equation of
the Eq. (1) type. The aeroelastic degrees-of-
freedom together with the general parameters are
shown in Figure U:

TOTAL

. / PITCH

B
PRE—-CONING \[\

Schematic of Nonarticulated Rotor -
~ Configuration and Aeroelastic Degrees-
of-Freedom.,

Figure 4.

The basic configuration incorporates &
counterweight over the outer 7O percent of the
blade, pitch-flap coupling (determined from the
geometry of the pushrod attaclment and flatwise
modal deflection) and pitch-lag coupling of
arbitrary magnitude. The chordwise position of
the counterweight and the magnitude of pitch-lag
coupling are purposely varied in the following
analysis to establish known blade instebilities
in order to illustrate the phasing matrix
analysis technique. Teble I-below summarizes
the pertinent geometric and aeroelastic data
for the rotor blade configuration:



TABLE I - BIADE CHARACTERISTICS

Redius
“ Ghord (0.1R %o tip)
Tp Speed
Pitch.Flap coupling, Awm{ E - %
R?Jof feathering spring rate
Blade coning
Airfoil: (NACA 0012; Mach No. = 0):
a
, 5
3y

(Uniform) mess distribution

210 in.
13.5 in.

650 fps

0.
0.188

3.55 x 10° in.-1b/red

2 deg.

6.0/red
0.01

3.30/rad*

0.000776 lb-gec?/in.2

(Uncoupled) blade natural frequencies:

 first flatwise mode
second flatwise mode
firast edgewise mode

rigid feathering

1.092/rev
2.681/rev
1.390/rev

3.820/rev

(edgewise mode structural damping) 0.01

(critical demping)
Flight condition (hovering)
collective angle, @

inflow retio, A

see level, standard

10 deg.

-.0601

The normel flatwise and edgewlse mode shepes

used are shown in Figure 5.

10.

Y4y ‘

-0.5

Figure 5. Spanwlse Variastion
Shepes,

of Normael Mode
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IV. Application of Analysis to
- IIlugtrative Example.

Basic Configuration

Por purposes of comperison, the data in
Teble I was used together with a collective angle
of 10 deg, inflow ratio of ~0.0601, and with zero
counterweight chordwise offset (from the quarter
chord), and zero pitich-leg coupling. This basic

- case is stable in all modes as is shown by the

following list of resulting eigenvalues:

-0.504 £ 10.960

Moo=

Az = -0.411 + i2.610
A5 g = -0.027  11.398
A7.8 = -1.472 £ 13.506

While all the sercelastic modes represented by
the various eigenvalues comprise responses in all
the four degrees of freedom, they could be
characterized as follows: mode 1 (Al’g) is first
flatwige bending, mode 2 ( A3,u) is second
flatwise bending, mode 3 ( A5,6) is first edgewise
bending, and mode k4 ()‘7,8) is rigid feathering.

Configuration With Rearward Chordwise
Counterweight

If the 70 percent outer span counterweight is
artificially shifted aft so as to place the chord-
wise section mass center at the 32 percent chord
point, reference to the dynmamic equetions (B-1,
A-2 &apd A-3) then yields the following A, B. and
C matrices (given in E format):

A (Inertia) Metrix:
+2909=00 =,0000 -, 0000 ., 1884202

‘=, 0000 .aoga-oo ~.ggog o .:gggbos
»e0000 =, 0000 #2=00 =,0000
e 188402 ,3682+03 =,0000 113303

B (Damping) Metrix:

12887m00 ,7757=01 «,4500~02 =,1256~01
17992#01 1665200 = 816602 =,3309~03
e3099=04 ,1943«0% ,7901-02 -.agao-oa
215386=07 ,6326-0U ~,1058«08 ,3370-03

¢ (Stiffness) Matrix:

+ 338200 »,5763=01 LUB633=01 =,306700
v, B232w03 1422401 ,7484~0R »,7080w01
T4633e01 =,2976m02 498800 =44396=01
’.2300.02 ’.5“23.02 '.2919-03 .‘,6“6.02

The first two rows of the matrix equetion
are the equations for the first and second

flatwise bending modes, respectively. The third



row is the equation for the first edgewise mode,
while the fourth is for rigid feathering.
Correspondingly, elements in the first two columns
of the matrices are terms mulbiplying the flatwise
bending responses and their derivatives. Simi-
larly, third and fourth column elements are terms
multiplying edgewise bending and rigid feathering,
respectively, and their derivatives.

The eigensolution for these matrices (see
Eq. (4)) reveals the configuration to be unstable
in both divergence and flutters

Ay o= 0.ho8, -Llhé&s
Az b= 0.300 = 11.789
A5 6 = =0.0088 + il.ho2
"7,8 ~0.578 £ i3.099

Since the eguations are in nondimensional form,
the units of these eigenvalues are per rotor
revolution frequency or "p". Using Egs. (6)
through (9) the following "stability" force
phasing matrices are written for the unsteble
divergence mode:

A Phasing Matrix, Pajy

-, 4840=01 =-,0000 =-,0000 25061=03
-'0000 -03338-01 -00000 ‘01726-02
~-.0000 -,0000 -, 4229=01 =,0000
21941=03 ~,1944=05 «,0000 ~41885=04
B Phasing Matrix, Pgq
=e1178400 =,1715=-02 ,L4u4Q8-04 ,8272=-02
=s65016=00 =,6791=01 ,1476=02 L4022=02
=, 5265=00 =,1789=01 =,3223=02 ,5540=-01
=,3881=08 =,8660~06 ,6418=06 =-,1375=03
C Phasing Matrix, Pcl
~43382=00 +3123=02 ~,1113~02 L4953=00
¢1519=01 =,1422+01 =,3316~-02 ’5110+0L
=:,1929401 e57310=02 ~,4988-00 v29§5¥al
«lU24=02 L1820=03 ,L4341=05 =,1646«02

The larger of the destabilizing driving
forces, which show up as positive terms, have been
underlined for clarity. A reasonsble yard-stick
for measuring the size of the destabilizing forces
is to compare them to the size of the stabilizing
element in each matrix equation row. For
oscillatory instebilities that element would be
the diagonal damping force; for divergences, it
would be the diagonal stiffness force. As would
be expected of a divergence instability, the
major destabilizing forces are displacement de-
pendent (i.e., appear in the C matrix). By making
additional reference to Egs. (A-1) and (A-2), and

(A-3) and to their evaluation given sbove, the
following interpretation can be drawn from these
results:

1. The unstable mechanism involves a
coupling mainly between first flatwise bendlrig
and rigid feathering. The mode shape, ¢
(0.619, 0.0336, 0.0149, and 1.0), confirms thls
result.

2. The position of the chordwise mass
center behind the elastic axis, as indicated by
negative dynamic equation elements al,u and ch,l
and reference to the explicit statements of the.
equations in the Appendix, is a major link in
the unstable coupling chain of events. This
result confirms well-known results concerning the
divergence of rotor blades > ; specifically,
that the torsion modes drive the flatwise modes
aerodynamically (elements cl ), and Cy ) while the
flatwise modes drive the torsion moded w:.th
centrifugal inertial forces through the rearward
mass center position (elements cl,1 and ch’2).

3. The first edgewise bending mode is being
driven by the rigid feathering through aerodynamic
and inertia terms (element b3,)+) but is not
actively participating in the unstable mechanism.

In a similar menner the following force
phasing matrices are written for the unstable
oscillatory (flutter) mode, Ag:

A Phasing Matrix, PAS

=-,1904~01
’01101'01
'00000

-41217-03

-, 3125=00
=,0000
-, 0000
_el421-02

-,0000
-.0000
-, 2731=00
-.0000

-+0000
-e2155~00
'00000
- 1114%=04

Phasing Matrix, PB3

=+5163=00 +7587-02
1 6947=00 =,2978~00
~,1493-00 +,1659=02
¢5201=08 =,5155=05

«2749=02
e 1861-01
“a 1'413-01
-.6870=05

=.1968=01

128201
-, 4186=05
=+5027~03

Phasing Matrix, P03

-:1260=08 +6779=-02 =,4386=02
~.43997=-02 ~,1325=-08 ,1751-01
«3814«01 ,1173-02 -,0000
~s6696=03 L2794~-04 =,3155-04

«B8548=00
-,1802=-00

+3956=00
-,0000

Again the major destabilizing terms have
been underlined for clarity. With few exceptions
the same interpretations can be made of the
flutter force phasing matrices as were made for
the divergence ones. While the feathering
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degree~of-freedom again drives the first flatwise
mode aerodynamically (element e, })> the flatwise
mode now drives the feathering degree-of—freedom
with vibratory inertia forces (element ay, 1)
Again these results confirm well-known flndq.ngs.

Configuration With Pitch-Iag Coupling

1

i ‘Using the reconfirmed knowledge thet an aft
chordwise center of mass is destabilizing, the
configuration is altered back to the original
quarter chord balanced configuration. In
addition, unit pitch-lag coupling (A.V =1.) is
introduced into the configuration. The resulting
dynamic equations are as follows:

A (Inertia) Matrix

,2909-00 =-,0000  =,0000  =,0000
-, 0000 +2006=00 =,0000  =,0000
-.0000  =,0000 254200 =,0000
-,0000  =,0000  =,0000 113303

B (Damping) Matrix

+28B7=00 ,7757=01 ~,1622=01 =,1256=01
0 7992=01 1665=00 =,8596«02 =,3309=03
«3015~01 ,1953=-01 ,1003=-01 =~,2169=02
e 1536-07 ,56326-04 ,L3801-03 ,3370-03
C (Stiffness)Matrix
«3382=00 =,5763=01 ~,2563=00 -,3049=00
-, 8232«03 ,L,1422401 =,5358=01 =~,7113=01
JHBIBZ~01 =, 2974=02 ,LU4U4U31=00 =-,4337=-01
-, 0000 -, 0000 -,0000 «16U6=D2

The eigenvalues for this configuration reveal the
configuration to be unsteble in the edgewise
bending mode:

A1,2 = =0.573 £ 10.977
3,4 = =0.408 + 12.609
A5 6 = 0.0119 + i1.32h
7.8 = ~L.hh9 + 13,505

Again, the stability force-phasing matrices
are formed for the unstable mode ( Ag) and the
larger positive terms are underlined; )

4 Phasing Metrix, 3@5

=e3137-02 =,0000 ~-.0000 -+ 0000
~+0000 =s6302=-02 ~,0000 -,0000
=, 0000 =, 0000 -y 7985=02 -,0000
=,0000 -.0000 -,0000 -+ 3558=05

B Phaging Matrix, PB5

~o3822~00 ,5003-~02
«21144+01 -,2204=00
2 1546=01 =~,3974~03
'13235-ﬁ7 «6967=05

=s242U=01
«2079~00
-,1327=01
HH27=03

28736=02
'ou936-02
-¢2946~03
- 44561=03

C Phasing Matrix, PC5

«3315~00 L7077=01
-,1886401 =-,2069=00
-,0000 -+1373-01
=-,0000 -, 0000

¢ 1260~08 =,4643=03

»2728=02 ,5299-08

«2015=01 ,L,7210=04
'00000 -.0000

By referring to the explicit dynamic
equations given in the Appendix, the following
observations can be made:

1. The instability appears very similar to
classic pitch-lag instebility and is mainly a
three~way coupling between first flatwise and
edgewise bending modes and the rigid feathering
degree~of-freedom. The resulting coupled mode,

#(3) = (-0.383 - 10.435, 0.015 + 10.02k, 1.,
~0.,100 =~ 1.0317).

2. The edgewise bending mode is being driven
by inertia forces generated by flatwise bending
mobion: coriolis forces proportional to precone
and flatwise bending rate and forces proportional
to pitch angle and flatwise bending deflection.

3. The flatwise bending mode is being
driven by aerodynamic forces generated chiefly
by pitch-lag coupled edgewise bending and to a
lesser extent rigid feathering deflection.

k. 'The rigid feathering degree-of-freedom is
being driven principally by a centrifugal force
moment involving chordwise mass radii of inertia,
pitch angle, and edgewise bending rate.

The stiffness force~phasing matrices for this
mode are formed and the significant terms for the
edgewise bending equation are underlined:

A Phasing Matrix, %AS

-,5097=00 ,0000 L0000 .0000
,0000 = 351600 ,0000 .0000
.0000 .0000 -, 4455=00 ,0000
,0000 .0000 T.0000  =,1985=n3
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A
B Phasing Matrix, PB3

3425«02 ,7827-03 ,2799=~01 ,3780-n02
=43696=00 ,1975=02 =,3394=00 =,1230~02
21722-01 =,6235=03 ,1190=03 =,9064=~n3
L 1969=07 -,1870=05 =,1450=02 ,3998=95
C Phasing Matrix, f’c?’
/338200 .280%=02 ,2923=00 =,1596=00
$1647=01 ,1422+01 -,1179+01 ,7995-10
=o1777=01 =,U505=04 ,Lu431=00 ,4327-12
) +0000 ,0000 +1646=02

It can be seen that the principal stiffening
terms are, not unexpectedly, the diagonal mass and
stiffness terms. The only other significant
stiffening terms are those involving flatwise
bending rate and deflection which are also the
drivers of the unstable edgewise motion.

That the flatwise bending deflection term is
negative and numerically greater than the rate
dependent term can be appreciated by noting that
the unstable coupled edgewise mode frequency,
1.324, is lower then the original corresponding
steble mode frequency, 1.398.

V. Concluding Remarks

The "force-phasing' matrices technique
provides yet another tool for understending
dynemic/eerodynamic phenomena. While it does
not, by itself, indicate stebility levels such
as are provided by the eigensolution, it does
complement the eigensolution by giving insight
into the details of the dynemic configuration
which are not directly aveileble from the
eigenvalues and eigenvectors alone, Moreover,
the technique requires, in particulsr, eigenvector
informetion es a sterting point. Hence, it is
inherently incepeble of answering the more
fundamentel question of why, for sny one mode,
the eigenvector elements are indeed phased as
they are. It should also be stressed that the
technigue is & tool to be used with, and in
support of, engineer/snelyst judgement; the
results heve to be interpreted properly, generally
in the context of the specific application.
Finelly, the relative simplicity of the formule=-
tion makes the incorporation of the technique in
any serocelagtic eigensolution progrem & straight-
forward and easily implemented tesk.
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Appendix - Deteils of Dynamic Equations

The linear dynemic equations used to )
represent the aeroelastics of the rotor blade in
hover are formulated using an assumed modal
approach; +the derivation is standard and uses
the nomenclature of Reference 6. The lineariza-
tion and subsequent simplifications are based
upon the following assumptions:

1. quasi-static, incompressible, nonsta,ued
airloads, i

2. coincident spar center, shear center
and tension center.

3. zero twist.

L, . two flatwise bending modes, one edgewise
bending mode and the rigid feathering
degree~of-freedom.

5. normal uncoupled bending mode shapes

(zero twist and pitch angle).

The flatwise bending equations are then written
as:

1

- #% — "
(e}
2y (BYqy ilocgsinev¢k)] Evk

-(2m Fg,locose YGJY“"i) ?;’.ed (A-1)

+ Ty y! -
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+[EIwa Y‘W‘ Wy Wy 5in®0 Y Y ] q‘W

i
+(1?f~(wivvksin9 cosb) Uy, + [ﬁywi(ir'locgcosze

pacR

-78 sine)vej] qgj+ -
Q

=2
Yy [F (Yejqej
. - * -
+ By * i) + F(Vup oy + V103c/u<Yejafad

* Ay, i) - womda) 1} & = 0



The edgewise equations are written as:

1
fioa s,
-[2 ﬁYm(BYm + F100g5106 Vi)l am
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pacR =2 S
* o Yo [P (2 0= b 5 Qg)(“{ej%j’* Aoy Gop
[ [}
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=20 8y -
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The torsion equations are written as:
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where:
o, = 0+ AT (A-l)
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SOME APPROXIMATIONS TO THE FLAPPING STABILITY OF HELICOPTER ROTORS

James C. Biggers
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Moffett Field, California 94035

Abstract

The flapping equation for a helicopter in for-
ward flight has coefficients which are periodic in
time, and this effect complicates the calculation
of stability. This paper presents a constant
coefficient approximation which will allow the use
of all the well known methods for analyzing constant
coefficient equations. The flapping equation is
first transformed into the nonrotating coordinate
frame, where some of the periodic coefficients are
transformed into constant terms. The constant
coefficient approximation is then made by using
time averaged coefficients in the nonrotating frame.
Stability calculations based on the approximation
are compared to results from a theory which cor-
rectly includes all of the periodicity. The com-
parison indicates that the approximation is reason-
ably accurate at advance ratios up to 0.5.

Notation

blade lift curve slope

tip loss factor

blade chord

blade flapping inertia

/T

flapping spring stiffness

number of blades

rotor radius

time, sec

forward velocity

angle of attack of hub plane

flapping of ith blade relative to hub plane

vector of rotor degrees of freedom in non-
rotating coordinates

rotor coning angle

rotor tilt forward (longitudinal flapping)

rotor tilt to left (lateral flapping)

rotor differential flapging

blade lock number, pacR*/I-

eigenvalue or root, nondimensionalized by @,
)
9

rotor advance ratio, V (cos a)/fR

flapping natural frequency of rotating blade

real part of eigenvalue

air density

azimuth angle, Ot

rotor rotational speed

imaginary part of eigenvalue

flapping natural frequency of stationary
blade, Vk /1

derivative, g( )/dv

derivative, d?( )/dy?
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For helicopter stability and control studies,
it is desirable to use as simple a math model as
possible while retaining reasonable accuracy, both
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to reduce computation effort and to gain insight
into system behavior. However, for a helicopter in
forward flight, the rotor flapping motion is
described by a differential equation having coeffi-
cients which are periodic in time (azimuth). This
fact complicates the solution of the equation,
requiring methods which use considerable numerical
computation and which give little insight. Thus it
is desirable to find a differential equation with
constant coefficients (hence an approximation)
which adequately represents the forward flight
flapping dynamics of a helicopter rotor. If such
an equation is found, all of the well known tech-
niques for analyzing constant coefficient equations
may be used.

The flapping equation may be transformed into
the nonrotating coordinate frame, as done in
References 1 and 2, where some of the periodicity
is transformed into constant terms. This result
suggests that the use of constant coefficients in
the nonrotating frame will retain some of the
periodic system behavior. The constant coefficient
approximation examined herein is made by using time
averaged coefficients in the nonrotating frame. A
comparison is made between the eigenvalues (sta-
bility) obtained from the approximation and the
results from a theory which correctly includes all
of the periodicity. The comparison indicates that
the approximation is a useful representation of
helicopter flapping dynamics for both hingeless and
articulated rotors. This approximation was briefly
discussed in Reference 1 for one set of rotor
parameters. The present paper discusses the
approximation in a more general manner and gives
more insight into its features, limits, and
applicability.

The rotor math model used here is for fixed
shaft operation and includes only first mode
(rigid blade) flapping, with spring-restrained
flapping hinges at the hub center. Flapping
natural frequency may be matched by selecting the
spring rate, Thus the only approximations are in
the use of the aerodynamic terms for rigid blade
motion. Uniform inflow is used, and for the
advance ratios considered here (u < 0.5), reverse
flow effects are not included.

Equations of Motion

In this section, the single blade homogeneous
flapping equation is presented for a rigid, spring-
restrained, centrally hinged blade. This equation
is then transformed to a nonrotating coordinate
frame, using a coordinate transformation which is
briefly discussed. Insight into the fundamental
behavior of the rotor is gained by examining the
hovering (u = 0) eigenvalues of the equation in
nonrotating coordinates. i



For the single blade, the homogeneous
of motion is

equation
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Note that reverse flow has not been included here.
Although it could be included, it would not signifi-
cantly affect the results for u < 0.5, since the
additional terms are fourth order in .

By a coordinate transformation of the Fourier
type, the single blade equation may be written in
terms of nonrotating coordinates. The transforma-
tion accounts for the motion of all blades, and the
number of degrees. of freedom is equal to the number
of blades, For example, with a three-bladed rotor,
the degrees of freedom are coning (all blades flap-
ping together), rotor pitching (cosine ¢ flap-
ping), and rotor rolling (sine ¢ flapping).
Adding a fourth blade adds a differential flapping
degree of freedom, where blades 1 and 3 flap in one
direction while blades 2 and 4 flap in the other
direction. This type of differential motion is a
degree of freedom with rotors having any even num-
ber of blades. Adding more blades adds degrees of
freedom which, in the nonrotating frame, warp the
plane described by the sine ¢ and cosine ¢
flapping motion,

The coordinate for the single blade is
For a three-bladed rotor, the corresponding
nonrotating coordinates are

Bi!

where Bg, B ¢’ and B,; are rotor coning, pitch-
ing, and rolilng motions. For a four-bladed rotor,
vBO
~ | Bie
B =
Bls
B2.

where 8, is the differential flapping motion
discussed above.

In general, the blade degrees of freedom in
the transformation are
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Then the motion of the ith blade is
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The equations of motion (that is, eq. (1)) must
also be converted from a rotating to a nonrotating
frame by a similar procedure. This process is ,
accomplished by operating on the equations with the
summation operators

%2(...), %Z(...)cos ny;
i , i

23 Isinny, %E(...)(q)i
1 T

This is virtually the same procedure used in
Reference 1.

It may be seen that the transformation
involves multiplication by sin ¢, cos ¥, sin 2¢,
cos 2y, etc. This changes some of the periodic
terms of the equations in the rotating reference
frame into constants (plus higher harmonics) due to
products of periodic terms, and vice versa.

Performing the indicated operations for N = 3
yields the following equations for a three-bladed
rotor.

X g3

4
B 0 13

ooj<

2-u 2 87 cos 3y |B

Y gvey L pisi
88 U 125 sin 3y iz
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1T Fx

w2 u? g 8% sin 3% -u2 & B2 cos 3¢

+

wEBleut L 2singy Vel e LB cos 3y %(B'N%HZBZ)W%B’SMM 8=0

-uz%ﬂz cos 3¢ -%(B“-%uzlﬂ)*u%ﬂ’sinw v’-l-u-‘;-liacos:’aw

(2)

Similarly, operating as above with N = 4, the
equations of a four-bladed rotor are obtained.
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The three- and four-bladed rotors have similar
behavior except for the terms which are periodic in
Y. The periodic terms are 3/rev for the three-
bladed rotor, but are 2 and 4/rev for the four-
bladed rotor.

The main advantage of the transformed equations
is that it is easier to express the combined rotor
and airframe motions because the rotor equations
are now in a nonrotating reference frame and
include the motions of all blades.” Furthermore,
rotor motions are more intuitively understood,
since the degrees of freedom are those seen by an
observer in or beside the helicopter.

In the nonrotating coordinates of equa-
tions (2) and (3), the equations are coupled by
off-diagonal terms. Note however, these are actu-
ally independent blades (unless some sort of feed-
back is added) and the coupling is due to the
coordinate transformation.

To gain understanding of these degrees of
freedom, the hovering (u = 0) behavior is examined
next. The hover equations for four blades are

~given below,

%—B‘* 0 0 0
5o
" o LB¥ 2 0 =
B+ B
- Y gt
0 2 ¥ 0
X g4
_o 0 0 sB_
[ v2 0 0 0]
0 v2-1 JXpg* 0
* 8 P=0 @
0 --}s“ v2.1 0
0 0 0 v

For three blades, the hovering equations are iden-
tical, except that the B, equation is then absent.
The B8, and B, equations at hover are completely
uncoup?ed and are both identical to that of the
single blade in rotating coordinates.

§i+%8ﬁéi+v23i=o (1), for u = 0
3 . X pth 2, -
Bo + 8 B Bo v Bo 0

from equation (4)
v Y bl 20 -
62+8B82+v82 0

Eigenvalues of these equations are easily calcu-

lated, and are shown on figure 1. These will be
b
'a
y L2
4
EB
]
4
v o
1 L 1 1 ﬁ
T 1 1 T
-2 K | 2
4~
S———
E+%B4é+ﬂp=o
Figure 1. Hover eigenvalies of coning and reaction-

less modes (v = 1.2, v = 8).

called coning and reactionless modes. The reaction-
less mode is so named because at hover it produces
no net reaction at the hub. The equations for
rotor pitching and rolling are,

*e 'Y *
Bie ¥BY 2| R
+*
B1s -2 3 B Bls
v2-1  IB% /s
+ = 0
-Lph 2.
8B vé-1 Bls

and the characteristic equation is then,

Ao LB+ v2o1)2s (22 LBY)2 =0
5 §)

The eigenvalues for this equation are shown in
figure 2, By analogy to a gyro, these modes will
be called precession (the lower frequency mode) and
nutation (the higher frequency mode). The damping,
-v/16, is the same as for the single blade of equa~
tion (1) and for the B, and B, modes discussed
above. However, the coordinate transformation has
resulted in the precession mode frequency being £
lower than the single blade mode frequency in the
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tion modes (v = 1.2, vy = 8).

rotating frame. Similarly, the nutation mode fre-
quency is 2 higher than that of the single blade in
the rotating frame.

The coning mode (fig. 1) will excite vertical
motions of the vehicle, while the precession mode
will excite pitch and roll motions. Thus vehicle
responses are more intuitively understood by use
of the nonrotating coordinates. Also, these equa-
tions may be used to study feedback control systems
such as rotor tilting or rotor coning feedback,
which were discussed in Reference 1. Note (from
eqs. (1) and (2)) that the performance of such sys-
tems will depend -on the number of blades used,
since the blade motions become coupled by the feed-
back terms and the coupling will vary with the
number of blades. . .

To compare the various modes with each other
and with other theories, it is necessary to trans-
form all eigenvalues into the same reference frame.
The obvious choice is the rotating coordinates of
equation’ (1), since most other theories are appli-
cable to this frame. As may be seen by comparing
figures 1 and 2, the precession and nutation modes
may be transformed back into the rotating frame by
adding and subtracting 2 respectively. This
process results in four identical eigenvalues, as
expected, since the rotor is composed of four iden-
tical blades, each described in the rotating frame
by equation (1). As noted above, the frequencies
of the 60 and 8, modes do not change

'The equations for u = 0 have been easily
solved and the nonrotating coordinate system has
been presented and discussed. In nonhovering
flight, however, the equations have periodic
coefficients, which makes the equations more diffi-
cult to solve, as well as giving the solutions some
special characteristics. These will be discussed
in the next section. )

Hover eigenvalues of precession and nuta-
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Periodic Coefficient Solutions

Floquet Theory

Eigenvalues of equations such as (1) may be
found with Floquet theory, as for example in
References 3 and 4, The equation is integrated for
one period (¢ = 0,..., 2m) for each independent
initial condition to obtain the state transition
matrix, The frequency and damping of the system
modes are then obtained by taking the logarithms of
the state transition matrix eigenvalues,

This technique has been applied here to three
cases, and the results are shown on figure 3 for

jw
}ig
T1.5
qa_— Lo
it r |
/////;63~— 4. v, y:6.0
///// b. ¥=1.0,y:6.0
Tec c. ¥=1.0, y=12.0
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b
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/..L
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Figure 3. Floquet theory root loci for varying n;
single blade in rotating coordinates.

varying u. Note that as u is increased, the
frequency (w/Q) decreases, while the damping (o/Q)
remains constant at -y/16 until the frequency
reaches an integer multiple of 1/2 /rev. As u
increased further, the frequency remains constant
while the damping both decreases (the upper roots)
and increases (the lower roots) as shown for cases
a and c. This behavior may be surprising to those
accustomed to constant coefficient equations, but
is typical of periodic systems. The nonsymmetry
about the real axis is analogous to the behavior of
a constant coefficient equation root locus when the
locus meets the real axis. At that point, the
roots separate (no longer complex conjugates), one
becoming less stable and the other becoming more
stable. With periodic coefficient equations, the
separation can occur at any multiple of 1/2 the
frequency of the periodicity. Actually, the con-
stant coefficient equation is a special case of the
periodic one, where the frequency in the coeffi-
cients is zero. This behavior may be seen in more
detail by plotting the eigenvalues versus u, as in
figure 4, which again shows results from Floquet
theory. '
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dinates. Figure 5. Floquet theory root loci for varying u;
Figures 3 and 4 have shown the eigenvalues in ﬁgr:eIbéaded=rg;?rcigen:§rotat1ng coordinates
the rotating coordinate system. These may be i ¥ 4 *

transposed into the nonrotating system to examine
the behavior of the nonrotating modes. Choosing -

case ¢ (v = 1.0, v = 12) as an example, the root Aé%ZZ%V S \\§§
locus is plotted on figure 5. The coning mode has ///7 *§§
the same eigenvalues shown in the two previous o/rey.

figures. The nutation and precession modes have 20

the same damping, but as mentioned before, their /

frequencies are Q higher and lower, respectively,

plane as in figure 6 (and discussed in References 3
and 4). In the 0/rev region, the behavior is like 2
that of a constant coefficient equation when the
root locus meets the real axis; there are two real
roots, with order u? changes in damping. In . the
E/rev region, the frequency is exactly half of the
rotational frequency (fig. 3, case b), and the
damping changes somewhat more rapidly. In the
1/rev region (fig. 3, case a) the frequency is the
same as the rotational frequency (), and again
the damping changes are order u2. As previously
noted, damping is constant at -y/16 outside of the

critical regions. Note that varying v 1s little ; ; . , ,
effect on the boundaries of the 0/rev and 3/rev 0 1 2 El 4 5
regions, but as v is increased the l/rev region K
moves upward. ‘ (ayw=11

In this section, the characteristics of the Figure 6. Y - u plane for single blade in rotat-
periodic coefficient solutions have been discussed ing coordinates based on Floquet theory.
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Figure 6.

for nonhovering flight. The next sections will
discuss an approximation which has constant coeffi-
cients, yet gives some of the behavior of the peri-
odic coefficient system.

Constant Coefficient Approximation

In equation (1) the periodic coefficients are
all of the speed (u) dependent terms, and a con-
stant coefficient approximation yields only the
hover solution. However, in the nonrotating frame
of equations (2) and (3), these periodic terms
have been transformed into constants plus higher
harmonic periodic terms. This result suggests that
the primary effects of u may be determined by
using the average values of the coefficients. The
constant coefficient approximation thus obtained
for a four-bladed rotor is given in equation (5).
The corresponding equation for three blades is
identical, except that the B, motion is absent.

Y gu X g3
§B [ w5 B o
Y gt
i [ + B 2 0 5
B+ B
X g3 = X g4
uﬁB 2 8B ]
Y pu
i 0 0 0 $B
v? 0 0 0
M-g;-B3 N | (B" +—u282) 0
‘ E=0  (5)
X fge L 22) 2
0 L(s" -8 Vo1 0
0 0 0 2

Note that the B, equation is not coupled ‘to the
others and is the same as the 8, equation for
hover; hence it yields only the u = 0 roots.
Therefore the B, equation will not be discussed
further or included in subsequent figures. The
By equation has only one u-dependent term,
coupling it to the B;5 motion. The pitch and
roll equations are coupled by both damping and
aerodynamic spring terms.

Comparison

As noted earlier, eigenvalues may be compared
by adding &£ to the precession frequency and sub-
tracting © from the nutation frequency. In
examining the constant coefficient approximation,
any differences in eigenvalues will be due to the
dropped periodicity. That is, all of the roots
should approximate those obtained by using Floquet
theory to solve equation (1). Using the comparison
method mentioned above, the constant coefficient
approximation is compared to Floquet theory results
in figures 7, 8, and 9, The frequency scales have
been expanded to exaggerate the effects of forward
speed. Each of the three cases is discussed below.

Case a. v =1.1, y = 6, (fig. 7)

This case corresponds to a hingeless rotor
similar to the Lockheed XH-51. For this rotor the
variations with u of frequency and damping are
small but significant since the 1/rev critical
region is encountered (see fig. 6). All three
modes of the approximation agree well with Floquet
theory at low advance ratios, where the influence
of the periodic coefficients is small. As the
advance ratio is further increased, the precession
mode displays the same type of behavior as the
Floquet theory results, but the other two modes do
not. For the precession mode (and the Floquet
theory), the frequency becomes constant at 1/rev,
and the damping then has two values as previously
discussed. It is useful to examine why the con-
stant coefficient approximation displays periodic

O  PRECESSION
1.075 -

0O NUTATION
& CONING
——— FLOQUET THEORY
1.050 -

() FREQUENCY

Figure 7. Comparison of constant coefficient
approximation to Floquet theory (v = 1.1, ¥y = 6).
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Figure 7. Concluded.
system (critical region) behavior. In this case, 0 g > 3 p s
the precession roots at hover (i = 0) are very near i3
the real axis due to the coordinate transformation. (b) DAMPING :
As u 1is increased, the precession roots move
toward the real axis and then split when they reach
the axis, as usual with constant coefficient sys-
tems, Thus the damping both increases (the left Figure 8. Comparison of constant coefficient
branch) and decreases (the right branch). approximation to Floquet theory (v = 1.0, v = 6).
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Case c. v =1.0, vy =12, (fig. 9)

This case corresponds to a typical articulated
rotor with blades similar to many aircraft flying
today. The Floquet theory indicates that the %/rev
region is encountered at p = 0.215. It is seen
that the nutation mode is a poor approximation.
Apparently, the constant coefficient approximation
is not adequate for higher frequency modes if a
critical region is encountered. The precession and
coning modes (combined), however, do display the
correct type of behavior: the frequency approaches
3/rev and the damping both increases (the precession
mode) and decreases (the coning mode). In this
case, the correct behavior is obtained because two
modes are involved. As may be seen in figure 9(c),
the two sets of Floquet roots approach each other,
meet at %/rev, and split (no longer complex con-
jugates). This behavior is approximated by the
coning and precession modes, but in the approxima-
tion, the roots remain complex conjugates as shown
in figure 9(c). The frequency of the precession
mode does not agree well with Floquet results, but
its damping is increasing; hence it is of less
interest. The coning mode agrees well with the
Floquet results, predicting the reduced damping
very accurately.

Perturbation Theory

Equation (1) has also been studied in
Reference 5, using a perturbation technique known
as the method of multiple time scales. Analytic
expressions are derived for the eigenvalues, with
expressions valid near and within each of the
critical regions and ones which are valid away from
the critical regions. These results are very
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useful; they give additional insight into the behav-
ior of periodic systems in general and equation (1)
in particular. A comparison between the Floquet
results of the present work and the analytic results
from Reference 5 indicates that the latter are also
useful quantitatively. An exception is near the
E/rev region, where the perturbation solution was
carried only to order u. It should evidently be
extended to order u? as was the rest of the
perturbation solution.

Discussion

Based on the cases described above, it is
apparent -that the constant coefficient approximation
may be used to calculate rotor eigenvalues at
advance ratios up to 0.5. A range of rotor param-
eters (y and v) have been studied which are repre-
sentative of most conventional helicopters. The
lower frequency modes agree well with Floquet
results and display behavior approximating that of
the Floquet theory critical regions. Therefore,
there are many cases where the approximation may be
used instead of more complicated methods.

The higher frequency modes of the approxima-
tion, however, do not display the correct behavior.
Where these modes are important, for example, in
using high gain feedback, the approximation should
be used with caution.

The perturbation theory of Reference 5 is very
easy to use for rotor stability calculationms.
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However, the solutions are for uncoupled blades in
the rotating coordinate frame. To account for
inter-blade coupling (as with certain feedback
schemes) one must either use another technique
such as that described herein or rederive the solu-
tions with the coupling included.

Conclusion

Transforming the flapping equation of a heli-
copter rotor in forward flight into the nonrotating
coordinate frame results in a set of differential
equations where some of the periodicity due to
forward flight is transformed into constant terms.
Using the time-averaged values of these, i.e.,
dropping the remaining periodicity, gives a con-
stant coefficient approximation which retains some
of the periodic effects. Comparison between results
of the approximation and those of Floquet theory
indicates that the approximation should be accept-
ably accurate for calculating flapping stability of
most helicopters for the advance ratios shown
herein. Use of the nonrotating coordinates has
given insight into rotor behavior and indicates how
the vehicle motion would be affected by the rotor
modes.

The higher frequency modes of the approximation
do not agree well with Floquet theory. Where these
modes are important for example, in using high gain
feedback control systems, the approximation should
be used with cautionm.,
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Abstract

Equations for large amplitude coupled flap-
lag motion of a hingeless elastic helicopter blade
in forward flight are derived. Only a torsionally
rigid blade exicted by quasi-steady aerodynamic
loads 18 considered. The effects of reversed flow
together with some new terms due to forward flight
are included. Using Galerkin's method the spatial
dependence is eliminated and the equations are
linearized about a suitable equilibrium position.

The resulting system of equations is solved
using multivariable Floquet-Liapunov theory, and
the transition matrix at the end of the period is
evaluated by two separate methods. Results
illustrating the effects of forward flight and
various “important blade parameters on the stability
boundaries are presented.

Notation
a Two dimensional 1lift curve slope
A Tip loss coefficient
A Periodic matrix with elements A4,

defined in Appendix B

Generallzed aerodynamic force for
ith flap and lag mode respectively

Same as above, in reverse and
mixed flow regiong.

b Semi-chord nondimensionalized with
respect to R

B Tip loss coefficient

ﬁi Generalized masses defined in
Appendix A

CT Thrust coefficient

c Constant matrix

Cdo Profile drag'coefficient

Presented at the AHS/NASA-Ames Specialists'
Meeting on Rotorcraft Dynamics, February 13-15,
1974,
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Theodorsen's 1ift deficiency
function

Defined in Fig., 1

Terms associated with elastic
coupling defined in Appendix A

Stiffness for flapwise bending

Stiffness for inplane of rotation
bending

Flap coefficients defined in
Appendix A

th
Generalized coordinate, k
normal flapping mode

Static value of g in hovet

Perturbation in g about g;

Viscous structural damping in
flap and lag respectively

Generalized coordinate, mth
normal inplane mode

Static value of hk in hover

Perturbation in hk about h;

Unit vectors in x,y and z direc-
tions (Fig. 1)

Mass moment of inertia in flap,
defined in Appendix A

Unit matrix

Length of blade capable of
elastic deflection

Aerodynamic load per unit length
in the y and z directions
respectively

Lag coefficients, defined in
Appendix A

Mass of blade per unit length
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u,v,w

Number of modes in lag and flap
respectively

Generalized mass for the ith
flap and lag mode respectively,
defined in Appendix A

Defined in Appendix A

Resultant total loading per unit
length in the x,y and z direc-
tion respectively

Defined in Appendix A
Periodic matrix
Blade radius

Constant matrix used in Floquet-
Liapunov theorem

Constant matrix
Common nondimensional period

x,y and z displacement of a point
on the elastic axis of the blade

Component of ailr velocity w.r.t.
the blade at station x perpendic-
ular to x-y plane (hub plane),
positive down

Same as above, in the x-y plane,
tangent to a circle having a
radius x

Elastic part of the displacement
of a point on the elastic axis of
the blade parallel to hub plane,
(see Fig. 1), subscript o de-
notes the static equilibrium
value

Velocity of forward flight of the
whole rotor

Elastic part of the displacement
of a point on the elastic axis of
the blade, in the k direction,
approximately, (Fig. 1)

Rotating orthogonal coordinate
system

Running spanwise coordinate for
part of the blade free to
deflect elastically

Defined in Appendix B

Angle of reversed flow region
(Fig. 2)

Angle of attack of the whole
rotor
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Droop, built in angle of the
undeformed position of the blade
measured from the feathering axis

(Fig. 1)

Preconing, inclination of the
feathering axis w.r.t. the hub
plane measured in a vertical
plane

Lock number (Y=2pApR§a/Ib) for
normal flow '
nth inplane bending mode

Symbolic quantity having the same

order of magnitude like the dis-
placements v and w

Real part of the kth

istic exponent

character—-

kth flapwise bending mode

Viscous structural damping coef-
ficients defined in Appendix A

Collective pitch angle measured
from x~-y plane

Critical value of collective
pitch at which the linearized
coupled flap-lag system becomes
unstable in hover

Inflow ratio, induced velocity
over disk, positive down, non-
dimensionalized w.r.t. RQ

Diagonal matrix, containing
eigenvalues Ay of R

Diagonal matrix containing eigen-
values Ak of (T,0)

Advance ratio

Critical value of advance ratio
at which flap-~lag system becomes
unstable

Density of air
Blade solidity ratio

State transition matrix at ¥,
Eor initial conditions given at

(o]

Azimuth angle of blade @=0t)
measured from straight aft
position

Flutter frequency

Imaginary part of kth character—
istic exponent



wFl’Eil Natural frequency of ith flap or lag
mode, rotating

Q Speed of rotation

Special Symbols

) Nondimensionalized quantity, length
for elastic properties nondimensional—
ized w.r.t. %; all other w.r.t. R
frequencies w.r.t. ; mass properties
w.r.t. Ib

() Differentiation w.r.t. Eo

*

Q) Differentiation w.r.t. ¥

( )R’ ( ). Subscripts, denoting real and imagin-
ary parts of the appropriate quantity

QN) The symbol beneath a quantity
denotes a vector or a matrix

( )_1 Denotes the inverse of a matrix

The dynamics of a helicopter blade in forward
flight are usually described by a system of linear
differential equations with periodic coefficients.
A growing acceptance of hingeless helicopter
blades for conventional helicopters flying at
relatively high forward flight speeds has intensi-
fied the need for fundamental research on the
aeroelastic stability of such systems.

Studies dealing with the effect of forward
flight (or periodic coefficients) have been
primarily devoted to the study of flapping insta-
bility at high advance ratios. A limited
number of studies dealing with the effect of

periodic coefficients on coupled flap—lag 210 op
coupled flap-lag-pitch '! motion were also con-
ducted. The case of coupled flap~lag motion has

been, somewhat inconclusively, investigated by
Halli using multivariable Floquet theory, the
same problem was also considered by Friedmann and
Tong® but the treatment was limited to low advance
ratios (u<0.3). The coupled, linearized, flap-
1ag—torsion motion has been investigated by

Crimi!! using a modified Hill method. In both
cases'®’!! only a limited number of numerical
results were obtained and the physical mechanism
of the aeroelastic instabilities has not been
clearly identified, in particular the degree of
freedom which triggers the instability was not
identified and the results for forward flight were
not compared with those for hover.

Recent investigation of the aeroelastic sta-
bility of hingeless blades in hover!? indicated
that the aerocelastic stability boundaries are
quite sensitive to the number of degrees of free-
dom employed in the analysis. Therefore it is
fmportant to determine how the flapping behavior
of a blade at high advance ratios is modified by
the lag degree of freedom. This important problem,
which has not received adequate treatment before,
is one of the main topics of the present study.
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The mathematical methods used in previous
studies dealing with the effects of forward flight
were: (a) The rectangular ripple method!, (b) Ana-
log computer simulation,3 oh (c) Various forms of
Hill's method, 2’11 (d% Multivariable Floquet—
Liapunov theory (e) Perturbation method in
multiple time scales.e’9 The mathematical method
employed in the present study is the Floquet-
Liapunov theorem, and the transition matrix is
evaluated by two separate methods. It is also
shown that careful use of this method enables one
to circumvent problems associated with identifying
the results encountered in previous studies.’

In addition, a new and convenient approxima-
tion for the reversed flow region is developed,
this approximation is believed to be adequate for
most blade stabllity analyses.
of various important parameters such as collective
pitch setting, structural damping, droop and pre-
coning on the instability associated with forward
flight is investigated.

1. The Equations of Motion

1.1 Basic Assumptions

The present study is based upon a consis-
tently derived system of equations of motion for
the linearized coupled flap-lag motion of a
cantilevered rotor blade at arbitrary advance
ratios.

The derivation itself is algebraically
tedious, thus only a brief outline will be given
in this paper, the complete details of the deriva-
tion can be found elsewhere.!®

The geometry of the problem is shown in Fig.
1. The following basic assumptions were used in
deriving the equations of motion: (a) The blade is
cantilevered at the hub. It can have an angle of
droop Bp at the root. In addition, the feather-
ing axis can be preconed by an angle Bfp. The
angles By and Bp are small. (b) The blade can
bend in two directions normal to the elastic axis
and is torsionally rigid. (c) The deflections of
the blade are moderately small so that terms of
O(ED) can be neglected compared to one. (d)
Moderately large deflections have only a small
effect on the tension due to elastic effects on
the blade since one of its ends is free, thus a
linear treatment of the elastic restoring forces
is adequate. (e) Two dimensional quasi-steady
aerodynamic strip theory is used C(k)=1l and
apparent mass effects are neglected. (f) Reversed
flow is included using an approximate model for
reversed flow described in Appendix C. (g) Stall
and compressibility effects are neglected.

Using the assumptions given above a system
of nonlinear partial differential equations for
the coupled flap-lag motion of the blade is
derived, with respect to an x,y, and z coordinate
system rotating with the blade. The derivation
follows essentially along the lines of Reference
14, all the details can be found in Reference 13.

Finally, the effects
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1.2 Brief Derivation of the Equations of Motion

The differential equation for the dynamic
stability of a cantilevered rotor blade can be
written as !

2 2
2 "W
3 e M 3 dW
[(EI) +E,.] —=+ E,, ——op- —[T]=P
2 y Cl 2 c2 .2 ax_"T9x z
%%, X 9x o o
2 2
2 v 3w
3 e el 9 0V
[(EI) - E,, ] +E - =—[Te—]=P
Bxg z ClL Bxg C2 sz ’ 3xb axo y

1€H)

where the quantities Egy, Egy are given in
Appendix A.

The distributed loading terms in the x,y and
z directions with terms up to O(e;) in displace~
ments can be written as

=T _ 52 *
Px == m) [(x°+ el) + 2v]
P =1 ° w0 5 +v) + 20 Qv
v - [v - (eo ) u] - ggpit v
P =L -m% d 2
2 T Ly TRV - gt w @

The boundar¥ conditions for this kind of blade are
well known.!* The displacement field of the blade
with sin0=6 and cosf = 1 can be written as'?’1*®

b X_[70V.\2 [OW
0 2 1 ] e e
u=-v, (Bp+Bp)- T(BP * BD) "7 f [(ax ) + (Bx ﬂ"‘l
o 1 1
V=Ve T xoSDe 3
=, + xo(BP+ BD)

and

N
Ya él nk(xo)gk(t) =4 nkgk
M- @)
v, =-§12 Ym(xo)hm(t) T=‘—SZ, Ymhm

where it is understood that repeated indices imply
summation unless otherwise stated.

The aerodynamic loads L, and are given
13,140 Seroeyna % Ly &

by
L, = ap,bR U, (U6 - Up) . )
_ - do ..2
Ly = apAbR UP(UTB UP)+ —;—-U;] (6)
. where the velocities UP and UT are glven by
* ow
Up = S + QR(A + U cosy 5;—) @)
o
% -
UT = Qv + QR(x+u siny + U cosy %ﬁ—) (8)
0

The last term in Equation (8) is due to the
radial flow along the blade, This term has been
neglected in some previous analyses. For arbi-
trary advance ratios this is an important and non-
negligible term.
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Combination of Equations (1) through (8) and
application of Galerkin's method to eliminate the
spatial variable reduces the problem to a system
of ordinary differential equations.

et o T .45 o + o - %
My 872 WpMpiNopy 8y By 8t WpsMp 8y = By
= * -1 =3 %
+2 By (BytBp) B2 (Bp+By)By b+ Ay, (9)

w* o= = = =2 =S _Fcs
My Dyt2 Moy Ner gy 0 By = Engy

=7 * 11 3 i *
2 By (BptBp) g tBy BpB2 (8, ~ (M) TRGH,

s [ I
-Z(Mﬁ)iklgkgz-ni BDe+2 BimBDe hm + ALi (10)

where the various quantities Mgy, Pirme ¥is Simes
(M) kg are generalized mass integrals given in
References 13 and 14, and also in Reference 12
- =1 =3
égor %z§=z:g=r=%gé %hile_the g%antitigs By> Bips
ik? Tim» Eim’ iks By > Bik’ Bi amd Bim etce.
are given in Appendix A. The quantities Apy, Apg
are generalized aerodynamic forces defined by

B
2 - 2 «
Ay = b [Z L, n,dx /9°T, (1)

o, =9 f; L, v, (91, (12)

Equations (9) and (10) are coupled nonlinear
ordinary differential equations. In the present
study these equations will be linearized about a
suitable equilibrium position, which is taken to
be the steady state equilibrium position of the
blade in hover. Through this process of lineari-
zatlion many nonlinear terms are transformed into
coupling terms. At this stage one encounters a
considerable number of terms which are small and
therefore negligible. In order to neglect the
appropriate terms a rational ordering scheme is
used which enables one to neglect terms in a
systematic -manner. TIn this scheme all the impor-
tant parameters of the problem are assigned orders
of magnitudes in terms of a typlcal displacement
quantity €p thus:

7 = 0(ep)s T = 0(ep)s x=0(1); w=0(1);

A=0(eD); 6=O(eD)

3w L v . B =f = ;
.5;;-—0-: = O(ED) H 3xo = O(ED) > BD BP O(ED) 3
c
do 2
T =0 (SD) (13)

An order of magnitude analysis of the equa-
tions indicates that in general terms up to and
including O(sg) must be included in the linearized
flap equations, while for lag equations some 0(68)
terms have to be retained.

The process of the linearization consists of
expressing the elastic part of the displacement
field as
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where the static equilibrium condition in hover
is given by

1kgk+“’m p181 ~ Eqgho=—(B,+8 )Bl+l( D (OF]'—AF )
where 1 = 1 2,-..,N
ikgk+MLi Li . - Eahy

+l & ) [A(GL

=8 oM 1%

Cdo 4
)\L)+————L]i-1 2,...M 15)

The various quantities Fl, Li are defined in
Appendix A. Next, for the sake of simplicity,
the equations are specialized to the case of one

elastic mode for each degree of freedom, i.e. one
flapping and one lead-lag mode.

Furthermore for mathematical convenience the
equations of motion have to be transformed into a
system of first order equations. This is achieved
by using the following notation

A*
gl—yl >

bgy =y, 3 fh =y,

rh
=y
1773 6

For the stability analysis, only the homo-
geneous part of the equations of motion is
required, thus the equations of motion in their
final form can be written as

*
= AWy an
where Aidis a 4x4 matrix defined in Appendix B.

The equations of motion (17) will have a dif-
ferent form for the normal flow region and for the
reversed flow region. The representation of the
reversed flow together with its effect on the form
of Equations (17) is described in Appendix C.

2. Method of Solution

The stability investigation of the blade
motions is based upon the Floquet-Liapunowv
theorem'® which states the knowledge of the state
transition matrix over one period is sufficient in
order to determine the stability of a periodic
system having a common period T. Based upon the
Floquet~Liapunov theorem, the transition matrix

for the periodic system can be written as®®

8W.y) = 2 e °)2(wo) a8)
where

EWT) = RW) 19

where R is a constant matrix and B(t) is a periodic
matrix. Clearly the stability of the system is
determined by the matrix R, where R is given by
following relation
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@(T,0) = e~ =¢ (20)

A direct result of the Floquet-Liapunov theorem is
that the knowledge of the transition matrix over
one period determines the solution to the homo-
geneous system everywhere through the relation

8
S(PHST,0) = 2(¥,0) (eXD) (21)

where 0 < ¢y < T, s any integer.

In general R is a fully populated (nxn) square
matrix. If it has n independent eigenvaluesf it
is well known from elementary linear algebra S
that a similarity transformation can be found such
that

TRY=2 (22)

where the columns of Q are the n-linearly inde-
pendent eigenvectors of R and ) is a diagonal

matrix whose elements are the eigenvalues of R.
Combining Equations (20) and (22) and using the

definition of the matrix exponential’® ome has
| B-qe¥ql-g
or
A - 4= gl g - g lemong (23)

e~
where A is a diagonal matrix containing the eigen-
values of the transition matrix at the end of one
period. The eigenvalues of @(T,0) or the char-
acteristic multipliers are related to the eigen-
values of R, denoted characteristic exponents,
through the relation

T

= M

Clearly Ay and Ay are both complex quanti-
ties in general, thus

k=1,2,...r (24)

Ao = G T
he = hg 1 Ay @5)
from which
and
1, -1t
== (27
TTE Ty ’

the quantity w can be determined according to the
Floquet~Liapunov theory only within an integer
multiple of the nondimensional period.

The stability criteria for the system is
related to the eigenvalues of R or the real part
of the characteristic exponents Cx+ The solu-
tions of the Equation (17) approach zero as § + »
if

or ik <0 k=1,2,...,n

I+ Mgl < 2



Finally a brief description of the numerical
implementation of the scheme described above will
be given. The transition matrix at the end of
one period 9(T,N) is evaluated using direct numer-
ical integration. Equations (17) are integrated
for the set of initial conditions corresponding
to 9(0,0) = I. The numerical integration is per-
formed using a fourth order Runge Kutta method.
The eigenvalues of the transition matrix are
evaluated by a Jacobi type eigenvalue routine.
For some of the cases the value of 9(T,0) has
been evaluated using Hsu's method.13,17 This was
done in order to obtain results by two different
numerical schemes and also because Hsu's method
was found to be more efficient numerically. Both
methods yield identical results, therefore it is
not specified on the plots which scheme was used
to evaluate @g;,O).

3. Results and Discussion

3.1 Numerieal Quantities Used in the Calculations

In computing the numerical results the fol-
lowing assumptions were made,

Mass and stiffness distribution was assumed
to be constant along the span of the blade. Two
different kinds of mode. shapes were used:

(a) For most of the cases for which essen—
tially trend type studies were conducted an
assumed mode shape in flap and lap was used as
given by the appropriate expression in Reference
12, When an assumed mode shape is used the elastic
coupling effect!® is neglected.

(b) For a few cases an exact rotating mode
shape in flap and lag was employed. These mode
shapes were generated by using Galerkin's method
based upon five nonrotating cantilever mode shapes
for each flap or lag degree of freedom. For these
cases the elastic coupling effect was included.

The coefficients Fl, Li and Ei defined in
Appendix A and in References 12 through 14 were
evaluated using seven point Gaussian integrationm.
For the region of reversed flow these coefficients
wete treated in a special manner as explained in
Appendix C.

For the cases computed the inflow was evalu-
ated using an expression for constant inflow ratio
in hover, given by

x=%[1+2~§g—1] (28)

This inflow relation is equivalent to taking
the induced velocity of 3/4 blade radius as repre-
sentative of a constant induced velocity over the
whole disk. It is clear that for forward flight
one should use the expression

A = U tanoy + Cy/2 \uZ+x2 (29)

Use of this relation would have required the
use of a trim procedure in the calculations. It
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can be seen from Reference 14 that the require-
ment of trimmed flight at a fixed Cp results in

an increase of § at advance ratios of U > .3 and
it also requires continuous changes in elcfand
81g. The experience gained when using this
approach in Reference 14 indicates that when the
trim requirement is included in the calculation,
the value of Y, at which instability will occur
will be usually lower. Furthermore, when using
this approach it was found that it is difficult to
determine which part of the degradation in stabil-~
ity is related to the increase in 6, 035 and 03,
and which part is due to the periodic coefficients.
This added complicatien is not warranted in a
trend study such as the present one, and it is

not consistent with the stated purpose of this
paper, which is; a clear illustration of the
effects of the periodic coefficients when the lag
degree of freedom is included in the formulation
of the problem.

Finally, in all the computations the follow-
ing values were used:

C .01; a=2m; o= .05; e,=0; A=0. ; B=1

do~

Various other pertinent quantities are specified
on the plots.

3.2 Results

The results obtained in the present study
usually are given in form of plots representing
the variation of the real part of the character-
istic exponent Zy with the advance ratio p. Most
of the cases presented in this study were evalu-
ated using an assumed mode shape, as described in
the previous section, and neglecting the elastic
coupling effect.

For some cases an exact rotating mode shape
in flap and lead-lag was used and the elastic
coupling was included, when this.approach was used
a statement to this effect appears on the appro-
priate plots. When no such statement appears it
is to be understood that the assumed mode shape
is used and the elastic coupling is neglected.

A typical case is shown in Figure 3 for a
collective pitch setting of 0= ,15. Starting the
computation at u=0, enables one to easily identify
the instabilities encountered, by using results
previously obtained for hover. As shown the lag
degree becomes unstable and the frequency of the
oscillation is w = 1.28119. This result clearly
indicates that by neglecting the lag degree of
freedom one could obtain completely incorrect
stability boundaries.

