
EXPERIMEI_AL AND ANALYTICAL STUDIES IN TILT-ROTOR AEROELASTICITY

Raymond G. Kv_ternik

Aerospace Technologist

NASA Langley Research Center

Hampton, Virginia

Abstract

An overview of an experimental and ana/ytical

research program underway within the Aeroelasticity

Branch of the NASA Langley Research Center for

_udying the aeroelastic and d_c characteris-

tics of tilt-rotor VTOL aircraft is presented.

Selected results from several Joint NASA/contractor

investigations of scaled models in the Langley

• _ d_A_4_ _n_el a.q well as some results

from a test of a flight-worth_ proprotor in the

NASA Ames full-scale wind tunnel are shown and dis-

cussed with a view toward delineating various

aspects of dynamic behavior peculiar to proprotor

aircraft. Included are such items as proprotor/

pylon stability, whirl flutter, gust response, and

blade flapping. Theoretical predictions, based on

analyses developed at Langley, are shown to be in

agreement with the measured stability and response

behavior.
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Flutter advance ratio

Vertical component of gust velocity

Mast angle of attack

Oscillation amplitude of airstream
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Blade flapping angle

Blade flapping derivative

Pitch-flap coupling angle
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Gust-induced angle of attack

Hub damping ratio

Aircraft yaw rate

Rotor rotational speed

Frequency

_8 Blade flapping natural frequency

_0 Pylon pitch frequency

_, Pylon yaw frequency

The feasibility of the tilt-proprotor com-

posite aircraft concept was established in the mid

1990's on the basis of the successful flight

demonstrations of the Bell XV-3 and Transcendental

Model I-G and Model 2 convertiplanes. Flight

research conducted with the XV-3 identified

several dynamic deficiencies in the airplane mode

as technical problems requiring further atten-

tion. 1 A more serious proprotor dynamic problem

was identified in a 1962 wind-tunnel test of the

XV-3. In that test, conducted in the Ames full-

scale tunnel, a proprotor/pylon instability simi-

lar in nature to propeller whirl flutter was

encountered. Clearly, to maintain the viability

of the tilt-proprotor concept it remained to

demonstrate that neither the whirl flutter anamaly

nor the major flight deficiencies were endemic to

the design principle. An analytical and experi-

mental research program having this objective was

undertaken by Bell in 1962. Results of this

research, which defined the instability mechanimm

and established several basic design3solutions ,
were reported by Hall. 2 Edenborough presented

results of subsequent full-scale tests at Ames in

1966 which verified the analytical prediction tech-

niques, the proposed design solutions, and demon-

strated stability of theXV-3 through the maximum

wind-tunnel speed of 100m/s (19_ kts).

In 1965 the U.S. Army inaugurated the Com-

posite Aircraft Program which had the goal of

producing a rotary-wing research aircraft combin-

ing the hovering capability of the helicopter with

the high-speed cruise efficiency and range of a

fixed-wing aircraft. Bell Helicopter Company,

with a tilt-proprotor design proposal, was awarded

one of two exploratory definition contracts in

1967. The Model 266 was the design resulting from

their work (Fig. 1). The research aircraft pro-

gram which was to have been initiated subsequent

to the exploratory definition phase was never

begun, however, primarily due to lack of funding.
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Figac 1. Artist’s conception of B e l l  Model 266 
t i l t -proprotor  design evolved during the  Army 
Composite Aircraf t  Program. 

Concurrent with the  developments described 
above, various VTOL concepts based on the  use of 
propel lers  having independently hinged blades were 
proposed with several reaching flight-test, s ta tus .  
These included the  Grumman proposal i n  the  T r i -  
Service VTOL Transport competition, the  Vertol VZ-2 
b u i l t  f o r  the A ~ Q Y ,  and t h e  Kaman K-16 amphibian 
b u i l t  for  the Navy. 
whirl f l u t t e r  phenomenon peculiar t o  conventional 
propel lers  had been in i t i a t ed  i n  1960 a s  a r e su l t  
of the loss of two Lockheed Electra  a i r c r a f t  i n  
f a t a l  accidents. 
blades could adversely a f fec t  the  whirl f l u t t e r  
behavior of a propeller undoubtedly contributed 
considerable impetus t o  examine the  whirl f l u t t e r  
character is t ics  of these flapping propellers. 
re la ted  t o  these e f for t s  was reviewed by Reed4 

The foregoing const i tutes  a rksumk of 
proprotor-related experience through 1967. This 
paper will present an overview of a research pro- 
gram in i t i a t ed  within the Aeroelast ic i ty  Branch of 
the  NASA Langley Research Center. 
program a re  jo in t  NASA/contractor wind-tunnel 
investigations of scaled models i n  the  transonic 
dynamics tunnel and t h e  in-house development of 
supporting analyses. For completeness, motivating 
fac tors  leading  t o  the  work and the scope of t he  
investigation are outlined below. 

A vigorous investigation of the  

The poss ib i l i ty  t ha t  hinged 

Work 

Included i n  t h i s  

A 0.133-scale semispan dynamic and aeroe las t ic  
model of the  Model 266 tilt ro tor  b u i l t  by B e l l  i n  
support of the i r  work pertaining t o  the  Cmposite 
Aircraft Program was given t o  Langley by t h e  Army 
i n  1968. 
i n t e re s t  of both government and industry i n  the 
t i l t - r o t o r  VTOL a i r c r a f t  concept suggested the  use- 
fulness of continuing the experimental work ini-  
t i a t ed  by Bell with t h e  model t o  further define the  
aeroe las t ic  character is t ics  of proprotor-type a i r -  
c ra f t .  
conducted during t h e  Composite Aircraf t  Program 
ident i f ied certain high-risk area8 associated with 
operation i n  the airplane mode of f l i gh t ,  

The ava i lab i l i ty  of t h i s  model and the  

Because both the  XV-3 experience and studies 

specif ical ly  proprotor/pylon s t a b i l i t y  (whirl 
f l u t t e r ) ,  blade flapping, and f l i g h t  mode s t ab i l i t y ,  
it was judged tha t  the  research e f fo r t  would be 
primarily directed t o  these areas. 

