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Abstract

The flapping equation for a helicopter in for-

ward flight has coefficients which are periodic in

time, and this effect complicates the calculation

of stability. This paper presents a constant

coefficient approximation which will allow the use

of all the well known methods for analyzing constant

coefficient equations. The flapping equation is

first transformed into the nonrotating coordinate

frame, where some of the periodic coefficients are
transformed into constant terms. The constant

coefficient approximation is then made by using

time averaged coefficients in the nonrotating frame.

Stability calculations based on the approximation

are compared to results from a theory which cor-

rectly includes all of the periodicity. The com-

parison indicates that the approximation is reason-

ably accurate at advance ratios up to 0.5.

Notation

a blade lift curve slope

B tip loss factor

c blade chord

I blade flapping inertia
i ¢_T
k B flapping spring stiffness
N number of blades

R rotor radius

t time, sec

V forward velocity

a angle of attack of hub plane

_i flapping of ith blade relative to hub plane

8 vector of rotor degrees of freedom in non-

rotating coordinates

60 rotor coning angle

BIc rotor tilt forward (longitudinal flapping)

Bls rotor tilt to left (lateral flapping)

6 2 rotor differential flal_ing
7 blade lock number, pacR_/I

1 eigenvalue or root, nondimensionalized by _,

rotor advance ratio, V (cos _)/RR

v flapping natural frequency of rotating blade

o real part of eigenvalue

p air density

azimuth angle, fit

fl rotor rotational speed

imaginarypart of eigenvalue

_6 flapping natural frequency of stationary

• blade,

( ) derivative, aC )/d_

(") derivative, d2( )/d_ 2

For helicopter stability and control studies,

it is desirable to use as simple a math model as

possible while retaining reasonable accuracy, both

Presented at the AHS/NASA-Ames Specialists' Meeting

on Rotorcraft Dynamics, February 13-15, 1974.

to reduce computation effort and to gain insight

into system behavior. However, for a helicopter in

forward flight, the rotor flapping motion is

described by a differential equation having coeffi-

cients which are periodic in time (azimuth). This

fact complicates the solution of the equation,

requiring methods which use considerable numerical

computation and which give little insight. Thus it

is desirable to find a differential equation with

constant coefficients (hence an approximation)

which adequately represents the forward flight

flapping dynamics of a helicopter rotor. If such

an equation is found, all of ........_,,_ ._ k,mo_,_ tech-

niques for analyzing constant coefficient equations
may be used.

The flapping equation may be transformed into

the nonrotating coordinate frame, as done in

References 1 and 2, where some of the periodicity

is transformed into constant terms. This result

suggests that the use of constant coefficients in

the nonrotating frame will retain some of the

periodic system behavior. The constant coefficient

approximation examined herein is made by using time

averaged coefficients in the nonrotating frame. A

comparison is made between the eigenvalues (sta-

bility) obtained from the approximation and the

results from a theory which correctly includes all

of the periodicity. The comparison indicates that

the approximation is a useful representation of

helicopter flapping dynamics for both hingeless and

articulated rotors. This approximation was briefly
discussed in Reference 1 for one set of rotor

parameters. The present paper discusses the

approximation in a more general manner and gives

more insight into its features, limits, and

applicability.

The rotor math model used here is for fixed

shaft operation and includes only first mode

(rigid blade) flapping, with spring-restrained

flapping hinges at the hub center. Flapping

natural frequency may be matched by selecting the

spring rate. Thus the only approximations are in

the use of the aerodynamic terms for rigid blade

motion. Uniform inflow is used, and for the

advance ratios considered here (_ < O.S), reverse
flow effects are not included.

Equations of Motion

In this section, the single blade homogeneous

flapping equation is presented for a rigid, spring-

restrained, centrally hinged blade. This equation

is then transformed to a nonrotating coordinate

frame, using a coordinate transformation which is

briefly discussed. Insight into the fundamental

behavior of the rotor is gained by examining the

hovering (u = O) eigenvalues of the equation in

nonrotating coordinates.
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For the single blade, the homogeneous equation
of motion is

8i + M88i + (v2 + M8)8i = 0 (13

where

= _B # + p _ B3 sinM_

= p Y B3 COS %bi + p2 _ B2 sinM 8 2_i

_8 2 k s
v2 = 1 +-_-_.= 1 +• in2

Note that reverse flow has not been included here.