The importance of the reversed flow region is
illustrated by Figure 4. As shown with the
reversed flow region the instability occurs at
higher values of | than without the reversed flow
region. Similar trends were observed in previous
studies when only the flapping motion was con-
sidered,® indicating that by neglecting the
reversed flow region one could expect conservative
results from a stability point of view. It also

B E s
elc,els cyclic pitch changes.



indicates that in this particular case the
reversed flow region starts being important above
advance ratios of U = 0.8.

It is important to note that the frequency at
which the lag degree of freedom becomes unstable
is not 1/2 or 1 as is usual for the case of para-
metric excitation. Thus it seemed important to
identify the source of this destabilizing effect.
The results of this study are presented in Figures
5 and 6. The effect of neglecting the radial flow
terms on the real part of the characteristic
exponent, assoclated with the flap degree of free-
dom, is shown in Figure 5. As shown, the radial
flow terms have a stabilizing effect on the flap-
ping motion with the radial flow forms suppressed
the flap degree of freedom becomes unstable at
u=1.33. The effect of the radial flow terms on
the lead~lag degree of freedom is illustrated by
Figure 6, as shown without the radial flow terms
the instability in the lag degree of freedom is
completely eliminated and the system becomes
unstable in flap. When the radial flow terms are
included, the lag degree of freedom is the crit-~
ical one and the system becomes unstable at u=.754.
This matter was pursued further by identifying the
actual destabilizing term in the equations of
motion, which was found to be an aerodynamic
coupling term. This term couples the flap motion
with the lag motion in the flap equation, its form
is

o] e}
This term is due to the UplUp term in Equation (5).
The term shown above is the complete nonlinear
one, clearly the one retained in the equations of
motion is the coupling term obtained from linear—-
izing this expression.

As mentioned in the previous section the
results presented in Figures 3 through 6 were
obtained by neglecting the elastic coupling effect.
In order to asses the effect of this assumption
the typical case has been also recomputed with the
exact mode shape and the elastic coupling effect,
the results are shown in Figure 11. From Figure
11 it is clear that use of the exact rotating mode
in flap and lag reduces the value of l. to
He = 0.653, when the elastic coupling is also
included Y, is further reduced to y, = .583. Thus,
for this case, 1. seems to be more semsitive to
the type of mode shape used than to the inclusion
of the elastic coupling effect. It is also
interesting to note, that for this case the elastic
coupling effect is destabilizing, while for hover
its effect on O, is quite stabilizing.

Previous studies'? dealing with the effect of
viscous type of structural damping on the stabil-
ity boundaries for hover indicated that this para-
meter has an important stabilizing. The effect
of this parameter for forward flight is shown by
Figures 7 and 8. The stabilizing effect of
structural damping in the lag degree of freedom
is evident from Figure 7, where the real part of
the characteristic exponent assoclated with the
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lead~-lag degree of freedom is plotted as a funcw-
tion of the advance ratio )i, again only the. struc-
tural damping in lag is important.: A summary of
these results is presented in Figure 8 showing the
variation of Y, as a function of the structural
damping. It 1s interesting to note that this plot
indicates that the greatest stabilizing effect

due to structural damping is obtained in the

range 0 < ngpy < .02 (2% of critical damping),
after which, the gain in stability tends to level
off. Similar trends were obtained from stability
studies in hover.!?

Again in order to illustrate the sensitivity
of the results to the mode shape and elastic
coupling, the results have been recomputed with
these effects included; these results are also

shown in Figure 8. As seen the use of the correct
mode shape and the elastic coupling effect reduce
the value of Y;, at which instability occurs.

The sensitivity of the results, to different
collective pitch settings is illustrated by
Figure 9. Comparison of Figures 3 and 9 indicates
that by decreasing the collective pitch setting
from 6 = ,15 to O = .05 eliminated the instability
associated with thelead-lag motion. The instabil-
ity in this case occurs at Y, = 1.88 with a
frequency of 0 or 1. This 1s a typical flapping
instability due to the.periodic coefficients.
Comparison of Figures 3 and 9 seems to indicate
that the assumption of nonlifting rotors used in
some forward flight studies’ can be
nonconservative,

Finally, Figure 10 shows the dependence of
Ve on the angle of droop Bp. As shown Y, is
relatively insensitive to 8p. On the other hand
Bp has a very important effect on the value of 6,
at which the linearized system in hover becomes
unstable.

It should be also noted that a considerable
number of additional numerical results, including
the effects of elastic coupling can be found in
Reference 13.

4. Conclusions

The major conclusions obtained from the pre-
sent study are summarized below. They should be
considered indicative of trends and their appli-
cation to the design of a helicopter blade should
be limited by the assumptions used.

(1) Flapping instability and response
studies at high advance ratios can be inaccurate
and misleading due to the neglection of the lag
degree of freedom. The effect of the periodic
coefficients on the coupled flap~lag system shows

that in general instability can occur at lower

values of advance ratios than when the flap
degree of freedom is considered by itself.

(2) In addition to the instabilities associ-
ated with the periodic coefficlents (i.e. with
frequencies of 0, 1 or 1/2) the coupled flap-lag



system has the tendency to become unstable due to
an aerodynamic coupling effect associated with the
radial flow terms. This instability which has a
frequency close to the rotating lag frequency of
the system, occurs usually at values of j, much
lower than those for which the flapping degree of
freedom becomes unstable, )

(3) Viscous type of structural damping in the
lead~lag degree of freedom has a stabilizing
effect on the instability discussed in previous
conclusion.

(4) The value of the collective pitch setting
has a considerable effect on the value of the
advance ratio at which instabilities due to the
periodic coefficients or the radial flow
aerodynamic coupling terms occur. Increase in
collective pitch is destabilizing, therefore high
advance ratio studies which do not include this
effect (nonlifting rotors) may yield nonconserv-~
ative results.

(5) The numerical results obtained in the
present study agree with the analytical results
obtained previously® indicating that hingeless
blades with a rotating lag stiffness of 1/2 or 1
can easily become unstable due to the effect of
periodic coefficients.

(6) While droop has a very strong effect on
the stability boundaries of hingeless blades in
hover, it has a very minor effect on the stability
boundary in forward flight.
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Appendix A. Definitions of the Generalized
Masses, Aerodynamic Integtals and other Quantities

___  The quantities, Py1771,Mpi,M51,5111s (Mﬂ)lll’
(MY)lll are generalized masses given, in Appendix
A of Reference 12, with the general i,m,k indices
these quantities can be found in References 13
and 14.
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When using these expressions in a one mode analysis
for each degree of freedom the lower indices are
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for the generalized aerodynamic integrals. The
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Appendix B. Elements of the A - Matrix

The elements of the A - matrix, which defines
the equations of motion when written as first order
differentlal equations, are given below:
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A 1 gD1+ 2 (R) y(-F siny + F hlcoslb )

—s 2
A12== -( ;1 E ) l (2)2[(1% F7sin 2y + uF6cos )
) My
+12‘l-— F23 hg(l+cos 2\!))]
A= X+ L3 [-ZeuFllsimlrl-u(SP+BD)Fllcosw
o gH cosw]

C8 .
A= E—+ 32(‘ é{‘)?{e (-2F" cosy-u?s1n2yF??)
1 2

+ )\uF cosw + L (1+cos2y) [F

14

23 o 22 (8P+BD) ]

17 o 22. 0

A= Y+ :ZL (%)S[QLSU siny-2uL glcosw—euL hlcos\b

317 6T 2
- 2u(B 8 )10 cosy]

2
<24 :zt (%)2[6(% tMain 21!}+L10u cosy)
1

Ago=

2
—ZALllu cost[.v-ezE (1+cos Zw)LZlho—
2 24 2 o
-U (BP+BD)L (1+cos 29)-L°7y gl(l+cos2W)]
C
- 2.3, . 160 . . °po 13
Ayq= -gD2+32(- @ [-6uL glcosi-2 — = UL siny

Bu(By+8)) )L13 cosy ]

2
i~ —(le- -_-_M-;—) X (--) { GAuLzocosw +% (1

1
CDo 220

+cos2y) [—L gl- (BP+B )L WL sin2y

-2 L cosw)}



where
2

- [¢]
X P11181
Mo
204 )48 57
Y - ﬂg_&q- XL &3le-anb1- B aca )
M, My M,

=3
- L &3raer0-ritaye B

My Mpy

2(B,#6))

Appendix C. _
the Associated Aerodynamic Loads

The circular region of reversed flow, which
exists over the retreating blade, is quite well
known. 1In past treatments of reversed flow it has
been customary’ to define three separate regions:
(a) normal flow, (b) reversed flow, (c) mized flow,
and evaluate the appropriate aerodynamic expres~
sions for each region. When this model is used
together with a modal representation of the blade
the evaluation of the generalized aerodynamic
.expressions F+,L* becomes quite cumbersome, and a
more convenient procedure had to be devised.

Approximate Reverse Flow Model and

The approximate reverse flow model developed .

for the present study consists of replacing the
circular region, by an approximate region which is
a circular sector ag shown in Figure 1. The
approximation is based on the assumption that the
area contalned in.the circular sector must be equal
to the area contained in the approximate region.
Two separate cases must be considered: (1) u <1,
(2) u> 1.

k.2
o

™D EEATHERING AXIS
PITCH BEARING

Y. i

TOP VIEW

Displacement Field of a Torsionally Rigid Cantilevered
Blade with Droop and Preconing.

Figure 1.
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Case (1). For u <1, the radius of the circular
_part is taken as N. Simple geometric consid-
erations show that the arigle o is always a
constant. . S

given by o = 7/2

Case (2). For u > 1 simple geometric considerations

show that . : ‘
a=T7-2 si'n-l(%) + uz sin_l(%) -V uz—l

Thus, for g < 1 the generalized aerodynamic
loads are calculated from ’

- 22 - B -
AFi = Q2 - '/_‘ LGi dxo + szni dKo
L LA u :
- 2,2 Y A % - ‘
A'Li = - —92 - [ Lin dxo+ f LyY 1 dxo
L L% u

while for u > 1.0
Apy = “Apy and Apy = -AL,

These expressions are based on the assumption that
the 1ift curve slope in the reversed flow region
is equal to the negative value of the 1lift curve
slope in normal flow.

{a) <1

Geometry of Approximate and Exact Reverse Flow
Regions.

Figure 2.
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Abstract

Both the Sikorsky Finite~Element Airframe
Vibration Analysis Program (FRAN/Vibration Analy-
sis) and the NASA Structural Analysis Program
(NASTRAN) have been correlated with data taken
in full-scale vibration tests of a modified CH-53A
helicopter. With these programs the frequencies
of fundamental fuselage bending and transmission
modes can be predicted to an average accuracy of
three percent with corresponding accuracy in
system mode shapes,

The correlation achieved with each program
provides the material for a discussion of modeling
techniques developed for general application to
finite-element dynamic analyses of helicopter
airframes. Included are the selection of static
and dynamic degrees of freedom, cockpit structural
modeling, and the extent of flexible~frame model-
ing in the transmission support region and in the
vicinity of large cut-outs. The sensitivity of
predicted results to these modeling assumptions
is discussed.

Introduction )

Helicopter vibration and resulting aircraft
vibratory stress can lead to costly schedule
slippages as well as to problems in field service
maintenance and aircraft availability. At the
core of vibration control technology is the require-
ment to design the helicopter structure to minimigze
structural response to rotor excitations. Both the
complexity of the structure and the increasingly
stringent mission and vibration control specifica-
tions demand development of airframe structural
vibration analyses that can be used rapidly and
economically to evaluate and eliminate vibration
problems during the preliminary design phase of
helicopters. ’

The complex helicopter structure consists of
sections that differ considerably in structural
arrangement and load carrying requirements. These
sections include the cockpit, cabin, tail cone,
and tail rotor pylon. In addition, large fuselage

Presented at the AHS/NASA~Ames Specialists’
Meeting on Rotoreraft Dynamics, February 13-~15,19Th

cut~outs and concentrated masses such as the trans-
mission, main rotor, and taill rotor, which are
unique to helicopters, play a major role in con-
trolling vibrations.

Although advanced analytical mebhods based on
finite-element techniques have been developed for
studying the vibration characteristics of complex
structures, a detailed correlation of such methods
with test data is not availsble in the general
literature. Further, little information is avail-
able on the accuracy of various modeling assump-
tions that might be made to reduce the cost and
time of applying these vibration analyses.

As a result a research project was establish-
by Naval Air Systems Command with Sikorsky Aircraft
to:

Determine the accuracy of the Sikorsky
Finite-Element Airframe Vibration
Analysis in predicting the vibration
characteristics of complex helicopter
‘airframe structures.

a)

and

b) Develop and evaluate general helicopter
dynamic modeling techniques that could
be used to provide accurate estimates
of vehicle dynamic characteristics while
at the same time minimizing the com-
plexity and cost of the analysis.

Due to the increased usage of NASTRAN
throughout the industry as well as the efficiency
resulting from employing a single analytical sys-
tem for both static and dynemic analyses, a par-
allel correlation study using NASTRAN has been
performed. The results of these correlation
studies are the subject of this paper.

Phase I - Stripped Vehicle

Test Vehicle

At the initiation of this effort, the phi-
losophy guiding the development of modeling tech-
niques was based upon the concept of gradually in-
creasing the complexity of the analytical repre-
sentation. It was decided that the first
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correlation study would be conducted on an air-
craft stripped of all appendages. It was believed
that the modeling techniques for representing air-
frame response characteristics could be identified
and developed most easily in this manner. Then,
as various appendages were added to the basic
vehicle, only the modeling techniques required for
the structure or masses added need be developed.

The vehicle used in this test and correla=
tion study was the CH-53A Tie Down Aircraft, Ve-
hicle designation number 613. A general arrange-
ment of the structure is illustrated in Figure 1.
For initial correlation, all appendages were re-
moved. These included the nose gear, ‘main landing
gear, main landing gear sponsons, fuel sponsons,
tail pylon aft of the fold hinge, tail rotor and
assoclated gear boxes, engines, cargo ramp door,
horizontal stabilizer, and all remaining electri-
cal and hydraulic systems. The main rotor shaft
and all gears were removed from the main transmis-
sion housing and only the housing itself was re-
tained for the test configuration.

Testing

The ground test facility employed to estab-
lish the dynamic characteristics of the test vehi-
cle was a bungee suspension system that simulates
a free-free condition, a rotorhead-mounted uni-
directional shaker, and the Sikorsky shake test
instrumentation console. Instrumentation con-
sisted of 1L fixed and 10 roving accelerometers.

A complete description of the test apparatus and
the instrumentation is provided in Reference 1.

All accelerometer signals and the reference
shaker contactor signal were transmitted to the
console. The signals were processed automatically
by the console resulting in a calculation of the
in-phase and quadrature components of the acceler-
ations. The accelerations were then normalized to
the magnitude of the shaker force at the particu~
lar frequency. As frequency was varied, the re-
sulting response of each accelerometer was record-
ed on a XYY' plotter, Figure 2, as g's/1000 1bs.
versus frequency.

Ideally, a fuselage mode can be identified
by & peak in the quadrature response and a simul-
taneous zero crossing of the in-phase response.
Once a mode is located, all quadrature responses
at this frequency can be recorded to define the
mode shape. The modes defined in this manner from
the shake tests are listed in the left~hand column
of Tgble I. It should be noted that this tech-
nique is applied more eesily at lower frequencies,
where sufficient modal separation exists so that
the forced response in the vicinity of a resonance
is dominated by e single mode. As shown in Figure
2, the mode shapes at higher frequencies must be
extracted from the coupled response of many modes.

Analysis_and Correlstion

The shake test data indicated that the
natural modes of vibration of a helicopter can be
categorized as beam-like modes controlled by

overall fuselage characteristics (e.g., length,
depth, overall bending stiffness, mass distribu-
tion, etc.) and those controlled by the transmis-
sion support structure. Therefore, the overall
helicopter structure was modeled utilizing three
modules:

1) center section including the transmission
support region

2) forward fuselage and cockpit
and
3) aft fuselage and tail.

The center section was modeled in greatest detail
by applying finite-element techniques. The struc-
tural characteristics of the forward and aft fuse-
lage were derived from beam theory. These equiva-
lent beams were located at the neutral axis of the
airframe section and were assigned the bending and
torsional properties of the total section. The
beam models of the forward and aft fuselage were
cantilevered from rigid frames at the respective
forward and aft ends of the center section, Figure
3. The influence coefficients of these beams with
respect to their cantilevered ends were then com-
bined with the influence coefficient matrix of the
remaining structure.

The Phase I correlation was performed using
the Sikorsky Finite-Element Airframe Vibration
Analysis (FRAN/Vibration Analysis). This analysis
consists of two programs: PPFRAN and a 200 dynamic-
degree~of-freedom eigenvalue/eigenvector extraction
procedure. PPFRAN is derived from the IBM/MIT
Frame Structural Analysis Program, FRAN (Reference
2), a stiffness method, finite-element analysis
limited to two types of elements, namely bending
elements (bars) and axial elements (rods). This
limitation necessitated further development of FRAN
for application to stressed skin structures. This
development consists of the addition of pre-~ and
post-operative procedures linked to FRAN. 1In the
pre~operative procedure (Pre~FRAN), the fuselage
skin is transformed into equivalent rod elements.
This transformation is developed by satisfying the
criterion that the internal energy of the skin
structure under an arbitrary set of loads be the
seme as that of the trensformed structure under the
same set of loads. The post-operative procedure
(Post-FRAN) extracts the influence coefficient
metrix corresponding to the selected dynemic
degrees of freedom. A detailed description of the
FRAN/Vibration Anelysis is provided in Reference 1.

The elements used to represent the airfreme
structure are:

1) bending (bar) elements for fuselage frames
end for the nose and teil beams

2) axial (rod) elements for the stringers

and

3) equivaelent, diagonal rod elements for skin
panels.
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For dynamic analysis, the structure is as-
sumed to be unbuckled, so that all skin panels are
considered fully effective in resisting axial
loads. Thus, the total axial area of each skin
panel is lumped with the greas of adjacent string-
ers.

During Phase I correlation, three modeling
parameters were varied: +the number of bays over
which the finite-element (flexible-frame) model
extends (Figure 4), the number of nodes per frame
(number of stringers), and the number of dynamic
degrees of freedom assigned to each frame (Figure
5). The results of the correlation are presented
in Table I, which shows the sensitivity of the
analysis to each of the above parameters and the
accuracy of the predicted frequencies and mode °
shapes. The criteria for establishing the level
of mode shape correlation are:

E (Excellent) - Correct number of nodes, nodes
less than 2.5 percent of fuselage
length from measured location,
local modal amplitudes within 20
percent of test values.

G (Good) - Correct number of nodes, nodes
less than 2.5 percent of fuselage
length from measured location,
difference between actual and pre-
dicted local modal amplitudes ex-
ceeds *20 percent of test values.
F (Fair) - Correct number of nodes, nodes
more than 2.5 percent of fuselage
length from measured location,
difference between actual and pre-
dicted local modal amplitudes ex-—
ceeds *20 percent of test values.
P {Poor) ~ Incorrect number of nodes, nodes
located improperly, difference be-
tween actual and predicted local
modal amplitudes exceeds %20 per-
cent of test values.

A comparison of the 30- and 60-stringer anal-~
yses indicates that there is no change in the re~
sults when modeling the structure with half the
number of actual stringers. In addition a compari-
son of results obtained with the basic and reduced
dynemic degree of freedom allocation indicates that
no more than 16 dynamic degrees of freedom per
frame are required for dynemic modeling.

Although mode shepe correlation resulting
from the analysis in the frequency range of inter-
est (below 1500 cpm) is encoursging, see Table I,
the absence of a representative mass distribution
mede the analysis overly sensitive to certein mod-
eling essumptions. This sensitivity appears to
account for the less than satisfactory frequency
correlation. For exemple, the frequency of the
transmission pitch mode is normally controlled by
the mass of the fully assembled transmission and
the properties of the structure in the transmission
support region. In the absence of a mags distribu-
tion representative of a fully assembled vehicle,
however, any element of the structure and any

lumped mass can contribute significantly to the
control of the dynamic characteristics. In this
case, the analytical representation appears to be
too stiff because of the beam model used for the
fuselage forward of F.S. 262, which constrains the
upper and lower decks to deform equally. This
constraint is not imposed by the actual structure.
A comparison of the results of the 9~ and 18-bay
analyses indicates that due to the local nature of
the transmission pitch mode, extension of the
flexible-frame model aft beyond the limit of the
9-bay model has no significant effect on the pre-
diction of this mode.

The poor freguency correlation for the first
lateral bending mode persisted throughout this
phase of correlation. This mode was characterized
by differential shearing of the upper and lower
decks of the aft cabin, Figure 7. The 6-bay and
9-bay flexible-frame model represented most of this
structure experienceing the differential shearing
as a beam capable of only bending and torsion.

This overly constrained model resulted in predicted
frequencies substantially higher than test values.
Extending the flexible-frame representation to 18-
bays appears to be the solution. However, size
limitations in PPFRAN required that the 18-bay
flexible-frame model be generated in two 9-bay sub-
structures, married at a rigid intermediate frame
at F.S. k2, Figure 3. Although the extended model
improved the correlation of the first lateral bend-
ing mode, absence of a representative mass distribu~
tion again appears to make the model overly' sensi-
tive to the presence of the rigid frame at F.S, Lk2,
This accounted for the remaining difference between
test and analysis.

Many of the higher frequency modes are con-
trolled by the structure in the area of the rear
cargo ramp. This accounts for the failure to pre-
dict the Transmission Vertical mode until the flex-
ible-frame model was extended into the ramp area,
see Table I. Although this extension of the model
improved correlation, the high frequency modes
above 1500 cpm are difficult to identify analytical-
ly due to the coupling of overall fuselage modes
with local frame modes. This difficulty is com-
pounded in this investigation, because the fre-
quencies of the basic fuselage modes are raised due
to the stripped condition of the vehicle, while
frequencies of the local frame modes are lowered
due to the lumped-mess modeling used to represent
sach frame., Tests of a more representatively load-
ed fuselage can be expected to minimlize the problem
of mode identification.

From the résults of this phase of the corre-
lation, it is concluded:

1) The selection of static degrees of freedom in
the flexible frame model can be based on &
structural model thet contains stringers num-
bering one helf the number of actual
stringers,

2) No more than sixteen dynamic degrees of free-
dom on each flexible frame are required for
dynemic anelysis. The typical location of
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these degrees of freedom is illustrated in
Figure 5.
3) Transmission modes can be predicted by a
flexible~frame representation of the trans-
mission support region extending about 1.5
transmission lengths forward and aft of the
corresponding transmission supports, about
9 bays. If the vehicle contains large cut-
outs, such as the cargo ramp of the test
vehicle, the flexible-frame model should ex-
tend through this region as well.

PHASE II - BALLASTED VEHICLE

Testing

Shake tests were performed after adding bal-
last to provide a more realistic representation of
a helicopter mass distribution, Figure 6. At the
transmission mounting plate, two lead blocks hav-
ing a total weight of 4570 pounds were mounted so
that the mass and pitching moment of inertia of
the simulated transmission end rotor head approx-
imated that of the actual CH-53A. At the tail, a
1500-pound block was mounted to simulate the re-
moved tail pylon, stabilizer, and tail rotor. At
the nose, a 3000-pound block was mounted on the
nose gear trunnion fitting to balance the vehicle.

The natural modes of vibration identified by
shake tests are listed in Table IT along with the
frequencies measured during Phase I. Not only did
the ballast succeed in lowering the fuselage modes
into a frequency range more representative of that
encountered on a fully assembled aircraft, but ad-
ditional modes were also identified that are
strongly controlled by the ballast. In fact,
these modes were identified as local modes of the
ballast blocks themselves. Due to the complex
structural nature of the ballast, Figure 6, these
appendages did not lend themselves to simple ana-
lytical representations. Therefore, the flexi-
bility of each ballast block was measured by in-
strumenting both the block and the adjacent air-
frame structure and then measuring the accelera~
tions occurring at both locations near the modal
frequencies of interest. The mass of each ballast
block and its absolute acceleration resulted in a
force which produced the relative motion between
the two instrumented parts. The empirically de-
fined flexibilities of the ballast were then used
in the dynamic model.

Analysis and Correlation

The modeling techniques developed in Phase I
of this study were applied to both the FRAN/Vibra-
tion Analysis and NASTRAN.

The finite-element model analyzed in Phase
II was identical to the 18-bay model analyzed in
Phase I, except for adding the mass and structural
characteristics of the ballast blocks. The FRAN
model was formed with rod and bar eléments, as
discussed previously, while the NASTRAN model used
CROD, CBAR, and CSHEAR elements (Reference 3). As
before, all skin panels were assumed fully
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effective in reacting axisl loaed and this effective
ares was lumped into the edjacent stringers.

Including ballast to replace removed appenda-~
ges resulted in & substantial improvement in the
correlation, particularly in frequency prediction
as shown in Teble III. Significantly, ballast
eliminated the difficulties identified as sensitivi-
ty to modeling assumptions and local frame modes in
the absence of representative mass distributions.
The average error in predicting the frequencies of
fundemental fuselage bending modes and the trans-
mission pitch mode was 3-4% for both the FRAN/Vibra-
tion Analysis and NASTRAN. In addition the shape
correlation for these modes varied from good to ex~
cellent. The analyses also were able to predict
accurately the significant changes in the charac-
teristics of the fuselage and transmission modes
resulting from the addition of the ballast, Figures
7, 8 and 9. To achieve this degree of correlation,
modeling of the ballast flexibilities was required.
This modeling was successfully acecomplished in the
vertical/pitch direction, Figure 10, but did not
prove successful in the lateral/torsion direction,
Figure 11. The contrast between these two results
establishes the ability of finite-element analyses
to predict accurately the characteristics of fuse~
lage and transmission modes when the structural
data base is defined with sufficient accuracy. Fur-
ther improvement in the correlation could have been
achieved if a more detailed definition of the bal-
last flexibilities had been acquired from measure-
ments of static deflections.

Reasonable success has been achieved in pre-~
dicting higher frequency, ramp-controlled modes,
Figures 12 and 13. However, some margin does exist
for further improvements in shape and frequency
prediction. From the standpoint of modeling, it
appears that the 200 dynamic degree of freedom
limit established in this study is inadequate for
predicting the shell-type modes of the cargo ramp
structure. In addition, the test procedure em-
ployed, namely the use of a single rotorhead
shaker, does not provide a means of uncoupling the
forced response characteristics of modes at the
higher frequencies, Figure 2.

Conclusions

Finite element analyses can predict accurate-
ly the frequencies and mode shapes of complex
helicopter structures, provided the structur-
al data base is defined accurately.

Complete stripping of a vehicle for correla-
tion purposes may make the analysis overly
sensitive to normally minor modeling assump-
tions.

Significant changes can be predicted accurate-
1y in the character and frequency of fuselage
and transmission modes due to changes in mass
distributions and structural characteristics.

The modeling techniques established by this
study can be used during aircraft design re-
gardless of the finite-element analytical
system being used.



1)

2).

3)

L)

Recommendations

A full-scale shake test correlation should
be performed on a fully assembled flight
vehicle to establish and validate modeling
techniques for those appendages removed
during this study.

Appendages not amenable to accurate or eco-
nomical structural analysis should be '

tested statically to determine flexibility

data required for dynamic anelysis.

Integrated structural design systems should
be developed to couple static and dynamic
analyses and thus provide the accurate
structural data required for defining vibra-
tory response characteristics as early as
possible during aircraft design.

Use of additional shsker locations should be
incorporsted in the test procedure to pro-
vide a means of uncoupling higher frequency
modes. Alternatively, more sophisticated
means of processing shake test data (e.g.,
system identification techniques described
in Reference U4) should be employed.

Tllustrations

Main Rotor

Engines Attachment

Figure 1

1)

2)

3)

5)

71

References

Kenigsberg, L. J., CH-53A FLEXIBLE FRAME
VIBRATION ANALYSIS/TEST CORRELATION,
Sikorsky Engineering Report SER 651195,
March 28, 1973.

IBM T090/T09)4 FRAN FRAME STRUCTURE ANALYSIS
PROGRAM (7090-EC-01X).

McCormick, C. W., ed., THE NASTRAN USER'S
MANUAL, (level 15), NASA SP-222(01), June
1972.

Flannelly, W. G., Berman, A., and Barnsby,
R. M., THEORY OF STRUCTURAL DYNAMIC TESTING
USING IMPEDANCE TECHNIQUES, USAAVLABS

TR T70--6A,B, June 1970.

Willis, T., FRAN CORRELATION STUDY, Sikorsky
Report SYTR-M-36, July 1969.

Horizontal
Stabilizer

Tail Rotor
Attachment

Teil
Pylon

Fold
Hinge

CH-53A General Arrangement



‘1' FULL SCALE
.
3GA000LB, 16/1000 LB.
FULL SCA FULL SCALE
w
& n
g i
e 4 | IN-PHASE
ui
% I
x 1
w o , )
4 i
/“\ - ~
8 0 J ’ \ £ ST\ e “—._
o -
S \\ P
H . Pa) P
- QUADRATURE VN -~
P
P2
& FIRST ? 1
P VERTICAL SECOND TRANSMISSION
8 VERTICAL VERTICAL
2 E
FULL SCALE
P AP et i el s e, o A Pt sy s st o
0 160 200 300 400 500 600 700 800 900 1000 100 1200 1300 1400 (500 (600 1700
FREQUENCY , CPM ’
Figure 2 Typical Vertical Response to Vertical Excitation
TABLE I
PHASE T SHAKE TEST CORRELATION SUMMARY
TEST ANALYSIS
6 Bay
18 Bay 9 Bay 6 Bay 30 Stringer and
30 Stringer 30 Stringer 30 Stringer 60 Stringer
Reduced DOF Reduced DOF Reduced DOF BaSlc" DOF
Freq. .
Mode (cPM)}| Freq. Error  Shape Freg. Error Shape | Freq. Error  Shape | Freq. Error Shape
lst Lateral 910 } 1207 33% G 1466 60% P 1435 58% P 1kko 58% P
1st Vertical 1155 | 1175 2% E 1282 11% E 1242 8% E 12h1 8% E
XSSN Pitch 1h90 | 1709 13% E 1710 13% E 1748 17% E 1758 17% E
2nd Vertical 1950 2150 10% G 2390 22% F 2505 28% F 2577 32% F
%XSSN Roll 2000 2405 20% P 2870 437 P 2900 45% P 2894 45% P
XSSN Vertical 2150 2250 4% F
Torsion 2300 § 2763 20% ¥ 2428 6% P/F 2ho2 6% P/F IR 6% P/F
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Figure 6c Nose Ballast
Installation

Phase II Bellast Installstions



MODE

TABLE TI - SHAKE TEST FREQUENCIES

1st Vertical Bending

1st Lateral Bending

Transmission Pitch

Nose Block Latersl/Roll

Nose Block Vertical/Coupled

Forward Cabin/Nose Block Lateral

Nose Block Vertical

Second Vertical Bending

Torsion

Transmission/Ramp Vertical Bending

Ramp Vertical Bending

MODE

‘st Vertical Bending
Transmission Pitch

Nose Block Vertical/
Transmission Pitch

Nose Block Vertical
Second Vertical

Transmission Vertical/
Ramp Vertical

Ramp Vertical

lst Lateral Bending
Nose Block Lateral/Roll

Forward Cabin Lateral/
Nose Block Lateral

Torsion

Frequency
Test FRAN
Lho 438
T40 751
970 933
1050 1043
1290 1523
1L2s5 1563
1640 139k

615
930

990
1310

659
735

858
1601

PHASE IT PHASE I
TEST FREQUENCY CPM TEST FREQUENCY
kho 1155
615 910
Tho 1490
930 i
970 v
990 —
1050 —_—
1290 1950
1310 2300
1ha5 2150
1640 —
TABLE IIT
PHASE II CORRELATION SUMMARY
VERTICAL/PITCH MODES
Error Shape ﬁASTRAN Error Shape
0% 453 3% B
1.5% 785 6%
4% G 956 1.5% G
1% F 1063 1%
18% F 1608 25% F
10% F/G 1843 29% F/G
15% P/F 1355 17% P/F
LATERAL/TORSION MODES
% G 595 3% G
21% P 812 13%
13% P 970 2%
22% P 1325 1% P
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Figure Tb Correlation of First Lateral Bending
Mode, Phage II - Bellasted

Figure Ta Correlation of First Lateral Bending
Mode, Phase I - Stripped
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Phase II test-lhQ epm

Phagse I test-1155 cpm

FRAN-1175 cpm

NASTRAN—&53 cpm

Figure 8a Correlation of Pirst Vertical Bending
Mode,

Figure 8b Correlation of First Verfical Bending

Phase I ~ Stripped

Mode, Phage II - Ballasted

77



Phase II test~TLO cpm .,

Phase I test~1490 cpm

FRAN-T51 cpm

FRAN-1T709 cpm

Figure 9a Correlation of Transmission Pitch Mode,

Phase I - Stripped

Figure 9b Correlation of Transmission Pitch Mode,

Phase II - Ballasted
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Phase 11 test~930 cpm

Phase II test-9T70 cpm

FRAN-T35 cpm

NASTRAN-812 cpm

NASTRAN-956 epm

Figure 11 Correlation of Nose Block Lateral/Roll
Mode, Phagse II -~ Ballasted

Figure 10 Correlation Nose Block Vertical/Transmission
Pitch Mode, Phase II - Ballasted
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COUPLED ROTOR/AIRFRAME VIBRATION PREDICTION METHODS

J. A, Staley
Senior Dynamics Engineer

J. J. Sciarra
Senior Structures Engineer

Boeing Vertol Company
Philadelphia, Pa.

Abstract

The problems of airframe structural
dynamic representation and effects of
coupled rotor/airframe vibration are dis-
cussed. Several finite element computer
programs (including NASTRAN) and methods
for idealization and computation of air-
frame natural modes and frequencies and
forced response are reviewed. Methods for
obtaining a simultaneous rotor and fuse-
lage vibratory response, determining
effectiveness of vibration control devices,
and energy methods for structural optimi=-
zation are also discussed. Application of
these methods is shown for the vibration
prediction of the Model 347 helicopter.

Notation

airframe mobility matrix

rotor impedance matrix

blade bending rigidity

force

blade torsional rigidity

identity matrix

rotor frequency multiple, 1, 2, etc.
stiffness matrix

mass matrix -

airframe mode generalized coordinate
airframe displacements

airframe mode generalized mass
airframe mode natural frequency
airframe mode shape (eigen vector)
rotor frequency

matrix

column vector

W
H

&

JHQBRAH

e e E
oyttt

Subscripts

absorber, airframe

cosine component amplitude

hub

rotor frequency multiple, 1, 2, etc.
airframe mode number

zero hub motion

rotor

sine component

nwWoIwImaO P

Presented at the AHS/NASA-Ames Specialists!
Meeting on Rotorcraft Dynamics, February
13-15, 1971. ‘

Part of the work presented in this paper
was funded by the U.S. Army Research
Office - Durham, North Carolina under
Contract DAHC04~71-C~0048,
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Sugerscrigts

. = velocity
.» = acceleration
T - transpose

Prediction of helicopter airframe
vibration involves two major problem
areass

@ Prediction of rotor vibratory
hub loads
® Prediction of airframe dynamic

characteristics.

The effects of vibratory hub motion on
vibratory hub loads and effects of vibra-
tion control devices and resulting air-
frame fatigue stresses must also be con-
sidered.

Methods for independent prediction of
vibratory hub loads and airframe dynamic
characteristics have been developed pre-
viously and are discussed briefly below.
Independent determination of rotor vibra-
tory loads and airframe vibratory response
to these loads does not account for any
interaction between airframe vibratory
motion on rotor vibratory loads. One
approximate method for accounting for
these interactions is to assume that an
effective rotor mass is attached to the
airframe at the rotor hub. A more direct
method is to compute (or measure) the
rotor hub impedance and determine compat~
ible vibratory hub loads and hub motions.
This method is discussed below. A simple
example of compatible rotor load-hub
motion is given for a single rotor heli=-
copter with vertical hub motion. In
addition, flight test results for the
Model 347 helicopter are compared with
vibration predictions obtained using a
coupled rotor/airframe vibration computer
program.

Rotor Vibratory Hub Loads

Methods and digital computer programs
have been developed for prediction of
rotor vibratory hub loads for:-constant
speed level flight conditions 1,2,3,

Rotor blades are represented by lumped
parameter analytical models as indicated



in Figure 1. Iteration techniques are
used to compute individual blade deflec~-
tions and aerodynamic and inertia load
distributions at integer multiples of the
rotor rotating frequency. The total
rotating and fixed system rotor vibratory
hub loads are obtained by summing indivi-
dual blade root shears and moments, The
vibratory hub loads may be computed assum-
ing no hub motion. If the vibratory hub
motions are known, effects of these
motions may be included when computing
blade aerodynamic and inertia loads.,

Airframe Dynamics

Structural Model, Natural Modes and Fre-
quencies, ana Forced Response

Finite element methods have been used
in the helicopter industry for some time
for prediction of airframe dynamic charac-
teristics®. As indicated in Figure 2,
developing a finite element airframe model
consists of:

® Defining nodal data

® Defining elastic properties of
members connecting nodes

® Defining mass properties asso-
ciated with each node.

Nodal data and properties of struc-
tural members are used to develop stiff-
ness matrices for individual members.
These matrices relate forces at each node
to nodal displacements. The stiffness
matrices for individual members are super=
imposed to obtain the stiffness matrix
for the entire airframe,

Most of the degrees of freedom are
reduced from the airframe gross stiffness
matrix. Mass properties are concentrated
at the remaining (retained) degrees of
freedom. Eguations (1) are the airframe
equations of motion with the gross stiff-
ness matrix. Equations (3) are the air-
frame eqguations of motion, in terms of
the reduced stiffness matrix,

(Y]

MO Xy K11 Ki2 X1 FRl (1)

00 3&2 Ko7y Ky Xs 0

[Fid = [ - [xa3] [%23 -11?21] (2)
(] {£} + [Fu] e ={rel (3

' substructures,
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The solution for natural modes and
frequencies is made using the reduced
stiffness matrix and the mass matrix
associated with the retained degrees of
freedom.

The airframe motions are expressed
in terms of natural modes:’ ’

fua} =[] {q}

and, after assuming sinusoidal motion
with no external forces, Equation (3)

ol ] ]

The modal generalized mass is then
computed. A value of modal damping is
assumed for each mode, and these modal
properties are used to compute airframe
response tao vibratory hub loads:

"o = fon} (] {0}

dn + 2Tpundn + wﬁqn = {¢Rn}T{FR}/nn

(4)

(5)

(6)

(7)

Substructures Method

A large saving in computer time can
be realized by performing the matrix
reduction process on several smaller sub=-
structure stiffness matrices instead of
on the large stiffness matrix for the
entire airframe. In one application, use
of the substructures method reduced com-
puter running time from about ten to two
hours on an IBM 360/65 computer.

The airframe is divided into several
and all but mass and
boundary degrees of freedom are reduced
from the stiffness matrix of each sub~
structure. The stiffness matrices of the
substructures are then merged (super-
imposed or added just as they are for
individual members) to form a stiffness
matrix for the entire airframe. Any
degree of freedom on the boundaries may
be reduced after merging the substructure
matrices (Figure 3).

NASTRAN

New developments in finite element analy-
sis have been occurring on a continuous
basis. WNew programs and new structural
elements, both dynamic and stress analy-
sis capability, FORTRAN programming cap-
ability by the engineer within the finite
element program, and greater problem size



capability have been developeds. NASTRAN
(NASA Structural Analysis)b is a govern-
ment developed, maintained, and continu-
ally updated finite element program which
has apparently provided a solution to the
difficulties of developing and maintain=~
ing finite element programs by private
contractors. NASTRAN is similar to other
finite element computer programs except
that it generally provides additional
.capability:

® More types of structural elements

® Common deck for stress and
dynamic analysis

® User programming capability

® Transient vibration analysis,
buckling, non-linear, and static
capability

@ Unlimited size capability for
mass and stiffness matrices.,

For a nominal fee, this program and
manuals describing the program and its
use are available. NASTRAN provides a
standard for airframe dynamic analysis
and relieves contractors of some of the
problems of maintaining the most up-to-
date methods for airframe structural
analysis.

Energy Methods for Structural Optimization

One further development related to
airframe dynamics is the Damped Forced
Response Method7,8. The airframe forced
response is computed, and structural
members with significant strain energy
are identified. These members are
changed to reduce vibration response for
modes with frequencies above and below
the rotor exciting frequency. This
method is outlined in Figure. 4.

" Vibration Control Devices

Vibration control devices such as
absorbers are often used to reduce vibra-
tion in local areas of the airframe.

The force output for an absorber may be
computed by expressing the vibration as
the sum of wibration due to rotor forces
and the vibration due to the ‘force output
by the absorber.

XA App Par| |Fa
= - {8)
Xg Bpa Apg| |Fx

The absorber force output reguired to null
vibration at the absorber attachment
point is ‘

feab = - o] " B fre} ©)

The corresponding motions at the rotor
hub are )

fre} = PBrecdra An Pan ] {75

The mobility matrices in the above equa-
tions may be obtained analytically wusing
computed modal properties (Equations (1)
through (7)) or by applying unit vibra=-
tory loads to the airframe in a series of
shake tests.

(10)

This method was applied to predic-
tion of cockpit vibration with a vertical
cockpit absorber for the Model 347 heli=-
copter®, Analytical and flight test re-
sults are compared in Figure 5%

Coupled Rotor/Airframe Analysis

Theory

Any vibratory motion of the rotor
hub will change the rotor blade vibratory
aerodynamic and inertia forces which are
summed to obtain vibratory hub loads.
Changes in hub loads will in turn cause
changes in vibratory hub motions?+

Airframe Motion is assumed to be
related to vibratory hub loads by a
mobility matrix for a particular exciting
frequency: :

Xks k112%x12 | [Fxs Frs (11)

- - [2x]

Xee|  Pr212x22 | [Fke Fre
where

Pﬁ&=={xk;}sin kot + {Xkc} cos kot

Tyt = 4F sin kot + {F cos kot
{]J { ks ke

The airframe mobility data are air-
frame responses to unit vibratory hub
loads; these data may be obtained analy-
tically by using theoretical modal proper-
ties (Equation (4) through (7)), or by
conducting an airframe shake test. It is
emphasized that these are airframe '
response characteristics for no blade
mass attached to the airframe at the
rotor hub. All blade inertia effects
will be included in the rotor vibratory
hub loads as modified by vibratory hub
motion,

in general, six sine and six cosine
components of shaking forces and moments
exist at each rotor hub; a tandem rotor
helicopter would have a total of 24



components of vibratory forces. If only
the rotor hub motions are considered, the
relationship between hub motion and hub
forces is:

24x1 24x24 24x1

X F

H ks

e = [auy] (12)
Xpkc 4 Fre

The vibratory hub loads are assumed
to be loads with no hub motion plus an
increment of hub loads proportional to hub
motions

24x1 24x1 24x24 24x1
Fys Fxso Bx11l Bk12| | Zuks
= + (13)
Fxre Frco | Bk21 Bk22 Xgke
F Xpks
- | kso + er
Fxco - Xgke

The coefficients of the B matr%x are
obtained by making several computations of
vibratory hub loads:

® Components of vibratory hub loads
are computed assuming no hub
motion

® Components of vibratory hub loads
are computed assuming a small
vibratory hub motion at the fre-
quency for each degree of freedom
of ‘hub motion at each rotor

® Changes in sine and cosine com-
ponents of vibratory hub forces
per unit vibratory hub motion in
each rotor hub degree of freedom
are then computed.

The coupled rotor/airframe solution
for compatible rotor hub motions apd rotor
hub loads is obtained by substituting -
Equation (13) in Eguation (12) and solving
for vibratory hub motions:

X 1 P
kso
Bl o Jm-mimn | (14)

Xgke Fxco

Once a solution for Equation (14) is
obtained, the total vibratory hub loads
may be computed using Equation (13) and
the vibration for the entire airframe may
be computed using Equation (11).
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Single Rotor Example

Figure 6 shows a simple example of
the coupled rotor airframe method applied
to a single rotor helicopter vertical
vibration analysis. Hub vertical vibra-
tion response and the vertical vibratory
hub loads are computed at a frequency of -
four times rotor speed (4/rev). The air-
frame is represented by its rigid body
vertical mode and one flexible mode.
Figure 6b shows airframe mobilities vs
flexible mode natural frequency for 4/rev
vertical hub forces, Hub vertical shak-
ing forces vs hub vertical motion are
shown in Figure 6c. The vibratory hub
loads are seen to vary approximately
linearly at least up to .005 inches of
motion at the 4/rev frequency. Figures
6d and 6e show compatible rotor hub
vertical vibration amplitudes and rotor
hub shaking forces vs flexible mode
natural fregquency.

For this example, the rotor vibra-
tory hub motions and forces both peak
when the flexible mode natural frequency
is just above the rotor hub force excit-
ing frequency. This is not a general
result, but depends upon the relation~
ships between hub shaking forces and hub
motions,

Coupled Rotor/Airframe Analysis Computer
Program (D=65)

Figure 7 shows the flow-diagram for
the Boeing Vertol D-65 Coupled Rotor/
Airframe Analysis computer program. This
program links three major computer
programs10:

- Trim analysis program A-97

- Rotor vibratory hub loads analy-
sis program D-88

- Airframe forced response analy-
sis program D-96.

Compatible fuselage motions and
vibratory hub loads are obtained using
this program with the method discussed
above. In its current state, the D=65
program computes three vibratory rotor
forces and three vibratory rotor moments
at each rotor for either single or tandem
rotor helicopters. Response to trans-
lational and rotational vibratory hub
forces is computed for the airframe, but
compatibility of hub forces and motions
is satisfied for hub translational
degrees of freedom only in the current
version of the program. The program will
be modified in the near future to provide
compatibility for hub rotational degrees
of freedomn.



Analysis vs Test Results for the Model 347

Helicopter

The D~65 coupled rotor/airframe pro-
gram was used to predict Model 347 £flight
vibration levels. Figure 8 shows the
model used to predict airframe dynamic
characteristics. Figure 9 compares pre-
dicted vertical and lateral cockpit
vibration levels vs vibration levels
measured in flight. Vertical vibration
levels are in reasonably good agreement
at high airspeeds where vibration levels
may become significant. Lateral vibra-
tion levels are higher than predicted.

Conclusions

Methods have been developed indepen-
dently for prediction of rotor vibratory
hub loads and airframe dynamic character-
istics. Methods are available for in-~
cluding effects of vibration control
devices on airframe vibration and for
optimizing the airframe structure. The
substructure method is available for
minimizing computer running time in
analysis of airframe structures, and
NASTRAN now provides a common finite
element structural analysis program avail-
able to all aerospace contractors. Rotor
hub vibratory motions can modify rotor
hub vibratory forces acting on the air-
frame. A linear coupled rotor/airframe
analysis method provides an approach for
determing compatible hub motions and hub
shaking forces. This method should be
studied further to determine its
validity. A method of this type should
be considered in applications of NASTRAN
for prediction of helicopter vibration;
the user programming feature in NASTRAN
should permit a coupled rotor/airframe
solution of this type within NASTRAN.

Figure 10 shows a scheme for solving
for rotor trim, rotor forces with no hub
motion, and the rotor impedance matrix.
using a rotor analysis program. NASTRAN
would be programmed to use these mobili-
ties and the rotor analysis results to
solve for compatible rotor/airframe loads
and motions. The NASTRAN airframe analy-
sis could include airframe installed
vibration control devices either in the
initial airframe analysis or in the
coupled rotor/airframe solution. Finally,
results of these analyses could be used
to determine optimum changes to the air-
frame structural elements for minimizing
airframe vibration.
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Abstract

The results of an analytical study to eval-
uate the general response characteristics of a
helicopter subjected to various types of discrete
gust encounters are presented. The analysis em-
ployed was a nonlinear coupled, multi-~blade rotor-
fuselage analysis including the effects of blade
flexibility and unsteady aerodynamic stall. Only
the controls-fixed response of the basic aircraft
without any aircraft stability augmentation was
considered. A discussion of the basic differences
between gust sensitivity of fixed and rotary wing
aircraft is presented. The effects of several
rotor configuration and aircraft operating param-
eters on initial gust-induced load factor and
blade vibratory stress and pushrod loads are dis-
cussed. The results are used to assess the accu-
racy of the gust alleviation factor given by MIL-
S-8698. Finally, a brief assessment of the rela-
tive importance of possible assumptions in gust
response analyses is made and a brief comparison
of gust and maneuver load experiences in Southeast
Asia is presented.

The results confirm that current gust alle-
viation factors are too conservative and that the
inclusion of unsteady stall effects result in
higher initial load factors than predicted using a
steady stall aerodynamic analysis.

Notation

A% gust alleviation factor; see Equation (1)
and (3)

Q. two-dimensional 1lift curve slope of rotor
blade section

b  number of blades
B tip loss factor
AL Dblade chord, ft
C; vertical force coefficient, Thrust /g p o* RY

GW gross weight, lbs

Presented at the AHS/NASA-Ames Specialists' Meet-
ing on Rotoréraft Dynamics, February 13-15, 197h.

I3 blade mass moment of inertia about flapping
hinge, slug - ft2

R  blade radius, ft
S fixed wing area, ft?

C-
't.3| partial derivative 2 3( r/‘)

; Qa3 A
V  forward velocity, knots or ft/sec

Va_,a average characteristic velocity for helicop-
ter rotor

Vg, maximum vertical velocity of gust, positive
up, ft/sec

& angle between shaft and relative wind, posi-
tive tilted aft, radians

) ’ L
x blade lock number, fa.:C_R/j_B

 THRUST
AN incremental rotor load factor; M‘: g REH -
AY\S incremental rotor load factor predicted by
linear steady theory for sharp edge gust
instantaneously applied to entire lifting
device. )

A inflow ratio, (VS$ine — U)/-Q-R

A+ advance ratio, de/_g_g

¥/ rotor induced velocity, positive up, ft/sec

f air density, slugs/cubic foot

@ rotor solidity, be /R

fl. rotor angular rotational velocity, radians/
second

%Co% three dimensional lift curve slope for fixed

wing

Subscripts
FW genotes fixed wing

M genotes helicopter
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Current procedures for predicting helicopter
‘gust-induced loads involve computing rotor loads
by means of a simplified linear theory and modify-
ing these loads by a gust alleviation factor de-
fined in Specification MIL-S-8698 (ARG). The al-
leviation factor is shown in Figure 1 and is a
- function of rotor disc loading alone. Further, no
alleviation is allowed for disc loadings greater
than 6.0 - a value exceeded by many modern heli-
copters. Attempts to verify the accuracy of this
approach through flight test have been complicated
by uncertaintles regarding the gust profiles.

This has led to side~by-side flight tests of fixed
and rotary-wing aireraft (Reference 1) in order to
build & semi-empirical bridge between the rela-
tively straight forward fixed wing situation and
the more complex situation associated with rotary
wings. Limited qualitative results on aircraft of
comparable gross weight indicated that the heli-
copter was less gust sensitive than the fixed wing
aircraft, but extensive quantitative data from
this type of test are, obviously expensive and
difficult to obtain. Analytical confirmation of
the MIL-8-8698 (ARG) gust alleviation factor has
been hampered by the lack of an analysis which can
handle both the transient response of the helicop-
ter and the aeroelastic response of the rotor
blades, while, simultaneously, providing a reason-
ably complete modeling of the rotor aerodynamic
environment. An improved gust response analysis
(described in Reference 2) has indicated that cur-
rent procedures are too conservative. The primary
objectives of this investigation were (1) to
develop a similar computerized analysis based on
the rotor aeroelastic and unsteady stall aerody-
namic techniques developed at Sikorsky Aircraft
and the United Aircraft Research Laboratories and
(2) to apply the analysis to predict rotor gust
alleviation factors for comparison with those
given in Specification MIL-S-8698 (ARG) and in
Reference 2. The principal contribution of this
-analysis relative to that of Reference 2 is the
inclusion unsteady stall aerodynamics. The re-
sulting computer program was designed to function
on the CDC 6600 computer and is catalogued at both
the Langley Research Center and the Bustis
Directorate.

" Wing Gust Response

Before proceeding with a detailed analysis
of the helicopter gust response characteristics,
it is instructive to compare fixed wing and heli-
copter characteristics in relatively simple terms.
Such a comparison follows.

In analyzing the response of fixed wing air-
craft to discrete sharp edge gusts, (eg. Reference
3) the concept of a gust alleviation factor is em-
ployed. The gust alleviation factor is simply the
ratio of the "actual" incremental load factor pro-
duced by the gust to the incremental load factor
computed from simple steady-state theory. The
"actual"” load factor may represent a measurement
or may be computed from some more riggrous theory
applicable to the unsteady gust encounter situa- .
tion. Thus, if Ag is defined as the gust allevia-
tion factor, we have )

AN
Z&Y\s

A% - (1)

for fixed wing aircraft we haée-'>
oCe V
ey 5P O 52 Agdew
Va GW/g

(2)

Following the same approasch for a helicopter
having a rotor as its sole lifting element, we can
write:

(Ah)H = (AhS)H(Aﬁ)H , (3)

ety

Using steady, linear rotor theory results from
Reference 4, and assuming a sharp edge gust in-
stantaneously applied to the entire rotor,

is given by: -

(4ng)y, = f‘%“;‘v& RS t%f'v% (4)

(ang), = =° (t;, 2R Vg (5)

GW/beR

\ \/M,
'Elf ( )CL \4}

(4ns),, =
n (QVV/5‘4F( -

(6)

92



'Hence,'khe actual load factor is given by ~

@rh . 6, (ag), ~ & £ChneAg)y
A V% T éN/bAR '

Equation (7) is of similar form. to the. correspond—
ing fixed wing equation (Equation 2}. Further, by
comparing the two equations, it is clear that the
characteristic or average velocity for the rotor
is given by'tg.S1R and that the characteristic
area for the Yotor is the total blede area. The
characteristic velocity \QJ%, of the rotor is pre-
sented in Figure 2. A typical value of V&d% is
about 0.5£LR and the effect of advance ratio (or
forward speed) is seen to be small. This con-
trasts with the fixed wing case where the charac-
teristic velocity is equal to the aircrafi's for-
ward velocity.

1.0
@ 7=15,B=0.97 . .
c 9 ;
= 08} i
O >
® ¥
©3d  os} o
& 04 ’
1
(&
9 o2}
T 1l s
o>
o : — :
[6] 0.2 0.4 0.6
ADVANCE RATIO,p
Figure 2. Rotor Characteristic Velocity Ratio.

Now, attempts have been made to measure the
gust alleviation factors of helicopters through
side~by-side flightg with fixed wing aircraft.
However, the relative alleviation factors so de-
termined are only meaningful if the Gust Response
Parameter for the two aircraft are equal. This
equality of Gust Response Parameters is shown in
Equation 8:

v 2C
stV s

o L (8)
GW/g W

( GW/LAR W

If the relation above is satisfied, Equations (2)
and (7) indicate that the following equality also
holds:

'(A'On
Q('a' A%) 1)

Assuming the two aircraft enéounter the same gust .
velocity profile, Equation (9) reduces to

(an).,

(\/% A‘é)rw

(9)

.(_A_n._)_.“ (A‘&)u o)
(Bn)e (A%\)FW

Thus, the ratio of the gust alleviation factors
will be in proportion to the measured load factors

for the two sircraft. If the fixed wing gust al-
leviation factor is known, (Ag)H can then be de-’
termined. T

If Equation (8) is not satlsfied, then the =
gust alleviation factor for the helicopter can. be T
determined from the follow1ng relatlon. ;

| (Ad)H (van

(Ag).-_w @n), G‘W/S Fw

V BC..

(11)

(:éihqchl
Y

a
w% H

Typical values of the Gust Response Parameters of ~
Equation (8) are presented in Figure 3. The re-
sults of Figure 3 indicate that a helicopter having
a blade loading of 100 1b/ft2 and operating at a - .
forward speed of 250 fps will exhibit approximately
the same sensitivity to a gust as a fixed wi air-
craft having a wing loading of about 60 1b/ft%,
provided, of course, that the gust alleviation fac-
tors for both aircraft are equal. In practice,

for this example, the gust alleviation factor for
the fixed wing will be significantly higher (mean-
ing higher acceleration) than that for the helicop-
ter. .

