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PREFACE

The death of Zdenek Sekera on January 1, 1973 deprived Meteorology and Geophysics of a distinguished
pioneer in atmospheric optics,

It was perhaps his early association with Linke and the tabulations he made of Chandrasekhar's
solution to the transfer problem in a multiple scattering atmosphere that prepared him to grasp the sig-
nificance of such research to remote sensing. During the intense activity in space research that
followed the launch of the Sputnik, Sekera was one of the strongest proponents of the meteorolegical

applications of satellites.

While Sekera had an obviocus bias for theoretical research, he recognized that there would be ne
substitute for experimental observations. The dearth of experimentalists in his area of scientific
interest dictated that he begin an experimental programme at UCLA which, over the last twenty years,
has produced some of the outstanding scientists in experimental atmospheric optics.

The systematic measurements of skylight polarization by Sekera and his associates, under varied
atmospheric conditions indicated, without doubt, measurable deviations from Chandrasekhar's pre-
dictions. These he attributed to the presence of particles in the atmosphere which invalidated the
assumption of a molecular atmosphere. Thus began his long and arduous endeavor to solve the 'inverse
problem', that is, to determine the optical characteristics of atmaspheric particles from remote
measurements of skylight polarization. This problem is best defined in his 1967 paper*, where he il-
lustrated the inverse solution to the Rayleigh atmosphere that is afforded by the tabulations of
Chandrasekhar's results. He observed that such a solution in a turbid atmosphere will have to in-
corporate a non-Lambertian ground reflector, and a proper parameterization of the phase matrix for

N

aerosol scattering.

Having identified the problem he dedicated his considerable scientific resources to solving it.
Evidence of his single-minded zeal and his meticulous investigative abilities can be found in his
numerous reports and papers on the transfer of radiation through planetary atmospheres. While each
report addressed itself to a narrow problem, his reports, taken in their entirety, convey the perse-
verancé with which he strove, unremittingly, ignoring scientific fads and fashions, to reach his goal.

The examination of Sekera's scientific pursuit, and the obstacles that he had to overcome, suggests
that such adventures, in the existing framework of funding for science, are a rarity. On the one
hand, the pioneering spirit is epitomized by the youthful mind, unfettered by the bonds of tradition,
and to have "dreams that others do not have and ask, why not?" On the other hand, it takes a consi-
derable scientific reputation, a quality often equated to age, to win the support of funding agencies,
so as to be able to conduct these long term investigations of a speculative nature. It is gratifying
that Sekera had the correct blend of talents to launch and sustain such a research effort until it
reached fruition.

*lcarus, 6, 348, 1967.
Vil



It was Professor Sekera's intention to devote his first years of retirement to writing a mono-
graph, to review the developments in the field of atmospheric optics and remote sensing of pollutants.
[t seemed desirable therefore, to organize a conference, dedicated to his memory to bring together
his outstanding colleagues, for an in-depth review and discussion of the progress achieved in the
various aspects of the field.

The management of TRW Systems, Inc. appreciated the nged for such a conference and offered to
support, financially, our endeavor. Soon after, the National Aeronautics and Space Administration,
the United States Department of Transportation and the United States Army Research Qffice joined in
this venture to enable us to bring the foremost scientists in the field to discuss and summarize the

state of the art in the transfer of radiation through planetary atmospheres, a problem of paramount
importance to remote sensing.

The area of remote sensing involves the scientist, the engineer and the governmental agencies.
Unfortunately, this field exhibits an unhealthy preoccupation with the develapment of hardware, per-
haps due to the immediate commercial value and glamour associated with gadgetry, and a general neglect
of basic scientific research. This imbalance reflects in the appearance of sophisticated instruments
whose measurements are interpreted not on the basis of theoretical analysis, but on algorithms and
numerical empiricisms. A finite, albeit small, investment in basic research is essential in order
to assure maximal utilization of resources.

This conference exposed the users of remote sensing (the government agencies such as the Natianal
Aeronautics and Space Administration and the United States Department of Transportation) and the in-
dustries that develop the hardware (such as TRW Systems, Inc.)} to the pioneering scientists whose fun-
damental investigations have proved to be a cornerstone to remote sensing. That Chandrasekhar's
solution of the Rayleigh scattering problem, or van de Hulst's meticulous investigations of the Mie
scattering, were not motivated by the relevance of their work to user agencies, did not diminish the
importance of their contributisns g 2 gd research. It may even be argued that mission-oriented

e i
MH I
idelines that stifle creativity and prove, in the long run, to

research would mould thinking along qu
be counter productive.

If this conference brought out the importance of basic theoretical and experimental research te
the field of remote sensing, then it would have heen an appropriate tribute to the late Professor
Sekera. If, in addition, it revived, in some small measure, an interest in such investigations, it
would have pleased Professor Sekera. )

Jacoh G. Kuriyan

vill
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INTRODUCTORY NOTES

This conference dealt with the transfer of visible and infrared radiation and its relevance to
remote sensing,

The scientific sessions began with the talk of Professor 5. Chandrasekhar on the "Polarization
of a Sunlit Sky". His eloquence and clarity of presentation belied the fact that this was, apart
from one lecture a few years ago at Oxford, a short visit to his field, after a complete break of
over twenty years. Since his lecture is not included in the proceedings I shall dwell upon those
points in his lecture that are of a historical nature and are, therefore, absent in his treatise on
Radiative Transfer.

In the mid 1940's when Chandrasekhar was studying the transfer egquation there arose the questian
of the inclusion of the polarization of the radiation field. Finding his eminent physicist-colleagues
equally unaware and the textbooks on optics of no great assistance, he scoured the 1ibrary and found
the trace of a ¢lue, an obscure reference to a paper by G. G. Stokes in a book by Walker entitled the
"Analytical Theory of Light". 1t then seemed logicai to Chandrasekhar, that a matter as important
could not have escaped the attention of the old masters and hence, he proceeded to examine the col~
lected papers of Lord Rayleigh, Lord Kelvin, and Sir G.G. Stokes. The discovery, by Chandrasekhar,
of the relevant paper, after over 90 years of obscurity, brought about a revival of the Stckes
formalism that has immortalized Stokes. Indeed, the name is even emblazoned in neon at the Jodre11
Bank Observatory.

Chandrasekhar marched into the field of radiative transfer armed with a technique for selving
the relevant equation, not fully aware of its power or versatility. Progressively he attempted to
solve problems representing more difficult and realistic situations and the problems yielded, before
the method failed. It was indeed an intellectual adventure and, therefore, it is not surprising that
he described it as his "happiest years of research". The enormous application that his research has
found in the field of remote sensing ought to dispel the myth that useful results come only from mission-
oriented research and add substance to the theory that fundamental thinking requires a mind free to
soar at will,

An amusing anecdote that illustrates the mysterious path that leads to scientific discovery was
in the success he had persuading a young astronomer, W. A. Hiltner, to study eclipsing binary stars,
to confirm the 11% polarization that his calculations predicted. The first measurements, taken during
an eclipse, detected the polarization and was greeted with elation. But, contrary to expectation,
the polarization persisted even in the following days. This was subsequently identified as the first
experimental detection of another phenomenon, interstellar polarization.

The section on the transfer of visible radiation begins with the articie by W. M. Irvine anﬂ
J. Lenoble, that assumes little prior knowledge of the field on the part of the reader and presents,
in a critical fashion, various analytical approximations and exact numerical solutions to the trans-
fer problem. They conclude by identifying some of the outstanding unsolved questions.

Xl



Most of the methods used in the solution of the transfer problem assume that the medium is plane
parallel and ignore effects of sphericity. The Monte Carlo method is free of such assumptions and
its underlying mathematical framework is described in the paper contributed to the proceedings by
G. I. Marchuk and G. A, Mikhailov. The principal criticism levelled at the Monte Carlo method seems
to be the inordinate amount of computing time that is required if the results are to have a great
degree of precision.

G. Yamamoto, under whose Teadership the group in Japan has made fundamental contributions to the
field of atmospheric radiation, presents, in a paper with M. Tanaka, detailed analyses of the exact
methods that are currently in use to éﬁ1ve the transfer problem viz: the doubling method and the
closely related matrix method, the iterative method, Chandrasekhar's method of discrete ordinates and
the Monte Carlo method. ' In order to consider the transport of radiatfon through a turbid atmosphere it
is necessary to deve1dp a model of the atmosphere and characterize the aeorsols by parameters. For
some assumed values of these parameters Yamamoto and Tanaka evaluate the effects of the aerosols on
the heat budget and on the atmospheric temperature profile. They point cut the crucial role played
by the complex index of refraction of the aerosols in these calculations.

The wealth of information obtained by the concerted research effort of the Mainz group is reported
in the paper by K. Bullrich, R, Eiden, G. Eschelbach, K. Fischer, G, Hinel, and J. Heintzenberg. The
extensive experiments with the aid of in-situ sampling techniques help them to arrive at representative
values of the aerosol parameters which are used to compute the radiation field and, hence, infer the
heating rate due to aerosols. K. Bullrich et al. conclude that the heating rate due to aerosols could
be of the same order as that due to water vapor.

These numerical experiments on the radiative effects of aeroscls suggest the need for their in-
clusion in the climatic studies and in the numerical simulation of atmospheric circulation. The inde-
pendent investigations of K. Ya. Kondratyev's group in the USSR summarized in his latest bogk echo the
conclusions of Bullrich and Yamamoto, While thgse vesuitis dispei all doubts as to the adequacy of the
theoretical methods to calculate radiative effects of aerosols, they alse emphasize the importance and
the desirability of experimental determination of the relevant aerosol parameters on a global basis so
as to arrive at realistic estimates of heating and cooling.

Perhaps the overriding and common feature of van de Hulst's numerous publications are the sound
physical principles he uses to arrive at approximate solutions to complicated scattering problems. It
seems desirable that a first estimate of the effect of aerosols on the heat budget should be generali-
zations of the many approximate expressions derived by van de Hulst and compiled in his treatise on the
"Light Scattering by Small Particles". In his paper he investigates the scattering in cloud layers, a
problem that has received scant attention primarily because of its intrinsic difficulty. In the re-
search world of the atmospheric sciences mathematical analysis often takes a back seat to numerical ex-
periments with computers. van de Hulst points out the importance of tailoring a calculation to the
specific problem and the possibility of an overkiil. In his words "...it does not always require a
professional furniture maker to prevent a four legged table from rocking. If the sole purpose is
to avoid spilling coffee, a folded paper under it may be equally satisfactory.”

Xit



Under certain idealized situations it is still possible to use analytical methods to solve the
transfer problem. These may provide useful clues to obtain approximate selutions under more realistic
conditions. 1. Kuiéer and N. J. McCormick describe the singular eigenmode expansions to study the
transport of radiation through thick atmospheres.

In the study of the transfer problem in the absence of scattering the approximations of Schuster,
Schwarzschild, Eddington and Milne have played a central role, facilitating physical interpretation of
unusual phenomena. In the presence of scattering, the Mie solution, in the form of an infinite series,
complicates the problem. In a set of lectures delivered at the Department of Meteorology, UCLA at the
request of Professor Sekera, D. S. Saxon described the Mie solution and obtained the Barn-Rayleigh-Gans,
the Frauhofer and the Wentzel-Kramers-Brillouin-Jeffreys approximations. That the reciprocity principle
was a consequence of the time reversal invariance of the Maxwell's equations was also estabiished. The
integral and phase shift formalisms were explored, and the geometrical optics and the Rayleigh-Gans
limit to the scattering cross sections derived. This unpublished set of lecture notes are included
in this monograph.

In remote sensing from space probes the signal that is detected has been transported through an
intervening medium and, therefore, carries information pertaining to the source as well as the con-
stituents of the medium. For instance, infrared image of land surfaces will be contaminated by at-
mospheric effects and there is a need to factor out this interference. K. Ya. Kondratyev, A, A.
Buznikov, 0. B. Vasilyev and 0. I. Smokty d1scuss "the method of transfer functions that enable the
elimination of atmospheric effects from spectral photometr1c data measured from a spacecraft. The
fascinating experimental data gathered by the Soviet spacecraft Soyuz 7, Soyuz 9 and SALYUT show that
the Soviet scientists continue to enjoy the lead in the field of theoretical and experimental atmos-
pheric radiation and insert a note of urgency for international collaboration, to derive the benefit of
these investigations.

The next paper deals with the use of a ground based polarimeter to derive equivalent optical
characteristics of the medium. The 1mportance of such a determination and the 1nherent non-uniqueness
in model calculations are discussed. These optical parameters can be used in a program such as those
described by Yamamoto and Bullrich to derive the radiative effects of aerosols. A ship-based po1ar1-
meter will be used to infer the particulate characteristics in the forthcoming GARP Atlantic Tropical
Experiment, off the coast of Senegal. The heat budget estimates from this experiment, it is envisaged,
will complement the direct measurement of radiant flux. Helicopter-borne polarimeter measurements of
upwelling radiation have also been interpreted using similar methods. However, there has not been
statistically significant amount of data to warrant a definitive statement.

The other remote sensing device that is based on these theoretical developments is the lidar. The
stanford Research Institute is one of the foremost centers of Lidar research and the use of lidars to
measure atmospheric particulates is described by R. T. H. Coliis, P. B. Russell, E. E. Uthe and W. Viezee,
while the location of the scattering layer is uniquely determined, the inference of the characteristics
of the aerosol particles from the intensity of the signal involves other assumptions. A careful asses-
ment of the success and the limitations of the method is provided by Collis et al.
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The section on infrared radiation included the talk by Professor V.E. Suomi on the role of
radiation in the general circulation of the atmospheﬁg: This was a highly entertaining and informative
discourse Yiberally illustrated with color slides. Eg pointed out that the general circulation models
were plagued with truncation errors, problems of boundary conditions and finite differencing schemes and,
therefore, on the time scale of a few days, radiation was ignored. He predicted that this situation
would change dramatically in the next year or two when radiation will become an integral part of the
model calculations.

The article by J. C. Gille reviews the methods used in the transfer of infrared radiation. High
precision radiation measurements are shown to agree with calculations using Tine-by-line integrations.
The advantages of using the various types of band models to obtain approximate results are also dis-
cussed. The paper includes the transmittance, fluxes and the heating rate calculations in an inhom-
ogeneous atmosphere,

Line-by-1ine calculations require the specification of molecular parameters. R. A. McClatchey
gives the most recent calculations of specific parameters for Ho0, 602, N20, co, CH4 and 02. The
random model is then used to calculate transmittance spectra. The systematic and thorough tables pro-
duced by McClatchey et al. have proved to be of great vaTue to the research scientist.

The use of satellites for the remote sounding of the earth's atmosphere is discussed by C. D,
Rodgers. The radiation that is detected has information on the temperature and composition of the
atmosphere as well as the emissivity of the surface. The underlying theory of the retrieval of this
information from radiation field measurements is given. The types of instruments that are in use on”
space probes for infrared remote sounding of planetary atmospheres and their uses are also descr1bed,'

The panel on "Unsolved Problems" in atmospheric radiation was chaired by Professor J. London and
included Professors V. E. Suomi, H. C. van de Hulst, S. Twomey and Dr. D. Deirmendjian. Professor
London initiated the discussion by enumerating the outstanding unsolved problems published in the
Bulletin of the American Meteorological Society in 1971. Professor Suomi urged that radiation ex-
periments be performed in concert with one another, as in the Soviet Union, so that intercomparisons
and correlations can be studied. It is interesting and perhaps not a coincidence, since Professor
Suomi was one of the architects of GARP, that the forthcoming GARP Atlantic Tropical Experiment will
include such complete radiation experiments. Professor van de Hulst suggested that infrared band
model absorption could probably be systematized along the 1ines of his early contributions. As for
multiple scattering calculations the theory is adequate and to quote him "I feel 1ike a waiter in
a restaurant. In the beginning when everyone is hungry and thirsty you pour some water and coffee and
give some bread, because that is what they will ask for anyhow. But this is more or less the end of
the dinner and they are all saturated. So we have to ask "Do you want anything else, Sir®"

Professor Twomey pointed out that assumptions of spherical particles and uniform refractive index in
aerosol calculations are inherently unrealistic and hence, render the results to be of questionable
vatue. Dr. Deirmendjian stressed the usefulness of the concept of equivalent description of the atmos-
phere in terms of spherical scattering. It has been stressed elsewhere in this monograph that the
determination of the parameters of an equivalent description of the atmospheric scattering can be used,
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as explained by Bullrich and Yamamoto, to calculate heating rates. The knowledge of the parameters is
only the intermediate step of the calculation and it is a non-unique result. This, however, leads to
the inference of the entire radiation field and hence, heating rates. If, for instance, the inferred
size distribution is to be used to deduce the cloud nucleation abilities, clearly the results will go
awry, since the model is only one member of an equivalence class. The alternative method of treating
scattering as due to a medium with a coordinate-dependent refractive index is used by radioscientists.
At present no great advantage is envisioned by these methods unless experiments can be designed to
determine the relevant probability distribution function. It is perhaps useful to recall Sekera's
justification for the use of a spherical scatterer with uniform refractive index. In his "Advances of
Geophysics" review article he observed that it is 1ikely that most aerosols have a water coating and,
therefore, assume a spherical shape. Further Kerker proved a theorem that a spherical object "with

a thin coating scatters light as if the inner core were not present provided that the outer shell has
a moderate refractive index", and hence the assumption of a uniform refractive index.

The panel on Remote Sensing consisting of Dr. W.R. Bandeen, Dr. J.D. Lawrence, Jr, of NASA, Dr.
C.B. Farmer of JPL, and Mr. P.G. White of TRW, was chaired by Dr. M. Tepper of NASA. Drs. Bandeen,
Lawrence, and Tepper described the Earth Observation Program carried out by NASA, including the various
meteorological satellites and the satellites to survey earth resources and monitor environmental
quality. Some of the typical instrument packages on them and the proposed experiments were discussed.
Mr. P. G. White described the use of a multichannel ocean color sensor to monitor the chlorophyll
content in the oceans from radiative field measurements. Dr. C. B. Farmer discussed the radiometric
and spectroscopic remote sensing techniques used at JPL. The modification of Chahine's algorithm that
was used to determine the temperature profile on Mars and the study of the 4.7 p band in the Jovian
atmosphere using a Michelson interferometer that detected the presence of Deuterated Methane were
two of the examples of remote sensing of planetary atmospheres. Dr. Farmer concluded his talk with
a description of his high speed Michelson interferometer, designed to detect trace gases, that has
been flown on the Concord and the Good Year Blimp. :

The conference ended on a note of cautious optimism when Professor Fred Singer argued that the
evidence available indicated no increase in global particulate Tevels during the last decade. He
pointed out that man's activities perturb the atmosphere in a local fashion and hence local ob-
servations must be interpreted with care.

Apart from minor corrections of spelling and misprints, the texts reproduced here are those sub-
mitted by the authars.

Jacob G. Kuriyan
Editor
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1. INTRODUCTION

Radiative transfer problems in planetary atmospheres within the extended visible portion of the
spectrum may conveniently be referred to as multiple scattering problems, to distinguish them from
transfer problems at longer wavelengths where thermal emission by the atmosphere is important. We shall
begin this paper by recalling several earlier reviews on this topic. Eleven years ago, van de Hulst
and Irvine (1962) discussed just this guestion and stressed the necessity for considering anisotropic,
forward-directed single scattering within the multiple scattering problem. Almost all computations
prior to that time had been made for nearly isotropic scattering, a situation which rarely applies in
an actual planetary atmosphere (although the results obtained for isotropic scattering may be used to
interpret cbservations of more realistic atmospheres; see below). Methods for attacking such problems
were proposed in that paper and by van de Hulst {1963), and the review was updated by Irvine (1968).
During the following decade, very considerable progress was made in computational methods, in large part
as a result of improved electronic computers. These computational techniques were the subject of a
recent review by Hunt (1971), which contains extensive references. The extension of cemputed results
outside of their original domain of validity has been the subject of extensive work by van de Hulst
{e.g., 1971) through the use of asymptotic expansions, "similarity relations" for transforming the
results fram one set of atmospheric parameters to another, and the computation of a large number of
"test cases" of atmospheric scattering with the aid of easily parameterized phase functions. An up-to-
date discussion of the theoretical, analytic approach to radiative transfer theary in the visible
spectrum is the subject of a recent book by V. V. Sobolev {1972}, which is being prepared for English
translation by Pergamon Press. This text brings together in one place a comprehensive account of

+ Contribution from the Five College Observatories Number 171.



radiative transfer theory for atmospheres with highly anisotropic scattering, and includes a discussion
of approximate methods and also the problems associated with multiple scattering in inhomogeneous and
spherical atmospheres.

The recent reviews tend, however, to be either directed toward research workers within the field, or
to be not yet generally available. In the present paper, we shall take a somewhat different point of
view, and shall orient the discussion toward the scientist with 1ittle or no prior experience in radi-
ative transfer theory who finds himself confronted with such a problem during the course of his re-
search. MWe shall thus begin in gquite an elementary manner, shall try to bring together in a coherent
picture available results and procedures, and shall rely heavily on earlier reviews for both lists of
references and the basis of the following discussion.

The standard English language textbook on radiative transfer theory (not Timited to planetary
atmospheres) is that of Chandrasekhar (1950}, whose terminology we shall generally follow. Other
important general references include the books by Sobolev {1956) and Busbridge (1960).

2. ANSWERS DESIRED FRCM THE THEQRY

The degree of complexity in a multiple scattering problem depends to a large extent upon the answer
desired for a particular application. Because the identical transfer problems have been considered
within the contexts of astrophysics, atmospheric optics, and neutron transport theory, there is a
rather confusing wealth of nomenclature, and it would be well to begin with a set of definitions.

The basic physical quantity entering both the theory and observation is the specific intensity of
radiation I (radiance in atmospheric optics, angular neutron flux in neutron transport theory}. It
is defined as the energy per unit area, time, frequency interval, and solid angle, crossing a small
test surface which is oriented normal to the direction of propagation. The monochromatic flux H
(radiation flux, energy dependent neutron current) is the radiant energy per unit area, time and
frequency interval crossing a small test surface, measured positive from one side and negative from
the other. It is a vector quantity, with direction determined by the normal to the surface under
consideration, and is obtained by integrating 1 gver sglid angle and takind account ot the projected
area for non-normal incidence:

n

H df cos 8 I(g) {n

An

where the direction of propagation is specified by polar and azimuthal angles {8,4) = @ defined with
respect to the surface normal and d@ s an element of solid angle. The flux incident upon a surface
from one side only is known as the illumination (irradiance); the illumination due to direct selar
radiation is called the insolation. '

The conceptually simplest property of a planet or an atmosphere which may be desired in a particular
application is the albeda, defined as the ratio of the total flux reflected by the atmosphere (which
equals the illumination of the upper atmospheric boundary from below) to the incident solar flux. If
the atmosphere overlies a planetary surface, then the planetary albedo is the ratio of the total re-
flected flux to the incident flux. The usual definitions apply to the case of parallel radiation in-
cident on the atmosphere. We may then distinguish between 1} the case of a plane atmosphere, which



applies to a situation at a particular point on a planetary disk and leads to the definition of the
plane albedo as

A(po) =j dit p I{at top of atm.)/nF Hy (2)
2w, up

where e is the angle of incidence, 7f is the solar flux at the pesition of the planet through a
surface perpendicular to the direction of insclation, s¢ that nF My is the flux through the upper
atmospheric boundary, and we have set 1 =cos 8, u; = cos 6, . The plane albedo may depend signifi-
cantly upon angle of incidence 90 . This is not the case for the spherical or Bond albedo, which is
the corresponding ratio of reflected to incident flux for parallel solar radiation incident on A
spherical planet. Integrating over the planetary disk., we obtain

("o [ ar v Alugtran?

A 0 0
= (3)
s TrRZ

where y and r are pelar coordinates on the {plane) disk of the planet of radius R. Thus, the
spherical albedo may be found once the plane albedo is known as a function of position on the disk.
The albedo is of paramount importance in determining the total solar energy abserbed by an atmosphere
and is thus fundamental in computations of thermal balance. It may also serve as a measure of the
expected relative surface brightness for a series of objects for which the directional distribution of
reflected intensity does not vary greatly.

Some problems require knowledge of the surface illumination. We may define the ratio of this illu-
mination to the insolation at the top of the atmosphere as a quantity V(un,ro):

V(uo,ro) =5dﬂ w I{at bottom of atm.}/nF uy . {4)
27, down

In many instances, it is of course desirable to know the angular distribution of radiant energy
reflected, transmitted, or within an atmesphere; that is, the intensity I. Measurements of the bright-
ness versus position on a planetary disk {"limb darkening") or the brightness distribution across the
terrestrial sky are observations of the intensity. In addition, knowledge of 1 as a function of angle
is required for accurate computations of planetary phase curves and accurate computations of albedos.

If polarization may be neglected (see below}, the intensity will satisfy the equation of radiative
transfer (74), whose solution {s discussed in subsequent sections (4-6).

If only the radiation emerging from an atmosphere is desired, then one may seek the reflection and

transmission functions which may be defined as '

R(Q,QO) = I{at top going up)/F Uy

T(ﬂ,ﬂo) = I{at bottom going down}/F Mg



and which may be found without the necessity for obtaining the entire radiation field within the medium.
R and T are the reflected and transmitted intensities for incident solar flux = through a surface
ariented perpendicular to the solar direction, so that the reflected and transmitted intensities for
unit incident flux through the top of the atmosphere are clearly R/m and T/m , respectively. Other
definitions of analogous quantities are sometimes employed, such as the scattering and transmission
functions Sc = dy Hg R and TC = 4y g T (Chandrasekhar, 1950).

The most detailed diagnostic information concerning the composition and state of a planetary
atmosphere is frequentiy obtained from observations of polarization. Since we shall not consider
problems of the propagation of coherent radiation for which phase relations may be important (as
potentially with laser probes), the radiation field including polarization may be characterized by the
four Stokes parameters (see Chandrasekhar, 1950). Up to the present time, almost all observations have
been of the linear polarization

P = (IJ._ = Ilj)/(IL + In) E] (5)

where 1, and I, are the radiation intensities with electric vector perpendicular to and parallel to
the plane defined by the angles of incidence and reflection on the planetary atmosphere. Measurement
and interpretation of the linear polarization versus phase angle and wavelength for Venus have provided
stringent limitations on the properties of the c¢loud particies for that planet (Hansen and Arking, 1971}
The circular polarization for radiation reflected by a planet 15 generally very small, but some measure-
ments are now becoming available (e.g., Swedlund et al., 1972). The polarization may be obtained by
solving a vector transfer equation in which the components of vector I are the four Stokes parameters.

Because the scattering within a planetary atmosphere is to a good approximation elastic {(or, in a
different use of the word from above, "coherent"), each of the quantities considered above may refer
either to radiation of a particular frequency (e.g., Iv) or to the corresponding quantity integrated
over wavelength (I = fdv Iv)‘ See, however, the comments under frequency in the following section.

3. DEFINING CHARACTERISTICS OF THE PROBLEM

Almost all theoretical and computational work on multiple scattering problems te date has attacked
the direct problem; that is, the physical parameters characterizing the atmosphere (see below) are
taken as given, certain boundary conditions are assumed for the sources of radiation, and the radiation
field in the atmosphere is sought. The inverse problem, in which the radiation field is assumed known,
and it is desired to infer the parameters characterizing the atmosphere, is of course usually more
appropriate for the interpretation of observations. Because of the multitude of parameters needed to
characterize an actual atmosphere {and perhaps underlying surface), however, there has not as yet been

developed any reliable and consistent procedure for solving the inverse problem (some steps have been
taken by Twomey, 1963; Herman and Yarger, 1969; Bellman et al., 1965; Fymat and Kalaba, 1973). The

usual procedure is to assume a set of values for the atmospheric parameters which are being sought and
compute the expected intensity (or albedo, or other measured characteristic of the radiation field) for
that particular model atmosphere, Comparison of results obtained for a set of models will then hope-
fully allow one to define the properties of the atmosphere. In the present review, we shall assume
that the Jatter procedure is being followed, so that we shall discuss solution of the direct problem,

It is then necessary to specify those characteristics of the atmosphere which will determine the
radiation field for a particular model.



Of fundamental importance in this regard are the scattering and absorbing properties of an elemental
volume of the atmosphere. The extinction coefficient o« (more correctly called the volume extinction
coefficient) determines the attenuation of a beam that is normally incident on a plane layer of geo-
metric thickness ds according to

dI/I = -a ds (7}

which of course leads to the usual Taw of exponential attenuation. The extinction coefficient thus
describes the attenuation per unit length suffered by a beam, and may alse be thought of as the
effective interaction cross section per unit volume of the medium. For a monodisperse medium consist-
ing of n particles per unit volume each with an extinction cross section C, we would have a = nC,
which is of course the reciprocal of the mean free path, For a distribution of particle sizes or
properties, the appropriate average must be performed. 1In the study of stellar atmospheres, but not
ordinarily planetary atmospheres, the mass extinction coefficient is employed. It is related to the
volume extinction coefficient by “p =afp s where p is the mass density.

The extinction coefficient consists of two parts, a scattering coefficient o and an absorption
coefficient k, each with dimensions and definitions parallel to that for the total extinction coefficent.

Same workers apply the term "absorption coefficient" to a, in which case k is referred to as the
coefficient of true absorption. In any case, k defines that portion of the energy removed from a
beam which is converted into other forms of energy (or into radiation with a frequency outside the
range being considered), while o describes the radiation which .is scattered from one direction into
ancther without such change of frequency. It is important to emphasize that each of these coefficients
15 a macroscopic quantity characterizing the average properties of a volume element of the atmosphere,
so that it makes no difference whether the scattering or absorption is produced by a gas, aerosol
particles, or some combination.

Fortunately, the solution of most multiple scattering problems requires only the specification of
the ratio

ofa = 30 ' {8)

which is known as the single scattering albedo. It clearly represents the probability that, if a
photon interacts within an element of volume, it will be scattered rather than truly absorbed. It will
be identical with the average particle albedo of the aerosols in the atmosphere provided that the
scattering and absorption by atmospheric gases are negligible.

The directional distribution of radiation scattered by an element of volume is described by the
phase function p, which is sometimes referred to as the scattering diagram (indicatrix of scattering
in Russian work, normalized scattering kernel in neutron transport theory). It is normalized such that

llfg dQ plcos v} = 1 (9)
4n

where vy is the angle of scattering. Thus p(cos v) di/4nv is the probability that radiation which is
scattered will be deviated through an angle y into an element of solid angle dgR.



As was mentioned in the intreduction, a principal complicating factor in the solution of planetary
scattering problems is the marked anisotropy of p{y) in practical applications. This property is
often characterized by

]
g = <C0s > * %—j d(cos v) cos v plcos v) . (10)
-1

the asymmetry factor, which equals the weighted mean cosine of the scattered radiation. Clearty g = 0
for isotropic scattering and approaches 1 for the more and more forward-elongated phase functions which
are typical of scattering by aerosol particles with dimensions comparable to or larger than the wave-
length {cf. Irvine, 1965). Small metallic particles or large rough particles may have g < 0 (pre-
dominance of backward over forward scattering}. The determination of p{cos v} requires some
assumptions concerning the ratio of molecules to aerosol particles and concerning the particle size,

shape, and composition in the atmosphere. Only spherical particles have been considered in detail,

for which Mie theory applies. Problems involved in the specification of p{cos y) have been considered
in the books by van de Hulst (1957) and Shifrin (1951) and for spheres by Deirmendjian (1968); numerical
problems are reviewed by Hunt (1971); Greenbery (1968) has compared the scattering on spherical to non-
spherical particles.

The atmospheres must also be characterized by its optical thickness T - The element of optical
path dt = ads , so that Tg = fdsu aiong the vertical path through the atmosphere.

The quantities underlined above in this section are sufficient to define the porperties of a homo-
gengous, plane-parallel atmosphere. To complete the specification of a particular problem for such an
atmosphere, we must give the boundary conditions including the specification of the radiation sources
and the properties of any underlying surface., Normally in the consideration of visible radiation in
planetary atmospheres the only source of radiation is incident sunlight. It is almost always possible
to neglect the finite size of the solar disk, so that this radiation incident at the top of the
atmosphere may be taken as parallel and hence defined by

where the corresponding flux normal to the beam has been taken equal to =F as above.

The properties of the planetary surface may be much more difficult to characterize. Up to the pre-
sent time, only isotropically scattering ("Lambert") surfaces and specularly reflecting surfaces have
been considered in any detail, although the analytical pracedure to be used with a more complicated
Taw of reflection is known (see Sobolev, 1972).

For a particular application it may, of course, not be permissible to assume that the atmosphere is
homogeneous and plane-parailel. The introduction of the possible inhomogeneity of the atmosphere may
significantly complicate attempts to model the problem, although study of such situations offers the
opportunity to potentially determine the altitude profile of such basic atmospheric properties as
temperature and pressure. Some of the computational approaches to multiple scattering problems remain
virtually unchanged for atmospheres which are vertically inhomogeneous, as has been emphasized by
Hunt (1971). In that case the difficulty occurs in knowing how to Timit the models to be considered



from an infinitude possible with the abandonment of homogeneity. Analytical results are more limited
in extent, although a beginning has been made in this direction {cf. Sobolev, 1972; Kanal, 1973;
Yanovitskii, 1972; Ueno, 1960; Bellman, Kalaba, and Ueno, 1963; Chamberlain and McElroy, 1966; Fymat
and Abhyankar, 1970).

Horizontal inhomogeneity is much more difficult to handle, and useable results have been obtained
to date only by quite approximate methods or by Monte Carle techniques {Van Blerkom, 1971); see Section
7 below. A somewhat more tractable problem, at least theoretically, concerns the illumination of a
homogeneous atmesphere by a horizontally inhomogeneous external source such as a searchlight beam.
Initial results with this problem were obtained by Chandrasekhar {1958}, and more recently it has been
investigated by Rybicki {1971} and Romanova (1971, 1973).

The necessity for considering the sphericity of an atmosphere arises for certain problems such as
the examination of twilight phenomena or the illumination over a planetary disk near inferior con-
junction. The most attention to these effects seems to have been given by the Soviet group, and
results are summarized by Sobolev {1972) {cf. also Sobolev, 1973; Ueno, 1973). Fortunately, for most
applications the plane-parallel approximation is sufficient, since the thickness of the atmosphere is
very much less than the radius of curvature of the planet.

Infrequently one may be interested in the time response of an atmosphere to an jmpulsive source of
radiation. The velocity of light insures that the propagatien of radiation through an atmosphere occurs
much more rapidly than temporal changes of aimospheric properties, except perhaps in such instances as
a solar eclipse. In the optical probing of an atmosphere the temporal return may be important, however,
and an approach such as that used by Romanova (1969} or Minin (1971) might be utiTized.

As we have stated above, radiation at separate frequencies may normally be considered separately in
solving muitiple scattering problems for visible Tight in planetary atmospheres. It is also generally
possible to uncouple the visible transfer prablems from those in the thermal infrared, because the
overlap between the black body curves for the sun and for a planet is quite small. Recently, however,
the possible importance of incoherent (in the frequency domain) scattering such as Raman scattering has
been pointed out for the reflection from Uranus and Neptune (Wallace, 1972). Rigorously, problems of
this sort would require simultaneous solution of transfer problems at a set of frequencies., 1In
practice approximate methods based on a monochromatic solution may be adequate for at least some
applications.

A more usual frequency-related problem cencerns the computation of the shape of absorption lines
formed by reflection of solar radiation from a planetary atmosphere containing a gaseous absorber.
Since the atmosphere is “cold" (relative to the radiation temperature of the incident sunlight), each
frequency in the 1ine or band may be treated separately, so that the problem reduces to a series of
menochromatic transfer problems. The difficulty arises in the number of such paraliel problems that
must be solved to define a line shape with sufficient precision; see the discussion in Section 7.

The multiple scattering theory which we are considering assumes that the scattering centers in the
atmosphere are far enough apart so that each particle is in the far field of the scattered radiation
from any otherparticle (according to van de Hulst, 1957, this will be satisfied if the inter-particle
distance is greater than about three times the particle radius, unless the particles are very large
indeed with respect to the wavelength of radiation). As a result, the particles effectively cast no



shadows. This situation would seem to apply to all conceivable atmospheric situations, including
multiple scattering by large rain drops. There are, however, other situations where the scattering
centers are large enough and their volume density is great enough that mutual shadowing may occur.

This effect is thought to produce the "opposition effect" observed as a sharp increase in brightness

in the back-scattered direction for observations of Saturn's rings, the surface of the moon and certain
asteroids (cf. Bobrov, 1970; Veverka, 1970). The usual multiple scattering theory may in some cases

be modified to include such effects (Irvine, 1966); see also Section 7 below.

4. RAPID, APPROXIMATE ANSWERS

In the present section, we shall examine the possibility of finding the answer to a particular
multiple scattering problem without the necessity for performing detailed calculations. More ex-
plicitly, the methods and results presented in this section require no programming of electronic
computers for their application to the problem at hand. When such an approach will be useful depends,
of course, on both the quantity being sought {Section 2 above) and upon the accuracy desired. We
shall initially limit the discussion to homogeneous, plane-parallel, coherently scattering atmospheres
illuminated in a steady state by parallel solar radiation.

Precise formulas will be given where this is possible. In many cases, however, we must resort to
approximate procedures. Two of the most useful are described below:

Similarity Relations. It would be a great simplification in planetary scattering problems if the

solution for a given anisotropic phase function could be reducedto the known solution for isotropic
scattering. MWe would expect that such a transformation might exist provided that the radiation field
has been "smoothed" by a large percentage of multiple scattering and/or by integration over angle.
Such "smoothing" is necessary to remove the sharp maxima and minima which are present in the primary
scattered radiation if the phase function is highly anisotropic. Obviously no information cancerning
the azimuthal dependence of the radiation field can be obtained from such a comparison, since for
isotropic scattering the intensity is independent of azimuth.

Such "similarity relations" have been used for some time in neutron transport theory (cf. Davison,
1957; Sobolev, 1972). It may be shown that the solution to a given transport problem for a single
scattering albedo 30 and optical thickness Tg will be "similar" (may be approximated by) the
solution to the same problem for isotropic scattering and an albedo m; and optical thickness T; s
where

EO* (- 9]“0 . (12)
]‘g’l}ju
* n
T = {1 - gmo) g - {13)



More recently, van de Hulst has pointed out that essentially the same "similarity relation" may be
expressed as

* &
k T = k'l'o {14}
1-8 1-0
4] 0
— = {15)
k k

where k s the inverse diffusion length in the atmosphere (see A.1. below). For the most interesting
case of (1 - BD) << 1, Egquations (14) and (15) reduce to Equations {12} and (13} (cf. Figure 1 and
Sobolev, 1972, Ch. VIII}.

The validity of the relations (14) and (15) for determining the profile of absorption Tines formed
in a scattering and absorbing atmosphere has been studied by Hansen (1969), who finds good agreement
with the exact theoretical results except for large angles of incidence of the solar radiation. The
validity for integrated quantities such as the albedo s even more striking {van de Hulst and Grossman,
1968},

Eddington and other Approximations. Approximate values of the flux H may be obtained without
rigorously solving the transfer equation by procedures developed for use in stellar atmespheric pro-
blems by Eddington, Schuster, Schwarzschild and others [some historical background is given in Sobolev
(1956} and Beasley et al. (1967)]. These approximations have different realms of validity.

When the radiation field consists largely of multiply scattered light, so that sharp maxima and
minima resulting from the shape of the phase function are smoothed out, the Eddington approximation
will provide useful answers. This will be particularly true for quantities integrated over angle,
such as the albedo or transmitted flux. This condition applies to thick atmospheres with nearly con-
servative scattering (10 =1, (1- mu) << 1}, but the useful range of parameters is quite large.

An alternative approach, with a similar range of appiicability, is the "modified two-stream" appro-
ximation proposed by Sagan and Pollack (1967).

When single scattering predominates, as will occur for a thin layer or for a semi-infinite medium
if the absorption is large (30 << 1}, it is preferable to use the standard two-stream approximation
{see below).

We now proceed to the computation of physical quantities, using approximately the ordered sketched
in Section 2.

A. Albedos
1. Semi-infinite atmospheres

In this case the properties of any underlying surface can be ignored. It is important to point out,
however, under what conditions an actual atmosphere may be considered to be semi-infinite. If the
atmosphere is weakly absorbing, in the sense that [3(1 - $o)(1 - g)]”2 Tg << 1, the atmospheric



reflection will be identical to that of a semi-infinite atmosphere to 0([3(1 - 9)10]-]). In contrast,
when kt >> 1, the departure from the semi-infinite condition is Ofexp - 2kt0), where k is the inverse
diffusion length.

The parameter k is determined by solving the "characteristic equation” for a given phase function.
It is the smallest discrete eigenvalue of the transfer equation, so that deep within a homogenequs

absorbing medium the radiation field decays as e'kT. For isotropic scattering

r\_,

1n(“ =1, (16)

while Figure 1 presents curves relating mo, k. and g for the case of the Henyey-Greenstein phase
function

plcos ¥) = {1 - g%)/(1 + g% - 2g cos v)¥/? (17}

for which g 1is the asymmetry factor <cos y> . Equation {17} is a convenient phase function formany
purposes, since it may be varied from purely forward scattering (g = 1) to purely backward scattering
(g9 = -1} by changing just the one parameter g. The “"similarity principles" (see above) suggest that
the curves in Figure 1 will apply quite closely to any phase function with the same g = <cos y> .

The plane and spherical albedos are rigorously given for any phase function by

Alug) =1 - vb(]](uolluu R {18)
and

- Q
As =1- Zu] s (19)

where the auxiliary function ¢?(uo) and its zeroth moment

1
o =I dug 4’10(“0) (20)
0

are defined in Section 6. A Tist of available tables is given in Table 1. In the case of isotropic
scattering equations (18) and (20) reduce to

Alig) = 1= Hizgd(1 = B2

(21)

Ag

_ v 1/2
1 2(1 wo) h'l

where H(n)} = Ho(u) is the fam111ar Chandrasekhar H-function (see Table 1) and h is its first

moment S du u H{u) . Note that ¢] and H are functions of mo y although th1s is often not
explicitly indicated.
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For general anisotropic scattering with an asymmetry IQ] £ 0.33 appropriate tables will not be
gvailable. Unless the numerical solution of an integral equation is undertaken to obtain ¢?(u0), we
must then proceed ih an approximate fashion, or make use of asymptotic expressions that apply in certain
limiting cases.

Setting o= in Equation {37) below, we obtain for the albedo of a semi-infinite atmosphere in
the Eddington approximation

vl u
we |2 = 3bu, + 39(1 - wa) s (2o, - bi]
Alug) = 0 0 0.0 0 J for BO F1, (22)

2 {1+ b){7 - kzug)

where b = 2k(1 - 9$0)_1/3- k2= 301 - EO)(1 - aog)s and g is given by Equation (10). A comparison
af results obtained from this approximation with the exact solution to the transfer problem is
11lustrated in Figure 2 and Figure 3. Note the good agreement between the exact and approximate results
over a wide range of values of the parameters ﬁo, g, and ¥y - Figure 4 illustrates the spherical
albedo for a semi-infinite atmosphere as computed from Egquation (21).

The albedo for the “modifed two-stream approximation" is given by

I
[1j

(r-s)r+s) Gyt (23)

where

_ . A
1 - wnf] + w0b1

-
|

s = [0 - B2 - 35627172
(24)

-+
Yy

1 - (1 + g)/2
by=1-1

and ¢ has been defined in Equation {10). When Ty or .30 are small, it is preferable to use the
standard two-stream approximation. The equations are the same as (23) to (24) except that

1 .
fy ;—jo dup() | (25)

n



2. Finite atmospheres

If the atmospheric optical thickness is not semi-infinite, we must in general take account of the
reflecting properties of the planetary surface. Detailed results have been obtained only for isotropic
(Lambert Law) surface reflection and specular reflection. We shall confine ourselves to the former
case, referring the reader to Sobolev {1972, Ch. IV, §5), and Casti, Kalaba, and Uenoc {1969) for a

discussion of the latter.

In this case, the probability that a photon incident at an angle arccos Hg to the surface normal
wWill be reflected at an angle arccos u into an element of solid angle dfi will be

2 a y do/2n (26)

where a 1is the albedo of the surface. The incident intensity I0 is then related to the reflected

intensity 1 by

In=1(2au) Iou0/2n s
(27)

[ =a Iouo kil

We may now express the albedo in the presence of a planetary surface in terms of quantities
characterizing the atmosphere in the absence of such a surface {i.e., for a = 0). Designating the
former quantities with a superposed bar, we have (e.g., Sobolev, 1972, Ch, IV)

- a ¥ (1)

Alug»tq) = A(UD’TD) + TF:FE_K;T?ET'V(HO’TO) (28)
where the surface illumination V(uO,TD} is defined by Equation (4) and, in analogy to the definition
of As’

1
¥y (xg) = zjo dug g Vlugitg) - (29)

The problem is thus reduced to finding the reflected and transmitted flux in the absence of an under-

lying surface.

In terms of the auxiliary functions defined in Section 6, the exact expressions are

A(UO’TO) =1 - ¢?(UO:T0)/U0 (30)
and

V(uoata) = 620ty iy (31)
o’Q 1Y90°°0 0
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The corresponding spherical albedo and surface illumination are

1
AS(TO) ] - 250 dug ¢?(u0,10) {32)

and

1
V(1) = zjo dug ¥Dlurrg) (33)

We emphasize again that the functions ¢? and w? are their moments, as well as the X- and Y-functions
introduced below, are functions of ﬁo .

For values of o % 3, one may frequently avoid the necessity of detailed computation, even if quite
precise results are desired, by using asymptotic formulae to interpolate between known results for

g and numerically obtained anwers at moderate T - Van de Hulst (1968} has described this pro-
" gedure in detail.

For isotropic scattering we have in terms of the familiar X- and Y-functions (suppressing the de-
pendence upon TO)

2ul1 - @2 - Byay) X(u) + Bg, Y]
oy « 000 0% (34)
(2 - moao) - (moso)
(1 - W) [EnBn X(u) + (2 - Boan) V{u)]
W) - 0009 09 (35)
where
1 1
gy =j du X(u) , By =j‘ du Y(u) . (36)
0 0

Tables of X and Y are referenced in Table 1. With their aid, we may use the similarity relations
[Equations (12} - (15)] to relate a given problem to the corresponding solution for isotropic scattering.
The steps in this procedure would thus be 1) vrelate the known values of Eo, g, and 1y to the
"similar" values for isotropic scattering; 2) solve the appropriate isotropic problem for A, As, v,
and Y, for the case of no surface reflection . (a2 = 0) by using tables of X and Y functions; 3) find

the desired albedo for a # 0 from Equation {28).

The Eddington approximation when Tp <™ takes the more complicated form

A(uO.TU) = 2(C] + Gyt D) (37)
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where

kTt 'TUIUO
C, =FTye 0(1 +b) + T, e {1 -1)] (38)
-kt =1/ 1
C, = ~F[T, e 01 - by + T,e 000 +b)] (39)
Ny
F=t0 ! (40)

k -k
(0= e 20 n? - 00 - b)7)

-3 [] + “ = ?;o)g] o

D="3 U-—l@ug) TPeN (41)
K2 =300 - ) (0 - Bge) (42)
Ty =2+ 3ug+ 31 - 8y) g ugll + 2ug) (43)
Ty = 2= 3ug - 301 - &) 9 upll - 2u) (44)

As in the semi-infinite case, it will be most precise for thick Tayers with small absorption, but in
such cases 1t can be quite precise even for quite anisotropic phase functions (cf. Kawata and Irvine,
1970). For a purely scattering atmosphere },0 = 1 and these equations simplify to

2R (Ll s T )
- 0'°0
Migtg) 21353 ),
(46)
3p 3u =TalU
R(uO,T0)=1+TO +('I-—2£]eoo
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The corresponding expressions for the modified two-stream approximation have the same general realm
of applicability, and take the form

A - G[1 - exp{-2 s Tp/uy}]

2 (47)

1 - G° exp(-2 s TO/uO)

where s is defined in Equation (24) and G = (r - s)(r + s)'1 with r given by Equation (24}. Far
30 =1, we have the limit

A= T8, 1ghg (48)

with by =1 - f, and f.|=(1+9)/2-

When single scattering predominates, the two-stream approximation may be used. We may then use
Equations {47) or (48) with by =1-f; and y defined by (25).

In addition to the reference quoted above, comparison of exact and approximate expressions of this
farm has been carried out by Irvine (1968; but note the error corrected in Kawata and Irvine, 1970)
and Lyzenga (1973). Additional results are presented in Figures 5 and 6. It appears that for a con-
servative atmosphere (30 = 1), both the modified two-stream and the Eddington approximation give
agreement with exact results to better than about 5% for guite anisotropic scattering (at least to
g % 0.8) for values of 1) % 5 and angles not too close to grazing incidence. For ED < 1, the situation
is more complex, the accuracy of the approximate methods depending upon whether reflection or trans-
mission (see next sub-section) is being sought, as well as on 30, g, and o As has been stated
above, the Eddington approximation and the modiffed two-stream approximation have the same general
realm of validity; from the evidence to date, it appears that within this realm the Eddington approxi-
mation is preferable. When low order scattering predominates, the usual two-stream approximation is
preferable, Note that for a given atmosphere (fixed T mo, g, uo) it may be appropriate to use an
Eddington-type approximation for the transmitted radiation {which has a high component of multiple
scattering if 74 1s large} and the two-stream approximation for the reflected flux (if (1 - g) << 1
and 30 is not too close to unity, low order scattering will then predominate).

An interesting possibility is to combine the Eddington approximation and the similarity principles;
j.e., use the Eddington approximation for g =0 and values of ﬁo and T related to the actual
g, %0, and Ty by Equatioms (12) - {13). 1In the trial cases shown, this procedure and the standard
Eddington approximation bracketed the exact values {see Figure ).

B. Surface I1lumination (Finite Atmosphere)

It is sometimes important to know the flux incident on the surface of a planet, either to estimate
sky brightness or to compute heat deposition. In relative units, this illumination 1s defined by the
function V(uo,ro) introduced by Equation (4). If the surface reflects isotropically with an albedo

a (Lambertian reflection), the actual surface itlumination ¥ 1is related to that for the same
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atmosphere but with a'= 0 by

V{ugs1y)

V(uo,'ro) = i—m (49}

where As is the spherical albedo of the atmospheres for a = 0.

The exact expression for V(uU,TO) has been given above [Equation (31)]. It is also obvious from

energy conservation that if mo =1,

Alugstg) + Viugatg) = 1 . (50)

When 30 = 1 (conservative scattering), we may bound V(po,ro) by

Mo < V(unata) <€ 't ¥ (51}
T=gJy +1 Moo Tp T gl + 1

which provides the useful approximation {Sobolev, 1972, Ch. VIII)

172 + 1y N

Vgt * T+ 7 %! (52)

far which the maximum error may be determined from {51).

Turning again to the Eddington approximation, we have
-kt kT =T /1 -TAfU
V{ugsth) = 2{Cie 0, Ce D4pe O D) +e 0°"0 oo A1 {53)
0’0o 1 ?
where €y CZ’ and D are determined by Equations (38) - (41) above, or
2R{1naT )
- 0’0 o

Vlgstg) = 7337 = w5 Y] (53a)

where R(uO,TO) is given by the second of Equations (46).

Some new results are presented in Figure 6, where we have plotted the diffuse contribution to
V(uo,ru); that is, the total surface illumination minus the unscattered contribution. The exact curves
were computed using the doubling methad as described below, while the approximate results were obtained
from the equations given above. Observe that at least for 30 % 0.98 and Tq % 5, the Eddington
approximation gives accuracy of a few percent in the transmitted flux, even for quite anisotropic
scattering. Note the comments in the previous section concerning realms of validity and concerning
the combined Eddington-similarity approximation.
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When the transmitted radiation results primarily from low order scattering, we may use the two-
stream approximation to obtain

-2 5 TafH
IO Y S N - R
0''0 2 -2 s Tofhu 0
(1 - G% )
(54)
n
V(uo.TO) =1- A(uo,ro) Wy = 1

with s and G determined as in Equation (47) except that f, 1is given by (25).

The similarity principles may be used as described at the beginning of this sectian to approximately
reduce the problem for a general anisotropic phase function to one with isotropic scattering. Thus,

when V(uO.TD) is not dominated by low order scattering, we relate the values of mo,_ g, and Ty to
the corresponding "similar" values for isotropic (g = 0) scattering with Equations (12} - {13) or
{(14) - (15}, find V and As from Equations (31), (32), (34), (35), and the relevant tables for iso-
tropic scattering, and then use Equation (49}).

C. Energy Deposition in the Atmosphera

Determination of the atmospheric temperature profile may require knowledge of the solar energy
absorbed as a function of altitude. The temperature profile may be needed for dynamic computations or
to calculate the atmospheric thermal emission. The rate at which energy is absorbed by the atmosphere
per unit of verticle optical depth per cm2 will be given by the derivative of the net flux A = -dH/dt
{¢f. Fouquart, 1971).

If the single scattering albedo and the optical thickness are not too small, we may usefully apply
the Eddington approximation to obtain

-Tfu -t/u
kT 4 ¢ 0y 4 ¢ 0

b= aF(1 - Baug(Cy e K 4 Cye e (55)

where the constants C;, C,, and D0 have been defined previously [Equations {38) - (41)].

D. Intensity

As we have pointed out, most planetary atmospheres most of the time contain a sufficient number of
aerosol particles to make the phase function quite anisotropic. Nonetheless, comparison with the
results for more nearly isotropic scattering is sometimes useful; clear days of exceptional visibility
do occur for the Earth, and otherplanets may have nearly aercsol-free layers in their atmospheres
{c¢f. the discussion of Uranus by Belton et al., 1971). In addition, use of the similarity relations
allow us in many instances to relate the solution of a more complex scattering problem to the simple

solution for isotropic or nearly isotropic scattering.
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Table | presents a "Tables of Tables" of functions providing the exact solutions for the reflection
and transmission of 1ight from homogeneous atmospheres scattering according to the phase functions
listed. Extensive results are available only for isotropic scattering and Rayleigh scattering. The
authors may use somewhat different notations, and the reader should read the articles to ensure that
he uses the appropriate formula relating the computed functions and the desired intensity. Note parti-
cularly that, in writing an expression for (say) the reflected intensity, different authors may take
the incident solar flux normal te the solar direction as «F, =, 1, nFua], u61 , etc,

There is an annoying tendency for tables to exclude those particular parameter values that are
important for the applicatfon you have in mind. In this connection, asymptotic expressions relating
solutions for e to solutions for g >> 1 are often very helpful, Van de Hulst {e.g., 1968)
has emphasized this approach, which of course, can be used with numerically computed values corresponding
to arbitrary phase functions, as well as when tables are available. He has emphasized that by an appro-
priate choice of abscissa it is often possible to interpolate accurately between T and values

as small as o N3 As examples of such formulas, we may cite the azimuth independent portion of the
reflection R and transmission T functions, which are related to the corresponding quantities in
the semi-infinite case by

=2kt

0
R(UsIJDsTo) =_ Rm (USUU) - MN—‘:_T?'EZ[TE U(]—l) u(uo) (563)
1-N%
-kt
Me 0
T(U’UDSTU) = S T ulu) u(uu) {56h)
1- Nze 0

where k

i
and N avre gom

]
N = ZJ. leo U-o U(HD) 1(']—‘0) »
0

(57)

=
1l

1
2_{ du u iz(u)
-1

The quantity u{u) 1is the "escape function" describing the relative angular distribution of radiation
emerging from an atmosphere for which the radiation sources are at great depths {or, equivalently,

the transmission through a very thick atmosphere), and 1i(p) describes the relative angular distri-
bution of intensity within the deep Tayers of a thick atmosphere. They are normalized such that
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o
0 )
2 9 du i{u)

n
—_

(58)

n
—

1
25 du w 1{u) ulu)
0

In practice, u{n) wmay be found from the tabular or computed values of transmitted intensity for suf-
ficiently large g while the constants M and N may be obtained by solving Equation (56a) or (56b) at
two vaiues of g in the asymptotic regime {given that R or T is knewn at those to).

Note that u(p) depends only weakly on the phase function asymmetry g (see van de Hulst and
Grossman, 1968). Sobolev (1972, Ch. VIII)has shown that in the case &h =1, uo(u) = u(&0 =1, 1)
may be approximately represented in linear fashion as

wln) = (1 + B (1 +2873)7 (B = 1) (59)
where
B'] = %-Sw de sin%s plcos 8) . (60)
0

Figure 7 illustrates this approximation for a quite forward-directed phase function {g = 0.79).
According to a strict application of the similarity principles, &ju,uo) should be identical for all
phase functions when &0 = 1. This does not give particularly good results in the
present case.

Various simplifications  are possible in Equation {56) in certain cases. If absorption is small
(1 -¢ <<1, so that k << 1)

R(U:uusfo) = Rw(usuD] - h(To) uo(u) uo(uo)

(61)
kTO
T(U:UOsTD) s e f(To) uo(U) uo(“n)
where
n(tg) = regy * i)
f(TO) = 2E5 ! (62)
301 - g)le 9 - 1) + 65k

1 2
8 = 4L du H uo(“) s
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A
“g
In the conservative case (&0 = 1) or more generally if kru << 1, Equation (61) takes the parti-

cularly simple form

and uotu) and Rm(”’”o) refer to the case =1.

uu(IJ) Uo(Uu)
R(UsuO’TD) = Rm(u’uo) -4 ?(_'I i g') TO T 3—6' (63)

4 us{n) uylug)
T(uskgoto) = 377 0 ) Tg +036 (64}

Other particular cases, such as kro »>» 1, may be easily deduced from (56).