Although it could be included, it would not signifi-

cantly affect the results for _ < 0.5, since the
additional terms are fourth order in _.

By a coordinate transformation of the Fourier
type, the single blade equation may be written in
terms of nonrotating coordinates. The transforma-
tion accounts for the motion of all blades, and the

number of degrees of freedom is equal to the number
of blades. For example, with a three-bladed rotor,
the degrees of freedom are coning (all blades flap-

ping together), rotor pitching (cosine ¢ flap-
ping), and rotor rolling (sine ¢ flapping).
Adding a fourth blade adds a differential flapping

degree of freedom, where blades 1 and 3 flap in one
direction while blades 2 and 4 flap in the other

direction. This type of differential motion is a
degree of freedom with rotors having any even num-
ber of blades. Adding more blades adds degrees of

freedom which, in the nonrotating frame, warp the
plane described by the sine _ and cosine
flapping motion.

The coordinate for the single blade is 8i.
For a three-bladed rotor, the corresponding
nonrotating coordinates are

C°cl
where BO, 81c , and 81s are rotor coning, pitch-
ing, and rolling motions. For a four-bladed rotor,

80 _

81¢

where 8 2 is the differential flapping motion
discussed above.

In general, the blade degrees of freedom in
the transformation are

N
1

8o = _ _ 8i

i=l
N

2
8nc = _ _ 8i cos n¢ i

i= 1
N

2
8ns = _ _ 8i sin n¢ i

i=l

N
=I

8N _ _ 8i(-I) i, N even only

i=1

Then the motion of the ith blade is

K

8 i = 80 + _(Snc COS n¢ i + 8ns sin n¢i)+B N C-1)i;

n= 1 // 2=

1 (N - 1), N odd
K=

(N 23, N even

The equations of motion (that is, eq. (1)) must
also be converted from a rotating to a nonrotating
frame by a similar procedure. This process is
accomplished by operating on the equations with the
summation operators

 Zc.
i i

2 _(. )sin 1 _(...)(.l)i•" n¢ i ,
i i

This is virtually the same procedure used in
Reference i.

It may be seen that the transformation

involves multiplication by sin 9, cos 9, sin 2¢,
cos 2¢, etc. This changes some of the periodic
terms o£ the equations in the rotating reference
frame into constants (plus higher harmonics) due to

products of periodic terms, and vice versa.

Performing the indicated operations for N = 3
yields the following equations for a three-bladed
rotor.

0 _ Bw+_ 1_ B3sin3¢ 2-_ 1_B3 cos 3_ "B

_2 _2_ s2 sl. _ -u' _ B2co,_* 1
i

.... 2_B2 .... , v 2 .... 6_ B3 cos 3. _ (Bw +_ u2'2) + _ _B' sin 3.[ 8 "0

i

(2)

Similarly, operating as above with N = 4, the
equations of a four-bladed rotor are obtained.
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_2 _ B2 _in 2*

; _.I 2 2 ] 2;u 2 _ _ B) cos 2,

C3)

Th.e three- __-.__ four-b!ad__ rotors have similar
behavior except for the terms which are periodic in
_. The periodic terms are 5/rev for the three-
bladed rotor, but are 2 and 4/rev for the four-
bladed rotor.

The main advantage of the transformed equations
is that it is easier to express the combined rotor
and airframe motions because the rotor equations
are now in a nonrotating reference frame and
include the motions o£ all blades. Furthermore,
rotor motions are more intuitively understood,
since the degrees o£ freedom are those seem by an

observer in or beside the helicopter.

In the nonrotating coordinates o£ equa-
tions (2) and (5), the equations are coupled by
off-diagonal terms. Note however, these are actu-
ally independent blades (unless some sort of feed-
back is added) and the coupling is due to the
coordinate transformation.