SEA LEVEL
o8 — FIXED WING (3C_/3a =4.5)
: ——— HELICOPTER (e=5.73, §IR= 700 FPS)

/5= 10 LB/FT2
sk ow/s=10L8 20

GwleRjo '\_BIF‘\'

40

04r

0.2

GUST ‘RESPONSE PARAMETERS (SEE EQ 8)

o] 100 200 300 400
FORWARD VELOCITY,V-FT/SEC

Figure 3. Fixed Wing end Helicopter Gust

Response Parameters.

Factors Influencing Helicopter Gust Response

The computation of gust induced loads for
helicopters is'a difficult analytical task because
the rotary wing lifting system is a complex aero-
elastic mechanism operating in complicated aerody-
namic enviromment. Principal factors which can be
expected to influence the gust response of a heli-
copter are described briefly below.

a. Rotor blade response ~ Helicopter rotors
differ from fixed wings in that the blades
(wings) of the rotor are relatively flexible
and, in many cases, are articulated relative
to the fuselage. The blades, therefore, are
much more responsive to gust loads than is
the sircraft as & whole and react in such &
way as to reduce or isolate (at least tem-
porarily) the fuselage from the impact of
the gust. Thus, while the blades are re-
sponding to the gust, the fuselage has time
to build up vertical velocity which, in
turn, reduces the effective velocity seen by
the rotor. A simple example illustrating




b.

Figure k.

the magnitude of the various forces con-
tributing to the fuselage acceleration is
shown in Figure 4 for a sharp edge gust
applied instantaneously to a rotor having
nonelastic flapplng blades and operating in-
hover. In this extreme case, because of the
overshoot of the blade flapping response,
the peak acceleration experienced by the
body is sbout the same as it would have been
had the blades been completely rigid (i.e.
equal to the acceleration given by the gust
term alone). As seen in Figure L, the
forces agsociated with the blade dynamic re-
sponse are large; hence any factor influenc-
ing the blade is potentially important.
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Comparison of Terms Contributing to
Fuselage Acceleration.

Fixed wing respongse - If the helicopter is
fitted with fixed wings (compound configura-
tion), additional gust loads are, of course,
generated. These can be treated using
availeble fixed-wing techniques and are not
of primary concern in this study.

Rotor Aerodynamic Modeling - The ability of
a rotor to generate load factor during a
gust encounter will depend on the proximity
of the blade trim angle of attack distribu-
tion to stall. A rotor operating on the
verge of stall prior to a gust encounter can
be expected to generate less additional 1ift
due to the gust than can a rotor initially
operating further away from stall. The
modeling of stall aerodynamics is important;
therefore, the impact of unsteady aerody-
namics on rotor stall was investigated in
this study.

Gust Characteristics - Gust profile and am-
plitude are, of course, potentially impor-
tant factors. In addition, the speed of the
helicopter as it penetrates a given gust
front can be expected to be significant.
Figure 4 indicated the fuselage acceleration
for a gust epplied instantaneously to the
entire disc. With a finite-time penetration
of the gust front, the contribution of each
blade to the fuselage loading will not be
identical (as in Figure 4) but rather will
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e.

Figure 5.

be phased so that the peak loads for each
blade occur at different times (see Figure 5).
As a result, finite-time penetration of the
gust reduces the peak fuselage accelerations
produced by a given gust profile.

1.0

r=10

SHARP-EDGE GUST
FINITE TIME PENETRATION
NONELASTIC BLADES

oS5

FOR NONFLAPPING ROTOR

RATIO OF ACCELERATION TO PEAK ACCELERATION

300 400

BLADE AZIMUTH,DEG

Finite~-Time Penetration Causes Peak

Blade Forces to be out of Phase.
Control system inputs - The ultimate effect

of gust on the helicopter must be influenced
by any reaction of the pilot or stability
augmentation system to the initial loads pro-
duced by the gust. It is possible (but un-
likely with a properly designed system) that
the largest loads produced by the gust will
not be the initial loads but, rather, those
agsociated with the longer term response of
the coupled system represented by the air-
craft, pilot, and stability augmentation sys-
tem (See Schematic in Figure 6). These longer
term effects depend on the specific design
characteristics of the aircraft system and no
attempt was made to model them in the present
study. Hence, the gust-induced loads con=-
sidered are the initial loads caused by the
gust for & controls-fixed rotor operating con-
dition.

SECONDARY LOAD PEAK
RESULTING FROM INTERACTION
OF GUST AND AIRCRAFT-
PILOT - SAS SYSTEM.

INITIAL MAXIMUM

LOAD PRODUCED

BY GUST (CONTROLS -FIXED)

AIRCRAFT A

LOAD FACTOR

e ot ——

—
_\AIRCRAFT 8

TIME

Figure 6. Schematic of Possible

Load Factor Time Histories.



" Brief Description of the Analysig

Completé documentation of the equations used
in the analysis is given in Reference 5, while
procedures for running the associated computer
program mey be found in Reference 6. Both of
these references can be obtained from the Eustis
Directorate of USAAMRDL.

Briefly, the analysis is essentially a digi-
tal flight simulator that can be used to determine
the fully coupled rotor - airframe response of a
helicopter in free flight. This is accomplished
by the numerical integration of the blade - air-
frame equations of motion on a digital computer.
The principal technical assumptions and features

. of the analysis are listed below.

1. The blade elastic response is determined
using a modal approach based on the equa-
tions defined in References T and 8. The
number ¢f modes used consisted of three
flatwise, two chordwise and one torsion for
each %lade.

<The1aerodynamic modeling of the bhlade in-
eludes unsteady aerodynamic effects based on
the equations- and tabulations defined in
"Reference & which assume that the 1ift and
moment coefficients can be expressed as

‘as functions of instentaneous angle of at-
“tack and its first two time derivatives.
‘Steady~state drag was used, hoyever, hecause
of a lack of data on unsteady drag in stall,

Rotor inflow is essumed constant for this
study although provision for time-varying
induces velocities is available. The con-
stant velue is determined from classical
" momentum theory and wes invariant with
either position on the disc or with time.
In view of the short times required for
peak loads to be achieved, this assumption
is congidered reasonable,

The response of each individual blede is
considered.

The fuselage is a rigid {nonelastic) body
having six degrees of freedom. Provisions
for fixed wings are included. The aerody-
namic forces on the wings are computed using
simple,.finite-span wing theory, neglecting
stall and unsteady effects.

Fuselaée aerodynamic forces and moments -are
determined using steady-state nonlinear,
empirical data.

The gust - is assumed to be both two dimen-
sional (i.e. does not vary along the lateral
axis of the rotor) and deterministic in
ngture. - Although three dimensional and ran-
dom gust effects may prove important, their
ineclusion ' was beyond the scope of this
study. )
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.s::mple‘ Linéa.r Gust Theory )

As stated earller, it was dedired to cast the
results obtained in this 1nvest1gat10n in terms’ of,
correction factors (gust alleviation‘factors) that
could be applied t6 results dbiained .from a 51mplev'
specification eventually evolved ‘

The 51mple theory used is that deflned in .
Reference 4, in which blade stall and" compre531;‘
bility effects are neglected. In-addition, it is -
assumed here that the gust is’ sharp-edged and is
instantaneously applied to.the entire rotor. .The; |,
dAncrement in rotor load factor produced by the gust’.
is then given by- Equatlon (5) " Using the relation;

r'\‘R QLR') (q_)<f

(12)

the incremental rotor. load factor given by simple
theory is

@ns), - Y

LCT/ ) :LR (13)

The ratio of the (An )i . computed by the more
complete analysis described herein to the value
given by Equation (13) represents a gust allevia-
tion factor which can be used to correct the load
factors results given by Equation (13). Thus:

A (an)y
L ‘3\ (A" O

(1)

. Values of Ag presented in this paper are based on a

rotor blade 1lift curve slope, a, of 5.73. Hope-
fully, if Ag shows reasonably consistent trends, it
can be used with some confidence to rapidly predict
rotor load factors for combinations of parameters
other than those considered in this study.

Scope of Study

Gust load factors, blade bending moments, vi-
bratory hub loads, and rotor control loads were
calculated for a range of values for rotor thrust
coefficient-solidity ratio, blade Lock number, ad-
vance ratio, and blade flatwise and torsional
stiffness. The effect of adding a wing was also
investigated. The responses associated with three
types of vertical gusts were investigated: sine-
squared, ramp, and sharp-edged. The sine-squared
gust and the ramp gust reached g maximum value of
fifty feet per second at a penetration distance of
ninety feet. The gust profiles are disvplaved in
Pigure 7. Three types of rotor systems were eval-
uated: articulated, nonarticulated (hingeless),
and gimbaled. Emphasis in this paper is placed on
the results for the reference articulated rotor.
The reader is referred to Reference 10 for details
of the other configurations studied. The articu-
lated rotor properties can be found in Table I,
together with the natural frequencies of the
blades. As indicated, the number of modes used



consisted of three flatwise, two chordwise, and
one torsional modes. :
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Discugsion of Results

" Effect of Gust Profile

The effect of gust profile on incremental
rotor thrust force for the reference artlculated
rotor was evaluated by the penetration of three
gusts with profiles as shown in Figure 7. The
helicopter was assumed to penetrate a sthtionary

. gust with a velocity of 350 feet per second. This
‘corresponds to an advance ratio of 0.5.

" The time history of the rotor thrust asso-~
ciated with each of the gust profiles is shown in
Figure 8. It may be seen from this figure that
while the actual gust wave form has little impact
on maximum rotor force and consequently on rotor
load factor, the particular time histories behave

- differently, although in an expected manner. Ini-
tially, the sine-squared and the ramp gust shapes
result in similsr peak rotor loads at approximate-
iy the seme time. The sharp-edge gust induces a
greater peak load with a faster build up. As the
penetration distence increases, the loads produced
by the sharp-edge gust and the ramp gust tend to
merge since their respective velocities are both
50 fps while the value of the sine-squared gust
velocity has dropped back towards zero.

Analysis of the computed results forming the
basis for Figure 8 indicates that at the time the
maximum rotor vertical force and load factor is
reached, the helicopter fuselage has had time to
develop only a modest amount of vertical velocity.
The vertical velocities at the peak load points of

_the helicopter associated with the sine-squared
and sharp-edged gusts are 6fps, and 3 fps,3 fps,
respectively. These compare to the 50 fps gust

~velocity, indicating that 1little gust alleviation
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is being produced by fuselage motion for the con-
dition analyzed.

The three types of gust profiles evaluated did
not produce greatly different peak rotor loeds.
While the sharp-edge gust does produce the largest
loads,it is probably the least realistic of the
three profiles. Since other studies, such as
Reference 2, have used a sine-squared gust, the
remainder of the results presented are based on
this profile. :

Effect of Rotor and Flight Condition Variables

The variation of gust alleviation factor, (as
computed from Equation 1k), with initial rotor
loading is shown in Figure 9 for the three types
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Different Rotors.



types of rotors analyzed. Rotor.loading in this
figure has been expressed both in terms of rotor
thrust coefficient solidity ratio and rotor disc
loeding. It should be remembered that disc load-
.ing is not a unigue function of Cp/g but rather
depends on the value of density, tip speed end
golidity of the rotor. Values for these quanti~
ties are noted on the figure. :

The results of Pigure 9 indicate that in-
creasing CTﬁr leads to a large reduction of gust
alleviation factor, This is similar to the trend
noted in Reference 2 and is belleved to be re~
leted to the loss in average additional 1lift
capsbility at the higher Cp/g due to the occur-
rence of stall, The influence of rotor configura-
tion is seen to be of rather secondary importance.
Rotor configuration would be expected to influ-
ence fuselage motion through the transmittal of
differing rotor pitching moments to the airframe,
depending on the degree of rotor articulstion.

- The relative insensitivity of the results to con-
figuration is believed to be due to the short
time in which the initial, controls-fixed load
factor is generated. As a result, the fuselage
response to the differing moments is not large
aend the load factor tends to be dominated by the
rotor blade dynamic response, which is roughly
the same:for all rotors. This result is also
similar to that observed in Reference 2.

It is also evident from Figure 9 that the
gust alleviation factors defined in MIL-S-8698
(ARG) are too high (i.e. result in loads which
are too high). The conservatism of the current
specification is particularly evident at the high
thrust coefficient-solidity ratios where rotor
stall becomes a factor limiting gust~induced
thrust generating capability. On this basis, one
would expect the gust alleviation factor for up-
ward gusts to be different from those for down-
ward gusts (i.e. gusts which unload the rotor).
While downgusts are not critical from s structural
loads viewpoint, they could prove more important
from & passenger - comfort point of view.

The resul%suof'Figure 9 are for typical
reference rotor configurations (see Reference 10
and Teble I herein). As part of this study, cal-
culations were made to examine the sensitivity of
the computed gust alleviation factors to separate
variations in blade Lock Number, bending stiff-
ness and torsional stiffness. Ranges of the
parameters considered are noted below:

Lock Number: reference, 0.7 ref. 1.3 ref.

Bending stiffness: reference, 0.5 ref.

Torsional stiffness: reference, 0.5 ref.

The parameter variations listed above were made
at an advance ratio of 0.3 and 0.5 for a Cp/e of
0.06. The range of rebults is also shown in
Figure 9 and as can be seen, the effect of blade
Lock number and stiffness is relatively smsll.
Lock number end advance ratio account for most of
the smell variation shown, with the lower advance
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ratios and higher Lock numbers being associated
with the lower gust alleviation factors. The relaw-
tively small effect of blade stiffness variations
is perhaps not surprising inasmuch as the totel
blade stiffness tends to be dominated by centrifu-~
gal stiffening effects. The wvariations shown for
Cpfa of 0.06 are believed to be representative of
those at other Cp/g values; however, this should be
verified. : -

Articulated rotor load factors predicted using
the results of Figure 9 are presented in Pigure 10

where they are also compared to the results of

Reference 2, Load factors predicted by the current
study are seen to be higher than those of Reference
2. This increase appears to be due to the use of
ungteady aerodynamiecs in the current study.
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Gust-Induced Blade Stressges, Control Loads and
Vibration

The effects of a gust encounter on other
quantities of interest to the designer such as
blade stresses, control loads, and aircraft vibra-
tion were briefly examined, In examining these
effects, an attempt was made to generslize the re-
sults to a limited degree by relating the maximum
values produced by the gust to the initisl trim
values. Results are based on the trim ‘condition of’
Cpfe = 0.06 and an advance ratio of 0.3 are pre-
sented in Figure 11. Detailed analysis of the
trends shown were beyond the scope of this paper.
The reader is referred to Reference 2 for a more
detailed discussion.
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Sensitivity of Results to Assumptions

. As discussed in an earlier section of this
' report, many factors could potentially influence - -
rotor gust response characteristics. To account
for all of these factors leads to a time consum-
ing, complex, digital analysis.
. paregraphs, the results of a brief examination of
the importance of some of these factors are dis-
cussed. Only the reference srticulated rotor at
one operating condition is considered. Any con-
clusions drawn from these results must, therefore,
be considered preliminary and should be substanti-
- ated by further investigation. A summary of the
© results obtained is presented in Figure 12. Shown
.is the percentage change in the predicted gust al-

In the following -

leviation factor resulting. from the separate elim~"

ination of fuselage motion, blade elastic torsion,
finite time penetration, and unsteady stall ef-
fects in the analysis. The baseline value cor-
responds to value for the complete analysis. A -
‘positive change in Ag means that the effect

eliminated causes an increase in predicted load- - .

ing. It is evident that the unsteady stall aero-:
. Gynemic and finite-time gust penétration effects
are most important. Excluding- unsteady aerody-
inamics reduces the predicted value of Ag by about
29%..- This is because.the meximum 1ift . cepability
of the rotor baeed on steady aerbdynamic ‘stall
‘characteristics ig lower than that based on Un= .
steady. characteristics. (see Reference 9), The re=
.duction is consistent with the obsexnved 1ower
velues of predicted load factors obtained ih

.

'*quired by, the U. S. Army in SEA.

Reference 2 and previously presenﬁed in Figure 10.
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Anslytical Assumptions.

The largest change in predicted gust allevi-
ation factor was produced by the elimination of
the finite time penetration of the gust front. As
might be expected, when the gust is assumed to af-
fect all blades simultaneously, the blade forces
are all in phase and large velues of Ag {and hence

" - loading) result.

It should be emphasized that the results pre-
sented in Figure 12 were determined for only one
.reference trim condition. Further work is required
to substantiate the generality of the.réesults.

_ Gust Load Factor Experience.in SEA

. 'The sarlier portions of- this .paper have. been
‘ devoted to analytical techniques. appropriate for
detefmlnlng the -effects of gust encounters on heli-
copter response variables. One point which has
*been mede is that rotor blades, because of their-
flexiblllty, tend to reduce the impact of the gust
on the fuselage. Resulting gust allev1ation fac—
* tors have been found to be low and, hence, one
would expect thet gust-induced loads on the fuse- -
lege could be reduced in importance, Experimental
evidence supporting this contention has been ac-
A vrief discus-
sion of thet data is presented below.

‘“" f‘ The U S. Army has been scquiring’ usage deta

on its combat operational helicopters in Vletnam .
s since early 1966.. Beginning with both.the cargo
and armored versions of the CH-LTA, the CH-5LA,
AH-1G; ' nd.UH-6A helicopters were instrumented to

. record the history of their actual combat usage.v

<

, Since control positlons end ¢ g. accelera-f;
tions weére among the perameters measured ‘and the
data were, recorded in shelog format,. occurrences

. of gust- induced loads were.identified-and isdlated
. from pillot-induced (maneuver) accelerations by
- anglyzing those particular trace recordings.

Gust~
induced acceleration peaks, therefore, were- identi-

,fied as’ those accelerations occurring when both
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the cyclic and collective stick traces were steady
or, if stick activity was present, the sense of
the peeking acceleration had to be in opposition
to that expected from the stick control motion.

A total of 1477 hours of flight data were
acquired during the measurement programs for the
cited aircraft (References 11-13). The conclu-
sive finding in each of these programs was that
normal loads sttributed to gust encounters were.
of much lesser magnitude and frequency than
msneuver loads. Further, when the total load
factor experience was statistically examined for
each aircraft, the loads directly attributed to
gust encounters were found to be only a small
percentage of the total experience. These points
are graphically illustrated in Figure 13. The
maneuver load scatter band was obtained from
References 14 and 15.

It should be pointed out that while gust-
induced load factors are smasller than typical
maneuver load factors for military aircraft, gust
loadings can be an important consideration from a
ride comfort stendpoint in commercial applica-

tions.
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Conclusions

The following ‘conclusions were reached as
a result of this study. It should be noted that
Conclusions 1-3 are based on the computation of
initial gust-induced load factors for various
rotor systems mounted on a single fuselage and
operating with the controls fixed throughout the
gust encounters.
1. The results of this study generally con-
firm those of Reference 2, indicating that
the current method for computing gust-in-
duced load factors for helicopter rotors
(Specification MIL~-S-8698 (ARG)) results
in realistically high velues and should be
revised.

If the gust amplitude is sufficient to
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cause retreating blade angles of attack
greater than the two-dimensional, steady-
state stall angle, the inclusion of unsteady
aerodynamic effects based on the model of
Reference 8 results in gust-induced load fac-
tors which are higher than those based on a
steady aercdynamic model such as that used in
Reference 2.

Principal parameters influencing gust-in-
duced load factor appear to be nondimen-
sional blade loading, proximity of the rotor
trim point to blade stall, and rate of pene-
tration of the rotor into the gust.

Gust losdings on military helicopters appear
to be significantly lower than those due to
maneuvers.
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»fDensity Slugs/ft2

Reference Articulated -

. TABLE I.
- . Rotor Characteristics

.002378
:Tip'sbeed,'ft/sec . .700.
" Redius, £t . 25
" No. of blades l‘ﬁ § 4.
'Blade Chord, £t * - 1.67
0 _Flap hinge off. et ratio ' 0.0k
‘;‘Twist ‘deg’ : -8.0
Young's Modilus, psi 107
* Mass per unit 1ength at 0. TSR slugs/ft 0.18
"Lock Number ) 10.0
_Rigid body flatwise frequency 1.03P
First bending flatwise frequency 2.66P
- Second bending flatwise fiequency 5.06P
Third ben@ing fiatwise frequency 8.50P
Rigid body chordiwise frequency 0.25P
. First bénding thordwise frequency 3.68P
‘Sécond bending chordwise 10.20pP
: 5.72P

First bending. torsional frequency
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Abstract

Antiresonance theory is the principle
underlying nonresonant nodes in a struc-
ture and covers both nonresonant nodes
occurring naturally and those introduced
by devices such as dynamic absorbers and
antiresonant isolators. The Dynamic
Antiresonant Vibration Isolator (DAVI)
developed by Kaman Aerospace Corporation
and the Nodal Module developed by the Bell
Helicopter Company are specific examples
of the applications of transfer anti-
resonances. A new and convenient tech-
nique is presented to numerically calcu-
late antiresonant frequencies. It is
shown that antiresonances are eigenvalues’
and that they can be determined by matrix
iteration.

NovelAapplications of antiresonance

theory to helicopter engineering problems, .

using the antiresonant eigenvalue equation
introduced in this paper, are suggested.

2 oW

Notation
£ foreé vector
seiffneés matrix

_ maSsﬁméﬁrix
Yy fespoﬁse vector
2 impedance matrix
6‘ antiresonant eigenvector
w? forcihg frequency
w. 'éntiresonant frequency

Presented at the ANS/NASA-Ames Special-
"ists’' Meeting on Rotorcraft Dynamlcs,
February 13 =15, 1974. ;

In forced vibrations an antiresonance
or "off-resonance node", is that frequency
for which a system has zero motion at one
or more points. A nodal point in a normal
mode is a special case of an antiresonance.
Driving point antiresonances have a
readlly grasped physical interpretation -
since they are the resonances of the
system when it is restrained at the .
driving point. However, transfer anti- -
resonances are not all real and, in =
general, have not been susceptible to
analysis except in special cases. The
eigenvalue equation for antiresonances
used in this paper renders them as amen-;
able to analysis as are resonances. The '~

" mathematics for analyzing resonances. are e

conventional and well- known

Although general analytlcal methods
for transfer antiresonances were not here- -
tofore commonly used, the existence of
both driving point and transfer antires-
onances in the forced vibration of a
string were described by Lord RayleighZ.
The invention of the dynamic vibration
absorber in 1909 gave antiresonances some °*
practical engineering.importance3. -The
absorber is an appendant dynamic system -
which has a driving point antiresonance
at its fixed base natural frequency and lt
therefore reacts the forces at its base in
the direction in which it acts. Isolating-
devices based on transfer antiresonances
were not invented until this decadeé.
Sometimes natural fuselage transfer anti-
resonances for major hub excitations .
occurred near a critical point and at the:
proper frequency (e.g., the pilot's seat
at blade passage fregquency) by fortuity
of helicopter design. Occasionally,

" engineers have manipulated transfer -

antiresonance frequencies and p051tlons'
in design through lengthy trial-and-error
response analyses. . However, the industry
has not used a dlrect analytical method
for calculating the positions and fre- -

_quencies of natural antiresonances..
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Structures have antiresonances as an
intrinsic "natural" property much as they
have "natural" resonant frequencies.
Natural transfer, or "off-diagonal", anti~
resonances are as important to structural
dynamics engineering as are resonances.
Unfortunately, many of the theorems which
underly conventional analyses do not apply
to transfer antiresonances. The anti~
resonant dynamical matrix is in general
nonsymmetrical and therefore not positive
definite. This results in both left-
handed and right-handed eigenvectors which
are unequal and require a new orthogonal-
ity condition for the calculation of ‘
successive eigenvectors. The antiresonant
frequencies of the transfer antiresonance
determinants are not necessarily real and
the imaginary roots do not have a simple
physical interpretation. These matters,
along with the lack of an engineering
eigenvalue formulation for antiresonances,
may, in part, account for the relatively
little attention given to natural anti-
resonances over the years.

Theory

The steady-state equations of motion
for an undamped spring-mass system vi-
brating in the vicinity of equilibrium
are:

(K - w’M)y = f (1)
where the impedance matrix is defined as

Z = [0f;/0y1 = (K - w2M) (2)

Let all the forces be zero except the
force acting at the k~th generalized
coordinate and further impose the re-
straint of zero motion for the j~-th
generalized coordinate. The resulting
eigenvalues are jk antiresonances of
Equation (1). Since Z is real and
symmetric the antiresonance eigenvectors
are real and the jk and kj antiresonance
eigenvalues are real (positive or nega-
tive) and equal. '

Partition Equation (1) so that the
kj-th element of the impedance matrix
appears in the lower right-hand corner.

2 m#k:zmj Yy
n ! 0
_______ f_z__LELf_& 2E 3 ) (3)
f
an n#j |ij 0 fk
where‘

Zap MFE 4 I Py e
NN SR Y [ il ey

7 n#3j 1z | "R k] (4)
kn I %y

If the impedance matrix is similarly

partitioned so that the upper left-hand
matrix does not contain the j—-th row or
the k-th column, then :

T
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It follows from Egquations (4) and (5) that

o
Zp = (6)

From Equation (3) we obtain
Zy =0 (7)

A kj antiresonance is defined such
that for a force at k alone, the response
at j is zero. Normalizing y and sub-
stituting for Zp in Equation (7) results
in the antiresonance eigenvalue eqguation.

L1
MAer = ;-7 KAer (8)

r

A jk antiresonance eigenvalue equation is
similarly defined by considering Equation
(5) and making use of Equation (6).

T _ 1 7T
f7My = 7 8Ky (9)
s .

Equations (8) and (9) constitute a
set of right-handed and left-handed eigen-
vectors. Since Zp is not symmetrical,
the jk eigenvectors are not orthogonal
but instead are biorthogonal with the kj
eigenvectorst. Premultiply Equation (8)
by g T, postmultiply Equation (9) by 6

rl
s
and subtract to obtain

1 _ 1,57 =
(;—7 " 2)95 KAGr ] (10)
T s
when s # r we have
~ B
0 Kp0 = 0 (11)

Thus, the kj antiresonance eigenvector is
biorthogonal to the jk antiresonance

1Oz.eigenvector.



When s = r the. correspondlng gen- '

erellzed mass and stlffness are deflned es

’r ‘”Aef = oz
o Tk, 6 =K (13)

¥ 'A'r xr

.Successive antiresonance éigenvectors. are .

found by applylng the biorthogonality
condition and using cla531ca1 matrix
iteration technlques. ‘The (n + 1)st jk.

antiresonant eigenvector is obtained from -

Equation (14),

=~ T
n 0,0.;
-1 i"i _ -1
(KA iil K, )MAen+l . w2 en+1 (14)
. n+l

which establishes the method of sweeping.>

Discussion of Theory

. Each antiresonant eigenvector con- .
sists of ‘a pair which is biorthogonal with
respect to both mass and stiffness. For
driving point antiresonances (j =.k), the
two eigenvectors are, obviously, the same.
An N-degree-of-freedom system has N ]
possible antiresonant eigenvectors cor-
responding to all possible forclng and
‘response coordinates.

Since the mass and Stiffness'matrices
are nonsymmetric in. the antiresonance
eigenvalue problem and consequently not .
positive definite when j # k, the anti-
resonant generalized masses and stiff-
nesses may be either positive or negative.
In other words, the antiresonance fre-
quenc1es are not necessarily real. When
j = k the antiresonant mass and stlffness
matrices are symmetrlcal and positive
definite, resultlng in at least N-1
p031t1ve real antlresonances. As shown
in Reference 6 thé driving point - anti-
resonances lie between the natural
resonant frequencmes.

-Agpllcatlons of Antlresonance Theory

‘To 1llustrate ‘the practlcal potential
of antlresonance theory; consider a ten-
degree-of—freedom beam specimen with

springs to-ground at stations' 3. and 9 and )

mass and stiffness parameters simulating ’
a 9000 pound helicopter. Antiresonances
-are continuous functions of ‘frequency and
position and Figure 1 presents- a typlcal
position spectrum plot of the specimen
forcing at station 3 alone. The dashed
vertical lines are the’ natural ‘resonant
frequencies determined conventlonally.

- When an antiresonance line crosses a .
natural frequency line there is a nodal
‘point in the "natural mode".
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Figure 1. Antiresonance Lines Forcing at Station 3

With the same techniques of altering
masses and stiffnesses to avoid undesir-
able natural resonances, the engineer can
manipulate natural -antiresonances.. The
stiffness between stations 2 and 3 was
increased by 11.8% in the K53 term of the.
stiffness matrix and Figure % illustrates
this effect in the natural frequencies
and antiresonance lines. Similar changes
in the mass of the structure have a sim-
ilar effect. This possibility for re- .
sponse control indicates a profltable
area for further exploration.
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F|gure 2. Antiresonance Lines with Stxffness Change
* Fotcing at Station 3 )

Conventlonal Use of the Dynamlc Absorber

A dynamlc absorber is ‘an appendant
dynamic system attached to a hellcopter, y
usually at a point,-as shown in Figure 3. -
When we eliminate the i-th row and column,
corresponding to the ‘attachment point '
(see Figure 3) we obtain two uncoupled

‘systems.
103



(15)

- | A I e
e 1oz 10 vl |+
{ | _
————— _‘_—-—_-—-—to——_—_ e - —4 fs ——
I | _< L
Zt | L 4 % ({0
e ] I I A
L 0 I Zsi | 2y Ya 0
| l 4 0 U .. J

Figure 3. Conventional Ahsorher

The antiresonant eigenvalue equation is
obtained from Equation (15) as

k. "Im 18 = L_

aa aa’r 2 "r. (16)

which is of the form of Equation (7).

If the absorber system were attached
at I points, instead of one, we would
eliminate the I rows and columns corres-
ponding to the attachments and find the
simultaneous antiresonant frequencies of
all I points. '

Unconventional Use of the Dynamic Absorber

In some instances there may be only
one significant unreacted force on the
helicopter as, for example, when an in-
plane isolation system or in-plane hub or
flapping absorbers leave small hub moments
but a relatively large vertical oscilla-
tory force. We can use a dynamic absorber
in the fuselage at some point i as a
"resonator" to shift antiresonance lines
so that there exists an antiresonance. at
another point j (e.g., the pilot's seat)
for the one remaining large force or
moment along the k-th generalized coor-
dinate. This is creating a jk antires-
onance by manipulation of a "resonator"
at point i. The jk .antiresonant fregquency
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is not at the tuned frequency of the
“resonator" ‘and. does not necessarily
produce an antiresonance-at j for
excitations along generalized
coordinates other than k.

The aforementioned system and equa-
tions of motion are shown in Figure 4.
To obtain an antiresonance at j for a
force at k we eliminate the k-th row and
j-th column from the eguations of motions.
This results in the antiresonant eigen-
value equation,

Bggr  EFI)N Ig 4
N 4. S WO 40 . 38 N
s Ve o(=)0
..* __________
i
|

___________ |
Z_. ‘Zaa
v (17)
which is of the form of Equation (7).
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Figure 4. Antiresonance at Station j from 2 Resonator at Statign i

This technique of using a remote
dynamic absorber as a "resonator" allows
the engineer to obtain an antiresonance,
to a given excitation, at points where
structural limitations prevent installa-
tion of an absorber. When the new res-
onant frequency introduced by the
"resonatoxr” cuts across a natural anti-
resonance line, the shifts are dramatic
as shown in Figure 5. Figure 5 illustrates
the antiresonance lines in the specimen,
forcing at station 3, when an absorber of
77.2 pounds tuned to 7.7 Hz is added to
station 2. The natural frequency intro-
duced: by the absorber intersects the
antiresonance line of Figure 1 and pro-
duces new antiresonances at all stations,



forcing at station 3.
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Figure 5. Antiresonance Lines with Dynamic Absorber at
Station 2, Forcing at Station 3

The effect at station 5 of the 77.2
pound absorber located at station 2 and
tuned to 7.7 Hz, in terms of both anti-
resonant frequency and bandwidth, is the
same as the effect produced by a 193 pound
absorber located at station 5 itself and
tuned to 8.0 Hz. Bandwidth is here
defined as the difference between the
antiresonance frequency and the nearest
natural frequency. This comparison is
presented in Figure 6. The approximately
two to one reduction in absorber weight
does not imply that such savings are
always obtainable.
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Figure 6. Comparison of Antiresonance Lines
far Two Absorhers

Antiresonant Isolators

Passive antiresonant isolation
devices have received considerable
attention from the industry in recent
years. Notable among these are Bell
Helicopter's Nodal Module, Kaman's DAVI
series, and the Kaman COZID.

Figure 7 illustrates the antiresonant
isolation system and corresponding equa-
tions of motion. The excited structure
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Figure 7. Antiresnnance Isolation

is coupled to another structure through,
and only through, the antiresonant
isolation system which has inertial and
elastic elements. Any isolator with a
single input and single output, or a
symmetrical arrangement having the same
effect, has antiresonant frequencies given
by the eigenvalues of

K 1K M._IM

i
_QE_JI.__D_D l_)l_,__l_).l_) ol= ..___12 <} (18)
Kor 1¥op Mor } Mop ®a

where I, O, and D represent the input,
output and internal isolator degrees-of-
freedom, respectively. The two-dimen-
sional and three-dimensional DAVIs have,
respectively, each two and three un-
coupled equations of the form of Equation
(18).  Two outputs displaced with dynamic
symmetry from a given input, or the con-
verse, are also described by Equation (18)
because the roots are not changed by
transposing a matrix.

It is possible to solve for simul~
taneous antiresonances on arbitrarily
placed multiple outputs for an equal
number of arbitrarily placed multiple
inputs by letting I and O be greater than
one in Equation (18). However, such
simultaneous antiresonances will, in the
general case, occur only for those dis-
tributions of input forces given by the
product of the rectangular impedance
matrix of rows corresponding to the forced
degrees of freedom and the vector of dis-
placements. This is the reason why
multiple input-output antiresonant isola-
tors are not used in engineering. It is
observed that the impedance matrix of



Figure 7, is, in general, nonsymmetric
while the impedance matrix of Figure 3
is necessarily symmetric. That is the
mathematically distinguishing feature
between absorbers and antiresonant
isolators.

It is obvious from Equation (18) that
an infinite number of mechanical systems
exist which will produce antiresonant
transmissibilities at more than one fre-
quency. Such systems can be analytically
synthesized using desired antiresonant
frequencies, the biorthogonality cons
dition, and the methods of Reference 7.
However, not all such synthesized systems
will be physically realizable and not all
of the physically realizable synthesized
systems will be practical from an
engineering standpoint.

An immediately practical application
of Equation (18) would be the investiga-
tion of physical multi-input antiresonant
isolators with internal coupling using
simpler engineering arrangements for
multi~-harmonic antiresonances than has yet
been achieved.

Conclusion

This paper has presented a solution
to the antiresonant eigenvalue problem.
It has been shown that antiresonances can
be determined by-matrix iteration tech-
niques. Antiresonant nodes introduced by
dynamic absorbers and antiresonant iso-
lators have been discussed to illustrate
the novel application of the theory to
helicopter engineering problems.
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THE EFFECT OF CYCLIC FEATHERING MOTIONS

ON

DYNAMIC ROTOR LOADS

Keith W. Harvey
Research Engineer
Bell Helicopter Company
Fort Worth, Texas

Abstract

The dynamic loads of a helicopter
rotor in forward flight are influenced
significantly by the geometric pitch
angles between the structural axes of the
hub and blade sections and the plane of
rotation.

The analytical study presented in-
cludes elastic coupling between inplane
and out-of-plane deflections as a function
of geometrlc pitch between the plane of
rotation and the prlnc1pal axes of inertia
of each blade. 1In addition to a mean col-
lective—pitch‘angle, the pitch of each
blade is increased and decreased at a one-~
per-rev frequency to evaluate the dynamic
coupllng effects of cycllc feathering mo-
tions. The difference in pitch between
opposed blades gives periodical coupling
terms that vary at frequencies of one- and
two-per-rev. Thus, an external aerody- .
namic force at n-per-rev gives forced res-
ponses at n, n+l, and n*2 per rev.

The numerical evaluation is based on
a transient analysis using lumped masses
and elastic substructure techniques. A
comparison of cases with and without cyclic
feathering motion shows the effect on com~
puted dynamic rotor loads. The magnitude
of the effect depends on the radial loca-
tion of the pitch change bearings.

Introduction

For a stiff-in-plane rotor system,
the blade chordwise stiffness may be 20
to 50 times greater than the blade beam-
wise stiffness. The elastic structure
tends to bend in the direction of least
stiffness, resulting in dynamic coupling
between out-of-plane and inplane motions
as a function of the geometric pitch
angles due to collective pitch, built-in
twist, forced cyclic feathering motions of
the torsionally-rigid structure, and elas-
tic deformation of the blade and control
system in the torsional mode.

Typical cruise conditions for a mod-
ern helicopter require collective pitch
angles of 14 to 16 degrees at the root,
depending on the amount of built-in tw1st
Cyclic feathering motions of 6 to 7 de-
grees are required to balance the one-per-
rev aerodynamic flapping moments. In cur-
rent design practice, elastic torsional
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deflections of the blade and control sys-
tem of a stiff-in-plane rotor are generally
less than one degree. The largest part of
the angular motion in the blade-torsion de-
gree of freedom, therefore, is the forced
feathering motion due to cyclic pitch.

Periodic variations of the inplane/
out-of-plane elastic coupling terms are
caused when the geometric pitch angle of
each blade is increased and decreased at a
frequency of one cycle per rotor revolution.
When one blade is at high pitch and the op-
posed blade is at low pitch, an asymmetri-
cal physical condition exists with respect
to a reference system oriented either to
the mast axis or to the plane of rotation.
One-half revolution later, the reference
blade is at low pitch and the opposed blade
is at high pitch. Thus, periodic dynamic
coupling occurs at the principal frequency
of one-per-rev with respect to a rotating
coordinate system. The coupling terms are
nonlinear functions of blade pitch; hence,
these terms also have 2-per-rev content.

Both the steady and periodic coupling
terms have been treated in an analytical
study of the effects of one-per-rev cyclic
feathering motions on dynamic rotor loads.
Equations have been derived and programmed
for a digital computer solution of the
transient response of an elastic two-bladed
rotor.

The rotor is modeled by elastic sub-
structure elements and lumped masses, for
which the accelerations and velocities are
integrated over small time increments to
determine time histories of deflections,
inertia loads, bending moments, etc. The
time-variant analysis includes the capa-
bility to calculate rotor instabilities.
The present computer program has been
tested for this capability, but further
discussion of instabilities is beyond the
intent of the paper.

Dynamic rotor loads have been calcu-
lated for a parametric series of rotors,
where the coupled natural frequencies were
tuned over the range of contemporary de-
sign practice for teetering rotors. A de-~
scription of the analysis and a summary of
computed results is presented.



Objective

. 'A primary consideration in the design
of a helicopter rotor is to minimize os-
cillatory bending loads, or at least to
reduce the loads to a level that will en-
sure satisfactory fatigue 1life. During
early stages of design, the principal
method of evaluating the dynamics of a
proposed rotor is to calculate its coupled
rotating natural frequencies. If required,
design changes are made to achieve suffi-
cient separation between the natural fre-
quencies and harmonics of the rotor oper-
ating speed.

Current practice at Bell Helicopter
Company is to require a separation of 0.3
per rev for all flight combinations of
rotor speed and collective pitch. One
purpose of the present analytical develop-
ment is to determine whether the separa-
tion rule may be relaxed due to beneficial
effects of cyclic feathering motions on
rotor dynamic response.

Collective and Cyclic Modes

The calculation of natural frequen-
cies for semi-rigid rotors uses a coor-
dinate system that is based on the plane
of rotation. The orientation of the cen-
trifugal force field, the angular motion
allowed by the flapping hinge(s), and the
constraints of opposing blades lead to the
segregation of natural frequencies into
collective modes, cyclic modes, and (for
four-bladed rotors) scissor or reaction-
legs modes. This procedure allows the use
of continuous-beam theory for a single
blade, where the centerline boundary con-
straints are imposed from conditions of
symmetry or asymmetry to match deflections,
slopes, shears, and moments for the other
blades.

The centerline boundary conditions for
the collective mode (Figure 1) are:

- zero vertical (out-of-plane) slope
change,

- vertical deflection constrained by
mast tension/compression,

- inplane slope constrained by mast
torsion, and

- zero inplane translation.

The centerline boundary conditions for
the cyclic mode (Figure 2) are:

- vertical slopé change unrestrained
(except with flapping springs),

- zero vertical deflection,

- zero inplane slope change, and
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. = inplane deflection constrained by
mast shear.
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For the reactionless modes, the cen-
terline boundary conditions are:

- zero slope change and zero trans-
lation in both the inplane and
vertical directions.

Uncoupled frequencies are determined
by setting the geometric pitch angle of
each elastic element to zero. The un-
coupled frequencies are shown in Figures
1 and 2 by the labeled curves. Note that
the frequencies of the vertical (out-of-
plane) modes are highly dependent on rotor
speed, and that the frequencies of the in-
plane modes are only slightly dependent
on rotor speed.

Coupled natural frequencies are shown
as small circles in the figures. Typical
collective modes have very small frequency
shifts as a function of collective pitch.
However, the cyclic modes (Figure 2)
couple significantly with collective pitch.
Note that the inplane frequency decreases
and the vertical frequencies increase with
collective pitch. The method of deter-
mining these coupling effects is given in
Reference 1.

By using only one blade plus appro-
priate boundary conditions, this method of
calculating rotor natural frequencies is
based on one explicit assumption, i.e.,
all other blades are at the same geometric
pitch angle as the reference blade. If
the blades are at different pitch angles,
then the conditions of symmetry or asym-
metry are not present. The inclusion of
cyclic feathering motion, therefore, re-
quires that the analysis treat separately
each blade of the rotor and provide a
means of matching the centerline slopes
and deflections.

Elastic Substructured Rotor Analysis

A digital computer program has been
developed to study the effects of cyclic
feathering motions on dynamic rotor loads.
The Bell Helicopter computer program is
identified by the mnemonic ESRA for Elas-
tic Substructured Rotor Analysis.

The analysis is a transient solution
of elastic rotor blade motions, where the
coupling terms for each blade are treated
separately and the necessary constraints
are imposed on each blade to insure slope
and deflection continuity at the rotor
centerline. Each blade is considered as
being divided into a discrete number of
segments, with uniform weight and stiff-
ness properties over the length of a seg-
ment. The geometric pitch angle of each
segment is a function of rotor azimuth
position and input values of fore/aft and
lateral cyclic pitch. To represent the
hub structure that is inboard of the pitch-
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change bearings, the inboard elastic ele~
ment may be specified as an uncoupled
element (geometric pitch equals zero).

All forces are applied at the ends of
the elastic elements. Slope and deflection
changes over the length of a segment are
based on linear moment distributions versus
span. For compatibility, shear over the
segment length must be constant, which re-
quires concentrated forces for both inter-
nal and external forces. 1In its simplest
form, the analysis follows a lumped-mass
approach. All of the important rotor dy-
namic characteristics may be retained with
this method, however, by using the con-
cepts of equivalent structural segments.

The dynamic response equations are
solved by a step-by-step iterative method in
order to include transient conditions. 1If
the initial deflections and velocities are
specified (spanwise distributions for each
blade), then the internal bending moment
distributions are found with respect to the
rotating reference system. Internal shear
distributions are obtained from the moment
distributions, and summed with applied air-
load forces and inertial components of the
centrifugal force field to determine span-
wise distributions of accelerations.

The first estimates of deflection and
velocity changes are calculated for con-
stant acceleration during the integration
time step. Then bending moments, shears,
and accelerations are calculated for the
end of the time step. Subsequent deflec-
tion and velocity estimates are based on-
accelerations changing linearly with time,
and the iterations continue until a pres-
cribed etrror limit is satisfied for the
entire set of accelerations, or until a
limit is reached on the number of itera-
tions.

In recognition of the problems inher-
ent with this type of numerical integration,
the initial development of the ESRA com-
puter program has been limited to a quali-
tative study of cyclic feathering effects.
The current program represents each blade
with four elements, each with beamwise and
chordwise bending elasticity. Only the
forced rigid-body motion is allowed in the
blade-pitch degree of freedom, i.e., elas-
tic blade torsion is not considered.

The current computer program is lim-
ited to two-bladed rotors, and the torsion-
al impedance of the drive system is assumed
to be zero. In practice, the rotor senses
a two-per-rev torque from the mast that is
proportional to the drive-system impedance
times the Hooke's-joint angular oscillation,
which is a function of rotor flapping. The
rotor is the predominant inertia component
of the drive system, and a good approxi-
mation for two-bladed rotors is to assume



that the true axis of rotation remains per-
pendicular to the tip-path plane even when
the tip path plane is not perpendicular to
the mast. Thus, Coriolis accelerations
equal to the product of coning times flap-
ping are not appropriate in a two-bladed
rotor analysis.

Bending deflections of the elastic
elements are linearized; therefore, Cori-
olis accelerations from radial foreshort-
ening are excluded also. Vertical and in-
plane translational motions of the rotor
center are not included in the current
version of the program.

Referring to the description above,
the formulation of the analysis allows the
removal of these limiting assumptions.

For instance, nonlinear bending deflections
and Coriolis accelerations may be included
by a direct addition to the inertial forces
acting on each mass. Translation of the
rotor centerline, additional blades, con-
trol system flexibility, elastic blade
torsion, and nonlinear hub and control
kinematics also may be added within the
existing computational method.

, With the limitation of four elastic

- elements for each blade, plus provisions
for slope and deflection continuity at the
rotor centerline, the current ESRA pro-
gram allows 15 distinct vibration modes
for the rotor:

- 3 rigid-body modes (flapping, mast
torsion, blade pitch)

~ 6 coupled elastic collective modes
(3 vertical, 3 inplane)

- 6 coupled elastic cyclic modes (3
vertical, 3 inplane)

In attempts to predict rotor loads for
two-bladed rotors, emphasis is placed on
response components at least up to the
third harmonic of rotor speed. Three-per-
rev airloads excite the cyclic mode that
derives from the first elastic asymmetric
mode in the out-of-plane direction. Four
elastic elements for each blade should
provide a very satisfactory dynamic repre-
sentation for this frequency range. At a
frequency of five-per-rev, the second elas-
tic mode would be excited and computed
loads may be marginally wvalid. Current
design practice is to minimize higher fre-
quency loads by proper tuning of the rotor
natural frequencies, as discussed earlier.

Numerical Evaluation

) A parametfic computer study was ac-
complished to resolve a basic question:

With respect to the natural fre-
quency of the first coupled vertical
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elastic cyclic mode at or near
3 per rev, how much does cyclic
feathering motion affect 3-per-
rev dynamic rotor loads?

Selection of Rotor Dynamic Characteristics

Corresponding to a Huey main rotor,
the computer study was based on a 48-foot
diameter 2-bladed semi-rigid rotor, oper-
ating at 300 RPM. Two basic design ap-
proaches were selected as end points for
the evaluation. !

1. A constant blade weight distri-y
bution of 1.20 1b/in. with no dynamic
tuning weights was picked to simulate the
early production Huey rotors. Uniform
beamwise and chordwise stiffness values
were determined to locate the two lowest
coupled cyclic mode frequencies at 1.40/rev
(inplane) and 2.60/rev (vertical) for a
collective pitch of 14.75 degrees. The fan
plot of cyclic mode natural frequencies for
this rotor is shown in Figure 3.
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“FIGURE 3. CYCLIC MODE, TUNED

BELOW 3/REV.

2. A very recent rotor development at
Bell (the Model 645 rotor) was simulated by
a configuration with a constant blade weight
distribution of 1.00 1b/in plus a dynamic
tuning weight of 100 pounds located at the
blade tip. Uniform beamwise and chordwise
stiffness values were determined to locate
the coupled cyclic mode frequencies at
1.40/rev (inplane) and S.MO?rev (vertical),
as shown in Figure 4, again for 14.75 de-
grees of collective pitch.
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Between the two basic configurations,
a series of intermediate rotor parameters
was established by stepping the uniform
blade weight from 1.20 down to 1.00 by
increments of 0.025 1lb/in., while increas-
ing the tip weight from 0. to 100. by in-
crements of 12.5 pounds. Beamwise and
chordwise stiffnesses were varied to hold
the coupled inplane frequency at L1.40/rev
while tuning the coupled vertical fre-
quencies from 2.60/rev- to 3.40/rev in in-
crements of 0,10/rev. Thus, to compensate
for the program restriction of no hub mo-
tion, proper placement of the coupled in-
plane frequency was maintained by the
selection of rotor stiffness. This ap-
proach affects the spanwise distribution
of inplane bending moments, but is entire-
ly adequate for a qualitative evaluation.

All of the above frequencies were
tuned with the first segment uncoupled
(hub structure to .25 radius), which maxi-
mized the coupling of the vertical mode
near 3/rev and minimized the coupling of
the inplane mode near 1/rev. )

Additional input data was taken
directly from the Bell Helicopter Rotor-
craft Flight Simulation, program C81-68
(References 2, 3), for a Model 309 King-
Cobra f£lying at 150 knots. Data used in
the present computer evaluation included
a collective pitch setting at the root of
14.75 degrees, a total cyclic pitch of
6.30 degrees, and the spanwise distributed
airloads up to and including the third’
harmonic components. . :
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The study results presented below are
based, therefore, on full-scale parameters
that are realistic with regard to. current
helicopter design practice. - Although di-
rect correlation with measured loads is not’
possible because of the simplifying assump-
tions, it may be noted that the magnitude
of calculated bending moments is well with-
in the expected range.

Computed Results

The forced response was computed for
the series of nine parametric rotor con-
figurations, where the inplane coupled fre~
quency was held at 1.40/rev and the verti-
cal coupled frequency was varied from 2.60/
rev to 3.40/rev. The dynamic rotor loads
for each configuration were calculated
twice, once with cyclic feathering and
once without cyclic feathering.

Figure 5 shows the 2/rev vertical
bending moment at the rotor centerline as
a function of natural frequency of the ver-
tical elastic cyclic mode. The l/rev vari-
ation in structural coupling due to cyclic
pitch, and the 3/rev applied airloads pro-
duce a 2/rev component of bending moment.
This additional component peaks and changes
sign as the vertical mode is tuned through
3/rev. For the two-bladed rotor, 1/rev and
3/rev vertical bending moments at the cen-
terline are negligible.
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Inplane bending moments at the rotor

centerline are shown in Figure 6.

The

large peak in the overall oscillatory mo-
ment occurs as the coupled vertical mode

is tuned through resonance at 3/rev.

that the coupling associated with cyclic

feathering increases the l/rev response by
about 5 percent for the vertical frequency
In other respects, the

tuned to 2.6/rev.

effect of cyclic feathering appears to be

minimal.

Beamwise moments and chordwise mo-’
ments at midspan are shown in Figures 7

and 8, respectively.
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components are not shown in the figures

because of their small magnitudes.

The

significance of the cyclic feathering ef-

fects

at midspan is consistent with that

indicated in earlier figures for the rotor
centerline. '
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As discussed in a previous section,
the aeroelastic effect of blade bending
velocity was excluded from this study by
baging the response calculations on a pre-
scribed set of airloads. No inference is
intended regarding the magnitude of aero-
dynamic damping that may be associated with
elastic bending velocities. Conversely,
the procedure was selected so that the
time-variant structural couplings could be
studied in an'analytical environment that
does not include other sources of damping.

The computed responses appear as un-
damped resonances centered at 3/rev, from
which it follows that cyclic feathering
motions do not provide any significant
amount of equlvalent damping to suppress
3/rev dynamic loads. Regarding the verti-
cal cyclic mode near 3/rev, in partlcular,
the effect of cyclic feathering motion .

does not provide relief for the design rule

that requlres 0. 3/rev separatlon of coupled
frequencies from excltatlon harmonics of
rotor speed.

The results presented above are all
based on rotor structural simulations with
the inboard 25 percént radius treated as
non-feathering hub structure. This option
of the program was selected to maximize
the coupling (as a function of collective
pitch) of the vertical cyclic mode near
3 per rev. As noted, the largest change
in rotor loads due to the inclusion of
cyclic feathering motions was a 5 percent
increase in inplane bending moments at the
rotor centerline. :

The pitch-change or feathering bear-
ings of production two-bladed main rotors
are located typically at about 10 percent
radius. In this respect at least, the
above results are based on a dynamic model
that is not representative of actual de-
sign practice.

To evaluate the importance of the
radial location of the bearings, another
set of rotor loads was computed for a
case where the entire radius is in the
feathering system.

A constant blade weight distribution
of 1.20 1b/in with no dynamic tuning
weights was selected, as before, to simu-
late the early productlon Huey rotors.

The structural propertles of the rotor
were modified to maintain a 1.40/rev
natural frequency for the coupled inplane
cyclic mode., For the modified parameters,
the natural frequency of the coupled verti-
cal cyclic mode is 2.87/rev.

The computed results are shown in
Figures 9 through 12 for the case in which
the feathering bearings are located at
zero percent radius. The bar graphs show
first, second, and third harmonics plus

overall levels of oscillatory bending mo-
ments. The open bars are for the condition
of no cyclic pitch,:i.e., the geometric
pitch of the elastic elements held fixed

at the specified value of collective: pitch.
The closed bars are for the condition that
the geometric. pitch of the elastic struc-
ture is a function of both collective pitch
and cyclic pitch:

Vertical and inplane oscillatory bend-
ing moments at the rotor centerline are
shown in Figures 9 and 10, respectively.
The vertical moments are not changed
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significantly by the inclusion of cyclic
pitch. However, the inplane centerline
moments increase by 57 percent, with both

the first and third harmonlcs contributing

to the increase.

Beamwise and chordwise oscillatory
bending moments at 50 percent radius are
shown in Figures 11 and 12. Most of the
increase in the overall oscillatory mo-
ments at mid-span is due to an increase
in 3/rev response.
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Due to cyeclic feathering motions, a
significant increase (57 percent) in rotor
loads is indicated with the feathering
bearings at zero percent radius; a mini-
mal increase (5 percent) is indicated with
the feathering bearings at 25 percent
radius. This suggests that the radial lo-
cation of the feathering bearings may have
a controlling influence on the magnitude
of the cyclic-feathering effect. Further
study of this relationship is in progress.

Conc lusions

1. The cyclic feathering motions of
a helicopter rotor cause time-dependent
elastic coupling due to asymmetrical pitch
on opposed blades. The effect of these
motions on dynamic loads may be calculated
by modeling the rotor with elastic sub-
structure elements, by providing individual
treatment of each blade, and by matching
slopes and moments at the rator centerline.

2. OQCyclic feathering ‘motion of the
elastic blade structure does not cause any
significant damping effect on the 3-per-rev
dynhamic loads of a two-bladed semi-rigid
rotor. The design rule requiring 0.3/rev
separation between coupled natural fre-
quencies and aerodynamic excitation fre-
quencies should not be relaxed on the
expectation of beneficial effects from
cyclic feathering.

3. The inplane one-per-rev rotor loads
of a stiff-in- plane rotor are affected sig-
nificantly by cyclic feathering of the
elastic structure. The magnitude of the
effect is decreased as the feathering bear-
ings are moved radially away from the rotor
centerline.
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Abstract

For flight conditions at high blade
loadings or airspeeds, the rotor control
-system experiences a rapid load growth,
resulting from retreating blade stall.
These loads frequently grow so large that
the aircraft flight envelope is restricted
long before the aircraft power limit is-
reached. A theoretical study of one flight
condition and a limited model test have
shown that blade torsional flexibility
plays a major role in determining the mag-
nitude of these large, stall-induced con-
trol loads. Recently, an extensive
analytical investigation® was undertaken
to determine the effect of changing blade
torsional properties over the rotor flight
envelope. The results of this study showed
that reducing the blade stiffness to intro-
duce more blade live twist®%* could signi-
ficantly reduce the large retreating blade
control loads. Too much live twist, how-
ever, may increase the control loads by
introducing a large nose-down advancing
blade torsional moment. Still, signifi-
cant control load reductions can be
achieved and the flight envelope can be
expanded by increasing live twist to reduce
retreating blade stall loads, but not
enough to greatly increase advancing blade
loads.

Introduction
For any practical helicopter design,

the level-flight, steady-state loads should
be below the endurance limit (infinite 1life

load) so that sufficient life will be avail-

able to absorb the larger maneuver loads.