Perhaps the most convenient and rapid approximation to use if the angular dependence of the

radiation field is desired is a combination of exact first order scattering plus higher order scattering
computed for the appropriate isotropic case from the similarity principles. Thus, if we take the
incident solar flux through a surface nomnal to the solar direction as nF, we find (suppressing the
dependence upon TO)

R - HoF (Xt} Xlug) - Y(k) ¥lug) + [piRfg) - 1101 - exp(-ry(u™ + uo")ﬂ ()
™0 4 B+ Mg J

for the reflected intensity, and

(66
] )

for the transmitied intensity, where X(n) and Y(p) are given for isotropic scattering in the tables
Tisted in Table 1. We have allowed for azimuthal dependence (¢) in Equations (65) and {66) by writing
R and T as functions of Q = (0,4} and fiy = (BO’¢0 = Q) .

Alternatively, we might compute the higher order scattering using the tabulated functions available
for scattering accerding to the phase function p{u) =1 + m]u . a5 suggested by Sobolev (1956, 1972).
This amounts to finding the source function for the radiation field in an Eddington approximation. A
comparisen of such an approximation with exact values for the reflection from a semi-infinite atmosphere
is shown in Figure 8.

Other approximate methods are available which are particularly useful if the phase function is very
forward directed, such as the expansion of I in a Taylor series in angle about the direction of in-
cidence (Sobolev, 1972, §7, Ch, VIII), but the availability of modern computers makes it essentially
as easy to obtain an "exact" solution to the actual transfer equation (see next section),
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E. Polarization

Quite precise polarization data are becoming available for the planets, and their interpretation
requires a correspondingly precise solution of transfer problems. A "gquick look" estimate of polari-
zation can be obtained, however, using a procedure originally suggested by Lyot (see Kuiper, 1947).

The linear polarization of radiation reflected from an atmosphere arisesin large part (but not
entirely) from the singly scattered light. A reasonable estimate is therefore to compute the intensity
difference due to primary scattering (111) - 131)), where I, and [, represent the intensities with
electric vector perpendicular and parallel to the scattering plane (the plane containing the directions
of incidence and emergence), respectively; and divide this quantity by the total intensity, either
computed theoretically in the absence of pojarization {i.e., from the scalar transfer equation or an
approximation as in the previous section) or derived from observation. The percentage of linear
polarization is then

P - 1)
P —1 (67)

which witl be a function of angles of incidence and reflection, as well as the parameters characterizing
u -
the atmosphere (wo, Tpe phase function}).

Computation of the first order intensities in each polarization requires that a form be assumed for
the phase matrix. For very small particles, Rayleigh scattering may be used. For spheres of any
diameter, Mie theory is appropriate {e.g., van de Hulst, 1957}. Radially inhomogeneous spheres lead
to a modification of Mie's original theory (see Olaofe and Levine, 1967)}. Tabular material, as well
as a description of the integration over particle size distribution which is normally required, is
given by Deirmendjian (1969).

If the particles have dimensions on the order of the wavelength or larger and have typical
crystalline forms, no general theory exists for computing the phase matrix.

5. PRECISE NUMERICAL METHODS

In this section, we shall consider methods for solving muliiple scattering problems which may be
made arbitrarily precise by choosing a sufficient number of, say, Gaussian integration points in a
necessary numerical imtegration. Such methods are necessary to obtain precise solutions when the phase
function is highly anisotropic, as will normally be the case in planetary atmospheres. Those methods
which carry analytical procedures as far as possible will be considered in the next section; they also
ultimately require numerical methods, such as the solution of an integrai equation.

It is possible to combine any of the methods in this section with a procedure to "separate off" the
extreme forward diffraction peak in the radiation field that occurs in low order scattering by particles
large compared with the wavelength. This may be done efther by re-defining the phase function to
exclude this peak (and appropriately renormalizing 30 and Tgh cf. van de Hulst, 1971a; Hansen, 1969)
or by separating the radiation field into two parts with the aid of a "small angle" approximation such
as that employed by Romanova {cf. Malkova, 1972; Irvine, 1968).

21



The different methods discussed below each have certain advantages and disadvantages, and the choice
will depend to some extent upon the particular problem being solved. They all require access to an
electronic computer of at least moderate size. HWe shall limit the present discussion to finding
intensities averaged over azimuth, since each component of an expansion of the intensity in a Fourier
series in azimuth may be found in the same manner, and the zeroth order term is numerically the most
difficult to compute [see next section; Dave and Gazdag, 1970; and van de Hulst, 1971).

A. Adding or Doubling Method

The antecedants of this procedure apparently go back to Stokes (1862), who considered the trans-
mission and reflection by a stack of glass plates. The principle is simply stated: if we know the
complete reflection and transmission properties R(u,uo) and T(u,uo) of each of two layers, we may
find the reflection and transmission from the combined layer by camputing the successive reflections
back and forth (and the corresponding loss to transmission) between the two Tayers. The infinite series
comprising the reflection or transmission in fact converges quite rapidly to a geometric series, so
that the required sum is quickly obtained (van de Hulst and Grossman, 1968). A detailed numerical
procedure is described by Hansen (1969). Tt consists essentially of repeated numerical integration
over angle to obtain each successive reflection and transmission. The same method was developed
independently by Twomey et al. (1966).

What is 1n essence this method has been developed independently by several authors in different
fields. A helpful historical summary is given by Plass et al. (1973). Because the calculation of
the series is equivalent to inverting a matrix, the method has received a variety of applications,
including matrix operator theory (cf. Kattawar et al., 1973) and discrete space theory (Preisendorfer,
1965; Grant and Hunt, 1969). The most detajled study of the precision, error propagation, and appli-
cation to inhomogeneous atmospheres has been given by Grant and Hunt (cf. Hunt, 1971}, who also showed
that the procedure can be used to obtain the internal radiation field (including the case with a
distribution of internal energy sources}.

In the Timit in which all layers ta he added arc infinitesimaliy ihin, tﬁe equations lead to the
invariant imbedding theory used extensively by Bellman, Kalaba, Ueno, and others (e.g., Bellman, 1969).
The Grant and Hunt algorithm to obtafn the internal radiation field leads in the same 1limit to the
Riccati transfoymation equations of Rybicki and Usher (1966).

Given a reliable integration scheme, the difficulty is only in obtaining R(u,uo) and T(u,un)
for the constituents layers. We may distinguish two cases. If the atmosphere is homogensous, we
begin with a Tayer of known properties and successively double its thickness. Conceptually the
simpiest procedure is to begin with Tayers sufficiently thin (10 << 1) that only single scattering is
important. Hansen (1969) takes initial values of T = 2‘25, while Irvine (1968} has obtained at
least one per cent accuracy by choosing Ty = 2'9 . A layer of optical thickness T = 32 {for many
purposes semi-infinite) is obtained following thirty or fourteen doublings, respectively. It may be
possible to take a coarser angular grid if the initial Tayer is chosen somewhat thicker (TO a1/2),
in which case the first R and T must be found from anather method, such as successive scattering
{see below and van de Hulst and Grossman, 1968).
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1f the atmosphere is inhomogensous, layers of different reflection and transmission characteristics
are added at each step, If each layer may be taken to have a finite width, the procedure is essentially
the same as before, with a Jittle added bookkeeping to construct each layer and then add them together,
This will frequently be the case in practice, since our knowledge of the gradient of (for example) mn
in an atmosphere will normally not be sufficiently accurate to warrant a more detailed procedure.

If, however, we wish to compute a model with continuously varying optical properties, the speed of
the adding method is largely lost, and it may not have an advantage over method (C) below.

This method has a number of advantages:

1) the numerical procedure is straight forward, involving only integrations
over angle;

2) a physical interpretation of the results is available at each step;

3) there s no difference in principle in the program for isotropic and
for highly anisotropic scattering, although in practice more Gaussian points
must be used in the integrations when the phase function is anisotropic;

4} results are obtained for a range of angles of incidence {those used in
the integration scheme);

5) results are obtained for a range of optical thicknesses beiween the
final value and the starting value.

Drawbacks of the method ave:

1) a complete new computation must be performed if the single scattering
albedo $0 is changed (as will occur as a function of frequency within an
absorption line or band);

2) the method must begin with extremely thin layers or with results
obtained from another method;

3} if only one angle of incidence is required in a given application, the
method may be Jess economical for a layer of relatively small thickness
(TO £ 1) than other methods in which w, is given as a parameter.

B. Successive Scattering

Like the previous method, the physical reasoning behind the method of successive scattering is very
simple: compute the intensity by adding the contributions due to photons which have been scattered
once, twice, etc.:

I{r.2) =2, up 1,(T.2) (68)
n

where In(T,Q) is the intensity due to n-times scattered photons in the conservative case [30 =1).
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Mathematically, this procedure corresponds to finding the Neumann series solution to the integral
equation for the source function.

In addition to physical simplicity, the great attraction of the method lies in the ability to relate
the solution to a problem for arbitrary $0 to the solution for 30 =1 and the same optical thick-
ness Tg . This means that in a set of models within which the ratio of scattering to absorption
{i.e., %0) is changing, while the optical thickness remains constant, only one radiative transfer
problem need be solved (to obtain the I, for BO = 1). 1n the case of absprption line formation,
this situation will apply to semi-infinite atmospheres (for which gt in both the continuum and

the line).

It has long been recognized that the series (68) converges extremely slowly for T Z 1 unless
$G << 1. Van de Hulst and Irvine (1962) have pointed out, however, that the ratio of successive terms
In/In-1 approaches a constant value as n increases, so that the sum in Equation (68) may be truncated
and the remainder replaced by a geometric series. The approach to this situation is slow, however, for
T 1.

Of perhaps greater significance is the discovery {Uesugi and Irvine, 1970) that even for T, = ,

]

In approaches an asymptotic form as n + e . In practice, this enables the method to be used even for
extremely thick atmospheres {cf. van de Hulst, 1970). The appropriate asymptotic expressions for

1 << g have not been worked out, however.

The necessary equations to be used in a numerical computation are presented in van de Hulst (1948)
far the case of isotropic scattering, in Irvine (1964) for the case of an arbitrary phase function with
Tg <@ and in Uesugi et al. (1970) for g Successive numerical integrations over angle and
optical depth are required unless g The usual procedure has been to use Gaussian integration
(or some variant such as Radau integration) for the former and a Simpson rule approach to the Tatter
(evenly spaced points are desirable in the T-integration because the value of the integral is needed

at all intermediate values of <),

Of considerable importance is the immediate applicability nf the method for finite g vertically
inhomogeneous atmospheres, which requires no substantive change in the procedure. Another advantage of
the procedure (applicable to small TU) gceurs if only one angle of incidence is important in a parti-
cular abpplication. The method gives an answer for that value, without wasting computer time determining

the intensity for all other values of the parameter 6 -

Disadvantages of the successive scattering method remain slow convergence for (1 - %0) << 1 and

Ty 2 1; and, if the intensity is desired as a function of Mg » the necessity to solve a new problem
for each such value to be considered.

C. Invariant Imbedding

As we have mentioned above, if the layers being added in the adding method are very thin, the pro-
cedure reduces to the method referred to as invariant imbedding. The origin of this method in radiative
transfer theory lies with the "principles of invariance" introduced by Ambartsumyan {1943) and extended
and generalized by Chandrasekhar (e.g., 1950). The invariant imbedding equations form an initial value
(at Ty = 0) problem for the determination of the radiation field. Its practicality for use as a
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numerical method has been demonstrated by Bellman and his colleagues {e.¢., 1963), Because a thick
layer is built up only slowly, however, the method would seem to have been superseded by Method A.

D. Spherical Harmonics and Discrete Ordinates

The spherical harmonics procedure was used in a low order of approximation in neutron transport
theory, but generally discarded with the advent of larger computers. Recently, however, adaptation of
the method to such machines has given promising results {e.g., Devaux and Herman, 1971).

Since the spherical harmonics form a complete set, it is natural to approximate the m-th azimuthal
companent of the intensity (see Section 6) at an optical depth 1 by an expression of the form

L
M(x,u) =3 (20 + 1) AT PR(W) (69)

n=m
In the p-th order of approximation, L = 2p -1+ m > N, where N 1is the number of terms retained in a
Legendre expansion of the phase function. Substitution of (69) into the equation of transfer leads to
a system of first order, Tinear differential equations for the coefficients A;(r). The boundary con-
ditions that no diffuse radiation be incident on the atmosphere from outside cannot be satisfied for
ally by an expression like (69). Instead one may choose, for example,

1 ;
| ™Mo PTG - 0 (70)
0

for j=1,2, ..., p.

If the atmosphere is homogeneous, the solution to the coupled differential equations takes the form

.i
-t tfu
n e 0

P .
M= 2 kgl e ™ wn (71)
&, |

where the g; are defined by a system of 2p linear homogensous algebraic equations, the k; are
specified by the boundary conditions, and the h; are defined by another system of algebraic equations,
The constants v; are the roots of the characteristic equation obtained from the condition that the
equation system for the g; have a nontrivial solution. The only numerical difficulty in this pro-
cedure is the solution for the v& . which, however, is simplified by the fact that the values in the
{p-1)-st approximation provide a good approximatian to the (p-1) smaller roots in the p-th approxi-
mation. In the limit as p + = , this solution leads to the exact eigenfunction solution obtained by

Case and co-workers (see sub-section E below).

If the atmosphere is inhomogeneous, the equation for the A; may be solved by finite differences.
Suitable linear transformations eliminate possiblie instabilities.

The spherical harmonic method for m = 0 leads to equations identical to those obtained by the
method of discrete ordinates, proposed by Wick (1943) and developed by Chandrasekhar (1950). The
approach here s to replace the integral term in the transfer equation (74) by a Gaussian gquadrature
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sum, so that we obtain a system of linear, differential equations for the 2p functions I™(t,u.} ,
where the discrete values uy are (for the strict Gauss formula) the roots of Pzp(u). When m # 0,
the equations differ slightly from those obtained by the spherical harmenic method, but the method of
solution remains the same.

The method has the advantage that the formulae have been worked out in detail for the homogenecus
case (Chandrasekhar, 1950); increasing the number of directions for a given choice of p does not
appreciably change the computation time; if the atmosphere is homogeneous the computation time s
independent of 15 and the angle of incidence appears only in the last stage of the computation, so
that several values of up may be treated without a large expense of computer time.

The principle drawbacks of the method seem to be that it is difficult to abtain an a priori idea
of the accuracy of a given order of approximation; the computation time increases with increasing
anisotropy of the phase function (increasing number of terms N in a Legendre expansion); and numerica
difficulties occur in the solutfon of the characteristic equation for v when N 3 30.

E. Eigenfunction Expansion

This elegant procedure will be discussed at this symposium by Professor Kuf¥er (cf. also Case and
Iweifel, 1967; Pahor and Zweifel, 1969), so that I will not dwell upon it here. It provides a complete
rigorous, mathematical solution once the eigenfunctions have been obtained for a particular problem.
Much analytical work has been done, but the final expressions are relatively complicated. There has
hot yet been much in the way of numerical results for the case of anisotropic scattering of most
interest to this paper.

F. Gauss-Seidel Method

The method of successive scattering can be looked upon as a way of iterating an initial estimate
of the solution (first order scattering) to obtain a final solution. The speed of caonvergence of such
an iterative procedure can be considerably enhanced by using the Gauss-Seidel procedure, ag hac been
demonstrated by Herman (e.g., Herman and Browning, 1965). The procedure, 1ike the successive scattering
approach, is essentially unaltered if the atmosphere is vertically inhomogeneous, and it is easily
modified to include polarization.

The principal drawback of this approach is its apparent limitation to relatively thin atmospheres
{t X 5}, and the necessity to re-solve the problem each time the single scattering albede is changed
in a homogeneous atmosphere {unlike the successive scattering approach).

G. Monte Carlo Method

Given enough computer time, there is probably no radiation transfer problem in planetary atmosphere:
that cannot be solved by means of the Monte Carlo method. Basically, a Monte Carlo computation follows
one photon at a time on a three-dimensional traversal of an atmosphere. The interaction of the photan
with the atmospheric constituents is described by defining suitable probability distributions.

Consider, for example, a Rayleigh scattering atmosphere. The scattering phase function is

plu) = 20 +1%) (72)
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50 that the probability that a photon is scattered through an angle 8 is given by the probability
distribution

cos B 1
P(cos &) =I plu) du/[ p{u) du . (73)
-1 -1

In a Monte Carlo calculation of the process, a random number uniformly distributed between 0 and 1 1s
generated and equated to P(cos 9), which thus determines cos 8., Distances between collisions and
reflactions off surfaces may be handled in the same manner. For most applications, where reflected or
transmitted intensities are desired, the photon is followed until it emerges from the atmosphere, when
its direction is recorded.

It is obvious that very many photons must be followed for the method to have any value. Since
Monte Carlo programs can use up huge amounts of computer time, most of the mathematical sophistication
goes not into setting up the problem, but in finding ways to make it run more economically. FPrograms
may involve upwards of 106 photons and take hours to run, so it seems prudent that Monte Carlo calcu~
Tations be avoided if there is any other method available to solve the problem at hand.

The ability of the Monte Carlo method to treat radiation transfer in the terrestrial atmosphere is
shown in a long series of papers by Plass and Kattawar. Of these, specific reference is made to Plass
and Kattawar (1968) where the Monte Carlo program is ‘described and to Kattawar and Plass (1968) where
polarization is included. Danielson, Moore, and van de Hulst (1969) describe a Monte Carlo program
for plane-parallel atmospheres with a Henyey-Greenstein phase function. Sanford and Pauls (1973) used
an "inverse" Monte Carlo technique in studying circumstellar dust shells. This method follows photons
backwards from the detector and gives improved statistics.

This method may be the only practical approach for difficult gecmetries (see below}, but it should
probably be avoided if other methods are available. Another possible application is in obtaining the
distribution of path lengths traveled by photons, which can be used to solve spectral line problems
{see Section 7 below).

6. ANALYTICAL SOLUTIONS

Considerable progress has been made since the time of earlier reviews (van de Hulst and Irvine,
1962; Busbridge, 1960; KuiZer, 1958) in the rigorous analysis of radiative transfer for general
anisotropic scattering. The approach of Case and others was mentioned in Section 5(E) above. An
alternative {but related) approach is the expression of the solution in terms of functions of one
variable which may be determined from appropriate integral equations. This method is associated with
the classical H, X and Y functions. The necessary functions may be specified either by non-linear
integrat equations plus necessary canstraints to insure uniqueness, or by Tinear singular integral
equations with corresponding constraints. It has been shown in recent years that the solution for
any phase function expressible in a Legendre expansion can be obtained in this way. As the auxiliary
functions which arise in this process are often referred to in the literature, and the terminology can
be confusing, it seemed advisable to present the solution here. Note that it is not clear that in the
final numerical computation this method is superior to the others described in the preceding section.
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The complex of algebra required for quite anisotropic scattering has thus far prevented the develop-
ment of a general algorithm using this method, and very little is available in numerical results for
such cases. Nonetheless, it is useful to have the analytic form of the solution available for an
arbitrary phase function, approximate and asymptotic formulas can be obtained rigorously, and it may
in the future be possible to successfully program such a procedure for machine computation. Note,
however, that the method has thus far been developed almost entirely for homogeneous atmospheres
(however, see Sobolev, 1972, Ch. III).

We shall treat the general problem of an azimuthally dependent radiation field, since this will be
frequently encountered in practice. Consider, then a homogeneous, plane-parallel layer characterized
by a phase function p{ cos ¥), a single scattering albedo $0 » and an optical thickness Tg « We
use coardinates such that & 1{s the polar angle with respect to the downward normal in the atmosphere,
¢ 1is the corresponding azimuthal angle, and we set u = cos 8, @ = (8,4). Let parallel radiation be
incident 1n a direction 90 = (eo, ¢ = 0) with a flux =F through a surface oriented perpendicular
to the radiation. We measure the optical thickness 1 downwards from the top of the atmosphere,

The diffuse intensity I(t.ﬂ,ﬂo) = I(T,u,u0,¢,¢0 = 0) satisfies the equation of radiative
transfer:

I AT (74)

where the source function B(T,Q,QO) is given by

2 @ ~tfu
B(1,82,05) = I?TS dej du' pla,a') I(r.0' ) + -}E— Fe 0 p{fig) . (75)
0 -1
We shall expand the phase function as
N
plcas v) = 1 + }E WPplcos 1) (76)
n=1
with
, 1
g[ d{cos y) pleos v} = 1 (77)
=1
50 that
N
p(2,2') = pOlu,n') + 2 21 P"(ksk") cos mig - ¢') (78)
m:
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with

N
PMus') = D Pl Pt (79)
i=m

and

2

cosy=un +/ 11" /1 -wF cos (o -¢)

In Equations (76) and (79), Pn(u) and Pﬂ(u) are the Legendre and the associated legendre polynomials,
respectively. We may then expand the intensity in a cosine series in azimuth, so that

N
I(Tsu !U0’¢) = IO(TIL\ :Uo) + 2 Z Im('r,u,pc) cos mo s
m=1

(80)
N

B{TMskpoth) = BD(T,u,u )y +2 EE B™(1.u.u,) cos me
0 0 m=1 ¢

Substitution of (80) into the transfer equation shows that each azimuthal component ™ satisfies a
separate transfer equation with a source function 8" . If the B™ are known, we may integrate these
equations to obtain

T

Im(r,u.uu) = 5 gﬁl-Bm(T',u.uo) elr-t')/u u>0
0
1 (81)
™(t,ua4) = -j g%'_ CRICHRTRTY ety
T
The radfation field is thus determined if we can find the Bm(r,u,uo).
If the internal radiation field is desired, we may set
N
Bm(t,u.uo) = ;g% c; PT(u) B?(T.uu} . {82)

The BT are in turn determined from an integral equation whose solution may be expressed in terms of
functions H™u) if the atmosphere is semi-infinite, or X"(u) and Y™u) if the atmosphere is
finite. For details, see Sobolev (1972).
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We shall 1imit the further discussion to the radiation emerging from the atmosphere.

A. Semi-Infinite Atmospheres
The reflection function R(u,u0,¢) = I{t = 0, -u, Hge ¢)/F din this case may be expanded in the
corresponding azimuthal series as
N

R(usugs¢) = Ro(u.uo) 2 Rm(u.uo) cosmp . u>0 (83)
m=1

Each azimuthal component may be expressed in terms of auxiliary functions ¢T(u) as

by #70) o7
H o
RmUsUU _'_40_ z C .I+m "-""—-'-—1 " 0 (Baa)
i=m L
Each ¢T(u) may in turn be expressed by means of an H-function H™.
$%(u) = a ) P(u) ™) (84)

where the q? are polynomials which must be determined by solving a system of linear algebraic
equations. One form of this system is

N
:
m m
) = R+ 2 [ M)+ ML 6]« §aw G gy (85)
k=m+1 0
whars tha R?k(“} Way be Tound run the recurrence relation
(= me) Riyy )+ (8 4 m) RY) () = (2040 - S BT, () (86)

with Rﬁk{u) =1 and RTk{u) =0 for 1< k, and the ng are defined by

9ik(e) = 60 RG] - ) R o)

{87}

n N
W,
) < 2 pn) EEL < RT () PTw)
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A further discussion of the determination of these quantities is given by van de Hulst (1970c).

The appropriate H-function for the m-th azimuthal component satisfies the non-Tinear integral
equation

1
My = 1 ) | S g (88)
0 |

ptop

where Wm(p) = Wm(u) is the characteristic function for the given phase function (79). Equation (88)
1s usually solved numerically by iteration. Alternatively, H" may be found from the non-linear integral
equation

. .
W) T = 1+ | Put) W) )
0

which may be solved explicitly if the function

1 .. :
TMu) =1+ Uj W (90)

o=
-1

is not too perverse (cf. Mullikin, 1964, who has also examined in detail the uniqueness of solutions
to (88) and (89), a question further investigated by Pahor and Kuscer, 1966).

B. Finite Atmospheres

The functions R, T, ¢T, w?, X™, and Y™ will all be functions of 30 and Tgs but for simplicity
we shall not indicate this dependence explicitly . HWe then find that the reflection function can
sti11 be expressed in the series (83), while the transmission function has the corresponding expansion

N
T(UsuDs¢) = TO(U:UQ) + 2 z] Tm(]—'-s]—'-o) cos mg . (91)
m:

The expansion components are expressed in terms of auxiliary functions by

ny m m gm m
Rm(u,uo) - %)- i c?(__l)-i.'.m ¢-'| {v) ¢-'| (U3)+ uw.l (u) \l'»'.i (UO)
j= 0
(92)
a N om m m m
#Mtug) V1) - o700 W)
(i) = %ﬂ‘z-:? ito! VP77 B P %o

j=m ¥ - UU
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where the auxiliary functions may be expressed in terms of X- and Y-functions:

o) = ) ) + (1T ) STnD PRc)

{93)

i

W) = D) sT0) + GOV ] PR

The r?(u) and s?(u) are polynomials to be determined from an appropriate set of linear algebraic
equations similar to {85) {Sobolev, 1972).

The X" and Y" are determined either from non-linear equations of the form studied by
Chandrasekhar {1950} and Busbridge {1960):

1 .
Teu e T ey ) - ) )]
0

X" (u)

(94)
-T4/U L [
My se O e T ar YO i) X - v X))
0

or from linear singular equations {cf. Leonard and Mullikin, 1964; Carlstedt and Mullikin, 1966)., In
each case, appropriate constraints are necessary.

7. FURTHER COMPLEXITY

The theoretical models which form the basis for the methods and results described in the last three
sections are sometimes too simplified to elucidate actual physical situations. We shall now comment
briefly on the extension of the theory into more complex situations.

A. Horizontal Inhomogeneity

Anyone who has flown above a cloud deck must have observed the striking departures from the
idealized plane-parallel state which frequently occur. Humps and troughs, towers and valleys, rifts
and gaps are present. What will their effect be on the angular distribution of reflected intensity?
On the strength of absorption lines as a function of position on a planetary disk? On the polarization?
These questions have hardly been posed, let alone answered.

The only approach for planetary atmospheres used heretofore in this situation seems to be the
Monte Carlo method. The results suggest that the presence of deep towers and troughs, such as might
be expected for cumulus clouds on Earth and perhaps on a planet with violent convective regions such
as Jupiter {cf. Squires, 1957), can profoundly influence the form of the radiation field emerging from
the atmosphere. The difference from the plane-parallel case is particularly marked when absorption is
present (30 < 1; ef. Van Blerkom, 1971). In addition, the presence of horizontal striations will of
course introduce an azimuthal dependence in the radiation field. even if the phase function is isotropic.
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Figure @ has been kindly supplied by Appleby (private communication) and shows the center to Timb
variation of the equivalent width for a weak line observed in a planetary spectrum at opposition. A
simple square line shape was used, and a square wave cloud profile with maxima (and minima) running
normal to the scan direction has been assumed. The resulting curves are qualitatively similar to those
obtained by Hunt (1971)for avertically inhomogeneous atmosphere, and show the possible pitfalls of
interpreting observational data with an oversimplified model (even though Hunt's models are themselves
the most sophisticated yet applied to the Jovian atmasphere!}.

In my opinion, investigation of this problem should have a top priority within present multiple
scattering theory.

B. Shadowing and Surface Reflection

If the constituent scatterers making up a particulate medium are sufficiently close together that
the wavelength

A << péin (95)

where p 1s the particle radius and & 1is the mean free photon path (or the slant thickness of the
layer, if that is smaller), they will cast shadows on each other (see the last paragraph of Section 3).
I such a medium is viewed from the direction of incident radiation {scattering angle v = w), no
shadows can be seen. This phenomenon can be observed around an airplane shadew when flying over a

rough ground, around one's own shadow cast upon dewy grass, apparently also in the "opposition effect"”
or anomalous brightening at small phase angles observed for a number of astronomical objects (including
the Moon, Mars, Saturn's rings, and certain asteroids), and also for powdered surfaces in the laboratory
{Oetking, 1966). Analysis of the effect may be viewed as part of another largely untouched theoretical
problem, the nature of the reflectien from natural surfaces.

If the “surface particles" may be taken to be randomly distributed in three dimensions, the problem
may be reduced to the computation of a correction to the usual multiple scattering theory, at least
in so far as diffraction of 1ight into the shadow behind each particle may be neglected {Irvine, 1966).
The environment within Saturn's rings probably approximates such randam conditions, but the necessity
for particle support in the vertical direction means that it cannot strictly apply to a surface. None-
theless, Veverka (1970; and private communication) has obtained good agreement with the observed re-
flectivity of the Moon and of powdered surfaces using the Irvine (1966) procedure.

Further comparison of theory and experiment is clearly needed. The case of partially transparent
particles (1 - 30 << 1) is particularly important. In this case, muitiple scattering will predominate
and it is important to determine if the opposition peak will be washed out. There is as yet insufficient
laboratory data available for comparison with theory. Both observational and theoretical investigations
of additional types of surface are of fundamental importance in many radiation problems, including the
reflection from planetary atmospheres adjoining such suffaces. It is interesting in this regard that
even small objects in the solar system seem to have a low density regolith (e.g., Phobos and Deimos).

C. Computation of Spectra

Absorption spectra formed by diffuse reflection or transmission of solar radiation through a
partially absorbing planetary atmospheres call for special attention. Both the line shape
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'y = T {(96)

and the equivalent width

W= jd\.l (1-r) (97)

are of interest, where IC is the intensity in the continuous spectrum adjacent to the line and I\J
is the intensity in the line,

To obtain a precision comparable with that obtainable by modern observational procedures, a
theoretician must evaluate Iv at a large number of frequencies within the absorption band. At any
given frequency, if the assumptions referred to in Section 3 in this connection are valid, any of the
methods described in Sections 4-6 may be used. The requirement of multiple calculations may, however,
change the computing economics involved in choosing the optimum procedure.

It is possible, provided p{cos y) 1s independent of frequency within the limited frequency range
of the absorption feature and that the atmosphere is homogeneous, to reduce this problem to the solutior
of a single transfer problem in the continuum plus the performance of a quadrature or sum. This pro-
cedure requires a knowledge of either the probability distribution of photon path lengths travelled
by the reflected 1ight { Appleby and Irvine, 1973; Kargin, Krasnckutskya, and Feigel'son, 1972) or the
intensity corresponding to successive orders of scattering {Uesugi, Irvine, and Kawata, 1971).

Both these procedures also provide some physical insight into the nature of the line
formation process. Results at present are Timited to homogeneous atmospheres, but with this restrictio
the method looks promising. Because of the smoothing character of the integration process which
specifies the intensity, it would seem that great accuracy is not needed in the determination of the
probability distribution, and approximate or numerical results have been obtained by van de Hulst

(ihis Symposium) and Romanova {1965} as well as by the authors cited previods]y.

The alternative approach, through successive scattering, is limited at present to homogeneous, semi
infinite atmospheres. The procedure is straightforward, and the asymptotic theory developed by van de
Hulst (1970) may simplify the computations.

D. Polarization

Strictly speaking, all multiple scattering problems should be solved taking polarization into
account, since the electromagnetic field is a vector field. The approach to such problems is con-
ceptually quite simple; it consists of replacing the scalar equation of transfer {74} by a vector
equation of exactly the same form except that 1+ I, a vector whose four components are the Stokes
parameters, and p —+ p, the phase matrix which specifies the polarization produced in a single act of
scattering and whose sixteen components generally satisfy a number of equalities.

Precise numerical methods such as the adding method may be generaiized to include polarization,
and the results indicate that if only the total intensity (or flux) is desired, computations made with
scalar equations will normally be accurate to a few per cent. Computation of the polarization, of
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course, requires use of the vector equations. We shall not discuss this question further, but refer
the reader to the recent review by Coffeen and Hansen (1973: c¢f. also Hansen, 1971).

Analytical work on the polarization of multiply scattered light for anisotropic phase functions is
largely absent (cf., however, the symmetry relations discussed by Hovenier, 1969). This is ancther
field where further research is very desirable. Considerable insight into both computational methods
and physical results has been gained from the extensive work of Hansen and Herman {cf. Coffeen and
Hansen, 1973; Herman et al., 1970).
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TABLE 1

I. Semi-Infinite Atmospheres (H-functions)

A. Isotropic Scattering
1. D. W. N. Stibbs and R, E. Weir {1959)
0says s = 0{0.05)7
Interpolating polynomials given

B. Linearly Anisotrepic (p = 30(] + X cos 6))
1. Chandrasekhar (1950) paragraphs 46-47
p = 0(0.05)1
ty = 0.1(0.1)0.9(0.025)0.975 for x = 1
x = =1.0(0.2)1.0 for &y = |
Z. D. L, Harris (1957)
u = 0{0.05)1 x = =1{0.21
ty = 0.975

3. V. V. Sobolev {1956}, Tables 6 - 8
uo=0{0.1 Wy = 0.4(0.1)1
x =1
More extensive tables are contained in Minin et al. (1963)

€. Rayleigh Phase Matrix
1. X. D. Abhyankar and A. L. Fymat (1971)
30 = 0(0.l)0.6(0.05)0.8(0.025)0.9(0.01)0.98(0.005)0.995(0.001)0.999
o= 0(0.01)1 ’

2. J. Lenoble (1970}
Wy =.0.2(0.2)0.6(0.1)0.9(0.025)0.95(0.01)0.99
=

0{0.05)1

3. S. Chandrasekhar (1950), paragraph 70
ty = 1, u = 0(0.05)1

4

3
D. Rayleigh Phase Function {p = -751(1 + cos2 8))

1. J. Lenocble {1970}
Eu = 0.2(0.2)0.6{0.1)0.9, 0.925, 0.95{0.01)0.99
u = 0(0.05)1

£

2. Chandrasekhar (1950), Table 21
g = 1 u = 0{D.05)1
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E. Other
1. A. K. Kolesov and 1. 0. Smotkii (1972}
p=]+zx1pi(p) i=1:--433

EU =1 u = 0(0.1)
selected X3

2. V. V. Sobolev (1972}, Chapter VII
p=1+2 X3 Pi(“) i=1,...,2

30 =1 p o= 00,1
{x'ls xz) = (}; ]) and (3/2: 1)
cf. A. K. Kolesov and V. V. Sobalev (1969} for more detailed tahles

3. A, K. Kolesov (1972)
Henyey-Greenstein phase functions

4, Fymat (1971)
Rayleigh-Cabannes phase matrix (Tinear combination of Rayleigh and isotropic scattering)

BU = 0(0.1)0.6(0.05)0.8(0.025)0.9(0.01}0.98(0.005)0.995(0.001)0.999
u = 0(0.0111
q = depolarization factor = 0.4{0.5)0.95

I1. Finite Atmospheres {X and Y Functions)

A. Isotropic Scattering
1. J. L. Carlstedt and T. W. MulTikin (1966)
= 0(0.01)1.0 by = 0.3(0.1)0.9, 0.95(0.01)1.0
Tg = 0.2{0.2)3.0, 3.5
asymptotic formulae fer v ; 3.5

2. J. Caldwell (1971)
p=0(0.2)1
Ty = 0.5(0.5)4.5

ES
o

3. Y. Sobouti (1963)
po= 0(0.02)1.20(0.05)2(0.1)3(0.2)5(0.5)10(1)20
= 0.1{0.1)0.6(0.2)1.0(0.5)3
= 0.1(0.1}0.8{0.05)1
Values for u > 1 useful for certain problems

ES A
[T =]
1 [l
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4. R, Bellman et al. (1966)
30 = 0.4 [ty = 0(0.1)3]
30 = 0.9 [ty = 0(0.1)6]
%0 = 0.975 [1g = 0(0.1)10]
&0 =1.0 [t = 0(0.1)20]

7 angles from Gaussian quadrature

6. D. F. Mayers (1962)

u = 0(0.025)1

0.05 < T S 10

"

wy = 0.5, 0.8, 0.9, 0.95, 1

Linearly Anisotropic
1. 2

Rayleigh Phase Matrix
1. Z. Sekera and A. B. Kahle (19686)
Tg = 0.15, 0.25, 0.5, 0.7, 1, 2, 4, 8, 16, 100
iy =1 u = 0(0.02)1
2. S. Chandrasekhar and D, Elbert (1954)
L 0.05(0.05)0.25, 0.5, 1
W= 000.02)1 @y =1
3. K. L. Coulson, ¢. V. Dave, and Z. Sekera (1960)
T = 0.02, 0.05, 0.10, 0.15, 0.25, 0.50Q, 1
by = 1
Intensity and polarization, but not X and Y functions

Rayleigh Phase Function

1. A. V. Seigart (1970)
mo 0.3(0.2)0.7(0.1)0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 1
g = 0.2(0.2)1.0(0.5)3(1)5, 10, 20, =
20 Gaussian points for u
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14,
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FIGURE 3:

FIGURE 4:

FIGURE 5:

FIGURE 6:

FIGURE 7:

FIGURE 8:

FIGURE 9:

FIGURE CAPTIONS

Inverse diffusion length k as a function of single scattering albedo BO for a Henyey-
Greenstein phase function {17} with four choices of the asymmetry factor g = <cos y>.

Albedo of & semi-infinite atmosphere for isotropic scattering {p{cos vy} = 1) as a
function of single scattering albedo 30 and angle of incidence K- Crosses(uo = 1) from

the Eddington approximation (Equation 22), curves from the exact solution (Equation 21).

Albedo of a semi-infinite atmosphere versus angle of incidence Yo for the phase function
plcos ¥) = 1+ 1.5 cos v + Pz(cos ¥), where P2 is the Legendre polynomial of second order.
Exact results (solid 1ine) from Equation (21) compared with the Eddington approximation
(open circles, Eguatfon (22)), for three choices of single scattering albedo 30.

Spherical albedo AS of an isotropically scattering semi-infinite atmosphere as a function
of single scattering albedo 30. ‘

Plane albedo A(1) versus optical thickness Tg for normal incidence on a homogeneous
atmosphere with a single scattering albedo mo. The phase function is computed from Mie
scattering theory for spherical particles with an index of refraction m = 1.33 {cor-
responding to water droplets in the visible spectrum) and a size parameter 2 (radius)/
fravelength) = 20. The corresponding asymmetry factor g = 0.76. Approximate methods are
described in the text, exact results computed from the adding methad (Section 5.A).

Results shown for two values of ﬁo.
Diffuse surface illumination as a function of optical thickness Ty for normal incidence
and the same phase function as in Figure 5. Results shown for three values of the single
scattering albedo BU'

Escape function uo(u) far conservative scattering (30 = 1) with a Henyey-Greenstein phase
function (Equation 17) and an asymmetry factor g= 0.75. Straight 1ine is the approxi-
mation given by Equations (59) and (60).

Reflection function for a conservative (30 = 1) semi-infinite atmosphere with a phase
function characteristic of maritime haze (phase function A, g = 0.7861, from Irvine, 1968,
for normal incidence. Exact results (adding method; Section 5.A) compared with intensity
obtained for a source function found using the Eddington approximaticn. Exact results

for isotropic scattering shown for comparison.

Center to limb variation of the equivalent width W of a weak line computed for a planet
at opposition. Reflecting layer model (absorbing gas overlying perfectly reflecting
cloud Jcompared with "cumulus tower" structure as shown. R = radius of planet,

r = radius vector of observed point on (plane) disk of planet.
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SOLUTION OF THE RADIATIVE TRANSFER THEORY
PROBLEMS BY THE MONTE CARLD METHOD

G.I. Marchuk and G.A. Mikhailov
Computer Center, Siberian Branch
U.S.S.R. Academy of Sciences
Novosibirsk, Siberia, U.S.S.R.

There are a number of physical problems that require the exact calculation of radiative transfer
that includes multiple scattering and the detailed radiative model of the medium. First there are
problems of interpretation of optical observations from meteoralogical satellites in the short-wave
part of the spectrum. In some cases it is necessary to consider the sphericity of the atmosphere, the
propagation function and the polarization of the light. This problem is related to the satellite
orientation probiem, which demands exact calculations of the spectral brightness of the atmosphere
within the horizon line. The second important class of problems deal with the theory of the spreading
of narrow beams of Tight. As a rule in these problems it is necessary to determine such subtle char-
acteristics of the radiation field as the time-dependence of the intensity for a localized collimating
receiver with a slight divergence of the source, the perturbation of observed intensity due to insert-
fon of some object in the medium, etc. The latter prablem is connected with the development of
optical location method and method for transferring information with the help of aptical quantum
generator.

ot

ial transfer equatton with the corresponding boundary conditions. It is practically impossible to
solve this equation by means of classical methods of numerical mathematics (finite difference methods,
spherical harmonics, etc.), if real indicatrixes, non-homogeneity of the medium and polarization are
considered and if it is necessary to estimate local and temporal characteristics of the radiation field.
When the propagation function is used for calculating the scattered radiation field in the case of non-
homogeneous medium, the problem cannot be described by integral - differential equation and it must be
solved by the sequential calculation of the intensity of multiply scattered 1ight following the
increase of multiplicity. In many cases this can be practically realized only by the Monte Carlo
methods: the process of 1ight diffusion can be considered as a random Markov chain of photon collisions
with a substance, which lead either to scattering or to absorption of photons, The Monte Carlo method
is based on the simulation of trajectories of this chain by computers and the construction of the
statistical estimate of the desired functignals.

58



The construction of random trajectories for the physical model of the process is called direct
simulation. The mathematical aspect of direct simulation is in finding the optimal metheds for simu-
lating random variables by means of a computer. As a matter of fact the direct simulation of photon
trajectories does not differ from the neutron trajectories simulation or gamma-quanta, which is used
for the solution of complicated problems of nuclear physics. A number of methods for decreasing the
probable error of the algorithm are developed. As a rule these methods are, in effect, to carry out
the simulation on the medified model and to compensate for the resulting shift by introducing special
"weights" and by analytical averaging. The effectiveness of the application of different methods of
reducing the variance depends to a large extent upon the specifics of the problem. As a rule the
consideration of a new class of problems requires special investigation of the exactness of various
combinations of the well-known algorithms and the development of new modifications. In particular
work of this kind has been done for the solution of the problem of narrow beam scattering (together
with Kargin and Krekov) and for radiative transfer in a spherical atmosphere (together with Nazaraliev
and Darbinian). Different aspects of theory and practice of the Monte-Carlo methods as applied to
light scattering theory are considered in [ 2-6 ] and [ 18-20 ].

Direct simulation of 11ght scattering and the mathematical form of medium radiation model represen-
tation. As it has already been pointed out the radiative transfer process in the approximation of ray
optics represents a homogeneous Markov chain, realizations of which are particle trajectories in phase
space X= Rx 1 of coordinates r € R and directions we Q. As i-th "state" of the chain let us con-
sider point X; € % immediately before i1-th particle collisions. Let the distribution of the initial
collisions x = with the density ¥{x) be given. Random transfer from x; inte x;,, can be divided into
three elementary random events: (1) "the choice" of the scattering type {(for example molecular or
aerosol} or absorption, {2) "the choice" of the dispersion direction, (3) "the choice" of the distance
to the next collision. While solving the problems by the Monte Carleo method these random events are
consecutively simulated on the computer. If the absorption function is considered, then this function
argument {for example, effective mass of water vapour along the particle trajectory) is calculated, and
the estimate of the result is multiplied by the absorption function corresponding to the value of the
argument. If polarization is considered, the Stokes vector after simulation of the scattering is
transformed by a scattering matrix.Its components are the direction function before and after scatter-
fng (see [7,8]). The simulation of the polarization becomes slightly more complicated if the "dis-
persion" matrix { analogue of scattering coefficient [7]) is not scalar. In this case it is already
necessary to use "weight" multipliers which take into account the attenuation of the Stokes vector
components. along the path of the particle. For estimating the temporal distribution of the intensity
the time of particle motion along the trajectory is also calculated.

Before the methods of simulating basic random trajectory elements are considered we shall say
several words about the mathematical form of the representation of the characteristics of the radiative
mode] of the medium. The experience of Monte Carlo method calculations shows that the scattering
coefficient and the density of the absorbing substance for a non-homogeneous medium can be specified
most conveniently in terms of piecewise constants, i.e. to divide the medium into domains with constant
values of these characteristics. Scattering indices and absorption functions can be specified in terms
of tables with linear interpolation between points.
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The forms of model representation described above are apparently most appropriate for universal
calculation programs. But other analytical methods of representation permitting the simulation of the
path and the scattering direction can be used as well,

Now let us pass to the consideration of the random values that define the particle trajectory - the
dispersion direction and free path. Random values are usualiy simulated by the transformations of one
or more independent random numbers, uniformly distributed in the interval [0,1]. We shall denote these
standard random numbers by the symbol « with different indices. There exist different ways of genera-
ting random numbers and among them the method of recurrent correlations which produces a sequence of
pseudo-randem numbers is most commonly used. These sequences are quite determined, but the method of
the conversion from the previous number to the consequent one is arithmetically so complicated that in
totality the numbers obtained in this way possess many "random" characteristics. The method of residues
is most commonly used, for example in such a form {for computer BESM-6):

« 517 (mod 249), a =u , 2"

Different methods of random values simulation on the basis of distribution laws are described 1n
[9-11]. Let the probability density f(x) be given and let F(x)} - be the corresponding distribution
function, It is well known, that the random value '

g =F1 {a)
(1)
is distributed in accordance with the density f{x}. In cases when the function F ! (a) is not express-
ed in terms of elementary functions, the simulation with the help of formula (1) may be found too
difficult. In references[10,11] the question is studied on the determinatian of the suitable numerical
simulation formulae of the form:

£ = g(fi], azs---: ak )

In particular in [11] the most economical formula for the simulation of theRayleigh Taw for the cosine
of the angle of photon molecular dispersion in the atmosphere is determined in terms of the density

flx) = 3 (1), <1< x< .

Let o, @ e, o be independent and distributed uniformly in (0,1). Then the Rayleigh law can be simu-
lated by means of the formula

£

%—a -1, 0<cax

sign { o - %-) max ( @, aa), %—< a<1.,
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It is obvious that for 0 < o < 3/4  random numbers @, o, o may not be selected.

Photon dispersion indices for aerosols are usually given by the tables. Let us consider a corres-
ponding simulation algorithm, obtained with the help of formula (1). Let the probability density be

Tinear in each interval : X <X XKy, k=0,T1, ..., n, flx) = ¥y - Denote

Ye-1% ¥y
axk = Xpm Xy < 0y 5, = - = Iy

‘

n m
Evidently 3 s, =1. Llet M=o-> s <0, Ms >0
k=1 k=1

Then

] Ypdror Sy ()T - 28k {y -y, (M
m In ~ Y-

E= x

There 15 a certain interest in the most economical formulae for recalculating the particle path
direction coordinates at the collision, as obtained by Chentzov. Let @ be the Tatitude angle and ¢ the
azimuth angle of the new direction with respect to the previous one.

U =cos 0, 61 = /T - u” cos 4, 62 = /T =% sin by

a,b,c - are coordinates of the previous direction,

aZ+b2+ec?=1, ad, - bs, = A

and a', b', ¢', are coordinates of the new direction.
Then a', b', ¢' can be calculated by the formulae:

LI A I = A
a' =afu - + 8,5 b'= blu - - 82 0
1+ [c|) 1 1+ |c|) z

''=¢cu-Asignec.

¢
Since the angle ¢ is isotropic, & and &, can be calculated with the help of the following
algorithm:
a) independent o 1 %o are chosen and
x=1-20q, y=1- 20y are calculated;

b) ifm=x*+y2 <1, we assume
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if x2 + yz > 1 then the condition "a" is realized again, etc. Let us consider now the simulation

of the free path 1 of the particle. Let off) be a total coefficient of attenuation at the point

¥ of the space. Then the "natural" distribution function of the variable 1 is expressed by the

formula: X

F(x) = 1 - exp(—j U(FO + te)dt), x > 0,
Q

where ;0 is the initial point of the particle path, and u is a unit vector of the path direction.
Formula (1)} states that for obtaining the "sample" value of 1 it is necessary to solve the equation

F{1} = ¢, o€ [0, 1],

which is equivalent to the following:

1 .
So a (ro + tw) dt = - Tna . (2)

The latter eguation can be easily sofved, if ¢ 1is piecewise constant and {pi} distances are
calculated up to the boundaries of the constancy domains o along the path directions. The
algorithm for the calculation of the distances {p;} for the spherical geometry is described

in [4]. 1In [13] the most economical but complicated algorithm for calculating {pi} is developed
for practically arbitrary geometrical configurations of the medium.

Lately a rather simple method for simulating the free path has been developed, and it may
help to effectively solve some problems of radiative transfer in a medium with an arbitrary de-
pendance of o{F) by the Monte Carlo method. In [12] this method is described in the following
way. It is supposed that of¥) <9, = const. For the simulation of 1 two sequences of indepen-
dent "samplina" valuas aro constiucted: €] seees &g - With the density oy exp( - omx); I
+o.o for a distribution uniform in [0,1];

n
) £y
k=1
Let it be

N=min {n: a, < a(r+ £ @Y/ % 1.
Then 1 = o It is obvious, thai this way permits us to radically simplify calculations based on
the Monte Carlo method for many complicated problems. In [12] there is an awkward and complicated
procf of the indicated method of simulating 1.
Let us consider a very simple proof which makes the meaning of the method clear and permits
us to generalize it to a certain extent. To both parts of the transfer egquation

(@, grad 1) + o(F) I(F, &) = 5 7, &) o (F) o' + d)da' + 1_(F, a)
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we shall add corresponding parts of the equality
[0 - 0P 1, &) = | 1F By - o)1 56~ Bad

and combine the integral on the right hand side. The ordinary method of simulating 1 , corresponding
to the obtained equation, obviously, coincide with the method considered above. The proof given here
shows how to apply this method only within the 1imits of certain medium domains. It alsa becomes
obvious how to combine such a simulation of 1 with "weight" methods of calculation, which will be
considered below. It is known, that the average number of "physical” collisions is equal to

(o, 1) = ﬂ o(®) 1(F, B)dF du-

Hence the average number of collisions in case of the simulation of kinetic equation is equal to
( Oy o 1 }. These arguments may help in the case of the selection of the method of the particle
path simulation for the concrete problem.

Now let us consider the question of the evaluation of radiation intensity I(F, 3) by the
divect simulation. Only integrals of function I can be directly estimated within some domains of
phase space, using the fact that the term

J' alx)I(x)dx, where x = (¥, u) , Dex = R x &,
D

represents the average number of collisions in the domain D, and the surface integral

L ds j (@, ) 1{r, u)da,
By

{where T - normal to the surface S5 at the point r ), is equal to the number of the particles
crossing the surface in the divections & ¢ §kc: % . Hence we can estimate the average integral
values of the intensity by calculating the particle collisiaons or the intersections on some sur-
faces. Thus in fact the estimate of the distributions of the intensity can be obtained from the
histogram.

In [14] another method for estimating the distribution density is suggested, based on the
mean square approximation of the desired density with the help of systems of orthogonal functions.
Let f(x) be the distribution density and {p4 (x)} . i =1,2,...,m - the system of functions,
orthonormalized with the weight p{x] . The best mean square approximation of the function fix)
can be expressed in terms of linear combinations of the function pi(x) with the fotlowing co-

efficients:
ag = [ fxdelxlp;(x)dx = M.0.p(E)p; (&)

Let the sampling sequence x],.... Xy be obtained. Then the value
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Z p(xk)p"l (xk)
* _ k=1
a_l =

n

=

may serve as a statistical estimate for a; and for the function f(x) the function
* m
f{x) =X a".pyix).
i=]
This method is particularly convenient for estimating “smooth" distributions, when one may a priori
suggest that the distribution density is well approximated with the help of a small number of co-
efficients.

As a practical rule for the choice of the number of coefficients one may choose to consider
only those coefficients whose absolute value essentially exceeds the value of their statistical
error.

There exists a group of methods under the general title of "local calculation methods" for
estimating the intensity dirvectly at the point. These methods are beyond the limits of direct
simulation and will be considered later.

It should be noted that in the Monte Carlo calculations one may, together with mean
calculations, simultaneously estimate their meansquare error which defines the accuracy of the
calculations.

The Monte Carlo method and the general integral transfer equation. The process of shortwave
radiative transfer with the wavelength A may be considered as a homogeneous Markov chain where
the states of this chain are the "positions" of the particles in the phase space X =R x @
with the coordinates * & R and the directions o e immediately before the collisions. The
transport density k(x', x)dx 1is the collision probability in (x, x + dx), and the variable

p(x'} =1 - j kix', x)dx
X

is the probability of the “"death" ({i.e. absorption or escape) of the particle immediately after
collision at point x'. Taking into account the representation x = {r, &), where ¥ c R, w € 0,
one may write

o, 7)™ g u)stu - w e, () + o (1] | "

ki{x', x} = 3 2
2lo (') + o (F)1|F-7|

where g and o, are the total coefficients of dispersion and absorption respectively;
(r', ¥) is the optical length of the segment (r', Fiu = (o', 0); g{u) is the dispersion
index and. Go is determined by the relation
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1
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The general principles for constructing the most economical modification of the Monte Carlo method
for solving radiative transfer problems can be obtained by considering the transfer integral equation.

Fix) = j k(x', x)F(x')dx' + p(x), (5)
X

ar

f=KF + 3,

Here f(x} 1s the collision density at the paint x € X , ¢{x) is the "initial" collision
density, which can be conventionally considered to be situated in the field of the physical source.
It is supposed, that the selution of the equation (5) can be represented in the form of Neumann
series:

f=2 Ky, Ky=vp.
n=0
The function an represents the n-th order collision density from the "source" with the density
¢ . Different integral characteristics of the transfer process, as a rule, can be represented in
the form of Tinear functionals of the solution of equation (5).

j fx)¢(x)dx = za(K"w, $).
nz

1=t )

From here it is cbvious that

L

N
ME, &= 20lx),
n=0

where {xn} is the particle collisions chain and N is the number of the last collision. The
latter formula shows that for estimating the functional I¢ by the Monte Carla method it is necessary
to simulate the chain of the trajectories {xn} by means of the computer and to average the sums of
the values &¢(x) for the different order collisians.

Let us also consider the equation conjugated with (5} with respect to the function &(x)
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= | ko e + a0, (5)
X

It is easy to show that

I¢=(lp’f)' N

Hence supposing  w(x) = &{x - xo) » we pbtain f*(xo) = ¢(x0) + M :E% ¢(xn).
n=

The Tatter correlation may be used for approximately estimating the "value function" f*(x) in
the case of simulation of particle trajectories.

The "value" function plays an exclusively important role in the mathematical representation
of inverse problems of atmospheric optics [15].

The local calculation method and its modifications. The local calculation method is based on
the estimation of the particle flux at the location of the receiver. In reference [16] 1t 1s shown
that for obtaining an estimate of the total particle flux at the point x* = (F*, G*) it is
necessary to average the expressions in the following form for all the collisions:

- et P oY) 7

2 Il | - 72

*

where T(r, F*) is the optical length of the segment (¥, F*), i CosSE * s er is the angle
between the particle direction before the collision and vector ?* -F ., and g(u*) is the
scattering index. This statement can be proved in the following way. If we assume ¢ = §(x - x*),
we shall obtain

%=(ﬁ¢)=ﬂ;L

the expression
(F, 6) = (KF +y, 8) = (¥, 8) + (f, K')

shows that for estimating the functional I¢ one may use the function K*¢. But

L » *
[k +1{x} = j k(x, x*)6(x" - x )dx' = k(x,x ).
X
*
The variable k(x,x ) is determined by the expression (4). Integrating this expression over angles

we obtain a variable that differs from {7) by the multiplier o(r) . This can be explained by the
fact, that the flux density I(x) and the collision density f(x) are connected by the relation
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F(x) = I(x)of{x), x = (F, w).

Due to the muTtiplier I?* - ?lz in the denominator of the expression {7), the local estimate of
the particle flux has infinite dispersion. It is known, that the probability convergence of this
estimate is equal to 1/ 3_5_ {where N is the trajectory number instead of 1/ V¥ N in the
case of finite dispersion. Therefore in different ways one tries to obtain modifications of this
methad with finite dispersion (see for example [4] ) explaiting the properties of the symmetry of
the system. ‘

For estimating the angular flux distribution at the point ?* it is necessary to average
values FA,i s Where &i 1s the characteristic function of the angTe interval ﬂi y e.4.

In order to get a similar estimate averaged in the domain of the detector D , the point e
should be chosen randomly according to the known density p(?*), and the estimate of the flux {(7)
should be multiplied by the variable {D| / p(F*). Under this condition one may deal with the
choice of density p{F*) to get an estimate of the intensity integral with finite dispersion [6].

It is obvious that the estimate of the form of FA1 is not efficient, if ﬂi is a small
angular interval. This occurs for example when it is necessary to estimate the readings of the
collimating detector. In such cases the "double" local calculation method with random sampling
at an intermediate dispersion point in the domain, cerrespending to the interval Q; can give
a satisfactory result [20].

Modification of the simulation using information on the "“vatue" function. The method de-
veloped here includes algorithms for simulating based on "value" [16] which use approximate
information on the solution of the conjugate equation (6). Let g*(x) > 0. Let us consider
the homogenous Markov chain {xn} with the density of transfer probabilities

*
plx', x) = kxax) 9 () (8)
[k g I(x')
and with the initial density r(x} = 9{x)g(x} / (¥, g). Beginning with the transition Xiy > Xl
let us also introduce the "cut-off" prabability (or “absorption®) of the trajectories

Ep(x) i Gp < 1’
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Furthermore let N be the random number of the last (before the "cut-off") condition of
the chain and

* %
ng) = ii;_ﬂi) Q(o) w9 lnl [K'g 1(x5_q)

[ » n *x o ’
g (x,) g (x;)) 1= g (x;)
,ng), h<m,
n=1
Qn ‘ql(-'O)' n ] ] m‘:niNg
f=m T E:p{xij
0, n>N,

£ = ngo Qup(x, ).