To gain understanding of these degrees of
freedom, the hovering (_ m 0) behavior is examined
next. The hover equations for four blades are
given below.

i÷

"8_B; 0 0 O"

0 8_ B; 2 0

0 -2 _ B_ 0

0 0 0 _ B_

IS

"v2 0 0

0 _2 . 1 8_ B;

0 . _ B_ _2 _ 1

0 0 0

0
_-o

0

v 2

(4)

For three blades, the hovering equations are iden-

tical, except that the B2 equation is then absent.

The B0 and B2 equations at hover are completely
uncoupled and are both identical to that o£ the
single blade in rotating coordinates.

_i + _ Bq_i + v2_i = 0 (1), for p = 0

from equation (4)

Eigenvalues o£ these equations are easily calcu-

lated, and are shown on figure 1. These will be

-2 2 _

_-_

FiNre 1. Hover eigenvalues of coning and _actton-
less modes (_ - 1.2, y = 8).

called coning and reactionless modes. The reaction-
less mode is so named because at hover it produces
no net reaction at the hub. The equations for
rotor pitching and rolling are,

and the characteristic equation is then,

(,2+ ._. Bk.;_+ _2. 112 + (2),+ -_- B_')2 ,, 0

The etgenvalues for this equation are shown in
figure 2. By analogy to a gyro, these Bodes will
be called precession (the lower frequency mode) and
nutation (the higher frequency mode). The d_ping,
-y/l_, is the same as for the single blade of equa-
tion (1) and for the B0 and B2 modes discussed
above. However, the coordinate transformation has
resulted in the precession mode frequency being
lower than the single blade mode frequency in the
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Eigenvalues of equations such as (13 may be

found with Floquet theory, as for example in

_B4_ References 3 _d 4. _e equation is integrated forone period (_ = 0,..., 2_) for each independent

NUTATION_I -L 2 initial condition to obtain the state transition

I| matrix. The frequency and damping of the system

I.o modes are then obtained by taking the logarithms of

E__ the state transition matrix eigenvalues.

I.O This techni_e has been applied here to three

PR cases, and the results are shown on figure 3 for

1.5

i ..._,IU_ _...-.-a. !.0

I/...-.%'_.5 o. v==J, Z=6.o

x ±-2 //_ I b b. u=1.0,7=6"0

Fibre 2. Hover eigenvalues of precession _d nuta- /_c [ C. P=I.0,7=12.0

tion modes (v = 1.2, y = 83. // _-_I .5

/fllrotating fr_e. Similarly, the nutation mode fre-

_ency is fl higher than that of the single blade in I : fl:

the rotating frame. -i.5 I-_o -.s .5

\\The coning mode (fig. i) will excite vertical

motions of the vehicle, while the precession mode _'-_c_ ° -.5

will excite pitch and roll motions. Thus vehicle

responses are more intuitively understood by use _+_ ........

of the nonrotating coordinates. Also, _hese equa- .5

tions may be used to study feedback control systems I _-__--_ -ho
l Ol_

such as rotor tilting or rotor coning feedback, o i 2_ 3 .4 .5
_ich were discussed in Reference I. Note (from

eqs. (13 _d (233 that the perfo_ance of such sys-

tems will depend on the n_ber of blades used, -t.5

since the blade motions become coupled by the feed-

back terms and the coupling will vary with the
number of blades.

To compare the various modes with each other

and with other theories, it is necessary to trans-

form all eigenvalues into the same reference frame.

The obvious choice is the rotating coordinates of

equation(l), since most other theories are appli-

cable to this frame. As may be seen by comparing

figures 1 and 2, the precession and nutation modes

may be transformed back into the rotating frame by

adding and subtracting _ respectively. This

process results in four identical eigenvalues, as

expected, since the rotor is composed of four iden-

tical blades, each described in the rotating frame

by equation (1). As noted above, the frequencies

of the 8 0 and 8 2 modes do not change

The equations for _ = 0 have been easily

solved and the nonrotating coordinate system has

been presented and discussed. In nonhovering

flight, however, the equations have periodic

coefficients, which makes the equations more diffi-

cult to solve, as well as giving the solutions some

special characteristics. These will be discussed

in the next section.