The experimental portion of t he  research pro- 
gram was i n i t i a t ed  i n  September 1968 i n  a j o in t  
NASA/Bell study of proprotor s t ab i l i t y ,  dynamics, 
and loads employing the  0.133-scale semispan model, 
of the Model 266. 
experimental studies followed t h i s  investigation. 
The models employed i n  these studies a re  positiondl 
i n  chronological order i n  the  composite photo given 
i n  Figure 2. Briefly, these other studies included: 
(1) 
t i l t - r o t o r  model used i n  the  f i r s t  study, ( 2 )  a 
parametric investigation of proprotor whirl f l u t t e r ,  
(3) a s t a b i l i t y  and control  investigation emflloying 
an aerodynamic model, and (4 )  a “free-f l fght  
iii-cesiigation of a complete t i l t - r o t o r  model. 

Several other cooperative 

A study of a folding proprotor version of the 

TILT-ROTOR AEROELASTIC RESEARCH 
LANGLEY TRANSONIC DYNAMICS TUNNEL 

Figure 2. T i l t - ro tor  models tes ted i n  the Langley 
transonic dynamics tunnel. 

The r e su l t s  per ta ining t o  the  above-mentioned 
s tudies  a requ i t e  extensive. 
t o  be presented herein have been selected with a 
view toward highlighting some of the dynamic 
aspects of proprotor behavior, delineating the  
effects of various design parameters on proprotor/ 
pylon s t a b i l i t y  and response, and providing valida- 
t i on  of analyses developed at Langley. The r e su l t s  
pertaining t o  invest igat ions conducted i n  the  
Langley transonic dynamics tunnel a r e  presented 
f irst .  
according t o  Figure 2. 
for  correlat ion,  some experimental r e su l t s  obtained 
by B e l l  i n  tests of a semispan model and a f u l l -  
scale  flight-worthy proprotor a re  a l so  included. 
I n  each case both experimental and ana ly t ica l  
r e s u l t s  a r e  fo r  t he  pylon f u l l y  converted forward 
in to  the  airplane mode of operation and the  rotors  
i n  a windmilling condition. Equivalent f u l l -  scale  
values are given unless noted otherwise. 

The par t icu lar  r e su l t s  

These a re  arranged i n  chronological order 
To provide addi t ional  data 
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Model Tests in Lan_le_ Transonic D_msm_cs Tunnel

BeLl Model 266

(a') September 1_8

Although the O. 133-scale ssmispan model of the

Bell Model 266 was not designed to permit extensive

parametric variations, in that it represented a

specific design, it did permit a fairly diversified

test program. The principal findings of this inves-

tigation have bee_ published and are available in

the literature. 5, b Some results adapted from

Reference 6 pertaining to stability and gust

response are discussed below.

Proprotor/PMlon Stability. To provide an

indication of the relative degree to _ich stabil-

-_+"._.... _ _ affccted, _-d *^_ pro_,_de a _de range

of configurations for correlation with analysis,

several system parameters were varied either indi-

vidually or in combination with other parameters

and the level of stability established.

A baseline stability boundary, based on a

reference configuration, was first established.

The degree to which stability could be affected was

then ascertained by varying selected system param-

eters (or flight conditions). Stability data were

obtained by holding rpm constant as tunnel speed

was incrementally increased, transiently exciting

the model by means of lightweight cables attached

to the model, and analyzing the resulting time

histories to determine the damping. The reference

configuration consisted of the basic Model 266

parameters with the pylon yaw degree of freedom

locked out and the wing aerodynamic fairings

removed. A 100% fuel weight distribution was

maintained by appropriately distributing lead

weights along the wing spar. The hub flapping

restraint was set to zero and the 53 angle to

-0.393 radian (-22.9°). The reference stability

boundary as well as changes in this boundary due to

several parameter variations are shown in Figure 3.

For the reference configuration instability

occurred in the coupled pylon/wing mode in which

the pylon pitching angular displacement is in phase

with the wing vertical bending displacement. A

characteristic feature of this coupled mode is the

predominance of wing bending (relative to pylon

pitch) and the frequency of oscillation, which is

near the fundamental wing vertical bending natural

frequency. For descriptive purposes this flutter

mode is termed the "wing beam" mode herein. Negli-

gible wing chordwise bending or rotor flapping

(relative to space) was observed. The pylon/rotor

combination also exhibited a forward whirl preces-

sional motion, the hub tracing out an elliptical

path in space. However, because of the large ratio

of pylon yaw to pylon pitch stiffness the pylon

angular displacement was primarily in the pitch

direction. The flutter mode of the model in each

of its perturbations from the reference configura-

tion was essentially the same as for the reference

configuration.

The proprotor/pylon instability described

above is similar in nature to classical propeller

4OO
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Figure 3. Effect of several system parameters on

proprotor/pylon stability.

whirl flutter. However, because of the additional

flapping degrees of freedom of the proprotor the

manner in which the precession generated aerody-

namic forces act on the pylon is significantly

different, u Specifically, while aerodynamic cross-

stiffness moments are the cause of propeller whirl

flutter, the basic destabilizing factors on

proprotor/pylon motion are aerodynamic in plane

shear forces which are phased with the pylon motion

such that they tend to increase its pitching or

yawing velocity and, hence, constitute negative

damping on the pylon motions.

(i) Altitude - Altitude has a highly benefi-

cial effect on proprotor/pylon stability. This

increased stability is a consequence of the fact

that the destabilizing rotor normal shear forces

decrease with altitude for pylon pitch frequencies

near the fundamental wing elastic mode frequencies.

This means that a given level of these destabiliz-

ing shear forces is attained at progressively

higher airspeeds as altitude increases.

(2) Hub Flapping Restraint -A stabilizing

effect due to moderate flapping restraint is also

indicated in Figure 3. Increasing the flapping

restraint increased the flapping natural frequency

from its nominal value of about 0.80/rev bringing
w

it closer to the optimum flapping frequency in

the sense of Young and Lytwyu._ They showed that

this increased stability because the pylon support
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s t i f fnes s  requirements were reduced as  the  optimum 
flapping frequency was approached. 