A major design objective is to produce an
aircraft with 4 flight envelope limited by
aircraft power and not by structural limits
Frequently, however, the operational flight
envelope is limited by a rapid growth of
stall-induced control loads that exceed the
endurance 1limit. Therefore, the flight
envelope is limited by control loads, and
the available power cannot be fully util-
ized.

* Work performed under Contract DAAJO02-
72-C-0093, Investigation of Torsional
Natural Frequency on Stall-Induced
Dynamic Loading, by The Boeing Vertol
Company, U. S. Army Air Mobility Researc
and Development Laboratory (USAAMRDL).

*% Live twist is the steady and vibratory
elastic pitch deflection that results
from blade torsional loads.

The rapid control load growth is at-
tributed to stall flutter which is a
consequence of high angles of attack and
resulting blade stall. Visual confirmation
of the large stall loads can be found in
pitchlink or blade torsional gage waveforms
on which characteristic stall spikes appear
in the fourth quadrant of the blade azimuth.
These high loads result from an aeroelastic,
self-excited pitch motion in conjunction
with repeated submersion of a large portion
of the rotor blade in and out of stall.

An aeroelastic rotor analysis program1
was developed, using unsteady aerodynamic
theory that could preduct the large stall-
induced control loads. Limited analytical
studies of a single flight condition, using
this programé and another study by Sikorsky
Aircraft3, indicated that modifications to
the blade torsional properties could
significantly reduce the stall-induced
control loads. These encouraging theoreti-
cal results led to a model test3 to verify
the control load reduction. The test re-
sults showed that, by reducing the blade
torsional natural frequency from 5.65 to
3 per rev, the model stall flutter torsion
spike was reduced 73 percent, giving a
first verification of the analytical trend.

Next, an extensive study was under-
taken to explore the impact of modified
blade torsional properties on blade tor-
sional loads over the flight envelope. The
study had two major parts--the first part
compared model test results of blades with
different torsional properties with analy-
tical results to evaluate the analysis;
while the second part analytically explored
the variation of control loads for flight
conditions of hover and 125, 150, and 175
knots with blade loadings (Ct/c) from 0.05
to 0.18. This paper summarizes the results
of this study.

Theory and Test Comparison

For useful analytical results, confi-
dence in the theory must be established to
show that the fundamental phenomena are
properly accounted for. The aeroelastic
rotor analysis has been successfully cor-
related with control loads obtained from
full-scale CH-47C flight data for both
stalled and unstalled conditions. Addi-
tional correlation with the model rotors
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test was performed to further evaluate the 28
analysis.

The model test used three six-foot
diameter rotor sets. Each rotor set had 24
three articulated blades with identical
airfoil and planform, but each set had a
different torsional natural frequency. The ®
first set of blades had a torsional natural 20
frequency of 4.25 per rev and was con-
structed of fiberglass, using conventional
crossply torsion wrap. The second set of
blades had mass properties similar to the
first blade set, but had a torsional nat-
ural frequency of 3.0 per rev. These
blades were constructed with fiberglass,
using a uniply torsion wrap which substan-
tially reduced the blade torsional
stiffness. The third set of blades had a
torsional natural frequency of 5.65 per
rev and was constructed of carbon composite.

o2, ¢

>
® Ot

12

BLADE ALTERNATING TORSION - IN.-LB

il

Although the carbon blades were not signi- 8 511

ficantly stiffer than the first set of ? %0% |

blades, they had significantly lower tor- ? 9 @ ANALYSIS

sional inertia which accounted for the RANGE OF TEST

higher torsional natural frequency. 4 l DATAFOR3 |
: INSTRUMENTED

A number of runs were made for each BLADES

rotor set at full-scale tip speeds and an O TYPICAL TEST

advance ratio of 0.3. Due to the differ- oL - L — VAti —.

ence in torsional properties, the blade - - - - - -

live twist of each rogor set was different, Crlo — BLADE LOADING

resulting in propulsive force and thrust Figure 1. Comparison of Measured and Calculated Blade Torsion Amplitude for

differences for identical collective, the Low Stiffness Blade {3 per rev).

cyclic, and shaft angle. One run for each

rotor set was selected such that the rotors

would have similar propulsive force varia-

tions with thrust. From each of these runs, 28 Wr——~_ﬁ

five test points were selected which covered

the range of available blade loading (CT/c)

and which provided at least one flight con-

dition below stall, one condition in 24
transition, and two stalled conditions. A ®
detailed description of the test conditions

and all the model blade physical properties

are given in Reference 4. ; 20

e

The variation of test and analytical
blade torsion amplitude with blade loading
(Ct/o) is shown in Figures 1, 2, and 3 for
the low stiffness, standard reference, and
carbon blades, respectively. Each blade
was instrumented to record blade torsion
data. Due to gauge failures, only two
gauges on the standard reference blades and
only one gauge on the carbon blades were
operational. In general, the analysis
correctly preducts the trend of blade tor-
sional load amplitude with blade loading .
for both stalled and unstalled flight
conditions. The preducted stall inception a rgﬁﬁigéfgﬂ_
agrees well with test for the low stiffness INSTRUMENTED
blade. 'For the standard reference blade BLADES
and the carbon blade, s;all inception is
predicted about 0.01 CT/o too early (see 0
Figures 2 and 3). The analysis predicts 004 008 ﬁﬂ?mmmuﬁgm ot o
approximately the correct torsional load . , .
growth rate in stall; but, because the Figure 2. Comparison of Measured and Caiculated Blade Torsion. Amplitude for
stall inception is predicted early, the the Standard Blade (4.25 per rev).
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Figure 3. Comparison of Measured and Calculated Blade Torsion Amplitude
for the Carbon Blade (5.65 per rev).
stall loads are overpredicted for the two
stiffer blades.

A number of possible explanations for
the analytical overprediction are discussed
in Reference 4. The two most likely expla-
nations are first, questionable model blade
physical properties (possible 0.02 chord
error in the carbon blade center of gravity,
0.06 chord error in the standard blade
shear center, and -0.07 chord error in the
carbon blade shear center) secondly, the
unsteady aerodynamic plunging representa-
tion is inadequate (a lack of cyclic pitch
led to model blade flapping of 12 , the
theory may be overly sensitive to these
large plunging velocities).

0.12 0.14

Even though correlation is not as good
as desired, it is clear that the analysis
predicts the large stall-induced control
load increase (stall flutter), approximates
the control load increase with increasing
rotor thrust, and defines the proper load
trend for changes in blade torsional prop-
erties. These results are sufficient to
provide a degree of confidence in the
theoretical trends, indicating that the .
qualitative results of the flight envelope
investigation are meaningful.

Analytical Investigation of
Stall-Induced Dynamic Loading

The analysis and test of Reference 2
showed that changes in blade torsional prop-

erty can change the stall-induced control
loads. For this discovery to have a prac-
tical application, it must be shown that
realistic changes in the blade torsional
properties will lead to a significant
reduction in the large stall-induced con-
trol loads throughout the flight envelope.
To determine the variation of control loads
over the flight envelope, an extensive
analytical study was performed. The air-
craft used for this study was a single-
rotor helicopter with CH-47C blades. A
20.1 square-foot frontal area was assumed
for the fuselage and a tail rotor suffi-
cient for trim purposes was added. The
main rotor consisted of three articulated
30-foot radius blades with a constant chord
of 25.25 inches. The blade cross-section
is a cambered 23010 airfoil with 9.137
degrees of linear twist along the blade
span.

To perform this study, blade torsional
properties were modified by changing blade
torsional stiffness (GJ), changing control
system stiffness, and changing blade pitch
inertia. Using the CH-47C blade's tor-
sional natural frequency of 5.2 per rev as
a baseline, the frequencies were adjusted
from 3 per rev to 7 per rev.

Natural frequencies of 3 rev, 4 rev,
and 7 rev were obtained by multiplying the
torsional stiffness distributions by 0.25,
0.5 and 3.3, respectively. A control
system stiffness of 1650 pounds per inch
generated a frequency of 3 per rev; 11,850
pounds per inch was used for the basic
blade, and an infinite stiffness produced
a 6 per rev frequency. Pitch inertia
changes resulted in blades with frequencies
of 3, 4 and 7 per rev due to scaling the
pitch inertia by factors of 3.08, 1.7 and
0.55, respectively. All changes were made
by only varying the blade properties in-
dicated, while holding all other parameters
at the nominal CH-47C values.

Figure 4 shows the relationship be-
tween pitch-link load amplitude and
torsional frequency (3 per rev to 7 per
rev) at an airspeed of 125 knots and a
blade loading of 0.115 for the three meth-
ods of varying frequency. Each method
produced approximately the same trend of
increasing pitch-link loads with increasing
torsional natural frequency. Figure 5
illustrates the variation of pitchlink load
amplitude with natural frequency at 150
knots airspeed and blade loadings of 0.115.
For both airspeeds, the variation in tor-
sional stiffness leads to larger changes
in pitch-1link loads, than do changes in
control stiffness or pitch inertia.

Since blade torsional stiffness changes
resulted in the largest change in control

"load and the lowest loads, the effect of

blade torsional stiffness changes will be
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explored in greater depth. It is apparent
from these results that it is not the
reduced torsional frequency alone that
reduces pitch-link loads, but also the in-
crease in blade live twist, resulting from
reduced torsional stiffness.

Four blades with different torsional
natural frequencies (i.e., 3 per rev, 4
per rev, 5.17 per rev and 7 per rev) were
analyzed for 24 flight conditions to in-
vestigate the interactive effects of

torsional stiffness, blade loading (Cr/0),
and airspeed., The airspeeds$ ranged from
hover to 175 knots and blade loading from
0.05 to 0.018.

Hover

Figure 6 shows the variation of pitch-
link load amplitude with blade locading
for four sets of rotor blades. One degree
of cyclic pitch was used to provide some
means of introducing a cyclic load varia-
tion. If this were not done, the analysis
would predict only steady loads. At blade
loadings of 0.115 and 0.12 the pitch-link
load has a l-per-rev waveform with an amp-
1litude of about 100 pounds for all four
blades. These loads represent an unstalled
condition, and there is virtually no load
variation with blade loading or torsional
natural frequency. At a blade loading of
0.15, the loads increase :to between 200
pounds and 300 pounds, with the 3 per rev
and 4 per rev blades having the lowest
load. At this condition, the rotor power
is around 4000 horsepower which is well
beyond the available rotor power.

At a blade loading of 0.165, the pitch-
link load for the 3 per rev blade increases
sharply to 1000 pounds. The major portion
of this load is a 950 pound, 8-per-rev
component. Since the blade torsional
natural frequency is 3 per rev, it was
surprising to observe that there was little
3-per-rev load and a very large 8-per-rev
load. Further examination revealed that
the blade second torsional natural frequency
is almost exactly 8 per rev, explaining the
source of the large load. It is not known
why the torsionally soft blade prefers to

oscillate in its second mode. Further
investigation is necessary.
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. The 4-per-rev blade, at the same
flight condition, has a pitch-link load of
340 pounds which is the lowest of the four
blades. The 5.2Z-per-rev and 7-per-rev
blades had approximately the same load at
about 400 pounds. The required rotor power
for all blades is approximately 5000 horse-
power which is 66-percent more than the
available rotor power of a CH-47C rotor.
Since the required power is so high, res-
ults at this (0.165) and higher blade
loadings probably have no practical appli-
cation.

At a blade loading of 0,18, the 3 per
rev blade pitch-link load increases to
4500 pounds, with the 8-per-rev component
again providing the largest load. The 4-
per-rev blade also shows a large load in-
crease, reaching.a load of about 4000
pounds. However, this blade's large tor-
sional loads occurred at the first torsional
natural frequency (3600 pounds at 4 per
rev). The 5.2-per-rev blade has a load of
650 pounds and the 7-per-rev blade 1load is
540 pounds. At this condition, the loads
reduce with increasing torsional frequency.
The required rotor power for this flight
condition is over twice the available power,
indicating that rotor stall has reached a
larger portion of the blade.

These results indicate that in hover,
increased torsional frequency (i.e., tor-
sional stiffness) delays the inception of
stall flutter. This conclusion generally
agrees with propeller experience. However,
the large power required at a blade loading
of 0.16 (i.e., 50 percent above available
power) implies that this flight condition
and higher blade loadings do not apply to
current aircraft. If current power to
rotor solidity ratios are therefore used,
there is very little difference between
the torsional loads of the four blades up
to reasonable blade loadings (for this
discussion, approximately 0,15 blade
loading).

125 Knots

The variations of pitch-link loads
with blade loading for each of the four
different torsional frequency blades are
shown in Figure 7 for an airspeed of 125
knots. The basic blade (with a torsional
natural frequency of 5.2 per rev) pitch-
link load increases slowly with increasing
blade loading up to a value of 0.10. In
this region, the pitch-link load waveform
is predominantly 1 per rev (see Figure 8)
and the loads are classified as unstalled
(even though some stall is present). Stall
inception occurs at a blade loading of
about 0.103. The stall inception repre-
sents the flight condition in which the
control loads begin to exhibit the rapid
increase, due to blade stall. In this
region, the pitch-link load waveform has

a large, high-frequency torsional load
component which generally appears between
an azimuth position of 270 degrees to 60
degrees and usually determines the load
amplitude as shown in Figure 9. The
stalled pitch-link load continues to -
rise to 2650 pounds at a blade loading

of 0.11. Increasing the blade loading
beyond this point results in a load
reduction. This reversal of the load
trend may at first appear surprising, but
it has been observed in model data {see
Figure 1) and full-scale results (see
Figure 10).

The 7-per-rev blade has generally the
same pitch-link load trend, with blade
loading as the basic blade. There is an
unstalled load region up to a blade loading
of 0.09 (with a typical waveform given in
Figure 8), a stalled load region typified
by a large load increase with blade loading
(with a typical stalled waveform at a blade
loading of 0.10 as shown in Figure 8), and
a load reversal at a blade loading of 0.11.
However, as far as control loads -are con-
cerned, the 7-per-rev blade is significantly
worse than the basic blade. 1In the un-
stalled region, the loads are about the
same; in stall the 7-per-rev blade loads
are 65-percent larger., Stall inception
occurs at a blade loading of about 0.095
which is 0.008 before the basic blade.

The 4-per-rev blade has a significantly
different pitch-link load trend with in-
creasing blade loading than the two blades
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TORSIONAL 3} Ratio of 0.2 .
FREQUENCY erfo= 12 orfo=128 previously discussed. While there is the
typical unstalled region with little load
growth up to a blade loading of 0.09 f(a
typical unstalled waveform is given in
Figure 8), there is an irregular, but mod-
erate, load growth between 0.09 and 0.12.
At a blade loading of 0.12, the torsion load
is only 1641 pounds and the waveform just
attains a fully stalled characteristic (see
Figure 9). There is a large load increase

[ (1360 in-1bs) as the blade loading increases
-1t from 0.12 to 0.13. Examining the 0.13
3r r pitch-link load waveform (see Figure 9)

bﬁ\ Crlo=.13 /\I shows that the large load is not caused by

3/REV

stall flutter; instead, it is due to a

large nose-down moment generated by the
s advancing blade combined with moderate

stall spikes.

4/REV

PITCH LINK LOAD X 108 - LB

The 3-per-rev blade has a load trend
similar to the 4-per-rev blade. The un-
stalled load region extends to a blade
loading of 0.115, and a typical unstalled
waveform is given in Figure 8. Even at a
blade loading of 0.12, the pitch-link load
waveform does not show a fully stalled
waveform (see Figure 9). However, at
0.125, the pitch-link load increases by

5.2/REV [}

-1

-2

-3 150 percent to 5273 pounds, by far the
e R . T largest load of any blade. The waveform
BLADE AZIMUTH - DEG BLADE AZIMUTH — DEG at 0.125 (see Figure 9) shows large stall

spikes with an amplitude of 2500 pounds;

Figure 9. Pitch-Link L.oad Waveforms for-125-Knots at High Blade Loadings, h th 1 1 d increa Y d to
* owever, e large load 1n sSe 1S due
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a ‘5000 pound load at 90° azimuth which re-
sults from a large nose-down pitching
moment. The load growth is so large at
this condition that it may represent the
lower boundary of an instability.

It is clear from these results that
stall inception occurs earlier as the
blade torsional frequency is increased.
Further, the maximum retreating blade
stall-induced pitch-1link loads are larger
for blades with higher torsional frequen-
cies (i.e., the 7-per-rev blade has the
largest stall-induced loads).

The CH-47C flight test data substan-
tiating the conclusion that stall inception
occurs at higher blade loadings as blade
frequency is decreased. Figure 10 shows
the results of a CH-47C advanced-geometry
blade flight test for aft rotor blades with
a boron filament spar and a fiberglass spar
at an advance ratio of 0.2, The glass
blade has a stall inception delay of 0.0085,
due to reducing the torsional frequency
from 6.53 per rev to 5.45 per rev. The
single-rotor study results show a stall
delay of 0.008 for reducing the torsional
frequency from 7 per rev to 5.2 per rev at
an advance ratio of 0.3,

The large advancing blade loads ex-
perienced by the 3-per-rev and 4-per-rev
blades, beyond a blade loading of 0.12,
-are not due to the stall-flutter phenomenon
which results from retreating blade stall
and unstall cycles. This load is associated
with the negative 1ift on the advancing
blade tip dnd appears to be a divergence-
like phenomenon. Large, negative tip 1lift
causes the blade to bend tip down; the
high tip drag coupled with the flap de-
flection causes a nose-down moment. The
moment causes elastic nose-down pitch which
leads to more negative 1lift, resulting
eventually in even larger loads.

150 Knots

At 150 knots (see Figure 11), the
basic CH-47C blade has an unstalled load
region up to about 0.08 which is typified
by a slow increase of pitch-link load with
blade loading and a predominantly 1l-per-
rev waveform. In the region between 0.08
and 0.1, a different load trend is obsérved.
The load increases gradually from 1500 to
2000 pounds, but at a faster rate than the
sub-stall load growth, and the waveforms
show significant evidence of stall spikes
for the retreating blade. (see Figure 12).
Stall inception (i.e., rapid load growth)
appears to occur around 0.103, reaching
maximum load near 0.11 (see Figure 12).

The load drops at a blade loading of 0.115,
showing a load reversal as observed at 125
knots.
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The 7-per-rev blade shows a similar
load trend with blade loading as the basic
blade, but with significantly larger stall
loads. The unstall loads occur up to 0.07,.
Stall inception occurs at approximately
0.075, reaching a fully stalled waveform
at 0.09 (see Figure 12). The loads level
out at 0.10, reach a second stall inception
near 0.105, and the load begins to grow
again. Examining the pitch-link load wave-
form at 0.11 (see Figure 12) shows that the
load increase is due to a large stall spike
occurring in the 0 to 50-degree azimuth re-
gion, not to retreating blade stall spikes.

With an expected unstalled waveform
the 4-per-rev blade has a typical unstalled
control load growth up to a blade loading

of about 0.09. Between 0.09 and 0,115,
there is an irregular load growth. 1In this
region, the waveforms show evidence of
retreating blade stall (see Figure 12), but
no large load increase. At a blade load-
ing of 0.11, the torsion load is 2100
pounds and the waveform just attains a
fully stalled characteristic (see Figure
12). There is a 1230-pound load increase
as the blade loading increases from 0,115
to 0.12. Examining the 0.12 pitch-link
load waveform (see Figure 13) shows that
the large load increase is caused by a
large, advancing-blade nose-down spike

combined with retreating blade stall spikes.

The 3-per-rev blade shows a reasonable
pitch-link load through a blade loading of
0.11. However, at 0.115, the blade is
apparently unstable since the loads have
grown so large that the blade would proba-
bly fail. The pitch-link load waveform
at 0,11 (see Figure 13) contains relatively

TORSIONAL
FREQUENCY AIRSPEED 150 KNOTS
r BLADE LOADING

Cy/o =011

Cylo =042

3/REV

DIVERGED

PITCH-LINK LOAD X 103~ L8

4/REV

-3}

1 i i -d A A i A J
0 90 180 270 360 80 180 210 360
BLADE AZIMUTH — DEG BLADE AZIMUTH - DEG

Fiéure 13. Pitch-Link Load Waveforms at 150 Knots for the 3-per-rev and
" 4-per-rev Blades at High Blade Loadings.

small retreating-blade, stall-induced
spikes. There is, however, a large com-
pression load for the advancing blade at
90 degrees blade azimuth. By examining
the pitch link load waveform for the un-
stable flight condition, it appears that
the blade divergence involves a large ad-
vancing blade compression load that con-
tinually increases with each rotor '
revolution.

The 3-per-rev blade is experiencing
an additional problem which is not apparent
by simply observing the load trend. For,
all the load conditions calculated at 150
knots, the required power exceeds the
available power. Apparently, the blade is
experiencing so much live twist that there
is a significant increase in rotor drag.
The other blades, by contrast, exceed the
available power only at a blade loading of
0.115. It is, therefore, obvious that the
3-per-rev blade is not an acceptable con-
figuration for the 150-knot flight condi-
tion. '

175 Knots

At 175 knots (see Figure 14), the
basic blade pitch-link load trend shows
unstalled loads continuing to a blade
loading of 0,07 and stall inception occur-
ring about 0.075. The stalled load
increases with a moderate growth rate up
to 0.09. Figure 15 illustrates the pitch-
link load waveform at 0.09, showing the
retreating blade stall spikes and a large
nose-down load at 90 degrees azimuth. Be-
yond a blade loading of 0.09, the load
does not reverse as it does for previous
airspeeds {(even though the retreating
blade stall spike is significantly reduced
at a blade loading of 0.11 as shown in
Figure 15). Instead, the load continues
to increase at about one half the previous
growth rate, due to an increasingly large
nose~-down load at 90 degrees azimuth.

The 7-per-rev blade pitch-link load
trend is almost identical with the basic
blade trend up to 0.09. As Figure 15
shows, the waveform exhibits typical high-
frequency stall spikes. The torsion load
shows a slight load reversal beyond 0.09,
but then resumes the load increase at the
typical stalled load growth rate. The load
growth at 0.11 is due to a combination of a
large stall spike at around 30 degrees
azimuth and an increasing nose-down load
at 90 degrees azimuth (see Figure 15).

The 4-per-rev blade has a typical
substall load growth up to 0.07 and gener-
ally follows the load trend of the 7-per-
rev blade and the basic blade up to 0.08.
Beyond this point, the load growth rate
drops significantly. At a blade loading of
0.09, the pitch link load is 500 pounds
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below the other two blades. Also 0.09,

the pitch-1ink load waveform shows little
evidence of retreating blade stall (see
Figure 15), but does show that the major
component .of the load results from a nose-
down moment at 90 degrees blade azimuth.
Beyond this point, the load growth rate in-
creases sharply from 2500 pounds at 0.09 to

4200 pounds at 0.11.

The 3-per-rev blade is not seriously
considered at this airspeed. The loads
are 1500 pounds beyond any of the other
blades, and an advancing blade instability
is apparent at a blade loading of 0.09.
Further, the required rotor power exceeds
the available CH-47C power for all 175-
knot flight conditions examined.

Examining the 175-knot pitch-1ink load
waveforms at a blade loading of 0.11
clearly shows that all four blades experi-
ence increased advancing-blade compression
loads when compared to the 150-knot wave-~
forms (compare Figures 12 and 14). The
7-per-rev blade shows a 1300-pound advan-
cing-blade load increase for the 25-knot
airspeed increase. The basic 5.2-per-rev
blade load increase is 2200 pounds, the
4-per-rev blade load increase is 3500
pounds, and the 3-per-rev blade has di-
verged. Therefore, the blades experience
advancing blade load problems which are
intensified as airspeed is increased and
blade torsional stiffness is reduced.

123

AIRSPEED 175 KNOTS

BLADE LOADING
TORSIONAL

FREQUENCY Cylo=0.00

200

Crlo=0.11

A\

4A/REV

5.2/REV

PITCH LINK LOAD X 103 - LB

7/REV

W\,
v

1 1 I
90 180 270
BLADE AZIMUTH — DEG

1 i1 i
80 180 270
BLADE AZIMUTH -- DEG

3
360

J
360

(1]

I-;igure 15. Pitch-Link Load Waveforms for 175 Knots at Blade Loadings of
0.09 and 0.11,

When comparing the 175-knot results
for the 4-per-rev, 5.2-per-rev and 7-per-
rev blades, it should be noted that the
rotor power limit for a single CH-47C rotor
is reached just beyond a blade loading of
0.09. For conditions below 1lthe power
limit, the 4-per-rev blade is slightly
better than the others, since the maximum
pitch-link load is 500 pounds lower. The
three blades appear to have adequate man-
euver margin, although the 4-per-rev blade
may experience larger maneuver loads.

These results show that a significant
reduction of the basic blade control loads
can be realized over a considerable range
of advance ratios and blade loading and
that these reductions lead to a significant
extension of the control load-limiting
aircraft flight envelope. These results
can be summarized by obtaining the flight
condition (as a function of Cp/c and u)
that first experiences a 2500-pound pitch-
link load. The 2500-pound load approximates
the original pitch-link endurance limit load
for the CH-47C control system. These flight
conditions lead to a blade loading versus
advance ratio envelope for the 2500-pound



pitch-link load or an endurance-limit
flight envelope. Figure 16 compares the
endurance limit flight envelopes for each
of the four different frequency blades
investigated.

As Figure 16. shows, the blade with a
~torsional natural frequency of 4 per rev
(dashed line) ‘has the best flight envelope
and represents -a significant improvement
.over the basic blade configuration. The
4-per-rev flight envelope has essentially
the same shape as the basic blade, but it.
occurs at a higher blade loading. The
basic blade envelope occurs at a blade
loading of 0.016 below the 4-per-rev blade
at an advance ratio of 0.29. At an
advance ratio of 0.38, the basic and 4-per-
rev blades are approximately equal; but at
an advance ratio of 0.4, the 4-per-rev
blade envelope is expanded beyond the basic
blade by a blade loading of 0.005.

~The 3-per-rev blade (short dashes)
shows a different flight envelope. At an
advance ratio below 0.29, the 3-per-rev
blade reaches the endurance limit at a
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blade loading of 0.123. However, the 3-
per-rev envelope drops sharply with.
increasing advance ratio and eventually
falls below the three other blades at a
0.375 advance ratio. The sharp boundary
reduction of this blade at the higher ad-
vance ratios is due to the large advancing-
blade load growth which eventually becomes
an instability.* These instabilities show.

_that the 3-per-rev blade is clearly un-

acceptable, at least for the current pitch-
link-controlled configuration. .

The 7-per-rev blade clearly has the:
poorest flight envelope up to an advance
ratio of about 0.37. At the higher advance
ratios above 0.35, the 7-per-rev blade has
the smallest reduction of blade-loading
capability with increasing advance ratio.
In this region, the 7-per-rev blade sur-
passes the 3-per-rev blade at an advance
ratio of 0.37, surpasses the basic blade

.at 0.40, and will probably surpass the

4-per-rev blade around 0.44. Therefore,
a torsionally stiff blade may be required
to attain a reasonable flight envelope
beyond advance ratios of 0.44.

Conclusions and Recommendations

The results of the theory-test com-
parison performed for the 6-~foot-diameter
model blades and the study of varying
torsional properties for the full-scale
CH47C size blades have lead to:

1. The theory-test comparison with the
6-foot-diameter model data indicates that
the aerolastic rotor analysis reasonably
represents the large stall induced control
loads, the control load change with blade
loading, and the load variation with
changes in blade torsional properties.
Therefore, the analytical study of the
CH47C size blades should provide at least
a qualitative evaluation of the control
load variation.

2. Changes in control system stiffness,
pitch inertia, and blade torsional stiff-
ness vary the large, stall-induced control
loads. However, the control load change
is not a simple function of torsional 3
natural frequency as previously suspected,
since torsional frequency changes, due to
varying the blade torsional stiffness,
produce control load changes larger than

* It may not be possible for an actual
totor to experience blade divergence.
Before large divergence loads result,
there is a significant increase in re-

‘quired rotor power. Therefore, a real

" rotor may simply run out of power and be
unable to attain a flight condition for
which divergence would occur.
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other methods of changing torsional. fre-
quency.

3. A blade with a torsional natural
frequency of 4 per rev represents a com-
promise between significantly reducing
stall flutter: loads, while allowing
moderate increases in the advancing blade
loads at high speeds. This compromise
provides the best endurance limit flight
envelope up to an advance ratio of 0.45.
Beyond this advance ratio it appears that
a torsionally stiff blade will provide a
better endurance limit flight envelope.

4, Additional work is required in the
following areas.

® A model test program is needed to
validate the analytical results
over a wide range of flight con-
ditions with remote collective and
cyclic pitch to insure trimmed
flight,

¢ Theory improvements are needed to
eliminate deficiencies discovered
in the theory-test comparison.

e Continue analytical studies to in-
vestigate mechanisms of the load
generation, maneuver and high-
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speed load trends and ofher means
for expanding the endurance limit
flight envelope.
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APPLICATION TO ROTARY WINGS OF A SIMPLIFIED AERODYNAMIC LIFTING
SURFACE THEORY FOR UNSTEADY COMPRESSIBLE FLOW

B. M. Rao* and W. P. Jones**
Department of Aerospace Engineering
Texas A8M University, College Station, Texas

Abstract

In a recent paper, Jones and Moore have deve-
loped a simple numerical lifting surface technique
for calculating the aerodynamic coefficients on
oscillating wings in subsonic flight. The method
is based on the use of the full lifting surface
theory and is not restricted in any way as to fre-
quency, mode of oscillation or aspect ratio when
M < 1. In this study, this simple but general met-
hod of predicting airloads is applied to helicopter
rotor blades on a full three-dimensional basis.
/The general theory is developed for a rotor blade
at the y = 7/2 position where flutter is most lik-
ely to occur. Calculations of aerodynamic coeffi-
cients for use in flutter analysis are made for
forward and hovering flight with low inflow for
Mach numbers O and 0.8 and frequency ratios p/Q=1 *
and 4. The results are compared with values given
by two-dimensional strip theory for a rigid rotor
hinged at its root. The comparisons indicate the
inadequacies of strip theory for airload predicti-
on. One important conclusion drawn from this stu~
dy is that the curved wake has a substantial effect
on the chordwise load distribution. The pitching
moment aerodynamic coefficients differ appreciably,
from the results given by strip theory.

Introduction

In a survey paper, Ref. 1, Jones' et al. give
a detailed account of significant developments in
the field of unsteady aerodynamics of helicopter
rotor blades, One of the problem areas surveyed
was that of blade flutter as it has been found that
under certain operating conditions, rotor blades
can flutter in both hovering and forward flight.
This phenomenon has been investigated by several
researchers in Refs. 2, 3, 4, and 5 and the results
of their studies have improved our understanding
of the problem. For the case of hovering flight,
J. P. Jones in Ref. 2 applied a method developed
by W. P, Jones in Ref. 6 to derive the approximate
aerodynamic coefficients for an oscillating single
rotor blade for use in his flutter analysis. He
approximated the actual flow conditions by neglect-
ing curvature effects and assuming a simple two-
dimensional mathematical model cosisting of a ref-
erence blade and an infinite number of wakes lying
beneath the reference blade extending from -« to «,
He considered flapping and pitching motions and com-
pared his results with those 'obtained experimenta-
1ly by Daughaday and Kline in Ref. 3. On the basis
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of this work it was concluded that the wake is pri-
marily responsible for some of the vibratory pheno-
mena found on helicopters in practice. For low
inflow conditions, Loewy in Ref. 4 used a similar
mathematical model to that of J. P. Jones and inve-
stigated the variation in the pitching moment damp-
ing coefficient of a particular blade section as
p/Q varied for specified positions of axis of osci~-
llation and a range of values of wake spacing., He
found that the damping coefficient became negative
whenever p/Q was slightly greater than an integer
for axis of oscillation forward of quarter-chord.
Similarly he found that the damping coefficient

for a flapping oscillation dropped sharply at inte-
gral values of p/Q but did mot actually become neg-
ative., Timman and Van de Vooren in Ref. 5, on the
other hand, assumed that there was no inflow thro-
ugh the rotor disk and developed a theory for cal-
culating the aerodynamic forces on a blade rotating
through its own wake. Thelr results agree with
those obtained in Refs., 2 and 4 in the limit when
zero spacing between the wakes is assumed. All
this theoretical work confirms the conclusion that
the proximity of the wake 1s a contributing factor
to rotor blade flutter.

All the theoretical work described above is
baged on the assumption that the flow 1ls incompre=~
ssible. However, with the advent of helicopters
capable of flying with blade tip speeds ranging up
to and in excess of the speed of sound, compressi-
bility effects need to be taken into account when
determining coefficients for use in flutter analy~
sis. Jones and Rao in Ref. 7 were able to do this
on the basis of two-dimensional theory and have
derived coefficients for a range of Mach numbers,
reduced frequencies, and wake spacing. Their ana-
lysis is based on the use of Loewy's model, Ref. 4,
of the helical wake and the application of a theory
developed earlier by Jones in Ref.8 for an oscilla-
ting airfoil in compressible flow. The values of
the coefficients given in Ref, 7 agree with those
obtained in Refs. 2 and 4 for zero Mach number but
differ appreciably when the Mach number is varied.
Hammond in Ref. 9 also developed a theory for det—
ermining compressibilty effects by using a differe-
nt model of flow from that used in Ref. 7. In his
model, the wake of the qth blade of a Q bladed
rotor after n revolutions extends from -27(n+q/Q)
to =»; in Jones and Rao's model it extends from -«
to «», His aerodynamic coefficients for several
Mach numbers and inflow ratios are in general agr-
eement with'the results of Jones and Rao in Ref. 7.

While the aerodynamic derivatives predicted
by two-dimensional strip theory are widely used in
predicting the flutter speeds of helicopter rotor
blades, the method does not allow for curvature
and finite aspect ratio effects. For incompressi-
ble flow, Ashley, Moser, and Dugundji in Ref, 10
developed a three-dimensional model in which they



modified Reissner's theory, Ref. 11, for oscillat~
ing wings in rectilinear flow by including the free
stream velocity variations along the span. Their
results indicate a negligible difference between
two and three-dimensional solutions up to 95% of
the span. Jones and Rao in Ref. 12 similarly stu-
died tip vortex effects in compressible flow and
they also concluded that such effects are negligi-
ble except in regions close to the tip. 1In some

of his earlier work, Miller in Refs. 13, 14, and
15, developed a helical wake model in which the
rotor wake was divided into a "near" wake and a
"far" wake. The near wake included the portion
attached to the blade that extend approximately
one-quarter of a revolution from the blade trailing
edge. The effects of the near wake include an in-
duced chordwise variation in downwash and were for-

mulated using an adoptation of Loewy's strip theory.

The chordwise variation in the wvelocity over the
airfoil induced by the far wake was neglected. -
Miller extended his model to study the forward fli-
ght case and found that the nonuniform downwash
induced at the rotor disk by the wake vortex system
could account for the higher harmonic airloads en-~
countered on rotor blades in forward flight. He
also showed that under certain conditions of low
inflow and low speed transition f£light the return-
ing wake could be sucked up into the leading edge
of the rotor which would account for some of the
vibration and noise., Piziall in Ref. 16 has deve-
loped dn alternative numerical method in which the
wake of a rotor blade is represented by discrete
straight line shed and trailing vortex elements.

He satisfied the chordwise boundary conditioms, but
the rotor blade was limited to one degree of free-
dom in flapping. Sadler in Ref. 17, using a model
similar to Piziali's, developed a method for predi-
cting the helicopter wake geometry at a "start up"
configuration., He represented the wake by a fine
mesh of transverse and trailing vortices starting
with the first movement of the rotor blade genera-
ting a bound vortex, and, to preserve zero total
vorticity, a corresponding shed vortex in the wake.
Integrating the mutual interference of the trailing
and shed vortices upon each other over small inter-
vals of time, Sadler was able to predict a wake
geometry. Although his model showed fair agreement
with the available experimental data for advance

. ratios above one-tenth, Sadler's method is limited
due to the large computational time required to
represent the wake by a finite mesh.

. Though many forms of flutter can occur on ro-
tor blades, attention in this report is concentra-
ted on the determination of appropriate aerodynamic
coefficients for use in the analysis of blade flu-
tter of the classical bending-torsion type. Ship-"
man and Wood in Ref. 20 have considered this prob-
lem but they did not take compressibilty and fini-
te span effects into account. The two-dimensional
mathematical model used is similar to that employ-
ed by other authors except that they assumed that
flutter would first occur when the relative velo-
city over the rotor blade reaches its critical va-
lue when ¢ = w/2. For greater or lower values of
Py, the relative speed would be reduced below the
critical speed for flutter and any incipient grow-
ing flutter oscillation would be damped. This rea-
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" nce occurs over the range, %-— A¢1 <P <

soning led them to represent the blade motion by a
series of oscillatory pulses, where each disturba~
T
7 + Agbz.
Corresponding to each burst of oscillation, packets
of vorticity are assumed to be shed into the wake,
With increasing forward speed, the spacing between
the packets of vorticity also increases and it was
found that the flutter speed became constant when
1, the advance ratio, was above 0.2. The approach
used in the present study differs from that adopted
by Shipman and Wood in that continuous high freque-
ncy small osecillations are assumed to be superimpo-
sed on the normal periodic motion of the blade.
The airloads and aerodynamic derivatives associated
with the perturbed oscillation of the rotor blade
can then be calculated by the method described in
this paper. Since the rotor blade will first att-
ain its critical speed for classical flutter at
¥ = 7w/2, the aerodynamic derivatives corresponding
to this value of ¢ only have been calculated. The
method takes finite aspect ratio and subsonic com-
pressibility effects fully into account. Typical
results for a rotor blade hinged at its root desc-
ribing flapping and twisting oscillations are given
for a range of Mach numbers and frequency values.

Basic Equations

In the development of the analysis of the
Jones-Moore theory, Ref. 18, for oscillating wings
in rectilinear flight, the space variables x, y, z,
and t are replaced by X, Y, Z, and T, respectively,
so that

x=2X, y= %Zs = %E, = %l @
where & is a convenient reference length, U is
the uniform velocity, M is the Mach number and

8 = 142, The velocity potential of the flow
around a surface oscillating at a frequency p
can then be expressed as :

$(x,7,2,t) = ULO(X,¥,2)et AX + uT) (2)

where w = pR/U, A = MZ@/BZ. The function ¢ may be
regarded as a modified velocity potential. Fur-
thermore, it can be shown that it satisfies the
wave equation

2 2 2
———9§+———3§+—-—3q2’+;<2q>=0 (3)
3K )4 YA

where k = Mw/Bz.

Since in this problem the motion of the sur-
face is assumed to be prescribed, the downwash
velocity at any point on it must be the same as
the downwash induced by the velocity (or doublet)
distribution over the surface and its wake. This
condition must be satisfied in order to ensure
tangential flow over the surface at all points.

It is also assumed that the rotor blade is a thin
surface oscillating about its equilibrium position

in the plane z = 0, If 7 = g'eipt defines the
downwash displacement at any point (x,y) at time
t, this boundary condition requires that the down~
ward velocity and 3¢/3z must be equal. In the
transformed coordinates, this implies that



e—i(AX + wT)
V=%~ “
where w = —E' U—E is knowm.

A further condition that must be imposed on
_any solution is that it leads to zero pressure dif-
ference across the wake created by the oscillating
-surface. From the general equations of flow it can
.be established that the local lift J(x,y,t) at any
point is given by

z(x’Y9t)
where k = ¢ -
u

oGt + v X (5

¢m, the discontinuity in the veloci-
ty potential. TFrom Eq. (5), it immediately follows

that on the surface

K i(AX + uT)

L(x,y,t) = pU (ivK +5P e (6)
where v = m/B2 and K = u - 2. This yields
ik +E - ©))

BX
everywhere in the wake since the 1ift must then be
zero, From Eq. (7), it can be deduced that at any
point in the wake

K(X’Y) = K(Xt,Y) e

where X =

—iv(X—Xt) (8

Xt denotes the position of the trailing
edge of the section at Y,

As shown in Ref. 19, the solution of Eq. (3)
may then be derived from the integral equation
2 -1K£
4ww(x Y ,0) = JI KE, Y) 2(
Z+0 9Z
where W is the modified downwash at the point XP’Y

)dXdY 9

P
given by Eq. (4), K has to take the form specified
by Eq. (8) at points in the wake and

[(x—x) + (YY) + 74312,

The double integral in Eq. (9) must be taken
over the area of the oscillating surface and its
wake. It should be remembered, however, that K =0
along the'leading edge and the sides of the area of
integration.

In the numerical technique developed in Ref.
18 for calculating the airloads on oscillating
wings in rectilinear flight, the wing is divided
into a number of conveniently shaped boxes and K
is assumed to be constant over each box. The wake,
on the other hand, is divided into a number of cho-
rdwise strips and K over each strip is defined by
Eq. (8). The contribution of the wake to the down-
wash W(XP,YP) is then derived by direct numerical

integration.

The application of the method outlined above
to determine the airloads on rotor blades presents
certain difficulties, the principal one being that
the flow velocity over the rotor blades is not con-
stant as assumed in the derivation of Eqs. (3) and
(8) for wings in straight flight. To overcome this
difficulty, it is assumed that the rotor blade can
be represented by a number of spanwise segments
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over every one of which the flow is taken to have
its average value and appropriate Mach number. On
this basis the above anmalysis can be modified for
application to rotor blades as outlined in the
next section,

Rotor Blade Theory

In the present analysis, the rotor blade is
‘taken to be fixed at the y = /2 position and its

‘helical wake is assumed to extend rearwards as

indicated in Fig. 1. Normally, one would expect
the vorticity shed by the’ perturbed blade to be
carried downstream by the distorted wake of the
loaded rotor blade. However, in the present preli-
minary study, uniform inflow is assumed and any
distortion of the wake due to blade~tip vortex
interference is ignored. The aerodynamic coeffic-
ients corresponding to any prescribed motion can
then be calculated for forward and hovering flight
by the method described below.

a) Forward Flight (Rotor Blade at y = 7/2)

Let R denote the tip radius of the blade and
assume x = Rx', y = Ry', and z = Rz', For forward
flight with velocity V, the relative local velocity
at section y will be denoted by U(=V+QRy') and U'
(=pty'), where Q is the angular rotation and u(=v/
OR) is the advance ratio. It then follows that at
the section y;, the downwash w(x;,y;) is given by

1oty = P ’l& ipt
wxl,y!) = Rl + U e (10)
where ¢ = Rc'eipt is the displacement of the blade
at the point, (x;,y;). When the blade is describ-

ing flapping and twisting motions, z' may be expr~
essed as

' = y'E(y") + x''F(y") 1y
where y' and o' are the amplitudes at the reference
section and £(y') and F(y') are the modes of flap-
ping and twisting oscillations, respectively. If
the blade is assumed to be rigid and hinged at the
root, £(y') = y', and F(y') = 1 in the above equa-
tion. For convenience, the reference section is
taken to be at the tip but, in actual flutter cal~
culations, the section at 0 8R would be a better
choice,

To obtain the distribution of K corresponding
to the motion prescribed by Eq. (10), Eq. (9) is
first expressed in terms of the original variables

and K is replaced by Rk'eipt.
written as

It may then be

~ix'x!
: 2 -ik'r!
) . RS I |

brw eB = 1K' (x',y")e iA'x 2‘“569";3"9

p dx'dy’ 9z’

e a2
where k' = —%E~— s AT =M, w= w'eipt, Sz = 1-M2,
gequ’

and r' [(x —x') + B ' ~p ) + BZ 2]1/2

The above equation can be used to obtain the
solution to the problem of determining the flow
over a rotor blade with a rectilinear wake. Since



the wake can withstand no 1lift, the condition,
ak ok

s T U= 0 must be satisfied. For a rectilinear
wake, this yields
p(x'-x])
..i...____'_t_. -
Ky = ke T, (13)

However, if the wake originating from a blade strip
1s assumed to be curved

p(s'-s})

i——?fﬁ——
K'(s',y') = k‘(y)e e, (14)
where q' = (u + y'2 + 2uy'sin w)llz, s = Rg' 1is

the distance along the vortex path and y' specifies
the spanwise location of the blade strip.

For computationél purposes;»Eq. (12) may be
conveniently expressed as

41rﬁ(xl',,yl;) SRE,y) £ s dx'dy’, (15)
_ wix',y") -1A x!
where W(x',y') = —P P ., PP
PP Bp
— ) Tt
R(x',y") = k'(x KA 1A'= , and
a2 e—iK r' 2 e—iK'r'
G = 2( ) ) = =B ¢ Py )[ (1+1K'r')
oz
2,2
(1- 387z ) + ok BZZ,Z 1.
r'
It should be noted that in the wake
v'(s'-s!)
. t
— — B s e
K(x',y") =K (v') e T, (16)
where v' = -25'
QB

b) Hovering Flight

For the simplest case of hovering flight,
= 0 and s' = y'0., Hence Egs. (10), (11), (12),

(13), and (15) can be simply modified by replacing
‘u with zero. Eqs. (14) and (16) then become
‘ -ig—(e-et)

k'(8,y") = ki (y') e : an
_ _ -1iv' (6-8,)
R(@,y") = KLGy") e ; (18)

where y' defines the location of the blade strip
from which the wake originates.

Method Of Solution

and

The schematic diagram of the oscillating rotor
blade is shown in Fig. 1. Eqs. (15) and (16) are
combined and expressed as

. —iK'r;
Gy = - R sy B E——— ) (ke ])
PP blade rs
surface v'(sf—sé) pcret
B e e e w
dx'dy' - [ SR (3" T sE—)
wake ) r& ’

2
[ (Hx'e)) (- 387" ) +c'2a%1? ] ds'an,  (19)
rw ;
where ré = [ (x'—x')2 + BZ(Y'-Y')Z 1/2
r; = [ (x'=x ) + B ' Yo ) + 82 2 ]1/2
= (dx' 2+d 2 1/2

and dn' is perpendicular to ds' and approximately
equal to dy' on blade. The rotor blade is divided
into a number of rectangular boxes (M x N) on which
the doublet strengths are assumed to be constant as

in Ref. 18. Based on this assumption, Eq. (19) can
be expressed as )
lmﬁ = K,,+ 2. T, K (20)
PR et IR B
In Eq. (20) S and T, may be interpreted as the

i 3

aerodynamic influence coefficients and the actual
expressions are given later in this section. Sij
T, are the downwash velocities induced at the box

3
mn due to the unit strength doublets located at the

box ij and the wake strip j respectively. Kij and
Eéj are the doublet strengths at the box 1ij and the
trailing edge of the wake strip j, respectively.
With the use of the wake boundary condition, K

can be expressed as t]
- vy
K., =K,/le I s a—8 M
&) 3 Uj
Eqs. (20) and (21), then yield
4rW_ 121 = ij ij (22)
yhere Aij = Sij for 1 #'M ' '
_iv (xﬁé-xMj) . —x& )
= j rt
and Aij sij + Tr.j/[‘e“ + 21—-——-—3——-—1—% ]
for 1 = M,

For a given mode shape (ﬁ;n's are known), Eq. (22)

represents a system of M x N linear algebraic equa-
tions, the sclution of which yields the values for
Kmn's. M and N denote the total number of chord-

wise and spanwise stations respectively.

Once the appropriate ¥ distribation has been
found, it is then relatively easy to determine the
aerodynamic forces per unit span acting on the rotor

— ]
blade. If, in Eq. (5), k = Rk'eipt = RKeipteﬂ'x
it then follows that the local 1lift L(y) = L'(y)
eipt and the nose-up pitching moment, M(y) = M'(y)

eipt, referred to the mid-point of the chordwise
section at y are given by

S Al ¢ N
p ) (e/2)

Zz'

= (L +1L2)( ) + (L +1L4)
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. ox!

t
~ (m;) R 5w + U (23)
Ur 5
' 2z'
—ED - ) D+ o
p(UR)" (c/2) x, !
t t
-& 2)( 2y (] ke - k) - £ J wtax']
R 2 2 (24)

where c is the local chord, U is a reference velo-
T

f
flapping and twisting motions respectively, and Ll,

L3, Ml’ M3, and LZ’ L4, M,
and out of phase airload coefficients, respectively.

; city, z! and o' are the local amplitudes of the

Ma, are the in phase

Expressions for Aerodynamic Influence Coefficients
n/2)
The influence coefficients are calculated by

the method outlined in Ref. 18, For a box not con~
taining the collocation point

Forward Flight (Rotor Blade at ¢ =

j+d2 xi+dl —iK'r;
sij =~ f s ( )B(1+im'r')dx dy' (25)
1
: jdzxidl Ts
where k' = —%B—T r. = [(x"-x ) + B o'y, ') ]1/2
BTQU;

d; = Ax'/2, d, = Ay'/2, and Ax' and Ay' are the
chordwise and spanwise spacings of the rectangular
grid on the surface of the rotor blade. When the

collocation is inside the box considered, the value

of»Sij must be calculated by the method of Ref. 18.
For the curved wake
Y faloa!
v'(s St) ©mig'e?
j 2 o W '
T, = - le 1 BE—5 [+
L ] 1
nJ d2 st T
2
- B2 + 26%1% ) as'an’ (26)
r!
W
where r = [(x"-x ) + B (y' A ) + 32 2 1/2
x' = ue + yj sin 8, ¥' y cos 8, z' =4' e/2w,
= (dx'2+d '2)1/2 (u +yj +2uyj cos 0) /Zde,

and d(-Rd'), the downward displacement of the wake
per revolution, is assumed to be small. Tj s are

evaluated numerically at the j'th spanwise strip by
taking small increments of 6 and n.

Hovering Flight (Low Inflows)

For hovering flight, u = 0, s"f y}ﬂ, and

ds'

be simply modified by replacing u with zero and the
wake integration for the j'th strip

= yide. The expression for Sij’ Eq. (25), can

v T PN )
"2 e tvi(e-e)
Tj = - f I e B(————§~—)[(l+iK'r')
n - 2 8, r' w
j w
a- 32 < 82 | 22,2 v} dodn’ @n
rw
where x' = yj sin 9, y' =‘y§ cos 8, and z' = d4'6/2w.

The effect of the helical wake in hovering
fiight is estimated by two different methods. In
the first method, a Helical Wake Model is used and
the actual helical path is taken in evaluating the
Tj coefficients. In the second method, a Circular

Wake Model is employed and the helical wake is re-

placed by its near wake, which is assumed to extend
over 6 £ 6 2 1/2, and a number of regularly spaced

circular disks of vorticity below the reference
plane. The formula for k' for the n'th disk at

z' = nd' is taken to be simply

-i%[(e—et)+2nn]
k'(0,y",nd") = k! (y Je 5. (28)

the actual spacing between consecutive disks being
Rd'.

Results and Discussion

A rectangular rotor blade of R/c = 10 was cho-
sen and the blade was assumed to extend from 0,1R
to R, TFor the computation of the airload coefficie-
nts, a grid of thirty six rectangular boxes consist-
ing of six chordwise and six spanwise stations were
uged. The convergence of the results was tested by
taking grid sizes of 6x8 (chordwise x spanwise) and
8x6. Rigid mode shapes for flapping and twisting
oscillations are assumed so that

=y o+ ox! Byte
1 1 1 1]
w (x ,y ') = R[a (u+yp+i§xp) + v 1Q(u+yp)]

= QR[(u+y;+i§x;)a' + i§<u+y;)f§§9(—3£ﬁ]. 29)

It should be noted that the above equation is valid
only for the blade position at ¢ = /2, For hover-
ing flight, u = 0 in Eq. (29).

The airload coefficients for Mach numbers 0
0.8 for several values of B-and wake spacing of two

chords were obtained with reference to the blade's
quater—chord axis. In Figs. (2) thru (5), selected
airload coefficients for slow forward flight (u =
0.1) are compared with the results obtained for
hovering flight using both a helical wake model and
two-dimensional strip theory. For this particular
comparison, the reference velocity in Egqs. (23) and
(24) was taken as the relative local velocity, U,
and the tip Mach number was 0.8. From these plots,
one can conclude that strip theory predicts substa-
ntially larger values for the airload coefficients.
One of the most important observations one can make
is that the curved wake changes the chordwise load
distribution in such a way that the center of pre-
ssure shifts forward of the quarter-chord axis
position (see Fig. 4).

131



Figs., (6) and (7) compare the results by seve~
ral mathematical models used for the hovering fli-
ght case, The airload coefficients are referred
to the tip velocity (OR) and this choice was made
to indicate the trends of spanwise load distribut-
ion. The Circular Wake model representation resu-
1ts in a substantial saving in -computational time.
For example, to obtain the airload coefficients for
one set of geometric and flight conditions using
6x6 grid on the blade, the Circular Wake model took
only 1.5 minutes of computing time on IBM 360/65
while the Helical Wake model took 2.5 minutes.
Although the Circular Wake model seems to indicate
the general trends of the airload 'coefficients, one
should use the full helical wake to compute the
airload coefficients accurately.

Some typical results for hovering flight using
the Circular Wake representation, compared with the
results of two-dimensional strip theory, Ref. 7,
are shown in Figs. (8) thru (11). The results for
the curved wake are in good agreement with the re-
sults for strip theory for the inner blade sections;
however, the agreement is poor towards the tip.
Figs. (12) and (13) show the variation with axis
position of M,, conveniently referred to as pitching
moment damping airload coefficient, at spanwise
stations of 0.475R and 0.925R, respectively. From
these results, one can conclude that the agreement
between the curved wake results and strip theory
is good near the quarter—chord position for M = 0
and M = 0.8 but it becomes very poor as the axis
is moved towards the trailing edge.
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Abstract

A 5.5-foot-diameter, soft-in-plane, hingeless-
rofor system was tested on a gimbal which allowed the
helicopter rigid-body pitch and roll motions. With this
model, coupled rotor/airframe aeroelastic stability
boundaries were explored and the modal damping ratios
were measured. The time histories were correlated
with analysis with excellent agreement.

The effects of forward speed and some rotor de-
sign parameters on the coupled rotor/airframe stability
were explored both by model and analysis. Some phys-
ical insights into the coupled stability phenomenon were
suggested.

Introduction

The coupled rotor-airframe aeroelastic stability
phenomenon of air resonance has received considerable
attention in recent years. A scaled model of the BO~105
helicopter was built and tested to explore this phenom-
enon and its sensitivity to degign parameters.l An ex-
tensive analytical study was performed and correlated
with BO-105 flight test data. 2

To further explore this coupled stability phenom-
enon, a large scale model having different resonance
characteristics than the BO-105 was built and tested.
Parameters that were influential to the stabilityl, 2
were incorporated into the model and their effects were
examined. An improved test technique enabled the de-
termination of modal damping ratio at every test point,
providing better data for correlation and better assess-
ment of stability.

Description of Model

The model, shown in Figure 1, consisted of a
Froude~scaled model rotor mounted on a rigid fuselage,
-which in turn was mounted on a two-axis gimbal having
1+10 degrees travel in pitch and roll. The model had a
5. 5-foot-diameter, soft-in-plane, hingeless rotor with
pertinent hub parameters such as precone, sweep, and
control system stiffness being variables to enable in-
‘vestigation of their effects on coupled rotor-airframe
stability.

A proportional (closed-loop) control system
equipped with a cyclic stick provided lateral and longi-
tudinal control to fly the model in the pitch and roll de-
grees of freedom. In addition, a shaker system was
installed in the longitudinal and lateral cyclic system
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Dynamic Model Helicopter With 5.5-Foot-
Diameter Single Rotor

Figure 1.

(see Figure 2) to allow excitation of the model at the
desired frequency. This enabled the measurement of
the modal damping ratios at each test point. The meas-
ured modal damping permitted the precise determina-
tion of the stability boundaries and also showed the
axtent of stability when the model was stable.

Details of Model Rotor Hub and
Swashplate

Figure 2.



The stability and control augmentation gsystem was
based on position feedback. Position potentiometers on !
the helicopter gimbal axes provided position feedback
signals which were amplified, filtered, and fed into the
cyclic actuators for automatic stabilization of the model.
The filter was designed to block any feedback at a fre-
quency of Q-wy and thus eliminated any control inputs
that would tend to interact with the air-resonance mode.

Collective pitch was set by means of an open-loop
control and a pitch-angle indicator. Other controls pro-
vided for the operator included mounting-pylon pitch
attitude, stick trim, and quick-acting and slow-acting,
self-centering snubbers to lock out the pitch and roll
degrees of freedom. The horizontal stabilizer was
manually trimmable and rotor speed was controlled by
the wind tunnel operator.