If g*(x} > 0, then
MQo(x,)) = (g, ¢} and Mg = D0 (K'w, 0) = I, .
n=0

* * *
The condition g > 0 can be changed for a weaker one; g > 0 at f. > 0, because on the strength
of equation {6) and relation I. = {u, f*) the nnints where £ =0, can be excluded from the
space X. 1In [17] it is proved that in the case of 'g* = and Gp = 0 the dispersion of the

random variable £ 1s equal to 0. The estimate of the variable D¢ can be given under the
following conditions:

g*=mmﬂ1+af,kuﬂi6<1, (9)

1+ < 1.
1191 (1- 80 -s)

Let us notice that the condition {9} is fulfilled if
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Supposing c = 2 / (M, + Mz}, we have
* * -
g’ = (1+e)f, lel)] < fiqh< .

The lack of dependence upon the constant in expression (9) is a rather useful property of the method
considered here, e.g. it 1s sufficient to have information on the function proportional to f* . It
is well known, that the efficiency of the Monte Carlo method algorithms can be determined by the var-
iable S = tD£ , where t 1is average computing time for getting one "sampling" value of E . We
note that m dis the simulated collision number without absorption.

From the estimate for D& it follows that if sp(x) = 0(§) and m= | 1n 8| , then 11@ i 6 0.

w*
The relations given here show that the Monte Carlo method Algorithms for the arbitrary 0 < ¢(x) el
*
can be improved by using approximate information on f . In this connection it is appropriate to
select large values of m in the cases where "goad" approximation of the "value" function is used.

The density (8) simulation in real problems is carried out by the simulation of the corresponding
distributions of the “elementary” random variables: 1nitial coordinates X, the free path 1 and
the particle velocity direction @ . It can be demonstrated that if trajectory simulation is obtained
by multiplying the conditional probability densities of the variables x_ , ! and O by the “values"
of the points in phase space, then the probabilistic error of the functional estimate will be equal
to 0. In this connection the exact simulation based "on value" [7] is attained. Thus using a priori
information on the relative "value" of X 1, &, one may construct the algorithm corresponding to
the methad considered here.

*
It is necessary to make a remark about the value function fO » appropriate for the calculation
of several functionals I.

Let the function ¢{x) in addition depend upon a certain parameter t (t =1, 2, ..., 8} and
the demands upon the exactness of the estimate of the variables I(t) = (f, ¢t), where ¢, = d(x, t},

s
are determined by the weight u(t) > 0, and alse E% n{t) = 1. It is necessary, by means of sel-
t

ection of the modifying function g*, to minimize the variable

5
N A TOR
t=1

N
where E(t) = 2. Qn¢(xn, t) and Mg(t) = I(t). Let us determine the functions ¢, and f; by
n=0

s 1
the relations ¢g{x) = ( EE% o2(x, t) x u(t)) /2, f: = Kf: +4,, and let I = (f, ¢ ). Cal-

culating directly the variable. D1 and using the Helder inequality it is not difficult to show, that

* ¥
ifg =f, then
5

Dy <12 -3 Ptht).
=1
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The latter inequality is the reason for using approximate information about f: in the Monte
Carlo calculations.

With the help of a_priori estimates of the "value" function, effective algorithms were
obtained for solving problems of the theory of radiative transfer in a spherical atmosphere [4].
On the basis of the above discussion, the use of the asymptotic solution of the Milne

problem has been developed to improve the radiation transfer calculations through the layer of
a thick substance in the Computer Center of the Siberian Branch of the USSR Academy of Sciences.
The dependent tests method, the estimate of the derivatives and the solution of the inverse
problems. The dependent tests method for the solution of the transfer theory problems is based
on the fact that particle trajectories simulation in different systems is carried out in terms
of one and the same random numbers. One may, in particular, estimate the functional for dif-
forent values of the parameter of the system on the basis of exactly the same trajectories,
eliminating the resulting shift with the help of special weight factors. Let A be a system
parameter e.qg.

k(x, x') = k(x, x', 2} and  6(x) = ¢(x, A) = ¢, .

Then

_ n
00 = 2 (0. 6.

Let us consider the relation

-J-'——_ﬁ
n+1

(K2¢. ;) = J'j . I w(x(o)) k(x(o), xtl), A) ...

% k(x(n), *y AY o(x, l)dx(o) dx(l) ...dx(n) dx

- ” ey k), (6, a) k(™ 6, a0)

n+1

(o) (1) (n) {0} {n)
« k(x X A vow kix Xy A) , A)d wedxt dx,
k(x\97, x\Y, Ao) ;{;Tﬁji__l_— $lx "

s X5 Al)

from which we can see that the trajectories, constructed for X = AO, can be used to estimate

I¢(A), if after each transition x' + x the auxiliary "weight" of the particle is multiplied
by the variable
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k{x', %, A)
k{x', %, Ao) ‘

It is supposed, that there do not exist peints x, x', in which k(x', %, A) # 0, and
k(x', x, AD) = 0.

In practice k(x', X, A} is represented in the form of the bundle of the conditional
probability densities of the elementary random variables (the path of the particle and the
cosine of the scattering angle) and after each elementary "sampling" the auxiliary "weight"
of the particle is multiplied by the relation between the corresponding probability densities
for the values A and AO .

So, after the selection of the next path 1 "the weight" should be multiplied by

o(1, 1)e 71> A) = 9 A g, a) -0, AT

a{l, A )e_T(]’ Ao) a{1, Ao) ¢
o

a0 = gy G A) o -[n(h a) -1(3, A,
a(1, x,)

and after the selection of the wu, 7i.e. cosine of the scattering angle:

Q(a) = @' (x) L M)

9(1-1! )\0)

On the basis of the dependent tests method one may estimate the change in the radiation field due
to small changes fn the aerosol dispersion coefficient, albedo or indicatrix.
It is also appropriate to use the dependent tests method for the simultaneous calculation of

radiative transfer involving different wavelengths.
Now let us consider the case, when the dispersion coefficients 0y i=1,...,m, are

parameters in m fixed spheres and the variables

N
I(og) =M ZD Q,(0;) ¢ %0 97, (10)
-

are calculated, where the averaging is carried out over a certain definite distribution of par-
ticle trajectories. In [4] the expression of the form
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8InQ 9 n ¢k")'

o1, N (n)
30, M Ez Qn¢k aa, + 90 .
1 n=0 1 1

is shown and the algorithm for its calculation is given. Thus, simultanecusly with the estimation
of variables Ik by the Monte Carlo method one may calculate the matrix of the derivatives

aIk / dog . This gives the possibility of solving inverse problems, that are stated in [15].
Let the meanings of Ik be experimentally measured, and the initial approximation for the
desired dispersion coefficients 0{0)’ ...,oéo) is known. We find the next approximation,

obtained by means of the solution of the linear system of equations, is of the form:

oAl
Z d
i=1 9

(o - ol - )
i

In the case of overdetermination of the Tatter system it should be solved by means of the least
squares method, using auxiliary weights for "regularization" of the algorithm. The example of
the solution of the inverse problem by this method is given in [4]. Calculations by the Monte
Carlo method can be used to search for mostly "informative" systems of functicnals.

The methods described here can obviously be applied for the effective averaging of the
characteristics of the radiation model of the medium, when the least change of the main functi-
onals in the sense of the least squares method occurs.

In conclusion it should be nated, that the results of the calculations of different problems
of radiation transfer thecry by the Monte Carlo method are given in the works [3, 4].
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RADIATIVE TRANSFER OF VISIBLE RADIATION IN TURBID ATMOSPHERES

Giichi Yamamoto and Masayuki Tanaka
Geophysical Institute
Tohoku University
Sendai, Japan

1. INTRODUCTION

The progress and popularization of the high speed electronic computer have caused a marked improve-
ment in techniques of obtaining numerical solutions to equation of radiative transfer which deals with
the multiple scattering and absorption processes of solar radiation in the atmosphere. Main objectives
of recent investigations in this field are to clarify quantitatively the radiative transfer processes in
turbid atmospheres as well as in clouds and their thermal and optical effects. In order to do so, most
of the recent studies take into account the effect of multiple scattering and accompanying polarization
effect as strictly as possible, based on realistic model atmospheres. At the same time, usefulness of
radiation observations for obtaining informations on aerosols and clouds, such as their size distributions
and optical properties, has come to be recognized and the methods are going to be developed.

Among these problems, recent advancement in the study of radiative transfer of visible radiation in
turbid atmospheres is reviewed in this paper, in which particular emphasis is laid on its thermal effect,
In the following second section. several representative methods of <nlving équ_:_ati@n of radiative transfer
are reviewed. Section 3 describes the relation between atmospheric turbidity and reflectivity of the
turbid atmosphere and accordingly the heat budget of the earth. Section 4 describes the flux divergence
of solar radiation inside the turbid atmosphere, which naturally occurs due to the absorptive property

of aerosols. Section 5 reviews the probilems of the intensity distribution of diffuse radiation and its
state of polarization.

2. EQUATION OF RADIATIVE TRANSFER

Recently the trend of study of radiative transfer is changing from obtaining analytical solutions for
simplified atmospheric models to obtaining numerical solutions for realistic ones. In this respect,
many numerical methods have been proposed recently that a working group was established as the Radiation
Commission of the 1AMAP for the purpose of examining merit and demerit of various methods. Generally
speaking, selection of the methods depends upon the model atmospheres to be used and upon the nature of
the required informations. In addition, reseacher's subjective point of view or taste inevitably comes
into selecting the methods. Therefore, in this paper we shall describe several representative methods
and merit and demerit of them from our subjective point of view.
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Now we shall consider the diffuse radiation field in a plane-parallel atmosphere illuminated by the
sun at Hgs ¢0. where Hg = €os eo, 80 being the zenith angle, and ¢0 is the azimuthal angle. The
flux of the solar radiation at the top of the atmosphere is assumed to be rF. The equation of radiative
transfer is then given by Chandrasekhar {1950}

T R (CRINY

+1 2w
- #%-il S; plTsu,dsu'sp') I{t,u'se') du' do’

~t/ug )
e p(T3p9¢s"‘UUJ¢O) ’ “)

™

where I is the intensity of the diffuse radiation, p 1is the phase function which represents the
angular distribution of the scattered light due to single scattering, t 1s the optical thickness
measured from the top of the atmosphere, and p and ¢ designate the direction of Tight, where p = cos @
{o being the polar angle) and 4 is the azimuthal angle. We can draw a 1ine between an inhomogeneous
and a homogeneous atmosphere according as the phase function p depends upon the optical thickness t
or not. From the principle of energy canservation, the following normalization condition for p 1s
derived:
+1 21
.'3%; j_1j; plrsusdsu'sd') du' do' =1 {2)

where o -is the albedo for single scattering of the medium at level 7, which is defined by the ratio of
the volume scattering coefficient, B(S), to the volume extinction coefficient, s(e , i.e,

O YL I (3)

when the atmosphere is composed of different kinds of scatterers, p is expressed as

plraadin’ag') = E%gy > s§5’ pylamspsu'sg') (4)
i

where B$S) and p; are respectively the volume scattering coefficient and phase function of the 1-th
component. The boundary conditions are given by

I(O:'U:¢) =0 , (5)
and

I(T5’+Ua¢) = Ig(+11!¢) » (6)
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where Ig(+u.¢) is Intensity of the reflected Tight, which depends upon both reflection characteristics
of the underlying surface and incoming radiation to the surface. The problem of radiative transfer with-
out consideration of the surface reflection {i.e., I_ = 0) is called the standard problem and that with
consideration of the surface reflection is called the planetary one.

So far the polarization of the radiation field is disregarded. In case of considering polarization,
the radiation field is expressed, instead of the scalar intensity I, by the one column matrix {(or vector)
II which is composed of four Stokes parameters. Correspondingly the law of single scattering is ex-
pressed by the phase matrix p (4x4) instead of the phase function p. The equation of radiative transfer
appropriate to this case is obtained by replacing I and p inEq. (1) by ! and pp, respectively.

The problem of obtaining the diffusely reflected radiation at the top of the atmosphere, I{0,+u,9),
and the diffusely transmitted radiation at the bottom of the atmosphere, I(Ts,-u.¢), by solving equation
of radiative transfer (1) under boundary conditions {5) and {6), is called the problem of diffuse
reflection and transmission,

In order to solve this probiem, Chandrasekhar (195Q) has introduced the scattering function, S, and
the transmissfon function, T, and has derived simultaneous non-linear integral equations for these
functions, S and T, by means of the principle of invariance. Then by expanding the phase function p
in a series cof Legendre polynomials, and accordingly, expanding the functions S and T in Fourier
cosine series in azimuthal angles, he has separated the integral eguations for S and T into a set of
integral equations for a pair of expansion coefficients, s™ and Tm, of respective degrees. The
solutions of these integral equations are then given in the form of tabulated functions, such as X-
and Y-functions.

This method has succeeded in cases of isotrapic and Rayleigh scatterings. The most comprehensive tables
for Rayleigh scattering have been published by Sekera and his collaborators (1960). In addition, Sekera
(1963), Chamberlain and McETroy {1966) and Fymat and Abhyankar (1969) have extended this method to in-
homogenous atmospheres. However, this method is not necessarily profitable in the case of highly
anisotropic scattering. It is due to the reasons that the expansion of the phase functien for aniso-
tropic scattering generally needs many terms, particularly when the forward scattering predominates,

and accordingly computing time in obtaining numerical solutions of %- and Y-functions carresponding

to each term becomes enormous.

Recently several methods, by which the problem of diffuse reflection and transmission can be solved
with less amount of computation than the classical method of Chandrasekhar, have been developed.

2.1 Doubling Method

van de Hulst (1963) has shown that if the problem of diffuse reflection and transmission can be
salved for a layer of small thickness Ty then starting from this solution it can also be solved for
layers of thickness 210. 4T0, etc., with relatively easy calculation, and thus the computing time in
obtaining the solution for any thick layer can considerably be saved. The method is called the
doubling method, and effectiveness of this method has been shown numerically by van de Hulst and
Grossman (1968). They obtained the salution for the initial layer by the Neumann series method
{iteration in orders of scattering). Irvine (1968) has also obtained the solution for an elongated
phase function by the combination of the Neumann series method and doubling method. On the other hand,
Hansen (1969} has proposed to save labor of obtaining the solution for the initial layer by starting
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from an extremely thin layer. In this case, the initial layer can be considered as a single scattering
layer and the corresponding scattering and transmission functions can be given by the phase function,
We shall describe an outline of this method in the following:

Let us assume that the intensity of the incident radiation at the top of the layer of thickness T,
to be Iinc(u|’¢')' The diffusely reflected radiation, I(0,+u,p), and diffusely transmitted radiation,
I(TO,-u,¢), respectively are expressed by using the scattering function S5 and transmission function
T as follows (Chandrasekhar, 1950):

1p2n
I(0,+,0) = 4,1“5 5 S{tgsustsu'se') Linelu'»9') du' do' (7)
00
and
1 ¢21
H{rge-ust) = 3{}17“-5 Tlrgsuadsu's¢') Lo (u'y') dut do' . (8)
00

When the incident radiation is the paraliel beam of the net flux =F per unit area perpendicular to
the incident direction, we have

'mc( 0! ) mF §{u' - 110) 8¢’ - ¢0) s {9)

where & is Dirac's &-function and (uo. ¢0) is the direction of the incident beam. Inserting (9}
into (7) and (8), we have

I{0,+u,¢) = zlis(ro;u.muo,%) F o, (10)
I(TU;'Us¢) = T]ET(TO;UI‘b;UO’CPU) F . (]1)

Now we sha1] assume that the second layer with the same thickness is added below the first. The
component A S(Tu,u,¢,u0.¢0) F s unaffected by this addition, but the d1ffuse1yTtrSnsm1tted radiation
zl-T(104u ¢,p0,¢0) F and directly transmitted radiation 7F &(u - ”0) 6(d - ¢U) 0 are partly
transmitted through the second layer and partly reflected by it to become an additional radiation inci-
dent upon the first layer from below. As shown in Fig. 1, succession of the processes is repeated
endlessly. Since the combination of the initial and second layers must be equivalent to a single layer
of thickness 210 , one can write the relationships between the function S(Tu;u,¢; u0,¢0) [orl
T(2T03Hs¢;uos¢0}] for the combined layer and the functions S(To;u,¢;u0,¢0) and T(To;u,¢;uo.¢0)
for respective layers, as follows:
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S(27piusd3ugs0p) = S(Tginadiugsdy)
=Ta/i -Ta/H
+e 0 Zo (To;u.cb;uo.tt»o) e O 0

ZTF []
og T(To;u,¢;u'.¢') Zo {tu;u',tia';uo'%) %.—dq‘s'
0

] 2‘" 1
+ & j ZD (ro;u,rb;u',db') T(To;u'.fﬁ';uo,dao) d—}j—. dp'
00a

+ 1];2 S;Sjﬂjlj;ﬂﬂro;u,mu"AJ")ZO (Tgsu"s"su’ 40"}

X T(Tgsn' 49" 31g90) gﬁ-r d¢' —ﬁ do"
and

'TO/“O N -TD/u

T(ZTo;U1¢;U01¢0) = T(TO;U:¢;UOJ¢‘0) e e T(Tu;us¢;uos¢0)

~To/u “Tf
+ e 0 ZE (TO;U!¢;U0:¢0) e 0o

P R ,ovodut oL,
\'-0!!-' i '“0"‘00’ Trutp

T(TU;U3¢;UIs¢') ZE (TO;UI:¢I;U05¢0) gﬁﬂl‘d‘bl

O e @
= 50 ] Ze (gsmadsu’s6") Tlrgsu' s6'sugadg) T do!

i

'I 2“ ] ETT
' 162 SUSD SO j0 Tlrgsustsu"s0") Ze (tgin"s¢"su's0")

o T(TO;UI a¢‘;p01¢0) g‘]j—l' d¢. %'-ETI' d¢" 1
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where

2o (ginsdiugaty) = n;:a,...‘sn“o;“'q’“‘o'%) ' (e
2o (Tgiibingbg) = ;%: SplTginsdingadg) (s)
S-l (TO;Usq);Uolq’o) = S(TU;U’¢;UO'¢O) ’ (16)
and
1 2m
S {Tgimsbing byl = 1% jojz S{rgsHstsu’ ') %_1(Tgiv'-¢"“0’¢0) gﬁT'd¢' (17)

Thus, if the scattering and transmission functions for the initial layer are known, those for 210,
4T0. etc. are successively derived from (12} and {13). If we take the value of Tq to be sufficiently
small, the initial layer can be considered as a single scattering layer, whose scattering and trans-
mission functions are given by

. ~1{170+1/14)

S(Tgilsdiugsdg) = (%'+ %b) 1 {1 e f ° 3 plusdi-ugibgl (18)
1 ¢ ~Ty/m ~TofH

T{tgitabingdg) = (% ¥ %b) 1 {e 070, 0 }P('”'¢"“0'¢0) y (19)

In practical computation considerabie advantage is gained in computing time and computer storage if
the azimuth dependent functions, such as p, S and T, are expanded in Fourier series in (¢ - ¢0).
Generally the phase function p{u,¢;u',9') can be expanded in cosine series in {¢' - ¢) as follows:

(=)

plubin' 48) = ZD PM(unt) cos mig! - 8) (20)
m:
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where

m 1 o ) cos mia* - )
p{um'} = plusdsu’se') cos m{s' - ¢) dg'
+ 60,m m _L

60,m =0 if m#0 and =1 if m=0

Correspondingly the functions S and T are expanded as follows:

o0

S(osu,dsu'.g') = Zo ST(Tsu,k") cos mig' - ¢)
m:

and

T{Tsuagsn' ,¢') = mgo T™(t5u.u") cos m{p' - ¢)

(21)

(22)

(23)

Inserting (20), (22) and {23} into (12) we have relation for the expansion coefficients of m-th

degree as follows:

-TpfU -Tpalil
Sm(ZTO;u,uO) = Sm(ro;u,uo) +e 0 Zron (tgsusug) @

-Ta/U
v e 00 1

um* 0

'Tolu

1
te '(4_.‘]25?1) ,[0 ZZ,' (Tgsmsn’) Tm(ro;u',uo) %‘—:—

101 m
¢ —l S T rginn) 2g (g am') Trgin' g
0

(4 - 2th.m) D
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where

Zm (tpsusug) = 2 ST il ,un) (25)
0 U:U:IJO n=1,3,... °n OIIJnIJO s
ST(ToiuﬂJo) = Sm(TO;u$u0) » (26)
and
m . _ 1 1 1} 1 m du!
sn(TO’u’uD) = ‘(—)'4 = 250 " jo s (TO;U:U ) Sn_](TUWIsUO) _]:T' . (27)

$imilar relations can be derived for T . The succeeding computation is simply to replace the
integrals invelved in equations for s" and TV by sums through Gauss quadrature. Therefore it is
straightforward. It is apparent that Sm(ZPro) and Tm(szo) are generated in p cycles starting
with Sm(To) and Tm(TD) rather than 2P cycles of the simply additive procedure.

According to Hansen (1968) necessary computing time is remarkably short except for strongly peaked
phase functions. For aerosol phase functions varying three orders of magnitude from their peak to
their lowest value (requiring about 50 terms in the cos md expansion} the total computing time is
4 minutes on the IBM 360/95 for the scattering and transmission functions {and derived quantities) for
every T-multiple of 2 from 2'25 to 27 for 20 values of u, 20 values of Hys and any reasonable number
of values of ¢ - ¢y - As can be seen from this example the doubling method is very effective in
obtaining numerical solutions of the problem of diffuse reflection and transmission for homogeneous
atmospheres. However, for inhomogeneous atmospheres the doubling procedure can no longer be applied,
since the functions for the second layer are different from that of the first. In this case only
additive procedure is applicable, so that the above merit is greatly diminished.

Hansen {1971a) has also applied this method to the case in which polarization is taken into account.
In this case formulation of the problem can be made with use of Chandrasekhar's & and T matrices
instead of the functions § and T . The definition of & and T 1is analogous to that of S and
T. The different point is that, even if the atmosphere is homogeneous, the scattering and trans=-
mission matrices for the case, in which the top of the layer is illuminated by the incident radiation,
should be distinguished from those for the case, in which the bottom of the layer is illuminated by
the incident vadiation, (Hovenier, 196%). Therefore, if we designate the incident radiation fields
at the top and bottom of the layer by W, (u;,¢') and I:nc(u',¢') respectively, it is necessary

inc
to consider the matrices, %, T, 3* and T defined follawingly:

1.2

7,;1%5050 Slrysuagin’ ¢') Ty (u'He') du' do'

1{0,hu,4)
(28)

1 (12
m];-u,w-—H Tlrpsndin'»0') Lo (u'se') dut do'

1
™ 9%

inc
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*

kol 1 15211‘ * 1 1 3 1 1 ]
I (ry5-u,0) = mj S (rsuatsu®se ) Xy (u'sd') dut do®

00
(29)

\FYal
l*(0;+us¢} = 3%;;5 T*(T];u,cbiu‘,cb') H:né(u',tb') du' do'
00

If we take such distinction into consideration, the matrix § for the layer of thickness 21’0 can be
obtained referring to the-doubling equation (12) as follows: ’

T/ 1

- -Ta/H
S(2rginadingadg) = Slrginabingseq) + e 0 oo

ZO {tgsusbiugdg) e
e'TO"’uO 1¢2n .
* “-0 So T (tgiuadsu’ ") Zo(ro;u' TR gﬁ-r d¢'

-10/11 1 27 "y
tEE L‘L Zb (rgsmsdin’ »¢") Trgin' s sugadg) S do?

2mel e
+ ]2 j;g ES T*(Toiuslb;u",tb") ZO(TO;U"s¢";U':¢")T(TO;U',¢';U0,¢O)

o
[}
o

+ O a0t S o
(30)

Similarly the matrix '1[’(210) can be obtained by changing the functions T and Ze in equation (13)

to T and e respectively. Here we should note that
ZO(TO;u,nb;uo,cbo) = n=]§,... Sn(To;u,¢;u0s¢o) 1 (31)
S-I (TU§]-15¢;]-10:¢U) = 5(1’0;1—! s¢;]~109¢’0) » (32)

1 1p2m
Sn(TO;U!¢;U0!¢‘U) = WI f S(To;u’¢;u"¢') s

n-1 (TU;Ul 0! 5110-¢0) g‘u&r do'
00

if n is odd,
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and
1 edn du’
Sn(TO;U:q’;Un!q‘)o) = ﬂ; jo SU .S (To;“9¢;uli¢‘) sn_](To;“'s¢';UDs¢0) ]Ji d¢'

if n 1is even.
(34)

Similar doubling equations for S* and 'F* can also be obtained. However, in the case of a homo-
genegus atmosphere the following simple relations hold:

S(TO;IJ :¢’;110:¢0) = S*(Toiu ’¢U;“0’¢) ' (35) -

and

*
T(T03U9¢3U0:¢0) =T (TO;U’¢0;UO=¢) ' {36)

so that the doubling equations for S* and 'H* are needless.

The matrices § and T for the initial layer can be obtained respectively from {18) and (19} by
replacing the phase function p in these equations by the phase matrix p . As in the case of the
scalar equations, by means of the Fourier expansion of the matrices concerned with respect to (¢0 - 4},
we can separate the doubling equation for § ({or T) into a set of equation corresponding to the
coefficient matrices of respective degrees. The expansion of the elements of the matrices concerned
is shown in general form as follows:

Mij(ro;u.¢;u0.¢0) = M?j(To;u.uo) cos m{¢y - ¢) {37)

1,2 or i=23,4; j=3,4,

for {1 =1,2; j

Mij(Toipa¢;pOs¢o) = MTJ (TD;U !po) sin m(q)o - ¢) s [38)

for 1= 1,25 =34 or 1=34 j=12 ,

where the matrix M = {Mij) represents any matrix concerned.
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Inserting {37) and (38) into (30), we have

-t/ =T/
Sm(ETDiu,UD) = .Sm('ro;usuo) te 0 z.on (TOQUQUO) e 00

T /u 1 m '

oro 1 *m N ' il dH

t+ e '(_4 - '2_6'0"'m')' IO bl (TO sM sl ) ZO (To Y suo) ]Jl
-TU/U 1 j] m . | . dn’
te [CEN ) . zﬂ (gsuan’ ) [T (Tgsm' sug) —H'r‘u

ng {Tgsu"su')

Tm(TOsU' leD) g‘E':“ gp_':_

+ ]2 jq 51 T*m(To;u.u")
0

IG'IT 0 n “u
{39)
where M = (MTj} , and the operation € =AM is defined as follows:
Cij = Ayy Bis * Ajz Byj - Ayz Bay - Ayg Byy s (40)
for 1=1,2; 3=1,2 or i=3,4; j=3,4,
and
c'ij=A'i] B1J.+;!\1.2 E32J.+.l!.13 BBj+Ai4 B4j , (41)

for i= 1,2 j=3,4 or i=3,4; j=1,2.

Effectiveness of this method has been shown by Hansen {1971b} in evaluating the intensity and
degree of polarization of the near infrared radiation diffusely reflected by water clouds.

2.2 Matrix Method

Twomey et al. {1966) have shown that if the radiation field is approximated by a discrete distri-
bution at points or a Tatitude circles on the unit sphere, matrix relationships can be written between
the incident and reflected or transmitted.radiation fields, and that the reflection and transmission
matrices thus defined satisfy algebraic equations which can be used to compute the optical properties
of thick layers by building up thick layers from thinner sub-layers.

More recently, this method has been extended by Tanaka (1971a) and by Jacobowitz and Howell (1971)
for the case in which polarization is taken into account. However, the matrix method and doubling
methad can be considered to be essentially equivalent. For instance, starting from the doubling
equation (24), we can derive the matrix equation as follows:
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If we introduce

;I(To;u,uo) = n—_—éj%—:m M'"(tu;u,uo) : {42)
UERCUE LD N (43)

equation (24) can be written as

~ o ~Ta/l <m ~Ta/n
sm(ZTO;u,uo) = S'"(Tu;u,uo) re ! ZD (Tgskamg) & 0o

1
-Tgf1 - -}
+e 0o SU Tm(TO;U!ul) ZU (TO;U'sUO) Chl'
-TU/u g] —m -
te o ZO (tgimsn") Th{tgsk’auy) du’
L\ = =
+ jo go Tlrginam®) z'; (tgsnou') TM(rgim' ug) du' d”

(44)

Now we shall approximate the radiation field by discrete distribution and introduce the N x N matrix
M (=3, 7, IT ) whose elements are given by

HTJ{TO) = ﬁm(Tu;}Ji 1l~3j} w.'l * (45)

(1.3 = 1.2,....0)

where W, . represents the quadrature weight at the division u = u; « By use of (45), equation {44)
can be written as

-

$M2eg) = Pleg) +Elrg) I (xg) Elrg)
+ ) T trp) Elrg) +Elrg) 2o (cg) Pirg)
st Sonlng) Trg)
(tg) Ty (o) T (46)
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where IE(TO) is the diagonal matrix whose elements are given by

- / N
Eij=eTDu1 ,oif =g,
(47)
=0 , if ity
and
- m oo
L) - n=1§,... Shlg) (48)
3ixg) = 3ixy) :
(49)
Sh(tg) = 3"(xy) 30, (xp)
Inserting (47), (48} and {49) into (46), we have the following alternative form of (46):
3ary) = 3M(rp) + @(xp) + Elry)) Fxy)
U+ M)l + Bt + o) F™xy) +E(rg)
= 3"rg) + @rg) + Elrg)) (1 - B @(rp) + Er)

(50)
where 1 is the identity matrix. Similarly, from the doubling equation for TM{(2 g > 0) we can
derive

T21g) + E(2ry) = @ (1) +E(ry))
x @+ BNy 1 + B + ---) @xp) + E(xg))
= @ (1g) +E(rp)) o - ESm(TO)II ) @) + E(ry)
(51)
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Equations (50) and (51) are equivalent to the matrix relations derived by Twomey et al. (1966} for
the case in which the thicknesses of the initial and second layers are made to be equal (T] =19 = 10).

Tanaka (1971a) has extended the matrix method for a more general case in which polarization of
the radiation field and inhomogeneity of the atmosphere are taken into account. In this case, the
matrix method is expressed by simultaneous algebraic relations with regard to four matrices which
correspond to §, T, 5* and T* . By use of the interaction principle, which has been introduced
by Preisendorfer {1965) and which is the extension of the principle of invariance introduced by
Ambartsumian (1943} and Chandrasekhar (1950), Hunt and Grant (1969} have made a mare general formu-
lation of the matrix method which involves evaluation of not only reflected and transmitted fields
but also internal fields.

Effectiveness of the matrix method is of the same order as that of the doubling method. Both
methods are effective for a homogeneous atmasphere even if it is thick, and not so effective for a
thick inhomogeneous atmosphere. However, both methods are effectively applicable to the earth's
atmosphere, because its optical thickness is not so thick {(t < 1}, although it is inhomogeneous and
turbid.

2.3 Iterative Method

The method of solving equation of radiative transfer by successive iteration has been adopted by
many rasearchers. In this sense it is one of themost popular methods. The Neumann series method which
has extensively used by Irvine (1965, 1968) consists of expanding the radiation field by orders of
scattering and of determining successively higher order terms of scattering, starting from lower order
terms. Herman and Browning {1965) have proposed to solve the formal solution for the specific intensity
of equation of transfer, by means of the iterative procedure using the Gauss-Seidel technique. Herman
et al. {1971) have applied this method to the turbid atmospheres. So we shall describe briefly on
this method. ’

The equation of transfer appropriate to the case in which polarization is considered can be abtained
by changing I, p., and F din (1) to 1, p, and IF respectively, where T and F are the Stokes
representations of the field intensity and incident solar flux, respectively, and |p is the phase
matrix. The formal solutions of this egquation can be written as

“{1,,9 = T, Hn
I(Tn;"'u:fb) = I(Tnﬂ 3+U’¢) e ntl n

-t -
' ij%(t;ﬂhq,) . ( Tn)/U ‘L—t .
Tn (62)
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-{t, - 1, 1 )u
K(Tn;‘u.‘b) = I(Tn_1:'u’¢) e f -1

-{t, - t)/u
+ rn L) e " a
Tn-1 "

(53)
where 0 = Tg S Tpa1 €T S Ty < Ty = Tg o and-féj? is the source vector given by
|
4g§?(t;iu,¢) = {; Sz j : plusdsn',0') Lt,zu',0') d¢' du'
] ‘t/uo
*gP(es -uptp) Fe
(54)

Here it is assumed that the atmosphere is homogeneous and p is independent of t . If we consider

the p-th Stokes parameter Ip » equation (53) becomes

: “{t. -7 _Wu
Ip(Tna‘H-¢) = Ip(Tn']’-u’¢) e f n ]

T -{t, - t)/u
LI . n dt
+ L _,.éffp(t, it} e =
n-1 (55)
and
4
2 ¢+l
{+:-1 \:..I_ T f [ SRS S L T S o IR SN B i S Sy
i p\t, n,h) A qa_.v:_l JO J_] lpq\ Ha@ st 5y lq\Ls—U ) Ut d¢
4
-t/u
1% 0
+ B “Hafps= [ N
T = ppq( Had Ko ¢0) Fq e
(56)

wheredgf; 15 the p-th element of the source vector.éﬁ? and P q is the {p,q) element of the phase
matrix p . Equation for Ip(Tn.+u,¢) can also be obtained similarly, The problem to solve these
equations under certain boundary conditions, e.g., Ip(O,-u.¢) =0 and I (T5.+u.¢) =0, is a so-

called two-point boundary value problem, and its numerical solution can be obtained by the Gauss-
Seidel iterative technique.

Now let us denote IP(Tn,-u,¢) by Ié")(-u,¢) and T - T by At , then equation (55) can

n n-1
be written as
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(n},_ _(n=1) -4t/u i =A1fu
1) = Dy e o) -e ) (57)
where ,ggi(-u,¢) is the average value of4gﬁi defined by

(e, - ) -/
ATy j j e S R R (56)

If at is smal],4gj? is approximated by the value nf4{ﬁp(t.-u,¢) at t =T 445 =T " atf2 .
Namely from (56), we have

Fot) A5 e

S

+1 rlm
l - . 1 ] (n' ]/2) 1 J ) 1
+ A = j-'l SO qu( Waditp' 0 ) Iq (iu N ) du' dd

4
+J4'_' Z ( Us¢s'“0!¢0) F(n ]/2)
q=1
(59)
(n=1/2) _ -(1y - 4172/ . . .
whe]zre2 F =F_ e In practical computation the evaluation of the integral
+

j g T - du' d¢' dis made by use of the quadrature formula.

-1
Inserting (59) into (57), and rewriting it with respect to levels n, n-1, n-2, instead of
tevels n, n-1/2, and n-1, we have

4 -At/
IF{’])('IJ,EP) =.¢j§0)(-u,¢) (1-e ! u) .
{50}

-2AT/ =24t/
Ién)('U:fb) = Ién'z)(-u’(ﬂ e ¥ +J|§n-”('l-'a¢) 0 -e E Ll)

{n>2)
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The only non-zero parameters at the level 1 = 0 are those associated with the outward directed
intensities for which p > 0 (i.e., the reflected radiation) and the incident parallel flux represented
by Féo) . However, the outward directed intensities are unknown initially, and thus, for the purpose
of getting the solution started, they are assumed to be zero. This gives the first approximation to
the parameter Ié]) . The second equation in (60) is then used to compute the parameters at the
second and succeeding levels, for p < 0 . Parameters for p > 0 are assumed to be zero for all of
these initial calculations. At the bottom of the medium {1 = Ts) initial calculations for all
Ié")(-u,¢) have been made.

Starting with (52} and utilizing the boundary condition, IP(TS;+u,¢) =0, a pair of computing
equations analogous to (60) may be derived for the Stokes parameters for u > 0. Using the equations
so obtained, these parameters are computed starting with the first level above the bottom and working
back up to the level 1t = 0. However, now values for Stokes parameters for u < 0 have already been
computed, and these values are used in the numerical evaluation of the source term. When the level
T = 0 is reached, initial values for all of the unknowns have been computed, and the same process is
now repeated, utilizing the previously calculated values for all unknawns appearing on the right hand
side of the set of equations, until successive values of the same variable agree to within some
specified tolerance.

In the above approach, deuble integrals with respect to the polar and azimuthal angles are directly
involved, so that it is not necessarily advantageous in saving computing time as well as computer
storage. In this respect, Dave and Gazdag (1970) have suggested an approach in which the phase
function (and related function) are expanded as a Fourier cosine series whose total number of terms
varies with the angle of incidence and reflection.

There are various kinds of the iterative method other than shown above. The merit of the above
iterative method is that in addition to the solution to the problem of diffuse reflection and trans-
mission, that for the internal field can also be obtained by it, and that no special difficulty arises
in solving the problem for an inhomogenecus atmosphere. The disadvantage of this method is that it
i

becomes time consuming when the optical thickness imcreases. It §s dus o simple addition of thin
layers by this method, contrary to the doubling method.

2.4 Method of Discrete Ordinates

Chandrasekhar {1946, 1950) has developed a method to replace the equation of transfer (1) by the
system of 2n linear differential equations, by approximating the continuous radiation field with the
2n discrete streams of radiation. Recently this method is not so widely used as before, except by
Samuelson (1965, 1969) and Yamamoto et al. (1971) for the study of transfer of thermal radiation inside
the clouds. One of the reasons will be due to somewhat insufficient explanation in Chandrasekhar's
statement in obtaining the roots of the characteristic equation, and due to difficulty of determining
the constants of integration for optically thick, but finite layers. As can be seen below these
difficulties can be avoided, so that the method of discrete ordinates still has wide applicability.

We shall review the method following Chandrasekhar.
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The phase function p(u,ésu',¢') is expanded by the Legendre polynomials, P, , in the form
N
plisbin's9') = p (cos @) = 2. iy Pylcss ©) (1)
=0

where QO is albedo for single scattering, s (¢ =1, ---, N} are constants independent of ©
® being the angle of scattering, and cos @ = uu' + (- uz)lfz (1 - u'2)1/2 cos {¢' - ¢). Therefore
we have

=4
Py

p,(cos @ = P,Lun’ + {1 - k)12 (1 - wH) e cos (o' - ) (62)

By use of the addition theorem of spherical harmenics for {62), we have

&
Pyfcos ©) = Py(u) Py} + 2 2 {5
x Ph{u) Pylu') cos mlo' - ¢) - (63)

Corresponding to the above expansion of the phase function, the intensity of radiation is also expanded
as follows:
N

Hre) = 100 + 2_1 1M (2, cos m{gg - ¢) - {64}

Inserting (61}, (63) and (64) into equation (1), it can be separated into (N + 1) independent
equations with respect to 1 M} as fallows:

{m) & !
" '——S'ildl Dk - 1M (2,0 ‘17 2 it Oy PIE(“)S Pj(zm)(“') 1™ () o

N
2 - -T/u -
SEIm e O 2 M BB G Pl PRlkg)

\

{65)

In the method of discrete ordinates the integral involved in {65) is replaced by sunis according
to Gauss's quadrature formula, and each of the (N + 1) equations is replaced by an equivalent
system of Tinear equations of order 2n . Solutions must be sought in approximations n such that

n -1>2N . (66)
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The 2n{N + 1) 1linear inhomogeneous differential equations which replace the (N + 1} linear
inhemogeneous integro-differential equations given by (65) are

(m)
I (o) 1 (mem)
wy —ar = 1Moy - % it S Pplig) ? ay Ppliy) 1)
2-8 -ty N
Sy pe 0 2 M RS, B PR
=m
{67)
(i = #1, ===, #n; j = 1, ---, #n; 0 <msg N} ,

where aj's are the weights appropriate to the Gauss's quadrature formula based on the division w;
of the interval (-1, +1} .

The complete solution of the system of equations given by (67) involves 2n{N + 1) constants of
integration, which are to-be determined from the following boundary conditions;

n

I(m)(os‘ui) 0 E]

. (i=1,---,n; m=0,1, ---, N} . (68)
0.,

—
-
+
=
-
—
n

The solution for {67) can be obtained by an entirely analogous method for every m so that we shall
here describe the method of obtaining the solution for m =0, i.e., the azimuthally independent case.
The general solution for the homogeneous part of (67) is given by

-k
n o N
{0) - ;
IG (T.u.‘)— gl ]+Uk L +k)P(]-1 1]

+k
:E; 1‘:’1;1(*— [ :E% €y {- k (H1)] ,

(69}
(1 = 111 i | tn) )

where Lia are the 2n constants of integration, and ku's are the roots of the following system
of characteristic equations:

n () o
£,(k) = % Z —%%J‘r 2 5 5K Py (70)

a=0
{£=0,1, ===, N)
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In order to evaluate k, Chandrasekhar (1950) and Samuelson (1965) have used a single equation
obtained from (70) by setting 2 =0, i.e.,

N

n a.
D D N EACEN (1)

J=-n J o=0

NI et

and they stated that this equation is of order n in kz and involves 2n distinct nonvanishing
roots occurring in pairs as tka(k_a = -ka) for the case of non-conservative scattering. Since the
function Eﬂ(k) is even {or odd) with respect to k when & 1is even (or odd), it is true that the
roots occur in pairs. The order of eguation (70) in k , however, is given for the case with

0 < Eh< 1 as follows:

(2n + ¥) for N=even and % = even ,
(gn+N-2) , for N =-even and £ =odd , {72)
{(2n+ N -1} , for N =odd and £ = even and odd

Thus it is evident that any eguation in (70} including (71) has in general more than 2n roots. It

is true that in the conservative case treated by Chandrasekhar, in which the phase function is expanded
till the second order of Legendre polynomials, equation (70) has 2n roots. However, in more gemeral
cases as treated by Samuelson and alse by Yamamoto et al., it can be shown by numerical calculation
that any equation in (70) has more than 2n real roots. Therefore the 2n values of k should

be determined as the common roots of the system (70). [Yamamoto, Tanaka and Asano, ]971]

In order to complete the solution, a particular integral must be found which, when added to
equation (69), satisfies equation (67). This particular integral is given in the form

Yo e-T/uo N
0 _1
Ié )(Tiu.i!UO)_EF T 7 1. /0. +ui/u0 [ ‘Q’Zom ERU)P(H )] 3
(i = £1, ---, *n} ., (73)

where
and n
1I{x + ui)
Hix) = ] m 1:] (75)
1 nQ+ k)
a=}| :
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The integral given by equation (73), when added to the general solution in equation (69), comprises
the complete solution to equation {67), and this is

-k T

L e @ N
Opay- 3 Lo ;
) = 2 P L 2By 5, Pylup)]
+k T
n L, a
+ 2 Iyl Z ) E{-k) P ()]
=
-t/ N
1 Yo © 1
HER s ord SO (L) P w1 s
(76}
(i = 21, ===, %n)
Now, the 2n constants of integration Lia {e=1, ===, n} have to be determined by the fol-
lowing boundary conditions:
n N
{0) _ Lu -
1%0,-u,) = 2 —21 Zb &, &, (+ky) Pyl-u;)]
h| = 1 - u'ikor, £ N s T AN |
n L N
L ~
3 T [ oy B Ealkg) Pyl
] N
+zF———r—1-Mo Z by el
(77)
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and

-k T
N e o N
I(O)(T1’+“j) = 2 P D2 Elg) Pyluyg)]
o= Ja 9=0
+k g
L e ™ N
+ ¢ [ D> &, £,(-k) P ()]
ﬂ._] ] = ]ij JQ:U LR o ) J
1 . Yo : .
2 o L
*7 F e b 3:0 By Ele) Poliy)]

(78)

Samuelson (1969) stated that the method of discrete ordinates 1s not very amenable to studies
invalving the optical range T > 1 because of instabilities that are inherent in the method for the
intermediate optical thickness, and Eﬂag these instabilities arise as a result of the great disparity
in magnitude of the coefficients, e %" in {76). Thus the direct application of the boundary
conditions {77) and (78) to determine the constants L, Teads to highly unstable solution when the
magnitude of the exponent pairs, ikat , differ greatly. To avoid this difficulty Yamamoto et al.
(1971) have proposed to use, instead of {77) and (78), the following equations derived respectively

from [(77) + (78)) and [(77} - (78)]:

n N -k T N
1 e e ¢ 1 =
azﬂma[ TR 2 i 500 Pl ¢ T PIRERACREATN

= I(O)(D!'Uj) + I(O)(T]l+Uj) = 150}(01'UJSU0) - Iéo)(Tlsujsuo) ’

(79)
(j =1, ---, n) s
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n N -—ka’r] N
1 £~ e -

N [+——— Z -1 &, B (k) Po(e) - T w, &,(k ) P,(u.)]
azﬂa[1-ujka £=0() A AR LA AN | 'I+ujka RFZO [ A R A

= I{O)(O:'ilj) - I(O)(T]#uj) = 150)(0:’Uj sUO) + IéO){T] an !Uo) ]

(80}
(J = ]! T s ") 3
where
+kaT1
My=LlytLl,e
(G':]:"-! n) . (81)
+k T
_ ol
Ny=Lg-L,®
The coefficients Liu are directly obtained by the following relations:
L, = (Ma + Na)/z s
{ @ = 1, T TI) » (82)
“Fal1
L_a = (Ma - Nu) e /2

where M_ and N, (@ =1, ---, n) are solutions of 2n simulataneous equations (79) and (80).

Equations (79) and {80) give stable solutions even for intermediate values of kuTl . When its
values becomes very large, LiOL obtained by (79}, (80) and (82) tend to solutions identical to those
for semi-infinitely thick atmosphere. It is thus shown that the method of discrete ordinates is use-

ful for any optical thickness.

The method of discrete ordinates can be applicable in evaluating not only the reflected and trans-
mitted Vights at the boundaries of the atmosphere but alsc the internal radiation field. It can be
applicable to layers of any thickness with a relatively short computing time. Most of the computing
time in this method is consumed for the expansion of the phase function and the determination of the
roots of the characteristic equatfons. When the forward peak of the phase function predominates, many
terms are necessary for the expansion of it. As the double expanston of the phase function with
respect to m and 2 1s used in this method, difficulty arising from strongly peaked phase function
is more serious than in other methods. In this respect, the "truncated peak" approximation {see
Potter, 1970 and Hansen, 1969a), which tends to decrease the anisotropy of the phase fumction by in-
cluding some portion of the forward peak into the incident radiation, seems worth noticing in combined
use with the method of discrete ordinates.

96



2.5 Monte Carlo Method

During the recent ten years many attempts have been carried out to apply the Monte Carlo method to
the problems of multiple scattering of radiation in the atmosphere. In this method the solution is
obtaired by a series of statistical analyses, performed by applying mathematical operators to random
numbers. The problem of the time-dependent scattering of the pulsed point source due to the cloud
layer is solved by this methed by Skumanich and Bhattachajie {1961}, and then extensive applications
of this method to the problem of radiative transfer have been made by Collins and Welts (1965). Later,
they modified their code ta include the effects of water vapor and carbon dioxide absorption (ColTins
et al, 1967) and to allow for molecular and aerosol polarization (Coilins, 1968). Plass and Kattawar
(1968) have alsc developed a similar computer code to that of Collins and Wells (1968}, and solved the
problem of diffuse reflection and transmission for clouds. Starting with this study they have carried
out a series of reseaches taking into account effects of polarization, inhomogeneous stratification,
absorption of gaseous constituents for realistic models of various systems, such as turbid atmospheres,
clouds, and atmosphere-ocean systems. Danielson et al. {1969) have also applied the Monte Carlo
method for the problem of transfer of visible radiation in the clouds.

One of the merits of the Monte Carlo method is that it can be applicable not only to a plane-
parallel atmosphere but also to atmospheres of any geometry. Most interesting one for us is the
spherical-shell atmosphere. Marchuk and Mikhailov {1967}, Kattawar et al. (1971) and Collins et al.
(1972) have attacked this case. Marchuk et al. have evaluated the intensity of diffusely reflected
light as observed from the position of satellite. Kattawar et al. have evaluated the flux and
polarization of the reflected light from the Venus atmosphere assuming several models for it. Collins
et al. have studied the intensity and degree of polarization of the reflected and transmitted
radiations on both Rayleigh and turbid atmospheres, taking into account scattering by molecules and
aerosols as well as absorpition by gaseous constituents. Callins et al. (1972) have also developed
a new code which is capable of estimating the Stokes parameters for discrete directions at the
receiver position, by utilizing the backward Monte Carlo procedure.

Another marit of the Monte Carlo method is that no particular difficulties arise due to anisotropy
of the phase function, complexity of the optical stratification and reflection characteristics of
the underlying surface.

On the other hand, the disadvantage of the Monte Carlo method is that the standard deviations of
the results obtained are roughly inversely proportional to the square root of the computing times.
Therefore the method may not be suitable when high accuracy is required.

so far we have reviewed briefly methods of numerical solution of equation of radiative transfer
from the point of view of application to realistic model atmospheres. The difficulty which arises,
when the degree of anisotropy of the phase function is large, is more or less common in most of the
methods. According to the doubling method or matrix method the reflected and transmitted Tights can
easily be evaluated however thick the layer is, provided that it be homogeneous. If the layer is
inhomogeneous, it becomes difficult to treat a thick layer by these methods. The iterative method is
effective in obtaining solutions for the reflected and transmitted radiations as well as for the
internal field. However, it is unsuitable for a thick layer, irrespective of whether it be homogeneous
or not. The method of discrete ordinates can be applicable to a layer of any thickness and leads
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to the solutions for the reflected and transmitted radiation as well as the internal field. However,
the difficulty due to anisotropy of the phase function is more serious than in other methods. The
Monte Carlo method is more flexible than other methods in the point that it can be applicable to,

for instance, the spherical-shell atmosphere. However, it is time consuming when high accuracy of
computation 1is required.‘ In conclusien, it will be difficult to say which method is effective in
general. Anyway, because of the fact that the earth's atmosphere, even if it is turbid, is not so
thick optically, can be considered approximately homogeneous, most of the problems in this field are
now seoluble, so far as the earth's atmosphere is concerned.

There are still other methods. For instance, Bellman and his collaborators (1966} have developed
the method to transform the integro-differential equation of transfer into a system of simultaneous
differential equations of the initial value type by the invariant imbedding techmique. However,
because of the reason that at present this method treats idealized models, we omitted its explanation

3. EFFECT OF AEROSOLS ON THE THERMAL REGIME OF THE EARTH

Recently, increase of man's activity, particularly of his industrial activity, has been changing
his environment. Increase of aerosols in the atmosphere is one of the noticeable changes. This
increase will affect the radiation field in the atmosphere and will result in the change in the heat
budget of the earth-atmosphere system. Most of the up-to-date studies with respect to the turbid
atmosphere were concentrated to clarify its optical side, such as the intensity of skylight and its
state of polarization. However, it will become important to investigate its thermal effect. Recently,
Rasool and Schneider {1971) have evaluated the change of the earth surface temperature due to increase
of aerosgls by use of the two-stream approximation in solving equation of radiative transfer.

Yamamoto and Tanaka (1972) have solved the same problem utilizing the matrix method, and evaluated
the change of the giobal albedo due to increase of aerosols and the resulting change in the heat
budget of the earth. Their results will be shown below.

With regard to the vertical distribution of aerosols, that compiled by Elterman (Fig. 2) is used
in their model atmospheres. As to the size distribution of aerosols. the "“haze C" model propnsed
by Deirmendjian (1964) is used. This model simulates the size distribution in the continental air
masses fairly well, and is given by

cx10%  for 0.03u<r<oOln
n(r) = }

o . for Olsrs<lon

where C 1is a constant and n(r)dr is the number concentration of aerosols of radii between r and
r+dr , included in the whole air column.

The optical thickness due to aerosols, Ty » is then given by

TM=jm ﬂrzﬂhﬂm n(r) dr (83)
0
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where o = 2mr/x , and Qf{a,m) is the efficiency factor of the Mie scattering. Because of the op-
tical ineffectiveness of small particles (say, r < 0.1u) , and of the scarcity of large particles
{say, r > 102 )}, n{r) in (83) can be replaced by cr™% over the whale range of the integral,
Then we have

=g A (84)

where

24 . (85)

8 = 2n°C I Qlaam) o
0
In this study & 1is taken, instead of the aerosol amount, as a parameter representing the turbidity
ef the atmosphere. This quantity A has a meaning similar to that of the turbidity coefficient of
Angstrom, 8, . which is defined by 7y = By ahe3

As the value of the real part of refractive index of aerosals, N = 1.50 15 assumed, and far its
imaginary part, n; = 0, 0.005, 0.01, 0.02, 0.05, and 0.1 are assumed, in order to cover inaccuracy
involved in the determination of this quantity at present. Such quantities as the phase functioen,
albedo for single scattering, extinction coefficient, etc., which are necessary for computation, are
evaluated based on the Mie theary. The surface reflection is assumed to follow the Lambert law of
reflection, and average reflectivity for sea and land surfaces is assumed to be AS = (.05 and
As = 0.15 respectively. The values of turbidity are changed from B =0 (the pure Rayleigh atmosphere)
to B = 0.4 (corresponding to the atmosphere over large cities).

As the effect of polarization on the flux of radiation is small (e.g. Tanaka, 1971b), it is
neglected. Also as we assume the horizontally homogeneous, plane-parallel atmosphere, we need to
consider only the azimuthally independent part of the radiation field. Then equation of radiative
transfer (1} becomes

(0) 1
" dI dTT = I(O)(Tﬂi) - ]?j P(O)(T;u’ul) I(O)(T,u') d]..ll

sd l'Uo) ' {86)

and the boundary conditions are given by

19,y =0

(87)
1O (g ) = 1g000) |
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where L is the optical thickness corresponding to the whole air column, and Ig is the intensity
of the reflected radiation from the Lambert surface.

Yamamoto et al. have evaluated I(O)(D,+u) and I(O)(Ts,-u) as a function of A and 8 . Here,
as the atmosphere is inhomogeneous, the mixing ratio of aerosols varies with height, and accordingly
the ratios BESJ/B(G) and Bﬁs)lﬁ{e) are functions of T , where Bés) and Bésj are the volume
scattering coefficient of molecules and aerosols respectively. To compute the properties of the whole
layer by building up the whole layer from thinner sublayers, they first divide the atmosphere into
sufficient number of parts with same optical thickness and assume that each part is optically homo-
genegus. They then divide each part into several sublayers whose thickness are given by Aty = 1y
and bty = 2"‘2T0 {n 2 2}, where AT, is the optical thickness of the n-th sublayer. An example
of this dividing scheme is illustrated in Fig. 3. Steps of computation are also shown in the figure.
Clearly, this combined scheme economizes computing time considerable in comparison to simply additive

scheme.

If I(o)(0,+u) and I(O)(TS,-p) are evaluated, the corresponding fluxes are given by

1
R(ug) = 2n I I(D)(Oﬁu)u du
° {88)

1
2‘"]. I(O)(TS U du

Tlug)
0

It is evident that these quantities are dependent upon g althaugh g is not explicitly invelved
in I(U)(D,+u) and 1(0)(rs,-u) . The flux of the incident solar radiation referred to the horizontal
top surface of the atmosphere is given by ﬁFpU . Therefore, the diffuse reflectivity ;ﬁ(ue) and
transmissivity J(uo) referred to nFuO are given by

'R(UO} = R(Uo)/'ﬂFun

—

(89)
Hug) = Tlugd/mFuy

An average reflectivity R and transmissivity J over the sunlit hemisphere are then given by

_ 1

R=2 f R(ug) dug/nF
Q

] {90)

J=2 I T(uo) duolﬂF
0
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0f course, the contribution of the direct solar radiation is not included in T(uo), J(uo) and J .,
The tranﬁmitted flux an? transmissivity of the direct solar radiation at 1 = T, are given by

-7 -
nFqu s/HO and e 'S/W0 , respectively, and the average transmissivity of the direct solar radi-

ation over the sunlit hemisphere is given by
1 -t /g
2y e Mg dvg = 2 Eslry) s {91)
0

where E3(15) is the exponential integral of the third order. Solutions of the equation of transfer
were obtained for the spectral region from 0.3 to 2.3u . Although values of R and &4 (or R

and J) are obtained as functions of A , Mg, B, Ag and n, (orx .8 , A and ni),itis

not the purpose of the present paper to explain such detail.

The average value of R over wavelength, which is nothing but the global albedo AO » 15 now

%=j

It should be noticed that the effect of absorption by atmospheric absorption bands is not taken into

given by

2.,3u _ 2.3u

TF0) RO duj WY A (92)
0.

0.3u 3u

account in AO . Fig. 4 shows AU as a function of B and n, for two cases of AS = 0.05 and
AS = 0.15 . An interesting feature is that when n; is small, AO increases with increase of 2 ,

while for very large values of ng s AO decreases with increase of §B .

In the above calculations we assumed cloudless atmospheres. Actually, however, about half of the
earth surface is covered by clouds. Because of the large optical thickness of normal clouds, which
is about two arders of magnitude greater than that of a cloudless atmosphere, the effect of aerosols
will be reduced in a cloudy atmosphere.

1f we designate the global albedo of the real atmosphere by A , then we have
A=rA_+ (1-n)A, (93)

where n is the global average c¢loud amount, and AC is its average albedo. Based on the estimation
by Robinson (1966) and Budyko (1969), we shall adopt the values n = 0.05 and A.=0.5. Ifwe
assume that the overall area ratioc of ocean to land, 0.71: 0.29 is applicable to each latitudinal
belt, appropriate values of AD for given £ and n, values can easily be obtained from the curves
of AO in Fig. 4. Accordingly, we can estimate the values of A, which are also shown in Fig. 4.

It is seen that the effect on A due to changes in R and n; has been significantly reduced due

to the existence of clouds. Still it can be seen that A decreases with increase of B for a very

large value of n (ni =0.1) .

Based on the above estimation of A we shall next discuss the effect of increase af aerosols on
the thermal regime of the earth by use of a simple global model.
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An eguivalent blackbody temperature Te (°X) of the earth-atmosphere system, which corresponds
to the net incident solar energy, is given by

TR S(1 - A) = 4mRZs (N (94)

where R is the radius of the earth, S 1s the solar constant, and o 1is the Stefan-Boltzmann
constants. Taking the value of Te = 254.1 K for the molecular atmosphere (R = Q) as a reference,
the value of ATe is shown in Fig. 5 as a function of B , with n; asa parameter. It can be
seen from the figure that for small values of Nys ATe decreases with increase of 8 , whereas for
ny = 0.05 no appreciable change of ATe vs. B is seen; for values of n; larger than 0.05,

&Te increase with increase of g .