(3 )  
t ha t  wing aerodynamic forces have a slight s tabi-  
l i z ing  effect. 
designed wing for  t i l t - r o t o r  application i s  
generally suf f ic ien t ly  high t o  re legate  the  f l u t t e r  
speed of the pylonlwing combination (with blades 
replaced by lumped concentrated weights) t o  speeds 
well beyond the  proprotor mode flight envelope. 
This suggests t h a t  wing aerodynamics w i l l  contrib- 
u t e  primarily t o  the damping of any coupled rotor /  
pylon motions. This i s  substantiated i n  Figure 4, 
which shows the  var ia t ion of t he  wing beam mode 
damping with airspeed through the  f l u t t e r  point fo r  
the reference configuration and the  corresponding 
configuration with the  wing a i r f o i l  segments 
ins ta l led .  The damping of the mode i s  increased; 
however, the magnitude of the increase i s  small 
indicat izg that piGpi%&vr aerodynamic forces a re  
predominant i n  the ultimate balance of forces a t  
f l u t t e r .  This provides sane ju s t i f i ca t ion  fo r  
neglecting, i n  t h i s  f l u t t e r  mode a t  l ea s t ,  wing 
aerodynamics as  a f i r s t  approximation. 

Wing Aerodynamics - Figure 3 indicates  

Now the s t i f fness  of a strength- 

0 I 5 Hz (298 RPM) 
Measured Calculated 

Wlthwt wmg aerodynamics 
A _ _ _ _ _  With wing aerodynamics 

8 

O -  

I 
400 

Airspeed. knots 
A I  I I I 

0 50 100 150 200 

Airspeed, rneters/sec 

Figure 4. Comparison of measured and calculated 
wing beam mode damping f o r  reference 
configuration. 

The i n i t i a l  increase i n  the  s t a b i l i t y  of the 
wing beam mode before in s t ab i l i t y  occurs i s  asso- 
ciated with the f ac t  t ha t  aH/aq, the component of 
the normal shear force associated with pylon p i tch  
ra te ,  i n i t i a l l y  becomes more s tab i l iz ing  with 
increasing airspeed u n t i l  aH/&, the  component of 
the normal shear force in  phase with pylon p i tch  
angle, becomes suf f ic ien t ly  large t o  lower the  
coupled pylon pi tch frequency t o  a leve l  where 
aH/aq becomes increasingly destabi l iz ing with 
increasing airspeed. The increased damping 
response a t  about 103 m/s (200 k t s )  i s  due t o  
coupling of the blade f i r s t  inplane cycl ic  mode 
Kith the wing beam mode. Note, however, t h a t  the  

predicted f l u t t e r  speed i s  not sensi t ive t o  blade 
inplane f l e x i b i l i t y  fo r  the Model 266. 

(4) Pylon Restraint - When the pylon yaw 
s t i f fness  was reduced by unlocking the pylon yaw 
degree of freedom and soft-mounting the  pylon i n  
y a w  r e l a t ive  t o  the  wing t i p  the s t a b i l i t y  
decreased s l igh t ly  (Fig. 3) .  The par t icu lar  yaw 
f l e x i b i l i t y  employed in  t h i s  var ia t ion effect ively 
produced a more nearly isotropic  arrangement of the 
pylon support spring rates .  
i n s t a b i l i t y  i n  a p lo t  of c r i t i c a l  pylon yaw stiff-  
ness against c r i t i c a l  p i tch  s t i f fness  i s  extended 
along the  l i n e  representing a s t i f fnes s  r a t i o  of 
unity, the  configuration approaching isotropy i n  
the  pylon supports i s  more prone t o  experience an 
in s t ab i l i t y  than one i n  which one of the  S t i f f -  
nesses i s  s ign i f icant ly  l e s s  than the  other. 

Since the region of 

The general tyesfi of deci-easirlg s i a b i i i t y  with 
increasing rotor  speed shown i n  Figure 3 was found 
f o r  a l l  values of the  adjustable parameters of the 
model. 
and frequency were i n  agreement with the  correspond- 
ing measured mode and frequency. 

In  each case the  predicted f l u t t e r  mode 

Gust Response. Analytical methods fo r  deter- 
mining a i r c r a f t  response t o  turbulence a re  usually 
based on power spectral  analysis techniques which 
require  the  def in i t ion  of the  aircraft frequency 
response function, t ha t  is, the response t o  sinu- 
soidal  gust excitation. 
f e a s i b i l i t y  of determining these frequency response 
functions f o r  fixed-wing a i r c r a f t  u t i l i z i n g  models 
i n  a semi-free-flight condition using a unique a i r -  
stream osc i l l a to r  system i n  the transonic dynamics 
tunnel has been underway within the  Aeroelast ic i ty  
Branch fo r  several years.8 This system (Fig. 5 )  
consis ts  of two sets of biplane vanes located on 
the  sidewalls of the  tunnel entrance section. The 

A study t o  assess  the  

Figure 5. Langley transonic dynamics tunnel a i r -  
stream osc i l l a to r  showing cutaway of driving 
mechanism. 

vanes can be osc i l la ted  i n  phase or 180' out of 
phase t o  produce nominally sinusoidal v e r t i c a l  or 
ro l l i ng  gusts, respectively, over the  cent ra l  por- 
t i o n  of t he  tunnel. 
cross-stream flow components induced by t h e  t r a i l -  
ing vor t ices  from t h e  t i p s  of the  vanes. 

The gusts a r e  generated by the  

With a 
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view toward the possible application of t h i s  tech- 
nique t o  rotary-wing a i r c r a f t  t h e  airstream oscil-  
l a tor  was employed t o  excite the model f o r  several  
"f xght" conditions below the proprotor s t a b i l i t y  
boundary. Although the  model was not "free" the  
data so obtained d id  give an indication of the  
frequency response character is t ics  of t h e  canti-  
levered model and permitted t h e  evaluation of the  
effects  of airspeed, rotor  speed, and rotor  and 
wing a e m d p a m  'cs on the overal l  d y n d c  response. 