Signals from the blade flap, torsion, and chord
strain gages, along with body pitch and roll motion,
cyelic stick position, and 1/rev, were recorded on os-
cillograph as well as on multiplex tape recorder. One
of the chord-bending traces was filtered to display the
chord bending at the critical lag natural frequency to
allow quick determination of modal damping on line.
Most of the testing was performed in the wind tunnel at
the University of Maryland.

Test Technique

As discussed in References 1 and 2, the air-
resonance mode stability is determined by the blade
collective pitch as well as the rotor speed. Therefore,
for every airspeed, a comprehensive variation of rpm
and collective pitch was conducted.

SET .UP
TEST CONDITION

TRIM MODEL

SET SHAKER FREQUENCY
AND FILTER FREQUENCY

SET UP NEW
CONDITION

TURN ON
CEC RECORDER AND
MAGNETIC TAPE

TURN ON
SHAKER
SHUT OFF
SHAKER

RECORD
REASONABLE
DIVERGENCE
OF MODEL
MOTION

RECORD
CONVERGENCE
OF MODEL
MOTIONS

STABILIZE
MODEL BY: DROP RPM,
DROP COLLECTIVE, OR SNUBBING

[ ANALYZE DATA
OBTAIN MODAL
DAMPING RATIO

Figure 3. Flow Diagram of Test Technigue
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FPigure 3 shows the test flow of events for each
data point taken. After the test conditions had been set
up (rpm, tunnel speed, and collective pitch)y, the model
was trimmed and was held at the trim attitude with the
stability and control augmentation system (SCAS). The
shaker and the tracking filter frequencies were set to
Q-wy and w, respectively, with the absolute magni-
tudes dependent on the rotor speed. Both the multiplex
tape recorder and the CEC recorders were turned on to)
record the steady-state response of the model. The
swashplate was then oscillated in the lateral control
direction. After the termination of the excitation, re-
cording was continued until steady-state conditions were
again reached, when practical. The decay of the filtered,
in-plane, bending-moment trace was reduced to obtai
the modal damping ratio. . [
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Test Results

‘Figure 4 gshows a typical map of test points taken
at a constant tunnel speed, in this case in hover. Two
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stability boundaries were present: one at about 70 per-
cent of normal rotor speed and 120 pereent of normal
collective pitch and another at about 1385 percent rpm
and 100 percent collective. Examination of the coupled
frequency variation with rotor speed while holding con-
stant thrust, Figure 5, reveals that the low-rpm bound-
ary corresponds to the resonance with the body-pitch~
predominant mode and the high-rpm boundary with the
body-roll-predominant mode.
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Figures 6, 7, and 8 show the time histories of
three hover air-resonance points which are at constant
collective pitch of 133 percent 6NOR (1g hover collec-
tive at NNOR) With rotor speeds of 100 percent, 72
percent, and 67 percent NNOR respectively. At NNOR
the chord bending decayed after the excitation termi-
nated, at a rate of approximately 1 percent of critical
damping, and the body participation was barely detect-
able. Approaching the stability boundary at 72 percent
rpm, the chord bending took longer to decay compared
to the 100 percent rpm case. Body participation was
quite pronounced in both pitch and roll. While the fil-
tered chord-bending gage in the rotating system was
indicating at the blade lag natural frequency, wg ., the
body pitch and roll motions responding in the same air-
resonance mode were at the fixed-system frequency of
f-w, . Tt is of interest that these 2~uw, body motions
are superimposed on some very low-frequency, flying-
quality-type motions.

At 67 percent rpm, Figure 8, the air-resonance
mode started to diverge after being excited; when the
body was snubbed, the blade motion decayed and re-
turned to the 1/rev forced response.

The response characteristics described here held
true for all airspeeds tested up to a scaled test speed
limit of 225 knots.
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Response Time Histories in Hover at Nyor
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Analytical Model

To treat the dynamically and aerodynamically
coupled rotor-airframe air-resonance problem, the
analytical model shown in Figure 9 is used. In this
model, the elastic cantilevered blade is represented by
a spring-restrained, hinged rigid blade. Three hinges
are used to simulate the first flap, first lag, and first
torsion modes, in that order from inboard to outboard.
In addition, a pitch degree of freedom is provided in~
board of the flap hinge to facilitate the simulation of any
torgional stiffness distribution relative to the flap and
lag hinges. The blade model includes built-in pitch axis
precone, blade sweep, kinematic pitch-flap and pitch~
lag coupling, and a variable chordwise center-of-gravity
distribution over the blade span.

The aerodynamic model is based on current blade~
element theory and can handle all hover, forward flight,
and maneuver flight conditions. It uses two-dimensional
airfoil data with stall, reverse~flow, and compressibil~
ity effects.

Response Time Histories in Hover at 72

The airframe has five rigid-body freedoms:
longitudinal, lateral, vertical, pitch, and roll; and two
flexible freedoms: pylon pitch and pylon roll. The
equations of motion are nonlinear and are solved by a
numerical time-history solution technique. The blade

.degrees of freedom are calculated for each individual

blade.

To evaluate the aeroelastic stability, the aircraft
can be perturbed from the trimmed state. For air-
resonance investigations this is usually done by oscil-
latory stick excitations, which ¢an be simulated in any
frequency. The time history of each degree of freedom
is then subjected to an oscillation analysis program to
obtain the frequencies, amplitudes, phases, and
damping coefficients. A more detailed discussion of
this analytical procedure can be found in Reference 2.

Using a linear lift-curve slope, this coupled
analysis in hover can be reduced to a set of second-
order differential equations with constant coefficients
by applying the quasi-normal coordinate transformation
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for the rotating coordinates3. This enables the closed-
form solution. The eigenvalues and eigenvectors thus
obtained yield the information on frequencies, damping,
and mode shapes.

PITCH FLAP LAG TORSION

ROLL PITCH
S
~
P ! LATERAL

LONGITUDINAL VERTICAL

Figure 9. Coupled Rotor-Fuselage Analytical Model

Response Time Histories in Hover at 67
Percent NNOR

Correlation

Rotor Thrust

Figure 10 shows the air-resonance mode modal
damping ratio variations with thrust at NNoR in hover.
The agreement between test and analysis is quite good.
The propitious trend with increasing collective pitch is
due partly to the increase of aerodynamic damping, but
is mainly a result of the favorable pitch-flap-lag
coupling. A typical blade elastic coupling is shown in
Figure 18 where the blade flap, lag, and pitch torsion
responses to a cyclic-pitch input are indicated. The
type of elastic coupling of this rotor system is discussed
in more detail in a subsequent section.

Rotor Speed

Shown in Figure 11 are the test correlations of
the air-resonance mode damping variation with rotor
speed at constant collective pitch (133 percent ONOR)
in hover. The analytical results are in good agreement
with test points over the whole rotor speed range. The
stability boundary corresponding to the resonance with
the body-pitch-predominant mode at low rpm is pre-
dicted well by theory. The somewhat higher level of
damping of the test points might indicate that the strue-
tural damping of the real model blade is higher than the
0. 5 percent damping assumed in the analysis.
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Stability :

The good agreement of Figure 11 is merely a
reflection of the excellent correlation between test and
analysis in the time-history waveform of blade and body
motions. One example is shown in Figure 12. For this
case the oscillation analysis program yields a damping

coefficient of

0..39 percent at blade lag natural frequency

for the rotating blade.
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Figure 12. Correlation of Test and Analysis of
Time Histories in Hover

Forward ‘Flight

The test trend of air-resonance mode damping
with airspeed is algo verified by analysis in Figure 13.
Test points shown in this diagram were obtained with
constant collective pitch, so that they do not correspond
to a lg-thrust/level-flight condition. The analysis was
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performed under the same collective/shaft-angle set-
tings to get an exact simulat ion of the test conditions.
. At 150 knots, the collective pitch is slightly reduced,
from 133 percent to 111 percent, which produces a
sharp decrease in rotor thrust. Therefore the air-
resonance mode is less stable than for a normal 1g-
thrust condition. .
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Figure 13. Effect of Forward Speed on Air~
Resonance Stability at Constant
Collective Pitch

Theory shows some influence of cyclic control on
air-resonance stability at high speed. As longitudinal
cyclic also controls rotor thrust in forward flight, this
variation of air-resonance stability comes solely from
the change in rotor thrust. With thrust held constant the
stability is insensitive to steady 1/rev eyclic-pitch vari-
ation. This is shown in a later section.

In Figure 14 one example of a typical time history
at a scaled airspeed of 80 knots is compared between
test and analysis. When one congiders the complex fre-
quency modulations during this excited air-resonance
case, the correlation can be said to be excellent. This
should indicate that theory allows a definitive and reli-
able view of a helicopter's stability characteristics.

Additional test results of air-resonance stability
.in forward flight are illustrated in Figure 15. This
‘trend, which was obtained for a 1g/level-flight condition,
follows the rotor power curve quite well. As shown in
Figure 10, for a moderate range of thrust variation, say
‘around 1g, the air-resonance mode becomes more
stable with increasing thrust and less stable with de-
creasing thrust. The forward-speed trend here simply
‘reflects this thrust (and aerodynamic coning angle) de-
pendency. This trend, which shows that the air-
resonance mode stability improves significantly at high
forward speeds, is also apparent in the BO-105 flight
test data2, .
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General
The mechanism and the stability characteristics 0
of air resonance have been well described in numerous
papers. 1,2,4,5,6 1t suffices to say here that the soft-
in-plane hingeless-rotor system derives its inherent ~0.01
stability mainly from the powerful flap damping. While
rotors with untwisted blades may have substantial reduc~
tion in the flap damping near zero thrust, the damping -0.02
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available remains essentially unchanged for blades with
COLLECTIVE PITCH, 0 75 — DEGREES

nominal twist. Figure 16 shows the test data for various
blades of different twist. Above a thrust coefficient of i

0. 005, the twisted blade and the untwisted blade both Figure 16. Effect of Blade Twist on Thrust
have the same thrust-per-collective slope. While the Coefficient

untwisted blade has a drastic reduction in slope with re~

duction in thrust in both theory and test, that of the

twisted blade remains the same.
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Let us examine the coupling terms that are inher- “ovER ‘ /’\
ent in the hingeless rotor system with an equivalent ROTOR SPEED = 100% Nuox A
hinge sequence of pitch-flap-lag from inboard to out- 20
board. One term that stands out is the perturbation
pitch moment produced by the induced drag (steady
force) acting through a moment arm of vertical-flapping
displacement (perturbation deflection). This flap-pitch
coupling term due to the induced drag has the sense of
flap up/pitch noseup. Figure 17 compares the air- /Dot moucen omac
resonance mode damping of the same rofor system with /. FLE-pIICH COUPLING
this particular coupling term suppressed. With the 5 4
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By the same consideration, the air-resonance
mode ghould become more stable in descent since during
descent, the induced drag acts toward the leading edge
producing a flap-pitch coupling of flap-up/pitch-nose~
down sense, which is stabilizing.

Figure 17. Stability Characteristics With Sup—
pression of Flap-Pitch Coupling Term
Due to Induced Drag
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Pitch-Flap-Lag Coupling Characteristics

For a ¢omplete understanding of the elastic-
coupling characteristics of a hingeless rotor with a
pitch-flap-lag sequence of hinges, all blade motions
must be considered together. For this purpose it is in-
structive to analyze a simple cyclic-pitch case in hover.
In Figure 18 the elastic flap, lead-lag, and pitch mo-~
tions are shown over one rotor revolution. It can be
seen clearly that the flap and lag motions are accom-
panied by an elastic pitch torsion, the resultant coupling
being in the sense of flap up/lead forward/pitch nose-
down. For a clear understanding this complex coupling
can be divided into two distinct coupling phenomena: the
one equivalent to a negative pitch~flap coupling (flap up/
pitch nosedown), the other equivalent to a positive pitch-
lag coupling (lead forward/pitch nosedown). The cou-
pling factors are 0.4 degree pitch per degree flap and
0. 6 degree pitch per degree lag.
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Figure 18. Blade Elastic Coupling

Besides the well-known stabilizing effect of pitch~
flap coupling, the pitch-lag part of the total coupling is
of utmost importance for the in-plane motions of the
blade. Positive pitch-lag coupling (decrease of pitch as
the blade leads forward, increase of pitch as the blade
lags back) has a highly stabilizing effect on the lead-lag
oscillations. Recent investigationsl,2 have shown that
these coupling characteristics can be influenced by sev-
eral hub and blade parameters, for example, by feather-
ing axis precone, blade sweep, and control system

flexibility. Some of these design rules have already been,
applied to this model rotor design (low precone, aft
sweep, soft control systems).

Parametric Sengitivities

The following paragraphs describe the air-
resonance mode stability sensitivities obtained from the
model test. :

Climb and Descent

Figure 19 shows the sensitivity with 1g climb and
descent at a scaled airspeed of 80 knots. With normal
control system stiffness (90 in.-lb/rad), descent sta-
bilizes the mode as discussed in the previous section;
conversely, climb has a destabilizing effect.
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Effects of Climb, Descent, and Control
System Stiffness on Air-Resonance
Stability :

Figure 19.

Control System Stiffness

Also shown in Figure 19 are the test data obtained
with the control system stiffness seven times stiffer
than normal. The effect of climb and descent almost
disappeared. Since the stability is affected by the pitch-
flap-lag coupling, a stiff control system minimizes the
coupling effect, be it favorable or unfavorable.

Precone

Precone of the pitch axis directly alters the pitch-
flap-lag coupling. The beneficial effect of lower precone
has been evaluated many times. 1,2,7 Figure 20 shows
the test confirmation of the favorable effect of the low
precone.

Cyclic Trim

An evaluation of the cyclic trim on the air-
resonance stability was accomplished by varying the
angle of incidence of the tail. The tail incidence angle
was varied from 2 degrees through 45 degrees. As
shown in Figure 21, the stability is insensitive to the

“range of cyclic-trim variation at constant thrust. This

suggests that the steady 1/rev cyclic-pitch variation in
forward flight can be ignored with respect to the air
resonance.
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Conclusions

: 1. The air-resonance mode stability is sensitive
to collective pitch (thrust).

2. Air-resonance mode stability is also sensitive

to climb and descent; that is, descent is stabilizing while.

climb is destabilizing.

3. The prime coupling term in the rotor system
which causes the degradation of stability at high thrust
is the induced drag. This coupling also provides the
trend versus climb and descent.

4, Air-resonance mode stability in 1g level flight
shows the rotor-power-curve trend with highly stable
characteristics at high speed.

5. The elastic-coupling behavior of the model
rotor with normal control system stiffness is charac-
terized by a pitch~flap coupling (0.4 degree pitch per
degree flap) and a pitch-lag coupling (0.6 degree pitch
per degree lag).

6. High control system stiffness minimizes the
flap-pitch coupling effectiveness and reduces the sensi-
tivity of the air-resonance stability to design parameters
which are otherwise influential.

7. Less precone is stabilizing for a soft-m-plane
hmgeless—rotor system with an equivalent hinge sequence
of pitch-flap-lag from inboard to outboard.

8, Variation in cyclic trim does not affect air-
resonance stability.

9. The testing technique to define air-resonance
modal damping discretely at many operational conditions
proved highly successful. Use of these methods to define
modal damping, rather than defining only the boundaries,
allows for a more definitive view of an aircraft's stability
characteristies.
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AN APPLICATION OF FLOQUET THEORY TO PREDICTION OF MECHANICAL INSTABILITY
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Abstract

The problem of helicopter mechanical insta-
bility is considered for the case where one blade
damper is inoperative. It is shown that if the hub
is considered to be nonisotropic the equations of
motion have periocdic coefficients which cannot be
eliminated. However, if the hub is isotropic the
equations can be transformed to a rotating frame
of reference and the periodic coefficients elimi~
nated. The Floguet Transition Matrix method is
shown to be an effective way of dealing with the
nonisotropic hub and nonisotropic rotor situation.
Time history calculations are examined and shown
to be inferior to the Floguet technique for deter-
mining system stability. A smearing technique
used in the past for treating the one damper inop-
erative case 1s examined and shown to yield uncon-
servative results. It 1s shown that instabilities
which occur when one blade damper is inoperative
may consist of nearly pure blade motion or they
may be gimilar to the classical mechanical
instability.

Wotation
ey lag demping rate
c effective hub demping in x-direction

cy effective hub demping in y-direction
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effective hub stiffness in x-direction
effective hub stiffness in yédirection
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force acting on hub in x-direction
force acting on hub in y-direction

Pirst mass moment of blade about lag
hinge

period of the periodic coefficients,
T = 21/Q

coordinates of hub in rotating reference
frame

coordinates of rotor center of mass in
fixed reference frame

coordinates of hub in fixed reference
frame

coordinates of elemental blade mass dm
in fixed reference frame

lag deflection of ith blade
defined by Equations (18)
defined by Equations (7)

Jth eigenvalue of the Floguet Transition
Matrix

defined by Equations (18)

defined by Equations (T)

distance from lag hinge to elemental
blade mass dm

azimuthal location of ith blade
rotor speed

defined by Equations (18)
defined by Equations (7)

characteristic matrix, periodic with
period T

state matrix, periodic with period T
Floguet Transition Matrix
state transition matrix

state vector



The problem of mechanical instability of
helicopters on the ground has been recognized and
understood for meny years. The analysis by Coleman
and Feingoldl has became the standard reference on
this phenomenon although it was not published until
many years after the first incidents of mechanical
instability, or ground resonance as it is commonly
known, were encountered on the early autogyros.

The mechanical instability phenomenon is most com-
monly assoeciated with helicopters having articu-
lated rotors; however, helicopters using the soft-
inplane hingeless rotors which have become popular
in recent years are also susceptible to this
problem. Machines employing these soft-inplane
hingeless rotors are also known to experience a
similar problem, commonly known as air resonance,
which occurs in flight rather than on the ground.
The air resonance problem has received much atten-
tion in recent years (see, e.g., Refs. 2 and 3).

From the analysis of Reference 1 and others
it is known that the ground resonance problem is
due primarily to a coupling of the blade inplane
motion with the rigid body degrees of freedom of
the helicopter on its landing gear. These analyses
have shown that with the proper selection of blade
lag dampers and landing gear characteristics the
problem of mechanical instability can be eliminated
within the operating rotor speed range. All of the
mechanical instability analyses conducted to date
have one assumption in common - all blades are
assumed to have identical properties. This is a
reasonable assumption under ordinary circumstances;
however, the U.S. Army has a requirement on new
helicopters which invelidates this assumption.
requirement is that the helicopter be free from
ground resonance with one blade damper inoperative.
As will be shown later, this one blade damper inop-
erative requirement has a serious impact on the
classical method of analyzing a helicopter for
mechanical instability. Further, there is at pres-
ent no published method available for treating the
cagse where each of the blades is permitted to have
different properties. Thus the designer is faced
with the dilemma of trying to satisfy the require-
ment with an analysis method in which one of the
basic assumptions is severely violated.

The

Two methods have been used to circumvent this
difficulty. The first of these involves a physical
approximation so that the classical analysis
becomes applicable. In this approach all blades
are still assumed to have identical lag dampers
even when one blade damper is removed, but the
value of each of the dampers is reduced by the
smount c3i/N where N is the number of blades
and ¢y 1is the original lag damper rate. As can
be seen, with this approach a system is analyzed
which is quite different from the actual situation
of a rotor with no damping on one blade. The sec-
ond method which has been used is to reformulate
the equations of motion allowing for differing
blade characteristics and to obtain the stability
characteristics of ithe system using a time history
integration of the equations. This second approach
has the drawback that interpretation of stability
characteristics from time history calculations is
often difficult and open to question. The method

will yield correct results, however, provided the
equations are integrated over a sufficiently long
+time period.

The purpose of this paper is to present a
method of obtalning the mechanical stability char~
acteristics directly for a helicopter operating on
the ground with one blade damper inoperative. As
will be shown later, the equations governing the
motion of this system have periodic coefficients.
This fact suggests the use of Floquet theory as the
means for determining the stability characteristics
of the system. In the following, the one-damper-
inoperative problem is formulated and the resulting
equatione are solved using the Floguet Transitionh
Matrix method described by Peters and Hohenemser.
Results obtained using this method are compared
with results obtained from the two previously used
methods and recommendations are made concerning
the future use of the three methods described.

Egquations of Motion

The equations of motion for the mechaniecal
instability problem will be formulated using an
Eulerian approach. It will be assumed, as is done
in Reference 1, that the helicopter on its landing
gear can be represented by effective parameters
applied at the rotor hub. It will be further
assumed that only inplane motions of the hub and
blades are important in determining the ground
resonance characteristics of the helicopter. Thus
the degrees of freedom to be considered consist of
two inplene hub degrees of freedom and a lead-lag
degree of freedom for each blade in the rotor. The
mathematical model to be used in the analysis is
shown in Figure 1. Note that in the figure only a
typical blade is shown. The analysis will be
formulated for a robtor having N blades, and each
blade is assumed to have a rotational spring and
damper which act about the lag hinge.

The blade equations are developed by suﬁnning
moments about the lag hinge. The coordinates of
the elemental mass dm in the fixed system are

x; = x, + e cos \lri+pcos(1lti+§i)

(1)

i

¥

; Sy tesiny +o sin(\lf:.L + Qi)

where

¥, =0t +2n(i - 1)/8 i=1,2,...,0
These expressions can be differentiasted twice with
regpect to time to yleld the accelerations exper-
ienced by the differential mass

% =% - e0® cos ¥ - p(Q + éi)ecos(\lfi + Ci)

- pEi Siﬂ(‘Vi + gi)
Sfi "h - 69.2 sin ﬂfi - p(Q + éi)gsin(\lri + gi)

+ ogi cos(¥, +¢,)

i

(2)
Using D'Alembert’s principle the summation of
moments about the lag hinge can be written as
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fp sin (‘Vi + Ci)ffidm - fp cos (Wi + l;i);'y'idm
- kici - ciéi =0 1=1,2,...,0 (5)

where the integrals are evaluated over the length
of the blade. Introducing the expressions for

s

:ii and 3;_1 and, defining the following
8= Joam
L, = Jo" o
the blade equations become
% 2 o
Lty + Q8 sin b, - 8. [% sin(wi + gi)
- yh COS(llfi + ci)] + kici + cigi =0 (5)

1= 1,2,...,N

If small displacements are now assumed the blade
equations may be linearized to cbtain

(%)

Ei + niéi + (wgi + Q2v§)§i = (vg/e)[iih sin ¥;

- ¥, cos ¥,1 i=1,2,...,N (6)

where the following parameters have been introduced

2
o= eSb/Ib

k, /Ty (7

I

u

v
2
%
i

ng = o/T,

Under the assumptions stated earlier the hub
equations of motion can be written directly as

P

mxxh * cxkh * kxxh X

" TR T e < Py

where the coefficients on the left side of these
equations are the effective hub properties in the
x~ and y-directions, respectively. The determina-
tion of these properties depends on an extensive
knowledge of the helicopter inertial character-
istics and the stiffness, damping, and geometrical
characteristics of the landing gear system. These
properties may be determined either by ground shake
tests of the helicopter, as suggested in Refer-
ence 1, or by direct calculations. The right-hand
side of the above equations are the foreces acting
on the hub due to the faet that the rotor is
experiencing accelerations in the x- and y-
directions. If the accelerations of the rotor
center of mass are ¥  and ¥,, respectively, the
P, and Py are given by

P, = —Nm.biéc
Py = —Nmbif c

The equations as written also indicate that In the
absence of the rotor the hub degrees of freedom are

]

(8)

i

(9)

uncoupled. This is an approximation, but it is
an assumption made in Reference 1 and one generally
used in helicopter mechanical stability analyses.

If all blades in the rotor are assumed to have

the same mass distribution, the coordinates for the
total rotor center of mass may be written as

5 ZN:
+ = X
o] *h N & i,

X =
(30)
>
Yo=Y, t= ¥y
TR N 43 e
where xi, and ¥yi, are the coordinates of the

individual blade center of mass, measured with
respect to the hub. If the center of mass of the

ith blade is a radial distance p, from the lag
hinge
xj, = e cos ¥, + o, cos(\lri + f;i)
(11)
¥i, = ¢ sin ¥ * e, sin(wlri + (;i)
Making the observation that, for N> 1
N N
Z cos Wk-—- Z sin\lfk=0
=1 k=1
the rotor center of mass coordinates become
N
X" xh - (pc/N) Z C:L sin 1"i
i=1
(12)

u

N
Yo =9y * (pc/N) El Ci cos ﬂri

These expressions may now be differentiated twice
with respect to time and the forces Px and Py
obtained as

Xor.. .
P -l\fmbiih+sb Zl[(gi-ﬂzgi)sin ¥, + 206, cos l(fi]
i=

N Jr. .
Py = —Nmbifh-sb El {(Qi— Q2§i)cos Wi- 29§i sin vlli}
(13)
The hub equations of motion thus become
\
(mx + 1\Imb)kh * cxsch + kxxh =
Nr. .
Sy > {(Qi - Qagi)sin ¥+ 29§i cos vi]
i=1 ? (14)

(my+1\fmb)5r'h+cy3'rh+kyyh=

NT.
-5 igl[(gi - S?-ggi)cos ¥, - 20f, sin \lri])

The equations of motion for the system thus con-
sist of (N + 2) coupled second-order differential
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equations with the coupling terms having periodic
coefficients. The periodic coefficients arise
because the blade equations are written in a rotat-
ing reference system whereas the hub equations are
in a fixed system. As is shown In the Appendix,
if all the blades have identlcal lag springs and
lag dampers, the periodie coefficients may be
eliminated through the use of multiblade coordi-=
nates. The effect of these coordinates is to
transform the blade equations from the rotating to
the fixed system of reference. The resulting con~
stant coefficient system of equations is the set
normally solved in the classical ground resonance
analysis. As 1s shown, however, if the blades are
allowed to have different lag springs and dempers,
the periodic coefficients cannot be eliminated in
the usual manner.

An alternative does exist, however, for
eliminating the periodie coefficlents even when
the blades are allowed to have differing character-
istics. The alternative consists of transforming
the hub equations into the rotating system of
reference. In order to eliminate the periodie
coefficients using this approach, the additional
assumption must be made that the hub is isotropic.
That is

m_ =m
x Uy
e = C
x ¥y
k =k
x 'y

This is the approach used in Reference 1 for treat-
ing the two-bladed rotor which 1s another case
where the periodie coefficients in the equations
of motion cannot be eliminated by trensforming the
blade equations to the fixed system.

The transformation from fixed to rotating
coordinates 1s given by

x

1§

cos Ot + y, sin Ot
ke i (15)

<41
i

-X, sin Ot + ¥y, ©o8 197

'Differentiating these expressions allows the fol-
lowing identities to be established

:’chcosﬂt+;§rhsinﬂt=;;c—kn§
-:':hsinﬂt+}}'hcosnt=i:r+ﬂ;:
Sihcosm+5;hsinﬂt=§-02;c-2m‘r
-ihsinﬂt+§hcosﬂt=§-n2§+2m;c

The hub equations in the rotating system are then
obtained by appropriate combinagtions of the xp
and ¥y equations, Equations (1%). The resulting
equations are given below

§+nh§-:+(a>i-92)i—2o:'}-ﬂqh§'

N T
= vi jZ—.:l [(Q'j _gzgj)sn\ —21‘35(,3 —1)+2§2§j cos %ﬁ-(j(-lé;]

- - 2 N o -
y+qhy+(a)h—9)y+2fb:+ﬂqhx

= ~vy El{(g -n?gj)cos %’5(3-1)- 29§J gin

2n

'N—( - l)]
(1n

where the following parameters have been introduced

v121 =‘ b/(mx + 1qmb)
off = & /(n + ;)

Ty = o oy + Na)

Introducing the rotating coordinates into the bla.de
equations, Equations (6), results in

i

(18)

ijfnjéj'*(wo + o2y )Cj

= (yi/e)[(;-; - o%% - zxzir)sin ?ﬁ"- (j - 1)

- (y - o7 v + 29.x) cos = (j - l)] (19)

J=1,2,...,N

Since modern helicopters do not in general
bave isotropic bubs, the above equations can only
be used to approximate the effects of a noniso~
tropic rotor. They are, however, easily solved for
the stability characteristics of the system and
thus they might be used to obtain a first approxi-
mation to the mechanical stability boundary for a
helicopter with one blade damper inoperative.

From the foregoing discussion it can be seen
that if either the rotor or -the bub is isotropie,
the mechanical stability characteristics of the
system may be obtained using conventional tech~
niques. If both the rotor and hub are nonisotropic
the equations of motion of the system contain
periodic coefficients and thus the standard eigen-
value techniques cannot be used to determine
whether the system is stable or unstable. It is
the purpose of this paper to demonstrate that
Floquet theory can be used to analyze this general
gituation of a nonisotropic rotor coupled with a°
nonisotropic hub. )

Solution of the Equations

If the periodic coefficients in the equations
of motion are eliminated by assuming either an
isotropic rotor or an isotropic hub, the stabllity
of the system can be determined using standard
eigenvalue techniques. The general case of a
nonisotropic rotor coupled with a nonisctropie hub -
will be treated using Floquet technjques as
described by Peters and Hohenemser,* and Hohenemser
and Yin.D A brief description of the technique
will be presented here for the sake of completeness.

In state vector rotation the free motions of
the system may be writiten as

&l = to(+)1)2] (20)
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where the state variables for the problem being
considered consist of

:gl’ §2, ey gN’ X1 Vg0 gl’ éz: ey é'ﬂ; ih’ jh

and the equations which describe the motions of the
system are Equations (6) and (14). The matrix
[D(+)] 1s periodic with periocd T and for the
mechanical stability problem T = 2x/0.

Floquet's theorem states that the solution to

the above system of equations has the form

el - [A()] o MHLOYY] (21)

where [A(t)] is the characteristic matrix and is
also periodic with }’)eriod T. The column of

:i.nitial conditions z(o)} 1s used in determining
[0 as

o} = 1a(0)17H{z(0)]

The matrix [A(O)], the modal demping A, and the
modal frequency o are determined from the Floquet
Transition Matrix [Q] which 1s defined by the
equation

(22)

{z(m)} = ra1fz(o) (23)

for all sets of ini‘.tia.l conditions |2(0). It is
shown in References U4 and 5 that the eigenvalues
A, of the matrix [Q] cen be used to determine LY
and wy gince

Ay = e(NgHey) (24)
and the modal metrix of [Q] is Just [A(0)]. The
characteristic matrix [A(t)] is then shown to be
given by

[a(+)] = [4(+)10a(0)] F.'(m‘”)ﬂ (25)

where the state transition matrix [@#(+)] is defined
by

fa(t)} = [9()1{a(0)} (26)

The characteristic multipliers A, of the
system are uniquely defined since the matrix [Q]
is real; however, only the real parts of the
characteristic exponents Py = 7\3 + :l.u:J are
defined uniquely since

1

py = E’(ZnIAJl +1 arg Ay) (21)
The imeginary part can only be determined within an
integer multiple of 2x/T. This indeterminacy of the
My causes no particular difficulty if one is only
interested in the stability of the system. However,
if one is interested in understanding the mechanism
involved in any instability which might be found,
this indeterminacy can be guite troublesome.

The Floquet Transition Matrix which is the
basic element needed in the stability analysis is
easily determined by a numerical integration of
the equatlons of motion over one period T. If
one desires to compute the characteristic functions
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[A(t)] the matrix [B(t)] is saved at each time
point in the numerical integration to obtain [Q].
For the calculations of this paper, the fourth _ -«
order Runge~Kutte method with Gill coefﬁcients6
was used for the numerical integration.

A comment is in order concerning the charac-
teristic functions [A(t)]. The matrix [A(t)] is
a complex valued matrix and is determined at as
many time points as desired. The computation of
these functions can be relatively expensive and
intepretation can be difficult. The interpreta-
tion is made easier by the procedure ocutlined in
Reference 5 for converting the complex functions
into real functions which may be plotted as func-
tions of time. The scheme used is essentially the
same as that used when it is desired to plot as a
funetion of time the modes of a system having con-
stant coefficients. That is, for a conjugate pair
of characteristic exponents

pj=7\3+iwj
P,j'=?\j —:I.w'j

the characteristic functioms are also conjugate
pairs., Thus the real modal function column for
this conjugate pair of characteristlc exponents
will be given by

8, (0)} = [a,e)] e(Ryiep)t {Rd(t)ie(%a'i‘”a): |
28

here {A (t)} is the Jth column of [A(t)] and
If (%) is the complex conjugate of this column.

e purpose in performing these manipulstions is
4o be able to plot the model functions to deter-
mine the relative megnitudes and phases of the
various degrees of freedom in each mode. A discus-
sion of this technique as it applies to constant
coefficient systems 1ls given by Meirovitch.! TIn
this paper the exp(Agt) is omitted from the above
equation since it 1s simply = congtant which multi-
plies each component of the mode and causes each
component to damp at the same rate. Thus the
plots of the cheracteristic functions which are
presented later in the paper will sppear to be
neutrally damped.

In making the calculations for this paper it
was found that the outpubt from the calculation of
the modal functions became so voluminous and these
calculations became so expensive that the modal
functlons were only computed for selected points.
Generally a sweep of rotor speed was made and the
results examined. If an unstable region wesg indi-
cated the rotor speed corresponding to the maximum
positive 7\3 was rerun end the modal functions
calculated.

Discussion of Results

In order to demonstrate the application of
the above-mentioned techniques and to obtain a
general understanding of the effect of one blade
damper ‘inoperative on mechanical stability, a set
of parameters were chosen. The parameters in the



mechanical stability analysis were chosen so as to
be in the general range of interest for a single
rotor helicopter and were such that the system was
stable with all dampers functioning up to a rotor
speed of 400 rpm. The parameter values chosen for
the calculations are shown in Table 1.

The parameters presented in Tsble 1 correspond
to an isotropic rotor and a nonisotropic hub. In
the following discussion results are presented for
the case of an isotropic hub coupled with a non-
isotropic rotor and a nonisotropic hub coupled
with an isotropic rotor as well as the case of
interest which involves a nonisotropic hub coupled
with a nonisotrpic rotor. When an isotropic hub
is mentioned, this means that the hub parameters
in both the x~ and y-directions were assigned the
values shown in Table 1 for the x~direction. An
isotropic rotor implies that all dampers are
operational and a nonisotropic rotor is meant to
indicate that the lag demper has been removed from
blade number 1. The analysis has been formulated
in such a way that any number of blade lag dampers
or lag springs may be removed to make the rotor
nonisotropic. The results presented here, how-
ever, only involve the removal of the lag damper
from one blade.

The case of an isotrcopic hub was first run in
an effort to become familiar with the nonisotropic
rotor results before proceeding with the more
complicated Floquet analysis. The isotropic hub
permits the equations to be transformed into the
rotating reference frame and results in a system
of equations with constant coefficients, Equa-
tions (16), (17), and (19), even with a noniso-
tropic rotor.

Figure 2 shows the resulits of the ecalculations
for the isotropic hub with all blade dampers work-
ing. Note that since the equations were solved in
the rotating system, the frequencies in the lower
portion of Figure 2 are plotted in the rotating
system. The numbers attached to the different
modes in Figure 2 and in subsequent similar figures
have no significance other than to provide a label
for the various modes. In Figure 2 the dashed
lines represent the uncoupled hub modes. The
uncoupled rotor modes follow along the curves
labeled 1,2 which also represent, in the terminol-
ogy of Reference 5, the rotor collective modes.
Note that the uncoupled blade freguencies are zero
for rotor speeds less than about 65 rpm. This is
due to the fact that the blades are critically
demped for these low rotor speeds. At the higher
rotor speeds modes 3 and 4 are essentially rotor
modes and modes 5 and 6 are essentially hub modes.
At the lower speeds, however, due to the coupling
between rotor and hub, mode b changes to a hub
mode and mode 5 changes to a blade mode. Note
from the damping plot that all the modes indicate
stability over the entire rotor speed range.

The results for one blade damper inoperative
and an isobropic hub are plotied in Figure 3.
Note that the removal of a blade damper has caused
the appearance of a mode which was not present in
Figure 2, namely the mode labeled 3 in Figure 3,
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and that this mode exhibits a mild instability.
between 160 and 200 rpm. At rotor speeds below
about 100 rpm this mode has a frequency which cor-
responds to the uncoupled frequency of the blade
which has no damper. At rotor speeds above 100 rpm
this mode begins to deviate in frequency from the
uncoupled frequency. Another interesting point is
that mode 1 in Figure 3 is precisely the same as
the collective modes of Figure 2, and in Figure % -
there is only one such mode. Thus it appears that
the unstable mode in Figure 3 has evolved from one
of the two collective modes shown in Figure 2
because of the removal of one of the blade deampers.

A time history caleulation was made for the
point of maximum instebility in Figure 5 which
oceurs &t approximetely 175 rpm. The results of
the time history calculation are shown in Figure k.
These results were obtained using the same inte-
gration scheme as that used for generating the
Floguet Transition Matrix. The top portion of the
figure represents the individual blade lag motlions
whereas the lower portion represents the hub
response in the x- and y-directions. Note from
the figure that each of the degrees of freedom was
given an initial displacement but the initial
velocities were zero. The equations were inte-
grated for 17 rotor revolutions. The figure indi-
cates the blades which have lag dampers are well
damped, but the blade on which the damper is
inoperative experiences large lag excursions.
Also, the hub motions, although not large, do not
appear to have a high degree of damping. From the
time history one would conclude that the system is
stable since the motions of the various degrees of
freedom do not appear to be incressing in ampli-
tude with increéasing time. The eigenvalue analysis
has shown, however, that an instability exists.
The problem with the time history calculations is,
of course, that the equations of motion have not
been integrated over a sufficiently long time
period for the initial conditions chosen. Herein
lies the difficulty with using the time history
approach for calculating the stability character-
igtics of systems. One can never be sure if a
sufficiently long integration period has been
used, and the choice of initial conditions which
will minimize the integration time required is a
trial and error process. It has been observed on
an analog computer that for the ground resonance
problem the choice of initial conditions has a
strong bearing on the conclusion inferred from the
time history traces. The time history integration
is also much more time consuming on the digital
computer than the eigenvalue analysis. The time
to generate Figure 4 which is for only one rotor
speed was much greater than the time required to
generate the eigenvalue results for all of Fig-
ure 3. It is thus concluded that whenever it is
at all possible the eigenvalue approach to sta-
bility calculation is to be desired over the time
history approach.

Having examined the case of one blade damper
inoperative an an isotropic hub, the next logical
step is to examine the more realistic situation of
a nonisotropic hub. Before examining the one
damper inoperative situation it was first desired



to confirm that the system was stable with all
dampers working. The modal damping and frequency
of the various modes with all dampers working and
a nonisotropic bub are shown in Figure 5. As can
be seen from the damping plot, all the modes are
stable. In this case the equations of motion are
solved in the fixed frame of reference and hence
the frequencies are plotted in this frame. The
dashed lines on the frequency plot represent the
uncoupled system: +the horizontal dashed lines
being the hub modes and the slanted dashed lines
being the rotor modes. Note that because the rotor
nmodes become critically damped at low rotor speeds
the two uncoupled rotor frequencies come together
before reaching the origin. The uncoupled rotor
lines also represent the collective modes for the
rotor. These modes are completely uncoupled from
the other modes and hence are not ineluded in the
elgenvalue analysis of the nonisobtropic hub
coupled with an isotroplic rotor. The damping for
the collective modes is exactly the same as that
shown for modes 1,2 in Figure 2.

The validity of the Floquet analysis was
verified by comparing results from this analysis
with results from both the rotating system analysis
(isotropic hub) and from the fixed system analysis
(isotropic rotor). In each case the results fram
the Flogquet analysis were identical to results
from the other analyses.

Having thus established the validity of the
Floquet analysis, results were obtained for the
nonisotropic hub and one blade damper inoperative.
These results are shown in Figure 6. Note that
these results are very much similar to those shown
in Figure 5 except that, as was the case with the
isotropic bub and one blade damper inoperative,
there are additional modes introduced. Also indi-
cated is a relatively strong instability between
210 and 305 rpm. The frequencies of the addi~-
tional modes which are introduced correspond, at
low rotor speeds, to the frequencies of the
uncoupled blade which has no damper. In the rotor
speed range where the instability occurs, however,
the frequency deviates from the uncoupled value as
indicated by the mode labeled 3. In this range
and at higher rotor speeds the mode labeled 5 is
nearer the uncoupled blade frequency. It thus
appears that for this case the instability is more
a coupled rotor hub mode than a pure blade mode as
was indicated for the isotropie hub.

This conjecture is further strengthened by ean
exsmination of the modal functions. The modal
functions for a rotor speed of 255 rpm, which is
the point of maximum instability, are shown in
Figure 7. The functions are plotted over a time
period corresponding to one rotor revolution. Note
from this figure that blade 1, the blade without a
damper, has a significantly higher contribution to
the mode than the other blades. Also from the
plot of bub response it can be seen that the par-
ticipation of the lateral hub degree of freedom,
which has the higher of the uncoupled hub fre-
quencies shown on Figure 6, is considerable. It
is thus concluded from Figures 5 and 6 that the
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one damper inoperative situation can lead to a
classical mechanical instebility.

Time history traces for this same condition
are shown in Figure 8. These traces show the same
general trends as observed in the case of the
isotropic hub, that 1s, a large response of the
blade having no damper and moderate responses from
the other blades and the hub degrees of freedom.
Again the time history traces are lnconclusive
regarding the stability of the system.

One of the methods used in the past for
treating the one blade demper inoperative case
involves a smearing of the total blade damping.
The reasoning for this approach is as follows.

If the rotor has N blades then the total damping
available in the rotor is Ney where ci 1is the
demping on one blade. If one damper is removed,
the total damping becomes (N - 1)ci. Thus, using
this approach, each blade in the rotor would be
treated as if it had a lag damper egqual to

cy(N - 1)/,

After an examination of the preceding one
damper inoperative results it would be expected
that this approach would lead to unconservative
results. This is due to the fact that the insta-~
bilities encountered in the previous results
involved large motions of the blade which had no
damper. The smearing technique results in damp-
ing, which is not greatly different from the
original value, being applied to each blade and
thus the true situation is not adequately modeled.

To illustrate this method, the nonisotropie
hub case was analyzed using the smearing approach.
The results from these ecalculations are shown in
Figure 9. Note that although mode 3 becomes
lightly demped the system remains stable through-
out the rotor speed range considered. The fact
that mode 3 approaches instability is attributable
to the fact that this mode was not heavily damped
in the original calculations. A run of the iso-
tropic hub case, wvhere all the modes were origi-
nally well damped, indicated that the smearing
technique resulted in well damped modes for one
blade damper removed. The smearing technique is
thus not recommended for treating the one blade
damper inoperative situation since it leads to
uncongervative results.

Since one way for eliminating the classical
mechanical instability is to increase the blade
damping, it was decided to attempt this approach
on the instability indicated in Figure 6. The
approach was to leave the damping identically zero
on one blade and increase the damping on the
remaining three blades. The results of this series
of calculations are shown in Figure 10 where the
region of instability is presented as a function
of blade lag damping and rotor speed. As can be
seen from the figure, increasing the blade damping
on three of the blades has very little effect on
the stability boundaries when one blade has zero
damping. This result was somewhat expected since
from the previous calculations it was observed



that the blade with zero‘da.mping responds more or
less independently of the other blades in the
rotor.

During the increased damping calculations no
attempt was made to determine whether or not the
nature of the instability had changed. That is,
whether the instability had changed from one
involving both blade and hub motion to one con~
sisting of primerily blade motion with only small
amounts of hub motion, Further delving into pos=-

sible corrective actions for the instability which

occurs with one blade damper inoperative was
beyond the scope of this paper and thus more

research is needed to determine how the instability

may be eliminated.
Conclusions

There are several conclusions which may be
inferred from the preceding results.

instability with all blade dampers working does

not guarantee that it will be free of instabilities
The instebility

with one blade damper inoperative.
encountered with one blade damper inoperative may
be a blade mode instability or it may be the
classical mechanical instebility.

The Flogquet Transition Matrix method can be
used effectively in examining the mechanical sta~
bility characteristics of helicopters with one
blade damper inoperative. When both the hub and
Totor are considered to be nonisotropie, the equa
tions of motion contain periodic coefficients and
the Floguet approach provides an efficlent means
for dealing with this situation. Since the
Floquet approach yields the stability character-
istics directly, it furnishes a more desirable
approach to stability problems than time history
calculations.

Time history calculations can lead to erron-
eous conclusions relative to the determination of
system stability. The erroneous conclusions stem
primerily from the fact that the time history
caleulations require considerable computer time
and the tendency is to integrate over as short a
time period as possible. Thus, if the initial
conditions are not chosen properly, the time
history traces may still contalin transients vhen
the integration is terminated. The time history

approach to stability problems is thus recommended
only when no other recourse is available, and then

several different combinations of initial condi-
tions and integration periods should be examined
before making a conclusion regarding stability.

The smearing approach which has been used in
the past for treating the one blade damper inop-
erative situation leads to unconservative results
Therefore, this method is considered to be an

unacceptable means for determining stabllity under

these conditions.

First of all,
the fact that a helicopter is free from mechanical
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Appendix

If the rotor is considered %o be isotropic
the periodic coefficients appearing in the equa~
tions of motion can be eliminated through the use
of multiblade coordinates similar to those
described in Reference 1. These coordinates
essentially transform the blade degrees of freedom
into a fixed reference frame. The transformations
are given by

N
2

tEx = £, sin ¥
! I i=1 i 1
% (a1)
E o = £, cos ¥
IT A i i

Differentiating these expressions leads to
the establishment of the following identities

N . .
& l;i sin wi = §I - QgII
¢, cos ¥, = & + Qt
& i i II I (a2)
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N

73 _ Ty 2 -
i___El ( sin ¥y = & - @8y - 208y
N . oe 2 .
2,y cos ¥y = Epp - @6 + 208,

It can be seen from these identities that the
transformation is made by multiplying the blade
equations, Equations (6), by either sin ¥4 or
cos ¥; and adding the equations. Crucial to this
ggeration is the ability to remove the 1y and

51 from the summations. This can only be done
if"all the blades have identical lag springs and
lag dampers. If cne or more of the blades haye
differing characteristics, the 73 and/or “%i
‘camnot be factored from the summation and hence
the identities above cannot be applied. Thus, if
one or more of the blades are permitted to have
different lag springg or lag dempers, the periodic
coefficients cannot be eliminated using the pro-
cedure described in this Appendix.

If Equations (6) are first multiplied by
cos ¥; and summed and then multiplied by sin Wi
and summed, the following equations are obtained
after introduction of the identities (A2)

.. .

> 2, 2 .
1 * 481 - {Q (1 -v5) - “’01]511 + 208,

N
+ 0k = (vi/e)[i&h iz:.:l sin ¥, cos ¥y

N
- 3;11 Z cos2 \lri]
i=1

(a3)

ey . 2 2 2 -
Ep +ngdy - [9 (1 -vg) - ‘”oi} b - 2%y

X 2
- ko = (vi/e) ¥, 12_31 sin” ¥,
N
- yh Z sin wlfi cos q;i
i=1
Making the following observations that for N > 2

N

Z sin ¥; cos ¥, = 0
i=1

N/2

]

N N

2 2
Z cos \lfi = E sin Wi
i=1 =1
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the equations became

laz(l -2 -

.

2
gII - @

B+
It h oy

]511 + 2y
2 .
+ On .t = -(W°/2e)¥

.. .

- N :
S T [“ (@ -v) - woi]gl - 2%y

' 2 "
- oo = (]§Ivo/2e)xh

These two equations describe the rotor motions in
the fixed frame of reference. TIn terms of the
variables described by Equations (Al) the hub
equations, Bquations (14%), become

(mx + Nmb)i‘.h + cxih + kxxh = Sng
N . . (a5)
(my + N )¥y + e dy + By = -Sibpy

The stability of the rotor-hub system can now
be determined using Equations (A4) and (A5) which
have constant coefficients. This set of equations
or a set similar to it is the one normally used in
helicopter mechanical stability analyses.

note that if the
(6), are simply summed,

As a final observation
blade equations, Equations
the following equation

. : 2 22 _
€, + nyEy + (ag +aV)E =0 (46)
is obteined, where
> )
€, = £ A7
o £ i

This equation represents the rotor collective mode
and it may be observed that this equation is com-
pletely decoupled from the hub degrees of freedom.
Hence, the collective mode cannot influence the
stability of the system and it is therefore not
normally included in the mechanical stability
analysis.



TABLE 1. PARAMETERS USED IN THE SAMPI.E‘ CAICULATIONS

Number of blades L

Blade mass, m 6.5 sluge (9&.9 kg)

Blade mass moment, & 65.0 slug-ft (289.1 kg-m)

Blade mass moment of inertia, I, 800.0 slug—ft2 (108%.7 kg-me)

Lag hinge offset, e 1.0 £t (0.3048 m)

lag spring, k; 0.0 £t~1b/rad (0.0 m-N/rad)

Lag damper, c, 3000.0 ft-1b-sec/rad (4067.5 m-N-s/rad)

Hub’mass, m 550.0 slugs (8026.6 kg)

Hub mass, . 225.0 slugs (3283.6 kg)

Hub spring, k_ 85000.0 Ib/ft (121;0&81.8 N/m)

Hub spring, ky 85000.0 1b/ft (1240481.8 N/m?

Hub demper, c 3500.0 1b-sec/ft (51078.7 N-s/m)

Hub damper, ey 1750.0 1b-sec/ft (25539.3 N-s/m)
v 1~

MODAL  _ 3
DAMPING 12

I X .

Figure 1. Mathematical representation of the rotor FRQ?I?J%?II&Y
and hub. ' rad/sec '12

200
ROTOR SPEED, RPM
L L 1 L I ] )

Y 1 2 3 4 5 6
. ROTOR SPEED, Hz

Figure 2. Model damping and frequencies for iso=

tropic hub, all blade deampers working. Fre-
quencies plotted in the rotating system.
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Figure 3. Modal damping and frequencies for iso-
tropic hub, one blade damper inoperative. Fre-
quencies plotted in the rotating system.
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Figure 4. Time history calculations for isotropic.
hub, one blade damper inoperative, Q = 175 rpm.
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Figure 5. Modal demping and frequencies for non-
isotropic hub, all blade dampers working. Fre-
quencies plotted in the fixed system.
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Figure 6. Modal demping and frequencies for none-
isotropic hub, one blade demper inopersative.
Frequencies plotted in the fixed system.
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Figure 7. Modsl functions for nonisotropic hub,
one blade damper inoperative, { = 255 rpm.

5L BLADE 1
BLADE o |\, J
RESPONSE

_'5 -

Al e P N
1 e e

] "_'X—""‘_—_"""'" T "'_—"“"""
S M‘\&/%f&h\\I7\’>5*:W

-5r

HUB
RESPONSE

(=}

1 1 i 1 1 1 1 1 d_ 1 1 1
0 1 2 3 [} 5 6
TIME, sec

Figure 8. Time history caleulations for noniso~
tropic hub, one blade demper incperative,
Q = 255 rpm.
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Figure 9 Modal damping and frequencies obtained
for nonisotropic hub, one blade damper inopera~
tive, using the smearing technique.
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Figure 10. Instability regioﬁ as a function of

blade lag demping for the nonisotropic hub and
one blade damper inoperative.
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THEORY AND COMPARISON WITH TESTS OF TWO FULL-SCALE PROPROTORS

Wayne Johnson
Research Scientist
Large-Scale Aerodynamics Branch
Ames Research Center, NASA

and

U.S. Army Air Mobility R & D Laboratory
Moffett Field, California

" Abstract

A nine degrees-of-freedom theoretical model has been devel-
oped for investigations of the dynamics of a proprotor operating
in high inflow axial flight on a cantilever wing. The theory is
described, and the results of the analysis are presented for two
proprotor configurations: a gimballed, stiff-inplane rotor, and a
hingeless, soft-inplane rotor. The influence of various elements of
the theory is discussed, including the modeling used for the blade
and wing aerodynamics and the influence of the rotor lag degree
of freedom. The results from full-scale tests of these two prop-
rotors are presented and compared with the theoretical results.

Notation
cQa blade lift-curve slope
P wing torsion degree of freedom
q wing vertical bending degree of freedom
92 wing chordwise bending degree of freedom
R rotor radius
v forward velocity
¢} blade flap degree of freedom
Bo rotor coning degree of freedom

Bic  rotor tip path plane pitch degree of freedom
Bis  rotor tip path plane yaw degree of freedom

L% blade Lock number

'R pitch/flap coupling

¢ damping ratio of eigenvalue, “Re\/|A]

¢ blade lag degree of freedom

$o rotor collective lag degree of freedom

§"0 time derivative of §; rotor speed perturbation degree of

freedom for autorotation case
$ic rotor vertical cyclic lag degree of freedom
¢is rotor lateral cyclic lag degree of freedom

A eigenvalue or root

vg rotating natural frequency of blade flap motion
v rotating natural frequency of blade lag motion
w frequency of eigenvalue, ImX |

Q rotor rotational speed

The tilting proprotor aircraft is a promising concept for
short haul, V/STOL missions. This aircraft uses low disk loading
rotors located on the wing tips to provide lift and control in

Presented at the AHS/NASA-Ames Specialists’ Meeting on Rotor-
craft Dynamics, February 13-15, 1974.

hover and low speed flight; it also uses the same rotors to provide
propulsive force in high speed cruise, the lift then being supplied
by a conventional wing. Such operation requires a ninety degree
change in the rotor thrust direction, which is accomplished by
mechanically tilting the rotor shaft axis. Thus the aircraft com-
bines the efficient VTOL capability of the helicopter with the
efficient, high speed cruise capability of a turboprop aircraft.
With the flexible blades of low disk loading rotors, the blade
motion is as important an aspect of tilt rotor dynamics as it is for
helicopters. When operated in cruise mode (axial flight at high
forward speed), the rotor is operating at a high inflow ratio (the
ratio of axial velocity to the rotor tip speed); such operation
introduces aerodynamic phenomena not encountered with the
helicopter rotor, which is characterized by low inflow. The
combination of flapping rotors operating at a high inflow ratio
on the tips of flexible wings leads to dynamic and aerodynamic
characteristics that are in many ways unique to this configura-
tion. The combination of efficient VTOL and high speed cruise
capabilities is very attractive; it is therefore impartant to estab-
lish a clear understanding of the behavior of this aircraft and
adequate methods to predict it, to enable a confident design of
the aircraft. Experimental and theoretical investigations have
been conducted over several years to provide this capability.
However, much remains to be studied, both in the fundamental
behavior and in the more sophisticated areas such as the design
and development of automatic control systems for the vehicle.
This paper presents the results of a theoretical model for a
proprotor on a cantilever wing, including application to two
proprotor designs: a gimballed, stiff-inplane rotor and a hingeless,
soft-inplane rotor. Using these two cases, the influence on the
system dynamics of several elements of the analysis was exam-
ined, including the effects of the rotor blade lag motion and the
rotor and wing aerodynamic models. The predicted stability
characteristics are then compared with the results of full-scale
tests of these two proprotor designs. The development of this
theory is presented in detail in Reference 1, together with some
additional applications to the analysis of proprotor aeroelastic
behavior.

Analytical Model

Figure 1 shows the proprotor configuration considered for
the theory and for the full-scale tests. The rotor is operating in
high inflow axial flight on a cantilever wing. For the tests, the
rotor was unpowered, hence operating in autorotation (really in
the windmill brake state). This configuration incorporates the
features of greatest importance to the aircraft: the high inflow
aerodynamics of a flapping rotor in axial flow and the coupled
dynamics of the rotor/pylon/wing aeroelastic system. Many
features of the aircraft-coupled wing and rotor motion may be
studied with such a model, theoretically and experimentally,
with the understanding that the model must eventually incorpo-
rate the entire aircraft.
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The theoretical model of the proprotor developed in Refer-
ence 1 consists of nine degrees of freedom: the first mode flap
(out of disk plane) and lag (inplane) motion for each of three
blades; and vertical bending, chordwise bending, and torsion for
the cantilever wing. The degrees of freedom of the individual
rotor blades are combined into degrees of freedom representing
the motion of the rotor as a whole in the nonrotating frame.
Thus the rotor flap motion is represented by tip path plane pitch
and yaw (8, c and B,5) and coning (8,) degrees of freedom. The
rotor lag motion is represented by cyclic lag ¢, ¢ and §, g (lateral
and vertical shift of the rotor net center of gravity) and collective
lag {,. Wing vertical and chordwise bending of the elastic axis (g,
and q,) and tofsion about the elastic axis (p) complete the set of
nine degrees of freedom.