A similar estimation of global average temperature near the earth surface, Ts can be made as
follows: If we let the global average outgoing longwave flux from the top if the atmosphere be I,
then

aRE S(1 - A) = 4nRE 1 . (95)

According to Budyko (1969), 1 1is expressed empirically as a function of Ts as
I=a+ st - (aI + b1T5)n (96)

where n is the global clouds amount, and a, b, 3y and b1 are numerical constants. If I s
expressed by kcal cam 2 month‘], a=14.0, b=0.14, a =3.0 and by = 0.10 are the values
evaluated by Budyko. Again taking the value of T5 = 292.0 K as a reference for a molecular atmosphere
(8 = 0), the form of the functional variation of ﬁTS with g and nis shown in Fig. 6, is seen to

be similar to that of ATe given in Fig. 5. It is noticed, however, that the overall changes of AT5
are larger than those of ATe . It is shown that the results obtained by Yamampto and Tanaka agree
fairly well with that obtained by Rasool and Schneider, though the latter being restricted to the

case of small n-

Corresponding to the behavior of AO » the transmissivity averaged over the sunlit hemisphere and
wavelength is shown in Fig. 7. This figure shows that the average transmissivity of diffuse radiation
increases with increase of B , but it decreases with increase of ny « The average transmissivity
of the direct solar radiation versus £ is also shown in the figure as a single curve irrespective
of the value of 8 . Curves indicated by {DIRECT + DIFFUSE)} mean the total transmissivity on the
earth surface. Because of the predominant contribution of direct solar radiation, it decreases with
increase of B and n. . The important point-shown in this figure is that transmissivity and
accordingly the intensity of transmitted radiation depends strongly upon n;y . This fact suggests us
the possibility of determining the value of n, from the field observations of the direct solar and

j
sky radiations and the careful analysis of the observed results.

Fig. 8 presents the heating rate (°C day'1) due to absorption of solar radiation by aerosols
averaged over the globe and whole air column. It shows that the heating rate evidently increases
with the increase of g , ny, and As .
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In conclusion, the effect of air pollution on the heat budget of the earth depends greatly upon
the value of n,- Namely, we are led to quite conirary conclusiens depending upan where the true
valye of n; is larger than 0.05 or not. Therefore a more accurate determination of nj is badly
needed,

It should be noticed that in the above computation, the effect of absorption of solar radiation in
the near infrared region by water vapar and carbon dioxide is not taken into account. According to
our recent evaluation (unpublished), if we take into account the absorption due to gaseous constituents,
the value of the albedo Ao decreases slightly from that shown in Fig. 4. However, the variation of
AO due to increase of B 1s almost similar as the result shown in Fig. 4.

Of course, in a more accurate evaluation of the fluxes of radiation over the whole range of solar
spectrum, it will be necessary to consider scattering and absorption by aeresols and absorption by
gaseous constityents simultaneously. In this case, new difficulty arises in the absorption band
region in evaluating multiple scattering process due to the fact that, in contrast to a smoothly
varying property of n; with regard to wavelength, absorption by gaseous constituents varies intensely
with wavelength due to the line structure of the absorption band. It is extremely time consuming to
follow this change directly.

In treating the above non-gray absorption problem, Yamamato et al. {1970, 1971) and Hunt and
Grant (1969) have used the mean transmission function for a spectral interval Av in the form of a
finite sum of exponential terms, i.e..

=

-k u
1 v -1 i
E\jj e dv = M ¢ e ’ (97)
Ay

-
n
)

where v is the wavenumber, and k, and u are the volume absorption coefficient and the effective
amount of absorbing gas, respectively. Since ne interaction between radiation of different wave-
numbers occurs in the radiative transfer process which we are considering, it is pessible to adopt a
new independent variable such that the absorption coefficient increase (or decrease) monotonously
with increase or decrease of the new variable. Then a, 1in the equation {97) is interpreted as the
mean absorption coefficient in the d-th subinterval in the new wavenumber coordinate system.

The equation of radiative transfer {86), for instance, is then transformed to the following
equation in the new wavenumber coordinate system:

G, e+l
T w%j P(O)(u,u'} I$0)(T1,u') du’

b, -t /p
e R (98)
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where ﬁi 1s the albedo for single scattering, i.e., &i = B(S)I(B(e) + ai) . B(S) and B{e)

being the volume scattering and extincticn coefficients of aerosols, respectively, 7 is the optical
thickness for 1-th subinterval and P(D) is the normalized phase function. Using the solution of
equation (98), the solution of {86) averaged over a spectral interval Av is given in the form,

M
;Tﬁjk M) =55 S I(O)( W) dv = & :E: IgojiTisu} s (99)

i=1
where x 15 the geometrical thickness defined by
x =t /(68 v a) = 18 (100)
i i '

Evidently, this method is applicable to all methods of solving transfer equation described in Section 2.

4. HEATING OF THE LOWER ATMOSPHERE DUE TO ABSORPTION OF SOLAR RADIATION BY AERDSOLS

In the preceeding section, we have evaluated the rate of heating due to aerosol absorption
averaged over the globe and whole air column. In this section, we shall clarify the vertical distri-
bution of the heating rate within the air column (Yamamoto et al., 1973). The model atmospheres used
are same as used in the preceeding section. The method of calculation used is similar to the Neumann
series method by Irvine (1965).

The alternative form of equation of transfer is given by

(0)
M LLM: I(Tau) '.;."f(T’U-}

= . (101)

wheredgﬁais the source function defined by

+
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If we use the boundary conditions given by (87), the formal solution of (101) is given by
(0) ) “{r-t/w @w@ -{t-T)/u g,
1O = 1 e +L At e €, (103)
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Inserting (103) and (104) into (102), we have the integral equation for¢ﬁ3? as follows:
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If weput I, =0 inequation (105) we have the equation for the standard problem, Namely, denoting
the source function for it by .4 g » We have
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The solution of equation (106) can be obtained by the iterative method. We shall defineﬁﬁﬁén) as
follows:

‘ =t/u
4ﬁﬁ?§1)(T.iu) = %-F e O P(O)(T;iu,-uo) R {107)
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Evidently, 4£f£n) represents the radiation scattered up to n times. Then the function Jgﬁf can

be obtained by iterating (108) until the follawing condition is satisfied for any value of T and u :

LA sy - 0D (i | .
Ll Vi) | T

where € 1is a small value corresponding to the required accuracy.

(109)

Next, we shall proceed to obtain the solution of the planetary problem, or of equation {105}. The
intensity of the reflected radiation, Ig, can be expressed, wtilizing the solution of the standard
problem to be {Chandrasekhar, 1950)
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where A s the reflectivity of the Lambert surface. Then we shall expressgﬁéﬁ as follows:

A150) =-//§£(T,iu) + -dﬂ(mu)

From (105) and (106), we have the following equatiaon for 4£?A:
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Further we shall put
*
Ig = f(ASIUO) Ig 3
where from (110)
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and

"
Correspondingly we shall write ,4ﬁi as follows:
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Inserting {115) and (118) into (114), we have the following equation for,ég?: :
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{119)

Equations (114) and (119) take a similar form. However, as the surface refiectivity A is not in=
cluded in (119}, if 1ts solution is once obtained, the solution for any value of A can be obtained
fram (118). The solution of (119) can be obtained by solving the following equat1on by the iterative
procedure as in the case of the standard probiem:
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is satisfied. If 4gﬁi and ’4(; are obtained the downward and upward fluxes, [ and U
respectively, of the diffuse radiation are given by

2n 1
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(124)
The total net flux, N , 1is then given by
= /]—lo
N = D) + nFuo e - W) {125}
~T/ug . -
where TrFu0 e represents the fiux of the direct solar radiation.

The results of the computation is shown beTow. Fig. 9 shows the vertical distribution of the net
flux A = 0.45u , n; = 0.03, and AS = 0.05 taking Hg and B as parameters. The solid line
represents the case for g = 0.15 and the broken line, for B = 0.30 . It can be seen in the figure
that the net flux increases with increase of Ha and that it decreases appreciably below 5 km, while
it is almost constant above 5 km.

Fig. 10 shows the vertical distribution of the net flux for & = 0.45u , Ko = 0.75, and- As = 0.15
taking 8 and n; as parameters. If n, = 0, the net flux is independent of height, as it ought to
be, and it decreases with increase of 8 , corresponding to increased diffuse reflection. In the

cases of ny = 0.03 and 0.1 , the net flux decreases rapidly with decrease of height, and the rate
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of decrease is larger for larger n; and B . A noticeable point in the case of n, = 0.03 and
particularly of n, = 0.1 is that the net flux increases with increase of g , contrary to the case
of n, = 0. The explanation of this result is that, if n; is large, the upward reflected
radiation from the earth surface and lower atmosphere is absorbed by aerosols more strongly when
aerosols are more abundant, causing the net flux to increase with g . Therefore, this effect is
more evident when the surface reflectivity AS is large, although it is not shown in the figure,

The heating rate (°C day']) for each height is then obtained by integrating the net flux with
regard to wavelength and further taking average of it with respect to the sun's altitude, It should
be noted here that the present computation of the heating rate is due to absorption of solar radiation
by aeroscls from 0.3y to 0.8s , and absorption of solar radiation in the near infrared region by
water vapor and carbon dioxide as well as aerosols is not taken into account. Fig. 11 indicates an
example of the result for the case of R = 0.075, ny = 0.03, and AS = 0.15 , showing the tatitude-
altitude variation of the heating rate. Fig. 12 indicates another example for same values of ny
and As , but for B = 0.15. The turbidity value of 2 = 0.075 will not be so far from the global
average value of it, and B = 0.15 corresponds to the value over rural districts of Japan at present.
Figs. 11 and 12 indicate that the heating rate is greater in the lower atmosphere of the low Tatitude
region, and that in the case of 8 = 0.15, the heating rate in the Tower troposphere is comparable to
that due to absorption of solar radiation by water vapor and carbon dioxide. However, the heating

rate is very sensitive to n; . For instance in the case of ny = 0.01 , the overall heating rate
diminishes to about 2/5 of that for ny = 0.03. This again suggests to us the importance of a more
accurate determination of n; . In this respect, the results shown in Figs. 9 and 10 indicate another

passibility of determining n;, from field observations, utilizing an airplane or balloon, of the
vertical distribution of the flux.

5. INTENSITY AND POLARIZATION OF RADIATION REFLECTED AND TRANSMITTED BY TURBID ATMOSPHERES

The problem of diffuse reflection and transmission of the solar radiation by turbid atmospheres
is one of the main topics in the atmospheric optics and its study has been making rapid progress in
recent years. Extensive investigations have been carried out by Feigelson et al. (1960a,b) in which
the effect of inhomogeneity of atmosphere has been taken into account by considering a two-layer
medel. An interesting point in their investigations is that they specify the scattering properties
of atmosphere basing on the directly observed phase function, but no account has been made by them
on the effect of polarization of the radiation field.

Series of calculations and observations of the transmitted solar radiation field (intensity and
polarization) have been presented by Bullrich et al. (1967, 1968, 1969) and de Bary et al. (1965).
Their calculations were based upon an approximation which added the singly-scattered radiation by
aerosols to the multipie-scattered radiation by the molecular atmosphere. Since this approximation
de not correctly allow for higher order scattering by aerosols nor for any interactian between scat-
tering due to the two components, aercsols and molecules, it gives results of varying degrees of
accuracy, depending upon the optical depth of the aerosol compunents.
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Recently, series of investigations have been made by Plass and Kattawar (1968, 1970, 1971) taking
into account the effects of polarization, vertical distribution of aerosol and ozone absorption. In
these studies, they used the Monte Carlo method and avoided all the mathematical difficulties involved.
The only difficulty of the Monte Cario method is its enormous computations required to achieve suf-
ficient accuracy and resolution of the angular distribution {see Section 2.5). In fact, the resolution
of their results with respect to the azimuthal angle is too low to enable one to draw a picture of
the angular distribution of the intensity and state of polarization of the emergent radiation.

Herman et al. (1971) and Tanaka {1971b,c) have investigated the intensity and polarization of
radiation emerging from turbid atmospheres. Herman et al. have used the fterative methad which is
described in Section 2.3, and computed the intensity and polarization of the diffusely transmitted
sunlight for atmospheres containing various distributions of aerosois, as well as normal molecular
constituents. Comparing the theoretical results with observations of their own, they have shown that
inclusion of aerosols in the theoretical models results in considerably better agreement between the
observation and theory than can be achieved by assuming a pure molecular atmosphere for the theoretical
computations. Tanaka has adopted the matrix method originally developed by Twomey et al. {1966) and
generalized by himself to be applicable to the inhomogeneocusly stratified medium and also to the case
of polarized light. He has shown that general tendency of the diffusely transmitted radiation thus
gbtained is in good agreement with the results of classical cbservations.

We shall briefly review Tanaka's results which give detailed infarmation about the angular
distributions of the intensity and polarization of the skylight and thelr dependence on atmaspheric
parameters.

fs to the size distribution of aeroscls, he assumed a continental type of aerosols compiled by
Manson (1965), but with the largest size of 3.0u in radius. The refractive index of aerosols was
assumed to be 1.33. The phase matrix for this distribution of spherical particles is calculated from
the Mie theory for wavelengths of 0.45u and 0.7u.

In order to study the effects of changes of aerosol amount, computations were carried out for the
following cases: :

(1) a pure Rayleigh atmosphere (B = Q)3
(2) (1) plus a conceivable novmal aerosol amount (B = 0.1);

(3} (1) plus twice the normal aerosol amount (8 = 0.2)

In all these cases the same relative vertical distribution of aerosols are given by Elterman {1964)
was used.

Fig. 13 shows a result of comparison between measured and computed phase functions. The broken
1§ne in the figure indicates the computed phase function, p = 1/2(P] + Pz) y Wwhere P] and P,
are components of the phase matrix, for the aercsols alone at A = 0.451 and the solid line that
for the lowest layer of the turbid atmosphere with B = 0.1. The measured values by Foitzick and
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Zschaeck (1952) and Reeger and Seidentopf (1946), which are concerned with a white light, are cited
from Feigelson et al.'s monograph (1960a}. These measurements were made in a layer near the earth
surface under conditions with the visibility range of about 20 km which is roughly compatible with
the turbidity condition of B = 0.1 for X = 0.45. . Agreement between measured and computed phase
functions as shown in Fig. 13, therefore, implies that the model of aerosols used by Tanaka's study
is reasonable, at least with regard to the angular distribution of scattered 1ight.

Fig. 14 shows an exampie of the calculated angular distribution of intensities of the diffusely
reflected (the left half of the figure) and transmitted (the right half of the figure) radiation
at A = 0.45s for the case of 8= 0.1 (T = T] according to the notation of the orginal paper),
A=0.25 and 6y = 33°, where A and 60 are the surface albedo and solar zenith angle, respectively,
This figure shows that as for the diffusely transmitted radiation (or skylight), there is a bright
aureole around the sun and a dark zone stretching from antisolar sky sideways to the part of the sky
below the sun., This general tendency of the figure coincides with the results by Feigelson et al.
(1960a,b) and follows fairly well the observed distribution of sky brightness. As for the diffusely
reflected radiation, it can be seen that the distribution of brightness s more uniform than that of
the skylight. In this case, a darker area appears around the image point of the sun and it tends to
brighten toward the horizon. Again, this general tendency agrees well with Feigelson et al.’'s
results.

Fig. 15 shows the angular dependence of the degqree of polarization of both the diffusely reflected
(the right half} and transmitted (the left half) radiation for the same case as Fig. 14. From the
figure, it can be seen as for the diffusely transmitted radiation that there is a region with minimum
polarization in the sky around the sun and region with maximum polarization in the antisolar sky.

As for the diffusely reflected radiation, we can see that a region with minimum polarization generally
appears on the opposite side {¢ = 180°) of the splar image and that a region with maximum palarization
is stretching sideways from the solarside ($ = 0°) to the horizon near ¢ = 90° where the polari-
zation of the reflected radiation is most pronaunced.

the direclion of poiarization piane is shown in Fig. 16. As can be
seen, the diffusely reflected and transmitted radiation fields are nearly symmetric in this case. It
should be noted that the direction of polarization plane is not remarkably affected by the existence
of aerosols, in accordance with BullricHs (1964) suggestion. This is especially true for the diffusely
reflected radiation.

By reviewing Tanaka's results in more detail, it is pointed out that his results agree qualitatively
well with observations, but quantitatively some discrepancy remains. An example of comparisons between
abserved {Coulson, 1971) and calculated results (Kano, 1964; Plass and Kattawar, 1970; Tanaka, 1971)
is shown in Fig. 17 on the degree of polarization at the maximum for various wavelengths as a function
of sun elevation. Plass and Kattawar's results correspond to the model atmosphere with refractive
index of aerosols m = 1.55-0,0i, surface reflectivity A = 0.0 and turbidity coefficient £ = 0.09,
whereas Tanaka's results correspord to the model atmosphere with m = 1.33-0.0i, A = 0.25, g = 0.1
(broken 1ines} and that with m = 1.33-0.01, A= 0.25, g = 0.2 (solid lines), respectively. As
shown in the figure, Tanaka's results can explain observed dependence of maximum polarization on the
sun elevation better than that of Kano and Plass and Kattawar. But his choice of the value of
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refractive index is less realistic than Plass and Kattawar's. A more detailed comparison between
observed and calculated polarizations in Fig. 17 reveals that the wavelength dependence of the
observed polarization can not be explained by theoretical calculations. This fact suggests that the
refractive index of aerosols may depend upon the wavelength. A more detailed knowledge on optical
properties of aerosols is needed to explain polarization phenomena.
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Fig. 14 Distribution of intensities of the diffusely reflected and transmitted
radiation for A = 0.45 4 , BO =33°, B=0.1 (T-= T.l) and A = 0.25.
The right half of the figure shows transmitted radiation and the left
half, reflected radiatian. |
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Abstract

In the present study, results from numerical computations of the diffuse sky
radiances and degree of polarization are given. These results were obtained
by solving the equation of radiative transfer in the formulation of Eschelbach.
In these computations, multiple scattering and absorption by aerosol particles
were considered. In addition, results from experimental measurements of the
complex refractive index of aerosol samples at different relative humidities
are presented. From the radiation flux divergences which were computed based
on the determined properties of atmospheric aerosol particles, atmaspheric
heating rates were derived which were found to be comparable to the heating
rates by water vapor. In how far these heating rates are compensated due to
cooling as a result of infrared emission of the aerosol particles has not yet

been investigated.

1. INTRODUCTION

The knowledge of the heat balance of the atmasphere is of paramount importance in meteorology. The
heat balance is highly controlled by the radiation balance. Thus, its evaluation comprises--among
other calculations--the computation of the radiant fluxes in the visible and their divergences. The
computation of these divergences at different heights of the atmosphere necessitates to meet two

requirements:

1) the equation of radiative transfer must be solved by taking into account
multiple scattering in a turbid atmosphere;

2) the properties of extinctive material in the atmosphere, that affects
multiple scattering and absorption of radiative transfer.

The fulfillment of both these conditions requires expert knowledge in the field of mathematics as well
as in the field of physics and chemistry.
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2. RESULTS

1. Computations with the Help of the Equation of Radiative Transfer

The equation of radiative transfer is an integrodifferential equation describing the radiation field
in an extinctive medium by taking into account the multiple scattering. The sclution yields the four
Stokes' parameters of the atmospheric radiation field. The vertical radiant flux is obtained by in-
tegrating the vertical components of the radiance over all directions. To solve our problems, the
equation of radiative transfer must be transformed into a system of linear algebraic equations by
discretion of the coordinates of space and angle for obtaining a numerical solution. The basic featuresof
this technigue have been described by Herman et al. (1971). Eschelbach et al. {196%) published as a modi-
fication for adjusting this technique to the complexity of the scattering properties of the atmospheric
aerosol. Under the assumption of the atmosphere being plane parallel, infinite in extent and homo-
geneous in a horizontal plane, the spatial functional relationship of the radiation is reduced to a
mere height dependence. This technigue gives the radiation field also inside of the atmosphere. Thus,
it is suitable for determining divergences. Since this procedure has been published, it is appropriate
ta concentrate on the results obtained. OF course, only some exemplary computational results can be
given here. They are based upon specific assumptions on the properties of the atmospheric aerosol
particles which will be commented upon in the second part of this paper.

On the other hand, we hasten to mention that several authors reported on other methods to solve the
equation of radiative transfer which all have their merit if applied to the range of problems they
chose to investigate. [W. G. Blatiner et al.{1971)}; S. Chandrasekhar (1969}, C. Devaux et lLenoble
(1972); J. E. Hansen (1971); K. Heger (1971); A. C. Holland et al. (1970); J. W. Hovenier (1971);

H. C. van de Hulst (1963); W. M, Irvine (1968); G. W. Kattawar and G. M. Plass {1968); 1 . Kuscer and
M. Ribaric (1959; G. S. Livshitz (1973); H. Quenzel {1971); E. Raschke (1972); M. Tanaka {1971};
G. Yamamoto et a1 (1972)].

a) Sky Radiance

The first example gives the computed regional distribution of sky radiance sighted from the surface
of the earth, for the green wavelength » = 0.55 u at the solar zenith distance of 37°, (See
Figure 1, laft).

The isalines of sky radiance have been plotted as functions of the zenith angle<® and the azimuth
angle ¥ in polar coordinates, A} is the radial and & angular component. Tt has been assumed that
the turbidity factor was T = 4, the real part of the complex refractive index of the aerosgl particles
was m = 1.5 and the albedo of the surface of the earth was A = 0.25. The computation has been based
upon Junge's model of aerosol particle size distribution dN/d log r = const r=V*, with v* = 3 which
will be commented upon later. N denotes the number of aerosol particles per cm3, r the particle
radius, and A is the ratio of the amount of radiation reflected by the surface of the earth to the
amount incident upon it.

The values refer to a narmalized extraterrestrial solar irradiance being Sgi = T These values
include the multiple scattering on air molecules and aeroscl particles. Though the computation has
taken multiple scattering into account, the computed values in most cases show characteristic devi-
ations from the measured ones. This is due to absorption of radiation by the atmospheric aerosol
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particles, This absorption can be accounted for by adjusting the jmaginary part of the complex re-
fractive index, which is written m =n - ki , with n being the real and k the imaginary part

of the complex refractive index. It will be pointed out later that the assumption of m = 1.5 - 0,021
is realistic for continental atmospheric aerosol particles.

The influence of aerosol absorption shown in Figure 1, right, has been evaluated under the above
assumption of refractive index, The isolines represent the ratio I/Iabs , i.e. 1 denotes the sky
radiance without and Iabs with aerosol absorption. The assigned parameters and the way of pre-
sentation have been chosen the same as in the previous Figure 1, left. It is obvious that the
regional distribution of sky radiance is greatly influenced by aerosol absorption: The values
including absorption are increased by 10% to 50%.

It is noteworthy that in those regions of the sky which are far from the sun, the fraction of
multiple scattering can be double or more that of primary scattering; no sooner than in the immediate
surroundings of the sun, it becomes negligible in comparison with primary scattering.

Figure 2 shows an example of the influence of the scattering of higher arder for the case of albedo
A= 0. There can be seen the ratio of the sky radiance I in the sun's vertical and the counter-
vertical for multiple scattering to that for primary IPS' If absorption is considered (values re-
presented by dashed Tines), the effect becomes smaller.

b) Divergences of Radiant Flux and Heating Rates

The above computations can be conducted for any heights above the ground. The integration of the
radiances taken over all directions yields the radiant flux which can be computed for bath vertical
directions, downward and upward. The differentiation of the vertical radiant fluxes F 1in relation
to the height z yields the radiant divergences dF/dz which are needed for determining the heating
rates with respect to time for the visible:

A2
ajdt = o= | wfran)
P A]
with T denating the temperature; t, the time; p, the air density; c,. the specific heat at
constant pressure p, A, the wavelength; F, the radiant flux; and z, the height above M3L.

Figure 3 shows the daily heating rates in the lower troposphere for the zenith distances of 37° and
66°; the three albedo values of the surface A =10, A= 0.25, and A = 0.8; and for the spectral range,
0.45 u s » s 0.8 u under the assumption that the decrease of aerosol particles with the height 2z
follows the relation N{z) = e—(Z/HD) with HD = 1.25 km denoting the vertical extent of the homo-
geneous turbid atmosphere and under the further assumptions that again m = 1.26 - 0.02i and T = 4,
The decrease of the heating rates with increasing height had te be expected, because the decrease of
the absorbent aerosol particles acts in the same direction. The influence of the surface albedo can
be clearly seen, Since the amount of turbidity facter, T = 4, applies for central Europe, the results
presented here imply that at Teast near the ground the influence of the aeroscl in the short-wave
portion of the spectrum is equal to or even greater than that of the vapor pressure if the mean value
of vapor pressure is assumed to amount to 2 grams per cm2 according to Roach (1961). (Of course, these
heating rates are counterbalanced by cooling rates of the same order of magnitude due to outgoing
radiation in the infrared as has been shown by Grassl in 1973},
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These introductory remarks were meant to point out which important conclusions on the energy
balance of the planet, earth, could be drawn if the equation of radiative transfer could be solved
under realistic boundary conditions which apply to the atmospheric conditions.

¢) Degree of Polarization of the Sky Radiance

Some suppiementary examples of the degree of polarization of sky radiation are given which have
been obtained by way of theory as well of experiment. It is well known that Sekera and his colla-
borators have made comprehensive studies on this subject with regard to the molecular atmosphere.
Today, it fs possible to account for the multiple scattering on molecules and aeroscl particles; this
results in a remarkably good agreement between theory and experiment. It is the polarization of sky
radiation which s such a sensitive indicator for the addition of aerosol particles in the conser-
vative hypothetical atmosphere consisting of gas molecules only.

Figure 4 gives an example out of the numerpus measuring series of sky radiation polarization
which have been carried out at first at Mainz and then at various places of the globe; this example
gives the results obtained at Mainz. To the Teft, there are the results of the measurements taken
by Mowak (1970); to the right, there are the results of the computations conducted by Eschelbach (1973).

On Figure 5, one can see the difference PPS - P (%) between the sky 1ight polarization for primary
scattering (PPS) and that for multipie (P) in the sun's vertical and counter vertical {calculations).
The strong influence of higher order scattering is remarkable, particularly if no absorption is assumed.

In this context, the elliptical polarization of the sky radiation has a bearing, too. Already in
1955, Sekera had furnished proof that efliptical polarization cannot occur in a mere molecular atmos-
phere, whereas R. Eiden in his measurements of the distribution of sky radiation fn 1970 had found
characteristic features of this elliptical polarization.

Figure 6 gives an example of the results of measurements taken at Mainz. The ellipticity tan B is
plotted as a function of the azimuth angle a. (The elliptical polarization is characterized by tan B;
B is the ratio of the greater to the smaller axis of the ellipse which is traced by the electrical
vector). A maximum is located in between the azimuth angles 40° and 90°; it amounts to tan 8 = 0.1 or
less, depending on turbidity and elevation h of the observation in the sky. It is the highest for
large elevation above the horizon. In both directions to the sun's vertical, the ellipticity decreases
continuously and goes sometimes to negative values. Tan B being negative means lefthanded elliptical
polarization. W¥hat is the explamation for these measurement results? Already Mie had proved that
only Tinear polarization of the natural light can be expected when it is scattered on aerosol particles
and gas molecuTes. Thus the production of elliptically polarized skylight due to primary scattering
s not possible. But in case of higher-order scattering processes, the 1ight which is subject to
another scattering process is already at least partly linearly polarized. From these processes, we
can expect elliptical polarized light from the sky. Furthermore, the position of the plane of polari-
zation with regard to the reference plane Plays an important role, If the plane of polarization of
the incidient light is parallel or normal to the reference plane, the scattered light canmot shaw any-
thing but linear polarization; for instance, the plane of polarization in the sun's vertical is parallel
to the reference plane. Therefore, no elliptical polarization can be found here. Thus, Araqo looked
for eltiptical polarization here in vain. Fesenkoy (1961) could not find any elliptical polarization
in the sky because the atmosphere at Alma Ata was too clean.
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Figure 7 represents results from computations. The measured data only are understandable if
absorption is assumed.

II. The Atmospheric Aerosol

Over the past few years, increasing attention has been focused to possible global temperature
changes due to absorption by particulate matter in the atmosphere. Only minimal data, for instance,
on the absorbing properties of natural atmospheric particles are available as yet.

The examples given here furnished proof that the variations of sky radiance and its degree of
polarization can be simulated by computations if the equation of radiative transfer is solved by
accounting for multiple scattering in the turbid atmosphere as well as absorption by the aerosol
particles, This requiraes the making of specific assumptions on the constitution of the atmospheric
aerosol particles. On the other hand, quite a contrary approach has been tried by drawing conciusions
on the physical properties of the aerosol particles from physical experiments in the way of radiation
measurements. However, we do not go into detail here because the interpretation is always somewhat

equivocal.

It is rather deemed necessary io discuss the question whether the assumptions on the size distri-
bution and the physical properties of the aeresol particles are realistic. Recently, some basic ex-
periments have been made for answering this gquestion. They covered the complex influence of the
relative humidity on the aerosal particle size distribution and the refractive index of the particles.

a) Aerosol Particle Size Distributions

Figure B shows a variety of mean aerosol particle size distributions derived from recent measure-
ments which were based on different measuring technigues at various locations of the globe by Junge in
1971. The graph shows a schematic size distribution of tropospheric aerosol particles: the curve
No. 1 denotes the background distribution; No. 2, the continental; No. 3, the maritime {background
plus seasalt component); No. 4, the Sahara dust component. These are the basic models of aerosol
particle size distribution which have the tendency of turning up again and again. There are
individual exceptions from this rule, e.g. in the neighborhood of aerosol sources. And in the higher
troposphere and in the stratesphere, the radius range is less wide resembling a logarithmic Gaussian
distribution.

The immediate response of the degree of polarization to the aerosol particle size distributions had
peen demonstrated by Eiden's computations in 1971 which are are shown in Figure 9. The aerosol particle
size distributions have been assumed to follaw logarithmic Gaussian distributions, the most frequent
radius of which is called RO‘ Linear polarization has been attributed to the incident radiation; thus,
its degree of polarization (ordinate) at the scattering angle ¢ = 0° (¢ is the abscissa) is 100%.

The upper part of Figure 9 shows the angular dependent polarization for water droplets; the lower part,
for coal particles for various wavelengths. The differences in the refractive indices result in con-

siderable deviations of the values.
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b) Real and Imaginary Parts of the Complex Refractive Indices of Atmospheric Aerosol Particles
Obtained From Sample Measurements

It is not sufficient to know the size distribution of the aerosol particles. Their physical and
chemical properties must also be known for determining their influence on the attenuation of radiation
due to scattering and absorption processes in the atmosphere. These properties are characterized by
the complex refractive index, m = n - ik, with n denoting the real part and k, the imaginary part.
The complex structure of the aerosel particles precludes the direct measurement of the real as well as
the imaginary part. Certainly, most of the individual chemical constituents--water soluble or insoluble--
suspended in the atmospheric aerosol are rather well known, However, it is the mixed structure of the
individual particles that forbids any straightforward statement on the refractive index. Therefore,
Hanel, in 1966, developed a measuring method for determining the real part of the complex refractive
index of aerosol particle samples. He found values ranging between 1.33 for water and 1.77 for dry
matter following the influence of the given relative humidity as mentioned previously.

Now, let us concentrate on recent investigations into the imaginary part of the refractive index
carried out by K. Fischer in 1973. The measurements have been performed on films of aerosol particles
cellected by an automatic jet impactor at several urban and remote sites. Details of the measuring
method will be published later. We want to place the emphasis on some examples of the resuits obtained.

The imaginary part, k, of the complex refractive index is called the absorptive index; K = Eg-k
is called the absorption coefficient; k/o, the mass absorptive index with p being the density of
the aerosol particles; and K/p, the mass absorption coefficient. X¥/p 1is specified by the energy
which is absorbed in an infinitesimal wavelength interval and indicates the relevance of the selecti-
vities of the 1ight absorption in the atmosphere.

Figure 10 shows the mass absorption coefficient, K/p, in the wavelength range between 0.4 and
2.4 u. The aerosol samples were taken at four different places. The result from Mainz is an example
of urban air particles of medium absorptivity. The samples from Tsumeb, South Africa, and Jungfraujoch,
high mountains, Switzerland, were collected at remote sites with low aerosol particle concentrations.
Mave Head (Irelaind) vepresents ool i

It should be noted that the vaTues of the clean air sample from Tsumeb in Southwest Africa are
similar to that of Mainz (urban origin) which contains soot and further carbon mixed polymerides of
pelluted air. The absorption coefficients of carbon containing residues of combustion mainly range
between 0.3 and 0.8. Thus the absorption of a sample is essentially determined by relatively small
contributions of such strongly absorbent constituents Tike carbon compounds. The South Africa Tsumeb
particles are originated by bush burningduring the seasonal dry spell. These particles are removed
by abrasion if dry blades of grass and leaves are ribboning each other. These particles consist of
organic matter, i.e. carbonic compounds, which affect the values like those of polluted air samples

taken at Mainz.

Also relatively few carbon compounds are contained in the collections of the high altitude
Jungfraujoch aerosal particles.

The mass absorption coefficient measured from samples collected at Mace Head, Ireland, shows lower
values. The wind from the north brought air directly from the Atlantic Ocean which is not contaminated
by any human activity.
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Bands of Tiquid water are found in the absorption spectra of the investigated aerosol particles.
The measurements were performed at a relative humidity of air of 35%. In spite of this relative Tow
relative humidity, water vapor of environmental air is condensed and absorbed on the aerosol substance
{Winkier, et al. 1972; Hdnel, 1972) thus increasing the absorption ad&1tiona]1y. The density of the
particles varies with the relative humidity as well as the amount of additional absorption caused by
the bands of 1iquid water in the IR.

On the ather side, it is to be seen that between the wavelengths 0.4 and 2.4 p that the absorption
of the investigated aerosol particles as a dry substance may be labeled as grey to a good approximation.
That means a continuous attenuation of solar radiation at every process of scattering in the aerasol
Tayer over industrial regions as well as over those with uncontaminated air. The values of the mass
absorptive index range from 1073 to 1072 cm3/g.

Figure 11 shows results of measurements of the mass absorption index, k/e, in the wavelength range
2-17 micron from samples taken at Mainz and Jungfraujoch. The peak at 3 micron is originated by water
in the atmosphere. The maxima at 7 and 9 microns is caused by (NH4)2 504. The absolute amount of
absorption depends upon soot and other carbon admixtures. See also Volz (1972, 1973).

Figure 12 represents results from the west coast of Ireland at westerly winds from the ocean (dashed
line) and easterly winds {full line) from the continent.

c} The Density of the Atmospheric Aerosol Particles

The measured values of the mass absorptive index k/p and the mass absorption coefficient yield
the density p of the aerosol particles. In order to determine the density Hanel* in 1972 developed
special techniques for measuring the mass and the volume of aerosol particles. Mean densities of
several types of aerosol particles at the relative humidity of 35% have been found as follows in Table 1.

d) The Change of Light Extinction, Scattering, and Absorption Due to Atmospheric Aerosol Particles
as a Function of the Relative Humidity
As mentioned in the beginning, the relative humidity modifies the radiys of the aerosol particles--
and thus also their size distribution as well as their complex refractive index. In this way, the
attenuation of radiation and the angular dependent scattered radiation become remarkably dependent
upan the mositure.

There are two basic ways of determining the variation of these radiation parameters as functions of
the relative humidity: (a) The radiation parameter under investigation is being measured on particles
in an air volume under different relative humidities. (b} The changes in the radiation parameters are
being calculated with the help of Mie's theory by basing the computation upon direct measurements of the
essential aerosol parameters, namely the size distribution, density, mass and compiex refractive index
at various relative humidities. The latter method has been applied for obtaining the results discussed
here. This method had been developed by Hanel in 1972 under the assumption that during the moisture
change the aerosol particles do not coagulate and that they are in thermodynamical equilibrium with the
surrounding air. The latter condition is practically always fulfilled at relative humidities less than

* Pp.D. Thesis, University of Mainz
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95%; whereas at relative humidities equal to or greater than 95%, it is fulfilled only if the moisture
changes are going on rather slowly. Furthermore, it is assumed that the chemical composition and the
structure of the particles in dry state are independent of the size of the particles, i.e. that
differences in size are anly due to differences in mass of the particles. The investigation covered
three continental and one maritime type of aerosel.

Figure 13 refers to two aerosel particle size distributions called Model 6 and Model 3 here. The
change in size distribution due to a change in relative humidity has been demonstrated. The abscissa
is the radius r 1in cm; the ordinate is dN/d lag r per cm3; and N s the total number of particles

3
per cm”,

The "Model 6" characterizes an aerosol particle size distribution in clean air {see also Figure 8).
The samples of which have been collected on top of the Hohenpeissenberg in southern Germany at a height
of 1,000 m above MSL,

The "Madel 3" represents an aerosol particle size distribution which in April 1969 had been measured
by Jaenicke on hoard the research vessel "Meteor" on the central Atlantic. These aerosal samples re-
presnt a typical maritime aerosol {Junge and Jaenicke, 1971},

Table 2 shows the change in the mean values of the density, of the real, and of the imaginary parts
of the complex refractive index of aerosol particle samples; and the ratio of the volume of the humid
aerosol sample to that of the dry as a function of the relative humidity. The samples were taken on
board the "Meteor" on the North Atlantic. The values are valid for the wavelength A = 0.59 .

Figure 14, which is valid for the wavelength A = 0.55 1, shows the functional relationship between
the relative humidity f and the changes of the extinction coefficient cE(f), the scattering coef-
ficient cs(f). the absaorption coefficient cA(f), and the total geometrical cross-section Q(f). The ratios
cA(f)/co are the abscissa, whereas the ordinate represents 1 - f 1in its lower part and f 1in its
upper part. (f) denotes the moist state at the relative humidity f; the index 0 denotes the dry
state at the relative humidity f = Q.

Obviously, three conclusions can be drawn:

(1) The extinction coefficient oE(f) and the total geometrical cross section
Q(f) are closely related. Both these quantities have almost the same
rate of growth with increasing relative humidity, The differences do not
surpass 20% to 30%.

{2) The scattering coefficient shows a greater rate of growth with increasing
relative humidity than the extinction coefficient.

(3} The absorption coefficient shows only little variation with the relative
humidity.

The physical explanation for these effects can be seen from Figure 15. The ordinate represents the
efficiency factors o/Q. The abscissa represents the generalized size parameters (R. Penndorf, 1962;
H. C. van de Hulst, 1957; D. Deirmendjian, 1969; G. Hanel, 1971)

w = L Sy -
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The solid lines refer to f = 0. The dashed lines are valid for large values of f. The black color
means extinction, red means scattering, and blue means absorption.

It can be seen that the efficiency factors related with high relative humidities oscillate around
the efficiency factors related with low relative humidities, i.e. the mean value almost remains the
same. This explains the close relationship between the extinction and the total geometrical cross
section of all particle sizes.

The efficiency factors scattering at f = 0 are very well lower than the efficiency factors
extinction. At high relative humidities, the imaginary part of the complex refractive index is
diminished. This raises the efficiency factors scattering so that they come close to the values of the
efficiency factors extinction. This means that their mean value increases with increasing relative
humidity. Consequently, the scattering coefficient shows a higher rate of growth with increasing
relative humidity than the extinction coefficient whereas the efficiency factors absorption consi-
derably decrease with increasing relative humidity. Correspondingly, the absorption coefficients can
oniy slightly increase with increasing relative humidity.

The conclusions drawn from Figure 14 also apply to the wavelength A = 1.0 u. At f = 97%, the
extinction and scattering coefficients show a 20% to 30% higher rate of growth than those in Figure 14.
The absorption coefficient shows only a s1ightly higher rate of growth with increasing relative
humidity at » = 1.0 u than at X = 0.55 p. Deviations ocecur if the aerosol particle size distri-
butians differ from those of the Models 3 and 6. The investigation of a mixed aerosol, e.g. a mari-
time aerosol mixed with Saharfan aevosol (see Figure 8), yields a lesser rate of growth with increasing
relative humidity at a wavelength X = 1.0 p than at A = 0.56 . This is due to the special type
of aerosol particle size distribution and the small imaginary part of the complex refractive index.

Figure 16 shows the variation of the scattering function as a function of the relative humidity on
account of the previously mentioned measurements of the refractive index and the aerosol particle density.
The scattering angle ¢ 1is the abscissa. The radiation intensity is the ordihate. The results in
Figure 16 refer to an aerosol particle size distribution for continental aerosol {see Figure B) as it
has been measured at Mainz, Germany. It is obvious that an increase in the relative humidity affects
an increase in the angular dependent scattering within the range of small scattering angles, i.e.
in the range of forward scattering, whereas it affects a strong decrease of scattering intensity at
scattering angles > 30°. A similar functional relationship with the relative humidity exists for the
angular dependent degree of polarization or the elliptical polarization respectively,

e} Measurements of the Wavelength Dependent Extinction Over the Noch Atlantic

Finally, extinction measurements taken over the North Atlantic shall demonstrate the great varia-
tions of the spectral extinction coefficient upon quick changes in air mass of different source regions.
The self-recording of spectral extinction coefficients which is presented in Figure 17 has been obtained
on the Atlantic on board the research vessel "Meteor". The ordinate represents the extinction coef-
ficient oy5 the abscissa the time elapsed on the 17th of April 1969 from 01 until 24 o'clock. The
different curves refer to six wavelengths within the range from 0.475 p up to 0.924 u. The values have
been recorded with an integrating nephelometer in an open scattering volume. From 01 up to about
08 o'clock in the morning, almost grey extinction prevailed in the SE trade wind, the corresponding
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standard visibility amounting to about 100 km. On Figure 18, it can be seen how the extinction

depends upon the wavelength. The ordinate is the extinction coefficient without Rayleigh scattering.
The abscissa is the wavelength. Both are in the logarithmic scale. After 8 o'clock in the morning,

the extinction strongly increases and it is stronger in the near infrared than in the short wave range- -
the corresponding standard visibility being only about 20 km. The change in the behaviour of the
extinction coefficient can be explained with: (a} a change in the aerosal particle size distribution
due to the transport of Saharian dust by the NE trade wind {the maximum in the aerosol particle size
distribution is shifted towards greater radii (see Figure 8); (b) the air in the NE trade wind is
drier than the air in the SE trade wind; (¢} the refractive index is influenced by the quartz campo-
nent of the Saharian dust,

f} The Influence of the Relative Humidity on the Volume Extinction of an Artificial K€ Aerosol

The influence of relative humidity is pointed out by a laboratory experiment with an artificia)
potassium chlarate aerosol. In Figure 19, the ordinate shows the extinction coefficient in Togari-
thmic scale; the abscissa shows the elapsed time in linear scale and the relative humidity in an
arbitrary non-Tinear scale. The four curves are valid for the four wavelengths they are labeled
with each. Obviously, the difference in extinction between the blue and the green spectrum is smaller
than that between the red and the infrared spectrum. The simultaneous measurements of the aerosc)
particie size distribution yielded a Gaussian distribution with the maximum radius being r = 0.15 yu.

At the relative humidity of 80%, potassium chlorate dissolves; the particle grow strongly. Conse-
quently, the maximum radius of the particles is shifted towards greater radii resulting in anomalous
extinction, 1.e. the extinction in the blue spectrum does not differ from that in the green spectrum,
With the further increase in relative humidity, the maximum of extinction is shifted from its initial
position at A = 0.475 p towards A = 0.875 u -- this affects the blue sun or the blue moon ,
respectively. (Covert, Charlson and Ahlquist, 1972; Ahlquist, Covert and Heintzenberg, 1972).
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Left: Isolines of the sky radiance I on polar coordinates., Zenith
distance of the sun-~} = 37°, wavelength A = 0,55 micron, turbidity
factor T = 4, albedo of the surface A = 0.25. Power law of the
aerosol size distribution with exponent 3, real part of the re-
fractive index m = 1.5, no absorption,

Right: I/I,,. where | is the sky radiance without absorption and
Tabs is that with absorption; imaginary part of the refractive index
k = 0.02. (G. Eschelbach, 1973)

148



PECTITOR W 1Y

Fim -

354

— mu g
.. malk-0,021

2 ]

304 Tedk

204

% as0 Ae0rs A0S

os o a8 o6 65 w ap[c
Figure 2: Ratio of the sky radiance T (ordinate) Figure 3: Upper: Heating in °C per day (abscissa)

in sun's vertical and counter vertical due to the aerosol absorption versus
(abscissa) for multiple scattering to height z (ordinate) for the zenith
that far primary scattering Ipsg. ©  distances of the sun~% = 37°, 66°
Azimuth angle o = 5° respectively 175° and albedo A = 0, 0.25, 0.8. Wave-
zenith distance of the sun+}, = 37°; length range 0.45 - 0.85 micron.
wavelength A = 0.55 micron, turbidity
factors T=1, T =2, T = 6; albedo Lower: Same conditions as in upper
A = 0, Full lines: no absorption figure, but heating in °C for a day
(real part of the refractive index during the last third of April or
m = 1.5); dashed lines: with ab- second third of August at 50° north
sorption (imaginary part of the re- (G. Eschelbach, 1973).

fractive index k = 0.02). Aerosol
model as Figure 1 (G. Eschelbach,
1973).
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Figure 4:

Isolines
P (%) on
distance
length A

of skylight polarization
polar coordinates. Zenith
of the sun~d, = 66.5°, wave-
0.55 micron, turbidity
factor T = 4, albedo A = 0.

Left: measurement performed at
Mainz (W. Nowak, 1970].

Right:
1973).

caleulations (G. Eschelbach,

Figure 5:
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Difference P - P (%) between the sky-
light polarization for primary scat-
tering (P,.) and that for multiple
scattering (P} [ordinate]} in sun's
vertical and counter vertical [abscissal
Zenith distance of the sun of, = 37° ,
wavelength & = 0.55 micron, albedo

A = 0, turbidity factors T =2, T = 6,
Full lines: no absorption; dashed
lines: with absorption.

[G. Eschelbach, 1973).
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Elliptical polarization of skylight.
Results of measurements performed at
Mainz. Ordinate: tan B (B = a/b;

a major, b minor axis of the ellipse
traced by the electrical vector};
abscissa: azimuth angle o, h
elevation of the cbservation.
altitude Hy = 60°, wavelength
A = 0.405 micron.

Upper:
Lower:
(R, Eiden, 1970).
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Model C Dairmendjian
(Eiden, calcul.)

Same conditions as in Figure 6.
However, results are from computations.
Upper: with absorption (imaginary
part of the refractive index k = 0.1).
Lower: without absorption.

Power law of the size distribution
with exponent 3: r = 0.1 - 10 micron;
exponent 0: r = 0.04 - 0.1 micron.

(R. Eiden, 1970).
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Figure 9: Degree of polarization of scattered

radiation by water dreoplets and coal
particles {ordinate) versus scattering
angle (abscissa). Size parameter

o = 2Ar/A; A wavelength, r radius of
the particles, Ry radius pertaining to
the maximum of a particular Gaussian
size distribution. (R, Eiden, 1573).
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Figure 10: Mass absorption constant K/p cmzfg,
(ordinate) versus wavelength (0.4 - 2.5
micron, abscissa). Aerosol samples taken
at Mainz (AAA), Tsumeb (Southwest Africa
+++}, Jungfraujoch (high mountain 000},
Mace Head (Ireland ...). (K. Fischer,
1973),

153



025

|00

0.5

090

Mass Absorption lndex

K.Fisther

inz, 4.4.1973

unglraviach
Aprit-May 1972

Figure 11:

0.0%
Lo wavelength[ 4] ——s oo
1 A A . L 1 L .
4 L] ] L] 1 1 ]
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Figure 12:

Same as Figure 11, but samples are from the west coast
westerly winds,

of Ireland (Mace Head). Full lines:
dashed lines: easterly winds.
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Figure 13: Variation of the size distribution of tropospheric

aeroscl particles with relative humidity of the
air £ (f = 0; dry, £ = 1.0; 100%).

Left: aerosol samples taken in clean continental
air at Hohenpeissenberg, 1000 m NN.

Right: samples from Central North Atlantic, sea-
salt aerosol.

(G. Hanel, 1972}.
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SCHEMATIC REFRESENTATION OF EFFICIENCY FACTORS AT DIFFERENT
RELATIVE HUMICHTIES ¢

EXTINCTION 120, —-- 1 LARGE
" SCATTERING —— 1¢ D, ——- { LARGE
H ABSORPTION —— 12D, --— { LARGE

K o EXTINCTION
!

EFFICIENCY FA{TOR ——=
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————= GENERALIZED SIZE FARAMETER » -‘f-{‘_' [T

Figure 15: Efficiency factor (ordinate) for scattering,
absorption and extinction at different relative
humidities f versus generalized size parameter

a = ﬂ%!. Y (n -132 + K2 ;

n is real and k is imaginary part of the
refractive index (abscissa). Full lines: £ = 0;
dashed lines: f large.

(G. HZnel, 1971).
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SEMAIN em™

scut'tering angle ——=

Scattered intensities as function of the scattering
angle ¢ for three relative humidities; i.e. three
real and imaginary parts of the refractive index
{(n, X) and three boundary radii r., r, for a
typical summer aerosol size distributlon measured
at Mainz following a power law with exponent 3.
Wavelength A = 0.5 micron. Full line: f = 0.63,
n=1.5,k=10.012, r, = 0.04 micron, and

T, = 5 micron. Dash-dot line; f =0, n = 1,62,
k"= 0.02, ry = 0.033 micron, and r, = 4.2 micron.
Dashed line: f = 0.975, n = 1.35,"k = 0.001,

r, = 0.08 micron, and v, = 10 micron,

(&i. Hidnel, 1973--unpublished).

. SMETEQR™  TIL 1969

Figure 17:

Measured volume extinction coefficient o [km_l]
(ordinate) as a function of time (abscissa)
during April 17, 1969, on board the 'Meteor" on
the North Atlantic for different wavelengths
ranging between 0.475 - 0,924 micron. From
noon on results influenced by Sahara dust.

(J. Heintzenberg, 1970--unpublished).
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Figure 18: Measured volume extinction coefficient ap(A)
as a function of wavelength on board the
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Rayleigh scattering subtracted.
(J. Heintzenberg).

- ! . o
R - . KCL-AEROSOL
. g 5 - -
. TS —— = o
g T T e R T - P
= - ~F g x za 23 3
o JT -
T . T T
Taiem
e
4{Hﬁﬂﬂil INTEGRATING
C gy peremioae . NEPHELOMETER Es
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extinction, illustrated with an experiment with an
artificial KC1 aercsol. Ordinate: spectral
extinction coefficient (log. scale). Abscissa:
elapse time (linear) and the relative humidity (non-
linear).
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Table T: Mean density g/cm3 of different types of aerosol particles. Relative
humidity 35%. (Hinel, 1972a).

Urban Mountain Maritime Maritime--Continental
{Mainz) {Hohen- (Atlantic) {Sahara dust over
peissenberg) Atlantic)
Increasing
humidi ty 2.77 2.4 2.59
1.81
Decreasing
humidity 2.68 2.35 2.53
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Table 2: Example of results of measurements in April, 1969, on board the "Meteor"
on the North Atlantic. (K. Fischer and 6. Hanel, 1972).

Increasing Rel. Humidity Decreasing Rel, Humidity

f P n k Y/ f g n k V/VO
0.000 . 2.45 1.55 0.047 1.00 0.835 1.28 1.37 0.009 5.22
0.305 2.41 1.54 0.046 1.03 0.701 1.42 1.40 0.014 3,46
0.497 2.35 1.53 0.044 1.07 0.599 2.11 1.50 0.036 1.3]
0.604 2.25 1.52 0.041 1.16 0.516 2.22 1.51 0.040 1.79
0.676 1.98 1.48 0.032  1.48 0.400 2.33 1.53 0.043 1.09
0.722 1.3 1.38 0.012 4.06 0.317 2.38 1.54 0.045 1.05
0.900 1.20 1.36 0.006 7.50 0.202 2.40 1.54 0.045 1.04
0.962 1.09 1.35 0.003 15.00 0.000 2.45 }.55 0.047 1.00

Mean bulk density, real part n and imaginary part k of the mean refractive index
at the wavelength of light = 0.589 micron as well as the ratio V/Vg of the volume
of the humid aerosol sample to that of the dry one as functions of relative hu-
midity f.
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MULTIPLE SCATTERING IN CLOUD LAYERS; SOME RESULTS

H. C. van de Hulst
Leiden Observatory
Sterrewacht
Leiden 2401, Netherlands

1. INTRODUCTION

Radiative transfer, for the purpose of this lecture, is the art of calculating how the 1light in a
cloud layer or in a turbid air layer may bounce once, or several, or many times in succession against
cloud droplets, aerosol particles and air molecules. This once was a formidable subject but by now
most problems are solved in principle and many questions have a ready answer in the published litera-

ture. But the answer may be hard to find and it is too often disguised in difficult mathematical terms.

Therefore, in this talk I shall mostly present to you a variety of slides to show what is now available
in the way of accurately computed models.

I fully understand that this is only one side of a wide set of problems. Professor Sekera knew
both sides: the first and major side is to assess under what circumstances and with what specifi-
cations meteorological problems require the inclusion of a diffuse radiation field set up by multiple
scattering or radiative transfer. The second minor problem is to perform with good accuracy the
calculation once such a model problem is set up. I shall addrezs myself in-this talk anly {0 such
models and say little more of the real world.

At one frequency of visible light the properties of a small volume of air (including all its
constituents} are characterized mainly by the individual scattering albedo a and the "asymmetry factor"
of the single scattering pattern g . An albedo smaller than 1 means that some light at the frequency
gets lost, i.e. absorbed, in addition to the scattering process. The energy does not get lost but
reappears in heating and eventually in infrared emission but this part is not under discussion now.
The cloud layer, or the total atmosphere, is characterized by its total optical thickness b and
a level within the atmosphere may be identified by the optical depth Tt from the top down. Uni-
directional incidence (e.g. from the Sun shining on the atmosphere) is noted by the cosine Ho of the
angle between the normal and the direction of incidence. The direction of emergence u s defined
similarly. You will notice in the slides that I found it useful to introduce separate symbals for the
most often occurring integrals over Hg or M the symbol U standing for j R 2u0 duo or

. 2udy and the symbol N standing for those same integrals without the factor 2u0 ar 2u .
Bath have the character of weighted averages and both correspond to simple physical situations. When
appiied to Mg the U means uniform iJlumination and N the illumination by a narrow layer of
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isotropic sources. When applied to * the U defines the emergent flux and the N the density of the
emergent radiation, all with proper normalization.

The range of parameters we have to cover thus becomes

a: 0....1
g: =1 .01
b 0....
T 0 b
Mg 0....1, U, N
TR 0 .1, U, N

1 shall say very 11ttle about methods because other speakers at this conference have covered that
subject. But as a word of general warning, I may remark that it does not always require a professional
furniture maker to prevent a four-legged table from rocking. If the sole purpose is to aveid spilling
coffee, a folded paper under one leg may be equally satisfactdry. Simitariy practical solutions exist
for some problems in muitiple scattering. A lot depends on the required precision in the particular
problem at hand. For instance, since nearly 50 years observations of the planet Venus have given the
degree of polarization of the 1ight reflected under various angles from its cloud layers with an
accuracy of 0.1 per cent. Clearly, their explanation requires calculations which can claim at least
that accuracy, a job which has been cleared only recently. In many other situations only a vough
estimate is needed and a 1 per cent, or even 10 per cent, error is acceptable. Most sample computations
I describe below have been performed to 5-figure accuracy. They are taken from a reference book in
preparation.

I shall not give many references., Review papers from an earlier symposium {Hunt, 1971; van de Hulst,
1971) as well as several papers at this symposium (KuSZer and McCormick, 1974; Irvine, 1974) give a good
lead into the extensive literature.

2. INTERNAL RADIATION FIELD IN A SLAB

For convenience the illustratiors in this section and the next one are from isotropic scattering.
This is not essential. The theory for anisotropic scattering is equally well developed but numerical
results are less readily avajlable.

Figure 1 shows the full internal radiation field I(?,T) (up and down) for an atmosphere
with b =1, a=1, perpendicular incidence Mg = 1, and backed by a soil with albedo 0.20 and
uniform diffuse reflection by Lambert’s law. Note the discontinuities at 1 =0 for 1 = 0 {top)
and t = b {bottom). The transition from these discontinuities to smooth curves for any t close to
top or bottom makes the mathematics anmoying in numerical and analytical methods alike.

In further illustrations, we omit the ground surface. Figure 2 shows the radiation density or
source function (expressed as a "gain") as a function of T . For b = 0.1 the gain remains close to
1, which means that the influence of the atmosphere is hardly felt. At larger b {b =1 or 2) it
bulges into a curve. At b = 10 we see that a "diffusion domain” has developed, in which the dependence
on T 1is Tinear. This 1s always so if a =1 because a constant net flux has to be transported. At
the bottom (T = 10) it edges slightly off in exactly the same form as has been studied for approxi-
mately 80 years now., This is the famous Hopf soTution of the Milne problem, which is shown separately

163



as a graph of Tt + q(t) in Figure 3.