A measure of <ne @st-in&xe(? aagle of attack 
(or stream angle) was provided by means of a s m a l l  
balsa vane flow direction transmitter (see Fig. 6) 
which gave readings proportional t o  the  stream 
angle. The var ia t ion of the  v e r t i c a l  camponent of 

Figure 6. 0.133-scale seaispan t i l t - ro tor  model in 
simulated conversion mode showing bwan-mounted 
f l e a  direction transmitter.  

the  stream angle f o r  in phase (synraetrical) oscil-  
l a t i o n  of &&e biplane vanes i s  shown i n  Figure 7. 
%,e ?LTO nhovn ia actual ly  an average of data 
obtained frcan runs a t  several  tunnel speeas an6 
a i r  densit ies.  
has been normalized on t h e  maximum amplitude of 
osc i l la t ion  of the biplane vanes and plotted 
against  the frequency parameter u/V, where 0 i s  
t h e  frequency of osc i l la t ion  of the biplane vanes 
i n  rad/sec and V is  the  tunnel speed i n  m / s  
( f t / s e c ) .  
reciprocal of t h e  wavelength (spacing) between 
vort ices  shed frcnn t h e  t i p s  of the osc i l la t ing  
vanes. 

The amplitude of the stream angle 

This parameter i s  proportional t o  the  

The frequency response of w i n g  v e r t i c a l  bend- 
ing moment was taken as  one measure of systean 
response t o  v e r t i c a l  gust excitation. 
t h e  r e l a t i v e  influence of rotor  and wing aerody- 
namics, three model configurations were empluyed: 
wing only, with t h e  rotor  blade weight replaced by 
an equivalent lumped weight; rotor  only, w i t h  the  
wing aerodynamic fa i r ings  removed; wing and rotor 
combined. For t h e  "f l ight"  condition indicated i n  
Figure 3 t h e  r e l a t i v e  e f fec ts  of rotor  and wing 
aerodynan?ics a re  displayed i n  Figures 8 and 9. I n  
each of these f igures  t h e  wing bending mment has 

To ascer ta in  

been nolmalized by t h e  maximum amplitude of t h e  
stream angle using the  curve of Figure 7. 

I 1 1 I I I 
0 .1 .2 .3 .4 .5 

ram 

1 I I I I I I 
0 .S .E .9 1.2 1.5 1.8 

rd rn  

wavelength parameter, w r V  

Figure 7. Measured var ia t ion of v e r t i c a l  component 
of gust angle with frequency parameter for vanes 
a c % l l a $ h s  i n  phase. 

Canparison of the  rotor-on and rotor-off 
response curves for the wing panels on configura- 

effects  are  indicated: first, the slgrvricant 
contribution of t h e  rotor  inplane normal force 
(H-force) t o  wing bending response, as  indicated by 
t h e  re la t ive  magnitudes of t he  bending moments; and 
second, the  rotor  contribution t o  wlng beam mode 

.daqFng,* a s  indicated by t h e  re la t ive  sharpness of 
the  resonence peaks. 
when the  gust frequency i s  i n  resonance with the  
ving beam mode frequency. The peak for  the  blades- 
off condition i s  shifted t o  the higher frequency 
side of the rotor-on peak because the rotor  H-force 
decreases the  frequency of the  wing beam mode. For 
the rotor-on case the bending moment i s  consider- 
ably larger  than for t h e  rotor-off case throughout 
the range of gust frequencies investigated. 
wing chord mode frequency (about 2.8 Hz) i s  within 
the &st frequency range but i s  absent from the  
response curves because the gust excitation i s  

A 1  yIy.. -.. i e  hw i n  Figure 8. Two proprotor-related 

The peak amplitudes occur 

The 

*. 
A t  t h i s  par t icular  airspeed, the rotor  was 

sti l l  contributing posi t ive damping t o  the w i n g  
besm mode. 
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Figure 8. Effect of proprotor aerodynamics on wing

root bending moment amplitude response function.
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Figure 9. Effect of wing aerodynamics on wing root

bending moment amplitude response function.

primarily vertical and there is very little

coupling between the wing beam and chord modes.

Figures 8 and 9 quite clearly illustrate that

proprotors operating at inflow ratios typical of

tilt-rotor operation in the airplane mode of flight

are quite sensitive to vertical gusts. This sensi-

tivity is due to the fact that the proprotors,

being lightly loaded in the airplane mode of flight,

operate at low blade mean angles of attack (_) and

any gust-induc_ed angle of attack is a significant
fraction of m.

Note that good correlation is achieved for

frequencies up to about 2 Hz beyond which the cal-

culated responses are much lower than the measured

values. This discrepancy is thought to be a con-

sequence of the deviation of the induced gust from

its nominally one-dimensional nature to one which

is highly two-dimensional (i. e., varies laterally

across the tunnel) at the higher frequencies. The

analytical rcsults sho-.m arc based on ........ _-

tion of a one-dimensional gust. Unsteady aerody-

namic effects may also be a contributing factor to

the discrepancy.

A comparison of the wing panels-on and wing

panels-off response curves for the rotor-on con-

figuration is given in Figure 9. As might be

expected, the wing response for the case in which

the wing airfoil segments are installed is higher

than for the rotor alone. The reduced magnitude of

the response at resonance for the rotor-plus-wing

combination relative to the rotor alone is due to

the positive damping contributed by the wing aero-

dynamics. This increased damping is evident by

comparing the widths of the resonance peaks.

Close examination of Figures 8 and 9 reveals

a very heavily damped, low amplitude resonance

"peak" at a gust frequency of about 0.8 Hz. This

resonance is a manifestation of the low-frequency

(i.e., G - _B) flapping mode. Analyses have indi-

cated that the flapping modes are generally well

damped forzmoderate or zero values of flapping
restraint. _ These results constitute an experi-

mental verification.

These results indicate that "free-flight"

tilt-rotor models could be used to measure the

frequency response functions needed in gust

response analyses. This would be a fruitful area

for future analytical and experimental research.