Figure 3. Floquet theory root loci for varying _;

single blade in rotating coordinates.

varying _. Note that as p is increased, the

frequency (_/_3 decreases, while the damping (o/fi)

remains constant at -y/16 until the frequency

reaches an integer multiple of 1/2 /rev. As p is

increased further, the frequency remains constant

while the damping both decreases (the upper roots)

and increases (the lower roots) as shown for cases

a and c. This behavior may be surprising to those

accustomed to constant coefficient equations, but

is typical of periodic systems. The nonsymmetry

about the real axis is analogous to the behavior of

a constant coefficient equation root locus when the

locus meets the real axis. At that point, the

roots separate (no longer complex conjugates), one

becoming less stable and the other becoming more

stable. With periodic coefficient equations, the

separation can occur at any multiple of 1/2 the

frequency of the periodicity. Actually, the con-

stant coefficient equation is a special case of the

periodic one, where the frequency in the coeffi-

cients is zero. This behavior may be seen in more

detail by plotting the eigenvalues versus _, as in

figure 4, which again shows results from Floquet

theory.
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1.2

I.O

.8

.6

o
(o) FREQUENCY

1.0

.4

::P

b

.8

.6

O. u=l.I,y=6

b. u :1.0. y=6

C. U = 1.0, ),'= 12

I _ I I l

I 2 3 4 5

o, b

i I i i I

0 .I .2 .3 .4 .5
p.

(b) DAMPING

Figure 4. Floquet theory variation o£ frequency and
damping with u; single blade in rotating coor-
dinates.

Figures 3 and 4 have shown the eigenvalues in

the rotating coordinate system. These may be

transposed into the nonrotating system to examine

the behavior o£ the nonrotattng =odes. Choosing

case c (v = 1.0, X = 12) as an exaBple, the root

locus is plotted on figure 5. The coning Bode has

the same eigenvalues shown in the two previous

figures. The nutatton and precession Bodes have

the same damping, but as mentioned be£ore, their

frequencies are _ higher and lower, respectively,

than the coning frequency.

The regions where the frequency remains constant

while the damping changes, called critical regions,

may be illustrated by constructing the T -

plane as in figure 6 (and discussed in References 3

and 4). In the O/rev region, the behavior is like

that of a constant coe£ficiont equation when the

root locus meets the real axis; there are two real

roots, with order p2 changes in damping. In.the

/rev region, the frequency is exactly half of the

rotational frequency (fig. 5, case b), and the

damping changes somewhat more rapidly. In the

I/rev region (fig. 3, case a) the frequency is the

same as the rotational frequency (G), and again

the damping changes are order u 2. As previously

noted, damping is constant at -y/16 outside of the

critical regions. Note that varying v h_s little

effect on the boundaries o£ the O/rev and_rev
regions, but as v is increased the 1/rev region

moves upward.

In this section, the characteristics o£ the

periodic coefficient solutions have been discussed

I

NUTAT_N

S
-I.5 -I.0

\
-.5

x

i __
n

- 2.0

1.5

1.0

,- o

- -I .5

-2.0

Figure 5. Floquet theory root loci for varying

three-bladed rotor in nonrotating coordinates

(v = 1.0, y = 12; case c).

P;

24

2o

16

),

12

I I I I I

0 .I .2 .3 .4 .5

(O) lv= I.I

Figure 6. y - _ plane £or single blade in rotat-

ing coordinates based on Floquet theory.

49



i-- c-Lc

0 .I .2 .3 .4 ..5

(b) _, - 1.0

Figure 6. Concluded.

for nonhovering flight. The next sections will

discuss an approximation which has constant coeffi-

cients, yet gives some of the behavior of the peri-

odic coefficient system.

Constant Coefficient Approximation

In equation (1) the periodic coefficients are

all of the speed (v) dependent terms, and a con-

stant coefficient approximation yields only the

hover solution. However, in the nonrotating frame

of equations (2) and (3), these periodic terms

have been transformed into constants plus higher

harmonic periodic terms. This result suggests that

the primary effects of u may be determined by

using the average values of the coefficients. The

constant coefficient approximation thus obtained

for a four-bladed rotor is given in equation (5).

The corresponding equation for three blades is

identical, except that the _2 motion is absent.