The rotor blade motion is represented by first mode flap
and lag motion, which are assumed to be respectively pure
out-of-plane and pure inplane deflection of the blade spar. For
the gimballed and hingeless rotor blades considered here (except
for the flap mode of the gimballed rotor), there is, in fact, some
elastic coupling of the flap and lag modes, so that there is
actually participation of both out-of-plane and inplane motion in
each mode. In the coefficients giving the aerodynamic forces on
the rotor, it is further assumed that the mode shapes are propor-
tional to the radial distance from the hub, i.e., equivalent to rigid
body rotation about a central hinge. The model based on these
two assumptions, which considerably simplify the aerodynamic
and structural terms of the rotor equations, proves to be an
adequate representation of the proprotor dynamics.

The theoretical results presented here will usually be for the
rotor operating unpowered, i.e., windmilling or autorotation
operation. An important element of autorotation dynamic
behavior is the rotor speed perturbation. With no restraint of the
rotor shaft rotation, this degree of freedom has considerable
influence on the aeroelastic behavior of the proprotor and wing.
The rotor speed perturbation is modeled by using the collective
lag mode §,. By setting the rotating natural frequency of this
mode to zero, i.e., zero spring restraint, 5‘0 becomes equivalent to
the rotor speed perturbation. (The natural frequency for the
cyclic lag modes, §; ¢ and {5, is not set to zero in the representa-
tion.) The other extreme case is that of the hub operating at
constant angular velocity () with no speed perturbation, with
§ o then the elastic inplane deflection of the blade with respect to
the hub. This case will be considered to represent powered
operation of the rotor, although it is really the limit of operation
with a perfect governor on rotor speed.

The proprotor operating in high inflow has simpler aero-
dynamics than the low inflow rotor in forward flight. As for the
case of low inflow (i.e., the hovering helicopter rotor), the
symmetry of axial flow results in a corresponding symmetry in
the equations of motion; it also means that the differential
equations of motion have constant coefficients. In high inflow
there is the additional fact that both out-of-plane and inplane
motions of the blade produce significant angle-of-attack changes
at the sections, and the resulting lift increment has significant
components both normal to and in the disk plane. Hence the
rotor aerodynamic forces are primarily due to the lift changes
produced by angle-of-attack changes, i.e., the cg terms in the
aerodynamic coefficients. This is in contrast to low inflow,
where, for example, the inplane blade motion produces signi-
ficant contributions to the forces by the lift and drag increments

due to the dynamic pressure changes, i.e., the ¢y and ¢q terms in
the aerodynamic coefficients. As a result, high inflow rotor
aerodynamics are well represented by considering only the cg&'
forces. If, in addition, the lift curve slope is assumed constant,
then the aerodynamic coefficients depend on only two param-
eters, the Lock number v and the inflow ratio V/QR. Refér-
ence 1 presents the aerodynamic coefficients also for a more
complete theoretical model of the rotor aerodynamics, namely a
perturbation about the local trim state, including the 0 S0 4>
and cqy terms (and also derivatives with respect to the Mach

number). Such a model is in fact little more difficult to derive
than with the ch terms alone. The influence of its use in the
theory is examined below.

This nine degrees-of-freedom model will have nine roots or
eigenvalues (really nine pairs of complex roots) and correspond-
ingly nine eigenvectors or modes. Of course, each mode involves
motion of all nine degrees of freedom. The modes are identifiable
by their frequencies (which will be near the uncoupled natural
frequencies, nonrotating for the rotor modes), and also by the
participation of the degrees of freedom in the éigenvector. The
nine modes will be denoted as follows (the approximate
uncoupled, nonrotating natural frequency of the mode is given in
parentheses):

P wing torsion (¢.,)

Q wing vertical bending (w, )
qs wing chordwise bending ?(fa q2)
B coning (vg)

g+1 high frequency flap (vB + Q)
-1 low-frequency flap (Vﬁ - )

¢ collective lag (Vg-)

§+1 high-frequency lag (v§ + Q)
¢—1 low-frequency lag (vs- -)

The basic theoretical model will consist of all nine degrees
of freedom, autorotation operation, and just the Cp,, Totor aero-
dynamic forces. The wing aerodynamic forces are also included
(based on a strip theory calculation). The dynamic stability of
the system, specifically the frequency and damping ratio of the
modes, will be examined for variations of the forward velocity V
and the rotor rotational speed £2. Both V and £ sweeps change
the inflow ratio V/QR, and hence the rotor and wing aero-
dynamic forces. A variation of the rotor speed €2 also changes the
values of the wing and rotor blade nondimensional (per rev)
natural frequencies. The rotor frequencies may also vary with
V/QR due to the change in the rotor collective pitch angle.
Several elements of the theoretical model will be examined to
determine their influence on the predicted proprotor dynamics:
the influence of the blade lag motion (by dropping the {, ¢ and
¢, s degrees of freedom), the wing aerodynamics (by dropping the
wing aerodynamic coefficients), the rotor speed perturbation
(i.e., the autorotation and powered cases), and the more com-
plete model of the rotor aerodynamics (compared to just the cg o
terms).

Two Full-Scale Proprotors

The theory described above will be applied to two full-scale
proprotors. The first is a 25-ft diameter gimballed, stiff-inplane
proprotor, designed and constructed by the Bell Helicopter
Company, and tested in the Ames 40- by 80-ft wind tunnel in
July 1970. The second is a 26-ft diameter hingeless, soft-inplane
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proprotor, designed and constructed by the Boeing Vertol Com-
pany, and tested in the Ames 40- by 80-ft wind tunnel in August
1972. The configuration for the dynamics tests consisted of the
windmilling rotor operating in high inflow axial flow on the tip
of a cantilever wing, as shown in figure 1. As far as their dynamic
characteristics are concerried, the two rotors differ primarily in
the placement of the rotating natural frequencies of the blade
flap and lag motions. The Bell rotor has a gimballed hub and
stiff-inplane cantilever blade attachment to the hub, hence
vg = 1frev (nearly, for it does have a weak hub spring) and
ve> 1/rev; it also incorporates positive pitch/flap coupling
(63 <0) to increase the blade flap/lag stability. The Boeing rotor
has a cantilever or hingeless hub with soft-inplane blade attach-
ment, hence vp > 1/rev and Ve < 1/rev. The different placement
of the blade frequencies, at the opposing extremes of the possible
choices, results in quite different dynamic characteristics for the
two aircraft.

The rotors are described in References 2 to 5. Table I gives
the major parameters of the rotor, and of the cantilever wing
used in the full-scale tests (a more complete description of the
parameters required by the theory is given in Reference 1). The
wing frequencies in the theory were maitch to the experimentaily
measured values by adjusting the spring constants. The typical
wing frequencies given in table I are for the coupled motion of
the system (including the rotor) at 100 knots and design . The
blade rotating natural frequencies are shown in figures 2 and 3
for the Bell and Boeing rotors, respectively. The variation of the
Bell lag frequency (fig. 2b) with V/Q2R is due to the collective
pitch change. The Boeing rotor blade frequencies vary little with
collective pitch (V/§2R) since the blade has nearly isotropic
stiffness at the root.

The damping ratio of the wing modes was measured in the
full-scale tests by the following technique. The wing motion was
excited by oscillating an aerodynamic shaker vane on the wing
tip (visible in fig. 1) at the wing natural frequency. After a
sufficient amplitude was achieved, the vane was stopped. Then
the frequency and damping ratio were determined from the
decay of the subsequent transient motion of the wing.

Results and Discussion

Gimballed, Stiff-Inplane Rotor

The effects of several elements of the theoretical model will
be examined for a gimballed, stiff-inplane rotor (the Bell rotor).
The theoretical results will then be compared with the results of
full-scale tests. The test results and results from the Bell theories
are from Reference 2. The predicted variation of the system
stability with forward speed V at the normal airplane mode rotor
speed (§2 = 458 rpm) is shown in figure 4, in terms of the fre-
quency and damping ratio of the eigenvalues. The wing vertical
bending mode (q; ) becomes unstable at 495 knots. The damping
of that mode first increases with speed; the peak is due to
coupling between the wing vertical bending (q;) and low-
frequency rotor lag ({ — 1) modes (it occurs at the resonance of
the frequencies of these two modes). Figure 5 shows the influ-
ence of the rotor lag motion, comparing the damping of the wing
modes with and without the {, ¢ and {, g degrees of freedom. The
rotor low-frequency lag mode has an important influence on the
motion, particularly on the wing vertical bending mode; the q,
damping is increased when its frequency is below that of the

¢—'1 mode (low V), and decreased when its frequency is above
that value. The high speed instability is relatively unaffected,
however, indicating that the mechanism of that instability
involves primarily the rotor flap motion. Therefore, the net
effect of the reduced damping at high speed due to the lag
motion is a reduction of the rate at which the damping decreases,
which is beneficial since the instability is then less severe.

Figure 6 shows the influence of powered operation (stabiliz-
ing) and of omitting the wing aerodynamics (destabilizing). The
powered state effect is the influence of dropping the rotor speed
perturbation degree of freedom. The wing aerodynamics effect is
mainly the loss of the aerodynamic damping of the wing modes
due to the angle-of-attack changes during the motion. Figure 7
shows the influence of the more complete theoretical model for
the blade aerodynamics, compared with the results using only the
¢, terms. The basic behavior remains the same, but the better
aerodynamic model reduces slightly the level of the predicted
damping ratio. The predicted speed at the stability boundary is
significantly reduced, however, because of the gradual variation
of the damping with speed. It is therefore concluded that for the
prediction of the characteristics of an actual aircraft, the best
model available for the rotor aerodynamics should be used.

Figure 8 shows the variation of the dynamic stability with
velocity at the normal rotor speed (2 =458 rpm), in terms of
the frequency and damping ratio of the wing modes; the full-
scale test results for the Bell rotor are compared with the pre-
dicted stability. Also shown are predictions from the Bell linear
and nonlinear theories, from Reference 2. Figure 8 shows reason-
able correlation between the predicted and full-scale test stability
results. Additional comparisons with the full-scale test data are
given in Reference 1.

Figure 9 shows the influence of the rotor lag motion. The
predicted and measured stability is shown for the Bell rotor on
the full-stiffness wing, and on a quarter-stiffness wing. (By oper-
ating on a quarter-stiffness wing at one-half design rotor speed,
Q = 229 rpm; the wing frequencies and inflow ratio are modeled
for an equivalent speed twice the actual tunnel speed.) Also
shown is the predicted stability for the rotor on the full-stiffness
wing, but without the ¢; ¢ and ¢, g degrees of freedom. Figure 9a
shows the variation of the wing vertical bending mode damping.
The full-scale experimental data show a definite trend to higher
damping levels with the full-stiffness wing, and this trend corre-
lates well with the results of the present theory. Figures 9b and
9c show the predicted stability of all the wing modes. The
difference in damping at the same inflow ratio is due to the rotor
lag motion. Figure 9d shows the frequencies of the ¢ — 1, q,, and
p modes for the full-stiffness and quarter-stiffness wings. The
full-stiffness wing has a resonance of the {—1 and q; modes
which produces the peak in the damping. Slowing the rotor on
the quarter-stiffness wing greatly increases the lag frequency (per
rev), removing it from resonance with the q; mode. Another way
to remove the influence of the rotor lag motion, in the theory, is
simply to drop the {¢ and {, g degrees of freedom from the full-
stiffness wing case. When these degrees of freedom are dropped,
the predicted wing verfical bending damping is almost identical
to that for the quarter-stiffness wing (figs. 9a and 9b). Figure 10
examines further the influence of the rotor lag motion on the
wing vertical bending mode damping. Predicted stability with and
without the ¢, and ¢, degrees of freedom is compared with
experimental results from tests of a 0.1333-scale model of a
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gimballed, stiff-inplane proprotor. The test results are from Ref-
erence 6; this rotor is a model of the Bell M266, similar in design
to the fullscale rotor considered here. The experimental data
correlates well with the predictions, including the influence of
the rotor lag motion.

Hingeless, Soft-Inplane Rotor

The effects of several elements of the theoretical model will
be examined for a hingeless, soft-inplane rotor (the Boeing
rotor). Then the theoretical results will be compared with the
results of full-scale tests, and with results from the Boeing theory
(the latter are from Reference 3). The predicted variation of the
system stability with forward velocity at normal rotor speed
(2 = 386 rpm) is shown in figure 11. The low-frequency flap
{8 —1) mode becomes unstable at 480 knots. By the time this
instability occurs, the mode has assumed the character of a wing
vertical bending mode (i.e., the q, motion, and the associated p,
$ic, $1s and §o motions); hence this instability has the same
mechanism as does the Bell rotor. With the soft-inplane rotor,
vy < 1/rev, the proximity of the { — 1 and q; mode frequencies
significantly reduces the wing mode damping at low speeds; this
effect is the air resonance phenomenon. A similar influence
occurs with the resonance of the { — 1 and q, modes, leading to
an instability of the wing chord mode (this instability can occur
because the wing chord mode aerodynamic damping remains low
even at high speed). At higher £, this q, mode instability is, in
fact, the critical instability. The influence of the rotor lag motion
is shown in figure 12. The substantial decrease in the damping of
the wing vertical and chordwise bending modes due to the rotor
lag motion is the air resonance effect. Figure 13 shows the
influence of powered operation and of omitting the wing aero-
dynamics, and figure 14 shows the influence of the better theo-
retical model for the rotor aerodynamics on the predicted
stability. The effects, and hence the conclusions from figures 13
and 14 are similar to those for the Bell rotor.

Figure 15 shows the variation of the predicted stability of
the Boeing rotor with rotor speed at 50 knots. At this low speed,
the resonance of the {—~1 and q; mode frequencies actuaily
results in an instability of the wing vertical bending mode.
Figure 16 shows the stability variation with rotor speed at
192 knots. The reduction in wing vertical bending mode damping
due to air resonance is still present, but the increase in the rotor
lag aerodynamic damping and wing vertical bending aerodynamic
damping with flight speed has been sufficient to stabilize the
motion even at resonance. Figure 17 summarizes the air
resonance behavior of the Boeing rotor.

Figure 18 compares the predicted and full-scale results for
the stability of the wing modes for a velocity sweep of the
Boeing rotor at £ = 386 rpm. Figure 19 shows the variation of
the wing vertical bending mode damping with rotor speed at
V = 50 to 192 knots. These runs were conducted to investigate
the air resonance behavior of this configuration, i.e., the influ-
ence of the rotor lag motion. Reasonable correlation is shown
between the predicted and measured stability, except at the

_higher speeds where tunnel turbulence made extraction of the
damping ratio from the experimental transient wing motion
difficult. Also shown are predictions from the Boeing theory,
from Reference 3. Additional comparisons with the full-scale test
data are given in Reference 1.

Concluding Remarks.

This paper has presented theoretical results for the stability
of a proprotor operating in high inflow on a cantilever wing.
Some experimental results from full-scale tests have been pre-
sented, showing reasonable correlation with the predicted stabil-
ity. The nine degrees-of-freedom theoretical model has been
established as a useful and accurate representation of the basic
dynamic characteristics of the proprotor and cantilever wing
system. The significant influence of the rotor speed perturbation
degree of freedom (i.e., windmilling or powered operation), the
wing aerodynamics, and the rotor aerodynamic model on the
predicted stability have been shown, indicating the importance of
including these elements accurately in the theoretical model.
From a comparison of the behavior of the gimballed, stiff-inplane
rotor and the hingeless, soft-inplane rotor, it is concluded that
the placement of the natural frequencies of the rotor blade first
mode ‘bending — i.e., the flap frequency v, and the lag frequency
ve — has a great influence on the dynamics of the proprotor and
wing. Moreover, the theoretical and experimental results have
demonstrated that the rotor lag degree of freedom has a very
important role in the proprotor dynamics, for both the soft-
inplane (vg. < 1/rev) and stiff-inplane (v;- > 1/rev) configurations.
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TABLE 1 — DESCRIPTION OF THE FULL-SCALE
PROPROTORS, AS TESTED IN THE AMES 40- BY 80-FT
WIND TUNNEL.

) Bell Boeing

Rotor

+Type gimballed, stiff- hingeless, soft-
. inplane " inplane
Number of blades 3 3
“Radius, R 3.81m(125ft) | 3.96m (13 fr)
" Lock number, v 3.83 4.04
-Solidity ratio 0.089 0.115
“Pitch/flap coupling, -15 deg 0
. 8
Rotor rotation direc- clockwise counterclockwise
tion, on right wing '
Tip speed, 2R - 183 m/sec 160 m/sec
(cruise mode) " (600 ft/sec) (525 ftfsec)
Rotation speed, 458 rpm 386 rpm
~ (cruise mode)

Wing
Semispan, y,/R 1.333 1.281
Mast height, h/R 0.342 0.354
Typical frequencies

Vertical bending 3.2Hz 042/rev | 2.3 Hz 0.36/rev
Chordwise bending | 5.35 0.70 4.0 0.62
Torsion 9.95 1.30 9.2 1.48

o

Figure 1. Configuration of analytical model, and for full-scale
tests: proprotor operating in high inflow axial flight on a

cantilever wing.
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Figure 2. Blade rotating natural frequencies for the Bell rotor.
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Figure 3. Blade rotating natural frequencies for the Boeing rotor
(V/SQR =1 at 311 knots and normal £2, 386 rpm). (a) flap
frequency v (b) lag frequency v
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Figure 4. Predicted stability of Bell rotor, velocity sweep at
£ =458 rpm. (a) frequency of the modes, (b)damping

ratio of the modes, (¢) root locus.
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Figure 5. Effect of deleting the rotor lag degrees of freedom (¢, ¢
and ¢;g), Bell rotor velocity sweep at £2=458rpm.
(a) damping of wing vertical bending mode (q,),
(b) damping of chordwise bending (q,) and torsion (p)
modes.
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———— N0 WING AERODYNANICS

Figure 6. Influence of powered operation, and wing aerodynamic
forces, Bell rotor velocity sweep at £ =458 rpm.
(a) damping of wing vertical bending mode (q;),
(b) damping of chordwise bending (q,) and torsion (p)
modes.
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Figure 7. Influence of a more complete model for the rotor
acrodynamics, Bell rotor velocity sweep at 2= 458 rpm.
(a) damping of wing vertical bending mode (q;),
(b) damping of chordwise bending (q,) and torsion (p)
modes.
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Figure 8. Comparison with full-scale experimental data, Bell
rotor velocity sweep at £ = 458 rpm. (a) frequency of the
modes, (b) damping of the wing vertical bending mode (q, ),
(c) damping of wing chordwise bending mode (q,),
(d) damping of ‘wing torsion mode (p).

Figure 9. Influence of the rotor lag motion, Bell rotor velocity sweeps on the full-stiffness wing, on a quarter-stiffness wing, and on
the full-stiffness wing without the ¢,¢ and {,s degrees of freedom (theory only). (a) damping of the wing vertical bending
mode (q, ), comparison with full-scale experimental data, (b) damping of wing vertical bending mode (q, ), (¢) damping of wing
chordwise bending (q, ) and torsion (p) modes, (d) frequency of the modes,
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Figure 10. Comparison with experimental data from tests of a 4 92

0.1333-scale rotor and cantilever wing model of Bell M266

aircraft (experimental points from Reference 6), velocity  Figure 11. Predicted stability of Boeing rotor, velocity sweep at
sweeps at (a) 2 = 238 rpm, (b) 2 = 298 rpm, 2 = 386 rpm. (a) frequency of the modes, (b) damping
(c) §2 = 358 rpm (equivalent full-scale V and £2). ratio of the modes, (c) root locus.
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Figure 12. Effect of deleting the rotor lag degree of freedom ({, ¢
and §,5), Boeing rotor velocity sweep at £ = 386 rpm
(a) damping of wing vertical bending (q,) and flap (83— 1)
modes (the -1 mode is shifted by 250-300 knots to
higher speed by the removal of the lag influence, beyond
the scale shown), (b) damping of wing chordwise bending
(q,) and torsion (p) modes.
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Figure 13. Influence of powered operation, and wing
aerodynamic forces, Boeing rotor velocity sweep at
§ = 386 rpm. (a) damping of wing vertical bending (q,)
and rotor flap (8-1) modes, (b)damping of wing
chordwise bending (q,) and torsion (p) modes.
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Flgure 14, Influence of a more complete model for the rotor aerodynamics. Boeing rotor velocity sweep at £ = 386 rpm (a) damp-
“ing of wing vertxcal bending (q,) and rotor flap (8 — 1) modes, (b) damping of wing chordwise bending (q,) and torsion (p)

modes. -
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Figure 15. Predicted stability of Boeing rotor, rpm sweep at Flgure 16. Predicted stability of Boeing rotor, rpm sweep at

50 knots. (a) frequency of the modes, (b) damping ratio of 192 knots. (2) frequency of the modes, {b) damping ratio of
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Figure 17. Air.resonance behavior of soft-inplane hingeless rotor. Boeing rotor at 50 to 192 knots, variation of dampmg of
wing vertical bendmg mode (q,) with rotor speed
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Figure 18. Comparison with full-scale experimental datd, Boeing rotor velocity sweep at £ = 386 rpm. (a) frequency of the modes,
(b) damping of the wing vertical bending (q; ), chord bending (q, ), and torsion (p) modes; the experimental data is for q, only.
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Figure 19. Comparison with full-scale experimental data, Boeing rotor rpm sweeps, damping of wing vertical bending mode at
(a) 50-60 knots, (b) 100 knots, (c) 140 knots, (d) 192 knots.
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EXPERTMENTAL, AND ANALYTICAL STUDIES IN TILT-ROTOR AEROELASTI;C,ITY‘ :

Raymond G. Kvaternik
Aerospace Technologist
NASA Langley Research Center
Hempton, Virginia

Abstract

An overview of an experimental and analytical
esearch program underway within the Aercelasticity
ranch of the NASA Langley Research Center for
tudying the aeroelastic and dynamic characteris-
ics of tilt-rotor VIOL aircraft is presented.
elected results from several joint WASA/contractor

investigations of scaled models in the Langley
transonic dynamics tunnel as well as some results
from a test of a flight-worthy proprotor in the
NASA Ames full-scale wind tunnel are shown and dis-
cussed with a view toward delineating various
aspects of dynamic behavior peculiar to proprotor
aircraft. Included are such items as proprotor /
pylon stability, whirl flutter, gust response, and
blade flapping. Theoretical predictions, based on
analyses developed at Langley, are shown to be in
agreement with the measured stability and response
behavior.

Notation
e Blade flapping hinge offset
H Rotor normal shear force

OH/da,

Rotor normal shear force component in
phase with pitch angle

JH/dq Rotor normal shear force component in
phase with pitch rate

R Blade radius

R 0.75 blade radius

AT Ro‘tor perturbation thrust

v Airspeed.

Vp/9R Flutter advance ratio

vy Vertical component of gust veloeity

%y Mast angle of attack

o, Oscillation amplitude of airstream
oscillator

B Blade flapping angle

3B /Bu,m Blade flapping derivative

53 Pitch-flap coupling angle

Presented at the AHS/NASA Ames Specialists' Meeting
on Rotoreraft Dynamics, February 13-15, 197h.
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m

Gust-induced angle of attack

g
CR Hub damping ratio
‘if Aircraft yaw rate
Q Rotor rotational speed
o Frequency
mB Blade flapping natural frequency
me Pylon pitch frequency
w‘k Pylon yaw frequency

The feasibility of the tilt-proprotor com-
posite aircraft concept was established in the mid
1950's on the basis of the successful flight
demonstrations of the Bell XV-3 and Transcendental
Model 1-G and Model 2 convertiplanes. Flight
research conducted with the XV-3 identified
several dynamic deficiencies in the airplane mode
as technical problems requiring further atten-
tion. A more serious proprotor dynamic problem
was identified in a 1962 wind-tunnel test of the
XV-3. In that test, conducted in the Ames full-
scale tunnel, a propro‘(:or/pylon instability simi-
lar in nature to propeller whirl flutter was
encountered. Clearly, to maintain the viability
of the tilt-proprotor concept it remained to
demonstrate that neither the whirl flutter anomaly
nor the major flight deficiencies were endemic to
the design principle. An analytical and experi-
mental research program having this objective was
undertaken by Bell in 1962. Results of this
research, which defined the instability mechanism
and established several basic design solutionms,
were reported by Hall.2 Edenborough3 presented
results of subsequent full-scale tests at Ames in
1966 which verified the analytical prediction tech-
niques, the proposed design solutions, and demon-
strated stability of the XV-3 through the maximum
wind-tunnel speed of 100 m/s (195 kts).

In 1965 the U.S. Army inaugurated the Com-
posite Alrcraft Program which had the goal of
producing a rotary-wing research aircraft combin-
ing the hovering. capability of the helicopter with
the high-speed cruise efficiency and range of a
fixed-wing aircraft. Bell Helicopter Company,
with a tilt-proprotor design proposal, was awarded
one of two exploratory definition contracts in
1967. The Model 266 was the design resulting from
their work (Fig. 1). The research aircraft pro-
gram which was to have been initiated subsequent
to the exploratory definition phase was never
begun, however, primarily due to lack of funding.



Figure 1.

Artist's conception of Bell Model 266
tilt-proprotor design evolved during the Army
Composite Aircraft Program.

Concurrent with the developments described
above, various VIOL concepts based on the use of
propellers having independently hinged blades were
proposed with several reaching flight-test status.
These included the Grumman proposal in the Tri-
Service VIOL Transport competition, the Vertol VZ-2
built for the Army, and the Kaman K-16 amphibian
built for the Navy. A vigorous investigation of the
whirl flutter phenomenon peculiar to conventional
propellers had been initiated in 1960 as a result
of the loss of two Lockheed Electra aircraft in
fatal accidents. The possibility that hinged
blades could adversely affect the whirl flutter
behavior of a propeller undoubtedly contributed
considerable impetus to examine the whirl flutter
characteristics of these flapping propellers. Work
related to these efforts was reviewed by Reed.

The foregoing counstitutes a résumé of
proprotor-ralated experience through 1967. This
paper will present an overview of a research pro-
gram initiated within the Aercelasticity Branch of
the NASA Langley Research Center.. Included in this
program are joint NASA/contractor wind-tunnel
investigations of scaled models in the transonic
dynemics tunnel and the in-house development of
supporting analyses. For completeness, motivating
factors leading to the work and the scope of the
investigation are outlined below.

A 0.133-scale semispan dynamic and aeroelastic
model of the Model 266 tilt rotor built by Bell in
support of their work pertaining to the Composite
Aircraft Program was given to Langley by the Army
in 1968, The availability of this model and the
interest of both government and industry in the
tilt-rotor VIOL aircraft concept suggested the use-
fulness of continuing the experimental work ini-
tiated by Bell with the model to further define the
aeroelastic characteristics of proprotor-type air-
craft. Because both the XV-3 experience and studies
conducted during the Composite Aircraft Program
identified certain high-risk areas associated with
operation in the alrplane mode of flight,

specifically proprotor/pylon stability (whirl
flutter), blade flapping, and flight mode stability,
it was Jjudged that the research effort would be
primarily directed to these areas.

The experimental portion of the research pro-
grom was initiated in September 1968 in a joint
NASA/Bell study of proprotor stability, dynamics, l
and loads employing the 0.133-scale semispan model
of the Model 266. Several other cooperative
experimental studies followed this investigation.
The models employed in these studies are positione
in chronological order in the composite photo give
in Pigure 2. Briefly, these other studies included:
(1) A study of a folding proprotor version of the/
tilt-rotor model used in the first study, (2) a '
parametric investigation of proprotor whirl flutter,
(3) a stability and control investigation employing
an aerodynsmic model, and (4) a "free-flight" :
investigation of a complete tilt-rotor model.

TILT-ROTOR AEROELASTIC RESEARCH
LANGLEY TRANSONIC DYNAMICS TUNNEL

Figure 2.

Tilt-rotor models tested in the Langley
transonic dynamics tunnel.

The results pertaining to the above-mentioned
studies arequite extensive. The particular results
to be presented herein have been selected with a
view toward highlighting some of the dynamic
aspects of proprotor behavior, delineating the
effects of various design parameters on proprotor/
pylon stability and response, and providing valida-
tion of analyses developed at Langley. The results
pertaining to investigations conducted in the
Iangley transonic dynamics tunnel are presented
first. These are arranged in chronological order
according to Figure 2. To provide additional data
for correlation, some experimental results obtained
by Bell in tests of a semispan model and a full-
scale flight-worthy proprotor are also included.

In each case both experimental and analytical
results are for the pylon fully converted forward
into the airplane mode of operation and the rotors
in a windmilling condition. Equivalent full-scale
values are given unless noted otherwise.
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Model Tests in Iangley Transonic Dynamics Tunnel

Bell Model 266
( ) September 1968

‘x

arametric variations, in that it represented a

wpecific design, it did permit a fairly diversified
The principal findings of this inves-

{test program.
tlga.tion have beeg published and are available in
the literature.> Some results adapted from
Reference 6 pertaining to stability and gust
-response are discussed below.

Proprotor/Pylon Stability. To provide an
indication of the relative degree to which stabil-
ity could be affected, and to provide a wide range
of configurations for correlation with analysis,
several system parameters were varied either indi-
vidually or in combination with other parameters
and the level of stability established.

A baseline stability boundary, based on a
reference configuration, was first established.
The degree to which stability could be affected was
then ascertained by varying selected system param-
eters (or flight conditions). Stability data were
obtained by holding rpm constant as tunnel speed
was incrementally increased, transiently exciting
the model by means of lightweight cables attached
to the model, and analyzing the resulting time
histories to determine the damping. The reference
configuration consisted of the basic Model 266
parameters with the pylon yaw degree of freedom
locked out and the wing aerodynamic fairings
removed, A 100% fuel weight distribution was
maintained by appropriately distributing lead
welghts along the wing spar. The hub flapping
restraint was set to zero and the &3 angle to
-0.39% radian (-22.5°). The reference stability
boundary as well as changes in this boundary due to
several parameter variations are shown in Figure 3.

For the reference configuration instability
occurred in the coupled pylon/wing mode in which
the pylon pitching angular displacement is in phase
with the wing vertical bending displacement. A
characteristic feature of this coupled mode is the
predominance of wing bending (relative to pylon
piteh) and the frequency of oscillation, which is
near the fundamental wing vertical bending natural
frequency. For.descriptive purposes this flutter
mode 1is termed the "wing beam" mode herein. Negli-
gible wing chordwise bending or rotor flapping
(relative to space) was observed. The pylon/rotor
combination also exhibited a forward whirl preces-
sional motion, the hub tracing out an elliptical
path in space. However, because of the large ratio
of pylon yaw to pylon pitch stiffness the pylon
angular displacement was primerily in the pitch
direction. The flutter mode of the model in each
of its perturbations from the reference configure-
tion was essentially the same as for the reference

_ configuration.

The proprotor/pylon instability described
above is similar in nature to classical propeller

- Although the 0.133-scale semispa.n model of the
‘Bell Model 266 was not designed to permit extensive

" the sense of Young and Iytwyn.
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Figure 3. Effect of several system parameters on

proprotor /pylon stability.

whirl flutter. However, because of the additional
flapping degrees of freedom of the proprotor the
manner in which the precession generated aerody-
namic forcgs act on the pylon is significantly
different. Specifically, while aerodynamic cross-
stiffness moments are the cause of propeller whirl
flutter, the basic destabilizing factors on
proprotor/pylon motion are aerodynamic in plane
shear forces which are phased with the pylon motion
such that they tend to increase its pitching or
yawing velocity and, hence, constitute negatlve
damping on the pylon motions.

(1) Altitude — Altitude has a highly benefi-
cial effect on proprotor/pylon stability. This
increased stability is a consequence of the fact
that the destabilizing rotor normal shear forces
decrease with altitude for pylon piteh frequencies
near the fundamentel wing elastic mode frequencies.
This means that a given level of these destabiliz-
ing shear forces is attained at progressively
higher airspeeds as altitude increases.

(2) Hub Flapping Restraint — A stabilizing
effect due to moderate flapping restraint is also
indicated in Figure 3. Increasing the flapping
restraint increased the flapping natural frequency
from its nominal value of about 0.80/rev bringing
it closer to the "optimum" fla; ;?ping frequency in

They showed that
this increased stebility because the pylon support
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stiffness requirements were reduced as the optimum
flapping frequency was approached.

(3) Wing Aercdynamics — Figure 3 indicates
that wing aerodynamic forces have a slight stabi-
lizing effect. Now the stiffness of a strength-
designed wing for tilt-rotor application is
generally sufficiently high to relegate the flutter
speed of the pylon/wing combination (with blades
replaced by lumped concentrated weights) to speeds
well beyond the proprotor mode flight envelope.
This suggests that wing aerodynamics will contrib-
ute primarily to the damping of any coupled rotor/
pylon motions. This is substantiated in Figure 4,
which shows the variation of the wing beam mode
damping with airspeed through the flutter point for
the reference configuration and the corresponding
configuration with the wing airfoil segments
installed. The damping of the mode is increased;
however, the magnitude of the increase is small
indicating that proprotor aerodynamic forces are
predominant in the ultimate balance of forces at
flutter. This provides some justification for
neglecting, in this flutter mode at least, wing
aercdynamics as a first approximation.

o @ = 5 Hz (208 RPM)

Measured Calculated .
Without wing aerodynamics
With wing aerodynamics

8-

Damping, percent critical
L

|~
0 100

1
200
Airspeed, knots

Al : { 1
OLV 50

100
- Airspeed, meters/sec

Figure 4. Comparison of measured and calculated
wing beam mode damping for reference
configuration.

The initial increase in the stability of the
wing beam mode before instability occurs is asso-
ciated with the fact that JH/Oq, the component of
the normal shear force associated with pylon pitch
rate, initially becomes more stabilizing with
increasing airspeed until BH/B%, the component of
the normal shear force in phase with pylon pitch
angle, becomes sufficiently large to lower the
coupled pylon pitch frequency to a level where
OH/3q becomes increasingly destabilizing with
increasing airspeed. The increased damping
response at about 103 m/s (200 kts) is due to
coupling of the blade first inplane cyclic mode
with the wing beam mode. Note, however, that the

tion of the tunnel.

predicted flutter speed is not sensitive to blade
inplane flexibility for the Model 266.

(&) Pylon Restraint — When the pylon yaw
~stiffness was reduced by unlocking the pylon yaw
degree of freedom and soft-mounting the pylon in
vaw relative to the wing tip the stability
decreased slightly (Fig. 3). The particular yaw

flexibility employed in this variation effectively |

produced a more nearly isotropic arrangement of the
pylon support spring rates. Since the region of
instability in a plot of critical pylon yaw stiff-
ness against critical pitch stiffness is extended
along the line representing a stiffness ratio of
unity, the configuration approaching isotropy in
the pylon supports is more prone to experience an
instability than one in which one of the stiff-
nesses is significantly less than the other.

The general trend of decreasing stability with
inereasing rotor speéd shown in Figure 3 was found
for all values of the adjustable parameters of the’
model. In each case the predicted flutter mode
and frequency were. in agreement with the. correspond-
ing measured mode and frequency.

Gust Response. ‘Analytical methods for deter-
mining aircraft response to turbulence are usually
based on power spectral analysis techniques which’
require the definition of the aircraft frequency
response function, that is, the response to sinu-
soidal gust excitation. A study to assess the
feasibility of determining these frequency response
functions for fixed-wing aircraft utilizing models
in a semi-free-flight condition using a unique air-
stream oscillator system in the transonic dynamics
tunnel has been underway within the Aeroelasticity
Branch for several years.® This system (Fig. 5)
consists of two sets of biplane vanes located on
the sidewalls of the tunnel entrance section. The

Figure 5.

Langley transonic dynamics tunnel air-
stream oscillator showing cutaway of driving
mechanism.

vanes can be oscillated in phase or 180° ocut of
phase to produce nominally sinusoidal vertical or
rolling gusts, respectively, over the central por-
The gusts are generated by the
cross-stream flow components induced by the trail-
ing vortices from the tips of the vanes. With a
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. view toward the possible application of this tech~
nique to rotary-wing aircraft the airstream oscil-

- lator was employed to excite the model for several
"f1ight” conditions below the proprotor stability
boundary, ‘- Although the model was not 'free" the:
data so obtained did give an indication of the
frequency response characteristics of the canti-
levered model ‘and permitted: the evaluation of the
effects of airspeed, rotor speed, and rotor and
wing aerodynamics on the overall dynamic response.

A measure of the gust-induced angle of attack
(or stream angle) was provided by means of a small
balsa vane flow direction transmitter (see Fig. 6)
which gave readings proportional to the stream
angle. ~The variation of the verticel component of

B

Figure 6. 0.133-scale semispan tilt-rotor model in
simuleted conversion mode showing boom-mounted
flow direction trensmitter.

the stream angle for in phase (symmetrical) oscil-
lation of the biplane vanes is shown in Figure 7.
The curve shown 1s actually an average of data
obtalned from runs at several tunnel speeds and
air densities, The amplltude of the stream angle
has been normslized on the maximum amplitude of
osclllation of the biplane vanes and plotted
against the frequency paremeter w/V, vhere ® is
the frequency of osclllation of the blplane vanes
in red/sec and V is the tunnel speed inm/s
(ft/sec). This parameter is proportional to the’
reciprocal of the wavelength (spacing) between
vortices shed from the tips of the oseillating
vanes, ¥ ~ -

The frequency response of wing vertical bend-
ing moment was taken as one measure of system
response to vertical gust exeitation.  To ascertain
the relative influence of rotor end wing aerody-
namics, three model configurations were employed:
wing only, with the rotor blade welght replaced by
an equivalent lumped weight; rotor only, with the
wing serodynemic fairings removed; wing and rotor
combined. For the "flight" condition indicated in
Flgure 3 the relative effects of robtor and wing
serodynamics are displayed in Figures 8 and 9. ~In
each of these flgures the wing bending moment has

been normalized by the maximum amplitude of the :
stream angle using the curve of Figure 7.

3

Flow direction
transmitter

Normalized gust angle, ‘eg/“ol

0 i 7.8 4 5
rad/tt
1 i el { ] i ]
0 .3 8 9 1.2 1.5 1.8
rad/m

Wavelength parameter, w/V

Figure 7. Measured veriation of vertical component
of gust angle with frequency parameter for vanes
escillating in phase.

Comparison of the rotor-on and rotor-off
response curves for the wing panels on configura-
tion is shown in Figure 8. Two proprotor-related
effects are indicated: first, the significant
contribution of the rotor inplane normal force

- (H-force) to wing bending response, as indicated by

the relative magnitudes of the bendlng moments; and
‘second, the rotor contribution to wing beam mode
demping,* as indicated by the relative sharpness of
the resonance peaks. The peak amplitudes occur
vwhen the gust frequency is in resonance with the
wing beam mode frequency. The pesk for the blades-
off condition is shifted to the higher fredquency
slde of the rotor-on peak because the rotor H-force
decreases the frequency of the wing beam mode. For
the rotor-on case the bending moment is consider-
ably larger than for the rotor-off case throughout
the range of gust frequencles investigated. The
wing chord mode frequency (about 2.8 Hz) is within
the gust frequency range but is absent from the

.regponse curves because the gust excitation is

*At this particular airspeed, the rotor was
8till conbtributing positive demping to the wing
beam mode. .
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primarily vertical and there is very little
coupling between the wing beam and chord modes.

Figures 8 and 9 quite clearly illustrate that
proprotors operating at inflow ratios typical of
tilt-rotor operation in the airplane mode of flight
are quite sensitive to vertical gusts. This sensi-
tivity is due to the fact that the proprotors,
being lightly loaded in the airplane mode of flight,
operate at low blade mean angles of attack (a) and
any gust-induced angle of attack is a significant
fraction of w.

Note that good correlation is achieved for
frequencies up to about 2 Hz beyond which the cal-
culated responses are much lower than the measured
values. This discrepancy is thought to be a con-
sequence of the deviation of the induced gust from
its nominally one-dimensional nature to one which
is highly two-dimensional (i.e., varies laterally
across the tunnel) at the higher frequencies. The
analytical results shown are based on the assump-
tion of a one-dimensional gust. Unsteady aerody-
namic effects may also be a contributing factor to
the discrepancy. *

A comparison of the wing panels-on and wing
panels-off response curves for the rotor-on con-
figuration is given in Figure 9. As might be
expected, the wing response for the case in which
the wing airfoil segments are installed is higher
than for the rotor alone. The reduced magnitude of
the response at resonance for the rotor-plus-wing
combination relative to the rotor alone is due to
the positive damping contributed by the wing aero-
dynamics. This increased damping is evident by
comparing the widths of the resonance peaks.

Close examination of Figures 8 and 9 reveals
a very heavily damped, low amplitude resonance
"peak" at a gust frequency of ebout 0.8 Hz. This
resonance is a manifestation of the low-frequency
(i.e., Q- wg) flapping mode. Analyses have indi-
cated that the flapping modes are generally well
damped for moderate or zero values of flapping
restra.int.6 These results constitute an experi-
mental verification.

These results indicate that "free-flight"
tilt-rotor models could be used to measure the
frequency response functions needed in gust
response analyses. This would be a fruitful area
for future analytical and experimental research.

(b) January 1970

A joint NASA/Bell/Air Force test program was
conducted in the transonic dynamics tunnel in
January 1970 for the purpose of investigating any
potential problem areas associated with the folding
proprotor variant of the tilt-rotor concept. The
model used in this study was the same model
employed in the first investigation but modified to
permit rapid feathering and unfeathering of the
proprotor and to include a blade fold-hinge. The
main objectives were to investigate stability at
low (including zero) rotor rotational speeds,
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during rotor stopping and starting, and during
blade folding. All objectives of the test program
were met. No aeroelastic instabilities were
encountered during the blade folding sequence of
transition, the blade loads and/or the feathering
axis loads inboard of the fold hinge being identi-
fied as the critical considerations from a design
point of view. The stop-start portion of the test
indicated that additional flapping restraint would
be required to minimize flapping during rotor
stopping.* Stability investigations conducted over
a wide range of rotor speed identified an apparently
new form of proprotor instability involving the
rotor at low and zerc rotational speeds. The
influence of several system parameters on this
instability was established both experimentally and
analytically.

Proprotor/Pylon Stability. For the stability
investigation a reference configuration was again
established. This consisted of the basic Model 266
configuration with the pylon locked to the wing tip
in both pitch and yaw, a hub restraint of
117,683 N-m/rad (86,800 ft-1b/rad), 8z = -0.393 rad
(-22.5°), a simulated wing fuel weight distribution
of 15%, and the wing aerodynamic fairings installed.
The flutter boundary obtained for this configuration
and that for 8z = -0.558 rad (-32°), are shown in
Figure 10 as a function of rotor speed. Open sym-
bols denote flutter points. Excessive vibration
resulting from operation near resonances with the
pylon/wing or blade modal frequencies often limited
the maximum attainable alrspeed. These points are
indicated by the solid symbols. The annctation to
the right of the flutter boundaries indicates that
the model experienced several modes of flutter.

The predicted flutter modes and frequencies were
in agreement with the experimental results. The
nature of these flutter modes is discussed below.

] For § greater than about 4 Hz (240 rpm)
instability occurred in the wing beam mode and had
the characteristics described earlier for the
September 1968 test. For O between about 2 Hz
(120 rpm) and 4 Hz (240 rpm) the motion at flutter
was predominantly wing vertical bending and rotor
flapping with the hub precessing in the forward
whirl direction., Examination of the root loci
indicated that this instebility was associated with
the low-frequency (i.e., 9 - wﬁ) flapping mode root
‘becoming unstable. The subcritical response through
flutter for &3 = -0.558 rad (-32°) and Q = 2.86 Hz
(172 rpm) is shown in Figure 11 where, in addition
to the measured wing beam mode damping and frequency,
the calculated variation of both the wing beam and
low-frequency flapping modes is shown. These
results illustrate an interesting modal response
behavior similar to that described by Hsll.2 The
wing beam mode, being least stable at low alrspeeds,
is at first dominant. As airspeed increases, how-
ever, its damping continually increases. The damp-
ing of the Q - flapping mode meanwhile is
continually decreasing. Crossover occurs analyti-
cally at 144 m/s (280 kts) at a demping of 17% of

*These aspects of this investigation are given
detailed treatment in Reference 9.
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Figure 10. Model 266 flutter boundaries showing

variation in character of flutter mode as rpm is
reduced to zero.

eritical. Beyond 280 knots, the Q - flapping
mode is the dominant mode and very abruptly becomes
unstable as airspeed is increased. Hence, a tran-
sition from a dominant wing beam mode to a dominant
flepping mode with an accompanying change in fre-
quency. Since the flapping mode frequency is only
slightly less than the wing beam mode in the
vicinity of flutter there is only a gradwal, albeit
distinct, transition in the frequency of the wing
beam mode as the flapping mode begins to predominate
over the wing mode. Examination of the 0 -
flapping mode eigenvector indicated that a larger
amount of wing vertical motion was evident in this
mode than in the wing beam mode eigenvector. This
implies that the predominant motion in the flutter
mode is not necessarily determined by the root
which analytically goes unstable as alrspeed is
increased but the frequency at which a root goes
unstable.

Below about 2 Hz (120 rpm) instebility is in
the high-frequency (i.e., @ + ag) flapping mode and
is characterized by large amplitude flapping, the
rotor tip-path-plane exhibiting a precessional
motion in the forward whirl direction. The modes
of ingtability at zero rotational speed were similar
in character to those at low rotor speeds but with
larger amplitudes of flapping. Although the rotor
was not turning, the flapping behavior of the blades
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was patterned such that the tip-path-plane appeared
to be wobbling or whirling in the forward direction.
Negligible wing motions accompanied the flapping
motion. Figure 12 shows the variation of flap
damping with airspeed. A hub damping of CR = 0.015
was originally used in calculating the stability
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Figure 12. Variation of Q + flapping mode
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boundaries, leading to very conservative values for
the flutter speed at the low rotor speeds. Based on
the results of Figure 12, which indicate that the
rotor hub structural demping is closer to {3 = 0.025,”
the stability boundaries were recaleculated using

fr = 0.025. The predicted boundaries in Figure 10
reflect this change.

The small region of increased stability in the
region of 0.8 Hz (48 rpm) is due to a favorable
coupling of the flapping mode with wing vertical
bending.

The instabilities encountered at low and zero
values of rotational speed were quite mild and had
a relatively long time to double amplitude. The
necessity of limiting the flapping amplitude during
the feathering sequence of transition dictates that
significantly increased values of hub restraint are
needed as rotor rotational speed is reduced to zero.
Since increased flapping restraint was found to
stabilize this mode® this instability is probably
only of academic interest, at least for the config-
uration tested. However, since it was a new
phenomenon and was not understood at the time of
the test, attention was directed to assessing the
effect of the variation of several system parameters
on the flutter speed. Both experimental and analyt-
ical trend studies were conducted for this purpose,
Based on these studies it was concluded that rotor
precone was the primary cause of the instability.

Blade Flapping. 1In the feathering sequence of
transition flapping sensitivity to a given mast
angle of attack varies with rotor rotational speed.
A typical variation of steady-state one-per-rev
flapping response is given in Figure 13. These
data were taken to establish a steady-state flapping
response baseline for evaluating the transient
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flapping response during the feathering portion of
the test. Since the proprotor mast was not affixed
to a rigid backup structure the wind-on mast angle
of attack was not known (it was nominally 1°). 'The
important conclusion following from Figure 13 is
that the measured trend is predicted correctly.

The peak in the flapping response occurs when the
rotor rotational speed is in resonance with the
flapping natural frequency in the rotating system.

Grummen Helicat (March 1971) : FY

A wide variety of technical considerations
confront the structural dynamicist in the design
of a proprotor VIOL aircraft. Perhaps the most
celebrated consideration has been that of prop-
rotor/pylon whirl flutter, having been the concérn
of many investigators in both govermnment and
industry. Several years ago BairdlO raised the
question of whether proprotor whirl flutter, in
‘particular forward whirl flutter, could be pre-
dicted with confidence. His skepticism was
prompted by the lack of agreement between the
experimental results obtained with several small
models of flapping-blade propellers and the corre-
sponding theoretical predictions. To provide a
large data base from which to assess the predict-
ability of proprotor whirl flutter, a joint NASA/
Grumman investigation was conducted in the tran-
sonic dymamics tumnel employing an off-design
research configuration of a 1/k,5-scale semispan
model of a Grumman tilt-rotor design designated
"Helicat” (Fig. 14). This design is characterized

Figure 1%. Grumman “"Helicat" tilt-rotor model in
whirl flutter research configuration.

by a rotor which incorporates offset flapping
hinges in contrast to the Bell rotor in which the
blades are rigidly attached to,the hub which is in
turn mounted on the drive shaft by a gimbal or
universal joint housed in the hub assembly. The
Helicat model ‘was specifically designed to permit
rather extensive parametric changes in order to
provide a wide range of configurations. These
variations included pylon pitch and yaw stiffness
and damping, hinge offset, and pitch-flap coupling.
To obtain flutter at low tunnel speeds, a reduced-
stiffness pylon-to-wing-tip restraint mechanism

which permitted independent variations in pitch
and yaw stiffness was employed. The resulting
pylon-to-wing attachment was sufficiently soft to
insure that the wing was effectively a rigid backup
structure. Details concerning this model as well
as a summary: of results are contained in

Reference 11.

Some whirl flutter results are given in Fig-
ures 15 to 17, where flutter advance ratio. Vp/OR
is plotted versus pylon frequency nondimensionalized
by the rotor speed. The effect of 03 on stability
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Figure 15. Effect of pitch-flap coupling on whirl

flutter.

is shown in Figure 15 for the case in which the
pylon pitch and yaw frequencies are identical and
e/R set to 0.05. Many of the configurations were
not exactly symmetrical in the frequencies. These
data were adjusted to reflect a symmetric frequency
support condition using Figure 18 of Reference 11.
The results show a strong increase in flutter
advance ratio (and hence flutter speed for a fixed
rpm) with increasing pylon support stiffness and
decreasing 5z. All flutter was in the forward
whirl mode except for the two points denoted by the
solid symbols, which were in the backward mode.

The analytical results shown assumed a symmetric
frequency configuration and, since the structural
damping varied somewhat, an average value of damp-
ing of £ = 0.01 in pitch and £ = 0.02 in yaw.
The analytical results shown were obtained using the
theory of Reference 6 which is based on the assump-
tion of a gimbaled rotor., For analysis purposes the
restoring centrifugal force moment from the offset
flapping hinge was represented by introducing an
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equivalent hub spring which preserved the blade
in-vacuum flapping natural frequency in the manner
indicated in Appendix B of Reference 6.

The beneficial effect of increased hinge off-
set is demonstrated in Figure 16. The results for
the 13% hinge offset are particularly noteworthy
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Figure 16. Effect of hinge offset on whirl

flutter.

in that both forward and backward whirl motions
were found to occur simulbtaneously; in effect, the
flutter was bimodal. Theory also predicted this
bimodal behavior, the forward and backward whirl
modes being within a few knots of each other
apnalytically. :

The effect of asymmetry in the pylon support
stiffness is shown in Figure 17. Again the sym-
metric frequency data reflect adjustments to true
symmetry for configurations which were nearly, but
not exactly, symmetric. The nonsymmetric results
reflect actual measured values, the lower of
either the pitch or yaw frequencies being plotted.
It was analytically shown® that for sufficient
asymnetry in the pylon support stiffness increas-
ing the asymmetry more does not increase the flut-
ter speed. The data for the nonsymmetric fre-
quencies are an experimental demonstration of this
fact. Flutter in all the asymmetric conditions
was in the backward whirl mode.
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Bell Model 300

(a) August 1971

A joint NASA/Bell investigation employing a
1/5-scale aerodynamic model of a Bell tilt-rotor
design designated the Model 300 was conducted in
the transonic dynamics tunnel in August 1971 for
the purpose of providing the longitudinal and
lateral static stability and control characteris-
tics and establishing the effect of proprotors on
the basic airframe characteristies in both air and
freon. Use of freon permitted testing at full-
scale Mach numbers and near full-scale Reynolds
numbers. Flapping was measured in both air and
freon for several values of tunnel speed over a
range of sting pitch angles. The resultant flap-
ping derivatives, obtained by evaluating the slopes
of the flapping amplitude versus pitch angle curves,
are shown in Figure 18. Since the range of inflow
ratios over which the derivatives were measured was
the same in air and freon and the test medium
densities at the simulated conditions were aboutb
the same, an indication of the effects of Mach
number on the flapping derivatives can be obtained
by comparing the air and freon results., The speed
of sound in freon is approximately half that in
air so that for a given tunnel speed (or inflow
ratio) the Mach number in freon is about twice that
in air. The calculated results reflect the
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Figure 18. Effect of Mach number on proprotor

flapping. .

variation of 8z with blade pitch. Drag was
neglected in the calculated results shown for air
but was accounted for, in an approximate manner,

in the results shown for freon. The drag rise
associated with operation at high Mach numbers is
seen to reduce flapping as Mach number is increased
and suggests that calculations based on the neglect
of blade drag will predict conservative values of
flapping at Mach numbers where drag is important.

These data are believed to be the first which
provide an indication of the effects of Mach number
on blade flapping.

(b) March 1972

The most recent investigation conducted in
the transonic dynamics tunnel utilized a l/5—scale
dynamic and aeroelastic "free-flight” model of the
Bell Model 300 tilt rotor for the purpose of
demonstrating the required flutter margin of safety
and to confirm that the aircraft rigid-body flight
modes are adequately da.mped,l2 During this test
the importance of rotor thrust damping on stability
of the Dutch roll mode was investigated. This
damping is associated with rotor perturbation
thrust changes which can be generated during axial
oscillations of the rotor shaft and constitutes a
positive damping force on aircraft yawing motions.

The rotors of tilt-rotor aircraft are gener-
ally designed to have an interconnecting shafi
between the two rotor/engine systems to provide
synchronization of the rotor speeds and to insure
that in the event of an engine failure either
engine may drive both rotors. Interconmnect '

shafting is also employed in wind-tunnel models.
The availability of thrust damping to provide a
stabilizing force for yawing motion is dependent

on the structural integrity of this cross-shafting
and has implications which are pertinent to both
full-scale flight and model testing. Consider the
case of & windmilling "free~flight" model. A fully
effective interconnect maintains synchronization of
the rotor speeds during any motions. A yawing
motion of the model to the left, say, as might
occur during a disturbance, generates blade angle-
of-attack changes which decrease the 1ift of blade
elements on the right rotor and increase the lift
of blade elements on the left rotor. This produces
resultant perturbation thrust changes which tend to
damp the yawing motion, as depicted in the sketch
in the right-hand portion of Figure 19. If the

Rotor interconnect shaft Measured  Calculated .(Bell)

Engaged (AT > 0) o]
Disengaged (AT = 0) ®

k|
g
8
|
g
%
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Tunnel speed, ft/sec
4 T To
Tunnel speed, meters/sec
Figure 19. Thrust damping effects on tilt-rotor

Dutch roll mode stability.

intercomnect is absent, the rotors are able to main-
tain their inflow angle and, hence, angle of atbtack
by increasing or decreasing rotor speed. The per-
turbation thrust changes thus go to zero and the
stabilizing contribution of this damping to the air-
craft yawing motion is lost. The effects of thrust
damping on the stability of the Dutch roll mode was
investigated by measuring the Dutch roll mode damp-
ing as a function of tunnel speed for the cases in
which the model interconnect was engaged and dis-
engaged. Some typical results are shown at the
left of Figure 19 along with the damping levels
predicted by Bell. The substantial contribution of
thrust demping to total damping is quite apparent.
It is of interest to point out that for the rotors
contrarotating in the direction indicated in the
sketch at the right of Figure 19 (inboard up) the
perturbation thrust changes accompanying an aircraft
rolling angular velocity are destabilizing on Dutch
roll motion. For contrarotating rotors turning in
the opposite direction (inboard down) the AT due
to both yawing and rolling motion are stabilizing
on Dutch roll motion.