(b) January 1970

A Joint NASA/Bell/Air Force test program was

conducted in the transonic dynamics tunnel in

January 1970 for the purpose of investigating any

potential problem areas associated with the folding

proprotor variant of the tilt-rotor concept. The

model used in this study was the same model

employed in the first investigation but modified to

permit rapid feathering and unfeathering of the

proprotor and to include a blade fold-hinge. The

main objectives were to investigate stability at

low (including zero) rotor rotational speeds,
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during rotor stopping and starting, and during

blade folding. All objectives of the test program

were met. No aeroelastic instabilities were

encountered during the blade folding sequence of

transition, the blade loads and/or the feathering

axis loads inboard of the fold hinge being identi- 6_

fied as the critical considerations from a design

point of view. The stop-start portion of the test

indicated that additional flapping restraint would

be required to minimize flapping during rotor s_

stopping.* Stability investigations conducted over

a wide range of rotor speed identified an apparently

new form of proprotor instability involving the

rotor at low and zero rotational speeds. The
4_

influence of several system parameters on this

instability was established both experimentally and

analytically. 6 _ 3_

Pro_rotor/l_lon Stability. For the stability

investigation a reference configuration was again

established. This consisted of the basic Model 266

configuration with the pylon locked to the wing tip

in both pitch and yaw, a hub restraint of

117,68@3 N-m/rad (86,800 ft-lb/rad), 53 = -0.393 rad
(-22.5), a simulated wing fuel weight distribution

of 15%, and the wing aerodynamic fairings installed.

The flutter boundary obtained for this configuration

and that for 53 = -0.558 rad (-32°), are shown in

Figure lO as a function of rotor speed. Open sym-

bols denote flutter points. Excessive vibration

resulting from operation near resonances with the

pylon/wing or blade modal frequencies often limited

the maximum attainable airspeed. These points are

indicated by the solid symbols. The annotation to

the right of the flutter boundaries indicates that

the model experienced several modes of flutter.

The predicted flutter modes and frequencies were

in agreement with the experimental results. The

nature of these flutter modes is discussed below.

For G greater than about 4 Hz (240 rpm)

instability occurred in the wing beam mode and had

the characteristics described earlier for the

September 1968 test. For _ between about 2 Hz

(120 rpm) and 4 Hz (240 rpm) the motion at flutter

was predominantly wing vertical bending and rotor

flapping with the hub precessing in the forward

whirl direction. Examination of the root loci

indicated that this instability was associated with

the low-frequency (i.e., _ - m_) flapping mode root

becoming unstable. The subcritical response through

flutter for 53 = -0.558 tad (-32 ° ) and _ = 2.86 Hz

(172 rl_n) is shown in Figure Ii where, in addition

to the measured wing beam mode damping and frequency,

the calculated variation of both the wing beam and

low-frequency flapping modes is shown. These

results illustrate an interesting modal response

behavior similar to that described by Hall.2 The

wing beam mode, being least stable at low airspeeds,

is at first dominant. As airspeed increases, how-

ever, its damping continually increases. The damp-

ing of the G - _ flapping mode meanwhile is

continually decreasing. Crossover occurs analyti-

cally at i_4 m/s (280 kts) at a damping of 17% of

These aspects of this investigation are given

detailed treatment in Reference 9.

RPM

40@ V 5 3 = -.393 rad (-22.5 °)

/ 03 " -'558 rzd (-32°) _O
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3oo/ ,, _ \
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zoo • 1 - [ Wmgbe_dmg,rd
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/4"

// / (_ + a,_ mode)

I ¢_ I 1 I
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,I
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Figure i0. Model 266 flutter boundaries showing

variation in character of flutter mode as rpm is

reduced to zero.

critical. Beyond 280 knots, the _ - cop flapping

mode is the dominant mode and very abruptly becomes

unstable as airspeed is increased. Hence, a tran-

sition from a dominant wing beam mode to a dominant

flapping mode with an accompanying change in fre-

quency. Since the flapping mode frequency is only

slightly less than the wing beam mode in the

vicinity of flutter there is only a gradual, albeit

distinct, transition in the frequency of the

beam mode as the flapping mode begins to predominate

over the wing mode. Examination of the _ - a_

flapping mode eigenvector indicated that a larger

amount of wing vertical motion was evident in this

mode than in the wing beam mode eigenvector. This

implies that the predominant motion in the flutter

mode is not necessarily determined by the root

which analytically goes unstable as airspeed is

increased but the frequency at which a root goes

unstable.

Below about 2 Hz (120 rl_n) instability is in

the high-frequency (i.e., _ + m B ) flapping mode and

is characterized by large amplitude flapping, the

rotor tip-path-plane exhibiting a precessional

motion in the forward whirl direction. The modes

of instability at zero rotational speed were similar

in character to those at low rotor speeds but with

larger amplitudes of flapping. Although the rotor

was not turning, the flapping behavior of the blades
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Figure ii. System response characteristics for

flutter at _ = 172 rpm and 53 = -32 ° .

was patterned such that the tip-path-plane appeared

to be wobbling or whirling in the forward direction.

Negligible wing motions accompanied the flapping

motion. Figure 12 shows the variation of flap

damping with airspeed. A hub damping of _R = O.015

was originally used in calculating the stability

5 3 • -.393 rad (-22.5 °)

R " .025

__R " .020

o " " °
Airspeed, knots

0 0 I00 150

Airspeed, meters/sec

O Measured

-- Calculated

Figure 12. Variation of _ + o_3 flapping mode

damping with airspeed for zero rpm.

boundaries, leading to very conservative values for

the flutter speed at the low rotor speeds. Based on

the results of Figure 12, which indicate that the

rotor hub structural damping is closer to _R = 0.025,

the stability boundaries were recalculated using

_R = 0.025. The predicted boundaries in Figure 10

reflect this change.

The small region of increased stability in the

region of 0.8 Hz (48 rpm) is due to a favorable

coupling of the flapping mode with wing vertical

bending.