3. VERY THIN AND VERY THICK SLABS

Obyiously there must be simple limiting forms for small b and for large b . But how small is
small and how large is large? Let the facts speak in Figure 4, which shows in the domain
a=0.,..1, b= 10'3. . .103 where deviations from simple forms become 1 per cent or 5 per cent,
The curves have been accurately constructed for the function 1RU {= reflected flux for perpendicular
incidence) in isotropic scattering. But this limitation is not essential. Any other example would
show a very similar pattern. At small a there is overlap and, hence, never a computing problem. At
large a, a fairly wide gap is seen between the extreme curves at both sides, i.e., "single-scattering”
and "b = «." This gap is narrowed down to 6 doubling steps (less than 2 decades) in b if we take
at both sides the next batter and still very simple approximation and thus go from “single + doubie
scattering” to "asymptotic formulae."

A few comments on the appropriate methods for both domains may be in order.

Small b. The method of successive orders, of which single scattering and double scattering farm
the first terms, is simple to grasp and easy to perform. Unless b =« and a = 1, the sum of all
orders converges as a geometric series because the ratic between successive terms tends to a constant.
This constant, the eigenvalue, is well known for all b and for a variety of phase functions. The
corresponding eigenfunctions may be easily computed.

A method which may have merits for numerical work in isotropic scattering for b < 2 is to expand
the Milne operator systematically in these eigenfunctions. Some tests show that a few terms suffice,
fewer than in successive scattering.

Large b. The key is the existence of a diffusion domain, which is any domain of T far from
boundaries and sources. The theory is conceptually simplest for non-conservative scattering. Then
a diffusion stream down consists of the basic "mode"

1{1.0) = P{cos 0) ekt

and, similarly, up with reversed signs of t and cos @. This is symbolically illustrated in Figure
5. Near each boundary a transition domain accurs, which involves other modes. These modes are
spelled out precisely in the method of singular eigenmode expansions (= Case Method) which will be
explained by Professor Kufer. However, if our sole purpose is to derive the asymptotic

equations for large b, we don't have to do that but can simply postulate the existence of an in-
jection and escape function. MNear any boundary the diffusion stream suffers negative reflection by

a coefficient & = e'qu < T, which also can be interpreted as reflection against a point at an
optical depth q beyond the boundary.

My preferred derivation of these concepts (van de Hulst, 1968a) goes via some simple fictitious
experiments. The results are straightforward and precise and this basis is as solid as the basis for
writing the equation of radiative transfer. Yet my more mathematical friends, conditioned by a
century-old tradition, persist in referring to this approach as "heuristic" or "handwaving.”

164



In order to make this less abstract, let us look at actual examples. Figure 6 shows the
values of J {source function} for a = 0.90 as function of t for various b. The diffusion
domain shows again as a straight line because now the J-scale is logarithmic. In this example, the
albedo is sufficiently different from 1 to cause fairly strong damping, k = 0.5254. As a consequence,
only the downwards diffusion stream shows. The counter stream with negative strength running upwards
is numerically insignificant.

It gets more interesting if the upstream also counts, which is always true when a fis close to 1.
Figure 7 shows JRU in the entire a, b domain. The linear ordinates chosen for this graph
are {b + 1)'] and ¥ 1 - a so that the entire physical range of the parameters is mapped on a square.
Full 100 per cent reflection occurs only in the upper right corner, a =1, b= . There is a
strong suggestion that all curves become geometrically similar near this corner. This is indeed
confirmed by the asymptotic equations. Taking an arbitrary direction of incidence g and observing
that the non-reflected flux must be lost either in the atmosphere or in the ground (here assumed
black} we have for an arbitrary phase function:

Loss in atmosphere Lat t }—;g—
Loss in ground L = fEEl:EQl t 2f
ar V30197 1-£2
Combined Toss Lo, + Lo, ¢ liﬁ%
1-f
Ratio Ly/L = (- ner
With incident flux = 1,
t=/T-a) , t<<1
§ = (b+2q)'], 5< < 1
q = extrapolation length
K(1, uo) = interjection function fora =1, b = =
g = asymmetry factor of phase function
.. e-§ /301-g)

Yalues of the quantity q and the function K(l,uu) can be found for a range of assumptions in the
literature (van de Hulst, 1968b}. '

165



An enlarged and more accurately constructed portion of Figure 7 near the upper right corner is
shown in Figure B8 together with some exact ratio curves loss in atmosphere/loss in ground. The labeling
has been changed to show the lost flux, rather than its complement., the reflected flux. It is seen
that the combined loss curves become similar and the ratio curves approach straight lines, all in
exact correspondence with the formulae reproduced abave. The physical basis of the similarity is that
the Tosses due to a slight deviation from conservative scattering {1-a << 1, Tosses in atmosphere)
and those due to a 1argé but finite depth (1/b << 1, losses in underlying soil) both act as "deep”
sinks. Therefore, they have the same dependence on angle of incidence.

Note also that they are by no means additive (which would correspond to straight-line connections
between the intersections of the axes in Fig. 8). For, the losses due to a minute absorption per
scattering event need a very deep atmosphere to work out fully and the losses due to seeping of the
radiation through a very thick atmosphere require an albedo close to 1 in order to materialize at all.

4, REPRESENTATION OF THE PHASE FUNCTION

ATl of the preceding problems should be redone, in principle, for any new assumption about the
phase function, The most important parameter besides the albedo a is the asymmetry factor g,
but even in the absence of polarization a complete presentation in the traditional farm

¢f{cos a) = Z wy Pplcos a)
n=0

where Pn are the Legendre functions, requires the set of coefficients Wy = a4 Wy = 3ga, Wys gy
etc,

Figure 9 based on the work of a number of authors, shows how g varies for Mie particles
from small to large, nonabsorbing and absorbing. We cannot dwell on all interesting details shown
in this figure. An important fact is that typical values for water drops in clouds are g = 0.75

to 0.9 . Thi

~oaea
LR

naKkes it necessary to pay attention to very highly asymmetric phase functions.

Instead of dutifully performing a new and lengthy calculation every time that a new phase function
is proposed, it is tempting to economize. There are indeed several good reasons for doing so:

a. ecohomy or convenience
b. details corresponding to higher w, tend to be washed out in polydisperse clouds

c. influence of any coefficient besides w, vigorousTy vanishes in the diffusion
domain if scattering is conservative (mo = 1)

d. numerical similarity tests show that influence of wp etcetera 1s weak,
except in first-order scattering.

Sometimes the fraction f scattered into the forward hemisphere has been used as a distinctive
parameter instead of g. Figure 10 shows in an f, g plot many phase functions that have been
used as practicing examples. The Henyey-Greenstein phase functions defined by wp = (2n+1)a g" , which
I have used in most of my examples, form a good middle-of-the-road choice.
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Figure 11 shows by one example out of many, how strongly the value of g influences the
result. The atmosphere is semi-infinite (b = «). The plotted function is URU, which is the
reflected flux for uniformly distributed incidence but also equals the Bond albedo of a planet covered
by such an atmosphere. At g =0.85 adrop in a from 1 to 0.99 causes a drop in URU from 1 to 0.56.

5. SIMILARITY CHECKS

There are certain similarity rules by which it is possible to transform a, b, and g toa new
set in such a way that the results, e.g., reflection pattern, transmission pattern, absorbed flux, etc.,
come cut approximately the same., These rules permit us with fair confidence to use tables that happen
to be available. Often this may be a table for isotropic scattering, g = 0, but many other appli-
cations are possible. For instance, in deaTing with a variety of assumptions about composition and
size distribution of aerosols, all of which lead to a strongly forward directed phase function, it
would be "safer" o reduce all results by means of the similarity rules to a standard phase function
with g = 0.75 than to isotropic scattering with g = 0.

The similarity rules may be sumarized as follows:

Nonconservative: transform a, b, g so that

kb = constant
{1-a)/k = constant
with k({a,a) = diffusion exponent

Conservative: transform b, g so that

b(1-g) = constant

Strict forward scattering is no scattering at all. Hence, addition or subtraction of a mathematically
sharp forward peak leads to exactly the same results. It may be verified that this artifact falls
- Within the similarity rules.

Note that b = remains b == and a =1 remains a = 1. Hence, full similarity should exist
for any phase function if b= , a=1_. Figure 12 provides a striking illustration. The
extrapolation length q for widely varying phase functions is always between 0.71 and 0.72 with minute
differences in the next decimals depending on Ws and Wwq. An i1Tustration of the similarity rule for
conservative scattering is shown in Figure 13, It gives the function URY for Henyey-Greenstein func-
tion § over the full range g =-1 to g = +1. Strangely enough, I have never yet found the exact
1imit at g = 1.

We may also check similarity with g = constant. Three functions with g = 0 are shown in
Figure 14, For convenience we denote by "unit forward peak" a hypothetical conservative phase
function in which all energy is scattered in the forward direction. This phase function has
Wy = Zn + 1. Similarly, a "unit backward peak" has W, = (2n+1}(-1)" . With this notation, the
specification of the three functions shown in Fig. 14 is:
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isotropic o{cos a) =1 1 0 0 0 0

Rajleigh function
¢(cos a) = 3/4(]+cos2 a)

1/2 "unit forward peak" +
/2 "unit backward peak"

Note that the value of Wy in the second example is exactly one tenth of that in the third example.
This suggests an interpolation method to do even a little better than simple similarity. Take the
result for isotropic scattering and the equivalent result for the double peak function. Divide the
difference in parts 1:9 and the result should be (about) that for the Rayleigh phase function. Tests
show that it works.

There have been statements in the literature that the results obtained with full Rayleigh scattering
(including polarization) and those for the Rayleigh phase function (without polarization) should be
about the same in total intensity. This statement is only half correct. The differences are smali
but also the differences with isotropic scattering are small, as expected from similarity. This is
numerically illustrated in Figure 15, The same graphs serve to illustrate another point.
Similarity is most useful if the details of the single scattering are washed out, i.e., for thick
layers and for quantities involving integrations over u or By - Indeed, the "deviations from
similarity" are of the order of 10'2 in the reflection function itself, 'IO“3 in the moment UR, and
107* in the bi-moment URU.

A test with gratifying results has also been made with six phase functions with g = 1/3. Al
phase functions shown in Table 1 have been selected to have a = 0.9, g = 1/3 and they have been
- The symbol HG{g) stands shorthand for "conservative Henyey-
Greenstein function with asymmetry factor g". The reflected flux for perpendicular incidence against

arranged in the order of growing w

a semi-infinite layer has been exactly computed for each of these assumptions and is shown in the Tast
calumn. There is indeed a slow progression (because of similarity) and the results rise smoothly with
0y {suggesting that wq etc, hardly count).

Figure 16 shows sketches {on scale) of each of these phase functions. Figure 17 shows
the dependence on wp . Since the first-order scattering pattern never can be changed and, therefore,
escapes any similarity transformation, it is useful to know what fraction of the reflected radiation
arises from first-order scattering. This is shown in Figure 18 for a =1, all b, HG phase
functions with all positive g, referring to the reflected flux for perpendicular ingidence.

A final example, Figure 19, typical for a case in which [ do not recommend using similarity is
the absorbed fraction of the incident flux in a layer with b =1, perpendicular incidence. For a = (
the absorption is 1 - e']; and for a = 1,it is zero, so anisotropy makes no difference in these end
points, But at intermediate values, near a = 0.6 or 0.8, anisotropy (g = 0.75) increases the
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absorbed fraction by 3 per cent for grazing incidence but decreases this fraction by 4 per cent for
perpendicular incidence.

6. POLARIZATION

1 shall say nothing much about polarization, because Rayleigh scattering has been treated in
Professor Chandrasekhar's Tecture (Chandrasekhar, 1974) and I have no additions to make to what I pre-
sented at an earlier symposium (van de Hulst, 1971).

Yet 1 wish to show two slides. Figure 20 shows the degree of polarization reflected back from
a semi-infinite Raylefgh atmosphere for all angles of incidence and angles of view in the normal plane
(azimuth difference 0° or 180°). Figure 21 shows the cross-section of this figure for a planet
viewed at phase angle 10°. Both figures show a striking "near-reciprocity". This is understandable on
physical grounds: the first-order scattering contributions are strictly reciprocai, hence it must
show the same degree of polarization. The contributions from higher-order scattering lead to quite
different functions in the exact solutions but to rather similar results in the precise numbers..

Likewise, the asymptotic forms of the reflection and transmission by thick slabs with Rayleigh
scattering can be readily found from general thick layer theory, which makes it often possible to aveid
the lengthy exact expressions derived by Mullikin {1966).

7. EMISSION BY INTERNAL SOURCES

Any problem in which we find the absorption at an internal point for a given direction of incidence
can by reciprocity be inverted into a problem in which we have an internal isotropic source and wish to
find the patterns of the emerging radiatfon.

Although such a problem will find more application in infrared radiation, it may be useful to show
in Figure 22 an example for isotropic scattering, b =1, p and a variable. In this example, the
sources were homogenecusly distributed over all depths 1 =0 to 1. The resulting curves of emergent
radiation cannat easily be quessed but are readily derived from the recipraocal prablem.

8. PATH LENGTH DISTRIBUTIONS

Spectral absorption lines still form one of the most important sources of information on planetary
atmospheres. The information contained in these lines is useful only in connection with a model of the
atmosphere and a theary of absorption 1ines in diffuse reflection by multiple scattering. Obviously we
have all we need if we know the probability distribution p{x) of the optical path length A,

At first sight, this seems to pose an entirely new prablem. Fortunately, this is not true for we
can define certain strict equivalence rules. Some such rules are indicated, but not spelled out, in
Figure 23, The exact solution of a problem posed in an area corresponding to one of the four levels
in this diagram can often be transposed to yield the exact solution to an equivalent problem in the
next higher or next lower level. The principle of the transposition is contained in the keyword of the
first column.

We shall here discuss only the transition from the second to the third level and this net in the
most general case to keep things simple. The appropriate formulae are brought together in Table 2.
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It is seen that determination of the path length distribution reguires an inverse Laplace transform
and determination of the mean path Tength <A> requires a simple differentiation. This method can be
extended at will. For instance, the dispersion 02 about the mean path length requires a second-order
differentiation. The relations of Table 2 are exact and the results are precise, provided the formulae
or tables of R{a,b) from which we start are precise. Once p{A) is known, the road towards a dis-
cussfon of Tine profiles, curves of growth, etc., is open although this is still a complicated affair.

Two numerical examples, both for isotropic scattering, may illustrate this method. Figure 24
shows pn(h) for n-th order refiection from a slab with b =1, u = Mg = 1. The curves for n =1
and 2 have been exactly computed by Irvine (1964). MNote the kink in the n = 2 curve. It is
possible to fit any twe-parameter standard curve to the exact <i> and 02. I recommend the choice
of a Poisson curve defined by

P = iy )T ™™

with m= <A>/52 s k=m<x> = m202 . This corresponds to a skew curve with the maximum at

<A> - 1/m . The dotted curve in Fig. 24 shows that already at n = 2, a fair appreach to the exact
path length distribution is reached. For n = 5, we give only this fitted Poisson curve. It is quite
likely that the exact curve {which is not available) would show only minute differences. Fiqure 25
shows what happens to the average path length <A> if a =1 and b goes to infinity. Irvine
(1964) made the conjecture that it would diverge as 1.7b. The actual ratio <A>/b varies (for

W= g = 1) from 1.5 at b=0 to 2 at b ==,
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TABLE 1: Similarity test for six phase functions all with a = 0.9, g = 1/3.
The computed function is 1RU = reflected fraction of flux for perpen-
dicular incidence against a semi-infinite medium.

Phase Function wg wy iy Wy 1RU

(a) linearly anisotropic 0.9 (1 + cos a} 0.9 0.9 0 0 0.327
(b) 1.2 HG({1/2) - 0.3 forward peak g.9 0.9 0 -1.05 0.326
(c) 0.9 HG(1/3) 0.9 0.9 0.50 0,27 0.332
(d} 0.8 HG(1/4) + 0.1 forward peak 0.9 0.9 0.7% 0.79 0,336
(e} 0.6 isotropic + 0.3 forward peak 0.9 0.9 1.50 2.10 0.349

(f) 0.6 forward peak + 0.3 backward peak 0.9 0.9 4.50 2.10 0.451
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TABLE 2: General recipe to find path length distribution and mean path Tength
in diffuse reflection.

Preparation:

Find R{a,b} by any acceptable methed.
Choose values of unwritten parameters up, U, 9
Notation for inverse Laplace transform:

1

0o

{f{y)} defines the function satisfying f(vy) =j‘ F()) e'TAdA

0
Rliﬁ:{- s b(1+Y)‘J

F(x) = L
Full reflection function:

1 -1
p{a,b,A) = w L

_ 5 #n R{a,b} & &n R{a,b)
<A(a,b)> 3fna - 3Inb
Separate scattering orders:
o1 VR [b(1+v}]
pl’l(b’k) = R }b} L ! n
n (T+y)n
d tn R (b)
- n
<}‘n(b}> =n d anb
n=1 -A

=h

o
c-
[}
£
)

{ A) = < (oo} =
n‘m,/\) = W R <An( > n

Checks:

R{a,b) :E: a" R, (b)
n=1

p(a,b,2} R(a,b)

% P, (bx) a" R (b)

A (ab)> Rlasb) = 3 < (6)> o R, (b)
n=1
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Fig. 1
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Radiation field, expressed as intensity versus cosine of angle with normal (u)
in an atmosphere of total optical depth, 1, with conservative isotropic scattering
if radiation enters perpendicularly from above and if the sail has Lambert scat-

tering with albedo 0.20. Curves for seven values of optical depth, r,‘are shown.
Unit incident flux (here and in other figures).
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Fig. 2
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Radiation density as a function of eptical depth T in an
atmosphere with five assumptions about the optical thickness
b. In all examples, the scattering is isotropic and conser-
vative and radiation incident perpendicularly from the top
{t = 0). The radiation density is expressed as a gain,
f.e., divided by the radiation density existing in the inci-
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Fig. 3 Hopf solution for radiation density near the boundary where a constant

net flux of radiation emerges from a conservative isotropically
scattering atmosphere.
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Fig. 4 Limits of 1 per cent error (drawn} and 5 per cent error {dashed) far certain
approximations in in one example for isotropic scattering. The approximations
are from left to right:

1. {small b) single scattering only

2. (small b) single and double scattering combined
3, {large b) asymptotic formulae

4, {large b) formulae for b ==
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Fig. 8 Enlarged portion of Fig. 7 in upper right corner, where losses are small, to-

gether with curves showing where these losses occur.

180



NOM-ABSORBING SPHERES

Nl20

Kad i

ma3

1560

20 2B 33)‘50 o oo

04

02

Fig. ¢
to the Mie theory.

10 20 p=2zxin-1 30 005 x-1 a
PARTIALLY ABSCHRBING SPHERES
tanft T 1 T
tonfl. oo T |
lunp-n _ r-"’(T_/-”"
tan =10 ] lanf=10
] n=taa
b [ | [ [ I
1+] 20 30 N w20 30 S0 10D oo
®
i 1
10 20 p 30 006 x o

full explanation is not presented in this lecture.
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Various phase functions commonly used as practicing examples have heen plotted

in a diagram of f (= fraction scattered into forward hemisphere) against
¢ (= asymmetry factor).
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Fig.
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The Bond albedo URU of a planet covered with a semi-infinite atmosphere depends
strongly on the asymmetry factor g of the phase function if the albedo a
for single scattering is kept constant, Henyey-Greenstein phase functions.
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Fig. 12 The extrapolation length q' in conservative scattering
is 0.71 for almost any phase function. The diagram shows

that the third and fourth decimals depend systematically
on wa and fitg -
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URU (for am1]
1

Fig. 13 The similarity rule for conservative scattering is illustrated by means of the
bimoment of the reflection function, URU. Dotted curves connecting similar
situations are about horizontal.

185



Fig.

14

Three phase functions with g = 0 used in similarity
tests are isotropic scattering, Rayleigh phase function,
and doubTe-peak function. (The last one cannot be drawn
o scaie since a very narrow peak with a very large in- -
tensity is meant).
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Mutual differences in reflection function, its moment 1RU, and its

bimoment URU, among three assumed conservative scattering laws. The

Rayleigh phase function (P) shows differences with correct Rayleigh
scattering (R) of the same order as with isotropic scattering (I).
Abscissa is optical thickness b. ‘
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. 16 5ix non-conservative phase functions with a = 0.9, g = 1/3 as specified in
Table 1. 1In order to give a somewhat realistic impression, the cone of the
added or subtracted forward peaks has been widened to 15° (total width) but the
lengths of the peaks corresponding to this width should be ten times stronger

than shown.
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. 17 Reflected flux for perpendicular incidence

against a semi-infinite atmosphere for the

six non-conservative phase functions of Fig. 16.
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Fig. 18 A numerical example showing how in reflection the fraction due to single
e A conservative

scattering depends on the asymmetry factor ¢ and the depth b.
Henyey-Greenstein phase function is assumed.

T T T T L ¥
0.04 |- -
. TTTEALLND
0.0z L S -
. N "~
- ," ‘\5 —
P/ Ty
0 - -
-0.02 - —
1
-0.04 ~ ' .
1 1 i 1 L 1

o 02 04 08 08 09 085 085 1
. a

Fig, 19 The effect of a drastic asymmetry on the absorbed fraction of the incident flux
may have different signs depending on the direction of incidence.
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Fig, 20 When direction of view (earth) and direction of illumination (Sun) are chosen in
a plane containing the normal, the polarization of the radiation diffusely re-
flected from an infinitely deep Rayleigh scattering atmosphere may be read from
this graph. The curves were computed from available exact solutions. The
symmetry about the two diagonals is only approximate.
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Fig. 21 Cross-section through the preceding figure corresponding to a planet seen with

phase angle 10°. The curve shows the degree of polarization along the great
circle of the planet which contains the sub-earth and sub-sun point.
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Fig. 22 Intensity emerging under various angles (cosine = u} from a layer with optical
thickness 1, homogeneousiy filled with emitting sources. The scattering is

assumed isotropic with albedo a.
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STRICT EQUIVALENCE

EXISTS BETWEEN PROBLEMS IN THE FOLLOWING CATEGORIES

Transformation Main Problem
Principle Yariable

successive orders of
scattering

power series expansion

non-conservative
a scattering

Laplace transform

distribution of optical
paths

factor ¢

t ———a time-dependent problems

Fig. 23 Principles on which certain strict equivalence rules can be formulated.
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Fig. 24 Path length distribution of n-th order refection from an isotropically scattering

layer with total depth 1, perpendicular incidence and emergence. Exact curves

for n =1, 2; Asymptotic approximation for n = 2, 5.
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Fig. 25 The average path length for reflection against a slab
with conservative isotropic scattering grows approx-
imately as the optical thickness b, but the ratic climbs
slowly from 1.5 to 2.
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SOME ANALYTEICAL RESULTS FOR RADIATIVE TRANSFER IN THICK ATMOSPHERES

I. Kuifer and N. J. McCormick*
Department of Physics
University of Ljubljana

Ljubljana, Yugoslavia

Abstract

Singular eigenmode expansions are a convenient analytical tool with which ta
study problems of monochromatic radiative transfer in thick or semi-infinite
atmospheres. Some closed-form solutions are presented for anisotropic scat-
tering, with the neglect of polarization effects.

A basic ingredient for applications to the semi-infinite medium is
Chandrasekhar's H-function, which is best defined through the Wiener-Hopf factor-
ization [A(z}])7! = H(z)}H{-z). Herein H{z) is required to be regular in the
right-half of the complex plane, while A{z) is the dispersion function whose
zeros are the discrete relaxation lengths. Use of the Busbridge polynomials
qg(z}, along with H(z), permits the construction of adjoint eigenmodes. A bi-
arthogonality relation follows which may be used to determine the coefficients
in eigenmode expansions.

Attention is given to the solutions of the Milne and albedo problems in order
that the method of matched asymptotic approximations may be used to describe the
solution for a thick atmosphere adjacent to a diffusely reflecting ground. Ex-
pressions for the emerging distributisns are guoted. A possibie extension of
the general scheme to problems invelving polarization is indicated.

1. INTRODUCTION

The equation of transfer, which may be regarded as a specialized form of the Boltzmann equation,
rarely permits closed-form analytic solutions. Most often these refer either to an infinite or semi-
infinite medium of uniform composition, with no exchange of energy in scattering. However, since
problems of this type are of basic importance for the optics of turbid atmospheres, a discussion of
some of the aralytic methods and results appears justified.

The two leading analytic methods are the Fourier-transform technique (the Wiener-Hopf technique in
the case of a semi-infinite medium®}, and the method of singular efgenmode expansions.? ® They differ
mere in appearance than in substance, so that an exposition of the latter method will suffice. We are
going to concentrate upon problems for semi-infinite atmospheres with anisotropic scattering. Such

* Present address: Department of Nuclear Engineering, University of Washington, Seattle, Washington.
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problems have been extensively studied in the monographs of Chandrasekhar,® Sobolev,” Busbridge,® and
Case and Zweifel,” as well as in papers by Mullikin,?® Maslennikov,'® and many others. Thus genuinely
new and meaningful results can hardly be expected. Yet we trust that the use of singular eigenfunctions
can expose new mathematical aspects of the problems and we believe it leads to a condensed presentation.

If the intensity depends only upon one coordipate (1), on the cosine of the polar angle with respect
to the positive t-axis (u), and on the azimuth (4), the equation of transfer in the absence of sources
is®

2n
(ug% + 1) I{r,u) = ﬁ%—g_]du'jo do' plcos 8) I{t,u',¢"). (1)

The photon mean free path serves as the unit of length. The tacit assumption has been made that polari-
zation effects may be neglected, so that the distribution of radiation can be represented by a single
function I.

The scattering function (phase function) p{cos &), where & is the scattering angle, shall be bounded
and non-negative, vanishing at most for a discrete set of angles. Anisotropic scattering of arbitrary
but finite order will be admitted, which shall mean that

L

plcos 8) = Z @, Pplcos §). (2)
£2=0

We assume that some absorption is present, hence 0 < Ty < 1, postponing the conservative case (mb =1}
for separate discussion (Sec. 5). The remaining coefficientsare Timited by |mh| < (20 + 1)mb .

Application of the spherical harmonics addition theorem helps to rewrite Eq. (2) as®*?

L .
pleos §) =D (2 - 6,0} P"(won" )1 - W21 - w2 o mip - ¢'), (3)
m=0 :
where
L
M) = 20 < pu) pjtut) (4)
£=m :
PR} = (d"au") Py(u) (5)
f = @ (L - mi/(e +m)! . (6)

We recall that the pg(u) {the polynomial factors of the associated Legendre functions} are mutually
orthogonal in the sense that

1 - .
[ om0 PP anty) = 2 fetmis
=1 v
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where dn{u) = {1 - uz)m du .

The azimuthal variable may be separated by a Fourier expansion. We define

21
I™tu)(1 - uz)'"/2 cos m{¢ - &) = ?% 50 I(t,1.¢') cos m{é - ¢') do' {7}

which also determines O - A set of uncoupled integrodifferential equations for the coefficients "
follaws,

1
(n —3%- +1) M) = ]gj prusnt) 1Mo, ut) dm(ut) . (8)
-1

There is ne need to deal with Eq. (8) for m > L because the right-hand side then vanishes. This
means that those higher 1I™(t,u) only contribute to the unscattered distribution (consisting of light
that arrives direct]yAfrom the outside without having been scattered). For any given boundary con-
dition the intensity 1(t,u.$) can be reconstructed from the first (L + 1) azimuthal coefficients
by separating out the part of the unscattered distribution that is not included in those terms. If
1ight is incident only at the boundary T = 0, this is written as follows,

L
) = 2 (2 - 6 0) ™)1 - w®)™2 cos miop - ¢ )
m=0

L
o [1- 003] e 1om0) -3 (2 - gg) 001 - 1AM cos mio - 4|, ()
‘ m=0

where G6(u} =0 for O<pux1 and 8(g) =1 otherwise.

Since each equation (8) is to be treated independently, it suffices to disruss one of tham, Except

when needed, the superscript m with I™{t,u) and p™u,u'), and with any further functions to be
derived therefrom will be suppressed henceforth.

2, EIGENFUNCTIONS AND EIGENVALUES

It is relatively easy to find the eigenmodes, i.e., special solutions of Eq. (8) where the variables
T and p are separated, but the boundary conditians in general are not obeyed. The unknown I{t,u)
is then expanded in the eigenmodes and the expansion coefficients determined from the boundary con-
ditions. The procedure is much the same as in the well-known method of Fourier, except for one
essential difference: a continuous set of singular eigenmodes will be invoived, owing to the presence
of a continuous part of the eigenvalue spectrum.

The ansatz I{t,n) = B{v,u} e'T/v leads to the following equation far the eigenfunction @{v,u),

1
(v =) o) = 5 [ pluw’) Blos') dmlu') (10)
-1
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We first discuss the regular {square integrable) eigenfunctions that correspond to some discrete eigen-
values. Obviously these occur in pairs (tv.), and they are all bounded, real, and outside the interval
[-1.1].'' We make the additional assumption that all eigenvalues are simple, i.e., that to each of them
there corresponds only one eigenfunction. The positive eigenva]ues-—the so called relaxation Tengths--
shall be ordered for each m as 1 < V S e S vy S vp < The largest among all relaxation
lengths {“1) occurs with the azimuth independent component 19, It is called the diffusion length

and is of particular importance since it determines the asymptotic approximation describing the be-
havior of the radiation field deep in the interior of the medium. The corresponding eigenfunctions
ﬂU{iv?,p) are the only non-negative ones.'® The second largest relaxation length determines how fast
some general solution approaches the asymptotic one. In view of these observations, the eigenvalues

and the problem of their existence will be studied at-some length.

The integral in Eq. (10} has the form

L
alvm) = 2 ¢, 900 pylu) 5 (1)
£=m
where
1
g0 = | B b, ) anlu) (12)
-1

The reqular eigenfunctions can then be written as

vi g{zv.,u)
= it o
ﬂ(i\)j !u) e uj:“ . “3)

The coefficients gg(v) are seen to obey a recurrence relation,
(2 -m) g0} = h, 1 vgg 4(v) - (R +m-1) g ,(v) (1)

for &z m, where hE =20+ 1 - LA and g, = 0. Obviously the lowest coefficient gm(v) cah-

not be allowed to vanish; it is convenient to choose the following constant,’
. m-1 _
gM=p, = [T tn+1) m21 (15)
n=0

and gg = 1. By Eq. (12} this implies that

:
j Plu) dn(y) =1 . (16)
-1
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After muTtiplication by dm(u) and integration, Eq. {10) Teads to a similar result,

1
[ w8(vm) antu) = u01 - a/cem + 1)1 (17)
-1

With the above normalization all gl(v) become polynomials, alternatively even and odd, of degree
(% - m). Linear independence is assured in view of the different degrees. These polynomials have
first been introduced by Chandrasekhar,® and reinvestigated by a number of authors.® % 12717 ap
explicit expression {a generalization of the one given by Kaper'® and Indnii'’) is

hmv 1 0 0
(zm+1) hoyq¥ 2
QE(V) ‘1T ?“;51 ’ o) hm+2“ . . ) ,4>m
a . . . . a
hy_ov (2-m-1)
0 . . 0 (em-1) hy v

(18)

Condition {16) represents a transcendental equétion for the eigenvalues. It may be rewritten as
Alru.} =0, (19}

where A 1s the so-called dispersion function,

Mz} =1 - %‘j] 9§§jEl-dm(u)
1
-1 - 2 ) gngy) (20)

Equality of the two expressions follows from orthogonality of pz(u) to any polynomial of lower degree.
Incidentally, g(u,n), which will play an important role in the analysis, equals twice Chandrasekhar's
characteristic function w(p).®

We natice that A(z) is analytic in the complex plane cut along (-1,1), real for real =z outside
the cut, and with at most logarithmic singularities at the endpoints of the cut. The boundary values
of A on both sides of the cut are
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Ai(v) Tim A{v £ i)

g+ 0t
= A{v) * %’ﬂ iv g{v,v) (1 - uz)m . {21)
where
]
Aw) = 1- 3 gbd gney) L, ve (1,1 (22)
_'I A

The integral here, as well as subsequent integrals of a similar nature, is to be understood in the
Cauchy principal-value sense.

The number of pairs of eigenvalues can be assessed from the argument principle, according to which'*

J = ;IT— [Im 1n A+(uil

Plots of the values of h+(v) will be helpful (Fig. 1); those for m =0 and for m > 0 have to be
investigated separately. In the first case, and if g({u,u) is positive, A(v) goes to -= at

v+ 1, while the imaginary part in Eq. (21) reaches a positive 1imit. Hence J =1, i.e., exactly

one pair of eigenvalues exists.® If, on the other hand, the sign of g{u,u) changes once in QG <p <1,
so that g(1,1) < 0, the plot may have the form b on Fig. 1, and we expect J = 2. More complicated
cases can be conceived.

v ]

v=120

Since the polynomial g{u,u), being even and of degree 2L, can have at most L zeros in the
interval (0,1}, it follows!* that the number of pairs of eigenvalues is bounded by J gL + 1. For
the higher azimuthal components (m > 0) the situation is different because dm{u) in Egs. (20) and {(22)
contains the factor (1 - uz)m . Thereby A stays bounded while the imaginary part in Eg. (21)
vanishes at v = 1. Hence for a non-negative g{u,u) we obtain a plat of the type ¢ on Fig. 1,
showing that one pair of eigenvalues exists, or none, depending upon whether A(1) <0, or 20 .

For not too strongly anisotropic scattering, and certainly for L g 2, the functions g{u,u) are
found to be positive, so that for m = 0 only one pair of eigenvalues exists. However, this is not
generally the case for the strongly peaked scattering functions observed in natural fog., There

additional eigenvalues were indeed found, even for m > 0.1%.1%

It is instructive to see how the eigenvaTues change if T is varied, yet with the shape of the
scattering function being kept constant. That is, we study the functions vj(mb) when @, = mhbﬂ s
b, = constant. A simple case of linearly anisotropic scattering {L =1, by = 1) is illustrated in
Fig. 2. Far higher values of L, additional curves could appear, some of them possibly connected as

in the example shown.
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Some of the features of Fig. 2 turn out to hold generally. The curves can be shown to intersect the
horizontal axis at the values (2% + l)/bm s+ L=my m+1,, .., ,L Italso can be shown by a
perturbation calculation that for 0 < Ty < T all vj(mb) are monotonically increasing functions.

The number of eigenvalues therefore can be determined by counting the number of 1imiting points S5
(see figure) to the left of the given Ty These points are defined by

s, = 1im @ (v.)
J vj+] 0"

For m =0 they are evaluated by observing that the integral in (20) diverges for z - D+, unless
g{1,1) vanishes. The latter quantity is a polynomial in mb » of degree L, and divisible by mb .
Thus the values sj, j=1,...,L, are found as zeros of this polynomial, and one of them is
$1 = 0.

For m=> 0 the evaluation is less simple. Since the integral never diverges none of the sj can

vanish.

We see now that for sufficiently strong absorption (sufficiently small Ty ) only one pair of
eigenvalues (iv]) exists for m = 0, and none for m > 0. With this observation, we conclude the
discussion of the eigenvalues, and turn to the examination of the rest of the v-spectrum.

Arbitrary functions of u , say from the Hilbert space Lz(-l,l), obviously cannot be expanded in
terms of the finite number of regular eigenfunctions. These must therefore be supplemented by a set
of singular eigenfunctions that belong to the continuous spectrum, i.e.,te v g {-1,1). (The endpoints,
though belonging to the spectrum, are deleted here, because no corresponding eigenfunctions exist;
this creates no difficulties, however,)

The singular eigenfunctions are distributions {generalized functions) and include the Dirac delta
function. The exact form is inferred from Eq. (10),

E(Vsu) = EM'F '_)\"{2}_6(\"‘-')’ Ve ('] 91)

2 V=i (1_\)2)m * (23)

As agreed before, integrals of the first term shall be understood in the Cauchy principal-value sense,

3. HALF-RANGE EXPANSIONS

The full set of eigenfunctions (regular + singular) is complete in the sense that the eigenfunctions
can be used to expand arbitrary functions f(u} given on the full range -1 5 u ¢ 1. The proof of this
statement is usually achieved in a constructive way,'* although it is expected alse to follow from
some general theorems on selfadjoint operators.2?*?! The evaluation of the expansion coefficients is
greatly facilitated by the full-range orthogonality relation

]
jﬂ(v,u) g(v' ) wdm(y) =0 (24)
21
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valid for v #v' and v, v'e {~1,1) or = tv] s 0 e e s iVJ , and by the associated normalization
relations.!**® Both follow from Eq. {10). ' -

An explanation is needed for the case that v' +v ¢ (-1,1) . The ensuing conceptual difficulty,
arising from the merging of the two singularities in the integrand, is best avoided if such integrals
are understood as convolutions of distributions.2® The switching of orders of integration, needed in
applications to eigenfunction expansions, is then allowed by definition. In carrying out the details,
one needs the Poincaré-Bertrand formula.?2’°

Full-range orthogonality and full-range completeness have only indirect relevance in problems for a
semi-infinite atmosphere. Normally, solutions bounded at T + « are sought, as in the albedo problem
where the incident intensity is given. In such case exponentially increasing eigenmodes (v < 0) must
be excluded. The expansion of I{t,u) then takes the form '

[

.
Iew) = 2, Alv,) Blvgou) ey + j‘ ALY Blvu) €V
J=1 0

This wil) be abbreviated as

I(t,u) =I AV Blosi) e Vay : (25)
ot :

where o+ denotes the positive half of the spectrum, i. e., the union of the interval {-1,1) and of
the set Vis Vps o o« - s Yy The reader is reminded that the superscript m denoting the m'th
azimuthal Fourier component is suppressed for such quantities as ™t,), AMw), cg, v?, g™ (v,),
Gv), ojtn), ¢"vad, AT(2), and AT(v).

The unknown coefficients A{v,) and A(v) should be determined from the boundary condition at
=0, If I(0,u) is given for Q <p g 1, then

How) = § AG) Blo) dv (26)
g+

Thus a function known only upon the half-interval (g,1] is to be expanded in terms of half the set of
eigenfunctions. To justify such an expansion, we need a half-range completeness theorem. This was
first proved by Mikal* by way of construction. An easier, indirect way that was worked out by Pahor
and Suhadolc in a different context?’can urdoubtedly be adapted to the present problem. The proof
combines existence of the salution of the albedo problem (established through a Neumann expansion) and
full-range completeness. Formally a full-range expansion is applied to the solution I{t,u). The
coefficients for v < 0 are found to vanish; hence for 1 = 0, the half-range expansion (26) ensues,
which completes the proof. '

Once completeness is assured, we are left with the task of determining the expansion coefficients
in Eq. (26). Noticing that the set of singularities of the reciprocal dispersion function [A(Z)]-1
coincides with the whole spectrum of v, we are led to expect that a corresponhing function is needed
with singularities in half of the spectrum. The need is met by Chandrasekhar's H-function, defined
through the Wiener-Hopf factorization,
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EAz))7) = W) Hi-z) (27}

where it is required that H(z) be analytic for Re(z) > 0.

An explicit expression for 1n H{z) follows from Eq. {27} through Cauchy's integral theorem:®

jeo
In H{z} = _E,.J Ina(r) dc Re{z) > 0,
2m J, C2 z2
-1m -

By bending the contour and carrying out some manipulation, other expressions are derived, e.g.2"

J

1 , 1 +( )
T - (1 + z) [T]]- 1+ z/uj{| exp[— 5‘?—;50 Tn i_(:} v(czl:viJ {28)

for z¢ [-1,0), It must be mentioned that for each A(z) the factorization {27) is unique if the quoted
requirement is observed. To prove this, we only have to consider the ratio of two hypothetical H-
functions factorizing the same A and to call upon Liouville's theorem.?®

The H-function is reguiar in the complex plane cut along (-1,0), except for the poles at -vj.
J=1,2, ..., 3. 0On the real axis outside the cut, H{z) is seen to be real and positive for
z3x0. For |z| > 1, we find

n !
2 4
M) =1l =y =5 ===« (29}
0 z2 24
.. .. '! ': 82
Mz}H(z)=m=1-Bo-?-—2—-..., {30}
z

where
, 1
Moy = fj 12" gu,u) dm(u) s

L h?.
ny =1 - || FoaT s
0 2=m 28+1

1
3, - ‘gjo W gl M) dn()
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2- .
no - 260+ Bo“ D » (31}

Ny = 2By + 2BB, - 512 =0 (32)
etc.® ' The Bn are to be expressed in terms of the moments of the H-function,

1
o, =I u H{u) dnin)
0

In view of Eq. (19), the product A{z) H(z) has no singularities at all in the plane cut along (0,1).
We apply Cauchy's integral theorem to this function, drawing a contour around the cut. After shrinking
the contour onto the cut, we find

:
Ma) Hz) = g | B0 wgy au + 4@ HE=), 2 £ 1011 (33)
0

From Eq. (21) we substitute A*{u) - A"(n) = wip glu.u) (1 - uz)m . Taking z + 0, and combining the
result with Eq. (33}, we simpTlify the equation to

:
[t hi) dng) + aG2) H2) = 1, 2 gT003 . (34)
1}

|

The well-known non-linear integral equation® is derived by substituting A{z) H{z) = 1/H{-z) from
Eq. (27). Such an equation has often been used for computations in preference to Eq. {28).

For z -+ v (0,1} 1in Eq. (34), we apply Plemelj's formula?? to obtain

1 :
;i.s\.}(u_;%mw dm{u) + A(v) HW) =1, (35)

which represents an inhomogeneous Cauchy singular integral eguation for H(u). For z » Vi =1 ...,
J a set of subsidiary conditions follows, with A(vj) H(vj) = 1/H(—vj) = 0. Because J 1is the index??
of Eq. (35), a J-parametric family of solutions exists which is just right to fit the subsidiary con-
ditions in a unique way.

The factor multiplying H{u) in the integrand of Egq. (35) looks suspiciously like @{v,n), except
that g(v,u) is replaced by g(u,u). To gain more insight, we turn from Eq. (34) to a modified
relation,
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1

5 Lzt g uiw) o) + 02 a02) w2 = 6l2), 2 gT0] (36)
o

where the functions Q{z) and G(z) are yet to be specified. It turns out that if G(z) is a
polynomial of maximum degree L - m, the same is true of Q{z). This can be seen by observing that
the discontinuity across the cut of the first term on the left-hand side is exactly cancelled by that
of the second term (by the Plemelj formula). Hence Q(z) is an entire function. The maximum degree of
Q(z) easily follows from g{z,u) and G{(z).

Let us take G(z) = gE(z), B=my,m+1, . .., L, for which choice the corresponding ((z} define
the Busbridge polynomials® qg(z).* When z reaches the positive half of the spectrum, a singular integral
equation { with subsidiary conditions) follows,

] .
[ o0 ) Hiw) dalw) = g, (0) 5 veor (37)
0

It was derived by Pahor?* from the original definition of Busbridge. A comprehensive discussion by
van de Hulst?® should also be consulted.

Another useful relation ensues when z approaches the negative half of the spectrum,

1

J Bva) a ) 1) ant) = g, () -
0

qﬂ.(-\‘])

W R v E gF . {38)

Doubts about existence and uniqueness of the Busbridge polynomials, arising because some determinant
involved in the calculation might vanish, can be resolved by resorting to the original definition, i.e.
by expressing qg(u)s e (0,1), in terms of the solution of the albedo problem and relying upon the
existence and uniqueness of this solution. A more direct proof might be obtainable from thearems?2*27

relating the multiplicity of solutions qk(u) H{u) of Eq. {37) to that of the corresponding adjoint
dominant equation (36).

For computational purposes both sides of Eq. (34) are multiplied by qﬂ(z) and combined with Eq. {36)
(with @ = q, and G =g,) to derive the Fredholm-like equation,?"

9(z.u) q,(u) - g{u.u) q,(z)
zZ -y

H{u) dm(u) . {39}

1
a(2) = 5,(2) - £
0

Multiplying both sides of Eq. {37) by %”Cnpl(”) and summing over & we obtain

*The sign convention?"2® differs from that of Busbridge by a factor (-1)2 .
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1
%I Klp,u') plv,p') H{n') dmf{p') = % g(v,u)
0
= (v-u) v, veot o {40)
where
L
Rluau') = 20 ¢ pplu) a,(u')} (41)

L=m

Thus the Busbridge polynomials have made it possible to construct a half-range integral equation for the
eigenfunctions @{v,u), where K{u,u') has taken the role of p(u,u') 1n £q. {10}, and the integrand
is weighted with the H-function. This equation will be the key to further analysis.

Since K 1is not a symmetric kernel (except if scattering is isotropic when K = const), it becomes
necessary to study also the adjoint equation,

1
"ff Klu'au) @7 (u,n) H(p') dm{u'} = {v ~ u) ﬁ+(v,u) = § gf(v,u),v i {42}
0

(In a different form this equation (for v = v?) has already been formulated by Ambarzumian,28?7) A
somewhat indirect and lengthy procedure leads to the conclusion® that, with appropriate normalization,
v gt (v,u) differs from al @{v,u} only by a polynomial of maximum degree L -m - 1 in each
variable. This means that g7 has the form

.i.
u = ; A
P (v = 3 g\,{\_’ E) * 0 E\%z —6v-u} (43)

with the same A(v) as before; another consequence is that

g ) = glua) . (44)

From Eq. (37) we infer that the 9, are linearly independent so we may expand g+ as

L
HUDEDIERHORNB I (45)
implying that
1 .
IO Bi ) py(u) HO) dmlu) = g/(v) , ve or . (46)
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In a manner similar to that used to obtain Eq. {38), it follows that

S] t ot Py (V)
X ] {-v,u) polud Hiu) dn(u) = g, (-v) - HRY ¢ vE St - (47)

By a standard procedure eguations (40) and (42) are cambined to derive a biorthogonality relation
between the @(v,u) and ﬂ+(u,u). The normalization constants can be evaluated by first generalizing
those two equations to complex v and V' , combining both as before and then taking the appropriate
Timits. A1l results can be condensed inte one formula,*

1

S Pu,u) 87 (v ) RO dlu) = [1 - 8(v)] N{v) Hlv) &{v=-v')
0

-l- 1 1 1
- 60 Bl - ey W) (48)
with the same &(v) as in Eg. (9) and

2
N{v) = vA+(v) A(v) =v J\z(v) + I:%em glv,v}{l - \Jz)m] »ve (0,1).

When v =v' = vj » the last terms must be understood in the sense of the 1imit as v -+ “j and

AULE S vj. Thus

1 .
& B(vgom) 8 (o) w k) dnlu) = Nlvy) HEvs) (49)

where N(vj) is expressed with the derivative of A ,

N(vj] = %-u? g(vj,ijA'(vj) . (50)

A particularly useful example of Eq. (48) is the following transformation, where some of the
variables have been renamed,

)
J, B0 87’ M) W) ) = Blvs)

ve ot , pe {0,1) . (51)

Far v = v? this equation, as well as Eq. (48) for ' = v? , were already considered by Soholev.”
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The @{v,u) and P(v,-u} may be regarded as intensities exchanged at the plane T = 0 between two
- halves of an infinite medium.?* Obviously the single @ may be substituted by any linear combination
of eigenfunctions. In view of half-range completeness, the transformation {51) represents the re-
flection law for a semi-infinite medium. It is traditionally stated in terms of Chandrasekhar's
S-function,®

Stuw') = (2 = 800 BEC ety HEw) w1 - 8W2 (- B2 (52)

The reciprocity relation® S{u,u') = S{u',u} translates into the present notation as
g utan) = g (-u®) or wBtCut) = gy . (53)

We are now able to determine the gI[u). Combining Eqs. (12}, (37), {51), (53), and splitting the
range of integration in (12), we obtain

1 1
So P{v,u) qg{u) Hlu) dmiu) = jo (v} Enﬂ(u) ¥

1

+ (1)l Sl AR Py (') Hu) H(u')-dm(u'i] dm{u)
0

Because of half-range completeness, the bracketed factor on the right must equal the corresponding
factor of the left-hand integrand. The equation thus obtained is further modified by substituting a
complex u , invoking the factorization (27), and taking the 1imit u + -v , where ve o+. The
result is

! ¥ L+m
[ 07wt pylut) By dnta') = (¥ Mgy 5 veor (54)

0

and hence
gi(v) = (-1 g (-v) (55)

by comparison with Eq. (46). Thus finally®*?*

L
g'lom) = 2 MM e qu(-v) g0 (56)
L=m
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With expression (56) inserted in Eq. (54), we recover Busbridge's definitian of the q,-polynomials,
i.e., her Eq. {48.4).® On the other hand. with (55} and {56} substituted, Eq. (46) becomes equivalent
to an equation given by van de Hulst.®®

4. ALBEDO AND MILNE PROBLEMS

After the preceding lengthy preparation, problems can be solved in a very expedient way by only
carrying out quadratures. For the albedo problem the coefficients in Eq. {26) are determined by
multiplying both sides by ET(v,u) p H{u} dm(p) , and integrating. The result from Eq. (48) is

1
1) =f @ @B antut) 1o 8T W HGY L w e l0,1) (57)
ot 0
As it stands, expansion (57) is of no direct use because it only reproduces the given incident
distribution on the surface. This is made clear by stating the closure relation

T )
O L T e ORI (58)
ot

which is a concise expression of the half-range compieteness property of the eigenfunctions.

Meaningful results quickly follow from expansion (57). If the factor e" ™V s included in the
integrand, we obtain the m-th azimuthal component of the distribution inside the medium. The angle
integrated intensity p(t} and the net flux J(t) then fallaw (for m = 0} by integration and
by aid of Egs. (16) and (i7). If we are interested in the distribution emerging from the surface, we
need only replace u in Eq. {57) by -p , where u > 0. MWith §{v, -u) from Eq. (51) substituted
and with reciprocity taken into account, we have

1 ]
B, w = 1ot 8T (-utud KO HOC) dn(u) b (1) (59)
0

Equation {59) for m = 0 may be used to calculate the angie-integrated intensity and net flux at
the surface of the semi-infinite medium. After switching the orders of integration, we conclude from
Eq. (47) that®®

1 2n 1

p{0) =j duj d¢ 1{0,u,¢) = znj- Io(o,u) qg(p) o) du {60)
1o a
1 2n 1

i(0) S u duj dp 1{0,u.0) = 2nj 1%0.) o) W) & . (61)
-1 0 0
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Let us consider the specific albedo problem where a parallel incident beam is given by
I(0,m,8) = 8{u - ug) 6(¢ - ¢gl/ug > O<us1 . (62}
According to Eq. (7). we have Oy = ¢y 2nd

§{n - uo)
I(O,'l.l) = m2 » 0<ug 1 . (63)

2wu0(1 - ug)

From Eq. {59}, we obtain the value of I{0.,-u) to be used in Eg. (8) for calculating I(0,-u.¢) ,

(1 - 22
1(0,-u) = ——2—— B (ug) Hlug) W), O<ugl . (64)
™o
Equations (60) and (61) reduce to
o(0) = 1 adlug) Woing) - 3(0) = ug! a%tug) Houg) - (65)

In general, we see that any spherical-harmonics moment of the surface intensity can be expressed in
terms of the corresponding qz(uo) Hm(uo) in the manner of Eqs. (60} and {61).

It is also interesting to know the distribution in the deep interior of the atmosphere. Let it
suffice to quote the asymptotic approximation, consisting of the dominant term in the expansion, i.e.,
the one depending upon the longest relaxation length v? (hence m = Q),

Ias(t,u.¢) = A(u]) ﬂ(v1,u) exp(-T/v]) , {66)
Pag(T) = 2m Alv) expl-t/vy) (67)
jas('r) = Znho\)-l A(\)]) exp(-'r/\)]) . (68)

Here

1 ﬂ+(U] sl—lo) H(UD)

AV = 20 —REw) Ao (€9)
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according to Eq. {58), with N(v1) to be taken from Eq. (5G). Significant deviations from this
approximation can be expected only in a boundary layer near the surface. The thickness of this layer
is a few times the rext largest relaxation length if it exists, or a few mean free paths if it does not.

Another albedo problem of some interest is that with a uniformly diffuse illumination. For a unit
incident flux, the boundary condition is

H0a,) =7, O<pg)

Multiplying expression (64) for m =0 by 2 Hgduy and integrating, we obtain

10, = v -0 q k)] L o<wst (70)
and then
! 1
o) =a-2f g hw w ()
0
: |
§0) = 2 qylu) WO @ (72)
0

Another expression for p(0) follows from the first of Egs. {65) through integration with 2 uoduo .
or from (71) by aid of the identity

1 1
2 -jo u! gy {u) H(n) du =j0 9plu) Hlu) dw

which is darived from Eg. (47).

In expressions of the form (66) - (68), we now have

Awy) = - WG ) KO (73)

In a similar way the Milne problem is solved, where an azimuth-independent distribution is postu-
lated satisfying the boundary conditions

I{O,w)=0 , O<ugt , (74)
I{z,u} = ﬂoi-v?,u) exp{r/v?), T+ {75)

We drop the superscript m = 0 henceforth.
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The increasing term from Eq. (75) must now be added to the expansion (25). However, when fitting
the boundary condition, we transfer this term to the left-hand side, so that the function to be
expanded according to the half-range procedure, Eq. (57), now is -ﬂ(-ul,u). In switching to the
emerging intensity via Eq. (59), however, some care is needed since we must add the term B(—uT,-u) ’
to obtain I(0,-n). Use of Eq. {48) then gives

10u) = 8T (v ) HWIMGv) . Gcusl . (76

In passing, the generalized Milne problem may be mentioned,? where instead of Eq. (75) we prescribe
that at t© += the intensity be proportional to some other increasing eigermode. The problem is
only of mathematical interest because the solution is partly negative or even singular., It is worth
noticing, however, that a picture of all the adjoint eigenfunctions for v go+ 1is obtained, since

1(0,-n) = 81 {v,u) H{u) . | (77)

Integrating Eq. (78) with 2mdu or -2my du , respectively, we derive by aid of Eq. (54) the
angle-integrated intensity and net flux at the surface,

p(0) = 2nqg(-vi)/H{vy} »  3(0) = 2mq {-vy)/H(v) . (78)

It is sometimes convenient, especially when @ * 1, to renormalize the Milne solution to unit
emerging net flux by multiplying everything by {-H(v])/2wq](-u1}].

The asymptotic approximation is now defined with the two terms

Log{tau) = Bl-vpsu) exp(/vy) + Alvy) B(vyau) exp(-t/vy) (79)

where the expansion coefficient is found as before,

A( ) \J]g+(\J1 :'\?1) ] (8[])
'\J - - »
L 4 N(v;) HE(\:])

In writing the angle-integrated intensity and net flux it is convenient to lump both terms together in
the form

Pag(T) = 4m exp(-1*/vy) sinh[{z + t*)/v;1 {81)

as

J'asl('l') = -4nh0v-| exp(-'r*/v]) cash[{t + T*)/\J]] . (82}
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The so-called extrapolation length +t* is defined by the condition o
(79)

as(-T*) =0, so that from Eq.

exp[-ZT*/v]] = -A(\).l) . (83}

With expression {80} substituted, this formula has been used in a few numerical calculations.??

Next we consider a weakly absorbing atmosphere of finite but large thickness (0 5 t < Tg » Tg > 1}
resting upon a ground of albedo a and reflecting 1ight according to Lambert's law. This corresponds
to the boundary condition

3 1 2m
1(T0='U,¢) = Fjou' du'j d¢| I(TO;]JI,dJ.) s 0 < us 1 . (84)
0

As before we take a parallel incident beam, Eq. {62}.

A matched asymptotic approximation3! will be constructed from the solutions for the semi-infinite
atmosphere. These will be distinguished by subscripts p (parallel incident beam), d (diffuse
source) and M (Milne). In the case of a = 0, we argue that at the bottom of the atmosphere, where
the unscattered contribution shown in Eq. (9) becomes negligible, the solution must approximately
equal that of the homogeneous probiem--the Milne problem. More generally, if reflection from the
ground is present, a multiple of the albedo solution for a diffuse source must be added. Thus with an
obyious change of variables,

I(t,u,0) = ¢ IM(TO - Ty-u) + C, Id('ro - Ty-p) o, T > 1 . (85)

Actually this approximate equality is expected to hold within most of the atmosphere, with only a top
boundary tayer (b] on Fig. 3} excepted, according to what was said before.

By similar reasoning the solution in the uppor part of the aimusphere can, with neglect of a
bottom houndary layer {b2 on Fig. 3}, be represented as a superposition of the solutions Ip and

Iy »

I(T,U,lﬂ - IP(T!]-[!¢) = C3 IM(T,U) s TU =T 1 . (86)

In the asymptotic region (as on Fig. 3), where both boundary layers are excluded, we keep only
the terms proportional to exp(+t/v;) in the eigermode expansions of Lo Ty and Iy . Equations (85)
and (86) thereby yfeld two relations for the coefficients ;2 Cps Cy. It suffices to equate angle-
integrated intensities, and to then take + = -t* and T = gt 7* to obtain

Tn + 2T%
s 0
2 C, sinh ————;;——- + €y Aylvy) expl-ty/v)) = Ap(v]) exp(2t*/v;) (87)
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*
To + 27

C, Ad(v1) exp{ZT*/vl) = Ap(UI) exp(-rolv1) -2 €3 sinh o (88)

The third equation follows from relating the net fluxes emerging and reflected at 1 = g according to
the boundary condition (84),

¢y =3 [¢) 1] + ¢ 11 - 4g@1] - (89)

The system {B7) - {89) is easily solved. We then only have to substitute the previous results in
Eqs. (85) and (86) to obtain the quantities relevant to the thick atmosphere. For instance, if there
is no ground reflection {(a = 0, C, = 0) , we find

= A (vq) exp(2t¥/v;) ) .
1 P 2 S'inh[('ro + ZT*);’\JI] v Gy = C‘] exp[-(-ro + 21 )/V-|] s

and then (for O0<pg 1)

ﬂ*{v] Hg) liff(uI 1) Hug) H(u)
I(TO,U9¢) = T \’1 sinh[(To n 2.[*)/\)1] g"ﬂv" ’-U'l) s (90)

I{0,~u,p) = IP(D.-HNJ) = EXP['(TO + ET*)/U'[] I(Tolpl¢) . (91)

The appearance of the argument (10 + 21*)/v1) can be understood from Fig. 3.