Rotor rpm governors of the type which maintain
rpm by blade collective pitch changes while main-
taining constant torque are being considered for
use on full-scale tilt-rotor aireraft. With the
interconnect engaged, full thrust demping is avail-
able (assuming a perfect governor). However, in
the event of an interconnect failure, the governors
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would respond to any rpm changes by varying blade
collective pitch in a manner which tends to main-
tain the original blade angle-of-attack distribu-
tion and hence torque. This is aerodynamically
equivalent to the windmilling case with no inter-
comnect. It is axiomatic that tilt-rotor aircraft
must be designed to have stable Dutch roll charac-
teristics should an interconnect failure occur
anywhere within the flight envelope.

Some Additional Results Applicable to the
Bell Model 300 Tilt Rotor

A dynamic test of a flight-worthy proprotor
for the Bell Model 300 tilt-rotor aircraft was
conducted in the NASA Ames full-scale wind tunnel
in July 1970 (Fig. 20). Two different test stands

Figure 20.

in NASA Ames full-scale tummel for dynamic
testing.

Bell 25-foot flight-worthy proprotor

were used. One duplicated the actual stiffness
characteristics of the Model 300 wing; the other
was one-fourth as stiff. By using the reduced
stiffness spar and operating the proprotor at one-
half its design rotational speed it was possible
to preserve the per-rev natural frequencies of the
wing and simulate, at any given tumnel speed, the
inflow of flight at twice that speed. This expe-
dient did not, however, maintain the blade per-rev
elastic mode frequencies or simulate compressibil-
ity effects on rotor aerodynamics.

Some results from the full-scale test are
compared with data obtained from a test of a 1/5-
scale model and theory in Figure 21. TNote that
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Figure 21. Mbdel/full—scale comparisons of wing

beam mode damping and frequency variation with
airspeed for Bell Model 300.

the calculated results are based on the use of the
design stiffness test stand characteristics. To
provide for an indication of the effect of blade
inplane flexibility on stability, the predicted
results for the case in which the blades are
assumed to be rigid inplane are also shown. The
predicted increase in damping at about 103 m/sec
(200 kts) for the case in which blade inplane flex-
ibility is included is associated with coupling of
the blade first inplane cyclic mode with wing verti-
zal bending. For the range of tunnel speed over
which full stiffness test stand data are available,
the results are in good agreement with theory
assuming flexible blades. Note that a significant
stabilizing effect is predicted for the Model 300
as a consequence of blade inplane flexibility.

This trend is in contrast to that predicted for the
Model 266. The data for the quarter-stiffness test
stand are in agreement with theory assuming rigid
blades because operation at half the design rpm has
effectively stiffened the blades by a factor of k.
The 1/5-scale model data are also seen to be in
better agreement with analysis based on the assump-
tion of rigid blades. This is because the model
hub employed at the time the data were obtained was
too stiff. If this increased stiffness is taken
into account the predicted damping is in agreement
with theory (Fig. 22). The model/full-scale com-
parisons shown in Figure 21 indicate that assessment
of full-scale stability can be made on the basis of
results of small-scale model tests.
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damping with airspeed for 1/5-scale aeroelastic
model of Bell Model 300.

Conclusions

An overview of an experimental and analytical

proprotor research program belng conducted within
the Aeroelasticity Branch of the NASA Langley
Research Center has been presented. On the basis

of the particular results shown herein the follow-

ing basic conclusions can be drawn:

(1) A proprotor/pylon/wing system can exhibit

a wide variety of flutter modes depending on the
degree of fixity of the pylon to the wing, rotor
characteristics, and rotor rotational speed. In
particular, for pylons which are rigidly affixed
to the wing tip, the instability can occur in
coupled pylon/wing, pylon/wing/rotor, or rotor
modes; for pylons which are soft-mounted to the
wing, a true whirl instability akin to classical
propeller whirl flutter can occur.

(2) Lightly loaded proprotors operating at
inflow ratios typical of tilt-rotor operation in
the airplane mode of flight exhibit a marked
sensitivity to gust excitation. ~

(3) Rlade inplane flexibility can have a
significant effect on stability.

(1) A significant contribution to aircraft
lateral-directional (Dutch roll) stability arises
from rotor thrust damping.
of this thrust damping is dependent on the integ-
rity of the rotor interconnect shaft, tilt-rotor
aircraft must be designed to have acceptable

Since the availability

lateral-directional response characteristics should

an interconnect failure occur anywhere within the
operating envelope.

183

(5) Proprotor whirl flutter, both backward
and forward, can be predicted with simple linear-
ized perturbation analyses using quasi-steady rotor
aerodynamics. .

(6) For strength designed wings, wing aerody-
namics have only a slight stabilizing effect on
proprotor flutter speeds.

(7) The drag rise associated with proprotor
operation at high Mach numbers reduces blade flap-
ping and suggests that calculations based on the
neglect of blade drag will predict conservative
values of flapping at Mach numbers where drag is
important.

gram is continuing.

The analytical portion of this research pro-
Attention is presently being

directed toward refining the existing stability and
response analyses and extending them by including
additional degrees of freedom.
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COMPARISON OF FLIGHT DATA AND
ANALYSIS FOR HINGELESS ROTOR
REGRESSIVE INPLANE MODE STABILITY

by
W. D. Anderson
and
J. F. Johnston
Lockheed California Co.
Burbank, California
Abstract Mxy blade product of inertia about feathering axis, slug—ft2
During the development of the AH-56A, a considerable NR  normal rotor speed

amount of analytical and experimental data was obtained on the . .
stability of the regressive inplane mode, including coupling with R real part of root, per second, subscript referring to rotor,
other modes such as body roll and rotor plunge. The data were or rotor radius, ft
obtained on two distinctly different control systems; both gyro v . 4k
controlled, but one with feathering moment feedback and the airspeed, knots
other with direct flapping feedback. The paper presents a review . o .
of the analytical procedures employed in investigating the Xp  airframe longitudinal motion, ft
stability of this mode, a comparison of analytical and experi- Yo o airf lateral on. ft
mental data, a review of the effect of certain parameters, F  airframe lateral motion,
including blade droop, sweep, 63, oy, vehicle roll inertia, inplane 7 - ical on. ft
frequency, rpm and forward speed. It is shown that the stability F  airirame vertical motion,
of this mode is treatable by analysis and that adequate stability is itch1 i ; feather d f
achievable without recourse to auxiliary inplane damping devices. | g ; ;la;eg coupling - positive nose up feather due to lag aft

Bo rotor blade collective flapping or coning, radians

63  pitch flap coupling angle - tan’! (-6/p)

Notation
9 toindicate partial differentiation

B subscript referring to blade feathering

€4 rotor blade cyclic inplane motion sine component, positive
Cy o measure of damping, cycles to half amplitude forward, radians
F subscript referring to fuselage €y rot(?r.blade cycl%c inplane motion cosine component,

positive to the right, radians
structural damping ratio
g pine L fraction of critical damping
I imagin art of root, rad/sec . .
sinary p / 6  pitch motion, radians
K llective feathering stiffness, fi-lb/rad/blade
g, ¢ &s frad] 6, blade collective feathering, radians
K t flapping moment per unit of blade flapping, ft-lo/rad
p rootlapping 1ent per unt pping / A blade effective sweep angle, radians
L rotor lift, pounds .
» T servo time constant, sec
M oment, fi-lb
momen ¢ roll motion, radians

w  frequency, rad/sec

wnip inplane natural frequency, rad/sec
Presented at the AHS/NASA-Ames Specialists’ Meeting on
Rotqrcraft Dynamics, February 13-15, 1974. 2 rotor rotational speed, rad/sec
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In hingeless rotors two fundamental types of coupled rotor
body inplane mode stability problems exist. One is associated
with a soft inplane system having the inplane frequency less than
rotational speed, and the other with a stiff inplane system where
the inplane frequency is above rotationat speed. The soft inplane
system when coupled with a basic body mode is unstable in the
absence of aerodynamics, and therefore its stability must be
provided by aerodynamic or auxiliary damping. This type of
system is discussed in References 1, 2, and 3. In contrast, the
stiff inplane system does not exhibit this inherent mechanical
instability, and so its stability is less dependent upon aero-
dynamic or auxiliary damping. -

Both types of modes, however, are subject to aeroelastic
phenomena which can be stabilizing or destabilizing. Also, both
types can exhibit response characteristics caused by pilot and/or
gust inputs which are undesirable. The critical inplane mode in
the soft inplane system is advancing in the stationary system,
whereas for the stiff inplane system, the mode is regressive. The
frequency of the mode in each case is the magnitude of (w nip
Qor(-w nip)'

This paper deals specifically with the stiff inplane system.
The various types of coupled rotor body regressive inplane
stability/response problems associated with this type of system
are discussed. The paper deals with both a feathering moment
feedback gyro-controlled system and a direct flapping moment
feedback gyro-controlled system.

These two types are described in more detail in Reference 4.
The inplane mode characteristics of the direct flapping moment
feedback type system would be more characteristic of any direct
control hingeless rotor system employing a stiff inplane rotor.

The stiff inplane hingeless rotor system is worthy of serious
consideration because of its inherent characteristics of being free
from ground/air resonance mechanical instability type
phenomena and its ability to provide a stable, highly maneuver-
able, rotary wing vehicle.

The absolute level of the stability of the inplane mode is not
the only consideration in establishing design criteria. An equal or
even more important criterion is that of response of the mode as
a result of pilot or gust disturbances. The stability of the mode
can appear adequate, but if it is easily excited by either pilot or
gust inputs, the mode can be unsatisfactory. Conversely, the
mode may exhibit very low damping characteristics, but not be
easily excited by either pilot and or gust excitations, and be quite
satisfactory because no high loads or undesirable body motions
oceur.

Besides the basic stability considerations of the regressive
inplane mode, certain other basic types of coupled rotor body
regressive inplane mode stability/response problems may be
encountered. Some of these may be either low or high airspeed
phenomena or virtually independent of airspeed.

It is not intended here to go into a complete theoretical
treatise describing each of these types of phenomena, but the
effects of some parameters and flight conditions on stability/
response characteristics for particular rotor vehicle configurations
are presented. Because stability and response characteristics
depend on considerations of the detail design, generalized
conclusions cannot always be drawn as to the effect of each
parameter discussed.

The fundamental types of regressive inplane mode stability/
response problems discussed include those associated with:

e  The basic regressive inplane mode. ,

'

o The coupled regressive inplane body roll mode. -

e A coupled regressive inplane-roll-rotor plunge mode.

The first type can exhibit itself to the pilot as an apparent -
rotor weaving or rotor disc fuzziness with very little body
response. The second type appears to the pilot as rotor tip path
plane response and body roll or just body roll oscillation.
Depending on the frequency of this mode, and the gain of the
feed forward loop of the control system, this mode may be
subject to pilot-induced or pilot-coupled oscillations. The last
type basically exhibits itself to the pilot as a rotor umbrella .
mode and a vertical plunge of the vehicle. This mode can exist
in the absence of the inplane mode but can be seriously
affected by its presence. The mode has been characterized as
a“Hop’” mode because of the plunge response of the airframe.

Analytical Method

The analytical method employed in the study consists of a
fundamental 13-degree-of-freedom representation of the coupled
rotor body control system. The body is characterized by 5
degrees of freedom — yaw being ignored. Likewise, the rotor is
represented by eight multiblade coordinates including rotor disc
plunge, pitch and roll; lateral and longitudinal inplane; and pitch,
roll, and collective elastic feathering/torsion. The model is shown
schematically in Figure 1. The equations are solved as linear
constant coefficient equations, modified as required to represent
the control system being considered.

For the solutions shown, certain simplifying assumptions
were made. These include neglecting the effects of retreating
blade stall, reverse flow, and advancing tip Mach number.

CYCLIC FLAPPING
AND FEATHERING
LY ) /
~JYr8
\(‘F .

COLLECTIVE FLAPPING

FUSELAGE MOTIONS
AND FEATHERING

Figure 1. Description of Analytical Model.

186



The model includes the effects of elastic coupling
phenomena of inplane moments times flapping deflections
causing feathering moments. A simplified inflow model is used
which characterizes the induced velocity from low transition
speed to high speed as a trapezoidal distribution with upwash at
the front of the rotor and downwash at the back of the rotor, for
positive rotor lift.

To gain a fairly comprehensive understanding of such modes
as the regressive inplane mode as well as the other coupled rotor
body fundamental aeroelastic modes, it is felt this type of model
is a necessity.

Effect of Parameters

Following is a discussion of each type of mode and the
relevant parameters which affect the stability/response of the
mode together with some parametric effects.

Basic Regressive Inplane Mode

The basic regressive inplane bending mode can be lightly
damped without any problem, provided it is not easily excited
by the pilot or by gusts. The mode if its frequency is well
separated from any other rotor body control mode frequencies,
behaves very much as a single blade would behave.

Figure 2 shows a complex plane plot of a typical mode of
response of the regressive inplane mode. It is noted that motions
of all other degrees of freedom are small compared with the
response of the blade inplane €y and €y. This would be for a
case where the inplane mode frequency is well separated from
other rotor-body control mode frequencies, and the inter-
coupling with these modes is not large. In this case the inplane
mode is reasonably above the body roll mode, with a frequency
ratio of 1.32 in nonrotating coordinates.

" For this case, the effect of several parameters is examined.
The stability/response of the mode is largely controlled by such
parameters as discussed in Reference 4 and 5. That is, parameters
such as blade kinematic and elastic pitch-flap-lag couplings are
extremely important. Also, such itemis as precone, feather
bearing location, hub/blade stiffness distributions and-control
system flexibility play important roles in the stability of the
mode, A discussion of each of several parameters affecting the
stability of the mode follows.

Inplane Damping. Figure 3 shows a locus of roots as a
function of equivalent structural damping in the inplane mode.
Identified on this figure are lines of constant damping in terms of
one over cycles to half amplitude, 1/Cy /2 This figure shows the
expected resuits. That is, computing the approximate change in
fraction of critical damping from the root locus plot by taking an
increment of change in the real part of the root due to the
change in modal structural damping, gg, and dividing it by the
sum of the imaginary part of the root and rotational speed
results in a value of damping roughly half the change in
equivalent structural damping. This is consistent with the well
known relationship of g~2¢ where g << 1.

Since some centrifugal stiffening effect is existant in the
inplane mode, the actual change in damping, 25 , is less than the
change in equivalent structural damping in-the mode.
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Figure 2. Complex'Plane Plot of Typical Regressive
Inplane Mode, V=20 KN, w./w Roli = 1.32.

10
")

-4 T3 -2 ~1 0

REAL PART OF ROOT

Figure 3. Locus of Roots — Effect of Structural
Damping, V = 20 KN.
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Kinematic Pitch Lag Coupling, Figure 4 shows the change in
damping due to a variation in pitch lag coupling. The indicated
sense of this coupling for improved stability is nose down
feathering due to lag aft of the blade for the stiff inplane system
whereas Reference 6 showed that the opposite coupling is stabi-
lizing for articulated or soft inplane system. The effect of this
parameter on the stability of the regressive cyclic inplane mode is
similar to the effect on the stability of the reactionless inplane
mode as indicated in Reference 5. The fundamental mechanism
of the o coupling is to cause blade flapping to couple through
coriolis forces to damp the inplane mode. This can be deduced
by examining Figure 2. ‘

16
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“'\* 10
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\\ \ 8
-4 -3 -2 -1 0

REALPART OF ROOT

Figure 4. Locus of Roots — Effect of Pitch Lag
(@ 1) coupling, V=20 KN.

A schematic of the response of a single blade for this mode
looking in at the blade tip is shown in the lower left corner of
Figure 2. The response shown is a stable response. With the
inplane frequency above the basic flapping frequency, nose
up blade fecthering when the blade is forward, positive oy, will
cause the blade to flap up-as the blade is going aft. The up
flapping velocity of the blade generates a Coriolis force which
reduces the inplane motion.

Blade Droop. Blade droop is the built in vertical angular
offset of the blade below the feathering axis (see Reference 5)
and causes an elastic pitch lag coupling which is similar in effect
to stabilizing oy coupling, The droop effect though is somewhat
more effective in stabilizing this particular mode since some
additional phase lag results in the response of the elastic blade
feathering which improves the amount of flap induced Coriolis
damping in the mode. This is accomplished through an increment

of up flapping velocity at the time the blade is moving aft,
causing a Coriolis force forward to reduce the inplane motion.
The effect of blade droop on the regressive inplane mode is
shown in Figure 5.
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Figure 5. Locus of Roots — Effect of Blade Droop
Angle, V=20 KN.

An additional insight into the effect of droop on the charac-
teristics of the system is shown in Figure 6. Shown is a predicted
frequency response of inplane response and of vehicle roll rate
response due fo lateral stick excitation as a function of excitation
frequency. It is noted that the inplane becomes quite responsive
at low values of blade droop. It is also noted that even with the
fairly large separation of the roll mode and inplane mode
frequency, an influence of blade droop is seen on the roll mode.
This influence is seen to make an increase in the peak response of
roll rate at its peak response frequency with increasing blade
droop.

Other Parameters. Other parameters such as built in blade
sweep forward or aft of the feathering axis, § 3 coupling, control
system flexibility, stiffness distribution of the blade and hub and
location of the feather bearings influence the stability of this
mode. Again, it is pointed out that the influence of each
parameter depends to a large part on the detail design. However,
in general, for a stiff inplane hingeless rotor, couplings which
result in nose down feathering due to lag aft of the blade add
damping to the regressive inplane mode. Also, with the inplane
mode frequency above the flapping mode frequency, couplings
which act as a negative spring increment to the flapping mode or
a positive spring increment to the inplane mode are stabilizing to
the inplane mode. These couplings may, however, influence the
stability/response characteristics of other modes, in particular the

. roll mode.
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Roll Frequency Response Characteristics, V = 20 KN.

Coupled Regressive Inplane Body Roll Mode

Next is considered the coupled regressive inplane bending-
body roll mode where the frequency of the inplane mode and of
the roll mode are nearly coalescent. Figure 7 is a complex plane
plot of a typical coupled regressive inplane-roll mode for a direct
flapping moment gyro control type system where the inplane to
roll mode frequency ratio is 1.1. Comparing this figure with
Figure 2, it is noted that the roll response of the airframe relative
to the inplane is significantly larger in this mode. In this case, the
phase relationships between inplane, the rotor pitch and roll, and
the cyclic blade angle are still in a damping phase for the inplane
but the rotor roll-airframe roll phasing is such as to provide a
slight driving to the airframe roll motion. For this particular case,
the net damping of the regressive inplane mode would be some-
what reduced. Again, a discussion on the effect of significant
parameters which influence the characteristics of this mode
follows.

Inplane Frequency. Figure 8 shows the influence of inplane
frequency on coupled regressive inplane bending-roll mode
damping. Data are shown for a low-speed, 20-knot case and a
high-speed, 235-knot condition (compound helicopter flight
mode). It is interesting to note that at low speed, the roll mode
loses damping due to frequency coalescence whereas at the high-
speed condition, it is the inplane mode that tends to lose.
stability.

Figure 7. Complex Plane Plot of Typical Coupled Regressive

Inplane Roll Mode, V = 160 KEAS, w ¢ Jwgop = 1.1.

-—p=— 235 KNOTS
—B6~ 20 KNOTS

189

1.0
REGRESSIVE
1/Cq/p=2.0 INPLANE MODE
\\ 3
e
ROLL MODE \
-3 -2 -1

REAL PART OF ROOT

16

14

12

Figure 8. Locus of Roots — Effect of Inplane Frequency.



Blade Droop. The influence of blade droop, where the
inplane mode and roll mode frequencies are close, is shown in
Figure 9. These data show a significant effect of droop on the '
tradeoff of damping between the two modes. It is noted that
increasing droop has a significant effect in increasing the damping
of the inplane mode, but an equally significant effect in reducing
the damping of the roll mode.

Vehicle Roll Inertia. Figure 10 shows the influence of
vehicle roll inertia. In the case shown, a small reduction in damp-
ing of the regressive inplane mode and a significant improvement
in damping of the roll mode result from increasing the roll
inertia. A reduction in roll frequency is also seen. Ordinarily, a
roll mode in the 0.6 to 1.3 Hz frequency region, with the damp-
ing sufficiently low, can be subject to pilot-coupled oscillations.
As can be seen from Figure 10, this problem is avoided by the
corresponding large increase in damping of the roll mode as the
frequency decreases into this range with the increasing roll
inertia.

Pitch Flap (63) Coupling. The influence of pitch-flap
coupling on coupled regressive inplane-roll mode stability is
shown in Figure 11. This figure shows the inplane mode to be
little affected by 63coupling with flap-up, pitch-down coupling
being slightly stabilizing. The effect on the roll mode is to
increase its frequency with positive coupling and also to improve
its damping. The inplane mode frequency is decreased as was
expected, but the damping increase was not expected. For a case
(not shown) where the inplane frequency was considerably above
the roll mode frequency, the influence of the more positive pitch

.flap coupling was to destabilize the inplane mode slightly with a
more significant effect of improving the stability of the roll
mode.
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Figure 9. Locus of Roots — Effect of Blade
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Feedback Ratio. Feedback ratio, )\, is the ratio of the
moment applied to the control gyro by rotor cyclic flapping
moment or shaft moment to the corresponding rotor shaft
moment. This parameter is described in detail in Reference 4.
Itis used both to prevent excessive rotor shaft moments while
the vehicle is in contact with the ground, and to aid in tailoring
the vehicle handling qualities. This ratio is defined by the
following equation:

ngro
A=

Mghatt

The influence of this parameter on coupled roll regressive
inplane mode stability is fundamentally on the roll mode. As
shown in Figure 12, increasing the magnitude of this parameter
increases the frequency of the roll mode and reduces its damping
while increasing the damping of the inplane mode.

Servo Time Constant. For the configuration being discussed,
the blade cyclic feathering is obtained through irreversible servo
actuators which are slaved to the control gyro. The lag in the
servos then causes a lag in the response of the cyclic blade feath-
ering as commanded by the control gyro. The influence of the
cyclic servo time constant is shown in Figure 13. It is noted that
the effect of increasing servo time constant is to reduce the fre-
quency and damping of the roll mode and the damping of the
inplane mode. The effect of the cyclic servo time constant
becomes increasingly important with increasing speed in deter-
mining the damping of the third type of mode, discussed below.
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Coupled Regressive Inplane-Roll-Rotor Plunge Mode

This mode is most critical in high-speed flight. It has been
characterized as a Hop mode because plunging of the rotor disc
results in a vertical bounce of the airframe. The parameters
strongly influencing the stability of this mode in a feathering
moment feedback system are inplane frequency, collective
control stiffness, pitch-flap coupling, blade product of inertia
relative to the feathering axis and blade sweep. A typical mode
shape for this type of mode is shown in Figure 14. It is noted
that a considerable amount of rotor inplane pitching, rolling and
plunging, and airframe vertical and rolling motion occurs. The
mode may become critical with increasing speed if the rotor
plunge mode and coupled roll inplane mode are allowed to
approach coalescence.

Figure 14. Typical Mode Shape of Coupled Regressive
Inplane Bending — Roll — Rotor Plunge _
Mode, V = 180 KEAS.
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This coalescence can be caused by the influence of several.
factors. First, any couplings that cause the rotor plunged mode
to decrease in frequency with increasing forward speed may
cause coalescence. This can be due principally to collective con-
trol system flexibility, blade sweep, adverse pitch-flap coupling
and blade product of inertia effects; all affecting the collective
pitch response to vehicle normal acceleration or rotor coning. On
a first-order basis, a negative or positive aerodynamic spring on
the collective plunge or coning mode of the rotor can be
expressed by the following equation:

oL _ 1 - 92 : 9L
aeo"K;(Kec 8, - 22 Mxy - AKB\)aeo

where %_% approximately doubles between hover and 120
knots. °

Another source of coalescence or near coalescence can be
due to the coupled roll-inplane mode increasing in frequency
with increasing speed. As the lift due to collective blade angle
increases with speed, so do the aerodynamic derivatives associ-
ated with the cyclic motions of the rotor disc, and the aero-
dynamic coupling terms between cyclic and collective rotor disc
motions. Any kinematic or aeroelastic couplings that phase these
aerodynamics to act to stiffen the coupled roll inplane mode
with increasing speed will cause an increase in the frequency of
this mode with speed.

Absolute coalescence of these two modes is not necessary
for instability to occur. Both coupling between the modes and
frequency proximity are key to stability. Couplings which cause
cyclic aerodynamic forces or moments due to lift or plunge res-
ponse of the rotor, which in turn result in cyclic response of the
rotor disc which cause rotor disc lift or plunge driving forces, can
be destabilizing. When these couplings are sufficiently strong and
properly phased, the system will be unstable.

The significant aerodynamic coupling terms between these
two modes, which are strongly affected by forward speed, are a
rolling moment on the rotor due to change in collective blade
angle, a pitching moment on the rotor due to change in coning of
the rotor, and lift or plunge aerodynamic loadings due to roll
velocity of the rotor or to change in longitudinal cyclic blade
angle. These are direct aerodynamlc couplings between these two
modes.

Indirect aerodynamic couplings exist through the inplane
response of the rotor system. This is particularly true in a feath-
ering moment feedback system, because relatively high inplane
exciting forces are generated as a result of changes in rotor lift.
The resulting inplane responses can couple through blade static
and elastic coning relative to the feather axis and cause perturba-
tional cyclic feathering responses. These cyclic featherings result
in aerodynamic forces which can be either stabilizing or
destabilizing.

Again Figure 14 shows a typical mode shape or eigenvector
for this type of coupled roll-regressive inplane bending rotor
plunge mode. In this case, which happens to be stable but lightly
damped, the collective feathering is at an amplitude and phase
with respect to 8, collective coning of the rotor, to act as a

negative aerodynamic spring on the coning mode. Likewise, 6,
collective blade angle, acts in conjunction with longitudinal
cyclic blade angle in causing the rotor to pitch up. As can be
seen from this figure, the rotor pitch response is lagging the
collective blade angle response by approximately 45 degrees,
whereas the coning response is actually leading the collectxve
blade feathering response by a small phase angle.

Further examination of Figure 14 shows that the coning
response, in addition to the rotor pitch response, is also being
driven by longitudinal cyclic blade angle. It is interesting to note
that the lateral inplane response is leading the rotor coning res-
ponse by approximately 90°. Positive lift on the rotor combined
with lateral cyclic blade angle causes a lateral inplane excitation.
Positive lift results in an increase in lateral inplane bending to the
left, which is aft bending on the aft blade and forward bending
on the forward blade. The fact that the lateral inplane response is
lagging its excitation by approximately 90° and the response is
virtually pure regressive indicates that the inplane mode is very
close to being in resonance. The inplane response, in coupling
through the feathering axis, is a prime source of the longitudinal
cyclic blade angle.

Even though the mode shown in Figure 14 is stable, one can
see the potential for the mode to lose damping, which it does for
the case shown, with increasing air speed. Lift and rotor disc
rolling moment due to 6 , and longitudinal cyclic both increase
with air speed, as well as rotor disc pitching moment, due to con-
ing of the rotor. These aerodynamic terms in conjunction with
the inplane aerodynamics due to rotor coning are the principal
coupling terms between rotor disc plunge and coupled roll regres-
sive inplane response. 1t is threugh these terms and the choice of
rotor/control system parameters that the coupled rotor vehicle
system can be riade to have adequate damping at high speed.

Figure 15 shows the effect of pitch flap coupling, blade
product of inertia, control system collective stiffness, and blade
sweep which, as indicated earlier, are key parameters in influen-
cing the stability of this mode.

Studies are also presented for the stability characteristics of
this type mode, for the direct flapping moment feedback type
control system. In this system, one other parameter was intro-
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Figure 15. Effect of Parameters on Stability of Coupled
Regresswe [nplane Bending — Roll — Rotor Plunge
Mode, V = 180 KEAS.
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duced which has a significant effect on this mode. The parameter
is the time constant or frequency response characteristic of the
main power cyclic actuators. It is through these actuators that
the control gyro commands cyclic blade feathering. As-indicated
carlier, a lag in the servo response results in a lag in the cyclic
blade feathering, which can have an adverse effect on the stabil-
ity of the hop mode. Inasmuch as the hingeless rotor depends on
corrective control such as by stabilizing gyro to prevent pitchup
_at high speed, it is recognized that lag in the corrective control
may lead to dynamic instability. This influence or effect is shown
~ in Figure 16.

Figure 16 shows also the effect of 63 coupling as well as
.collective control system stiffness and inplane frequency.
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Experimental and Analytical Comparison

The experimental and analytical comparison is based upon
cata obtained during the development of the AH-56A. Early in
the development of the AH-56A, a vehicle equipped with an
experimental rotor system in which the blades had been modified
by adding torsional doublers encountered a dynamic Hop
phenomenon. The principal effect of the torsional doublers.on
this mode was to lower the inplane frequency and cause it to
become more critically coupled with the rotor plunge/body roll
mode. An analytical study was undertaken to define this
phenomenon which extended the coupled rotor body linear
analysis method available at that time and led to the
development of the linear math model discussed earlier.

Figure 17 shows a comparison of the experimental and
analytical data obtained for the vehicle configuration which
initially encountered the Hop or coupled roll-regressive inplane
bending-rotor plunge mode phenomenon. Additionally, the ~
following table summarizes the normalized roll rate, chord
moment and collective control load comparison obtained for this
condition. In both the experimental and analytical data, the
responses are due to a roll doublet excitation and are normalized
on vehicle c.g. vertical acceleration.

95% Ng 100% Ng

Test Analysis Test Analysis
Roll Rate, 20 19.1 15.5 - 9.2
deg/sec/g :
Collective Control 2700 -2820 2370 2610
Load, 1b/g
Inplane Moment, 424K 420K 770K 670K
in. Ib/g
Frequency Ratio,w/@ 0.52  0.51 0.54 0.54
Speed, KEAS 190 180 178 180
—— ANALYSIS
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Figure 17. Comparison of Theory and Test Damping vs Speed
For Initial Encounter With Hop on Early AH-56A
Development Configuration.

The loss in damping was caused by a coalescing of the rotor
body roll mode, the inplane mode (with both modes exciting
blade cyclic feathering), and the rotor plunge mode. The terms
discussed in the equation for aL/aeo previously given were such as
to cause the rotor coning or plunge mode to decrease in fre-
quency with increasing speed. In hover, the frequency of this
mode was close to 1P. With increasing speed, the frequency drop-
ped into the 0.5 to 0.6P frequency range in the 200-knot speed
regime and coalesced with the lower-frequency body roll, regres-
sive inplane modes. This resulted in the observed reduction in
damping of the Hop mode with increasing forward speed.

A modification was made to the system which included
approximately doubling the collective control system stiffness,
reducing the pitch-flap coupling from a value of 0.27 to a value
of 0.05 at a collective blade angle of 5 degrees, increasing the
blade sweep from 2.5 to 4 degrees sweep forward, and reducing
the inplane frequency from approximately 1.55P to 1.4P. The
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reduction in pitch-flap coupling and the increase in collective
control system stiffness were done specifcally to eliminate the
Hop phenomenon within the flight envelope. The increase in
sweep and reduction in inplane frequency were done to improve
certain handling quality characteristics, These changes resulted in
the frequency of thé collective coning mode remaining virtually’
constant with increasing forward speed. The changes also resulted
in the coupled roll regressive inplane mode remaining at nearly a
constant frequency with speed. The resultant effect was to
increase significantly the speed at which the predicted coupling
between these modes became critical.

Figure 18 shows a comparison of the predicted damping of
the coupled roll-regressive inplane bending mode with test results
for this modified configuration as a function of speed. This figure
indicates fairly good agreement between the measured and pre-
dicted values. Figure 19 shows a comparison between the
predicted and measured chord-bending response due to a lateral
stick doublet at 170 knots. As can be seen, good agreement
between the two responses was obtained.
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Figure 18. Comparison of Theory and Test Damping vs Speed
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Figure 19. Comparison of Experimental and Analytical
Transient Chord Bending Response Due to Lateral
Stick Doublet, V = 175 KN.

The rotor system was then modified to increase the blade .
droop from 2920’ to 3°10° (Reference 5). This configuration :
change had little effect on the high-speed coupled roll-regressive
inplane mode stability characteristics, and the vehicle was sub-
sequently flown to 240 knots’ true airspeed with no mdlcatlon of
a high-speed dynamic stability problem. = =

“This latter configuration change however, did, lower the
damping of the coupled roll regressive inplane mode in hover and
low-speed flight because of the increase in blade droop. The
mode was characterized by roll oscillation and inplane response’
due to pilot lateral stick inputs. The frequency of the mode was
approximately 1 Hz. This, coupled with the roll oscillation of the
airframe, made the mode susceptible to pilot coupled oscillation.

Figure 20 shows a comparison of the experimentally
determined and predicted roots of the coupled roll-regressive.
inplane mode for the two different blade-droop conﬁguratlons.
Again, fairly good agreement is seen between experimental and
analytical results.

A major revision was then made to the control system
which replaced the feathering-moment feedback system with a
direct flapping-moment feedback system. This change necessi-
tated placing the main cyclic power actuators between the
control gyro and blade feathering instead of between the pilot
and the gyro.
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The rotor and control system parameters were selected to
provide a system that was completely free of either the undesir-
able Hop or roll mode characteristics discussed earlier. The
various parameters, which were established to be critical by

extensive parametric studies, using the linear analysis method
adapted to computer graphics, were established and controlled
very carefully. These parameters included both cyclic and collec-
tive pitch flap coupling, inplane frequency, main cyclic power
actuator time constant, gyro to blade-feathering gear ratio and
phasing, blade sweep and droop, and shaft-moment to gyro-
moment feedback ratio.

The initial configuration, when tested on the whirl tower,
was determined to have met all criteria except that the inplane
frequency was below the criteria value by about 0.05P, or 0.21
Hz. Some limited flight testing was performed with this configur-
ation to validate the criterion, after which the final configura-
tion, conforming to the original criteria, was reached by
removing 6.8 pounds tip weight from each blade. The results
with both configurations,are discussed in the following.
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Figure 21 shows the effect of predicted rotor vehicle
responses as a function of rotor speed for a g, 160-knot flight
condition with the degraded inplane frequency. The excitation in
each case is a lateral stick doublet at 1.5 Hz which is the tech-
nique-used in flight test for exciting coupled rotor-body dynam1c
modes fo determme their stability characteristics.

It is noted that with increasing rotor speed, the damping of
all responses decreases, and the magnitude of the pitch response
of the rotor disc in the mode increases. This was noted by the
pilot as a characteristic of the mode in that, with similar excita-
tions, the rotor disc tip path oscillations would be imperceptible
at lower rotor speeds but would become increasingly responsive
at higher rotor speeds.

Figure 22 shows a comparison between the calculated roots
and the experimentally determined damping and frequency for
this configuration at 160 knot airspeed. The actual vehicle res-
ponses contain a varying mix of the two roots, increasing in
inplane content with increasing rpm.
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Fig’uie 21. Rotor Speed Effect on Trahsient Response Due
" to Lateral Stick Doublet, V.= 160 KEAS.
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Analysis — Reduced Inplane Frequency, V= 160 KN.
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Figure 23 shows the predicted effect of increasing the
inplane frequency by removal of tip weight on the frequency and
damping of the coupled roll-regressive inplane modes. Figure 24
shows the corresponding predicted transient response at 105
percent of normal rotor speed with the tip weight removed. The
comparison in roots shown on Figure 23 and the comparison of
the 105 percent rpm transient response in Figure 24 with the 95
and 105 percent rpm cases in Figure 22 show a significant
improvement in the damping and transient response character-
istics at rotor overspeed for the configuration with the tip weight
removed to give the desired inplane frequency placement.

For the final configuration, Figure 25 shows a comparison
of the measured and predicted damping as a function of forward
speed. The data show good agreement in measured and predicted
damping levels from hover through transition and in higher-speed
flight. Experimental data on damping of the regressive inplane
mode consist of only one point because even though the mode
was not excessively damped, it was extremely difficult to excite
by the pilot with lateral stick doublet type excitations to amp-
litudes sufficiently large to obtain a reliable determination of its
stability. This final configuration was tested over a very large
flight envelope covering speeds to 220 knots true airspeed and
maneuvering load factors from -0.2g to 2.6g in the 180 to
200-knot true airspeed flight regime. The pilot reported “excel-
lent” to “deadbeat” damping and minimal responses to air
turbulence in high-speed flight.

X TIP WEIGHT REMOVED
O TP WEIGHT IN

16
10 90% N
1/Cyjp= 2.0 T
\ 14
\ 95%
100%
95%
12
105%
100%
w
110% N
105%
Q\ 10
~304g \ 110% N, \)
110% N 90% Ng \
8
A 3 2 1 0

REAL PART OF ROOT

Figure 23. Locus of Roots — Effect of Tip Weight,
V =160 KEAS.
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Figure 24. Transient Response Due to Lateral Stick Doublet —
Tip Weight Removed, V = 160 KEAS.

AY
— ANALYSIS
O EXPERIMENT

FORWARD SPEED - KNOTS

40 80 120 160 200 240 280

-

0
REGRESSIVE INPLANE MODE

{NOTE: MODE DIFFICULT TO
EXCITE EXPERIMENTALLY)
T~ | |

fe) ROLL MODE

P

N

o)

DAMPING - I/C,l/2

w

4

Figure 25. Damping vs Forward Speed — Comparison of Test
and Analysis For Final AH-56A (AMCS) Configuration.

Conclusions

Several types of modes can exist in a stiff inplane hingeless
rotor which involve coupling with the regressive inplane mode.
These include phenomena where the inplane mode is not well
coupled with the rest of the system, phenomena where the
inplane mode and body roll mode are the primary participants,
and even phenomena where the rotor plunge mode is heavily
involved in the total system dynamic behavior. These phenom-
ena, particularly the first two types, are not limited to any
particular flight regime but can be critical in either stability or
response in either low- or high-speed flight or can exhibit char-
acteristics which are virtually independent of speed. Each of the
modes is treatable by analysis, and certain parameters such as
blade droop, control system stiffness, pitch-flap and pitch-lag -
couplings, blade sweep, blade product of inertia, inplane fre-
quency and control system parameters are influential in control-
ling the stability and response characteristics of these modes,
Additionally, a totally satisfactory system can be achieved
without recourse to auxiliary damping devices.
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HUB MOMENT SPRINGS ON TWO-BLADED TEETERING ROTORS

Walter Sonneborn
Grp. Eng. Mechanical Systems Analysis
Jing Yen
Grp. Eng. VTOL Technology
Bell Helicopter Company
Fort Worth, Texas

MAGNITUDE OF HUB MOMENT

Two-bladed teetering rotors with The basic benefits of hub moment are
elastic flapping hinge restraint are better aircraft rate damping and positive
shown to be suitable for zero-g flight. control power in zero-g flight. Minimum
The alternating moment component intro- hub moment 'requirements have been investi-
duced into the fuselage by the hinge gated by analysis and testing of an OH-58A
spring can be balanced about the aircraft helicopter. Zero-g flight was demonstra-
center of gravity by alternating hub ted with this helicopter using only stiff
shears. - Such shears can be produced in elastomeric bearings in the see-saw hinge
proper magnitude, frequency, and phase for hub restraint increasing the l-g
by additional underslinging of the hub control power by 10%. Figure 1 shows a
and by judicious choice of the location record of the maneuver. Only small

of the first inplane cantilevered natural
frequency. Trends of theoretical results
agree with test results from a small scale
model and a modified OH-58A helicopter.
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Centrally hinged rotors have traditionally
relied upon thrust vector tilt for gener-
ating control moments about the helicopter
cg. All present production two-bladed
rotors have central teetering (flapping)
hinges. Such rotors, without hub restraint,
have no control power in zero-g flight.
Recent military specifications for
transport and attack helicopters call for
the ability to sustain zero-g flight for
several seconds. Helicopter control under
this condition of no rotor thrust requires
hub moments which in two-bladed rotors can
be generated by springs restraining the
flapping hinge. The resulting flapping-
dependent hub moment, when observed in the
fixed system, has a mean value in the
direction of and proportional to the
maximum flapping relative to the shaft.
A 2/rev oscillatory moment with an ampli-
tude equal to this mean value results in
both the fore and aft and lateral direc-
tions. This paper discusses methods for
producing 2/rev hub shears for balancing
the oscillatory component of the spring
moment about the helicopter center of
gravity. Practical magnitudes of hub
moments are defined by minimum control 0 1 9 3 L 5 6
power requirements for zero-g flight, and
maximum values are limited by a variety of TIME - SEGCONDS
factors. Test results from a 1/12-scale
Froude model and flight test results from .
an OH-58A helicopter with variable hub FIGURE 1. Model OH-58A pushover with
restraint are presented. elastomeric flapping bearings.
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lateral inputs were made during the maneu-
ver, and the roll angle did not exceed +5
degrees., The lateral SCAS was engaged and
contributed significantly to roll stabili-
zation. This test and analysis indicated
that some 25% of the l-g control power is
adequate for zero-g flight. The OH~58A
helicopter was subsequently fitted with
ground-adjustable hub torsion springs
which added 23% or 37% to the l-g control
power {see Figure 2). The pilot's reac-

tions were favorable with regard to the
lower spring value, but the stiffer spring
made roll control power excessive and also
increased the gust sensitivity noticeably.

FIGURE 2. Experimental Model 640 rotor
with ground-adjustable torsion tube
flapping restraint.

Other considerations limiting the hub
restraint of two-bladed rotors are:

- Fuselage vibration caused by
oscillatory hub moment at
2/rev.

= Increase in beamwise bending
of flexure.

- A weight penalty of about 90
pounds per 1000 ft-1b/deg of
effective control moment.

- Instability of the coupled
pylon/rotor system at extreme
spring stiffnesses.

These tend to discourage the designer from
introducing significantly more hub moment
than that equivalent to 25% of the l-g
control power from thrust wvector tilt,
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EFFECT OF UNDERSLINGING
AND CHORDWISE FREQUENCY

The effects of underslinging on 2/rev
hub shears and of hub restraint on 2/rev
hub moments are shown by an analysis of
the simple rigid body model shown in
Figure 3. The kinematics of an underslung,

G MAST

VIEW:
FROM .
TOP .

2/REV CIRCULAR PATH
OF ROTOR cg

FIGURE 3. Simple rigid body math model
of two-bladed rotor.

flapping, two-bladed rotor with a teeter~
ing hinge cause the center of mass of this
rotor to travel in a circular path at
2/rev if the mast does not oscillate about
point A (this assumption will be partly
justified below). The resulting centrif-~
ugal forces introduce hub shears S for
fore and aft (F/A) flapping:

SF/A=2alm2 u m cos2et (la)’

sLAT=2a1m2 um sin2et  (1b)

where

a) = F/A flapping angle

m rotor mass

wt = rotor azimuth
The moments M from the hub spring are:

MF/A=-O°5alKH(1 + COSZwt) A(]-C)

M; \7==0.52;Ky sinZet (1d)

Now taking moments about point A below
the rotor (M, = M + Sh), it is evident
that all oscéllatory components can be
cancelled in both the fore and aft and
lateral direction if

2
% a.Ky = (2alm um) h (2a)



and du . 1
dKy tehm (2b)

When this condition is met a rigid
> mast will not oscillate, but merely
~experience‘a steady tilt, the amount of
which is determined by the mean value of
. *the hub spring moment and the stiffness
KP of the pylon spring.

The dynamic analysis was extended to

helicopter). This rotor has a cantilever-
ed blade natural frequency of 0.94/rev.
(This frequency is raised to l.4/rev in
the coupled rotor/pylon system.)
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Since the loads induced by spring
restraint are not in phase with the loads
of the unrestrained rotor, small amounts
of hub restraint can reduce chordloads
(see Figure 5). In general, the spring
induced loads are small when compared
with the + 7000-inch-pounds loads occur-
ring in the unrestrained rotor at Vy in
level flight.

A x, = 210 Fr-1B

include the effects of the first inplane Ky = 132 FT-LB/DEG DEG

mode and the rotor coning mode. 'Also

included were aerodynamic calculations at &iggg%gDéNgégATE ’>*<::

the 3/4 blade radius and a modal repre~ PHASE OF MAX

sentation of the pylon support system. FWD. BLADE BﬁNDING

The set of five differential equations *

was solved on a hybrid computer (Bell

program ARHB2). The solution showed that’ 3000 IN-LB

ithe location of the first inplane canti- o

\levered blade natural frequency @y has 60 120°

2 prounounced effect on hub shears?® @p = 0.94/REV

Figure 4 shows how the requirement for ¢ W

underslinging u of the cg changes with K, =0

. ' H FWD FLAPPING = 3°
Y FIGURE 5. Blade root chord loads as a

Rigid Blade Theory function of hub moment spring rate.

e g4 T T T T s e The ideal moment balance about point
g A, as suggested by equation (2a) and the
> above discussion, is actually not fully
= achieved. When the underslinging on a
Pt flapping hub-restrained rotor is varied,
° the complete calculations show a residual
3 0 T 'y pylon oscillation remaining and the phase
> 1.0 2,0 < of the pylon response changing in a contin~
& uous manner (see Figure 6). ‘The reason
i .
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FIGURE 4. Underslinging requirement g 9 \\“"{: 0.94
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natural frequency. . 2B

_ = Ky @, = 0.94
. The blades act like a dynamic absorber = e <
whenever alternating hub spring moments g

begin to induce pylon motion. They retain & 0 LA—

this absorber function over a large range

of blade frequencies because of the . % 4902

relatively large absorber (blade) mass. g

The chordwise bending moments induced at 28 o

the blade root. in this manner have been _— K, =132

computed for the experimental Model 640 §& -903 wp = 0.94

rotor. (see Figure 5. The pylon param- Z c

eters used are representative of an OH-58A "l 15 190

UNDERSLINGING, u - feet

FIGURE 6. Pylon response versus under-
slinging.



for this is that the airloads of the free~

flapping rotor are slightly modified when
the airload moment due to hub spring is
considered. Figure 7 shows the lift and
drag increments on a lifting rotor
resulting from this, and it is evident
that an inplane shear 90 degrees out of
phase from the desired shear results.

(If the rotor were not producing any

AL -:%BKH/ .75R )
| I + ]
yAD AD
VIEW FROM VIEW FROM
SIDE, TOP
FIGURE 7. Change AL in blade lift to

balance hub moment, and resulting drag
components.

net 1ift then both blades would experi-
ence a drag increase, leaving no met hub
shear). Figure 8 shows records of
computed pylon responses with and without
consideration of the inplane shears due
to airloads.

AIRLOADS INCLUDED
IN HUB SHEARS

AIRLOADS OMITTED
FROM HUB SHEARS

Ky =0

= BASELINE

Ry = 210 FT-1B
BEG

TIME —o=

u = OPTIMUM

-

DY P § el 004 X
Wy = 1.4/REV

| Se

FIGURE 8. Comparison of hub acceleration
responses.

EXPERIMENTAL RESULTS
Model Tésts k

A test was conducted on a 1/12-scale
Froude model. Figure 9 shows the appara~
tus also shown schematically din Figure 3.
The model was operated at a fixed cyclic

and collective pitch and at 900 rpm. . Th
mahogany blades were heavier than typica
for helicopter design practice, hence
little coning took place, and even at th
smallest possible amount of underslingin
(determined by the bearing diameter of
the see-saw hinge) some hub spring was
required for smooth running of the modell.
‘Accelerometers above and below ‘the plands
of the pylon gimbal support detected this
smooth condition. The amplitude of the/

- 2/rev acceleration was a function of the

hub spring rate and the amount of underr
slinging, as-shown’'in Figure 10. The data
scatter near-the equilibrium position is
indicative of the residual oscillation.
The phase change of the pylon response”
occurred in the gradual manner found in
the analysis. However, it was noted that
additional underslinging was only about
half as effective as anticipated in °
balancing hub moments. (The cantilevered
blade frequency is 1.5/rev). - A partial
explanation is in the different mast bend-
ing due to a shear and a moment (see
Figure lla).

EETERING HINGE

FIGURE 9. (Model (1/12 Froude Scale) with
variable underslinging and hub restraint.
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UNDERSLINGING -IN.
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i

PYLON ACCEL,AMPLITUDE

. FIGURE 10. Model pylon accelerations
, versus hub spring.

. The mast deflection of the tip of the
mast under an applied moment is greater
than that resulting from the balancing
shear force by an amount equal to 20% of
the radius of the circle described by.the
cg of the underslung rotor. In addition,
the excursions of the rotor's center of
mass are reduced when part of the total
disk flapping occurs in blade flexures.
The magnitude of this effect is dependent
on rotor coning (see Figure 11b). Both
of the above effects were omitted from
the analysis.

SPRING It
MOMENT EEEAR
)% W

= MA e -] MA -

(a) Moment Diagrams

My

LADE
Y

(b) Shift of Rotor C.G. Due
to Flexure Bending

FIGURE 11, Factors reducing the effect of
underslinging.

Flight Test Results

The OH-58A helicopter shown in Figures
2 and 12 was flown at 3250 pounds. gross
weight with hub restraints of 0, 132, and

FIGURE 12. Modified OH-58A helicopter
with restrained flapping hinge.

210 foot pounds per degree. The cg was
varied from station 106.1 to 111.8
Figure 13 shows the 2/rev vibration
measurements at the pilot's seat.

3 G.W. = 3250 LB
c.g. K -FT-1B./DEG
O 106.1 0
80 0O 111.8 0
+ o] A 106.1 132 o
Q- O 111.8 132
> a
& R
M .14 g
~
“ 0
a
Q) B A
0 . AJV——JQ Q r —
0 60 80 100 120

AIRSPEED - KIAS

FIGURE 13. Vertical vibration of pilot's
seat,

The influence of hub restraint (132 ft-1b/
deg) is negligible compared with the
increase in vibrations with forward speed.
There are several reasons for this. The
helicogter has a focused pylon isolation
system® which is effective for isolating
inplane hub shears and hub moments.

(There is no vertical isolation). In
addition to the moment and horizontal
shear isolation, the predicted dynamic
absorber effect appears to take place.
The first cantilevered inplane natural
frequency of the test blade is located

at 0.94/rev and it was shown in Figure 4
that for this frequency placement nearly
no additional underslinging is required.
The dynamic absorber effect of the blade
is reflected in the oscillatory chordwise
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loads. The measured change in these loads REFERENCES
in hover as a function of hub restraint

and flapping is similar to the computed l. Gladwell, G.M.L. and Stammers, C. W.j
values: On the Stability of an Unsymmetrica
Rigid Rotor Supported in U etrical
KH AFT FLAPPING 0SC. CHORD MOMENT @ Bearings, Journal of Sound and \
FT-1B ' STA 7.8~1IN,LB ViErat%ons, 3,(3), (1966), pp. 221-
S MEASURED COMPUTED 232.
0 4.1° 2900 2175 2. Balke, R. W., Development of the
o Kinematic Focal Pylon Isolation
132 3.4 900 2000 System for Helicopter Rotors, The |
o Shock and Vibration Bulletin, 38,(3),
210 2.6 3000 3000 November (1968), p. 263. *

No computations were made for the forward
flight case.. It is helpful, however, to
compare the oscillatory moments introduced
by the hub spring with the moments about
the aircraft cg due to the 1/rev hub
shears from airloads. These shears are
estimated from the modal shear coeffic-
ient of the first inplane cyclic mode.
The + 7000-inch~-pound chordwise moment

at V;; corresponds to a hub shear of + 80
poungs per blade, which is equivalent to
a 2/rev moment about the helicopter cg of
+ 450 ft-1b. The maximum oscillatory
spring moment was only 50% of this value
when flapping reached 3.3 degrees in
hover at the forward cg and with the 132
ft~1b/deg hub spring. (This amount of
flapping is usually not exceeded in normal
maneuvers). This comparison shows that
the vibratory excitation introduced by
the hub spring is relatively small to
begin with.

The pylon isolation system and the
placement of the blade first cantilevered
inplant frequency near l/rev made
additional underslinging unnecessary in
this aircraft for vibration isolation.
(The baseline underslinging for the
experimental Model 640 rotor was 2.375
inches).

CONCLUSION

(1) Two bladed rotors with hub restraint
are suitable for zero-g flight.

(2) Hub restraint which added some 27%
to the one-g contrel power of an
OH-58A helicopter with a Bell Model
640 .rotor caused a negligible i
increase in 2/rev vibrations during
hover and level flight.

(3) The 2/rev oscillatory moment compon-
ent due to hub restraint in a two=-
bladed rotor cen be balanced about
a point below the rotor hub by
additional rotor underslinging. The
amount of this underslinging depends
on the location of the natural
frequenc§ of the first cantilevered
inplane blade mode.
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OPEN AND CLOSED LOOP STABILITY OF HINGELESS ROTOR
* HELICOPTER AIR AND GROUND RESONANCE

Maurice I. Young*, David J. Bailey**,t and Murray s. Hirschbein*¥
The University of Delaware
Newark, Delaware

Abstract

The air and ground resonance insta-
bilities of hingeless rotor helicopters
are examined on a relatively broad para-
metric basis including the effects of
blade tuning, virtual hinge locations, and
blade hysteresis damping, as well as size
and scale effects in the gross weight
range from 5,000 to 48,000 pounds. A spe-
eial case of a 72,000 pound helicopter air
resonance instability is also included.

An evolutionary approach to closed loop
stabilization of both the air and ground
resonance instabilities is considered by
utilizing a conventional helicopter swash-
plate-~blade cyclic pitch control system in
conjunction with roll, roll rate, pitch
and pitch rate sensing and control action.
The study shows that nominal to moderate
and readily achieved levels of blade in-
ternal hysteresis damping in conjunction
with a variety of tuning and/or feedback
conditions are highly effective in dealing
with these instabilities. Tip weights and
reductions in pre-coning angles are also
shown to be effective means for improving
the air resonance instability.

Notation

Ce = landing gear equivalent viscous
damping coefficient, lb/ft/sec

Cs = pneumatic shock strut viscous
damping coefficient, 1lb/ft/sec

Ct = tire viscous damping coeffi-
cient, 1lb/ft/sec

CG = helicopter center of gravity

I, = moment of inertia about x axis,
slug-£ft2

Ke = landing gear equivalent spring
rate, 1lb/ft

Ks = non-linear, pneumatic shock
strut spring rate, lb/ft

Kt = +tire spring rate, 1lb/ft

M = masg of helicopter

M1 = control moment acting in later-

al swashplate equation of mo-
tion, ft-1b
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M2 = control moment acting in longi-
tudinal swashplate eguation of
motion, ft-1b

N = number of blades

T/W = thrust to weight ratio

XY2Z = inertial coordinate system

db = decibels

e = offset of virtual flapping
hin ft

ge,

e, = offset of virtual lead-lag
hinge, ft

h = distance between center of mass
of helicopter and coordinate
system axis, ft

t = Jlateral and roll coupling para-
meter

X,Y,2Z = helicopter longitudinal, lateral
and vertical displacements, ft

oy, = helicopter pitch and roll angu-

. . lar displacements, rad

Opr Oy = helicopter pitch and roll rate,
rad/sec

Bk = flapging angular displacement
of kth blade, rad

Yy = lead-lag angular displacement
of kth blade, rad -

§ = logarithmic decrement

Cl = non-dimensionalized (by rotor
radius) displacement of virtual
flapping hinge from rotor cen-
ter of rotation, ft/ft

n. = generalized fuselage and rotor

J system degrees of freedom

6. = constrained swashplate-blade
1 pitch degrees of freedom
xu2 = percent of uncoupled critical

roll damping

Azz = percent of uncoupled blade lead-
lag damping

azimuthal coordinate of the kth

k blade, rad
w = out~of-plane or flapping fre-

8 quency ratio, cycles/revolution
Woo = in-plane or lead-lag frequency

ratio, cycles/revolution
Introduction

In recent years an intensive re~
search and development effort within gov-
ernment and industry has focused on hinge-
less rotor helicopters with a view towards
mechanical simplification, improved flying
qualities and greater aerodynamic clean-
ness. The approach being employed capi-
talizes on modern structural materials and
technology which, in principle, permit the
hingeless rotor blades to flap and lead-
lag by flexing elastically, rather than by
the use of mechanical hinges. In order to
keep cyclic bending fatigue stress and



blade weight within bounds, the in-plane
or lead-lag hingeless blade fundamental
natural frequency ratio, as a practical
matter, inevitably falls within the range
.6~.9 cycles per revolution, although fre-
quency ratios as small as .5 or as great
as 1.2 are possible. As a consequence of
this .6~.9 range of frequency ratios, both
ground and air resonance instabilities can
still occur which stem from this frequency
ratio being less than unity.