The instabilities encountered at low and zero

values of rotational speed were quite mild and had

a relatively long time to double amplitude. The

necessity of limiting the flapping amplitude during

the feathering sequence of transition dictates that

significantly increased values oi" hub restraint are

needed as rotor rotational speed is reduced to zero.

Since increased flapping restraint was found to
stabilize this modeO th_s q_stability is probably

only of academic interest, at least for the config-

uration tested. However, since it was a new

phenomenon and was not understood _t the time of

the test, attention was directed to assessing the

effect of the variation of several system parameters

on the flutter speed. Both experimental and analyt-

ical trend studies were conducted for this purpose. 6

Based on these studies it was concluded that rotor

precone was the primary cause of the instability.

Blade Flapping. In the feathering sequence of

transition flapping sensitivity to a given mast

angle of attack varies with rotor rotational speed.

A typical variation of steady-state one-per-rev

flapping response is given in Figure 13. These

data were taken to establish a steady-state flapping

response baseline for evaluating the transient

d_

rad
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o
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a m - .02618 red (1.5°)
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4

.00 -
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Figure 13. Variation of blade flapping with rotor

rpm.
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flapping response during the  feathering portion of 
the  test. 
t o  a r ig id  backup s t ruc ture  the  wind-on mast angle 
of a t tack was not lmown ( i t  was nominally lo). 
important conclusion following from Figure 13 i s  
tha t  t he  measured t rend i s  predicted correctly. 
The peak i n  the  flapping response occurs when the  
ro tor  rotatiorxi1 speed i s  i n  resonance with the  
flapping natural  frequency iii t he  ro ta t ing  system. 

Since the  proprotor mast was not affixed 

The 

Gnumnan Helicat (March 1971) 

A wide var ie ty  of technical  consi6eratima 
confront the s t ruc tura l  dynamicist i n  t he  design 
of a proprotor VTOL aircraft. Perhaps the  most 
celebrated consideration has been t h a t  of prop- 
rotor/pylon w h i r l  f l u t t e r ,  having been the  concern 
of many invest igators  in  both government and 
industry. Several years ago k i i 2 I D  raized the 
question of whether proprotor w h i r l  f l u t t e r ,  i n  
par t icu lar  forward whirl f l u t t e r ,  could be pre- 
dicted with confidence. H i s  skepticism was 
prompted by the  lack of agreement between the  
experimental r e su l t s  obtained with several small 
models of flapping-blade propellers and the corre- 
sponding theore t ica l  predictions. 4 To provide a 
large data base from which t o  assess the  predict- 
a b i l i t y  of proprotor w h i r l  f l u t t e r ,  a jo in t  NASA/ 
G r m a n  invest igat ion was conducted i n  the tran- 
sonic dynamics tunnel  emplaying an off-design 
research configuration of a 1/4.5-scale semispan 
model of a Gnumnan t i l t - r o t o r  design designated 
"Heiicat" (Fig. 14). This design i s  characterized 

F igwe lb. Grumman "Helicat" t i l t - r o t o r  nodel i n  
whirl f l u t t e r  research configuration. 

by a ro tor  which incorporates of fse t  flapping 
hinges i n  contrast  t o  t he  B e l l  rotor  i n  which the  
blades a re  r ig id ly  attached t o  the hub which i s  i n  
t1x-n mounted on the  dr ive shaf t  by a gimbal or  
universal  joinz housed in  the  hub zssembiy. The 
Helicat model was specif ical ly  designed t o  permit 
ra ther  extensive parametric changes i n  order t o  
provide a wide range of configurations. 
var ia t ions included pylon p i tch  and yaw s t i f fness  
and damping, ninge offset ,  and pitch-flap coupling. 
To obtain f l u t t e r  at l o w  tunnel speeds, a reduced- 
s t i f f l less  pylon-to-wing-tip res t ra in t  mechanism 

These 

which pennitted independent var ia t ions i n  p i tch  
and y a w  s t i f fnes s  was employed. The resu l t ing  
pylon-to-wing attachment was suf f ic ien t ly  so f t  t o  
insure t h a t  t he  wing was effect ively a r ig id  backup 
structure. Detai ls  concerning t h i s  model as w e l l  
as a summary of r e su l t s  a re  contained i n  
Reference 11. 

Sane whirl f k t t e r  r e s d t s  a r e  given i n  Fig- 
VF/QR ures 15 t o  17, where f l u t t e r  advance r a t i o  

i s  plotted versus pylon frequency nondimensionalized 
by the rotor  speed. The ef fec t  of 63 on s t a b i l i t y  

Symmetrical pylon frequencies 
e/R - .05 

63 I .349 rad (209 

I 
P 

I I I I I 
I 

.2 .4 .6 .a 1.0 
Pylm frequency, cycles/rw 

i s  shown in  Figure i5 for the  case in  which the 
pylon p i tch  and yaw frequencies a re  ident ica l  and 
e/R se t  t o  0.05. ?!any of the  configurations were 
not  exactly spmet r i ca l  i n  the frequencies. These 
data were adjusted t o  r e f l ec t  a symmetric frequency 
support condition using Figure 18 of Reference 11. 
The r e su l t s  show a strong increase i n  f l u t t e r  
advance r a t i o  (and hence f l u t t e r  speed fo r  a fixed 
rpm) with increasing pylon support s t i f fnes s  and 
decreasing 63. All f l u t t e r  was i n  t he  forward 
whirl mode except for  the two points  denoted by the 
solid symbols, which were i n  t he  backward mode. 
The analyt ical  resu l t s  shown assumed a symmetric 
frecpezcy ccnfiguration and, since the  s t ruc tura l  
damping varied somewhat, an average value of danp- 
ing of [ = 0.01 in  p i tch  and ( = 0.02 i n  yaw. 
The analyt ical  r e su l t s  shown were obtained using the 
theory of Reference 6 which i s  based on the  assump- 
t ion  of a gimbaled rotor. For analysis purposes the  
restoring centr i fugal  force moment from the  offset  
flapping hinge was represented by introducing an 
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equivalent hub spring which preserved the blade

in-vacuum flapping natural frequency in the manner

indicated in Appendix B of Reference 6.