A rigorous justification of the above approximations must start with full-range expansions for the
exact solution.®??2?33 [Equations {B5) and (86) coincide with the initfal approximations in an
jterative procedure, obtained by neglecting the terms decreasing or increasing with 1, respectively,
except for the dominant terms that involve exp(ir/v]).

Alternatively, for atmospheres of any thickness (if no ground reflection is present), the reflected
and transmitted intensities can be expressed exactly in terms of Chandrasekhar's X- and Y-functiens
and by a generalization of the Busbridge polynomials.” Gibbs has succeeded in linking this formalism
(so far for isotropic scattering) to the method of singular eigenfunctions.®* However, no closed-form
expressions have been found for the functions X(u) and Y{n).

5. THE CONSERVATIVE CASE

In the conservative case, i.e., when there is no true absorption, a few modifications become
necessary. These only affect the azimuth-independent component, and the reason is that the eigenvalues
v? and -v? merge at infinity. Rather than make a fresh start, we are going to derive the results
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by taking 1imits with Ty 1 (or h0 +0). As before, the superscript m = 0 will be omitted.

The diffusion length can be seen to approach infinity like 2 :.(hD h1}']/2 . Equation (30)

shaws that H(v1) = V1/281 . Next, we notice that in the unit By =ng =1 and B? = ny. The latter
guantity now allows a concise expression,

While two of the eigenmodes become jdentical,
. 1
aslblni ﬂ(zu.l M) explET/v) =5, (92)

a new linearly independent eigenmode arises in the following way:

;jT] %—h]v][?(-u1,u) EXD(T/V]) - ﬂ(u],p) exp(-r/vti] = %{h1T - 3y . (93)
0

Half-range completeness remains intact if the eigenfunction from Eq. (92) is included. That is, we
agree that the set o+ shall include the point vy =

The polynomials gg(v) now become g, =1, g, =0, g, = -%—, g3 = -hyv/3! , etc. To obtain
the higher gﬂ's » the first two rows and columns of the determinant {18) may be deleted and the sign
changed.!5 Except for Gy » the degree is 2 - 2, and linear independence is preserved only for

gz,...,gL
Equation (92) implies that

My 9,(v) = 8 - (94)
(In fact, gg(v]J = 0(\.);jl),'+ so that for weakly absarbing atmospheres v o can be calculated efficiently

from the higher gl's.la) Notice that first the substitution v = vy s made and only then the limit
taken. It can be shown, moreover, that"

J:QH g{vpsvy) = Vhpn, . (95)

The Busbridge polynomials are still uniquely defined by the set of equations (37) provided we
include the equation for v = vy o+, i.e,

1
LA IR R (96)
0
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which must also be used with Egq. (39}. We notice that q1(z) vanishes because g4 = 0. Taking into
account that H{z) now has a simpie pole at infinity, we find that the maximum degree of the q£(z)
is Jowered to L -1 for L2z 2.

If condition (96) is disregarded, the homogeneous versions of Egs. (37) and (39) become solvable.
The solution is gp{z) + 2q,(z) , in view of g, + 29, = 0.

Examination of Eq. (39) indicates that the following 1imits are bounded too,

L
Pl = tin gilop) =3 X @ v, 900 (97)
mb"‘l =0
1
_ Lo _ 'l
1T 0 T aly) - jo BI(L) Py(u) HO) (s8)

0f course, ﬂT(u) is orthogonal to @(v,n), v €+, except for v = =. There we find

1
[ 2700 1 HE) &= vy = gy (99)
0

by taking the 1imit of expressions (49), (50}, and using Egs. (29) and (35). We shall also need the
quantity

L
i 2 2 1
Tim g ' {vqys=vqy} = (-1} & v, = 7 , : 100
DU % 2 Ve TR (100)

where the Jast expression is derived from Egs. (48) and (99},

The orthogonality relation between P{v,z) and B$(u) may be regarded as a homogeneous integral
equation for the function uBT(u) . Since the operator is the same as in Eq. (37}, we conclude that
u ﬂT(u) equals a solution of the homogeneous version of that equation, and hence is a multiple of
qo(u) + 2q2(u) . Comparing the normalization condition (99} with (96) we have finally

qo(U) + zqz(U)

t =
ﬂ](u) ? 1 h]]ﬁ]

(101)

With this expression substituted, we may find the remaining Yy from Eq. (98).

After such explanations, it is clear how Eq. (48) 1s to be applied in the limiting case. A useful
supplementary equation,® with (101) substituted, is
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1 2
§ oo w? Ho au - - BRI Lape) + 2y(0)] (102)
0

The results (64) and (65) for the albedo problem for a semi-infinite atmosphere remain valid with-
out modification. Taking the limit of expression {69) we find that

ol=) = 2hy 8, B1(ug) Hiug) (103)

while of course j{t) = 0. For a uniformly diffuse illumination, we can verify that I{t,u.¢) = const.

It remains to deal with the MiTne problem.2* Setting j = -1, we find

B]0) Hw) gl + 20,00 IM(n)
2'"'!’] B 4mu

1(0,-u) = , O<usgl . (104)

The Hopf-Bronstein relation, well known for isotropic scattering,® generalizes in the following way,*®
2 1 1
(202 [ o | @' 100 plai) 1O) =1y (105)
0 0

which checks with Eq. (101). Next we find

p(0) = vo/vy > (106}
Pa5(T} = RylT + %) (107}
1
_41 3
™ = tigo [QD(u) + 202(]1)1 W H{u) du }—" . {(108)

The factor multiplying (3/h]) is always found to be very close to 0.71,7*1°

Expression (90) for the intensity transmitted through a thick plane layer simplifies by ald of
Eqs. (100} and (101) to

I('to,u,[p)z [qo(UO) + zqz(UD)][qo(U) + 2q2(li)] H(UO) H{u) ) (109)
4mhy My u('rn + 27%)

Integration leads to values of the angle-integrated intensity and net flux.2**%¢
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Results for different nonabsorbing plame atmospheres can approximately be compared in a way that
has been known in neutron transport theory,®’?? and that is concisely formulated by the similarity rules
of van de Hulst,?®?? Two atmospheres permit a comparison if the values of hiTp are the same. That
is, the thickness measured in transport mean free paths must be the same, the latter parameter being
equal to 3/hy = 3/{3 - ma) in our notation. Under such condition the transmitted and the azimuth-
averaged reflected intensities are found to be very insensitive to details of the scattering law.

To see what is happening, we consider the case with m =0 and Ty = 1, keeping all the higher
@, £=2,3,...,L, constant, but varying @y . We notice that g{v,u) 1is independent of @
and consequently the functions A(z), A(v) , H(z} do not depend upon this parameter either. The
same is true for all the eigenfunctions P(v,n) and, according to Eq. (37), also for the Busbridge
polynomials and the adjoint eigenfunctions ﬂ+(v,u), with ﬂi(u) excepted, however. Along with the

latter function, the coefficfent Y1 is proportional to h;].

The most important occurrence of o is in the new eigenmode (93), which shows that

dp_ (1)
= - A8
Jas(t) = ﬁ% - »
implying a diffusion coefficient 'I/h1 . This is where the idea of the transport mean free path

comes from,

Clearly the solution of the albedo problem is_independent of T, 25 witnessed by Eq. (64)., How-
ever, the same cannot be said for the Milne problem where the mode {93) comes into play because of the
nan-vanishing net flux. If the solution is normalized to j = -1, the intensity can be shown® to
depend upon o according to

How) = (@n) ™ hprs (o), (110)

where I' is independent of aﬁ. Consequently the same independence holds for I{0,-u), as is also
clear from Eq. {104). We should note that with such normalization the gradient of pas(r} is pro-
portional to h1 .

Turning to finite thick atmospheres, we conclude from the last observation that for two different
mi's the net flux, and thereby the emerging intensities, will be approximately the same only if .the
values of hj1, agree, An example of this is in Eq. (109).

Similarity can approximately be extended to cases with weak absorption, provided we impose as a
second condition that to/v? {the thickness measured in diffusion lengths) be the same. Since
v? -;:(hGh])']/2 , an equivalent condition is that the values of hofh1 must be equal.

It remains to explain why the azimuth-averaged intensities only very weakly depend uﬁon the higher
@, L= 2,3, ... ,L. The reason is that for oy = 1 the leading eigenmodes (92) and (93) that
compose the asymptotic approximation are independent of those coefficients. Relatively small deviations
from this approximation (the curly tafls on Fig. 3) only arise in the boundary layers. Inevitably,

variations due to changes in the higher o, should be smaller still.
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None of the above arguments hold for the azimuth-dependent components (m 2 1), which behave as
if strong absorption were present. Therefore, anisotropy in single scattering always shows up strongly
in the azimuthal dependence of the intensity reflected by a plane Tayer.

6. COMMENTS

So far we have adhered to the assumption of a finite expansion of the scattering kernel p{cos &).
This, of course, in itself is an approximation, justified less by the nature of the problem than by
the desire to avoid annoying problems of convergence. We should honestly ask what happens when L —+ o,
Then g({v,u) ceases to be a polynomial, and Busbridge's qE(u) also become transcendental functions,
no longer expressible in closed form. This makes the various factorizations apparently meaningless,
in particular the extraction of H(u} H(un) from S(u,uo), since the remaining factor still is an
infinite bilinear sum of transcendental qk's.

Two arguments may be raised against such opinion. Several of the formulas quoted in Sections 4
and 5 contain only one or a few of the qg's, which can still be evaluated from the (now non-degenerate)
Fredholm-like equation (32). The other argument is purely mathematical and refers to the analytical
properties of the functions involved. A natural assumption that must be made in this context js that
p(cos &) can be expanded in a series that converges absolutely for |cos &| s 1. This suffices to make
all the pm(u,p') analytic functions for complex values of u and u' in the ranges |u| s 1,
[ju'|s 1. A study of the g-polynomials shows'? that the functions g{v,u) too are analytic for [v| <1
and |u] £ 1. Analyticity also appears to hold in some vicinity of the eigenvalues +v.. Presumably
it should then be possible to prove that the ql(p} are analytic for |u| g 1, as well as for
R and that a corresponding statement applies to g+(v,u).

If these conjectures can be confirmed, the factorization in Eq. (52), for example, at least retains
an aesthetic justification. The factors H{u), H(uo), and (u + uo}'] carry al11 the singularities
within the unit circlies, i.e., the cuts -1 <pu <0 and -1« L < 0 and the pole at u = -Mg
respectively, whereas the remaining factor g+(-u,p0) is analytic within |u| 5 1, |u0| < 1,

A second comment refers to nolarization, U

account, we cannot be fully satisfied with having solved radiative-transfer problems for more than
artificial models.

Instead of one function describing the radiation field, one now has to use a 2 X 2 density matrix
I(t,n,9), or equivalently a "vector” consisting of the four Stokes parameters I, Q, U, V.°**° The
scattering function then becomes a fourth-order 2 X 2 X 2 X 2 matrix, or a second-order 4 X 4 matrix
in the Stokes representation.

By nature, the scattering matrix p{cos &) 1is given in a coordinate system attached to the incident
and scattered beams. Before azimutha]~integration can be carried out to derive the Em(u,u'}, the
matrix must be transformed to a fixed coordinate system. For Rayleigh scattering the result is well-
known.®  Also in more general cases this step can be carried out smoothly“® if the components of
E(Cos &) are expanded in terms of generalized spherical functions.®! A modified representation
referring to circular polarization must be used for this purpose.
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While a great deal of analysis, including work with singular eigenfunctions, has been accomplished
for Rayleigh scattering, relatively little use has been made of the more general formalism.®°*%2 Yet
no insurmountable obstacles appear to impede a more extensive application of singular eigenfunctions
in a manner analogous to that shown in the preceding sections. However, since matrices are involved,
the calculations inevitably become more tedious. In particular, a matrix Wiener-Hopf factorization
has to be carried out,

[A(2)17 = #(z) - W (-2)
In general this cannot be done in closed form, as seen from the work of Siewert and co-workers"® *S
for the example of a mixture of Rayleigh and isotropic scattering. Pure Rayleigh scattering represents
an exception in this respect.®

We finally have to face the unpleasant question about the practical usefulness of this kind of
analysis in problems of radiative transfer. The method of singular eigenfunctions turns out to be quite
elegant for simple scattering kernels, in particular for L =0 or 1. Qccasionally it has been
applied to considerably more complicated cases, with L up to 15.!%''® However, as these cases
clearly indicate, with increasing L the calculations become more time consuming and they cannot
compete in efficiency with some of the direct techniques, such as the doubling method of van de Hulst
38239 This method also was successfully applied by Hansen“® and Hovenier“’ to problems
involving polarization. While acknowledging the practical advantage of such an approach, one can still
argue that mathematical enthusiasm need not be the only excuse for advancing analytical methads beyond
their direct applicability. Understanding of the mathematical structure of the solutions can be and
has been of help in preparing computational programs, even if they do not follow the same analytical
approach. Let us recall, for instance, that the often used asymptotic approximations are clearly
defined and understood only in terms of eigenmade expansions.

and Grossman,

Sometimes the soTution of a problem is not required in full detail, but only the value of some
characteristic quantity. It may happen, as in the case of the intensity transmitted by a thick
nonabsorbing atmosphere, Eg. (109), that a particularly simple and computationally efficient expression
exists for that quantity. Then the analytic approach, perhaps with some approximation for the H-
functions,*® should facilitate an almost direct study of the influence of the various parameters.

We ought to think also of the inverse transfer problem, which requires the determinaticn of p{cos &)
from observed intensities reflected and/or transmitted by a plane layer. Evidently this is a problem
of central relevance to the present conference, and we should recall that Professor Sekera was among
the first to initiate its study."® It appears that methods of solution are still not fully satis-
factory and that advances are being tried in several ways. However, regardless of whether parameterized
models®? or model-independent approaches®!*%2 will be used, it appears likely that mathematical
understanding of the direct problems will be helpful, if not essential, to further progress in this
field.
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Fig. 1.

Im[A V]

Nv>0

=2
0

v=0
. 1 Re[ATIV]

\_—-i-m

Schematic plots of A+(v} for 0 £v <1 for three typical cases. The
curves a and b are for m=0, with g{u,u) positive and with
gfu.u) changing its sion ance in 0 < u < 1, respectively. The plot ¢
is for m> 0, g{p,n) > 0, x{1} > @, when no eigenvalue exists.
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Fig. £. Squared reciprocal eigenvalues versus @y for m=0 and for the scattering function
p{cos &) = mp{1 + cos 6).
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Fig. 3. Angle-integrated intensity in a thick atmosphere illuminated at 1= 0. with no reflection

at the ground. The boundary layers (b]. b2) and the asymptotic region (as} are indicated.
Equations (85) and (86} approximately hold in the regions as + b, and by + as, respectively.
The upper curve refers to a semi-infinite atmosphere.
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LECTURES ON THE
SCATTERING OF LIGHT

David 5. Saxon
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ABSTRACT

The exact (Mie) theory for the scattering of a plane wave by a dielectric
sphere 1s presented in more detail and using somewhat more modern methods than
is customary in the literature. Since this infinite series solution is com-
putationally impractical for large spheres, another formulation is given in
terms of an integral equation valid for a bounded but otherwise general array
of scatterers. This equation is applied to the scattering by a single sphere,
and several methods are suggested for approximating the scattering cross-section
in ¢losed form. Finally, a tensor scattering matrix is introduced, in terms of
which some general scattering theorems are derived, The application of the
formalism to multiple scattering is briefly considered.

INTRODUCTION

When considering transfer of solar radiation through the earth's atmosphere, the scattering of the
radiation by particles whose size is of the order of or larger than the wavelength is of fundamental
jmportance. An exact theory for the scattering of an incident plane wave by a sphere was first pre-
sented by Mie (1908)., Although the Mie theory is given in many places, it is presented here in more
detail and using somewhat more modern methods than is customary. The infinite series solution of Mie
can be applied to many problems in atmospheric optics but becomes computationally impractical when the
sphere is larger than the wavelength of the incident light. Hence, 1t is desirable to see 1f other
methods can be made available for computing the scattering by large spheres.

To investigate possible approximate solutions, the radiation field 1s examined using an integral
equation formulation in terms first of the electric field and then of the magnetic field. These
equations are deduced from Maxwell's equations with the aid of a tensor Green's function. In the
electric field case, several approximations for the field interior to the sphere, in terms of which
the scattering is completely defined, are considered as follows: a Kirchhoff-Born approximation, a
modified Born approximation, a W.K.B. interior wave, a W.K.B. interior wave with refraction, and an
asymptotic approximation to the exact interior solution. Estimates are also discussed using the more

complicated magnetic field integral equation. Apparently, the W.K.B. interior wave gives the most
realistic approximation in both cases although no actual computations have yet been performed.

* Notes prepared by Robert S. Fraser, May 1955, Lectures delivered at the Department of
Meteorology, University of California, Los Angeles.
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To arrive at the underlying character of the scattering process, some general relations are derived.
Using a tensor scattering matrix, the field at large distances from the scattering object, the reci-
procity principle, the total scattering cross-section theorem, and the relation between the scattering
matrix and the plane wave scattering amplitudes are studied. The application of the formalism to
multiple scattering is briefly discussed.

Although these problems are developed somewhat within the context of atmospheric optics, the
principles are quite gemeral. For instance, only dielectric spheres are discussed, but many of the
results become applicable to conducting spheres if the real propagation constant is made complex; or
the scattering particles can be imbedded in a medium other than free space; etc.

I. MIE THEORY
A. Sotutions of the Vector Wave Equation in Spherical Coordinates

As a mathematical preliminary, we discuss the properties of the solutions in spherical coordinates
of the vector Helmholtz equation

YxTxA-T-A-KA=0 .

For our applications, we require only divergenceless solutions, that is, ¢ 5 = 0; and accordingly
we restrict ourselves to the simplified Helmholtz equation
vxVxA-kA=0 . (1)

We now show that if w(f) satisties the scalar Helwholtz equation

@ k¥ ulry =0, (2)

then the vector functions M and N defined by

t!(rsea‘ﬂ =V !:‘P(T‘:e:q}) =W xr (3)
and

N(r0,6) = & 7% ¥ x (ry) (a)

satisfy the vector Helmholtz equation (1). As indicated in Fig. 1, r,8,¢ are the usual spherical
ceordinates (unit vectors are also shown).

To show that M satisfies (1), we have first

Vxl‘j=VXV><1:¢

228



= =T (rp) + UV -+ (ry)]
Using the relation

va(rw) = rvzw + 2%,

we find

7xMs= -5v2¢ - 2w+ V[V . (Ew)]
Since y satisfies the scalar Helmholtz equation, we then have
Vx@=k25w+v[v-(rw)-2w] 3
and hence
%

Txyx M=Ky x ) = ko,

which is Helmholtz's equation as asserted. Further, since g -~ Vx ﬂ , it obviously satisfies the
vector Helmholtz equation if M does. Note that when both M and N are derived from the same y

1 1 :
N=E'foj;M=FVX‘E . (5)
The general solutions of the scalar Helmholtz equation in spherical coordinates have the form
m
Yo (rs0s¢) = Colkr) Yy(8,9) (6)

where Cg(kr) is a general spherical Bessel function

Colkr) = (24 20 (K1)

and satisfies
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The YE(9,¢) are normalized spherical harmonics, which we can write in the form

(0,0 = [(22 1) (2

(1% plm) ng
a I ] P2 (cos O)e 3 (7)

m|}1

+

B=0,%, 2, ... m=0,+,+#2,..., 2> |m| .

21 mom
Jo J.u ORI S S (8)
where
0, n#n' ]
Syt = 1,n=n' di = sin © dedy
*
and Yg denote the complex conjugate of YE . The spherical harmonics are solutions of the dif-

ferential equation

(r x V% ¥l(e, 9) + 2(2 + 1) ¥j(0, 9) = 0 ;

that is

ms 5 (eﬂ) I TR TR
sin @ 90 ) sinde  29° L
We shall frequently use the abbreviation
L=rx7 ()
so that equivalently
LY 4+ e+ 1) ¥ =0 . (10)

The normalization constant for these functions is most easily derived using the relation
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xn+m

PM(cos © ) = Pm %) =
nt ) = Px) o y

and successive integration by parts. The orthogonality properties are most easily derived from
the differential equations.

From their definitions (3) and (4}, the vector wave functions we shall deal with, are thus
seen to have the form

ﬂzm =X fwzm

A gy lkr) Yo, oley - Cylke) 25 Yite, dle, (m

and
| -
Nm =% VXIXE ¥

- HE2 D ¢ (ke) Yo, oe,

18 | Y™
o oA [rCL(kr)] G €0
im 3 m
*%rsino ar [rcg(kr)] Y£§¢ - (12)

We shall use superscripts (1), (2), (3) to denote spherical Bessel functions ;. y,.

and h ! respectively; that is, M 1

. - jﬂ(kr), etc.

Note from (5) that if the electric vector £ - M, then the magnetic vector H ~ N, and
vice versa. Hence, these are essentially transverse electric and transverse magnetic waves with
respect to the radiat direction.

Stratton (Stratten, 1941a) gives the following orthogonality relations for the N's and
M's:
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2n ¢ M * _ y 2
j; S Mom * Mo d0 = 2(2 + 1) Lpﬂ{krj] 8o St

~tm  <i'm’

LI
o
L
[w]
=
=
*
o
<
t
(=]

wjz,m'v

IZW Sw N N* da gi&___%) { (L +1) [FR-I(kr)]Z
0 0

+Z[C£+](kr)‘lz} 629,' 6".“'5 . {13}

(Note that Stratton uses unnormalized real spherical harmonics in his definition of the @'s and
@'s.) These vrelations are a little special for our purposes, because they are tied to the radial
factor which arises from the wave equation. Since only angular integrations are involved, however,
the basic character of the results cannot depend on the radial functions in any essential way. To
remove the apparent dependence, we now introduce general "vector spherical harmonics." These are
suggested by the form of the defining equations for @ and y. We write as follows:

Hym(€:8) = 9 % r¥O(0,0) = LYY

Tyn(029) =g, + (7% 7 x e,

2gm,  _ m
S Lper = e+ 1) Vee

Ygn(@s8) = 9 x Vo wn¥y - T

= - 2, x LYg) = 2rov) . (14)

The alternative expressions for Tt and v follow after some vector algebra. Upon inspection

~&m am
of (171) and {12}, it is easily seen that, in terms of these functions,
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Mem = Calkriugn (15)

and

C, (kr} 1 &
9 . (16)
N, = T, +———IrC (kr‘ﬂ v

~&m kr ~fm 2kr  3r 3 ~am

These relations can also be established directly from the definitions {3), {4), and (14} after a
certain amount of vector algebra.
We now show that the vector spherical harmonics satisfy the following orthogonality relations:

*
(A) j‘}:‘lgm . ER.'ITI' di = R.(.E. + .I) 6£2| 6|T|T|'|' N
fim * 2 1y
(B) Tom " Te'm dg = 28(z + 1) Sppt St s
fomm * v 00 - '
(c) Ygm * Ve 92 ALY S0 G

* *
(D) jy.!zm " dgt = _[Bﬂ.m "o da
*
jylm . Eﬂlml e = 0 . (17)

Note that {B) follows at once from the orthonormality relation (8) for the Yrg, that (C) follows

immediately once {A) is established (since v, = 291" x Em), and that since the u's and v's

~um
are orthogonal to the t's, only the first equation of (D) and {A) require procf. We first prove
(A) as follows: converi the angular integral to an integral aver all space by writing

* §(r-ry) oo
Jggm * Mgy = ja]l 5 0 Yam © Eo'm
b space r

1 7'2 drdfy ,
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where the Dirac & function is defined by

s(r - ru) = d(ro -r)y=0,r¢# Ty {18)
JS(r - ro) dr =1 ,

provided the interval of integration includes or Now from the definition of Mo (and since
L involves no radial derivatives),

§(r = r.)
. * = m . m'* —----—-—0 2
jBD,m Bouge 8 = L” LY, Ll}i‘ Z ]r drdf
space

= j L. [80r - rg) Yrg:* LYD 2 drdp —
all - T ~

space r

6(!" -r ) 1

gt om'* 2 2
fan = A e aran
space

ily seen to inlegrate to zero, since the 1ntegrated part vanishes at in-
finity; hence, performing the radial integration in the second integral,

* _ m'*  2.m
jglm Uy . = = jYE' E Yg da

In conjunction with the differential equation (10) satisfied by the orthonormal YT, this completes
the proof of (17A). {(The artifice of converting to a volume integral is rather annoying, but it
seems difficuit to aveid without destroying the essential simplicity of the proof.)

Jo prove the first equation of (D), which is all that remains for the verification of (17},
we have
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IBM Cur., da j'( L") - (2r9™) da

e - vy e

" since LYE has no radial component. Further, since Vv - LYE =0,

- . m'* o m
jgm . R.'m' aqQ = - jv (2rvy, LY;) da
- . 1 m'* Lyl
= TR G 86 (2sine ¥, ey - LY)) do+
L2 2 e - 1¥") dn .

sin © 3¢ €

The first term gives zerc when the @ integration is performed because the sin © factor vanishes
at the 1imits. The second term 1ikewise is seen to vanish when the ¢ integration is performed
because the Yg are single-valued functions, thus completing the proof.

Equations (17) are the general orthogonality conditions we require -- freed from all dependence
on radial factors. We note that the previously mentioned speciat relations (13) (from Stratton) are
easily recaverad using {15), (16), (17), and standard recursion formulae for the spherical Bessel
functions.

As final mathematical preliminary, we now derive some expansion theorems for vector plane
waves which we shall require later. Specifically, we seek expansions in spherical coordinates of

e eikz and e e Tkz . Since these functions are divergenceless solutions of the vector wave

<X
equation, they must be expressible in terms of the fundamental vector solutions M and sz ;

that is

ikz . 2 o (1) (N o (19)
ExE 7 T e B M) o
and since
gye1kz e Vxe e1kz ,



therefore, also

|_|

1kz =

3 > (8 M M(] R,mNSS,rL) : (20)
m Z

As indicated by the superscript (1}, only Bessel functions of the first kind jg(kr) enter --
the reason being that the other Bessel functions are irregular at the origin. Observe that since

e = (e €0S O cos ¢ - e¢ sin ¢) e‘kr cos © ,

v sin 9 cos ¢ + e

-0

the angle ¢ enters only through the factors e1¢ and e-1¢. Hence, only terms for which m =+ 1
can occur in the final result,

The coefficients Gy and Bym can be determined directly using the orthogonality properties

ikz ikz

of M and N - but this involves integrals of M < ee and N cee . the evalu-

~&m
ation of which is somewhat involved. We derive the resuTt from the much srmp1er expansion of a

scalar plane wave, namely

. . L ) .
oikZ _ E‘lkl" cos - Z iv(2e + 1) Jg {kr) Py (cos @)

- r’z /2L T wﬂ% : (21)
=0

{See Stratton (1941b) for details.) As a first step, we construct expansions of xeikz and

ye‘kz as follows:

xe =r sin B cos ¢ e1kr cos 8

B E“__(ei¢ +e-1¢)_%6_eikr cos @

which, together with_{21), yields
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d[Pl(cos 0)]

xeikz = - ?%'k‘ 1R(22. +1) jg(kr) (ei¢+ e"i¢] 5
g=1
Using
ﬂ-égf—GL - P;(cos e) ,
and also (6) and (7), we obtain
xeﬂ;z=-1-g§: P T T/ EETT) “”51,1)*‘”;51,11 ; - @
p=
and similarly,
_yeikz = - —CE— i I (% + 1) ]EYIE»I,% - ‘i’ﬂz]] ‘
2=1

To find the expansion coefficients o, and Bom’® take the scalar product of {19) with r. Since
rjg]) has no radial component,

Jdkz o ikz o > > By T N!E:n)

ree
m &

X

Thus, from the expression (12) for Nem» W obtain

RN Bngm-l)q;é:‘)

m £ k

and hence, upon comparison with (22) we have
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Bl " B T xR

Considering r - gye'kz, we find in the same way

- T %1 i+
%17 7 %g,-1 CER)
Finally, the vector plane waves are expressible as
k2 . /T2 -1 S 2EE (), (1), (D
&8 T = z£+1 RS TR R S ]

/T b
22 1 1 1 1 . {23
21/ T x; E R IRE N!E,IL )

These expansions in spherical coordinates complete the preliminary discussion.

238



B. Scattering from a Dielectric Sphere

In an isotropic medium with dielectric constant & and with permeability p = 1, Maxwell's
equations {in Gaussian units) in the absence of sources are

<]

X

m

n

1
O |-
col ar
T
-

<1
>
-
1
EREY
(=)
rriz
"

whgre ¢ 1is the velocity of Tight in free space. When the fields have harmonic time dependence
e 9t | these reduce to

«<]
>

m
[}

ikH

<]
>

-
!

= 'iEkE: (24)

where &k = % =2 is the free space propagation constant and lo is the free space wavelength.
0
From (24) we see at once that E and H satisfy the vector Helmholtz equation

Vy 9y E-= ekzg =k“E 2 n°k°E ,

n
[
o

VX 7xH H. (25)

Therefore, E and H are expressible in terms of the solutions previously described. In (25) «
is the propagation constant in a medium of dielectric constant e or the index of refraction n

Specifically, the problem that we wish to solve is this: A plane, polarized wave is incident
on a non-conducting sphere of dielectric constant ¢ and radius a. The sphere is imbedded in
free space with & = 1. Find the electric and magnetic fields interior and exterior to the sphere,

Choose the coordinate system such that the z-direction is the direction of propagation of
the incident wave, the x-axis is in the direction of the incident electric field, and the origin
of coordinates is the center of the sphere.

The differential equations are, from {25),
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Interior of sphere, r < a: VxVx

¥x V¥

Exterior of the sphere, r > a: 7y V x

VX VX

The boundary consitions are:

(a) The tangential conponents of E and H are continuous at r

{b) The wave at large distances from the sphere is composed only of

tm

L= =

rm

=

(26)

as

the incident plane wave and the scattered, outgoing wave; that is

E=E +E

~ <inc = Zsctd ?

= H

1

where
Zinc  <x :
H =ee

~inc <y

As v+ o>, Esctd has the following form:

eikr
Escta = A0, ¢)

with 5 *r =90, of course. Similarly,
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(27)

(28)

(29)

(30)



A(a, ¢) Ts called the scattering amplitude.

The mean energy flux in the incident wave is given by the Poynting vector; that is,

= 1 * ergs
5. = L e {E. X Hine}
Zinc g <inc & ~inc cm2 x sec
1
= Bm <Z

Similarly,

— "'l k4
Ssctd = Bn Re {Esctd X Esctd}

1

8nr

Re {f\ x (e X 5*)}

Using the identity

Ax(Bx®) = R-CB-(A-B)C

and the fact that g cr= 0, we then have

Hence, the differential cross-section, defined as the energy scattered into  do per unit incident

flux, is

g 2 dn
dC{@, ¢) = |~sctd - &_ '5* an = 1A|2

|§}nc| (31)
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and the total scattering cross-section is
2n m 2
= A .
Ttot 50 Sol I da (32)

The actual solutions of the scattering problem are obtained as follows: First, exterior to
the sphere, r>a , we write

E-ge e 3 i) + b3 )]
2=13m=1,-1

28 + 1 H
x /7 il /A (33)

and using (24},

_ . ikz ) 3 3y
tee™ el 5 [a D« b 0] «

2=1:m=1,-1
%=1 28 + 1
¥ Vi / LT

The superscript (3), meaning hé])(kr), s required to satisfy the boundary condition at infinity.
Substitution of the plane wave expansions (23) then yields

Eovm Y b 7L + 1 [(1)“}1 ui3) i1l

! M
21 iz + 1) [, L1501 7 L1 4
(3) (1) (3)

M N b Ny

] 3
R bz,-ﬁrg-ﬂ ;
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and

A 2=1 S 20 ] (1) {3) , i1
=3 Eé% 1 ) (M1 YoM Mo s
(3} {1) (3) _ (1}
thy, MmN e Nt
(3)
ta M

In the above, kr is the argument of all the spherical Bessel functians.

Now consider the region interior to the sphere, r < a. "We write

Y nd L= 20 + 1. (1) (1)
E ) " 22:1 ’ R'[E + i) [cﬁ'!]rjls‘l + CE:']HE,-I +
(1) (n
+ dg,]ﬂ2,1 + dg.lﬂﬂ,—] , (342)

- ﬂEI% ¥ cl.l”il% * Cz,-lﬂilz ] , (34b)

where now the argument of all the spherical Bessel functions is kr. Only functions of the first

kind enter since the interior solutions must be regular at the origin., The factor «/k arises
because @(Kr) = g— vx N and E(KF} = %— vxM but H-= %1 VxE-= %E- %— v x E.

It remains only to satisfy the requirement that tangential E and ﬂ be continupus at
r = a; that is, that

(r<a) . E {r> a)’

Etan ~tan

(r<a)=Hy,(r>a) ' (35)

Etan
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*
Taking the scalar product of the first equation with Yot 1 and integrating over all solid angles,
we find at once, using the orthogonality relations (17),

e+ 1) /7 i /‘Ef"‘% Ly epy dyka)
=22 + 1) 1/ §££++] L,(kﬂ) t h(”(k"‘l—l

Similarly, taking the scalar product of the second equation of (35) with v Ve we find,
after integrating over all solid angles,

28+ 1) VF K T T E Jyler)
z
a k

e+ 1)

Introducing

= ka and R =«ka

and Tetting a prime denote differentiation with respect to the arguments, these equations become,
upon cancelling common factors,

¢ 135 (8) = 3yl + 2, (hieay

‘0.1 E8d, (8)]' = [od, (@)’ + 2, 1 fuh{") ()]’

which determines and ¢, ;. The pair of equations for (-c, _1) and (-a, _;) are iden-

a1 2,1
tical. Hence, we have
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3 (8) o3y (a)]" - 3y la) (83, (B)]"
gl fany ] - g o) g (1]

igtafen{ @]’ n{Da)[ag, ()]’
C = =C » . .
81T @ fent P ia)] - i )85, (8))

="}
n
1
&
=
-
3
—_

2,1

If 1n the numerators we let h£1) = J, + 1y, perform the differentiations, and use the Wronskian
relation

5,y By 52 - L.
we obtain
€o,1 7 "Cg,-1 7 . e c
T @ en{N@)] - e si,e)] ()
Note that the expression for a1 has the form - i Ty » 50 that introducing

x = R sin 6g, ¥y = R cos ﬁk,

we obtain

8.

_ s ek i
a = -8 =8N §, e s (37)

2,1

where

tan 8. = J:E(B)[ajg(a)]‘ - jl(&) [-B‘%R,(B)_]I )
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Next, consider the b's and d's. Multiplying the equation for Etan by g;. 1 and for

H by E;,]‘ integrating over all solid angles, and proceeding just as before, we find,

~tan
after cancelling common factors,

Yo [®] = ose] vey (M)
ndy 13,(8) = dyta) + by (h{Ta)

An identical pair of equations holds for bR -1 and dR A These equations are the same as

the previous set execpt that jz(ﬁ) is replaced by njE(B) and [SjQ(B)]' is replaced by

1 ras ' H )
+ (83 ()], TEnCE
X X . ﬂzjﬂ’(ﬁ)[(;jz(a):l: - .]'Q. o [BJ_E(B)] -
17 T 25,8 jon{Vial] - n{Pia)[ss, (8)]
or
by,y T bg,p ® e' ™ sin Mg (29)
whore
2 . 1 . . 1
. jg(BlEilz(u):]l . Jl(a)[ﬁ.]g(ﬂ):]_r‘
Also,
dy 1 =d, = 1 n/a —

246



We return to the interior fields much later -- for now we require only the a's and b's.
The scattered fields are given from (33) by :

Esctd ~ 221++11 X )a ) M(?)} be,1 ]—HI(L?% * Eﬁa,)_{] I

H

Hectd is similar. Asymptotically, using

ikr
W kr) = (M Gy rae

we obtain from (15) and (16}

M(B)(kl") - (-'i )R-"'] eik'l" = - (__i )E“'] eikr m
~Hn kv He,m ke Ly o
{3)(kr‘) ~ - {_i)2+2 eikr = _ie X M(S) ,

Zkr “2,m ~%aM

where terms of order 1  and higher have been neglected. Consequently, we have for r + =,

r

ikr
_e J 29 + 1 1
tsctd T r :E: -1 L+ 1) }(-1) X

X Em ) ‘32,-1}2,1 - 3 (DM
X [v,1 % e, b, ‘

Comparing this with (29), the scattering amplitude A (0, ¢) is then
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Zl + 1
A(@, )"_"F Z / ia + 1) \ _Eﬂ—l:l a0
+ il v W b
z (~L,1 + 2,1 f41 s

or alternatively,

AR ZL 1 1 -1
Alo, ¢) = —¢ Z S ET) ‘azJ E:YQ, - EYJL:I
£=1

. 1 -1
v by g X E‘Yz+~ %

ﬂsctd

is given by (30}.
The differential cross-section is simply |.£\|2
is given by

do = 5 . fj* di? while the total cross-section

T plm
TN 2 = £ - | 2 2)
qtﬂt= 5‘0 f]‘o IHI Uaﬂ—k—n‘ 2' e+ 1) i|ag ]f + |D£ '|| i
2=1 (42)
= ig i (22 + 1) (sin® §, + sin n, )
=1

The orthogonality relation (17} and the expression {37) and (39) for a, ; and b, have been
used,

The physical significance of the quantities §, and n is easily established. For the
ch vector spherical harmonic, @1 1 Says the incident wave can be shown to behave asymptotically

like
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AR I T e Tk ikr
Sinc ¥ 7k e+ 1) r 3 |90 I

that is, as a combination of incoming and outgoing waves. From the last expression for Esctd’
the corresponding harmonic for the scattered wave, which is of course purely outgoing, behaves like

ikr
() __/m 22+ 1 e
Esctd =~ X L+ 1) v 2,1,

Hence, substituting the expression {37) for 8 4

‘ -ikr
(%) {(2) _ v/ 2L+ 1 ge!
Einc ¥ Esctd * 2% e |D

ikr

. ig
- {1 + 21 sin 5, e 2) ]En.1

/T 2L+ 1 g e ikr  elkre2idy
&/ iE ) E‘” e N

Similarly for the vector harmonic Nz,m with  n, replacing 6, and v, replacing
By Therefore, the entire effect of the scattering center on the far field is simply to shift

the phases af the outgoing waves by 262 and 2n . respectively relative to their values in
the absence of scattering. (ne may think of a given spherical vector wave as impinging on the ob-
stacle, being reflected at the origin, and then returning to infinity with amplitude unchanged (as
required by energy conservation, since different vector harmonics are not coupled by the spherical
scatterer) but with phase shifted by ZGE or 211E . In virtue of this interpretation, 62

and n, are customarily called "phase shifts."

It is perhaps of interest to make a few brief comments about the character of the solutions.
As a check we note first that as the index of refraction n approaches unity, the phase shifts
and hence also the scattered wave, properly vanish.

Note also that, as expected, the scattered light is generally elliptically polarized.  (The
1ight is linearly polarized for ¢ =0, =/2, =, (3m)/2.) If two scattered components, say

E9 and E¢, are compared, the ratic is seen to be complex; that is, a phase difference exists
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between the two components.

As a second check, consider the Timit in which the radius of the scattering sphere is very
smalt; that is, in which o = {2ma)/x < < 1. The coefficient b]’] is seen to be dominant
in this 1imit, and the scattered field thus corresponds to that of an induced dipole oriented in
the direction of the incident electric vector. The total cross-section is easily found to be

o - 128 .5 S(HZ_.')Z .

This is Rayleigh’s well known law of scattering in which the energy radiated is proportional to
A4

Next, consider briefly the geometrical optical limit o > > 1. In this case, the series for
the scattered field converges very slowly, the phase shifts becoming small only when & >a
Further, for the important terms in the series & <a o, the Bessel functions in the determining
expressions for the phase shifts are rapidly fluctuating functions of o, while the differential
cross-section is a rapidly varying function of the scattering angle (because of the complicated
interference between the very many vector harmonics). Hence, calculation of the scattering from
the exact Mie solution becomes impractical -- even using high speed computers. For this reason,

in Section II we shall consider methods for obtaining closed form approximations to the scattering
cross-section,

Next, we say a few words about the total cross-section in the geometrical Timit. This is not
too difficuit to estimate, at least in the case n > > 1 (nearly opague spheres). In this case
s1‘n2 8, and s1‘n2 ny are easily seen to fluctuate rapidly between zero and unity as functions
of & for 2 < a and to become small rather rapidly when 0 exreeds a. Thue, we write
(42) approximately as

2

2r o . 2 .
o = = (20 + 1) (sin® &, + sin® ny)
tot kZ E 3
2=1

Replacing sin2 62 and s1’n2 r]g by their average value 1/2, we find at once

. 2
T ot = 2na .

The exact total cross-section fluctuates rapidly, but with ever sma}ler amplitude, about this value
as o increases. The situation is similar for the more general case in which the sphere is not
opaque. Hence, the tatal cross-section is very much more stable than the differential cross-section.

250



It is of interest to remark on the fact that the total cross-section above is twice the geo-
metrical cross-section of the sphere. This is a consequence of our definition (27) of the scat-
tered field as the correction to the incident field. The fact that a shadow is formed in the
geometrical optical limit means that the incident wave is annihilated behind the sphere by a wave
which exists only over the shadow and is exactly out of phase with the incident wave. By our
definition, however, this annihilating wave must be counted as part of the scattered field, and
it evidently contributes waz to the total cross-section. Together with the contribution
na2 arising from the geometrical optical specular reflection, this yields the result found above.

Finally, we comment on the reguirements of energy conservation and its relation to interfer-
ence between the in¢ident and scattered field. Evidently, the normal component of Poynting's vec-
tor for the total field (incident plus scattered) must give zero when integrated over the sphere
at infinity, as over any closed surface. Now the incident field alone integrates to zero, but the
scattered field alone does not, since it contains only outgoing waves. Indeed, it gives just the
total cross-section times the incident flux. Hence, the interference term between the scattered
and incident field must compensate this if energy is to be conserved. Since this interference
term is 1inear in the scattering amplitude A, this implies that the total cross-section is
linearly related to 5. This relation is the famous cross-section theorem which states that for
scattering from a sphere, O ot is  4u/k  times the fmaginary part of the scalar amplitude
of the scattering in the forward direction. A proof of this result is deferred until Sectien III,
but some use will be made of it in the following.
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IT1. INTEGRAL EQUATION FORMULATION
A. Derivation of the Integral Equation

In the following we shall present an integral equation formulation of the scattering problem
which automatically incorporates all of the boundary conditions. HWe shall then use this formula-
tion to find approximate closed form expressions for the scattering amplitude. We start, naturally,
with Maxwell's equations, which for harmonic time dependence become (in Gaussian units and with
w=1)

<
>
m
[
anba
(2] iE
P e
-

(44)

¥ x H

As indicated, we consider a medium in which € = e{r). We shall assume that e 1is continuous
except, perhaps, for surface discontinuities. Also, we assume the condition e+ 1 as r + =
that is, all of the scattering centers can be enclosed within a sphere of finite radius. The wave
equations satisfied by E and ﬂ then become

2 2 _ o
VxvxE-e{r) kE=0, k=—2,
- v ¥ C
{45)
VxVxE- K é (r) E= 0, k? = ekl :
and
v 1 2y _
SO RRE S I, (46)

Evidently, it is easiest to work with the equation for E and to regard H as determined in

terms of g by (44). At least we shall start that way? Note that E is not divergenceless,
but rather that
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V'(EE’)=03

so that in fact

Substitution of this result into (45) yields the alternative form of the wave equation

VE'FV E-(-:—,)—E-Ve(r) +E(E)k25=0- (47)

It is understood that the Laplacian operates on the rectangular components of E. We mow derive
the integral eguation for E using the methods of Levine and Schwinger.

1. Schwinger-Levine Method (Levine and Schwinger, 1950}

We start with Green's identity for vectors, namely

E dsn « [Bx (VxA)-Ax (VxB) =
5

5 dv[A - (v x ¥ xB) - B+ {Vx7xA}
v {48}
This identity can be established, using

7e(CxD)=D-(9xC)-C-(vxD) .,

as follows: first, identify D with A and C with vy B; then identify D with
B and C with ¥ xA; subtract; integrate over the volume; and finally, use Gauss' theorem.
to obtain the surface integral.

Now introduce the tensor Green's function T satisfying the equation

VXX r)-k L, L")=E‘5(|E":'”‘ ' (49)
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where e 1is the identity tensor,
e = 1i + 33+ kk .

The Dirac delta function Slf - r’l), which is the generalization to three dimensions of that
introduced earlier (18}, has the properties that

6('[ = r'“ = S(IE' - E“ =0Q, r# E| ,

]
—_
-

Jstr-ryav =
v
jv f{f') 6(|§ - fll} av' = f(r) .

The physical significance of I can be seen as follows: Take the scalar product of (49) with
the arbitrary vector J(f')' Then T{r, r') . i(r‘) is the vector field at the position r

genarated by a vector point source of strength j  located at the position r'.

Following Schwinger and Levine, upon taking the divergence of (49), it follows that

kZV-£=-Vd(|[-f'l)=V' s{r - e’} (50)

where V'  denotes the operator ¢ acting on  r'. \Using the ralation
_ 2
VxVyx=-9+v(v. |,
equation (49) becomes
(V2+k2)r=-(s:~lz—vv')6(|r-r'|)
Z = ~ 5
If we introduce the scalar Green's functian
elklr - r'
A L
S =gy (51)
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which satisfies the scalar equation

(@« k®yar, 1) = - 8l - et (52)
then a solution for T 1s

o= 1 ' 1y = '
r(r,r')=(c -z vy'}G(r, r')y =t (r'.r) , (53)

since the scalar aperator ¥ + k2 ]2 v v'. Note that

commutes with e - =
. - k
T (r,r')=T{r',r) ,

where T 1is the transpose of T ; that is,

(Thi; =Ty -

Now apply Green's theorem (48) to E(r') and T (r', r} . e, where e s an arbitrary
constant vector, and let the integral extend over all space. We then find at once

Br) e = By v e+ f, @' JRITEEY T e

where the integral over the surface at infinity supplies the incident wave. Since e s an
arbitrary, constant vector, this last equation is equivalent to

) = Eypele) + [, @' | Rete )T B -0

Using

E-r () =T () - E=T(rnr) £ ,

we obtain the somewhat more convenient form

B = Epe(r) + f, ov {¥etr 11 (o r) < EOCD) (54)
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In view of our previous interpretation of r ., this equation simply states that E is the

incident field plus a superposition of the fields created at each point r by sources of
strength  KZ[=(r')-1] E(r') .

It is easily verified that E satisfies its wave equation. It is interesting to show, how-
ever, that E satisfies the proper divergence condition. Using V¢ - Einc = (0, we have

RN U SO LR R

With the help of (50}, we find

<]
m
n

L dv' {[e(rl)-ll v s(lr =) E(f')}

<, v {6(15 SR e el E(r‘)]}

and hence, properly l

Note that since I is outgoing at infinity, the correct boundary conditions at infinity are
incorporated into the integral equation. Further, since no derivatives of & or E are in-
volved, this formulation is valid even if s([) has surfaces of discontinuity.

If we introduce the actual form of T (53) into (54), we have more explicitly

E(r) = By () + & fv dv'[e(r')-1] E(r*) 6(r, r')

v f e et e B (55)

This is the formula with which we shall work.
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2. Alternative Derivations of the Integral Equation

Before proceeding further, it might be helpful to give a less abstract derivation of our
results, To this end we now construct the integral equation without the use of tensors. We
start with the vector wave equation (45), and write it in the form

(7 + k%) Er) = - [elr)-11 K2 E(r) + 79 - Elr)

In rectangular coordinates this represents three scalar equations, each of which can be written

(F+ k) £,(r) = fi(r), i=1,2,3,

where

£,0r) = - [e(r)-17 K%E; (r) + == 9+ E(r)
1

Now we know the solution of this equation to be
Eylr) = E

fine() = fy £ strty v

If we multiply by the corresponding unit vectors and add, we have
E(r) = £, () + K8 [ [e(r)-1T () 6, 1) av?
- ] 1 I‘ 1 ]
,[V G{r, r') V' v'« E{r') dv' . (56)

Using

G{r, v') 9" 9" « E(r') = 9" [&{r, r') v' - E{r')]

vt G{r, r') v - E(r')

v IG(r, r') V- E(r')]
+ 9 6{r, r') v « E{r') .
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we obtain
E(F) = Epelr) + K8, Tetr)-11 ECe') Glra 1) v
-V jv G(r, r') ¥' » E(r') dv',

the integral of Vv'[G ¥' + E] vanishing because E s divergenceless at infinity. Next,
consider

G{r, r') v' ¢« E=-G(r, '} v « [Ele - 1)] ,

since eE is divergenceless everywhere. Thus,

Glro r') ¥« E=-9 - [6E(e - 1)]+V' G- Ele-1) ;

and hence, upon substitution, we recover our original result (55), the surface integral vanishing
because € -1 =0 at infinity.

Still angther derivation of this result is discussed in Morse and Feshbach {1953b}. The
tensor Green's function used there is simpler than that of Schwinger and levine. However, this
derivation immediately leads to the expression (56}, and we shall not bother to give details.

3. The Scattering Amplitude

We now obtain an expression for the scattering amplitude by considering the far field as
given by the integral equation (55). We start with the easily derived asymptotic form

B(r, ') = S QTR0 X

where n' is a unit vector along r, that is fn the direction of observation (we reserve
n to denote the direction of incidence). The first integral in (55} then becomes for r -+ =,

jv G{r, r') kZ[E(f')-]] E(r') dv'

AL

TR ikr
= j; e ikn T (e - TE dv' = g?——-g(g') s

258



where

o) = 5 | e K T [e(r)-1] E(r) dv
v - (57)
The second integral of (55) becomes
v o[y v Gl e - E(e) [efr')-1] v
ikr j : ] 1
- e voamiknt et e 1
= g (4Trr ) Ve . - E(L 1) dv
ike 2 bl .
:_g_‘:__ _E'.E DI [D' . Ie 'Ikn r E(E- 'I) dVI]
ikr
- E 1 . L
== 0in
Accordingly,
. ' eikr
Eoetg = [D- (0 - D)n*] r
From its definition, consequently, the amplitude of the wave scattered in the direction n'
when the incident wave is in the direction n s given by
Bl mh=D-dnt s Bint =t x 0ty D) (58)

If the polar axis is chosen to lie along n, and if 0, ¢ specify the orientation of n
with respect to the polar axis, then we write A(n, n') as Ao, ¢} as in the past. The
present more general notation is only intended to describe the scattering in a more explicit way.
It perhaps ought to be mentioned in this connection that the direction of incidence (and the pa-
larization direcfion) appear in the expressions for Q and hence for 5, 'on1y implicitly
through the dependence of the field E upon these directions.
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The essential feature of these results is that the scattering amplitude is expressed in terms
of a relatively simple {1ooking) integral of the electric field over the scattering objects.
Choosing "reasonable" approximations for the field interrmal to a single scattering object, one
hopes to obtain correspondingly reasonable approximations to the scattering amplitude for that
object. This is the main point of the formulation. Before proceeding with such considerations,
howaver, we briefly present a second formulation in terms of the magnetic rather than the electric
field.

4. Magnetic Field Integral Equation

Here, of course, we start with equation (46) for H, namely

Y AT O RYSTORE Y

Now

H

m|—

V)(V)(H+V;l:—x\7)(H

Vy Vx ﬂ + lé—v £ X E s

m|—

uiing Lhe second Maxweil equation. Hence we have

Vx Vx ﬂ + ik VeYx E - K ﬁ =0

Applying Green's theorem (48), we obtain in the same way as before
HE) = Hipelr) + f, KeLet)10 T (e r) - e) o'
ik §, T ) e X BT v

Asymptotically, we then find
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Hectalr) = EF_— Ay(n') (59)
where
52 = PI(E‘) - E| (Dl . gl) + gu (EI) - Q|(E| . 9“)
=-n'xIn'x (O +D)] , (60)
with
Dn(|)=]_ -1'kg'-r:k2 11 H d ,
D' (n') = g7 jve [e(r)-17 H(r) dv o
and
u 1y o ik -ikn' - r
n) =g | e~ T~ Vel(r)xEr) dv
v

One interesting feature is already apparent. In the electric field case, any approximations
in which the interior E has the fixed polarization e of the incident wave gives rise to
a dipole-like polarization of the scattered wave (that is, A~ n' x (n' xe) ). In the mag-
netic field case this is not so -- the contribution from D" automatically contains polarization
corrections.

A second interesting feature appears if there are surfaces of discontinuity present, since
then surface integrals occur. Now in the geometrical Timit, specular reflection at the surface
must play an important role.. This seems to be a rather promising aspect. To make the character
of these terms more apparent, let us specialize to the case of a sphere of dielectric constant
e and radius a by writing ‘

efr)=e-(e-T)ulr-a) ,
where
0, r<a
u(r - a) =
I, r>a
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Then

Ve ghe. t-le-Delr-ale

as is easily verified by integrating this expression for %%—. Hence,

QH{EI) - Ik Eﬂ—'l) j e-'ikﬂl ' rgr X E(r) ds .
s

This explicitly exhibits the surface integral contribution to Ho

B. Calculation of the Scattered Field by Various Approximations to E

We now specialize to the scattering from a sphere and consider several approximations to the
interior electric field E . Although E  is known exactly in principle from the theory de-
veloped in  I{B), the infinite series obtained is impractical in the general case. On the
other hand, the approximations give answers in closed form.*

1. Kirchhoff (or Born) Approximation

Recall the integral equation (54) satisfied by E(:) .
E(r) = Ejpe (02 * jv av! } Cle(e 11T (r o) - E(r)]

If e{r'}-1 1is small, and if the volume of integration is not too large, then the integral amounts
to a correction term. The electric field will then be given to good approximation by

E(r) ~ Ejpe (1)
Applying this assumption to a small, dielectric sphere of radius a, we write for the in-

ternal field

* The total scattering cross-section is not so hard to evaluate; its fluctuations are relatively
small. Hence, the exact total cross-section can be used to normalize the estimates.
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eikp. T

E=ey

where n s the direction of propagation of the incident wave, and €y is a unit vector along
the direction of polarization such that &g * N = 0 but otherwise arbitrary. From {57)

Dn, ) = 3= (e - 1) Koe, j grikn' e Gikn gy

sphere

To evaluate the integral, choose the polar axis in the direction of n' - n leading at once to

2
- 1}k .
D{n, n') = & e [}1n (k[n* - n|a)
‘f"‘ks a on n-n

cos (kln' - Q[ai] .

1
—
rou
13
i
=}
fu
e

Introducing the spherical Bessel function

. (2} sin z _ cos z
|]'I 2 ]

and noting that

where (% s the scattering angle, we thus have

. 2 j](Zka sin %
D(n, n'} = (e ~ 1} a(ka} E—““—'*'Tgy-"' ey

ka sin 5

From (58}, it is apparent that the scattered electric field is polarized in the plane of ey »
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the plane of the inducing dipole. From (31} and {58}, the differential cross-section is easily

sean to be

== = - a a - {n =-e
dn " 2ka sin @i - -0

In the Rayleigh 1imit, ka < < 1, this becomes {using j](z) =zf3 for 2z << 1),
do _ (e -1% 2, .4 . 2
o a(ka}” [1 -(n" + e4)"]

The total scattering cross-section for the Rayleigh 1imit is

which agrees very well with the exact result {43), provided our original condition that e - 1
be small holds.

The angular dependence of the differential scattering cross-section do/d?2 1is shown
schematically in Fia. 2 and is a typical Fraunhofer diffraction pattern., OF course, the Kivchhoff-
Born approximation is more realistic the smaller the quantity (Ve - 1) ka ; in other words, if
the dielectric constant of the sphere differs 1ittle from that of free space, the incident plane
wave will suffer little distortion upcon entering the sphere.

The total scattering cross-section for the Kirchhoff-Born approximation is good beyond the
Rayleigh limit, a << 1, as indicated in Fig. 3, but it becomes very bad if o becomes too
large, Indeed for Targe o, this approximation yields a cross-section which increases without
linit (as o).

2. Modified Born Approximation

For this case let the field interior to the sphere be given by

ikz n « r
E=e.e = epe . o~
E=ey €5 , where

n:ey,=0 and «= Y ek

264



The phase is thus modified in the interior of the sphere, but the rays are assumed to propagate
rectilinearly. Also, the amplitude of the interior wave is unity, but as noted before, the
total scattering cross-section can be normalized to that computed from the Mie theory.

A straightforward calculation yields

o) = ke - 1) g j ekt - n) - r g,
) v

J](lKE - kg‘!a)

{e -1)a (ki:l)2 eq —[m s {63)

where

kn = knl = (2 + k2 - 2kcos @7F

Ni@

]+

This approximation has the same general limitations as the previous one. However, this re-
sult has the additional disadvantage that in the forward direction (@Q = 0) D oscillates about
zero as a function of (n-1)ka although we know that the main diffraction peak is in the for-
ward direction. Hence, this approximation is restricted to (n-1)ka <1

k[(v’-e-- ])2 + 4 JE sin?

3. W. K. B. Interior Wave Number

For this case we assume that the wave is propagated rectilinearly inside the sphere
with no change in the polarization. The phase, however, is not assumed to be constant over the
wave front {the previous case), but is determined by the distance the plane wave has moved in
the drop. Using the notation in Fig. 4, the phase at an arbitrary point P eguals the phase
at C, plus the difference phase from C to D, plus the difference in phase from D to
pP: or

- ka + k

a-/az-pz)h((#az-pz'*z)
(.<—k)(‘/a2-p2 +z) + kz

——

phase at P

Actually, the phase at P is slightly different because the ray arriving ar P is refracted
at the surface of the sphere. '
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In any case, using this phase, we take the interior field to be

!
£ - epelke (k- Kz+(a? - 0]

Note that the transmission coefficient for a plane wave incident normally on a plane surface of
dielectric constant ¢ is 2/{V & + 1), so that this might be inserted as a reasonable am-
plitude factor.