There arises the added concern that
slight amounts of internal blade structural
damping to be expected in hingeless rotor
blades can cause such instabilities to be
much more severe and difficult to control
than in an articulated rotor case, where
mechanical lead-lag dampers would be a
standard design feature. On the other
hand, the elastic flapping of hingeless ro~
tor blades and the presence of large blade
structural moments which are aeroelasti-
cally coupled to the fuselage oscillations
both in hovering and on its landing gear,
and the aforementioned relatively high fre-
quency ratio of hingeless blade lead-lag
oscillations compared to those of conven-
tional articulated rotors (.2-.4 cycles
per revolution), present the favorable
possibility of significant alterations in
the ground and air resonance stability
characteristics. This is in contrast to
centrally hinged, articulated rotors,
where flapping motion would be expected to
have negligible effect on such instabili-
ties. Several recent investigationsl,2,3
have contributed to increased understand-
ing of hingeless rotor helicopter ground
and air resonance characteristics, but in
each case were directed principally at de-
sign and development of a particular ma-
chine with its unique size, structural and
operational characteristics, rather than
at broad development of parametric trends
and general principles, as well as the
possibilities for enhancing system stabil-
ity by application of modern control engi-

neering,techniques in conjunction with ex-
isting//conventional blade pitch control
systems.

In this study, the effects of the
various design and operating parameters
which traditionally influence the ground
and air resonance instabilities of articu-
lated rotor helicopters have been con-
sidered, but with the addition of the uni-
que hingeless rotor helicopter parameters
such as blade internal damping and virtual
hinge locations. The effect of scale on
stability is investigated by considering
aerodynamically similar designs which
range in gross weight from 5,120 pounds to
48,000 pounds by keeping tip speed and
mean rotor lift coefficient constant. Sew
eral other cases of general interest are
also considered, such as off-loading, rpm
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reduction, increasing blade number, etc.
In view of the enormous control power avai
able with a hingeless rotor due to its - }
structural characteristics and the possible
need for or desirability of full artificial
stabilization or stability augmentation of
certain design configurations or operating
conditions, a closed loop stabilization |
approach is also investigated. It is
viewed as an evolutionary approach which
would employ a conventional helicopter
swashplate type of control system of blade
collective and cyclic pitch. A variety of
output variables and their derivatives are
examined as possible sources of closed !
loop feedback information for control ac-*
tuation. The roll and the roll rate vari*
ables are seen to be highly effective. :
The dynamics of cyclic and collective
pitch change are also examined4 as part of
such a closed loop stabilization system °
for ground and air resonance where the
control process is seen to be that of a
multiple input-multiple output, interact-
ing control system5.

Detailed parametric studies of the
ground and air resonance stability bound-
aries are carried out using a standard
eigenvalue routine. The parameter combin-
ations which can result in the instabili-
ties are examined with a view towards com-
paring designs with inherent stability
with those that are a result of artificial
stabilization. Finally those combinations
of design, operating and stability augmen-~
tation parameters yielding hingeless rotor
type aircraft free of the ground and air
resonance instabilities are obtained.

Analysis

The analysis is carried out with the
objective of developing a broad understand
ing of the influence of the principal de-
sign and operating parameters on both the
system air and ground resonance instabili-
ties. Consequently the degrees of freedom
chosen for the analytical model are those
which can be expected to be common to all
hingeless rotor helicopter designs in hov-
ering and on the ground, irrespective of
size and gross weight, operational require-
ments or specific structural design ap-

proaches.

The fuselage body degrees of free-
dom are taken as those which would repre-
sent both the hovering and ground oscilla-
tions of a single rotor helicopter either
in the air or on a three point, conven-
tional oleo-shock strut type of landing
gear. These then follow as the lateral,
longitudinal and vertical translational
degrees of freedom and the angular roll
and pitch degrees of freedom. A yawing
degree of freedom is not included, since
it is deemed an unnecessary and unproduc-



tive complication of marginal significance.
This follows from the large yawing inertia
of the body, the close proximity of the
:alrcraft center of gravity to the two main
landing gear and the rotor thrust line,
the net effect of which is to virtually
decouple the yawing freedom from the
others, and thereby effectively eliminates
its influence on the air and ground reson-
ance instabilities.

: The landing gear type and arrange-
ment used in the analysis of ground reson-
ance are viewed as typical, but by no
means universal. However, the effective
spring and viscous damping restraints
which are arrived at in the landing gear
analysis are sufficiently broad in charac-
ter to be representative of the many diff-
erent landing gear systems currently in
use. The two most prevalent systems are
the skid type, and pneumatic shock strut
and tire type configurations. Since the
skid-type landing gear represents a spec-
cial case of the more general shock strut
and tire formulation, an analytic model of
the latter has been employed. This formu-
lation has the added advantage of permit-
ting various effects, such as the shock
strut damping, the non-linear pneumatic
spring rate and the combined spring rate
of the tire and landing surface to be more

easily studied and is developed in detail
in Reference 6.

. The hingeless rotor blades are flex-
ible, cantilever structures which flap
elastically in oscillations normal to the
plane of rotation and lead-lag elastically
in the plane of rotation. A generalized
coordinate, normal mode type of analysis
could be employed effectively for the
structural dynamic aspects. ~However this
does not lend itself well to a simple de-
termination of the aerodynamic forces and
moments which play a central role in the
stabilization process because of the blade
bending curvature during the oscillations.
Consequently the concept of virtual springs
and hinges7' for the flapping and lead-
lag oscillations of the bgade is used,
where quasi-rigid body blade motions are
introduced to replace” the continuous, elas-
tic bending deformations of the real
blades. These degrees of freedom are il-
lustrated in Figure 1. An isometric view
og the body degrees of freedom is also
shown.

The blade pitch changes are treated
as constrained degrees of freedom in the
stability analysis. That is the blade
pitch can be changed collectively or cy-
clically by displacement or tilting of a
swashplate mechanism. 1In the open loop
case this is done by the pilot displacing
the collective or cyclic pitch control
sticks. This results in a transient re-
sponse of the aircraft either about its
initial hovering state or on its landing
gear by altering the aerodynamic forces
and moments produced by the hingeless roor.

-blade bending deflections by strain

Since it takes the form of a reference in-
put or external disturbance, it has no ef-
fect on the system stability as long as
these disturbances are reasonablz small.

In the general closed loop case the air~-
craft roll position, roll rate, pitch posi-
tion and pitch rate are sensed and used to
drive a system of swashplate actuators wih
a view towards employing the enormous con-
trol power inherent in the cantilever hiade
design of hingeless rotor systems. This
can yield full stabilization, if required,
or it can augment the inherent stability of
the system when design and operating condi-
tions permit. The swashplate-blade pitch
change arrangement and the system block

‘diagram are shown schematically in Figurez.

More sophisticated closed loop contro
system arrangements offer the possibility
of enhanced performance and optimization

.of the sgstem at the expense of complexity

or possible reduction in reliability. For
example an inner control loop on rotor

age
techniques, as well as sensing of bo yg
translational displacements and velocities
offer interesting possibilities which are
considered in Reference 9. Needless to
say, departure of blade pitch from the set-
tings called for by the control system com-
plicates and may degrade the stability and
controllability of the system. For exam
blade torsion which is not included in this
study is an important factor considered in
Reference 16.

The combination of the fuselage,
landing gear (when applicable) and the ro-
tor blade systems yields 5+3N freedoms in
the closed loop case and 5+2N freedoms in
the open loop case where the blade number
N is at least four. The minimum number of
four blades follows from the possibilities
of a dynamic isstability unique to two-
blade systems-Y and resonant amplification
of three blade aerodxnamic loadings in the
case of three bladesll which must be avoid-
ed by using a minimum of four blades in a
hingeless rotor system.

The number of blade freedoms is re=-
duced by introduction of quasi-normal 7973
ordinates to describe the rotor motionsiéd3,
This approach reduces the complexity of the
analysis by eliminating all blade motions
which do not couple with the body in a co-
herent manner during open and closed loop
oscillations. These coordinates describe
the various significant patterns of blade
motion by five degrees of freedom in the
open loop case. These are the rotor cone
vertex angle, the lateral and longitudinal
tilt of the rotor cone, and the lateral
and longitudinal displacements of the Hade
system center of gravity with respect to
the geometric center of the rotor (due to
lead-lag motion in the rotating frame of
reference). In the closed loop case three
freedoms are added through the displace-
ments of the swashplate %or blade collec-
tive pitch changes and by the angular tilt-
ing of the swashplate for blade lateral
and longitudinal cyclic pitch changes.
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The analysis proceeds assuming
that the rotor system has four blades.
The single exception to this is the con-
sideration of a very heavy helicopter
(72,000 1lbs.) air resonance behaviour.

In this case a six blade design obtained
by adding two blades to a four blade,
48,000 1lb. design is examined. This
leads to a final quasi-normal coordinate
model which has ten degrees of freedom
for the open loop case and thirteen for
the closed loop case. These equations of
motion are then reduced to a canonical
form suitable for application of a stan-
dard digital computer routine for deter-
mining the complex eigenvalues and eigen-
vectors of the system. In effect twice
the number of first order, linear differ-
ential equations with constant coeffi-
cients result. This is a twenty-sixth
order system in the closed loop case, if
ideal actuators are assumed. As more
realistic models of the control hardware
are employed (due to leakage across hy-
draulic seals, imperfect relays, ampli-
fier frequency response characteristics,
etc.) the order of the system would in-
crease further. This is deemed to be a
specialized design problem which needs
attention on an ad hoc basis.

Discussion of Numerical Results

The discussion of the numerical re-
sults begins with the open loop stability
or stability boundary characteristics of
the hingeless rotor helicopter ground re-
sonance problem and is then followed by an
examination of the potential influence of
closed loop, feedback control in system
stability. This approach is then repeated
for the air resonance problem. The dis-
cussion closes with an overview of the po-
tential of closed loop control for both of
these hingeless rotor helicopter instabil-
ities.

Ground Resonance

In order to develop insight into
the nature of the ground resonance insta-
bility as it might occur for a typical
helicopter employing a hingeless rotor, a
12,000 pound reference case based on the
§-58 helicopterl4 is considered first.
The rotor is modelled as one with four
hingeless blades with a flapping frequen-
cy ratio of 1.15 cycles per revolution,
and a lead-lag frequency ratio of .70 cy-
cles per revolution at a rotor tip speed
of 650 ft/sec. The wheels are first as-
sumed to be locked, preventing the air-
craft from rolling freely in a longitu-
dinal direction. The uncoupled lateral
and longitudinal translation modes of the
aircraft are assumed to have five percent
and three percent of critical damping, re-
spectively, as a result of tire hysteresis

losses. As the thrust to weight ratio is
varied from zero to unity the vertical
loading on the landing gear decreases.
The stability of the small, coupled oscill-
ations about a series of initial steady
states determined by the thrust to weight
ratio (T/W) is then studied as a function
of oleo-shock strut damping for several
small, but typical values of blade hys-
teresis lead-lag damping. Both damping
parameters are expressed in terms of per-
cent of equivalent viscous critical damp-
ing.

The unstable mode of oscillation is
found in all cases to be dominantly a
fuselage rolling mode with a small amount
of lateral translation coupling, and still
lesser amounts of pitching and longitu-
dinal motion. Release of the brakes, per-
mitting the aircraft to move freely longi-
tudinally, has a slightly stabilizing ef-
fect, but of minor importance compared to
the influence of oleo-shock strut damping
and blade internal damping. The numerical
results of the study with brakes on are
presented in Figure 3. Equivalent viscous
damping of the uncoupled rolling mode ex-
pressed in percent of critical damping is
taken as the abscissa, while thrust to
weight ratio is the ordinate. The hori-
zontal dash line at T/W = .9 is a visual
reminder that this is an unrealistic condt
tion and that the stability data beyond
this value is probably unreliable, since
the analytical modelling of the landing
gear depends on the questionable assumption
of an initial steady state for thrust to
weight ratios greater than nine tenths.
The aircraft is, of course, in the trans-
ient condition of landing or take-off.

It is seen that if blade hysteresis
damping should be equivalent to one percent
of critical lead-lag damping, then slight
amounts of oleo-damping of the rolling
mode produce stable oscillations. If the
blade internal damping is as little as one
quarter of a percent of critical, stability
can still be achieved for all thrust to
weight ratios, if roll damping is equiva-
lent to fourteen percent of critical damp-
ing. JInternal blade damping of one percent
or greater is found to eliminate the in-
stability entirely, if only slight amounts
of landing gear damping are available, for
example from tire hysteresis. Thus the
ground resonance instability for the refer~
ence case is found to be quite mild and
easily eliminated with the moderate amounts
of blade and landing gear damping normally
present.

In order to understand the influence
of the tuning of a hingeless rotor on this
desirable result, the lead-lag frequency
ratio is varied about reference frequency
ratio of .7 cycles per revolution as the
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flapping frequency ratio is held constant
at 1.15 cycles per revolution. Blade damp-
ing is taken at one-half percent of criti-
cal while roll damping is held fixed at

. eight percent of critical. Figure 4 shows
the effect of this tuning on the unstable
mode by plotting the log decrement of this
mode versus thrust to weight ratio. It is
seen that increasing the lead-lag frequen-
¢y ratio above .7 makes the system stable,
while decreasing it below this reference
value makes it progressively more unstable.
Figure 5 considers the effect of the off-
set of the virtual flapping hinge and tun-
ing of the flapping frequency ratio on the
instability with respect to the reference
case. It is seen that a flapping frequen-
cy ratio of 1.0 corresponding to a conven-
tional, articulated rotor is considerably
more unstable than the reference case. It
is seen that increasing the offset and
frequency ratio to progressively higher
values is beneficial and stabilizing al-
though tending to reach a point of dimin-
ishing returns at a flapping frequency
ratio of 1.20 cycles per revolution.

Size and scale effects are investi-
gated by considering the coupling of the
lateral and rolling motion as the distance
between the rotor hub and the center of
gravity of the aircraft is varied with re-
spect to the reference case, where it was
assumed to be at a distance of seven feet.
As this distance is decreased to five feet,
the instability is observed to change in
relationship to the thrust to weight ratio,
but not in general character. On the
other hand as the coupling increases by inm
creasing the distance to nine feet, there
is a stabilizing effect. This is illus-
trated in Fiqure . This result can be
understood in terms of the coupled rolling
natural frequency, which tends to decrease
as this distance increases. Thus if the
lead-lag natural fregquency ratio is held
fixed at .7, stability can be improved by
detuning the fuselage coupled rolling mode
to a lower frequency. This result is typ-
ical of all helicopter ground resonance
instabilities.

The influence of large size and
scale changes is considered by studying
the stability of two additional hingeless
rotor helicopters of 5,120 and 48,000
pounds, respectively, which are obtained
from the reference case by aerodynamic
scaling. That is the rotor diameter and
overall proportions of the aircraft were
altered to accomodate the gross weight
changes at the same mean rotor lift co-
efficient and tip speed. It is seen in
Figure 7 that aircraft smaller than the
reference case of 12,000 pounds tend to-
‘ward inherent stability with the blade
tuning and nominal amounts of damping as-
sumed. On the other hand the relatively
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heavy machines tend to a more severe insta-
bility at slightly higher thrust to weight
ratios than the reference case, but still
well within the range of achieving inher-
ent stability with moderate amounts of
blade hysteresis damping and oleo-shock
strut damping of the unstable, coupled
rolling mode.

Ground Resonance with Feedback

As an alternative or as a supple-
ment to parameter selection which results
in stable oscillations, closed loop feed-
back control is considered. Since pro-
portional control action (at least quali-
tatively) alters the frequency of oscilla-
tion of simple systems by adding or sub-
tracting a virtual spring effect, depend-
ing on whether feedback is negative or pos-
itive, the reference case was used as a
basis for investigating this possibility.
Figure 8 shows the effect of proportional
roll feedback and control action (in this
case positive feedback is actually employ-
ed) in detuning an unstable coupling by
depressing the critical fuselage roll mode
frequency. It is seen that this is very
effective in stabilizing the system. It
should be noted that in the case of other
design reference parameters, proportional
feedback and control action of opposite
sign might be beneficial, if the detuning
of the critical fuselage roll frequency
required increasing, rather than decreas-
ing. The application of this control ac-
tion is deemed beneficial, but is best de-
cided on an ad hoc basis.

A more conventional use of feedback
control is considered in Figure 9 which
shows the effect of negative feedback with
derivative or rate control action. This
tends to augment the damping of the criti-
cal fuselage rolling mode. This is seen
to be highly effective also, and, at least
to a first approximation, is interchange-
able with oleo-shock strut damping of the
unstable roll mode.

A logical extension of the fore-
going application of feedback control to
the stability of ground resonance is the
blending of both proportional and deriva-
tive control action. In this case the
critical roll mode can be both detuned and
damped to approach an optimum. This is
shown to be the case in Figure 10. Here
the system is made progressively more sta-
ble over the entire range of thrust to
weight ratios. It is not the intention
here to optimize the stability boundary,
but to show that this is possible even
with small values of blade internal hys-
teresis damping and the normal amounts of
landlng gear damping of the reference case
In view of the relatively unimportant in-
fluence of the pitching, and longitudinal



degrees of freedom for the reference case,
pitch rate feedback and control action was
not deemed effective. However, this re-
mains a potentially useful and important
tool in the event that special design or
operational requirements modify the open
loop system.

Air Resonance

The basic reference helicopter of
12,000 pounds gross weight is examined for
its air resonance stability as a function
of lead-lag frequency ratio for several
values of flapping frequency ratio. It is
seen in Figure 11l that lead-lag frequency
ratios of .70 or less result in instabil-
ity over the structurally feasible range
of flapping frequency ratios between 1.10
and 1.20. It is also to be noted that in
the neighborhood of neutral stability (for
the assumed blade equivalent viscous in-
ternal damping of 1/2%), increasing flap-
ping frequency ratio is stabilizing. This
interaction effect between these two key
blade natural frequency ratios is further
illuminated in Figure 15. It can also be
seen that the lighter blades (i.e. an over-
all mass fraction of 4%% rather than 6%%)
require higher frequencies for neutral sta
bility. It is shown in Reference 12 that
in the stable range of lead-lag frequency
ratios, an increasing helicopter blade
mass fraction improves stability further.
On the other hand, it is also shown that
for an unstable configuration, increasing
blade mass fractions can further degrade
stability.

The critical effect of internal
damping of the blade lead-lag motion is
presented in Figure 13 for the reference
case with a flapping frequency ratio of
1.10 (comparable results were obtained at
frequency ratios of 1.15 and 1.20). It is
seen that increased internal damping en-
hances air resonance stability and inter-
nal damping levels of 1% of 'critical vir-
tually eliminate the air resonance insta-
bility for a lead-lag frequency ratio of
.75 or greater (since hingeless rotor
flapping frequency rates greater than 1.10
improve stability further).

Although the frequency ratios for
lead-lag and flapping motions of hingeless
rotor blades have a fundamental effect on
the air resonance stability boundaries, de-
sign differences in structure, materials,
and proportioning of such blades can re-
sult in differences in the virtual hinge
locations and stiffness with important
modifications in the stability boundaries.
These effects are presented in Figure 14,
which show that more outboard location
of the virtual hinges for lead-lag mo-
tion tends to stabilize, although not
by a substantial degree. This effect

is believed to stem from a decrease in the
relative energy level of the blade in-plane
motion, just as in classical ground reson-
ance.

Size effects as distinguished from
gross weight are presented in Figure 15.
It is seen that the reference helicopter
air resonance stability is virtually un-
affected by large changes in the body
pitch and roll moments of inertia, pro-
vided that the lead-lag frequency ratlo is
sufficiently large for stability(wgg2.75).
However relatively large machines are seen
to be less unstable, if an air resonance
instability exists. The influence of gross
welght changes through aerodynamic scaling
is presented in Figure 16 for 5120, 12,000
and 48,000 pound machines which operate at
the same mean rotor lift coefficient and
tip speed. It is seen that very large in-
creases in gross weight tend to be stabil-
izing with respect to the minimum lead-lag
frequency ratio required for neutral sta-
bility, although gross weight effects for
machines in the 5,000 to 12,000 pound dass
are not clear-cut because of the greater
sensitivity to all the other system para-
meters. In fact, it may be difficult to
obtain a rational trend when blade mass
fraction is held constant, when in reality
the very small machines will tend toward
larger blade mass fractions. In contrast
to this, if the gross weight of the refer-
ence machine is decreased by off-loading
{cargo, for example), there is a clear-cut
improvement in the air resonance stability.
This is shown in Figure 17 and stems from
the reduction in blade initial coning.
The effect of coning is discussed further
below.

Built-in pre-coning angles are nor-
mal in the design of hingeless rotors; to
minimize steady bending stress is a rou-
tine consideration. Figure 18 shows the
stability boundary for the reference case
and the effect of deviating from the nom-
inally ideal case of built-in pre-coning
matching the coning that would result from
a l-g load of a centrally hinged, articu-
lated rotor. It is seen immediately that
"over-coning” destabilizes and "under-con-
ing" stabilizes for the entire range of
lead-lag frequency ratios. This suggests
that a direct, profitable trade-off between
steady bending stress and air resonance
stability exists. That is reduce coning
by structural action and enhance stability.
Figure 19 continues this theme by showing
the influence of a concentrated tip weight
on the air resonance instability. In this
case it is seen that tip weight is benefi-
cial and stabllizing, providing the lead-
lag frequency ratio is of the order of
three-fourths or greater (wgg2.75). Fig-

_ure 20 shows the design effect of an RPM

reduction at fixed gross weight. This
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would increase coning and the data shows a
consistent loss of stability for the var-
ious lead-lag frequency ratios.

Aerodynamic scaling for very large
helicopters appears to be barred by the
adverse trend of coning at constant mean
rotor 1lift coefficient and tip speed, un-
less blade number is increased beyond four
blades. For example increasing gross
weight from 48,000 pounds to 72,000 pounds
was considered by increasing disk loading
and solidity by fifty percent - that is
adding two blades to the original four-
blade design. This yields the beneficial
effect of no increase in coning angle and
only a minor modification of the stability
boundary. This is illustrated in Figure
21l. The dash or ghost line on this figure
represents a second mode of marginal sta-
bility at a high frequency. This is dis-~
cussed at length in reference 15. The im-
plication is that a high frequency air re-
sonance instability might become a factor
in very large hingeless rotor helicopters.
However, the effect of including the addi-
tional rotor degrees of freedom suppressed
by the "quasi-normal” or "multi-blade” co~
ordinate transformations requires addi-
tional, careful study since the current
analysis limits rotor flapping type mo-
tions to those which result in either col-
lective or cyclic flapping of the indivi-
dual blades.

Air Resonance with Feedback

Proportional feedback and control
action proves to be a very effective means
of stabilizing air resonance. Figure 22
shows the influence of proportional roll
control action for the reference helicop-
ter; roll corrections alone are found to
be highly effective over the entire range
of lead-lag frequency ratios, whereas air-
craft pitching motion is found to be a
relatively small component of the air re-
sonance instability mode and not a produc-
tive avenue for closed loop stabiliza-
tion. Figure 23 examines ' the efficacy
of proportional roll control for a case of
maximum air resonance instability when
wee=.60. It is seen to be very effective
and virtually a linear influence on sta-
bility over the range of practical inter-
est.

Sensing aircraft roll rate is also
found to be highly effective in closed
loop control, but less so for pitch rate
because of the relatively small participa-
tion of pitch in the air resonance insta-
bility. However the complex phase rela-
tionships which exist in the mode of air
resonance instabilityld make it very de-
sirable that aircraft roll and pitch con-
trol actions be mixed (i.e. the interact-
ing control actions referred to above5).

This is illustrated in Figure 24 which
shows the influence of pitch control ac-
tion for several levels of roll control ac-
tion (where both are based on roll rate
feedback information). The linearity of
this stabilization method is made evident
by cross-plotting the influence of pitch
control action for a magnitude of roll
control action which results in (almost)
neutral stability.

Closed Loop Stabilization

The foregoing data illustrates that
an appropriate mix of aircraft roll and
roll rate information, in conjunction with
aircraft roll and pitch control action,
permits straightforward artificial stabili-
zation of both the air and ground reson-
ance instabilities of hingeless rotor heli-
copters under very adverse design condi-
tions. More importantly, perhaps, the da-
ta indicates that the marginally stable
configurations resulting from the lead-lag
frequency ratio being tuned to .70~-.80
and/or internal damping levels for this os-
cillation being of the order of %% of cri-
tical or less can be easily stabilized by
utilizing existing, conventional control
systems.

A significant difference between
the ground resonance and air resonance
modes of instability is the phase rela-
tionship between rotor cone tilting and
fuselage rolling motion. Also the fact
that a slight positive or regenerative roll
feedback and control action can be benefi-
cial in stabilizing ground resonance., The
reverse is true for air resonance. The
common, beneficial element for both insta-
bilities is in sensing aircraft roll rate
and utilizing this information for nega-
tive feedback to implement roll control
action. This in effect is stability aug-
mentation of the aircraft roll damping both
on the ground and in the air. The addi-
tional control action for aircraft pitch
has been found to be beneficial for sta-
bilizing air resonancel5 and not detrimen-
tal for stabilizing ground resonance.®
Thus the interacting, closed loop control
system driven by roll rate information
emerges as a simple, evolutionary approach
to complete artificial stabilization, or
stability augmentation of the hingeless
rotor helicopter air and ground resonance
instabilities.

Conclusions

1. The ground and air resonance imr
stabilities of hingeless rotor helicopters
are marginal ones, but they will persist
as design considerations because of the
natural tendency of the lead-lag frequency
ratios to be less than unity (and conceiv-
ably as small as .60), while internal damp-
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ing levels will be slight, unless special
materials and design measures which in-
crease internal damping can be found and
which are acceptable with respect to other
design and operating constraints.

2. The air resonance instability
is very sensitive to blade coning, while
ground resonance is not. Reductions in
coning by a variety of means are benefi-
cial, but the possibility of accepting a
modest level of steady bending stress in
lieu of other approaches (such as tip
weights) is worthy of more consideration
(since this would also reduce Coriolis-
type fatigue loads in steady forward
flight).

3. Completely artificial stabiliz-
ation of both the air and ground resonance
instabilities is posgible, by utilizing
the concept of interacting controls. This
is not suggested as a serious approach to
design, but as an indication that a modest
stability augmentation approach, in con-
junction with adherence to simple design
criteria and objectives, can eliminate
both the air and ground resonance instabil-
ities.

4. The ground resonance instabili-
ty which was studied exhaustively in Ref-
erence 6 is seen to be inherently the same,
whether conventional oleo shock strut or
skid type landing gear are used, providing
the effective stiffness and damping are
properly represented in the overall system
design.
function of a single element of the system
which destroys the assumed symmetries (e.qg.
a single blade damper on an articulated ro-
tor system) must be evaluated on an ad hoc
basis since the system might then become
unstable despite the stability of the nor-
mal system.
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Abstract

This paper discusses the use of pendulum dy-
namic absorbers mounted on the blade root and
operating in the vertical plane to minimize heli-
copter vibratory loads.

The paper describes qualitatively the concept
of the dynamic absorbers and presents results of
analytical studies showing the degree of reduction
in vibratory loads attainable. Operational experi-
ence of vertical plane dynamic absorbers on the
0H-6A helicopter is also discussed.

Introduction

In a helicopter it is important to maintain a
low level of wvibration for two reasons; first for
the comfort of the crew and passengers, and
secondly to minimize maintenance problems. During
early flight tests of the OH-6A helicopter (see
Figure 1) in 1963, a high level of 4/rev fuselage
vibration was encountered primarily during ap-
proach to hover and during high speed flight.

Figure 1.

OH-6A Helicopter

Various analytical studies and experimental pro-
grams were conducted in an effort to alleviate
this problem. The configuration finally adopted
was vertical-plane pendulum absorbers mounted at
the roots of the main rotor blades (see Figure 2).
It is the purpose of this paper to describe the
concept of the vertical-plane pendulum dynamic
absorber and to present the results of analytical

studies and flight tests showing the degree of re-
duction in vibratory loads attained,

e

Figure 2. Pendulum Absorbers on OH-6A

Over 3 million flight hours of satisfactory
experience have been obtained with the use of
vertical-plane pendulum absorbers on the OH-6A
helicopter and on its commercial counterpart, the
Model 500 helicopter. This operational experience
is also discussed in this paper.

Sources of Fuselage Vibration

The OH-6A helicopter has a 4-bladed main rotor.
Table I summarizes the sources of 4/rev fuselage
vibration from the main rotor. It can be seen from
Table I that vertical shears at the blade root with
frequencies of 3/rev, 4/rev, and 5/rev can induce
4/rev vibrations in the fuselage. The 3/rev and
5/rev blade root shears induce 4/rev fuselage vi-
brations by producing 4/rev hub moments. The 4/rev
blade root shear produces a 4/rev hub vertical
force. With regard to in-plane blade root shears,
both the 3/rev and the 5/rev component of in-plane
root shear produce a 4/rev hub horizontal force. A
further discussion of the mechanism by which rotor
blades induce vibration in the fuselage can be
found in Chapter 12 of Reference 1, particularly
the tables on pages 318 and 319.

219



Table I. Sources of 4/Rev Fuselage
Vibration - 4~Bladed Rotor
- Vertical In~Plane
Shear Load Path Shear Load Path
3/rev  Hub moment 3-rev  Hub horizon-
tal force
4/rev  Hub vertical - -
force
5/rev  Hub moment 5/rev  Hub horizon-

tal force

Table I indicates that there are 5 possible
sources of excessive fuselage 4/rev vibration in
the OH-6A helicopter. The next step was to estab-
lish which of the 5 possible sources of vibration
were the most important. Tables II and IIT pro-
vide an answer to this question.

Table II. OH-6A Main Rotor Blade Natural
Frequencies (per rev) - 100%
RPM - Pendulums Off
Flapwise Chordwise (Cyclic Mode)
2.72 5.14
4,87

In Table II are listed the main rotor blade
flapwise and chordwise natural frequencies near
the 3/rev through 5/rev frequency. It can be seen
from Table II that the two frequencies most likely
to cause a 4/rev vibration in the fuselage are the
first and second mode flapwise bending frequencies
which are very close to 3/rev and 5/rev. The
blade chordwise natural frequency is also close to
5/rev (see Table II). However, Table III con-
firms that the blade flapwise first mode and second
mode frequencies are the primary source of the
vibration problem, in that the fuselage vibration
is much more responsive to hub moments than it is

to hub vertical or horizontal forces.
Table III. OH-6A Cockpit Response to Rotor
Excitation, V = 100 Knots
(No Pendulums Installed)
4/Rev 4/Rev 4/Rev 4/Rev
4/Rev Pitching { Rolling | Longitudinal | Lateral
Vertical| Moment Moment Shear Shear
Excitation 130 *86 *%]112 10 35
Force, 1b .
Unit Responsej .0012 .00265 .0106 .00193 .0077
at Cockpit,
in/sec/1b
Response at .16 .23 1.19 .019 .27
Cockpit,
in/sec

* Blade vertical shear force causing pitching moment.

*% Blade vertical shear force causing rolling moment,
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Thus blade vertical bending at a frequency of 4/rev
and blade chordwise bending at frequencies of 3/rev
and 5/rev can be ignored and the primary sources of
vibration can be concluded to be blade flapwise
bending at 3/rev and at 5/rev. ’

Concept of Vertical-Plane Dynamic Absorbers

Based on the above evaluation, it was con-
cluded that it was necessary to reduce the level of
blade 3/rev and 5/rev flapwise bending. After in-
vestigating a number of possible approaches,* it
was decided to pursue the concept of a dynamic vi-
bration absorber which is discussed in Reference 2
in the section starting on page 87.

The concept of a dynamic wvibration absorber
consists of adding a small mass to a large mass.
The uncoupled natural frequency of the small mass
(vibration absorber) is chosen to be equal to the
frequency of the disturbing force. Thus, for the
OH-6 vibration problem, it was concluded that it
would be necessary to incorporate two dynamic
vibration absorbers; one tuned at 3/rev and the
other tuned at 5/rev. Furthermore, inasmuch as
rotor speed can vary somewhat, it was necessary
that the vibration absorbers maintain the proper
frequency relative to rotor speed. In order to ac-
complish this, it was decided to use the concept of
a tuned centrifugal pendulum discussed on page 219
of Reference 2. This concept has been used for
many years to minimize the torsional vibrations of
piston engines. Thus, the final configuration that
evolved consisted of two pendulums mounted at the
roots of the main rotor blades; one tuned to a
natural frequency of 3/rev, the other tuned to a
natural frequency of 5/rev. Inasmuch as the shear
force and blade motion which were to be minimized
were in the vertical plane, the dynamic pendulums
were oriented to oscillate in the vertical plane.

Figure 3 shows schematically the pendulum
motion relative to the blade deflection for the
case of response to 3/rev excitation. It is evi-
dent that the centrifugal force from the pendulums
is directed such as to cancel most of the trans-
verse shear due to blade modal response. The net
result is a significant reduction in the 3/rev
vertical shear force transmitted to the hub.

* Other approaches evaluated included providing
control of blade first and second mode natural
frequencies by means of anti-node weights and by
use of preloaded internal cables. Flight tests did
not show these methods to be sufficiently effective.
Hub-mounted vertical plane pendulums were flown and
proved to be effective, but considerations of drag
and weight were unfavorable for this configuration.
Fuselage-mounted non-rotating dampers were elimi-
nated because of the difficulty of tuning to a
sufficiently wide range of frequency. Fuselage-
mounted centrifugal pendulum dampers were con-
sidered impractical from the standpoint of space
requirements and mechanical complexity.
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Basic Physical Parameters

The pendulum configuration that was estab-
lished, flight tested, and put into service has the
following characteristics:

3/rev pendulum
weight: 1.8 1b

actual mass ratio: .048
modal mass ratio: .64

5/rev pendulum
weight: .7 1b

actual mass ratio: .019
modal mass ratio: .52

The pivot axis of both pendulums is located at
15% of the blade span from the center line of the
rotor, and 29% of the chord from the leading edge.
This location was chosen so that existing bolts in
the blade root fitting could be used, thus pre-
venting the introduction of stress concentration
points into critical sections of the blade.
Analysis indicates that a location further out-
board would be more favorable, but this has not
been confirmed by test, because of the structural
considerations cited above.

Damping of the pendulums due to frictiom in
the pivot bearings is estimated to be equivalent to
1% of the critical viscous damping iatgo for the
3/rev pendulums at an amplitude of -16 . TFor the
5/rev pendulums at the same amplitude the damping
ratio is 3% of critical.

The dampers are "bench" tuned, by means of
shims, to the correct pendular frequency within
0.5% of the length of the 3/rev pendulums and to
within 1% of the length of the 5/rev pendulums.

The effect of mis-tuning has been investigated only
to the extent of showing that ~ one shim does not
have a consistently observable effect on either
qualitative or measured cockpit vibration.
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Analytical Studies

Analytical studies were conducted to investi-
gate the effectiveness of vertical plane pendulum
absorbers in minimizing the blade wertical root
shears and the fuselage vibration levels. The re-
sults of these analytical studies are presented in
Table IV for the OH-6A at a forward speed of 100
knots. It can be seen from Table IV that the addi-
tion of the 3/rev pendulum dynamic absorber reduces
the 3/rev vertical root shear by 75%. The addition
of the 5/rev vertical dynamic absorber reduces the
5/rev vertical root shear by 85%. The net result
is a 72% reduction in the vibration level in the
crew compartment.

Table IV. Effect of Vertical-~Plane Pendulum
Absorbers on Root Shear and
Cockpit Vibration - OH-6A
(Analytical Studies, 100 Knots)
Root Cockpit
Shear Vibration, amp|
Configuration | 3/Rev | 5/Rev in/sec
Undamped Blade{ 91 42 1.8
Damped Blade 23 6 .5

The analytical procedure used to achieve the
results of Table IV is designated SADSAM. This
analytical procedure is described in Reference 3
and was conducted in two steps. 1In the first step,
SADSAM was used to calculate the blade root shears
for a forward speed of 100 knots both without and
with the pendulum absorbers. The analytical model
of the blade used in this step was a ten statiom,
fully coupled representation with aerodynamic ex-
citation forces obtained from flight measured
pressure distributions (Reference 4). In the second
phase of the analysis, a 41 degree-of-freedom fuse-
lage mathematical model, adjusted to agree with
shake test results, was analyzed using SADSAM to
obtain the effect of the resulting hub moments on
the response in the crew compartment.

Flight Test Results

The favorable analytical results referred to
above led to a decision to fabricate an experi-
mental set of pendulum dynamic absorbers. These
absorbers, similar to those shown in Figure 2, were
installed on the flight test OH-6A helicopter.
Tests were conducted measuring the vibration level
in the crew compartment, both without and with the
vertical-plane dynamic absorbers installed. The
measured vibration levels at the pilot's seat are
presented in Figure 4. It can be seen that the ad-
dition of the vertical-plane vibration absorbers

. reduces the vibration level at the pilot's seat

approximately in half. The qualitative assessment
by the pilot was also very favorable. Based on
these results the decision was made to incorporate
vertical-plane dynamic absorbers in the production
OH~6A helicopter.
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Operatidnal Experience on OH-6A

The vertical plane pendilum absorbers were
incorporated on all production OH-6A helicopters
and on its commercial counterpart, the Model 500,
Over 3,000,000 flight hours have been accumulated.
Up to a servite life of between 300 and 600 hours,
the absorbers did a good job of controlling the
vibration level of the helicopter. However, after
approximately 300 to 600 hours of service, the
bearings and shafts on which the absorbers are
mounted exhibited excessive wear, resulting in in-
creased vibration level in the helicopter. Re~
placement of the bearings and shafts generally
returned the helicopter to an acceptable level of
vibration. The premature wearing of the bearings
and shafts was attributed to the high PV value.

Laboratory tests were conducted on various
combinations of bearings and shaft types with the
objective of selecting a combination that would
have the desired service life of 1200 hours. It
was also required that any new shaft and/or bearing
materials be interchangeable with the initial pro-
duction bearings and shafts. Thus no change in
geometry was permitted.

The results of these laboratory tests showed
that all combinations of shafts and bearings tests,
with the exception of one, were inferior to the
original configuration (which consisted of a
bearing consisting of a stainless steel outer race
with a bonded self-lubricating teflon liner, and a
stainless steel shaft with an 8 RMS finish). The
only improved configuration consisted of an Astro
AM1282 bearing, which was specially made for the
laboratory test operating on the original shaft.
This Astro bearing is currently under consideration
for retrofit.

Conclusions

This paper has demonstrated both analytically
and by operational expérience that the use of pen-
dulum dynamic absorbers, mounted on the blade root
and operating in the vertical plane, can success-
fully reduce helicopter vibratory loads. The
specific application on an OH-6A helicopter was a
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4-pladed rotor with the pendulums tuned to 3/rev
and 5/rev. The pendulums reduced the vibration
level in the cockpit to approximately one half of
the level that existed prior to the installation of
the pendulums.
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Abstract

Thls paper presents results of a design
and flight test program conducted to define the
effect of rotating pushrod damping on stall-
flutter induced control loads. The CH-5LB heli-
copter was chosen as the test aireraft because
1t exhibited stall-induced control losds. Damp-
ing was introduced into the CH-54B control system
by replacing the standard pushrod with spring-
damper assemblies.

Design features of the spring-damper
are described and the results of a dynamic
analysis is shown which defined the pushrod stiff-
ness and damping requirements. Flight test
measurements taken at 47,000 1b gross weight with
.and without the damper are presented.

' The results indicate that the spring-
damper pushrods reduced high-frequency, stall-
induced rotating control loads by almost 50%.
Fixed system control loads were reduced by L0%..
Handling qualities in stall were unchanged, as
expected.

The program proved that stall-induced
high~frequency control loads can be reduced
significantly by providing a rotating system
spring-damper. However, further studies and
tests are needed to define the independent
contribution of damping end stiffness to the
overall reduction in control loads. Furthermore,
the effects of the spring-damper should be
evaluated over a range of higher speeds and with
lower~twist blades.

Notation
AOB angle of bank
CAS calibrated airspeed, kt
c damping rate, lb-sec/in.
C blade section pitching moment
M P
coefficient

c damping ratio

ERITS equivalent retreating indicated
tip speed, kt.
GW aircraft gross weight

Presented at the AHS/NASA-Ames Specialists’
Meeting on Rotorcraft Dynamics, February 13-15,
1974,

I torsional moment of inertia

K spring constant
Ky damper spring rate, 1b/in.
‘NR rotor speed
o blade section angle of attack
975 blade angle at T5% rotor radius
0 torsional natural freguency, cycles/sec
w/f ratio of natural frequency to rotor
frequency
Introduction

Control system loads can limit the
forward speed and maneuvering capability of high
performance helicopters. The slope of the con-
trol load buildup is often so steep (Figure 1)
that it represents & fundementel seroelastic
limit of the rotor system. This limit cannot be
removed by strengthening the entire control
system without incurring unacceptable weight
penalties.

Control Control System M/

System Endurance Limit Control System
Vibratory Airspeed Limit
Toad

Stall Region

Airspeed

Figure 1. Control Load Characteristic

Studies of the problem reported in
Reference 1-T indicate that the abrupt increase
in control loads is induced by high-frequency
stall-induced dynamie loading. This loading
is attributable to a stall-flutter phenomenon
which occurs primarily on the retreating side
of the rotor disc in high advance ratio and/or
high load factor flight regimes. At the
relatively high retreating blade angles of
attack which occur under these conditions, the
blade section experiences unsteady aerodynamic



stall and the moment coefficient varies with the
time~varying angle of attack as shown in Figure
2. Inspection of the moment hysteresis loops
exhibited in this figure indicate that positive
work can be done on the system as the blade
section oscillates in torsion. This aeroelastic
mechanism, by vwhich energy is added to the system,
can be termed "negative damping" and produces
pitch oscillations of increasing amplitude at the
blade/control system natural frequency. The
rotor system is therefore more responsive to
rotor loading harmonics which are close to the
blade torsional frequency, and the end result is
a rapid buildup of higher harmonic control loads
during maneuvers and high-speed flight.

—»| Range of & Oscillation |-=—

Blade

Pitching Angle of

Moment, Attack, o
CM

! Oscillating &

N
\\
i CM For

Stall Constant &«
Region
Pitch Down
Postive Work or
"Negative Damping” Area
Figure 2. Pitching Moment Hysteresis Loops.

The response of the rotor system is
usually stable, because the blades are moving
into and out of the negative damping region once
per revolution. However, during maneuvers in
which a significant portion of the rotor disec is
deeply stalled, very large oscillations can exist
(Reference T) and the negative damping region -can
increase to a point where blade oscillations can
continue into the advancing portion of the rotor
disec. .

Efforts to understand the problem have
centered on defining unsteady aerodynamic
characteristics of the blades in stall {References
I and 6) and on incorporating this data into
blade aerocelastic computer analyses (References 6
and 9). Results of the studies are encouraging.
The buildup of control loads and high-frequency
stall-induced loads is predicted with reasonable
accuracy.

Recognizing that the basic cause of the
problem was insufficient pitch damping, the
Eustis Directorate contracted with Sikorsky
Aircraft to evaluate the effects of pushrod
spring-dampers on control loads of the CH-SLB
helicopter. This helicopter was selected for the
study since it exhibited high-frequency stall-
induced control loads during maneuvers at
maximum speeds and 48,000 pounds gross weight and
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was available to the program. Rotating pushrod
dampers were used instead of fixed system dampers
because they provided the required damping
directly at the blade attachment. The program
was limited in scope to an analytical and
experimental feasibility study of the concept,
and was conducted in four phases.

(1) Dynamic Analysis
(2) Functional Design
(3) Ground Tests

(4) TFlight Test Eveluation

Dynemic Analysis

An aeroelastic analysis of the CH-54B
rotor was performed to evaluate the effectiveness
of spring-dampers in reducing the control loads
associated with retreating blade stall-flutter
and to evolve design criteria. The primary
mathematical analysis used was the Normal Modes
Rotor Aeroelastic Analysis Y200 Computer Program.
This analysis, which is described in Reference 8,
represents blade flatwise, edgewise, and torsion-
al elastic deformation by a summation of normsl
mode responses and performs a time-wise integra-
tion of the modal equations of motion. This
analysis can also be used to study blade transient
response following a control input or disturbance.
Aerodynamic blade loading is determined from air-
foil data tabulated as a function of blade
section angle of attack, Mach number, and first
and second time derivatives of angle of attack.
Unsteady aerodynamics and a nordistorted helijcal
wake inflow were used throughout this investiga-
tion.

The version of the Y200 Program used for
this study is a single-blade, fixed-hub analysis.
The assumptions were made that all blades are
identical and encounter the same loads at given
azimuthal and radial positions and that blade
forces and moments do not cause hub motion. Any
phenomens which are related to nonuniformity
between blades or to the effect of hub motion on
blade response are not described by this analysis.

Free Vibration Characteristics

For a blade restrained at the root by a
pushrod, the first step in the aeroelastic
analysis is the calculation of the undamped
natural frequencies and modes for a blade
rotating in a vacuum, In order to analyze the
spring-demper/blade system using the normal modes
procedure, the damped free vibration modes and
frequencies were calculated based on.the model
shown in Figure 3. The torsional system was
represented by fifteen elastically-connected
lumped inertias restrained in torsion by a spring-
damper at the blade root. The eigenvalues and
eigenvectors of the system response were calcu-
lated using a Lagrangian formulation of the
demped free vibration equations. A radial mode



shape, naturasl frequency and modal damping were
calculated and used in the Y200 Program.

Rotor Blade

Spring—Damper{

Control System{

Schematic of the Spring-Damper Free
Vibration Problenm.

Figure 3.

Spring-Damper Behavior

The behavior of the CH~S5LB spring-
damper was determined by employing the free
vibration analysis to determine the general
relationship between the properties of the damper
itself and those of the blade first torsional
mode. Figure U4 shows the variation of blade first
torsional natural freguency and percent critical
damping with changes in the spring and damping
constants of the spring-damper.
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Figure 4. Effect of Spring-Damper Properties on First

Torsional Mode Frequency and Damping.

Three trends are evident from this figure:

1. For a given damper spring constant, Kb,
high levels of damping can increase
the root dynamic stiffness enough to
result in torsional natural frequencies
which are close to those obtained with
8 rigid pushrod. It is clear from

Figure b4 that as the damping constant,
Cp, is increased, the damper spring is
effectively bridged so that the
torsional natural frequency approaches
the standard pushrod value (7.4 per rev.)

2. For each spring constant, Kp, a
specified value of the damping constant,
Cp, maximizes the modal damping.
Increasing or decreasing the damping
constant decressed the percent critical
damping ratio of the torsional vibra-
tion.

3. The variation in the percent critical
damping parameter with damping constant
is relatively gradual, so small manu-
facturing differences between the six
production dampers will not cause great
differences in first torsional mode
damping.

Rotor System Analysis

For the initial analytical comparisen of
the control system loading with and without damp-
ing, prior to design of actual hardware, a repre-
sentative flight condition was selected for which
experimental data existed for the conventional
system. This data was extracted from the
structural substantiation flight tests of the
CH~54B and represents a condition in which stall-
induced dynamic loading was experienced. The
specific flight condition used - gross weight
47,000 1b, 100% Rotor Speed (185 RPM), sea level
standard, 30° angle of bank right turn- was
selected because it was the condition which
consistently produced stall-induced high-frequency
loading. The plot of rotating pushrod load
against azimuth for this condition is shown in
Figure 5a.

The pushrod load resulting from the Y200
Normal Modes Program for the same flight condition
is compared with flight test results in Figure 5b.
To account for the inerease in rotor 1lift ex~
perienced in the turn, a 1ift of about 60,000 1b
and a propulsive force of 3,300 1b was calculated.
Although the calculated pushrod load shows a
significantly greater steady nose-down load, the
vibratory amplitude and frequency content of the
analytical result match the test reasonably well.

To study the effectiveness of the
spring-damper in reducing vibratory control loads,
the flight condition described above was simu-
lated using several spring-demper configurations.
Each of these cases was run with the same control
settings as the standard case. The results are
shown in Figure 6. As shown, the combination of
5000 1b/in. and damping between 50 and 90 lb-sec/
in. was about optimum. Referring back to Figure
4, it is seen that a damping value of 90 lb-sec/
in. would provide a frequency of TP which was the
same as the standard aircraft. This configura-
tion was therefore selected because the test
results could then be used to evaluate the spring-
demper at the same torsional frequency as the
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standard aircraft. Also it would provide an
option to reduce the damping in follow-on
programs to allow an evaluation at 5.5/rev and
20% critical damping.
+ 3000 ]
+ 2000 !
+ 1000 ™ , \
TN N
-1000
32'2?)0 / [T /5300018
-3000 : N

Pushrod Load
]

0 40 80 120 160 200 240 280 320 360
Azimuth, Degrees

Figure 5a, Measured Flight Test Result.
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The plots of pushrod load against
azimuth shown in Figure T compare s standard
pushrod with a spring-damper having a spring rate
of 5,000 1b/in. and a damping rate of 90 lb-sec/
in. For this configuration the free vibration
analysis gives a torsional frequency of T per rev
and 0.20 critical demping ratio. The Figure
shows approximately equal amounts of one-per-rev
variastion oceurring in the control load time-
histories since the pushrod spring-dampers do not
affect the low~frequency torsional motion. As a
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result, the overall peak-to-peak control load is
reduced by only 25%, while the high-frequency
retreating blade control loads are reduced by
more than 50%. It is these high-frequency loads
that cause the 6 per rev control systém loads in
the fixed system.

+ 1000 =
§ yan \Va 17
\
~1000 A
9 \WANR! FA |
©  ~2000
j 1AM |
S ~3000 o\
& -4000 S ~ T 3
=500 *+ 3100 1b—»F+—
0 40 80 120 160 200 240 280 320 360
Azimuth, Degrees
Figure Ta. Conventional Pushrod.
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Figure 7.Comparison of Derived Conventional Pushrod

Loed and Spring-Damper Load - CH~54B, 47000 1b
G.W., Sea Level, 100 KT, 30° AOB Right Turn.

It is clear from this analysis that
(1) demping at the blade root is effective in
reducing control loads for a given root stiff-
ness and (2) reducing root stiffness tends to
decrease the loads for a given damping constant
(at least for the ranges investigated).

Functional Design

Design Requirements

The aeroelastic analysis indicated
that spring and demping introduced at the blade
root could significantly reduce stall-induced
losds. The most favorable location for the test
of & blade root spring-damper is at,the pushrod
connecting the rotating swashplate to the blade
horn, since the existing pushrod may be replaced
easily with the spring-damper. It was determined
that a spring-damper device could be fabricated
to replace the conventional pushrod, provided
thet the restrictive size limitations could be
met, The use of an elastomer as the primary
structural member met the size and spring rate
requirements.

The design requirements, based on the
aeroelastic analysis and the planned test
progrems, are summarized as follows:

. Replace Conventional Pushrod

. Life - 50 hr



. Load ~ #5,000 1b

. Spring Rate - 5,000 1b/in.

. Damping Rate - 90 lb-sec/in.

. Maximum Elastic Deflection - #1/2 in.
% Adjustable for Blade Tracking

. Fail-Safe Design

Principles of Operation

The final configuration of the stall-
flutter spring-damper pushrod designed to meet
the above requirements is shown in Figures 8 and
9. :
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Figure 9. Stall-Flutter Spring-Damper Pushrod.

The concept consists basically of a piston
restrained in a cylinder by two natural rubber
ey elastomeric bushings which provide the reguired
// N spring rate. Damping is obtained by displecement
of fluid through orifices. The bushings are
mounted in parallel, thereby providing a fail-safe
design. In addition, physical stops are incorpor-
\\Efffj// ated to limit spring-damper deflection to * 1/2
inch in the event of overload or complete rubber
. failure. No sliding action takes place as the
Figure 8. Stall-Flutter spring-damper is deflected. Elastomeric elements
Spring-Damper Pushrod Assembly. were chosen because of their high allowable
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strains, integral hydraulic sealing, and compact-
ness. An integral air-oil accumulator was found
to be inadequate and an external accumulator
system was used in the ground and flight tests.

Ground Tests

A comprehensive ground test program was
conducted to develop the required performsnce of
the spring-damper, to demonstrate structural
adequacy and safety for the flight tests, and to
evaluate the performance of an installed spring-
damper system. This was accomplished by the means
of single unit dynamic performance and fatigue
tests, flight unit proof and operation tests, and
an installed system whirl tests utilizing the
flight test spring-dampers and rotor blades.

Plight Test Evaluation

The performance of the stall-flutter
spring-damper pushrod system installed on a CH-54B
helicopter was evaluated in a series of flight
tests consisting of: (1) base-line flights of
the CH-54B helicopter in standard configuration,
and (2) comparison flights with the spring-damper
system installed.

The investigation was limited to the
feasibility of the damper and did not extend to
an extensive evaluation of the overall effect on . 3 "
the CH-54B operating envelope. Figure 10. Spring-Damper System Flight
Aircraft Installation.

Baseline Flights

A short series of baseline flights was
conducted on the instrumented test aircraft in
standard configuration in order to obtain up-to-
date performance and control load data.

Of the several conditions flown, the
115 kt, 96% rotor speed, level flight point was
the best stall condition from the standpoint of
uniformity and repeatability. The maximum pushrod
vibratory load observed was about * 2,100 1b.
This is lower than some stall results observed in
the past on this aircraft, but the typical stall-
flutter characteristic was observed in the push-
rod time histories and was therefore adequate for
baseline purposes.

Spring-Damper Pughrod Tests

The spring-demper pushrods were in-
stalled on the CH-54B rotor head as shown in
Figure 10 and 11. Flight test time histories of
rotating pushrod loed for rigid pushrods and for
the spring-damper pushrods at 47,000 1b gross
weight ere shown in Figures 12 and 13. These
segments of date which depict the time history for
approximately 1-1/2 revolutions were selected as
representative samples from oscillograph traces
in which the waveform was continucusly repeated Figure 11. First Flight of the Spring-Damper
for more than 15 revolutions. System, February 6, 1973.
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Flight test time-histories of right
latersl stationary star load for rigid pushrods
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\
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1
\
! and for spring-damper pushrods are shown in Figure

1)
Pushrod] YAt

Load,1b 15. These records show the expected dominance of
) i the 6 per rev response in a 6-bladed rotor. As
U v shown, stationary control loads were reduced by
+ 1850 lb T 5700 15 k0% for the spring-damper case.
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Figure 13. Rotating Pushrod load Comparison
115 KT 96% Ny Level Flight, L7000 1b GW.

Right
Lateral
As ‘shown, the rigid pushrod record ex- Stationary
hibits the high-frequency oscillation beginning on %ﬁi IﬁOiai 3
the retreating side which is-characteristic of the Pushrodg

stall-flutter phenomenon. This frequency was

caleulated system torsional natural fregquency of W 4"—
7.4 per rev. As seen, the high-frequency loads
were significantly reduced with the spring-damper

between T and 8 per rev and comperes well with the 2030 1b J U
pushrods. The overall reduction was smaller Right .

because the low-frequency response wes not reduced. é‘::;ia'm

This was expected because the high twist bledes Star ‘foaﬁy

produce large lp loads end the spring-dsmper wes With Pushrod
not designed to reduce these loads. As shown, the Spring-Dampers
results demonstrate a reduction of slmost 50% in
high-frequency loads. A spectral anslysis of the

b t which ¢ h
gi.;r‘:uﬁ. which contains this cycle is shown in Figure 15, Comperison of Stationary Control Loeads.
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A plot of stationary control load
‘against ERITS (Equivalent Retreating Indicated
Tip Speed) is shown and defined in Figure 16.
The sharp increase in load as stall is entered is
seen to be unchanged by the damper installation,
but as the aircraft goes deeper into the stall
region, the loads are reduced.

CH~54B Structural Substantiation
Flight Test Results )
O Bage-Line Flight Test Data
wmmmmmwed Spring-Dampér Flight Test Data
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Figure 16. Stationary Control Load Against Erits
Note: Erits - Equivilent Retreating

Indicated Tip Speed

Rotating Tip Speed x Vair Density Ratio —-CAS
Jload Factor x Gross Weight
37,500
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