The beneficial effect of increased hinge off-

set is demonstrated in Figure 16. The results for

the 13% hinge offset are particularly noteworthy

o"
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Figure 16. Effect of hinge offset on whirl

flutter.

in that both forward and backward whirl motions

were found to occur simultaneously; in effect, the

flutter was bimodal. Theory also predicted this

bimodal behavior, the forward and backward whirl

modes being within a few knots of each other

analytically.

The effect of asymmetry in the pylon support

stiffness is shown in Figure 17. Again the sym-

metric frequency data reflect adjustments to true

symmetry for configurations which were nearly, but

not exactly, symmetric. The nonsymmetric results

reflect actual measured values, the lower of

either the pitch or yaw frequencies being plotted.

It was analytically shown 6 that for sufficient

asymmetry in the pylon support stiffness increas-

ing the asymmetry more does not increase the flut-

ter speed. The data for the nonsymmetric fre-

quencies are an experimental demonstration of this

fact. Flutter in all the asymmetric conditions

was in the backward whirl mode.
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Figure 17. Effect of pylon support stiffness on

whirl flutter.

Bell Model 300

(a) August 1971

A joint NASA/Bell investigation employing a

1/5-scale aerodynamic model of a Bell tilt-rotor

design designated the Model 300 was conducted in

the transonic dynamics tunnel in August 1971 for

the purpose of providing the longitudinal and

lateral static stability and control characteris-

tics and establishing the effect of proprotors on

the basic airframe characteristics in both air an(

freon. Use of freon permitted testing at full-

scale Mach numbers and near full-scale Reynolds

numbers. Flapping was measured in both air and

freon for several values of tunnel speed over a

range of sting pitch angles. The resultant flap-

ping derivatives, obtained by evaluating the slopq

of the flapping amplitude versus pitch angle curw

are shown in Figure 18. Since the range of inflo'

ratios over which the derivatives were measured w=

the same in air and freon and the test medium

densities at the simulated conditions were about

the same, an indication of the effects of Mach

number on the flapping derivatives can be obtaine_

by comparing the air and freon results. The spee,

of sound in freon is approximately half that in

air so that for a given tunnel speed (or inflow

ratio) the Mach number in freon is about twice th

in air. The calculated results reflect the
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Figure 18. Effect of Mach number on proprotor

flapping.

variation of 63 with blade pitch. Drag was

neglected in the calculated results shown for air

but was accounted for, in an al_rox_mate manner,
in the results shown for freon, o The drag rise

associated with operation at high M_ch numbers is

seen to reduce flapping as Mach mmmber is increased

and suggests that calculations based on the neglect

of blade drag will predict conservative values of

flapping at Mach numbers where drag is important.

These data are believed to be the first which

provide an indication of the effects of Mach number

on blade flapping.

(b) March 1972

The most recent investigation conducted in

the transonic dynamics tunnel utilized a i/5-scale

dynamic and aeroelastic "free-flight" model of the

Bell Model 300 tilt rotor for the purpose of

d_monstrating the required flutter margin of safety

and to confirm that the aircraft rigid-body flight

modes are adequately damped. 12 During this test

the importance of rotor thrust damping on stability

of the Dutch roll mode was investigated. This

damping is associated with rotor perturbation

thrust changes which can be generated during axial

oscillations of the rotor shaft and constitutes a

positive damping force on aircraft yawing motions.

The rotors of tilt-rotor aircraft are gener-

ally designed to have an interconnecting shaft

between the two rotor/engine syst_ns to provide

synchronization of the rotor speeds and to insure

that in the event of an engine failure either

engine may drive both rotors. Interconnect

shafting is also employed in wind-tunnel models.

The availability of thrust damping to provide a

stabilizing force for yawing motion is dependent

on the structural integrity of this cross-shafting

and has implications which are pertinent to both

full-scale flight and model testing. Consider the

case of a windmilling "free-flight" model. A fully

effective interconnect maintains synchronization of

the rotor speeds during any motions. A yawing

motion of the model to the left, say, as might

occur duriBg a disturbance, generates blade angle-

of-attack changes which decrease the lift of blade

elements on the right rotor and increase the lift

of blade elements on the left rotor. This produces

resultant perturbation thrust changes which tend to

damp the yawing motion, as depicted in the sketch

in the right-hand portion of Figure 19. If the

_ _ _ _ (Bea)

(az • o) 0
(AT - o) @ ......

o

I , I 1JO05O 75

Tumel spee_ meter_sec

Figure 19. Thrust damping effects on tilt-rotor

Dutch roll mode stability.

interconnect is absent, the rotors are able to main-

tain their inflow angle and, hence, angle of attack

by increasing or decreasing rotor speed. The per-

turbation thrust changes thus go to zero and the

stabilizing contribution of this damping to the air-

craft yawing motion is lost. The effects of thrust

damping on the stability of the Dutch roll mode was

investigated by measuring the Dutch roll mode damp-

ing as a function of tunnel speed for the cases in

which the model interconnect was engaged and dis-

engaged. Some typical results are shown at the

left of Figure 19 along with the damping levels

predicted by Bell. The substantial contribution of

thrust damping to total damping is quite apparent.

It is of interest to point out that for the rotors

contrarotating in the direction indicated in the

sketch at the right of Figure 19 (inboard up) the

perturbation thrust changes accompanying an aircraft

rolling angular velocity are destabilizing on Dutch

roll motion. For contrarotating rotors turning in

the opposite direction (inboard down) the ZkT due

to both yawing and rolling motion are stabilizing

on Dutch roll motion.

Rotor rpm governors of the type which maintain

rpm by blade collective pitch changes while main-

taining constant torque are being considered for

use on full-scale tilt-rotor aircraft. With the

interconnect engaged, full thrust damping is avail-

able (assuming a perfect governor). However, in

the event of an interconnect failure, the governors
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would respond t o  any rpm changes by varying blade 
collective p i t ch  i n  a manner which tends t o  main- 
t a i n  the or iginal  blade angle-of-attack distribu- 
t i o n  and hence torque. 
equivalent t o  the windmilling case with no inter-  
connect. It i s  axiomatic t ha t  t i l t - r o t o r  a i r c r a f t  
must be designed t o  have s table  Dutch r o l l  charac- 
t e r i s t i c s  should an interconnect f a i lu re  occur 
anywhere within t h e  f l i g h t  envelope. 