Upon substituting the interior field into (57), we then have

R R O
- - sphere

1
X e"lnc [z + (a2 - 92)2] av (64)

In cylindrical coordinates

n' - r=( cosfpe, + s‘in@gp.) - (ze, + psp)
=z cos(f+ p sin({ cos ¢ ,
where ¢b is the scattering angle and ¢  is the angle between e, and Byt Thus we have

~0

p= (e-1) 2 J’ e1z(m-kcos@) o~k p singi cos ¢
sphere

2

il - k) (a° - 92)‘5-0 dpdadz

X e

After evaluation of the z and ¢ integrals,

£ - COS

g

2 2
y ol & = K) (a% - 0%) Jqlkp sin i)
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In general, the integral can bé evaluated only approximately. However, it can be evaluated ex-
actly for the two special cases of forward and backward scattering. These will serve as a check
on our approximate methods. Also, as mentioned earlier, the total cross-section can be estimated
from the forward scattering.

Consider the case of forward scattering, that is = 0., first. Let us change variables by

writing

p=a siny
Then
B 2 /2
~gl‘/5__1)_a$90 S sin y cos v d ¢
£ - cos
0

x sin [k - k cos@® ) a cos ]

ei(K‘ - k)a cos ¥

X
X Jo(ka singd sin ) . (65)
Now let & = 0. Then we obtain
2 w2
9:(/_e+'l)ka ey s sinycos ¢ dy
0

y sin [{c - k) a cos 4]

e‘i{K -k)yacosvy,

CA(/E+ 1) ka? [1 ez"("‘k)a_1-e2”'<'k)a,_]

2 2il - k) a [2ifk - k) al? (66)

In the geometrical optical limit, ka += , the second and third terms appear merely as correction

terms.
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From the cross-section theorem, the total scattering cross-section is given by
4w
op = Im {|9|} ’

where D s computed for @GP =0 (since A=0D for forward scattering). Hence we observe
that

6y = flln=1)] ;

more specifically, it contains terms in :?z [2(n - 1)a]. Hence, Oy has a periodicity
of approximately {n = 1)a = n. Penndorf (private communication) computed the position of the

maxima from the series solution (Mie theory} to be
{n - Na=2.15+3.18(p -1} ,

where p is the order of the maxima. He also found the position of the minima to be

2

(n - %o = 3.90 + 3.18(q - 1) ,

where q 15 the order of the minima. These computed perieds are thus guite camparable to 7

For the case of backward scattering @ = n , (65) becomes

-1 a? e 2ika . gia
~ 2i 0 | 2ica (2ica)?

etk -2ika
2ika (2ika)?

Here the amplitude is much smaller than in the forward direction, and it oscillates rapidly with
changing a; the polarization is the same as the incident field.

Next we give an exact evaluation (but not in closed form) of the expression for D. Consider

w/e
flz, ) = ‘[ sin ¢ cos ¢ d ¢ glZ c0s ¥ Jo(p siny ),
0
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so that (65) becames

9:

(E-])ka2 e fllk =k)a+k ~kcos@®) a
(/% - cos (@) 28 O ’

ka sin (]

2

- f [-2ka sin @ s ka sin@]

Now, f(z, p) satisfies (v2 + 1) f {z, o} = 0. Hence introducing spherical coordinates
rsY, ¢, defined by

rsiny

©
il

N
1]

rcosy ,
we note that f must be expressible in the form

f= zaRJ‘jl (r) Pylcosy) .

Indeed, in Watson {1944)

Jo(r sin ¥sin v ) e'l COS ¥ eos ¥

= Z-‘.‘L(zg# 1) jﬂ, (r}PE {cos ¥ )PR, (cos v}

Hence, with

we obtain
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f{z, p)

n

/2
S sin ¢ cos ¢ d 21R(22+1)J‘2 (r)
0

x P, (cos y) P, {cos v}

PIRLIT R ay dg (r) P, (cosv)

For & even = 2m,

GZ(_1s+m1-3-5;..L2m+25-1) 1
"2m $=0 ) (m - s)! (2s)! (25 + 2)2"S

i
8

r|—
-

~

o =ms
-1}

-~

ey

For ¢ odd = 2m + 1, B+ 1 ° %— for m=0 and is zero otherwise. Thus we have obtained
explicit expressions for f{z, p) and therefore have evaluated D exactly. Unfortunately,
the result converges slowly and is consequently not very useful.

Finally, we evaluate the expression (65} for g approximately by using saddle point methods.
Breaking sin [(x - k cos §0)) a cos y] into exponentials, we write (65) as

0 (C - 1-) kaz (l 1 )
) e - H
T2iveE -cos () ~0 1 2
2 .
I = J’“/ sin ¢ cos v d ¥ e?1ka[f?- cos? (GO 72)] cos v
0

X Jo(ka sinQd siny) ,

n/2 . .2
. 5 sin ¢ cos b d o-2ika sin (G 72} cos (67)
0

X Jo(ka sin(® sin y)
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Since we shall be interested in the geometrical limit, we assume not only ka > » 1, but alse

(V€-1)ka>>1, We now consider two demains for the scatteirng.

a. Main diffraction peak

This will include small angles around the forward direction. The assumption is that

2<<'|

ka (4

contributes little to the integration because of the

{but not necessarily Ka @< < 1). I]
The major contribution comes from 12 and we

extremely rapid oscillations of the exponential.

have
n/2

I, =
2.(0

sin p cos ¢ d v Jo(ka G0 sin ) .

Letting ka i sin ¢ = x , we thus have

ka@ J (ka@ }
I, = ——__l———f X Jo(x) dx = B D
2 (ka@ } o ka @

This is the typical Fraunhofer diffraction pattern for a circular aperture. For ¢ = 0, it

properly gives the leading term of {66).

b. Outside main diffraction peak

This region is treated on the assumption that

ka sin gl > > 1. {68)

It should be poinied out that for ka large enough, this domain can overlap with the previous
one. For example, suppose ka = 1000. The previous domain extends from (EL =0 tosay 1/100
radian; but for QE;=*1/100 radian, ka s1r|Q§ = 10, which satisfies (68). For this region use the

asymptotic expansion

¥ =0 and, strictly speaking, the region from ¢ =0 to say

* This expansion breaks down for
However, it is easily verified that this region con-

1/(ka sin ) should be treated separately.
tributes only higher order terms.
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2 1
Tka sin@ v sin ¢

Jolka sin @& sin ¢) =

X [eika sin® sin ¢ - i{n/4)

2
) olika sinGl sin ¢ - i(v/4}—]
5 RE
From (67) consider 12 first, writing
L= Ly, + 1,
. 7w/ 2
Ly. /2 & {n/4) J VSNV cos yd oy
- mka sin &b 2 0
X o-ika [2 sin?( G /2) cos ¢ ¥ sin (D sin v]
. n/2
B gFilr/4) Y siny cos ¢ d ¢
v 2nka sin 0
X g-2ika sin(gh /2) sin [( & s2) % 4] .
The saddle points occur for 62{"1 v o= (2n + 1) % sy N =0, #1, 42, ..., 0r ¢ =t %)
The only saddle point in the range of integration occurs for 12_ with ¢ = % - 55_%_
letting
v-3-%es,
¢0o
Iz- S S e'(“/” z cos g%)sin f%)
¥ 2mka sin - @
. w
'(f_ 2)

. , g 2
y e-2ika sin ((D/2) [V - (8/2)] 4

272

+{2n + 1) %
. Hence,



Y -ika sin (@ /2) gp/2

. . 2
I {B/8) g-2ika sin (B /2) e X dx

H

2ka /' /AT - Y =iKa sin (6D /2) (m/2 - @)

L

 o-2ika sin (@D/2)

’:-" ]
2ka

¥ ka sin Z@/Z)

-+
10
—

and / or

NS j—
~ie

The contribution to the differential scattering cross-section of I, ~ alone can be seen to lead
to isotropic scattering outside the main diffraction peak. This is the approximation made by
Wiener.

Similarly, we find

1 1
1 I._.x Q0 X .
2+ 2 Vka sin (3 T_@0
2 2 2
and hence, retaining only the dominant term,
12 o 12_
This evaluation of 12 is valid provided Q:_O is not too c¢lose to zero or 7 - - we must

<< 1. This is a stronger condition than {68). When

essentially have

1
Jka sin (£9/2) 32

{68) 1s satisfied, but the preceeding one is not, saddle point methads can still be used, but the
saddle point is then close to one ar the other 1imits of integration; the integral can no Tonger
be regarded as extending from - to + = . Hence, these are two intermediate regions to con-
sider -- one near ¢ = 0, the other near @ =1 . A1l of this is essentially a refinement
which we shall not pursue further.

In 2 similar way, the contributions of I, must be included, but we shall not work out the
details of this either. We only mention that outside of the main diffraction peak its value is some-
thing Tike
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2 ®
€ - cos” 5 F21KA

s
|_.

2ka A

where

A = / s;-(21/"a—-l)cosz—?L ,

and hence is of the same order as I

4, W. K. B, Interior Wave Number with Refraction

Here we take the sphere as behaving something like a converging lens and write for the
internal field,

E(r') = Ce{0', ¢') A .- 7 Pl
T - Jr' - fe,|

where f 15 a kind of focal length, determined say for paraxial rays, in which case

We thus have from (57},

Now introduce a new variable
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s0 that
p-Cle-1) K €0, ) o~ ike c-ikn' + {fe, + p)
~ U =~ p" Tp p " h
sphere
ol do sinG do db
e R P

where the integration still is to be carried out over the original sphere; that is, ¢p varies
from zero to  2v , and, since we must have

+ 2of cos Gp < a2 s

¢p varies from cos to 7 3 while p varies from f-a tof+a

With this understanding and the fact that
n' «p =cos @cos Gp + sin @ sin Op cos{o - ¢p).
we obtain

-icp
e

[ =]

C{e - 1 k2 -ikf cos @ efo , ¢ ) @
- e et Yo
sphere

-ikp cos @ cos @
y e <Pl p

y sike sin @ sin @ cos(p - ¢p)

é .
X P dpd¢Q sin Gp dep

Now, we attempt to take into account the change of direction of the electric field on re-
fraction. We do this only approximately -- neglecting from the beginning the change in the plane
of polarization on transmission for rays incident outside of the xz or yz planes. How-
gver, we shall demand that the electric field be perpendicular to the direction of propagation
of the ray. We write

= + .
e ugx Bgz *

275



{plane of polarization of ray is not rotated, as it really should be). Also, we require that

5o that the field is transverse. HNow,
= in & cos + e, sin©_ sin +e_¢co .
€y = &y SN O cos b, F ey p S10 95 * €, €0s O

Hence,

» = - ] +
e gp 0 a sin ep cos ¢p B oS Bp s

and along with

this yields at once

1

] 2
¢/1 + tan Op cos ¢p

tan Op Ccos @E

¢ 2
//1 + tan ep cos ¢p

If f is appreciably larger than a, then ep is always close to m, and

tan2 Bp < <1
Thus we shall make the further approximation

o=1, B=-{an ep cos ¢p = sin @ _cos ¢p H

Q
that is, e is very nearly in the x direction but has a first order component in the z -
direction. The errors invoived in these last approximations are probably of the same order as
those involved in neglecting rotations of the plane of polarization {and probably smaller than those
incurred in neglecting amplitude variations of the refracted ray with angle of incidence}. In any
case, we obtain
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X a7 o
phere

D = c{e - 1) k2 e—ikf cos 6 J. e"kp e—ikp cos O cos Hp
s

X E-ikp sin @ sin Gp cos(p - ¢p)

2 .
dedé¢ sine do
X p de ¢p o 0

2 f+a ik b
Cle - 1) k e-ikfcosej pdoe pj
2
C

f-a 0s

¥ sin 0 do e-ikp cos © cos Gp
[+ p

X Jo{kp sin @ sin ep).

b = s - 1) k2 e-ikf cos @ e'lkp e-ikp cos O cos ep
z [Y [

sphere

-ikp sin @ sin @ cos{¢ -
4 o~ Tkp sin o coslo -¢,)

. 2
sin & cos p-d
X o ¢p p

dd¢ sin © do
X¢p PP

F4

iC{e - 1) % -ikf cos @ fra dp e kP
D, = -2 5 cos ¢ @ pap
f

-a
I
[jsinz o do e—ikp cos © cos ep
[ o]
X
2 2 2
-1 a&-p° - 1%
cos ZpF

X 94 (ke sin @ sin ebi] ,
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where the relation

am
s cos ¢, o~TY cos {4 - ¢ﬂ) do, = 2ri cos ¢ Jyly)
0

has been used. In spite of the approximations, the integrals for Dx and Dz

ficult to integrate. At least for now, we examine only the forward scattering.

Dz =03
and
: . f+a
2 -ikf
D, C{e l)zk e j b do e P
f-a
TT .
sin & o. e tkp cos B
X .2‘:l 2p 2
cos ) 22 -p - F
2pf
f+a
ikf ,
C{e 'I1 ke j dpe-'l(k:-k)p
f-a
o 2t ol -l
i ) eike - e P 20f
‘ f+a
ikf .
p - Ue-1) ke j " {e-mc - K)o
f-a
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For this case,



Cle - 1} k 2 sin (i - k) a e-'iucf
21 K -

f+a 2
NS GO SIS P &
-e 2f 7k e 12F \P X
d

Consider just the integral:

-

Fra g [ te)\2 [f("‘r),+a1/—z'f‘2
LI (PN .8 )

j e f( k do = %f eV du

f-a .
[F(1 ) - al / o

Using f = -, —Kk— = /Y& , the upper limit is seen to be zero, the lower to be

; that s, large and negative. Then replacing

— Sk /e -1 . —
/_(—éa__)z"' V ok ( /E-1)

u by - u, the integral becomes

oo . 2 (-~}
/ %—f- j eV du - j ‘_,_,'Iu2 du
0 S 2ka (Ve - 1)

- 2ik e -1
2i 2ka { /& - 1)

=/——1”.Ti+ez'ika(/_e_—l)+”.
2{Ve-1)k 2ik (/e - 1)
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Using

oief o i Eka/ (Ve - 1)

2 2 L2 .
ik 2 o ks - “;i - dkal LT )
e = e JVe-1

we obtain finally

p =Sle-1) 2sin{vVe-1) ka e-if‘e'ka/(/—g-n
X 2i (vVe-1)k

ika T \
-2 —(1-/e+ B+, .
v T 0T E}[/ 2 /- 1)K N

Unfortunately, this does not seem to behave properly, which is rather surprising since the ap-
proximation used for the internal field seems so reasonable. Presumably, the situation could be
improved by adjusting the phase of the diffracted ray more accurately -- that is, by introducing

a factor eiv(ep) in the expression for E with which we started. However, this possibility
has not been examined.

5. Interior Solution Estimated from the Exact

The exact sotution {34a) in the interior was found eariier to be

S2-1
- i 25+ 3 (1} 1
E=/T Z IR E) L‘_fg, M, e, -1@5&,)-1

(M
e, N, 1t 4

where Cz 1 is given by (36} and dR 1 by (41). Since we are interested in a, 8>>1,
we approximate the interior solution by using asymptotic forms for Cl ) and  d, 4 .
(This has been done for scalar fields by Hart (1951) and Latter (1951).) The asymptotic forms of

the spherical Bessel functions (Stratton, 1941c) are
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J (2} = %-cos (z - =5—n) ,

L+
i(z - )

hylz) = & ‘e

Z
and hence
. L+ 1
- sin (z - 5 L

[zj,(z})]" =

L+ 1
ie'i(z T T2 )

[zhﬁl)CZJ]' &

Using the asymptotic expressions indiscriminately, we have at once

e-ia
0,1 % Yp+1,1 = 9,1 % TmE- I sme - 9
Ve
e-ia
d = = = = ¢
2p, 1 2p+ 1,1 1,1 L cosg-ising
e

Hence, to this approximation, the interior field becomes (for r < a)

] 1[1 - (-1

3
(o]
e

—‘P

1
—
=

bl

+|+

o
n
—

MU

LT oo ot [, o] |

~%4 "1
+ 21 hat /—E—(—]—)[1+(])]
=1

X [ﬂﬂ)1'@ﬂx4] 01 - (1Y LN“) +N1) ]t
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or

£ T3t /gfzi‘ {‘55,].) SO R }

(=]

- d z s2-1
AT "”2{'t's‘a',%+vﬂ£‘,’-1+né‘,’1+§£‘,’_1}

Recall the identity {23),

Z= /— Z 82-1
P-T %ri‘ﬁ—h{“m] IRV }

Taking the complex conjugate, we also have

gxe-i Kz = l/_'lT 5:; ('i)pd-] / i % f-} {ME‘”_] M(1) 4 N(1) + N(1) } .

]

where we have used

(1 - 1 ) (1 _ w1
RN R I U

Consequently, this approximation for the internal field takes the simple form

i c-d ik 2z
e e -5 ece )

i
4
[g]
[+
[=1
¢
=
-
Bl
N

the new feature being the appearance of the wave travelling in the backward direction,

The results are very similar to those of the modified Born approximation, given in (63}, ex-
cept that an additional termm in |k n* + kn | appears. This results in a small backward peak,
which is common and improves the 1argewangle scattering. The approximation is presumably valid
only when e s smali; or better when (/e -1)ka<1.
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The form of the internal field obtained by the arguments presented above suggests that the
earlier approximations might be improved by adding a backward travelling wave. However, we have
not pursued this point.

6. Estimate Using the Magnetic Field Integral Equation Including Surface Terms

This approximation will lead to polarization effects. To carry it out we use the W.K.B.
interior wave number approximation, the third approximation discussed, since this seems to work
best of those tried. From (59), {60), (61) and (62), we want to evaluate
B = W x0T AR = ntxn x By s

where

L j T ey v

sphere

and

[}

e, x E(r) ds

pv = dkie = D) J oikn'
S

phere

As before, for r < a, take

2 ik ik - k) [z +/ 2 - o)

E= ——— ¢,
- ye+1 ~

except that the transmission coefficient at normal incidence, 2/( v'€ + 1), has been introduced
as a factor. On the surface S of the sphere

F=—=2 eoeikz, T2 <0 <T

z =11 -

E = 2 e oikz + 2k{ k- k)z’ 0<a <2
DA

Corresponding to E, H can be obtained by {24) and yields {r < aj
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ikz + il -K) [z +/ a8 - p% ]

A

(e, x gple

N

+ 1

Upon substitution, it then follows from (64) and (67) that

o2 E (e - 1) ka? -1

ey en 1.
- ye +1 2 X 0 2i( Ve - cos@) 2

where I, and I, are given in (67). Now look at Dy noting that
e xey=(e, xeg)e. e, e e (e xegl
= (gzxgo) cos 0 - e, sin @ sin ¢ ,

where ) is taken as the reference axis for ¢. Then we find

i

s —2 ik{e - 13 a2 j 2ika s1'n2®/2 cos ©
A 4n /2
. T/2 _l
2ia( v - k coc? (0/2) cos B
+ e LY , s —‘
0
'H'/E s + : 1
e-1ka sin g sin © cos{d - ¢')
X
0
x[(gzng) cos @ - gzsinesinqb]
¥ §in © d od¢
_ 2 'Ik(EZ - 1_) 2 0 ]
= a (e, x e.) [1, - I,] + e, [I,+1,] sin¢
N 9 -~z ™ <0 1 2 <z 73 4

284



where ¢'  is the aximuth from € of n' . The following relation

2m

sin ¢ e~y cos (- ¢') dp = - 2mi sin ¢ J,fv)

is used to obtain

1
T S o2ikal (e)® - cos?@/2 1 cos O
0

X dy(ka sin ®sin 0) sin? © do

and
/2 2
L= s ~2ika sin® (/2 cos ©
a° 1 e
0

X .]](ka sin (D sin 0) sin o do

As before, I and 12 are given by (67). Finally, collecting results,

_ 2 c
—1(/_5-1)ka m% (I, - 1;) (e, x &)

+i(VE- 1) ka? sing' (I, + 1) e,

Comparing with expression (67) for Q, we see that the first term above is just D, multi-
plied by the factor cos ®; the second term, which is the new feature. changes the plane of
polarization. 13 and 14 can be evaluated by precisely the same saddle point methods as are
used for 11 and 12 . In the main diffraction peak, ka @2 << (but not necessarily
ka (D < < 1), the main contribution comes from 14 H
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/2
Iy =i j Jy(ka @ sin e)sin® © do = ijy(ka @)
0

This at least indicates how the polarization shifts in the main diffraction peaks. Outside the
main diffraction peak, we merely remark that I], 12, 13, 14 are all of the same order
of magnitude, and hence the polarization at large angles is not simply related to the polari-
zation of the incident wave. One final remark: for @9 =0, T, I3 and 14 vanish (as ex-
pected) and the integrals can be evaluated exactly. The result for forward scattering is exactly
that of (66); for backward scattering it is the negative of the previous result. In both cases,
the earlier results must be multiplied by the normalization factor 2/{ vV e + 1)
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ITI. SCATTERING MATRIX*

A. Definition

In the following we attempt to isolate the essential character of the scattering process.
That is, we seek those praperties which are independent of the detailed character of the scat-
tering object (except that it be lossless) and depend only on the 1inearity of Maxwell's equations
and on their asymptotic form. This asymptotic form is, of course,

T‘+°°.'V)(E=ikﬂ, VXE='1kE 3 (69}

since we assume efr) -+~ 1, p +e ,

We now decompose the asymptotic selutfen for r = nr, r -+, into incoming and outgoing
waves along n;  that is, we write

-ikr eikr
E(nr) = Fy(n) + Fpln) (70)
Since V - E= 0, if we neglect higher order terms,
Fpon=f-n=0; (71)
the fields are thus transverse., Also,
] -ikr eikr
Hior) = 3¢ VX E= - {n x Fy) +{nx F) =5 (72)

Next, we examine the requirements imposed by energy conservation. The mean power flow is

ten|

* * *
= £Re {gxg} = S5Re ‘-E]X(EXE])+52X(EX52)
8 8mr

* -5 *
+ E] x (n x 52) e 2ikr _ EZ x {n x E]) eZikr

A it

* For a parallel discussion in the acoustic case, see Gerjuoy and Saxon (1954).
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Using (71), we then find

— * *
§= —SsRe) n(F, « F, - F, « FI)
27 an? AL SR S
. o .
+ D(E] . F2 e ikr Ez E 921kr)}
= C * *
ol n(E, * Fp - Fy - By s

since we assume no sources except at infinity, conservation of energy requires
— 2 _
j S nr dnn = 0
Therefore, we have derived the important relation
F Fy F Fy -
dy LFo(n) « Fy(n) - Filn) « Fy(n)] = 0 , (73)

which simply states that as much energy flows out of the closed region as flows in.

We now assert that the F.I and fz must be linearly related as a consequence of the
linearity of Maxwell's equations. Because f1 and 52 are vectors, the Tinear connective
must be a tensor 5(n, n') which is called the scattering matrix, and which we define as follows:

Fplm) == [ dgp. stn, m') « Fylon) (72)

EZ(Q) is the amplitude of an outgoing wave proceeding along n and is thus given in terms of
the amplitudes f](-g') of the incoming waves proceeding along (-g']. In the definition, the
choice of signs is not essential, but has the virtue that S reduces to the unit matrix when
there is no scattering. Note that dotting {(74) with n,

(=1
.
{m
(V]
—
=
e
i
)
ey
(=
=2
=
.
[ %]
—
=
-
=
—
.
-
—
—
]
=
—
[l
(=)
-

because of (71). Since 51(-5') is arbitrary, this implies that n - S(n, n'} = 0.
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8. General Properties of the Scattering Matrix

The detailed structure of the scattering matrix depends, of course, on the precise details of
the scattering process, that is, on the particular behavior of §{r). However, there exists cer-
tain general characteristics of S which are quite independent of such details. These follow
from correspondingly general properties of Maxwell's equations -- namely, their symmetry properties
and the property that energy must be conserved. We first establish the consequences of energy con-
servation as expressed by (73). Substitution of the definition {74) of S then yields

f e, %Ij [ston) - myeny ] - [S )« 8 (]

X 80 &0 = Fyln) « Ey () } =0 . (75)

Now,
st 0 - £ ] - [5T 0 - e ]
AN (N D N CT R
where
[ Sto n) Jia = stos ) 31
Let

J @ $(n ')+ §"(0, 0") = QYn's 1)

~ -~ -~

Define Q L(g'. n"), the transverse part of g(g'. Q") by §=20Q l.+ (n*n') +Q+Q-~ {n"n")

- (n' n') - Q- {n" n") ; hence, n'- ) L =0 L *n"=0. Then if a and b are vectors

perpendicular to  n' and n" respectively, we see that

Replacing the dummy variable n  in the last term of {75) by n', we then have
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Joog L By« [y e - g
- ) - B | = 0

Since EI('E) is arbitrary (except that it must remain transverse -- which is the reason only
the transverse part of Q appears); this implies

Q (s m) =g (n') &(In - ") =¢ ) (n") s(In" - n"[), (76)

where € l_{g) is the part of the unit dyad transverse to n; that is,

e mM=e-nmn (77)

so that

nreptm=c )n=0. (78)

Therefore, if A is any vector perpendicular to n,

Now recall that n » §(g, E') = 0 and note therefore that the definition (74) of S s such
that only S | is actually defined., Consequently, we can assume without loss of generality

that also S - n' =0 . Using

it then follows that
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and hence that Q=0 I Therefore, (76) yields the important relation

faa, 50000 5" = R LA M (80)

Next, we derive a general recipracity relation upon noting the following symmetry property of
Maxwell's equations: If we take the complex conjugate of Maxwell's equations in the form (24), we
see that

* * ¥ *
VXE =-1dkH; VxH = tKek

Accordingly, if E and ﬂ are solutions to Maxwell's equations, so are g* and -ﬂ*;
stated otherwise, if E, H is a solution, a second solution can be constructed by the trans-
formation g* +E and ﬂ* + -H. Corresponding to the asymptotic solution (70), we thus con-
struct a new asymptotic so1ution.~name1y

-ikr
r

* ikr
+E](E) er *

E(nr) = F5(n)

By the definition (74) of S, we thus have
* *
gcgJ=-j @2, Sln, n') + Fp(-n')
Taking the complex conjugate and substituting (74) obtain
= * I . _n! ny =n"
f](g)-jdszn._[dﬂn..§(g,g) S(-n'y ") « Fy (-n")
which implies
I * |) S( 1 " = ’5' |||)
2§ m ') - SEnts o0ty = e 6(n - nt]) (81)
Multiplying by g(g. g"') and integrating with respect to dﬂn, we cbtain §(g", n"*}) for the

right side; using also (80}, we obtain on the left S{(-n"', -n"} . Thus, after the indices are re-
labeled, we arrive at the reciprocity theorem in its most general form:
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It states that we obtain essentially the same results when we have an incident wave along E'.
and observe along n, as when we have an incident wave along -n  and observe along -n’

{that is, interchange the source and the observer.}

The physical content of the proof is best understood upon remarking that the operation of
taking the complex conjugate for harmonic time dependence is equivalent to changing the sign of
the time t . Thus, the symmetry property invoked above is that Maxwell's equations are invar-
iant under time reversal provided H is replaced by -H. Since reversing the sign of t
reverses the direction of travel of the waves, this sign change in H is required to preserve
the correct sense of energy flow. The reciprocity relation is thus easily seen to be a direct con-
sequence of this invariance,for the incoming and outgoing waves are simply interchanged under time
reversal.

Next we show that S is unitary. This follows from {81) which, upon use of the reciprocity
relation, becomes

§ 4. "0 ) - st ) - g dln-n) . (83)

This completes the proof, since regarding S asa continuous super matrix, the conjugates of
{80) and (83} can be written symbolically as

A
(X7,
1]
Y
-

where the adjoint sign means to take the conjugate and to transpose all indices continuous and
discreet,

B. Relation Between the Scattering Matrix and the Scattering Amplitude

We now relate the scattering amplitude A(g, go), defined only for plane wave excitation,

to the general scattering matrix §. For a plane wave incident along Ng» the field at in-
finity in the direction n has the form
. ikr
_ ikrn, * n e! .
Elor) =ee™-0 =~ + Almng) = 5 (84)

e 1s a unit vector in the direction of polarization and is such that e - ng = 05 the first
term on the right is the plane incident, exciting wave; the second term is the scattered wave.
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From (21}

w m=L

eikrng ZU 2 Y5, (kr) Y)Y ()
B= m=0

- where we have used the addition theorem for Legendre functions (Morse and Feshbach, 1953a)
%
= _qn _um m*
Yolngs n) = n?;o /ot Yol Yy ()

If we substitute the asymptotic form for j_ (kr), we thus have
2

, @ L
ikrn, = n
3 - , + *
ST - EH Y Y Peostkr—2g ) iy ¥(n)
=0 m=0
o R
. j , -j A
= %:‘L 2‘ 'IR‘ )elkr‘ (_1)E+1 re ikr (])2 1
2=0 m=0

x Yg(ng) v’;‘*(g)

. ikr o 2
el ;_e:r ZZ M(ng) Y™ ()

24=0 m=0

o 2 *
TE— Y Y P Y
2=0 m=0

Because the i

Iy form a complete, orthonormal set, this becomes

ikrn, = n 2ri ikr
r+ e e 0 L o= 2 -8
k ~— 8lng - nf)
-ikr
e
+ - 5 IDO + DI)
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Substitution into (84} then yields

. -ikr
Eor) = 5 e s(lng v n)) £
r + o
. ik
+ Eg(g, ng) -g{—‘ e 6([90-21ﬂ e,,r . (85)

This is a special case of the general formulation in terms of incoming and outgoing waves with

2m1i

Filn)= 5= &(lng +n) e,
and

Faln) = Alws ng) - B sling - nD) e

From the definition (74} of the scattering matrix, we thus have

Moo mgd = B slng-nhe- Fostning) - e (86)

‘Several interesting scattering properties follow from this result. The first is obtained

by using the reciprocity relation. Let a plane, parallel wave be incident along =n, and con-

sider the scattering along Ny let the palarization of the incident wave be along g'
{e - n=20). Then, from (86)

Monge o) = Bhstln - ngh et - B sCng, -m) - ¢
= Frolln-ngh e - Flet - stng, -
211 ' 2mi

= ool -mgld et - et s slnang)

with the aid of the reciprocity relation. If we dot this result with e and (86) with
then subtract, we obtain

2D

g - Al-ng, -n) =e' - Aln, ng)
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that is, if the source and observer are interchanged, the scattering ampiitude along the incident
plane of polarization 1s the same in both cases. In the special case n=ngy (forward scat-
tering), this implies that for fixed plane of polarization

A(-ngs “Ng) = Alngs 1p)

In words, regardless of the shape of the scatterer, when the observer is on the axis of transmis-
sion, the scattered wave he sees is unchanged if he interchanges position with the source.

A second relation is the previously mentioned cross-section theorem, To get this use equation
{8D):

§ 0 3w ng) - T ) = e eling - mgl)

ar

By means of (86) express the S 1in terms of the corresponding A's, giving

ikA_(n, n.)
Idﬂn [~_52;~_~Q + 6”90'5“5—] .

T kAl (n, nf)
[:- __:%EF_;;_;ﬂl + ﬁ(lﬂé - n|) EIjJ

= e - e sljng - ngl) (87)

or

2
k * '
41';2 j E‘E(E’ Eo) . ﬁel(E! ﬂo) dﬂn

s [, i - - * ]
ik I:s Aelngs np) - &« g (s no)],

=

|

o
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where A, s the scattering amplitude arising from an incident wave whose plane of polarization
is given by e. This in 1iself is a rather unusual and occasionally useful relation. The

special case in which 36 =Ngs €= e' gives the famous cross-section theorem at once

(o] =

tot = K& In { &+ Alngs np) } ' (8)

To ‘relate this back to the discussion at the end of Section I in terms of interference be-
tween the incident and scattered waves, note that in this treatment the incident wave is repre-
sented by the & functions. Thus, the term on the left of (87), representing the total out-
going energy, contains the scattered emergy, the outgoing energy in the incident wave, and the
interference or product terms. The right side represents the incoming energy -- arising only from
the incident wave, of course. The purely incident wave terms cancel, as they must; and hence, we
are left with the scattering term plus the interference term. As asserted earlier, these give rise
to the cross-section theorem.

We note in passing that for scattering from a sphere, the forward scattering amplitude A
is in the direction of e. Hence, Oiot - ﬂ% times the imaginary part of the scalar amplitude
of 5 for forward scattering. For example, for the W.K.B, interior wave number approximatian,
if formulas (58) and (66) are substituted into (88), together with the normalization factor

2

7T . then
() +1

S rot = 21”_12 1 - sin2{n-1)a + 1 -cos 2 (n é 1% o '].
B (n - 1a 2(n - 1) «

This has reasonable features such as the approximately correct period, (n - NVo=m, and
in the geometrical optical limit, (n-1)a-+>w~, o tot = 2 al

Finally, we observe that Ee(g, 50) as given in (86) can be written in the form

2ni

Ro(n, ng) = 5= [S(IQO - nl) 5J—_§(g. Eo)] ‘e

using (79). Hence, we are led to the idea of a tensor scattering amplitude cﬁé {n, no) given by
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Aty = B | slin-ngh e | - st ng) (89)

Note that n - 6{ = &i- n, =9 and that evidently

Now suppose 2 and e, are two mutually perpendicular polarization directions, and 5]
and 52 are the corresponding amplitudes. We then assert that
A = eyt Ae, (90)

since this satisfies all of the requirements, namely

S ey F ey hyonc - :‘6‘20”’

Of course, for a general incident plane of polarization given by e

A ce=h =iy e)thhlete)

which is certainly correct sinece it is just the superposition principle. Accordingly, the final
explicit expression for S, obtained by substituting (90) into (B9}, is

sty ng) = £ 8l - 2 - gy (e * ey (o)

D. Multiple Scattering

We conclude with a few (unfortunately rather superficial) remarks about multiple scattering
using the scattering matrix as a mechanism for the discussion. Consider an arbitrary array of
scatterers 1, 2, 3, «.. § ... J ... N, but for the simplicity take them to be far enough apart
that the scattered field originating at any one of them is a pure radiation field when it reaches
any other. With respect to a convenient origin, let r =nr be the position vector to the point

of observation, R, be the position vector of the 1th scatterer, and 1y = nr, = Eilf'g1l

be the position of the observer with respect to the 1th scatterer.
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Consider a plane wave

<inc ~ e s ny = 0,

incident along the direction Ng ©On the array of scatterers. The total field at any point ex-
terior to the scatterers is rigorously expressible as

N
Er) = Ejpe D Ejlmyry)
=1 (92)
where  E; is the outgoing (scattered) field from the ith scatterer. For large enough
IS
ik | r - R
E.(n.r;) = f(n,) & > =1
b S B ~ived I r- 51 1
Further, for r 3=, | r-R; | = r- Bi *n, and ng+n , so that

R B R

The total scattered field at infinity is thus expressible as

R -ikn - R,
Esctd(ﬂr] = r Z f'i ({.1) e ~ -1
i=1

The total scattering amplitude is seen to be the sum of the individual scattering amplitudes modi-
fied by a phase factor appropriate to the choice of origin. The individual scattering amplitudes
are not to be confused with the plane wave, single scattering amplitudes treated earlier. The in-
dividual scattering amplitudes discussed in this section involve the total interaction of the scat-
terers with each other and with the incident field.
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To determine the f's we now decompose the total field in the neighborhood of the jth

scatterer into its incoming and outgoing parts with respect to that scatterer, since the fields
are related by the (assumed known) scattering matrix. Consider first the incident field. We have

Eqnclir) = ge‘kﬂo *I= geiQo " Rylkng » (1 - Ry)
= geikgo . Bjeik"ﬂo BT
or, using the plane wave expression (B85),
Einc © ge’lkﬂg . Bj -2-1% I:GOH ng * N 1) e_-:_';r
- &l ng - ns ) E@—]
J (93}

Next, consider the scattered wave E1("iri)' i # ] . Because of our assumption that the
scatterers are far apart,

ik|r - R | ik, + Ryl
Ei(giri) " fifni)_e.__._'_':l:._ = 51(91,)_@__;1__“.1_
r- Ryl [Py * Rygl
where
Ty = roRyo= omgrgs Rigo= Ry- Ry o= ongsRyy

Assuming now that Rij > » rj, that is, that we are in the neighborhood of the jth scatterer

(but still in its radiation field}, we have

.+ R.. = FUUEE I | PRPRRU T o
Irj + Ryl Rig ¥ Mig " 0473
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Therefore, for 1 # j.

so that from the familiar expansion for a plane wave we have,

R,
Loy e 2
T#d, & = filng) —RT"L*E'L [MI ns g5l )

=ikr. iky .
£ 1 s n__n__l)_‘?__l_j|
rs ~J  ~1] r.

Substitution of this result, along with (93), into the expression (92) for the total field
then yields for the field in the neighborhood of the jth scatterer,

E = A {eikng ° Rie 6(l ng+n; 1)

) j
VMR -ikr,
e id .
+ 3t pn) sl ng ey S
i=1 L 3
i7]

2ni ikn_+ R
+%fj(ﬂ') i [e o ~le 8l my -y D)

J
N ikR; ; ikr.
e "ij . e~ J
Y T filng) elngy -y I)] } 7
=t J
175
This completes the decompositien into incoming and outgoing waves with respect to the jth scat-

terer. From the definition (74) of the scattering matrix S, for the jth

j scatterer, we
must then have
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2mi ikn, « R
filng) - 5 e 0 S5e 8l ng -yl )

N iRy
> S filngg) gy -yl )
._ 1}
i=1
i#J

_ o 2mi ikn, *» R, .
- g [y 8y s e

N ikR, .

+ ze—ms(n,n)f(n) ;
- Rij boty I B By ~1J

i7j

—

or using (89) .

flng} = "’{j(ﬂj’ ng) e

1kR
y . {94)

N
' Z

7‘

L4 (n s Nas) e £.(n,.
ij Jt~ ~1-3]

— .

This is a set of N simultaneous equations (one for each value of j) for the N unknown
scattering ampTlitudes fj‘ The structure of these equations, physically, is quite clear: the
scattering ampiitude of each scattering center is just the sum of the amplitude for scattering the
incident plane wave, and the amplitudes for scattering the waves originating at all the other scat-
terers (these waves being treated as plane waves of amplitude e1'kR1.. (n )
Rij ~ijt oot

because of the assumption that the scatterers are far apart).

The solution of the multiple scattering equations is another matter, of course. We only re-
mark on the obvious Timit in which the scattering is small. In this case, the sum in (94) can
be regarded as a correction, and the zero order approximation to f is then the single scattering
result . -

UV PRI S IR
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Substituting this zero order approximation into the sumation, we obtain the first order result

N
M A . elkRyy
6w = iy, o E o
ifj
. (0)
ikR
= J{J-(gjsg et Z -—-lét(n.n j)
ki‘J

reAjnigeng) - e

This is just the sum of single and double scattering. Repeating the process, we then obtain the
iterative "solution”

1kR
fgp) (ng =U{ (n s Ng) s et Z -
~ '|J

1#3

X L:'(J(EJ! 91‘]) . fgp-” (E‘IJ)

It need hardly be added that this is not very useful in practice.
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FIGURES

Figure 1 Spherical coordinates and unit vectors.

Figure 2 Schematic representation of the angular dependence of the
differential scattering cross-section.

Figure 3 Comparison of the total scattering cross-section of the
Kirchhoff-Born approximation to the exact (Mie curve).
The exact curve is computed from eguation (42).

Figure & Symbols used for approximation 3.

Figure § Relationship of quantities appearing in Section II.E.4.

Figure 6 Relationship between old variables and new integration
variables.

Figure 7 Coordinates of the ith scatterer.

. . th .th
Figure 8 Relation of the 1 and j scatterers.
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INFLUENCE OF THE ATMOSPHERE ON SPECTRAL RADIANCE AND
CONTRASTS OF NATURAL FORMATIONS MEASURED FROM SPACE

K. Ya. Kondratyev, A. A. Buznikov, 0. B. Vasilyev, and 0. I. Smokty
Leningrad University
Leningrad, U.5.5.R.

Professor Z. Sekera's outstanding contribution to the theory of multiple scattering in the atmos-
phere created a basis for the consideration of varicus applications of this theory. One significant
application is connected with the incorporation of atmospheric effects in solving various problems of

remote sensing from space.

While studying the surfaces of such planets as the Earth or Mars by means of spectrophotometric in-
struments installed on board the space vehicle, it is necessary to take into account the transforming
influence of the whole atmospheric thickness. Therefore, the problem on the correct reduction of the
corresponding data of spectral measurements to the level of the underiying surface of the planet is
urgent {1,2). A similar problem occurs in the interpretation of aerial photography data or in the
recording of natural formations spectra from  high-altitude aircrafts, In such cases, it is con-
venient to introduce the atmospheric transfer function of the surface-atmosphere system. The knowledge
of this function permits, from spectral radiance of natural formations and contrasts of spectral
radiance measured from a space vehicle or aircraft, the derivation of the corresponding characteristics
at the lower boundary of the atmosphere.

In the reduction of space spectraphotometric data to the Tevel of the underlying surface, two types
of problems have to be solved.On the one hand, one must determine the transfer function and the pos-
sible 1imits of its variability depending on a) the optical characteristics of the atmosphere and the
surface; b) the direction of viewing; and ¢) the geometry of the illumination of the upper atmospheric
boyndary by solar radiation. On the other hand, in the interest of the solution of inverse problems of
atmospheric space optics, it is important to determine such characteristics as radiance of the atmos-
pheric haze, Ih,k’ and the atmospheric transparency, T,, over the geographical regions investigated.

The possibility of determining the atmospheric transfer functions of the surface-atmosphere system
based upon the experiment was first realized in papers (2-5}, a theoretical solution of the corresponding
problems was made in (6-10}. However, a complete studq of the prablem, i.e., a detailed comparison
between the experimental and theoretical values of the transfer functions has not been made. The ob-
jective of the present paper is to discuss the technique for determining the transfer functions and their
components from the resuTts of a combined sub-satellite experiment and to compare in detail the cor-
responding theoretical and experimental data.

308



1. FORMULATION OF THE PRGBLEM

We shall regard the planetary atmosphere as restricted from below by the surface that reflects the
solar radiation incident on it. The processes of scatiering and absorption of radiation in the atmos-
phere will be allowed for. Refraction and polarization of radiation scattered by the atmosphere and
reflected from the surface will be neglected.

Let the radiance of the surface objects IOb A and of the background Ib,h be measured from
space in various spectral regions Ax where X is the wavelength. We must estimate the influence
. : : 0 o :
of the whole atmospheric thickness on radiance 1 ob and I b, where the superscript o refers
to the surface level. Let us definethe spectral transfer functions of the surface-atmosphere system
for radiance of the background Hb,l and the object Huh,l by the following relations {for simplicity,
the subscript A will be omitted):

[ .
SN (M

I

n = -
Iob = Top * Lop (2)

One can represent spectral radiance of the background Ibl and of the object IDb in the form:

= 190 .
Ib = Ib T+ Ih,b {3)

- ° L
Tob = Tob = T % Iy,op (4)
where Ih,ob and Ih,b are spectral radiances of the atmospheric haze over the object and the back-
ground, T 1is the spectral transmission factor (atmospheric transparency) in the fixed direction whose

values are assumed equal over the object and the background.

Using (3) - (4), we shall represent relations {1) - (2) in the form:

=57 5 Mg =5 (5)
b = BT ob = P T
where
Iﬁ Iﬁb
RIS+ SIS S s 70 (6)

The transfer functions Hb and Hob permit not only the reduction of satellite radiation data to the
level of the surface but also the determination of the haze effect, which is important for the solution
of some inverse problems of atmospheric optics. Substituting (1) - (2) into (3) - {4) and allowing for
(5) - (6), we find:

- T) (7)



P L (1-Pye1,(1-T, +T) - 18)
h ob ob ob ob

]

Relations similar to (1} - (8) may be written for the spectral radiance coefficients rob and Pb
defined as the ratio of the radiation reflected from the object and the background to the radiation
incident on them.

According to the determination of the spectral contrast {c > 0) between radiance of the background
and that of the object, we have

R (9)

if IGb 3_Ib IF I Iob’ the modification of (8} is evident.
Substituting {3) and {4) into (9), we find

e =« (109,

where Ko is the spectral contrast between radiance of the object and that of the background at
the level of the surface,

Kg=leb=1% (11).
1%b

The following expression is valid far the functionj9~, (6)

K

g-4 +Gob (1 -"'Jch ) (12},
where Kp ig the spectral contrast of the haze radiance over the object and the background
ob b
I, -1
= _h h
Ky® — b (13},
Th

In the case of = 0, from (12) it follows that 55' = Pob'
Wwe shall call the function 55 the spectral transfer function for the contrasts of radiance of
the object and the background when Iob > Ib' A similar determination may be obtained for the case

L >1,.
b = “ab

It is to be emphasized that the reduction of satellite spectrophotometric data to the level of
the underlying surface cannat be strictly performed in the framework of a satellite experiment

{without using the data of aircraft and surface measurements). This may be explained by the fact
that for a correct determination of the transfer functions 1 and 55 from a satellite experiment
it is necessary to solve a number of inverse problems of atmospheric optics: from the radiance of the
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medium measured from space it i5 necessary, in the first place, to retrieve the optical character-
jstics of the medium at different levels of the atmosphere up to the surface of the planet and only
then can one perform the reduction of spectrophotometric data for a specific type of surface. As
is known, a strict formulation and the methads for the sclution of inverse problems of atmospheric
space optics (in the presence of multiple scattering in the surface-atmosphere system} has not yet
been developed. Therefore, it is timely to develop different semi-empirical techniques which would
permit a sufficiently accurate consideration of the influence of atmospheric effecis on spectral
radiance of natural formations during space survey. One such technique based upon the parameteri-
zation of the expressions for Ib and Iob and the usage of the data on radiance of natural
formations measured from several points of the spacecraft orbit is proposed in (9} . The deter-
mination of transfer functions and of their components is much easier in the case of combined sub-
satellite experiments, where the transfer functions 1 and \SI may be found from a simple comparison
of radiance measured from the spacecraft and the aircraft.

The secand possibility of determining transfer functions consists in the preliminary deter-
mination of their components, viz., of the haze radiance and the atmospheric transparency from
relations (3)-(4) considered as a system of linear algebraic equations. Thereupon, it is necessary
that the radiance of the object and the background at the level of the underlying surface should
be known fram the aircraft (surface) measurements synchronized with satellite measurements in time
and space. In a general case, the system of algebraic equations (3)-(4) is indefinite since
Ihb # IhOb. Consequently, the solution of the given system is possible only if the values for Ih
and Igb are coincident or close to each other. The technique of "smoothing”" the values for
haze radiance over the background Ihb and the object IhOb is given in { 3,6,9 ).

b

2. THEORETICAL DETERMINATION OF TRANSFER FUNCTIONS.

A theoretical determination of the transfer function for spectral radiance @ and the contrasts
55 involves the main problems of the transfer theory of nonpolarized solar radiation: the consider-
ation of multiple scattering at a strong elongation of the aerosol scattering function and the re-
flection from the nonuniform underlying surface. A detailed investigation of these problems is made
in ( 11-12 ).

The application of a theory of anisotropic light scattering to the detevmination of the trans-
fer functions 1 and & is given in (6, 9, 13) .

Considering the formulation of the problem on the theoretical determinatian of the transfer
function for the surface-atmosphere system radiance is known, we shall present the main formulas and

relations which may be interesting for a subsequent analysis and comparison with the experimental
data.

2.1 The case of the uniform infinitely extensive underlying surface.

; LT - - . gb o p Ob_ . - =
In this case we have: Ib Iob Hn, E, §, 10), =1 Ih(n, E.d, 10), Hb = Hgb =
q{n, £, ¢, 10). The angular coordinates n, £, ¢ and the optical thickness 13 are eter-

mined according to (6, 7). The expression for the transfer function has a form:
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n(n, €, [ 'ln) = (14)|

Au{ep )
[T - Aclp)T pln, &, ¢5 ) *+ Auln, 1 ule, @)

where A 1is the albedo of the underlying surface, the functions w (£, Ty')s el ns &, ¢ Ty)
and C (T, y are determined in (11} .

" As shown in (9) , the tabulation of the functions .u ( E,T;) and v (n, T, ) associ-
ated with the reflection and transmission coefficients for the plane layer at 1t = T is very
important for the calculation of the transfer function. According to (12) for an arbitrary
scattering function, the functions p and v are simp1yrexpressed through ¢1m and ?}m , 1.8,
Ambartsumyan's functions

°(n. 1)
W Te) = ¥ (T 1 5 wtna gy =1 A0 (15).

The tabulation of these functions which depend only on the optical atmospheric model permits the
determination of the transfer functions of the surface-atmosphere system for any fixed albedo of
the reflecting bottom.

2.2 The case of the infinitely extensive underlying surface formed of two uniform semiplanes with
the albedo Ai (i = 1.2).

First, let us consider spectrophotometric radiance measurements of the nonuniform underlying
surface formed of two semiplanes with different albedo A1 (1=1,2) far from the boundary of
two types of the underlying surface. The subscripts i=1 and i=2 indicate the position of the
uniform semiplane relative to the boundary {on its right or left). It is natural to suppose the
optical properties of the atmosphere to be unchangeable in the horizontal direction.

In this case the expressions for radiance of the atmospheric haze [ ; radiance of the
underlying surface I0 i and the transfer functions are n; = 10,1 obtained by substituting
the albedo A1 for the albedo of the underlying surface A. Ii

For the transfer function of the contrasts of radiance pf = Ei_ where

Xoi
I, -1 1 -
L Tk NP LW B L (16)
i 1, = G,
i 0,i

we have the expression

- Stp(n, gt %) (17}.
Pi " 10,1 g
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The value of the subscript 1 =1,2 varies in (16)-{17) depending on the relations I > I2
or I2 > 11. The transfer function Hi and Pi are related in a simple way

(18}.

In the case of spectrophotometric measurements near the boundary between two types of the under-
1ying surface the radiance field is formed under the influence of the albedo of both semiplanes,
whereas, far from the boundary the radiance field depends either on A] or on Az (see, e.g.,
(14, 15)).

Let us consider that in the vicinity of the boundary {on both sides) radiance of the atmospheric
haze is approximately equal and determined by the reflection from the underlying surface with the
mean atbeda A = % (A} + A)):

Th = Ih i = SE{D(T]! £y ¢, Tul * KU(E,TH) Tr(n: Tn)] ("9)
’ 1 - Ee{ "0

Radiance of the underlying surfaces I0 ; may be presented as a sum of the mean radiance determined

by the albedo & and the addition due to the deviation of the albedo from the mean value A

T -EET s« MRy ) sp = Anleerg )8 (20)
0.1 1-8(o) 1-AC A 1-7%
As shown in (9), the transfer functions T and P have the form:
n.] = A'i U(E: TO)
t.i = EC(I-O)] p(n, &, ¢sTU) + ]J(EsTU '[K 'Tq.'(rla-cﬂ) + A'I * T(naTO) (21),
Fym (22).
M, =T

1

3. EXPERIMENTAL DETERMINATION OF TRANSFER FUNCTIONS.

Buring the flights of the spacecraft "Soyuz-7", "Soyuz-9" and the first orbital station
"Salyut" the synchronous subsatellite geophysical experiments have been performed. The technique
of these experiments was based on spatial and temporal synchronization of the measurements of
spectral radiance of the individual parts of the earth's surface from the spacecraft and afrcraft.
Let us consider, briefly, the methodical peculiarities of the processing of the results of spec-
trophotometric measurements necessary for the determination of the surface-atmosphere system trans-
fer functions from experiment. When the Earth is viewed from space (h ~ 250 km) in nadir the image
of the earth's surface of the total area of 8 x 0.45 km2 is projected onto the entrance slit of
the spectrograph RS3-2 (2). Spectral radiance of the individual parts of the earth's surface is
independently fixed on the film of the spectrograph. Thereupon, the spectra of two or more types
of the underlying surface can be obtained simultaneously if the spectrophotometric measurements
are conducted over their boundary.
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The processing of the negatives on the standard microphotometer permitted us to obtain,
from one frame, 18-19 reflection spectra of the individual parts of the underlying surface situated
in the immediate proximity to each other. Their minimum area (0.40 x 0.45 kmz) is determined
by the product of the limiting reselution of the spectrograph RSS5-2 aver the height of the slit
{ 7 2') by the sYitwidth ( ™ 3'). Thus the spectrograph used allowed a simultaneous determination
of spectral radiance of two and more parts of the underlying surface with the different values of
albedo even from one frame. A series of frames gave the possibility of obtaining the radiance
values for the underlying surfaces situated at any distance from the boundary.

As has been mentioned, a direct comparison between the results of synchronous spectrophoto-
metric measurements of the same parts of the underlying surface from space and the low-altitude
aircraft permitted the determination of the surface-atmosphere system transfer function immedi-
ately from formulas {1)-(2). Yet, it is rather difficult to ensure synchronous satellite and air-
craft measurements of the same part of the underlying surface. A complete synchronization of
measurements was achieved only once during the "Soyuz-7" flight over the Caspian coast (cape Begdash,
Dctober 13, 1969,13 hr, 27 min., Moscow time). However, a large number of spectra obtained permitted
the performance of "quasisynchronized" experiments. In this case the transfer function 1 was
determined by comparing satellite data with the corresponding spectrophotometric characteristics of
similar parts of the underlying surface measured from the aircraft or at the earth's surface at
different times,

It is natural that the data corresponding ta the meteorological conditions and sun elevations of
a satellite experiment have been selected. Fig. la presents the results of synchronous spectro-
photometric measurements of the same part of the desert on the cape Begdash from the spacecraft
“Soyuz-7" (the height of the orbit is 220 km} and the aircraft LI-2 {the height of the aircraft is
2.7 km). The curves of spectral radiance show the influence of the atmospheric haze. As has been
expected, the strongest effect of the atmospheric haze was observed in the shortwave region { A =
450-570nm): curve 1 obtained from space is above curve 2 derived from the airborne measurements.

In the wavelength range of A = 570-610 nm the values of spectral radiance measured from space and

at the earth's surface become equal. At X = 620-680 nm the values of spectral radiance measured
from the satellite are somewhat smaller compared to the aircraft measurements, which may be ex-
plained by absorption of reflected radiation by the atmospheric thickness. The values of the spectral
transfer function calculated from these data are given in Fig. 1b.

Spectrophotometric measurements of natural formations from the "Soyuz-9" spacecraft were made on
June 15 and 17, 1970 over the path - the North Caucasus-Caspian sea - Ustirt plateau. Since a com-
plete temporal synchronization of the "Soyuz-9" and aircraft measurements was not achieved, in order
to determine the transfer function I, the quasisynchronization technique was used. "Space"
spectra were compared with the spectra of the identified surfaces obtained from the aircraft and
at the earth's surface,

Fig. 2 presents the experimental values of the transfer functiens 0, for sand and water sur-
faces and continuous cloudiness obtained from the direct comparison of the results of spectral
measurements. The measurements were taken at zenith distance of the sun B, = 33-45°. The dif-
ference between the transfer functions for a sand surface from the "Soyuz-7" (curve 1) and "Soyuz-3"
(curve 3) data is due to the fact that curve 1 takes into account the influence of the atmospheric
Jayer from 700 mb and higher, whereas, curve 3 corresponds to the transfer functions for the entire
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atmospheric thickness.

To find the componants of the transfer function, use was made of the results of spectro-
photametric satellite and airborne measurements of the underlying surface radiance near the boundary
of two areas with different albedo Ai(i = % 2). In the subsequent solution of the eguation system
{3)-(4) radiance of the haze was considered equal near the boundary of two types of the underlying
surface (Ih,i = Th).

Of the "Soyuz-7" and aircraft spectra (UstUrt plateau, October 13, 1969) the spectra of two
types of natural formations similar by their outer features on the RSS-Z photo have been selected:
thick white cloudiness and the shaded dark areas of the desert (about 30 spectra). From these
spectra the absolute values of spectral radiance in the wavelength range of 430-690 nm have been
determined and then averaged for each type of the underlying surface. The values for I'ob’ I
I"Ob and I"b obtained correspond to the values of spectral radiance of the shaded parts of the
desert and cioudiness measured from the spacecraft and aircraft (a height of the aircraft is 2700 m).
The results of the solution of the (3}-(4) system are given in Fig., 3 a. Fig. 3 b presents the
values of spectral transparency of the atmosphere and the mean coefficient of spectral radiance of
haze abtained in a similar way using the spectral radiance coefficients measured from "Soyuz-9" and
at the earth's surface near the boundary between the sand and the sea. From the resuits of space
and aircraft measurements of spectral radiance, spectral contrasts of radiance of some natural for-
mations have been calculated {1, 3). Fig. 4 presents spectral variation of transfer functions
for the contrasts of radiance of the underlying surfaces: "desert-water surface" and desert-
cloudiness”. These transfer functions were constructed from the measurements taken on "Soyuz-9",
the Tow-altitude aircraft and at the earth's surface.

bl

4. COMPARISON OF THE MEASURED AND THEORETICALLY
CALCULATED VALUES OF THE SPECTRAL TRANSFER FUNCTION,

For a detailed comparison between the measured and theoretically calculated values for the
transfer functions Hl and 55 It it 1s necessary, first of all, to classify the experimental data
according to the type of the nonuniformity of the underlying surface whose areas were projected on
the entrance slit of the spectrograph during the measurements from space. Fig. 5 presents a schema-
tic of the spectrograph RSS-2 frame and the calssification of the photos of the spectra of natural
formations according to the type of the nonuniformity of the underlying surface measured, Let us
compare theoretical and experimental data of the cases shown in Fig. 5.