0

Y B3

0

v2

J _- B 3

÷

0

0

0 U 1-_ B3

B4 2

-2 -_ B4

0 0

0

v2- l

Y l
- _(B' - _2B 2)

0

0

0 •

0

-_B_

0

y i
( Bc_ + _ I_2B2)

v 2- I

O

Note that the 82 equation is not coupled to the

others and is the same as the 8 2 equation for

hover; hence it yields only the p = 0 roots.

Therefore the 82 equation will not be discussed

further or included in subsequent figures. The

80 equation has only one p-dependent term,

coupling it to the 8 motion The pitch andIs • .
roll equations are coupled by both damplng and

aerodynamic spring terms.

Comparison

As noted earlier, eigenvalues may be compared

by adding fl to the precession frequency and sub-

tracting _ from the nutation frequency. In

examining the constant coefficient approximation,

any differences in eigenvalues will be due to the

dropped periodicity. That is, all of the roots

should approximate those obtained by using Floquet

theory to solve equation (i). Using the comparison

method mentioned above, the constant coefficient

approximation is compared to Floquet theory results

in figures 7, 8, and 9. The frequency scales have

been expanded to exaggerate the effects of forward

speed. Each of the three cases is discussed below.

Case a. v = i.i, y = 6. (fig. 7)

This case corresponds to a hingeless rotor
similar to the Lockheed XH-51. For this rotor the

variations with p of frequency and damping are

small but significant since the 1/rev critical

region is encountered (see fig. 6). All three

modes of the approximation agree well with Floquet
theory at low advance ratios, where the influence

of the periodic coefficients is small. As the

advance ratio is further increased, the precession

mode displays the same type of behavior as the

Floquet theory results, but the other two modes do

not. For the precession mode (and the Floquet

theory), the frequency becomes constant at 1/rev,

and the damping then has two values as previously

discussed. It is useful to examine why the con-

stant coefficient approximation displays periodic

[s]

1.075

1.050

n

1.025

I.OOO

0 PRECESSION

E] NUTATION

z_ CONING

-- FLOQUET THEORY

L I I I I

O .I .2 .3 .4 .5

(O) FREQUENCY

Figure 7. Comparison of constant coefficient

approximation to Floquet theory (v = 1.1, y = 6).
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-.4

-.3

O"
n

-.2

-.I

o

o

(b) DAMPING

PRECESSIO_
NUTAT_ON

CONING

-- FL_UET THEDRY j

-
CASE 0

i,'=1.1

7"=6

i I I l ,J
.I .2 .3 .4 .5

CASE o

;V=l.I

7"=6

FLOQUET THEORY
*---,4 APPROXIMATION

=O.5 0

(C) ROOT LOCI

NUTATION

PRECESSION ,_ A
_-_-*-_- __-:---_-

-._ -.4'_ -.3

CONING

"-2

2.05

2.00

1.05

1.00

.05

(3"

- .05

tl ID°

1.05

2.05

Figure 7. Concluded.

system (critical region) behavior. In this case,

the precession roots at hover (p = O) are very near

the real axis due to the coordinate transformation.

As u is increased, the precession roots move

toward the real axis and then split when they reach

the axis, as usual with constant coefficient sys-

tems. Thus the damping both increases (the left

branch) and decreases (the right branch).

Case b. _ = 1.0, _" = 6. (fig. 8)

This case corresponds to an articulated rotor

having relatively heavy blades, such as might be

used for a high speed helicopter. This case is

well removed from critical regions, and there are

no significant changes in the eigenvalues for the

p range shown. The constant coefficient approxi-

mation agrees well with results from Floquet theory.

.8

o)
/l

.6

o PRECESSION
i-1 NLITATION

CONING

-- FLOQUET THEORY
_._....-.0

CASE b

U= 1.0

y=6

t I I I l
.I .2 3 .4 .5

(0) FREOUENCY

-.5

-.4

cr

-.2

-.I

o

(b) DAMPING

o PRECESSION

0 NUTATION

A CONING

-- FLOQUETTHEOI_f

CASE b

//= 1.0

7"=6

I I i I I
.I .2 .3 .4 .5

Figure 8. Comparison of constant coefficient

approximation to Floquet theory (_ = 1.0, y = 6).
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CASE b l, _

y= I.O

¥=6

FLOQUET THEORY ]

---- APPROXIMATION

,u. = 0.5 0

#t

I I
-.5 -.4

. oJ

'5

1.95

_._1.90

]

.95

.90

.10

.05

-.05

-JO

-.90
- .95

%

g _- - 1.90

-I.95

(c) ROOT LOCI

Figure 8. Concluded.