This i s  aerodynamically 

Some Additional Results Applicable t o  the  
Bell Model 300 T i l t  Rotor 

A dynamic t e s t  of a flight-worthy proprotor 
fo r  the Bell Model 300 t i l t - r o t o r  a i r c r a f t  was 
conducted i n  the  NASA Ames ful l -scale  wind tunnel 
i n  July 190 (Fig. 20). Two different  t e s t  stands 

Figure 20. 
i n  NASA Ames ful l -scale  tunnel for  dynamic 
t e s t ing  . 

were used. 
character is t ics  of t he  Model 300 wing; t he  other 
w a s  one-fourth as s t i f f .  By using the  reduced 
s t i f fnes s  spar and operating t h e  proprotor a t  one- 
half  i t s  design rotat ional  speed it was possible 
t o  preserve the per-rev natural  frequencies of the 
wing and simulate, a t  any given tunnel speed, the 
inflow of f l i gh t  at twice that  speed. This expe- 
dient did not, however, maintain the blade per-rev 
e l a s t i c  mode frequencies or  simulate compressibil- 
i t y  effects  on rotor  aerodynamics. 

Bell 25-foot flight-worthy proprotor 

One duplicated the actual s t i f fnes s  

Some resul ts  from the ful l -scale  t e s t  a r e  
compared with d a t a  obtained from a t e s t  of a 115- 
seal!: model and theory i n  Figure 21. Note t h a t  

Design stiffness test stand 
l/a design stiffness test stand 
1/5 scale aeroelastic model 

Calculated (design stiffness test stand) 

Blades rieid inolane 

8 r  A 

I I 
I 1  I I I I 
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1 1 I I 
0 100 200 300 

Airspeed, meters/sec 

Airspeed, hots  

Figure 21. Model/full-scale comparisons of wing 
beam mode damping and frequency var ia t ion with 
airspeed fo r  Bell Model 500. 

t he  calculated r e su l t s  are  based on the  use of the 
design s t i f fnes s  t e s t  stand character is t ics .  To 
provide f o r  an indication of t h e  effect  of blade 
inplane f l e x i b i l i t y  on s t ab i l i t y ,  t he  predicted 
r e su l t s  for the  case i n  which t h e  blades a re  
assumed t o  be r ig id  inplane a re  a lso shown. The 
predicted increase i n  damping a t  about 103 m/sec 
(200 k t s )  f o r  t he  case i n  which blade inplane flex- 
i b i l i t y  i s  included i s  associated with coupling of 
the blade f i r s t  inplane cyclic mode with wing ve r t i -  
z a l  bending. For the range of tunnel speed over 
which f u l l  s t i f fnes s  t e s t  stand data are  available, 
t he  r e su l t s  a r e  i n  good agreement with theory 
assuming f l ex ib l e  blades. 
s t ab i l i z ing  effect  i s  predicted for  the Model 300 
as a consequence of blade inplane f l e x i b i l i t y .  
This trend i s  i n  contrast  t o  t ha t  predicted fo r  the 
Model 266. The data f o r  t he  quarter-s t i f fness  t e s t  
stand a r e  i n  agreement with theory assuming r ig id  
blades because operation a t  half  the design rpm has 
effect ively st iffened the blades by a factor  of 4. 
The 1/5-scale model data a re  a l so  seen t o  be i n  
b e t t e r  agreement with analysis based on the  assump- 
t i o n  of r ig id  blades. This i s  because the  model 
hub employed a t  t h e  time the data were obtained was 
too s t i f f .  I f  t h i s  increased s t i f fnes s  i s  taken 
i n t o  account t h e  predicted damping i s  i n  agreement 
with theory (Fig. 22). The model/full-scale Com- 
parisons shown i n  Figure 2 1  indicate t h a t  assessment 
of fu l l - s ca l e  s t a b i l i t y  can be made on t h e  basis  Of 

r e s u l t s  of small-scale model t e s t s .  

Note that  a s ignif icant  
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Figure 22. Variation of wing beam and chord mode

damping with airspeed for I/_-scale aeroelastic

model of Bell Model 300.

Conclusions

An overview of an experimental and analytical

proprotor research program being conducted within

the Aeroelasticity Branch of the NASA Langley

Research Center has been presented. On the basis

of the particular results ahownherein the follow-

ing basic conclusions can be drawn:

(i) A proprotor/pylon/wing system can exhibit

a wide variety of flutter modes depending on the

degree of fixity of the pylon to the wing, rotor

characteristics, and rotor rotational speed. In

particular, for pylons which are rigidly affixed

to the wingtip, the instability can occur in

coupled pylon/wing, pylon/wing/rotor, or rotor

modes; for pylons which are soft-mounted to the

wing, a true whirl instability akin to classical

propeller whirl flutter can occur.

(2) Lightly loaded proprotors operating at

inflow ratios typical of tilt-rotor operation in

the airplane mode of flight exhibit a marked

sensitivity to gust excitation.

(3) Blade inplane flexibility can have a

significant effect on stability.

(9) Proprotor whirl flutter, both backward

and forward, can be predicted with simple linear-

ized perturbation analyses using quasi-steady rotor

aerodynamics.

(6) For strength designed wings, wing aerody-

namics have only a slight stabilizing effect on

proprotor flutter speeds.

(7) The drag rise associated with proprotor

operation at high Mach numbers reduces blade flap-

ping and suggests that calculations based on the

neglect of blade drag will predict conservative

values of flapping at Mach numbers where drag is

important.

The analytical portion of this research pro-

gram ls continuing. Attention i_ presently be_

directed toward refining the existing stability and

response analyses and extending them by including

additional degrees of freedom.
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