Case c. v = 1.0, Y = 12. (fig. 9)

This case corresponds to a typical articulated
rotor with blades similar to many aircraft flying

today..The Floquet theory indicates that the {/rev
region zs encountered at u = 0.215. It is seen

that the nutation mode is a poor approximation.

Apparently, the constant coefficient approximation
is not adequate for higher frequency modes if a
critical region is encountered. The precession and
coning modes (combined), however, do display the
correct type of behavior: the frequency approaches
_/rev and the damping both increases (the precession
mode) and decreases (the coning mode). In this
case, the correct behavior is obtained because two

modes are involved. As may be seen in figure 9(c),
the two sets of Floquet roots approach each other,

meet at _/rev, and split (no longer complex con-
jugates). This behavior is approximated by the
coning and precession modes, but in the approxima-

tion, the roots remain complex conjugates as shown
in figure 9(c). The frequency of the precession
mode does not agree well with Floquet results, but
its damping is increasing; hence it is of less

interest. The coning mode agrees well with the
Floquet results, predicting the reduced damping
very accurately.

Perturbation Theory

Equation (1) has also been studied in

Reference S, using a perturbation technique known
as the method of multiple time scales. Analytic
expressions are derived for the eigenvalues, with

expressions valid near and within each of the
critical regions and ones which are valid away from
the critical regions. These results are very

52
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.._./Y////d
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.I .2 .3 " .4 .5

-I.I

-I.0
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-- FLOQUET THEORY
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/
/

/
/

/
/

/
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/
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(b) DAMPING

Figure 9. Comparison of constant coefficient
approximation to Floquet theory (v = 1.0, y = 12).
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Figure 9. Concluded.

useful; they give additional insight into the behav-

ior of periodic systems in general and equation (1)

in particular. A comparison between the Floquet

results of the present work and the analytic results

from Reference S indicates that the latter are also

useful quantitatively. An exception is near the

/rev region, where the perturbation solution was

carried only to order _. It should evidently be
extended to order _2 as was the rest of the

perturbation solution.

Discussion

Based on the cases described above, it is

apparent that the constant coefficient approximation

may be used to calculate rotor eigenvalues at

advance ratios up to 0.5. A range of rotor param-

eters (7 and _) have been studied which are repre-

sentative of most conventional helicopters. The

lower frequency modes agree well with Floquet

results and display behavior approximating that of

the Floquet theory critical regions. Therefore,

there are many cases where the approximation may be

used instead of more complicated methods.

The higher frequency modes o£ the approxima-

tion, however, do not display the correct behavior.

Where these modes are important, for example, in

using high gain feedback, the approximation should

be used with caution.

However, the solutions are for uncoupled blades in

the rotating coordinate frame. To account for

inter-blade coupling (as with certain feedback

schemes) one must either use another technique

such as that described herein or rederive the solu-

tions with the coupling included.

Conclusion

Transforming the flapping equation of a heli-

copter rotor in forward flight into the nonrotating

coordinate frame results in a set of differential

equations where some of the periodicity due to

forward flight is transformed into constant terms.

Using the time-averaged values of these, i.e.,

dropping the remaining periodicity, gives a con-

stant coefficient approximation which retains some

of the periodic effects. Comparison between results

of the approximation and those of Ploquet theory

indicates that the approximation should be accept-

ably accurate for calculating flapping stability of

most helicopters for the advance ratios shown

herein. Use of the nonrotating coordinates has

given insight into rotor behavior and indicates how

the vehicle motion would be affected by the rotor
modes.

The higher frequency modes of the approximation

do not agree well with Floquet theory. Where these

modes are important for example, in using high gain

feedback control systems, the approximation should
be used with caution.
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