Fig. 2 presents the experimental and theoretical curves of the transfer function HA for three
types of the uniform underlying surfaces: cloudiness, the desert and a water surface. The experi-
mental values have been obtained from the results of the combined satellite and aircraft (surface)
experiments. The corresponding theoretical values have been calculated by formula {14) according
to the technique given in (13).

For the case of a large albedo of the underlying surface (cioudiness, A = 0.78, curves 2
and 6) a rather good coincidence between the theoretical and experimental curves is observed.
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The experimental values of Iy for the desert surface according to the "Soyuz-7" data
{curve 1) are slightly above the theoretical values (curve 5, A = 0.24). Similar curves ob-
tained during the "Soyuz-9" flight coincide with the I, -values calculated for a sand surface
(curve 3). This behaviour of the experimental curves may be explained by the conditions under
which the combined aircraft and satellite experiments were performed. As has been mentioned above,
during the "Soyuz-7" flight the measurements of radiance of the underlying surfaces in the sub-
satellite region were conducted from the aircraft LI-2 at a height of 2700 m. Therefore the ex-
perimental Hx-values {curve 1) are somewhat overestimated as compared to the case when instead
of the aircraft data the surface measurements were used (curve 3). A good coincidence between the
experimental and theoretical curves for the overcast case may be explained by a large value for
the cloud albedo, i.e., by a large contribution of the radiation reflected from the underlying
surface and by the fact that during the combined experiment the cloud-top height {2200 m) was close
to the height of the aircraft. The calculated values (curve 6) for a water surface are situated
above the experimental values (curve 4). A comparison between the transfer functions in this case
is difficult because of a small albedo value of the water surface and the prevailing influence of
radiation scattered by the atmosphere.

Now, let us compare the experimental and theoretical values of transfer functions for the most
interesting case of the nonuniform underlying surface formed by two uniform semiplanes with different
albedog A] and Az (Fig. 5 b). As has been mentioned in section 2, this case may be reduced to
the above example (Fig. 5 a) if the values of spectral radiance are determined far from the boundary
of two underlying surfaces (at a distance exceeding the scale height). However, a comparison be-
tween the reflection spectra of natural formations cbtained over the boundary of two underlying
surfaces and the corresponding theoretical calculation is more difficult. This may be due to the
complexity of the combined experiment over the boundary and an approximate character of expressions
{19)-(22). '

The transfer function near the boundary of two underlying surfaces, as in the case of the uni-
form underlying surface, may be determined from a direct comparison between the aircraft and satel-
lite measurements. Yet, here arises an additional difficulty which is very important. It lies in
the fact that in the spectrophotometric measurements of natural formations from the aircraft and
space, the linear dimensions of the areas projected on the entrance slit of the spectrograph differ
from each other by several orders. Due to the essential nonuniformity of the real underlying sur-
faces, a larger area of the underlying surface on the "space" frame causes a certain inadequacy with
the corresponding "aircraft" frame.

Fig. 6 presents a comparison between the theoretical and the experimental values of the trans-
fer functions I, near the boundary of two underlying surfaces: cloudiness-sand. The experimental
curves were obtained during the "Soyuz-9" and LI-2 flights, the theoretical Hk-values were cal-
culated by formula (21). 1In the case of the sand-sea boundary a good coincidence between the ex-
perimental {curve 1) and theoretical (curve 2} data is observed. This shows the validity of the
assumption stating that the values for haze radiance near the boundary of twe underlying surfaces are
equal. The approximate formula {21) is based on this assumption. A comparison between the theoreti-
cal and experimental Hl-va1ues for other cases of the nonuniform underlying surfaces is difficult
since reliable experimental data is lacking.
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Comparing the calculated curves for the cases.of the uniform and nonuniform underlying surfaces
it is possible to draw an interesting conclusion on the degree of the influence of the boundary be-
tween two underlying surfaces on the value for the transfer functions. For example, for the sand
desert (A = 0.24) situated near the water surface {A = 0.06) the nl-va1ues increase as compared to
the case of the uniform sand surface (A = 0.24), whereas, for the sand surface situated near the
edge of cloudiness they remain nearly the same as in the case of the uniform sand surface. This
shows a different influence of the "backlighting" from the underlying surfaces with different albedo
on the transformation of radiance of natural formations by the atmospheric thickness.

Along with the above comparison of the theoretical and experimental values of the transfer
function HA s 1t is of interest to investigate the influence of the nonuniformity of the underlying
surface {1.e. as the boundary of two underlying surfaces is approached). Fig. 7 presents a number
of sequential photometric profiles of spectral radiance of the water surface and the shore of the
lake in south-western Afganistan according to the "Sgyuz-9" data. In the right-hand side of the
figure one can see the position of the slit of the spectrograph relative to the underlying surfaces
measured. The horizontal Tines show the position of the photometric profiles relative to the boun-
dary of two underlying surfaces. From the data of Fig. 7 one can see the transformation of spectral
radiance of the nonuniform underlying surface in the transitional region-"the water surface-the shore":
as the shoreline 1s approached, spectral radiance of the water surface increases, whereas, radiance
of the land decreases tending to the mean value at the boundary (curve 10). The top (2) and the
bottom (18) curves are the spectra of the uniform underlying surfaces. The corresponding calculated
data are shown in the form of curves 19, 20, 21, 22.

To illustrate the influence of the boundary between two underlying surfaces on radiance of the
uniform underlying surfaces with the different albedo near and far from the boundary Fig, 8 a, b
gives the theoretically calculated values of spectral radiance of the haze, sand and cloudiness
when observed from space. The calculation of spectral radiance near and far from the boundary was
made using the formulas of paper (9), The intermediate cases were calculated by the following approx-
imate formulas

Aulg, 1) - Teln, 1g)

Ih,i = Sg[ 1 - n‘c + p(rly gl ¢, TU)] (23),
Au(e, tq) uin, gl
I, = se[- — +o(n, £, ¢, 1)1 (24).

A compariscn between the theoretical and experimental data for the case shawn in Fig. 5 has not
been made because the cbject measured was an extensive bank of small cumulus clouds and the corres-
ponding theoretical expressions for the transfer functions were obtained only for the case of a single
small abject on the earth's surface (9).

The influence of the atmosphere on the natural formation spectra obtained from space may be es-
timated accurately if radiance of the atmospheric haze is calculated by formulas (7)-(8) in which the
values for transfer functions are taken from a direct comparison between satellite and aircraft
(surface} experiments (Fig. 1, 2). But in this case according to {7)-(8), the independent deter-
mination of the atmospheric transparency over the areas of the underlying surface measured is needed.
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Since the direct measurement of the atmospheric transparency during the combined subsatellite 1969-
1971 experiments has not been made, the only possibility of the experimental estimation of the haze
radiance and of the atmospheric transparency is in the solution of the equation system (3)-(4).

Fig. 9 presents a comparison between the theoretical and experimental values of Ih,k and
TA aver the boundary of two surfaces: sand-sea. The data of synchronous aircraft and satellite
measurements conducted during the "Soyuz-9" flight (2) were used as the experimenta) values. Theore-
tical values were calculated by formula (19) under the assumption of the equality of haze radiance
near the boundary of two uniform underlying surfaces. A comparison between the experimental and
calculated data shows a good coincidence in the wavelength range considered.

The efficiency of using the equation system (3)-(4) for the determination of the components of
the transfer function may be further checked by comparing the solution of this system with the re-
sults of the experimental determination of the atmospheric transparency Ty and haze radiance
Ih,A by the formulas (7)-{8).

Now Tet us compare the experimental and theoretical curves of the transfer functions for the
contrasts of spectral radiance of two uniform semiplanes with different aibeds.

Besides the experimental curves, Fig. 4 shows the theoretical values Ej j calculated by for-
mulas {21)-{22) under the assumption of Kh = 0. According to the experimental and thearetical data,
at the small albedo values for contrasting surfaces {e.g. sand-sea) a considerable worsening of the
transfer of contirasts to the top of the atmosphere is observed as compared to the case of large al-
bedo {cloudiness-sand). However, with increasing wavelength this difference is considerably smoothed
due to the decrease in the capability of the atmosphere to scatter.

For the cloudiness-sand system the theoretical experimenta1 f}l-values coincide throughout
the entire spectral range considered, which may be explained by rather large values of the albedo
of sand and cloudiness. A large discrepancy is observed for the sand-water system in the interval
of X = 450-550 nm where the attenuation influence of the atmospheric haze smoothing the contrasts
with small albedo is the strongest. With increasing wavelength (550 nm) the consistency be-
tween the experimental and theoretical curves improves considerably.

5. CONCLUSION

Spectrophotometric measurements of natural formations first performed from the spacecraft
"Soyuz-7" and "Soyuz-9" and a subsequent analysis of the data from combined aircraft-satellite experi-
ments permitted the construction of the technique for the reduction of “space" spectra to the earth's
surface with the help of the transfer functijons M, and E]A .‘\Ihg resuits obtained gave the pos-
sibility to estimate the variations 1n the transfer functions in the visible spectral region de-
pending on the albedo of the underlying surface both for the unifarm surfaces and near the boundary
between two uniform underlying surfaces.

Experimental values of the transfer functions and of their components correspond to a certafn
optical state of the atmosphere and the underlying surface. However, they give a good notion on the
degree of the atmospheric effect on spectral radiance of natural formations and their contrasts
during spectrophotometric measurements from space.
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A comparison with the theoretical data obtained for the mean optical models of the atmosphere
and with the Lambert underiying surface shows a good qualitative and, 1n some cases. quantitative
agreement between theory and experiment.

A general task of theory and experiment is the development of the generalized mean transfer
functions which would permit a reliable reduction of satellite spectral data to the level of the
underlying surface.

For the practical solution of this perspective problem it is necessary to take into account an
important influence of the following main factors:

1. Inaccuracy of the photographic method of recording spectral radiance of natural
formations.

2. The inadequacy of experimental data depending on the degree of the nonsynchron-
ization of the afrcraft and satellite measurements as well as various scales
of smoothing.

3. Inadequacy between the optical models of the atmosphere and the underlying
surface {scattering function, the probability of the quantum survival, the
optical thickness, the reflection coefficient or the albedo) used in theo-
retical calculations of Ty, 9 and the real optical state of the at-
mosphere and underlying surface in the subsatellite region during the com-
bined subsatellite experiment.

4. The error of theoreticé] modeling of the field of the multiple scattered ra-
diation in the presence of the atmosphere of aerosol particles and aniso-
tropic reflection from the nenuniform underlying surface.

Each of the problems mentioned is interesting in itself and requires special investigation.

Though these problems have not been considered in detail in the present paper, the experimental
technique and the processing of the results of measurements (17) called for the reduction of the
infiuence of the first two factors to minimum. As to the analysis of the errors of theoretical
interpretation of the experimental data, it can be performed for the real models of the atmosphere
and the underlying surface, most efficiently, using the Monte Carlo method or the numerical sclution
of the initial transfer equation.
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FIGURE CAPTIONS

Fig. 1. a) Spectral radiance of the underiying surface {cape Begdash, the Caspian coast):
1. From the spacecraft "Soyuz-7" (220 km).
2. From the aftrcraft (2.7 km).
b) The transfer function of the surface-atmosphere system (cape Begdash).

Fig. 2. A comparison between the experimental and theoretical spectral transfer functions for
the case of the uniform underlying surfaces (solar zemnith distance eo =33 - 450).
I. "Soyuz-7", the aircraft (2.7 km):

1. The sand desert.
2. Continuous cloudiness.
II. "Soyuz-9", surface measurements:
3. The sand desert.
4, A water surface.
I11. The calculated data (Elterman's model {16), the atmospheric scattering function
x{3) 1s taken from (11), 9, = 50°).
5. 3Sand, A = 0.24.
6. Cloudiness, A = 0.78.
7. The sea, A = 0. 06.

Fig. 3. a) Dependence of the haze radiance and of the atmospheric transparency on the wavelength:
1-T, ,2- Ih 3
b) Dependence of the atmospheric transparency and of the mean value of the spectral radiance

coefficients for the atmospheric haze near the sand-sea boundary: 1 - TA y £ = Ih T
Fig. 4. Transfer functions for the contrasts of radiance of the underlying surfaces.

i. The desert-water surface, according to the “Soyuz-9* data.

2. Cloudiness-desert, according to the "Soyuz-7" data.

3. Cloudiness-desert, according to the "Soyuz-9" data

4., Sand-sea, calculated data, A1 = 0,24, A2 = 0.06; 60 = 40°,

5. Sand-cloudiness, calculated data, A] = 0.78, A2 = 0.24, 00 = 40°,
Fig. 5. Schematic of the frame of the RS$5-2 spectrograph, and the classification of the photos of

spectra of natural formations according to the degree of the nonuniformity of the under-
lying surfaces projected on the s1it of the spectrograph during the measurement from space:
1. photo,
2. The position of the spectrographic slit,
3. The clock,
4. The spectrum:

a) the uniform underlying surface with the albedo Ay

b} two uniform surfaces with the albedo A] and A2 near the boundary;

¢) the areas of uniform surfaces with the albedo A1 against the background of the ex-

tensive uniform surface with the albedo A2.
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Fig. 6

Fig. 7.

A comparison between the experimental and theoretical values of the atmospheric trans-
fer functions near the boundary of two underlying surfaces. Sand near the water surface:

1.
2.

The experiment: "Soyuz-9", the aircraft (2.7 km).

The calculated data: A.l =0.24, A2 = 0.06. Sand near the edge of continuous
cloudiness:

The calculated data: A, = 0.24, A, = 0.78. The uniform sand surface:

]
The calcutated data, A = 0.24.

Sea near the sand surface:

The caleulated data, A1 = 0.06, A2
The uniform water surface:

The calculated data, A = 0.06.

The data were calculated according to Elterman's model (16). x{j) according to
(1). e, = 30°

0.24.

Spectral radiance of the underlying surface near the boundary of two underiying surfaces
("Soyuz-9", the shore of the lake in south-western Afganistan, @, = 33.8%):

a)l

b)

the position of the spiit projection and of the photometric profiles on the
underlying surface measured;

spectral radiance: 2 is the sand surfaces; 18 is a water surface; 20 is a
water surface, the calculation was made at BD =_30°; 21 is the sand near the
water surface, the calculation was made at &, = 30%; 22 is the sand far from
the water surface, the calculation was made at eo = 30°.

Fig. 8. a) Spectral radiance (relative to the solar radiation flux) of cloudiness and of the sand
surface near the boundary {calculation was made at @ = 40°, y(j) according to (11)
Elterman's model {16}:

1
2
3.
4.
5
€

Cloudiness far from the boundary.

Cloudiness not far from the boundary {the intermediate case).
Cloudiness near the boundary.

Sand near the boundary.

Sand not far from the boundary {the intermediate case).

Sand far from the boundary.

Spectral radiance of the atmopsheric haze over the boundary and far from it (the
calculation was made at 8, = 40°, x(j) according to (11), Elterman's model (16}:

1.

2
3.
4,
5

gver the boundary, sand-cloudiness;

over the sand not far from the boundary (the intermediate case);
over cloudiness not far from the boundary (the intermediate case);
over the sand far from the boundary;

over cloudiness far from the boundary.
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Fig. 9. Comparison between the experimental and theoretical values for the haze radiance

I and the atmospheric transparency Ty

haA

1. 1 over the sand-sea boundary according to the "Soyuz-9" data,

haA

2. Ih 5 over the sand-sea boundary, a theoretical calculation,

3. T, according to the "Soyuz-9" data.

A

4. T, calculated theoretically (GD = 40%, x(j) according to (11), Etterman's
model {(16).
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The theoretical aspects of the transfer of @adiation through an atmosphere have heen discussed
by Professors Chandrasekhar and Yamamoto. The thrust of my talk will be to describe an experiment
that uses the results of these sophisticated studies to obtain information on particles in the at-
mosphere. To be specific, I shall describe an experiment with a ground based palarimeter {constructed
and donated for our research use by TRW Systems, Redondo Beach), and explain the theory that is
necessary to infer the optical properties of particles in the atmosphere, from measurements of the
radiation field. It is my hope that the successful conclusion of this experiment will encourage
the widespread use of the polarimeter as a remote probe of atmospheric particulates.

Professor Sekera's pioneering theoretical and experimental work contributed significantly to
the development and use of the polarimeter as an experimental tool. The last project in which he
participated was the NASA - AAFE experiment in which a polarimeter was flown in an aircraft to
infer the particulate sizes. Unfortunately his illness prevented a serious study of the theory
and thus the few measurements that were made could not be interpreted satisfactori'ly.1 My interest
in this field was aroused by the short association I had with him, during which we tried to cbtain
analytical approximations to the phase matrix. After his untimely death, serious doubts were cast
on the feasibility of this approach. Fortunately, TRW Systems Group, Redondo Beach, offered to
construct and donate a polarimeter for my use, if it would help establish the viability of the
method. This is, therefore, the result of a frantic and furious effart, since March 1973, to
settle this question.

What concerns us is the so-called inverse problem in atmospheric optics. Here, the incident
and the emergent beams are prescribed and it is necessary to deduce the properties of the scat-
terers. The complicated nature of the equations and the inherent lack of uniqueness suggests to
me that it is impossible to obtain a solution to this inverse problem. However a 'back-door',
yet useful, resolution is possible and this will be the content of my talk.

I will attempt to calculate the emergent radiation for all possible particulate distributions,
and catalogue these results. Then any measurement will be matched against these tables so as to
infer the relevant optical characteristics. Sekera's2 compilation of Chandrasekhar's results have
served as a similar catalogue for molecular atmospheres, and it is possible, from these tables to
infer the reflectivity and optical thickness, if the incident and emergent radiation fields are

specified.3 In order to incorporate the effects of particulates it is necessary to parameterize
them and devise a method of searching for a fit.

The mathematical details of my talk are available in a paper4 that has been submitted for
publication in the Quarterly Journal of the Royal Meteorological Society and here I will emphasize
the physics of the problem, explaining the assumptions and the underlying philosophy.

The auxiliary equation for the source function J in a turbid atmosphere in the absence of
ground reflection when unpolarized radiation «F (0, - 90) is incident in the top of the atmes-
phere is given by
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\J(Tg Q) = l—e {};‘ 81('[') P1- (TAs Qs -ﬂu) } F(O, -ﬂo}

2n 1 . T g

s }‘ d¢' S LT, {z B. (1) P (1, ﬂ,+ﬂ')} j3°tt°’"e Wg(, + @) dt

U i 1 i
a 0 T
2 0 T-lilil
1 | du' ' u

+E1T S d¢ j "‘_ﬁ'r {E B'I(T) P-'l(T: £, -0 )}je J{t, -Q') dt

0 -1 1 0 (1)

with the definition

_ SR(T) PR(T, Qa') + BA(T) PA(T, Q,8')

£ g, (1) P (1, 0, 2")

i 1 1 BR(T) + BA{T) (2)
where BR(T), BA(T) are the volume scattering coefficients; while PR(T, £, ),
PA(T, 0, 2') are the phase matrices for the Rayleigh and the aerosol parts, respectively.

The diffuse component of the intensity is then given as

| [ Bottom '|$T_l'-$-}
1DIFF(T' Q') = o j J{t, + 2') e dt
t {3)
T - |t-T
(1, -2') = 1 M, -2')e  H gt
To1rr u
0 {4)

The solution, therefore, requires & knowledge of PA(T, 2, R'}) and BA(T, Q, 8')  the aerosol

phase function and the volume scattering coefficient. The reflection at the ground is assumed to
*

be Lambertian and this adds another term J (t, @) to the above source function, where
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1 all 1T

9*('“ Q) = '-'!4'17 j{] du1 j-O d¢] E(Wb: 3—1]¢‘1) Ig ¢ i

+1 2T
+1;Tr j1 dy' jD dp' Plug : u'e') 1*(1. w'e'l.

(5)

Here the radiation reflected by the ground is assumed to be unpolarized and isotropic, represented
by the matrix

(6}

E*(r, ', d'} s related to g*(T,ﬂ ) in the same way as I{t, u', ¢') was to J(r,n ),
as in equations (3) and (4). The reflectivity of the ground, A, will determine the magnitude
of Ig and the relevant expressions have been obtained by Dave (1964). In our discussion we
will borrow Dave's general treatment and focus our attention on the contribution that aercsols
nake to the transfer problem.

The source function has the phase matrix PA and the volume scattering coefficient BA which
depend on the interaction of the EM radiation with the particles in the atmosphere. The model that
we assume will enable us to calculate these quantities.

It has been the convention to describe aerosol particles by spheres of varying radii and a
uniform refractive index. Deirmendjian attributes to Sekera the suggestion that the size of
particles be represented by a continuous function n {r}, the size distribution function, for
reasons of mathematical elegance and convenience. It has become the practice to take such distri-
butions Titerally, as an actual representation of the state of affairs. This is unwarranted and
I shall, later on, give a consistent and defensible interpretation of the use of such size dis-
tribution functions.

With this assumption it is possible to integrate over all radii (with the size distribution
as a weight function) the Mie result for scattering for a single sphere, to obtain the polydisperse
phase matrix element PA5 . The parameters of the polydispersions are allowed to take all pos-
sible physically realizable values and the corresponding phase matrices calculated. This will then
be used to determine and compile our catalogue of the radiation field.
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Professor Sekera tried, many years ago, to write the phase function as a Legendre series to
solve the equation of transfer. Dr. R. S. Fraser, then a student at UCLA, found6 that a realistic
phase function requires 50 to 60 terms in the Legendre expansion and each of the coefficients
depends on wavelength, refractive index etc. This was indeed impractical and, therefore, abandoned.
Professor Sekera speculated that an inordinately large number of terms was necessary because the
aerosgl phase function had a pronounced forward peak and if this could, in some sense, be subtracted,
then the remainder could perhaps be fit by a few Legendre polynomials. This is what he called
the 'separation of the forward peak' in his paper? In the discipline that I came from, (Elementary
Particle Physics), it was conventional, in many problems, to consider only forward scattering and
ignore the rest. Thus we sought to obtain analytical approximations to the forward scattering so
as to simplify the radiative transfer equation.

8 and Shifring, have described a variety of such approx-

In the 1iteréture Saxon,7 van de Hulst
imations. Then the only problem that remained was to generalize these results to polydispersions
and obtain an analytical approximation. The size distribution popularized by my fellow Armenian,

Diran Deirmendjian, Tent itself well since it was well behaved at small and large values of r.

(Junge"s.ID distribution ;l;—1 would have required a cutoff in the integral).
r
. . 5 . c;(,-l:pr‘Y N .
Diran uses the size distribution n{r) = ar e and classifies naturally occurring
aereosol particles into 3 groups
haze Ha=2 v =1
n L _2 =]
o= Y '2-
" Ma=1 ¥y =1/2.

We used the haze H model and the Born approximation for scattering due to a single sphere [here
1t 1s assumed that particles are smaller than or of the same size as the wavelength of light). The

normalized phase matrix element became a simple expr-e-ss‘icm]1
pio) = M) 32%+ 1627 + 357+ 70
T he=0) g0+ 2y
62 .2 o
wWith Z = — sin -
b

where k = %ﬂ~ is the wavenumber and © the scattering angle.
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This was then compared against Deirmendjian's exact result and the agreement (even when the
value of the normalized phase function was 20%) was gquite reasonable (See Fig. 1). Unfartunately
the case of haze L and M did not yield a simple expression and it seemed that we would have to
resort to numerical methods. Of course, if we had to use numerical methods then there was no
need to concern ourselves with approximations. The source of the problem was due to vy taking

the value of %— for haze L and M giving rise to e'BJFF instead of e P as in haze H. If

I f(r)e'BVrFar was approximately equal to j f(r)e'brdr then our analytic function would
apply for haze L and M as well,

Please observe that, our expression for 5}(@) is only a function of one variable k sin ©/2.
So if we plot P](e) against k sin /2 we must obtain a recognizable curve,if it is only a
function of one variable, and a scatter of points,if it is a function of two variables k and
0. When Deirmendjian's haze M tables 1 - 18 for 0.45: < x < 16.6p were used to plot (See
Fig. 2) 5}(0] against k sin ©/2 the curve that was obtained helped us to conclude that it may
be possible to ¢btain the haze L and M results of the Mie theory from our haze H formula by

allowing b to vary. The figures 3,4 compare Deirmendjian's haze M (y = %— a=1 bﬁ =B x 105)
against our haze H (y =1 a=2 b= 7.4 x 108) and haze L [y = % a =2 bE = 7.3 x 106)
against the haze H (y =1 a=2 b =40 x 10%).

The agreement that we have ohbtained led us to suspect that there is a redundancy in the des-
cription of aerosol distributions if haze H, L and M are used. To clinch the argument we must obtain
this eguivalence even when the Mie theory is used. In fig. (5}, we have compared the exact Mie re-
sults for the phase matrix elements for haze L and M against an equivalent haze H distribution. The
same values of the haze H parameters reproduce the corresponding haze L and M distribution even when
the wave length has become 0.7y {fig. §). Thus over the visible range we have explicitly displayed
the redundancy in the description.,

Events conspired to accelerate my sedentary pace to solve the full radiative transfer problem
and infer the size of particulates from polarimeter measurements. I am referring to the donation
of a polarimeter by the TRW Systems Group and a contract from Don Lawrence's NASA - Langley to
complete the investigation before this conference.

Our analytic study helped us weed cut the redundancy in the description of the aerosol particles
and arrive at a basic or irreducible set of parameters - the optical thickness, refractive index,
ground reflectivity, vertical profile and the parameter b from the size distribution which is pro-
portional to the reciprocal of the modal radius. It is obvious that some simplifying physical as-
sumptions are needed in order to make the problem tractable.

We shall assume that the ground is a Lambert reflector. While this is certainly not the case,
our method of interpretation is to calibrate the ground effect by our set of measurements and use
subsequent measurements to make relative statements with respect to the calibration. This will
minimize the error due to our assumption. We shall alsoc assume that the refractive index is real
in the visible region and make use of the Elterman vertical profile.
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The program to solve the radiative transfer equation in a vertically inhomogeneous medium with
various aerosol size distributions has been developed by many sciemtists and the one that 1 use will
be that due to Dr. J. V. Dave,'Iz made available to us through the kind efforts of Dr. R. S. Fraser
and Dr, M. P. Mc Cormick of NASA. Dave uses the iterative solution to the auxiliary equation and
the program is large and quite expensive to run. The cost would have been prohibitive and the
analysis impossible had we not simplified the parameterization of the aercsol size distribution to
include only haze H at all times.

The polarimeter is mounted on an alt-azimuth tracker and the base has angular read out scales
in bath azimuth and elevation, facilitating the precise determination of the Zenith angle of ob-
servation of the polarimeter. A set of measurements consists of fixing the Zemith angle of obser-
vation and varying the azimuth defined with respect to the solar vertical plane from 0° to 180°.
1f 0% azimuth correspands to the smallest scattering angle then it is expedient to normalize all
the measured intensity values with respect to this intensity at ¢ = 0 azimuth and avoid the
measurement of exact intensities. The experimentally normalized intensities (I} and degree of
polarization (P) can be plotted as a function of the azimuth ¢

The theoretical analysis consists of studying the sensitivity of the (nonna11zed) intensity
and polarization to the parameters t, n, b and A. It was observed that they were smoothly
varying functions of those parameters and hence it was possible to extrapolate and interpolate
the obtained results with a great degree of confidence.. Thus typical variations are given in figs.
7-10. Our analysis enabled us to arrive at the following conclusion.

1} The width of the nomalized 1 curve is determined by b.

2) Increase of 1t and A raises the tail of the I curve and lowers the degree of pelarization.

3) The depolarization due to an increase of m was considerably more drastic.
Thus in order to fit a set of measurements we arrive at the following set of rules,

1) Change b to fit the width of the naymalized intensity curve,

2) Fix a reasonable value of the ground albedo, (For X = 0.7 we chose A = 0.2) in order to
calibrate the ground effect. Here we are considering downward radiation and hence the
ground effect 1s not very serious.

3) vary T and m so that I and P curves fit the data.
4) Repeat measurements but use same value of A to obtain fits,

Using this recipe we have fit 3 sets of data taken on August 72, 1973 on the roof-top at UCLA.
The relevant parameters are given in figs 11 - 14. It is important te notice the temporal change
in size distribution (parameter b ) which implies a change in the "average" size of a particle.
This is presumably a meteorological feature peculiar to the LA basin where due to the changing wind
patterns the marine aerosols and continental aerosols are moving in different directions. A more
detailed study, including the correlation with meteorclogical conditions, is being undertaken by my
student R. Willson, for his Ph.D. dissertation.
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INTERPRETATION

For the set of haze H parameters we can arrive at the equivalent haze 1 and M parameters.
Those are given in figs. 15-17 and tables 1 and II. This suggests that the radiation field measure-
ments alone will not enable the determination of exact size distributions. What it does provide s
an equivaient optical description which can be used to calculate radiative effects, such as, cooling,
heating, etc. Further, relative statements seem to be valid no matter which description of haze K,
L, or Mis used. Faor instance, our measurements indicate the increase of modal radius from data
set 1 to data set 2 and the decrease from data set 2 to data set 3, when b takes on the values of 18,
12.6, and 25. We aobserve that this trend holds for haze L and M descriptions as well. The other
parameters m, T and A are unaffected by this model dependency.

It may be argued that in situ techniques will provide exact measurements and are, therefore,
more useful. I think 1n situ sampling mutilates the object that is being studied and so measure-
ments of this nature must be viewed with caution. It would be most desirable to couple in situ
techniques with polarimeter measurements and then check {f the in situ results, when introduced in
the radiative transfer equation reproduce the radiation field that is measured by the polarimeter.
I must emphasize that the radiative calculations of aerosol effects are expressed in terms of an
effective optical model (such as haze H) and, therefore, the determination of these effective op-
tical parameters, even if they have nothing to do with the actual shape or size of the particles,
is most essential. 1 hope that I have been able to convince you that it is possible, from remote
measurements of polarization and intensity, to continually monitor our turbid atmosphere and infer
the values of optical parameters essential for calculations in metecrology.
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

FIGURES

Normalized forward scattering for Haze H as a Function of Z.

Points are obtained from Deirmendjian's Tables 27-32. The

3 2
curve is that of the analytic formula P(z) - 327 + Toz_ + g52,+ 70
70{1+z)

Normalized forward scattering as a function of o.

Normalized forward scattering for Haze M as a function of Z.

2

Points are obtained from Deirmendjian's Tables 12-16, b~ = B x 105.

= % s+ a =1, The curve is that of ﬁi(z) with new b2 = 7.4 x 108,

Y
y=1, a=2.

Normalized forward scattering for Haze L as a function of Z.

Points are obtained from Dejrmendjian's Tables 19-26, b2 =2.3x 106,

1
Y T o2, O

2. The curve is that of Ei(z) with a new b° = 40 x IOB,

|
—

¥y =1, a=2.

.45},

Equivalence of Haze H to Haze L and Haze M, ()

Equivalence of Haze H to Haze L and Haze M, (A = 0.7).
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FIGURES

Normalized scattered intensity and degree of polarization for
b=10and b = 25 as a function of azimuth angle relative to

the solar vertical plane.

Normalized scattered intensity and degree of polarization for
Mie optical thicknesses of Ty = .15 and .25 as a function of

azimuth angle relative to the solar plane.

Normalized scattered intensity (I) and degree of polarization
(P) for aercsol indices of refraction m = 1.34 and 1,54 as a
function of azimuth angle (9) relative to the solar vertical

plane.

Normalized scattered intensity (I) and degree of polarization
{P) for various Lambertian ground reflectances A = 0, .2 and .4
as a function of azimuth angle (&) relative to the solar vertical

plane.

The solid curves are the computed I and P for the aerpsol madel

1, refractive index = 1.54, Mie

whose parameters are: b = 25u°
optical thickness = 0.25 and ground refiectance = 0.2. The dots
are measured values of I and P made at UCLA on 12 August 1973

at 1425 hr. Pacific Daylight Time. The wavelength for this ob-
servation was 0.707u. The zenith angle of observation was 62.8°

and the solar zenith angle 27.8°.
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Figure 12 The solid curves are the computed I and P for the aercsal model
whose parameters are : b = 12.85?u'1, refractive index = 1.54;
aerosol optical thickness = 0.12 and ground reflectance = 0.2.
The dots are measured values of I and P made at UCLA on 12 August
1973 at 1438 hr. Pacific Daylight Time. The wavelength for this
observation was .701 py. The solar and observation zenith angles

were 28.3% and 41.3°, respectively.

Figure 13 The solid curves are computed values of I and P for the aerosol
model whose parameters are: b = 18 u'1; refractive index = 1.44;
aeroso? optical thickness = 0.25 and ground reflectance = 0.2, The
dots are measured values of I and P made at UCLA on 12 August 1973
at 1457 hr.,Pacific Daylight Time. The solar and cbservation zen-

ith angles were 33.3° and 62.3°, respectively.

Figure 14 Normalized haze H size distribution functions obtained by fitting
the data (figs. 6, 7, and 8). The mode radii are ro = .080 u,
111 u and .156 p for the distribution with b = 25, 18 and 12.857,

respectively.

Figure 1% Normalized size distribution functions for haze H and the equi-

valent hazes L and M corresponding to data set #1.

Figure 16 Normalized size distribution functions for haze H and the equi-

valent hazes L and M corresponding to data set #2.

Figure 17 Normalized size distribution functions for haze H and the equi-

valent hazes L and M corresponding to data set #3.
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TABLE I. OPTICAL PARAMETERS FROM BEST FIT OF DATA

Time Solar Observation Parameters Obtained from

Data Set No.  p 'y *  Zenith Zenith best fit
?32;? ?ﬂg;? b_] T total” m albedo
(W)
1 1425 27.8° 62.8° 25 .287 1.4 .2
2 1438 28.3° 41.3° 12.857  .156  1.54 .2
3 1457 33.3° 62.3° 18 287 1.44 .2

* Pacific Daylight Time

1 +r = 0,037 for xr=0.7

total = TRayleigh '™ 3™ TRayleigh

TABLE II. EQUIVALENT OPTICAL PARAMETERS

Data Set No. Haze H Haze L Haze M
: (=2, y=1} (=2, v=.5) {o=1, v=.5)
b bL bl'-'l
1 ' 25 28 25
2 12,857 ‘ 19 10
3 18 23 20
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LIDAR OBSERVATIONS OF ATMOSPHERIC PARTICULATE CONTENT

R. T. H. Collis, P. B. Russeil, E. E. Uthe and W. Viezee
Atmospheric Sciences Laboratory
Stanford Research Institute
Menlo Park, California 94025

1. INTRODUCTION

The lidar, or laser radar technique of atmospheric probing has just celebrated its 10th Anniversary.
In the decade since the first observations of elastic backscatter from atmospheric particulates of the
“clear air" were made, this basic capability has been applied to a wide range of atmospheric observa-
tions and, in addition, a number of sophisticated concepts which exploit the wave and guantum nature of
Tight have received attention, (Collis, 1970). These include the measurement of gaseous species
concentration by Raman scattering or by differential absorption techniques; the measurement of turbu-
lence, velocity or temperature by Doppler techniques and the detection of atomic elements in the outer
atmosphere by resanance scattering. These applications, however, are for the most part still at an
exploratory stage. The basic elastic backscattering approach on the other hand has been extensively
used for the observation of cloud and haze, which provides direct informatian on atmospheric conditiaons
of obvious importance in general meteorology. and for mapping and tracking aerosol concentrations in
various research applications--such as those concerned with the transport and diffusion of p611utants.
One of the most exciting and valuable contributions of lidar, however, has been to extend our know-
ledge of the "transparency" of the clear air.

A description and discussion of lidar in this role is very pertinent in the context of this con-
ference, concerned as it is with both radiative energy transfer and remote sensing techniques.

Before proceeding to this, however, we briefly review the basic lidar concept and identify the
nature of lidar observations in this context.

2. LIDAR OBSERVATIONS

a) Basic Concepts

Lidar, as discussed here, is the application of the pulsed radar technique at visible or near IR
frequencies using high powered, very short pulse, lasers as the energy source. Such energy, back-
scattered by the molecular and particulate phases of the atmospheric aerosel provides a signal, the
intensity of which varies with time from the transmission of the pulse, in accordance with the following

single-scattering lidar equation:

367



") R
Pr(R> = Pt L g8{R) AR " exp {-EIO o(r)dr} (n

where
Pr is instantaneous received power;

Pt is transmitted power at time to;
L is effective pulse length (&);

(L = ct/2 where c is the velocity of light and © is pulse duration; it is the
range interval from which signals are simultaneously received at time t).

B s the valume backscattering coefficient of the atmosphere (ster']£'1);
R is range (R = c(t-to)/z) where tg is the time of transmission of pulse;
o is the volume extinction coefficient, (271); and

A is the effective receiver aperture.

The magnitudes of & and ¢ depend upon the wavelength of the incident energy, and the number, size,
shape and refractive properties of the illumination particles per unit volume, in a complicated manner
(with the exception of the case of Rayleigh scattering, which occurs when the scattering particles are
small compared to the laser wavelength). The physics of elastic light scattering by particles is
thoroughly described by a number of texts, including van de Hulst (1957}, Deirmendjian (1969), and
Kerker (1969).

The relation of the optical parameters B and o to each other, and their relation to such physical
parameters as number or mass concentration, even to a meaningful degree of approximation, are problems
of considerable difficulty. Nevertheless useful solutions of the lidar equation have been accamplished.
{See Section 2¢ below).

Essentially the current capabilities of lidar Tie in three areas:

1) providing analog representations of the variability of atmaspheric particulate
concentration, which, especially in two dimensional cross-section form, reveal
the presence and geometry of significant structure--such as layering, with
indications of at least relative concentration;

2) providing quantitative data on the observed optical parameters (B and o} and
their temporal and spatial variation (as in vertical profiles) for the wave-
length used {1imited in present technology to the visible and and near IR):

3} providing, to a limited degree, quantitative information on physical parameters
that can be derived from the optical data of 2), given certain additional data
or assumptions.

b) Evaluation of the Lidar Equation

A number of solution techniques have been proposed to evaluate the lidar equation (1) for quanti-
tative purposes (Barrett and Ben-Dov, 1967; Fernald et al., 1972). The general approach followed by
SRI is typical {Johnson and Uthe, 1971; Davis, 1969) and is described below.
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The returned signal in logarithmic form is range normalized and corrected for instrumentation
transfer anomalies and any pulse-to-pulse variations in lidar performance. The resulting S-values,

defined as
P,.(R) R?
S(R) = 10 1og —— (2)
Pr(RO) RO
2
= 10 log BRY T°(R) (3)

5
B(Ry) T™(Ry)

evaluate, in relative terms, the atmospheric dependent parameters of the lidar equation, viz:
g exp -2fodr or 8T2 ,» where T is the path transmittance. (RO is a reference range--nermaily that at
which £ is measured or can be assumed to be constant}.

In differential form:

1
B

[=9
™

= 4,34 - 8.70 (4)

n.ln.
|
[« 8

R

and from this, given 1) an assumption or data on the relationship between o and &, and ii) a
boundary value of an appropriate parameter, we can derive evaluations of the optical parameters, or,
given additional relationships, certain physical parameters. By a linearization transformation,
Equation 4 can be expressed in the general form from which various soTutions may be derived, according
to the input parameters used as illustrated in Table I,

exp C1 S{R)

#(R) = T {5)
o7 Ry) - Cf exn(cy s(mey
R

0

In the case of turbid atmospheres, certainly for example in fog or cloud, multiple scattering occurs
and the solutions proposed above are invalid. In such cases, more sophisticated formulations of the
lidar equation must be used (Liou and Schotland, 1971; Weirman, 1972; and Elaranta, 1972), although
useful evaluations of lidar observations in fog have been made by Viezee, et al. (1973b) using a semi-
empirical approach.

However, in less turbid atmospheres and certainly in what is commonly thought of as "clear" air, the
assumption of single scattering appears to be wholly acceptable for 1idar data where we are concerned
with evaluations of backscattering within a narrow beam (of the order of 0.01°). In fact, in such
conditions, useful quantitative data may often be derived on the assumption that attenuation is negli-
gible or given by certain model values. {See Section 3 below).
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Table 1

Some Solution Passibilities for Given Input Parameters (See Eq. 5)

Basic relationship

Solution for C1 62
measured or assumed
= - 2
B B=kyo T K
ding _ 1 2
“ done - K2 .32 _EE
C {concentration) Relative size o )
distribution, n_, 1 j
invariant with T 2) mr Qg n.dr

0

range.
{n=2¢C N Qg = Mie efficiency factor; r = particle radius})
M {mass g =0 1 2§
concentration) e M 4.34 e
and B/M is See Johnson & Uthe,
invariant with 1971

range
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c} Polarization Measurements

Mention should also be made of the possibility of exploiting depolarization effects to acquire
further information from lidar backscattering observations, especially in studles of clouds. With only
one angle of view (m), it is only possible to make limited inferences from such observations. Most
usefully the presence of non-spherical particles (e.g. ice crystals) can be determined by comparing the
magnitude of lidar returns measured under various combinations of transmitter and receiver polarization.
Since spherical particles will return incident energy with no change in polarization, the observation
of significant depolarization will indicate the presence of non-spherical scatterers (Zuev, et al.,
1973; Schotland, et al., 1971). Note however that with high concentrations of spherical particles--as
in fog or cloud, multiple scattering will also contribute to depolarization effects {Liou and Schotliand,
1971; Eloranta, 1972}, Distinguishing between the depolarization effects of non-spherical particles
and those of multiple scattering by spheres s a subject of current investigation at several labora-
tories (Carswell, et al., 1973).

d) Discussion of the Validity of Lidar Observations

As noted above, the interpretation of Tidar signals in ﬁhysica]]y significant terms is open to scome
uncertainty due to the fundamental difficulties of deriving absolute information from such signals
alone. For example, an increase of signal intensity with range could be ascribed either to an increase
in the number of scatterers present, given that their size distribution, shape, and refractive pro-
perties is unchanged or to a change in one or other of these characteristics without an increase of
number concentration. While this concept is strictly correct, in practice it is wholly possible to
assess the lidar signal on the basis of certain assumptions regarding the nature of the aerosols
observed or of the possible changes therein, provided that the interpretation based upon such assump-
tions is not carried beyond reasonable bounds. Thus, for example, if the returned signal from a
certain atmpspheric layer shows an enhancement by a factor of 10 over that from the atmosphere
immediately below it, it is reasonable to infer that the layer comprises an increased number concen-
tration of particles, if reasons exist for believing that the aerosol present in both layers is from
a common source. This inference becomes more certain if it can be shown that any change of refractive
properties and/or change of particle size distribution that can reasonably be expected, would result
in a change in backscatter coefficient by a factar less than 10. The accuracy with which the change
of particutate number concentration can be specified, however, will obviously depend upon the degree to
which the other variables {and their relationship) are known, : '

These concepts are basic to the faith of those familtiar with the use of 1idar, but warrant further
examination in the present context, where we are concerned with relatively small variations in the
returned signals from, or the characteristics of, the "clear" air. '

& complete analysis of all possible combinations of the variables involved in relating the optical
and physical parameters of an aerpsol is not possible in this review. In order to indicate the degree
of uncertainty inherent in lidar observations, or in inferences of their physical significance, that
might result from such variables, however, Table II {by no means exhaustive) summarizes the results of
a number of investigations in this area. Table Il is necessarily in very abbreviated form. To
illustrate its use, consider the first entries relating to changes in particle size distribution
{Grams, 1966). In column i, we indicate the nature of the changes from an initfal state where (as noted
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in column vii, in a Junge distribution with an upper particle radius, R2 = 3.3 u, and a wavelength
of 0.6943 u), v = 3.5 and R; = .275u. MWe first consider changes within a “reasonable" range, to

v = 4.0 and R.I =0.3u, or to v=3.0 and RI du
and then changes to extreme values treated by Grams, - viz. to
v = 4,0 and R] = 5y, ortov =20 and RI = D3y

The effects of such changes on the number concentration N required to maintain the same backscattering
coefficient as that resulting from the initial state, are shown in column ii where, for example,

"x 1.4" indicates that the changes shown in column i would require an increased number concentration
equal to 1.4 times that given by the initial state.

Conversely, to show the effect of such changes in terms of the sensivity of 1idar backscattering
measurements, column v indicates what happens to a scattering ratio (i.e., Btota1fﬁmolecu1ar’ see
Section 3e) of 1.1, when different parameters are used to derive this ratio from the number concen-
tration giving a ratio of 1.1 under the assumption of the initial state parameters.

For the most part the effects noted represent extreme ranges, in practice the uncertainty might
be expected to be must less.

As Table II shows, considerable caution must be applied in drawing inferences regarding other
optical or physical parameters from lidar measurements of backscatter coefficient on the basis of
theoretical assumptions alone. Although not excessive, the dependence of relationships between the

various parameters on spécific characteristics of an aerosol is significant, certainly where Mie theory
applies. However, there are strong grounds for believing that in practice, probably because of the
non-sphericity of the particles involved and/or the complexity of their refractive properties, Mie
theory is inappropriate for specifying the scattering characteristics of some patura] aerosals in
simple terms.

The inapplicability of Mie theory in these cases is manifest in two important ways. Firstly,
predictions of the relationship between the optical and physical characteristics, derived by Mie theory,
can be jnaccurate. Secondly, empirically derived relationships are evidently more consistent and less
dependent upon critical values of individual parameters than would be expected on the basis of Mie
computations. Some examples of these considerations are given in Table III. This Teads to two
important conciusions: firstly, that lidar observations of natural aercsols are likely to be less
affected by minor changes in the detailed characteristics of an aerosol than is suggested by theo-
retical considerations; secondly, that independently derived information can be used most effectively,
to provide useful and consistent interpretations of lidar data.

3. THE USE OF LIDAR DERIVED INFORMATION

a) General

With due recognition of the foregoing reservations, Tidar can provide better understanding of the
nature of the real atmosphere--the form particulate concentrations and layers take--and, more quanti-
tatively, the detailed variation of the optical praperties, particularly with height.
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Part 1 - Size Distribution

Tabla II Various Aspects of the Interrelation of Physical
and Optical Parameters of Atmospheric Aarosocls
(Theoretically Derived)
(1) (11) (111} i) (4] (vi) (vi1y
Particulate characteristic For given backscattering For given Ref. NOTES
and change therein coofficient 9, change in: M, qar O o
a agcattering N= j' nf{r)dr
namber mass extinction coefficient. :Btio :_= 1.1 e 8 P
concentration N concentration M | U, or total scattering acomes B = total’ molecular,
cofticlent O [(sqe Sect. IIIe)
51ZE DISTRIBUTION
v=3d.8R = 0.275 i Grams (1966)) Based on Junge
(m = 1.5 . distribution: n{r) =
et g sz
tov=40R =3 x 1.4 1.07 whets n(r}dr = mmbar of
to v =3.0 = @ x .6 1,17 particles with radii between
(reasaonnble range} rand r + dr
(\ = 0,6943 )
to v=4,0R = .5 p x 2,0 1.05 Rz=3.3u
ve 2,0 R, = 03 B x .3 1.30
{extrcne range)
Haze Mudel L vieroe, Based on Deirmendjlan's [(13968)
et al, haze models
to Hazo llodel H
T A=oO.
(with m = 1.33) x 3.7 1.03 (1973a) ( 0.6943 W)
v =250 =004 4R, =104 Harrison et gl [ Based on Junga distribution
tovasd40R =008BR =3 p x .8 1,17 (1972) {A = 0.6043 p)
{extreme cange) 2
{m = 1.5)
vom 2.0
to v = 3.75 (@ = 1.5} x .6 117 Gambling and Based on Junge distribution
{extreme range) Bartuses: (M = 0,6943 1)
) (1872)
to v o3 (ns1,33) x .78 1.13
(widest range for m = 1.33)
w=13, B =008u Ry = 3.0 | Bussoll et al |Based on Juage distritution
tov=4, R =004, x 2,01 1,05 (1873b) :
Rz = 10 .6 B
{ewtroue rangal
{m = 1,5
Haze Hoeel L
to Hozo Model H Russell et al |Besed on Deirwendjien's (1908)
when @ = 1,45 1.35% 1.07 (19731) haes models
when m o= 1,33 5]
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Table II

Vardous Aspects of the Interrelation of Physical
and Cptical Parameters of Atmospheric Aerosols
{Theoretically Derived)

Part 3 - Rofractive Iedex

(1) (11) (111) (19} (v {vl) {1
Particulate characteristic For given beckscattering For given Ral, ROTES
and change therein coefficient B, change int NM,oor @ ©

8 Bcattering
ratio R = 1.1

.} J-D n{rjdr

wunber mass extinction coofficient bocanes B8 /8
concontration N cancentraticn M | O, or total scattaring total’ "molacular,
| confficient O {sa0 gact. IIle)
REFRACTIVE INDEX
B =1.5 ~-0% Grama ([18966) (A = 0,6043 u)
tom 1,33 - 01 x 3 1.03 380 note in row 1 sbove
111 =0
n Grams et al,
ten, =00 x 2.9 1.03 (1972) (h = 0.694 W)
(mn'sjoggble range) n:'l_s = 1.5%
n E
im empirical size
d
to nh =0.1 x 10 1,01 iatribution
lextreme ranga)
o= 1.7 - 1,843 Viezee et al. | (A = 0.6843 W)
{1973a)
tom = 1,33 - 04
tor Hoze Model L x 1,5 1.07
for laze Model H x 3.7 1.03
g =0 Harriaen et al.l Effect on total scatter
in {1872) confficient &
to ni = 0,023 x 2.3 1.u4 (A = 0,8943)
\:§
! Based on Junge distribution
‘m= 1.6 -@ x3 1,03
tome 1,33 - 04
m=1,3-04 x 2.3 1,04 Gambling and -do -
Bartusek '
1972
tom= 1,23 -~ 04
x 3.5 1.03 Rueeell et al  [Bazed on Delrmendjian's

m= 1,33 -01
tom=1,5¢ - 01
for Haze Model H

{197ap)

{1969} hare models
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Part 3 - Shape
Talile 11 Voarious Aspects ol the Intervglation of Physical
and Cptical Parameters ol Atmospheric Aerosols
(Theorctically Derived)

[£3] (ii) I (iii) [ (1iv) (v} (vi} (vii)
Particulate characlerisiie For given backscattering For given Rel. HOTES
anl chunge thero coeificient B, change in: N,M,0 or O o

a secattering N = J niridr
. ratio R = 1,1 o
M mass cxtinetion coefficient
voneeptration If . concentration M o, or total seattering becomes : R=p B

/
total ‘melecular,

coellicient o (see Sect. Ille)
SHAPE
Sphere
to "onion shaped artifact" * L0 1o Harrison et al - do -
{1972)
Sphe;‘e Laboratory measurseet
to plate x 1 1.81 Ditferences of as larcge as
sge note Holland and vrder of magnitude neted at
Gagne (1970) near hacksecatter angle, hut
not at 180"
% = .A8ED 2~ and A = 5460 W)

Aulthors caution against
peneralization from their
limited results, but stress
impurtance of shape




TABLE III

Some Determinations of the Interrelation of Optical and

Reference

BACKSCATTER/EXTINCTION (A = 4ng/a)

HcCormick, et al. (1968)

Waggoner, et al. (1972}

Davis, (1969) (1971)

Hamilton, (1969}

Physical Properties of Aerocsols

Results

0.15

0.40

oo
W

BACKSCATTER/MUMBER QOR MASS CONCENTRATION

Johnson and Uthe, {1971)

Uthe and Lapple, {1972)
(see Collis and Uthe, 1972)

Uthe and Johnson, (1971)
(see Collis and Uthe, 1972)

Dynatrend, {1973)

Assessment of mass concentra-
tion of fly ash in smoke stack
plume--good agreement with
estimates based upon quite in-
dependent data.

Series of comparisons of lidar
observations of £ and ¢ {at

A= 0.6943 and A = 1.06u)

with known concentrations of
virtually monpdisperse aerosols
in test chamber, gave good
agreement with Mie theory pre-
dictions.

Lidar observed backscatter
profiles consistently related to
profiles of particle concentra-
tion independently obtained by
in-situ sampling.

Comparison of lidar observed
backscatter profiles of strato-
spheric layers show close cor-
respondence, with height and re-
lative magnitude. to particle
count profiles derived by in-
situ balloon sampling,
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Notes

Theoretical derivation on basis of
several size distributions and
m=1,5-0i

Comparison of ruby (X = .6943u)
lidar and nephelometer measurements
in urban atmosphere with variable
relative humidity below 70%

For cirrus ¢loud, derived from
ground (1969) and airborne (1971)
ruby lidar observations

Both g and o derived from lidar
observations of boundary layer
urban aerosol {ruby lidar)

Fly ash material of known re-
fractive index and density {ruby
lidar)

Fly ash material of known re-
fractive index and density, ruby
and neodymium lidars

(comparison also made with o for
broad band light)

See Section I1Id, below.

Observation made over sea below
3 kms.

NCAR and NASA Langley, ruby }idars



Reference

TABLE III (Continued)

Results

BACKSCATTER/NUMBER OR MASS CONCENTRATION

Russell, et al. {1973b)

Comparison of ruby lidar obser-
vation of stratospheric layer
with mass concentration (filter
sample) obtained by aircraft
shows very close agreement.
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Notes

Using Mie theory computation based
on measured refractive index,
shape and density, and assumed
size distribytion (Deirmendjian
Haze Model H)--

in-situ measurement:
9.8+1.8 x 107 3gem™ ambient

Lidar derived measurement:

9.6+2.3 X 10714 g(:m_3 ambient



In some cases, of course, this sort of information has direct, specific value for its own sake--as.
for example.in providing knowledge of the range of variation of the stratospheric aerosol concentration.
It certainly can be of great assistance in the 1nterpretat1on of other measurements--particularly from
passive sensors.

In a more general sense, such information can provide a basis for advancing our understanding of the
physical processes of the atmosphere. Both points bear on the topics of this meeting. In studying
and modelling radiative transfer processes, more realistic inputs on the effects of particulates are
badly needed. In any form of remote sensing, either of the earth's surface or of the atmosphere itself,
modern techniques have reached such a level of sophistication and precision that the effects of parti-
culates can no longer be neglected as being insignificant factors.

These concepts are now illustrated.

b} Aerosol Distribution in the Urban Atmosphere

The first example shows how lidar can contribute in radiative transfer studies. With NSF sponsorship,
we have been participating in the METROMEX project in St. Lowuis. There, in additien to making observa-
tions in support of research into the effect of urban poliution on p}ecipitation, we are also studying
the modifying role of the boundary layer aerosol in energy transfer and atmospheric energetics.
Associated with this effort, with internal funding, we are also attempting to develop a capability for
model1ing climatic change due to changes in the aerosol content of the atmosphere. In both these cases,

our aim is to use lidar observations in support of radiometric observations and to extend the scope of
measurements obtained by the passive technigues.

To amplify: current attempts to model climate changes induced by aerosols range between the simple
s1ng1e Tayer approach and recent much more extensive numerical integrations of the equations of radi-
ative transfer in more realistic model atmospheres (e.g., Yamamoto and Tanaka, 1972, and elsewhere in
these proceedings; Braslau and Dave, 1973}. The simple models in one way or another consider a simple
geametry in which a single layer is introduced at some Jevel in an otherwise transparent atmosphere,
While this approach fulfills a useful role in conceptualizing, and to a certain extent in quantifying,
the possible climatic consequences of changes in atmospheric aerosol content is inadequate in a great
many realistic situations such as those revealed by the lidar observations shown in Figures 1 and 2.

The first feature that is apparent from these figures is that typically there is not just one
aerosol layer, but many, and their geometric and optical properties vary continuously as solar heating

proceeds. In addition, of course, clouds are frequently present which have a profound effect an
radiative transfer,

The more complex models which have been recently developed represent a major advance over the
simple models, but have two difficulties in practical application:

+ They depend upon detailed and accurate input parameters for which measurement
data are generally not available.

* They require exceedingly large amounts of computer time,
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It is thus clear that practical studies of the climatic consequences of aerosol pollution in
realistic atmospheres would benefit from a model that lies somewhere in the middle ground between the
simple single-layer models and the complex numerical approaches. An example of such a "middle ground"
model is that of Atwater (1971), which déscribes the infrared and solar effects of polluted layers in
an urban environment. The present internal research program at SRI includes our attempt to develop a
similar muiti-layer model based upon that of Shettle and Weinman (1970) which employs a more complete
treatment of solar radiative transfer and which draws upon available experimental data for appropriate
input parameters. The structure of this model produces a system of 1inear equations, which describe
the continuity conditions at Tayer interfaces. The project includes the development of novel matrix
techniques for the efficient solution of this system. Fundamental data for such models, which treat
the problem on a multi-layered basis, can be provided by lidar observations, which yield, in a unique
manner, height, geometrical thickness, and, given a solution of the lidar equation by one or any other
of the techniques noted earlier, an estimate of the optical thickness of each layer.

It should be noted in passing that, as illustrated in Figure 2, the changes in layer height and
shape with time reveal dynamic aspects, such as convective 1ifting, which can be directly related to
surface heating, in studying the role of energy transfer in the boundary layer.

¢) Cirrus Cloud

In addition to monitoring aerosols in the boundary layer, lidar can also monitor particu]afe
concentrations at higher levels. For example, Figure 3 shows an observation of tenuous cirrus cloud
Tayers--made #n daylight in what appeared to be a clear sky. The presence of such cirrus clouds--and
they are often present in depths of as much as 1 or 2 km in very tenuous form unsuspected by a visual
observer--has as obvious a significance in considering radiative transfer processes as do the aerosols
of the boundary layer. Further, the presence of ice crystal clouds or water clouds, for that matter,
is tertain]y significant to the interpretation and evaluation of many types of remote sensing obser-
vations, as for example from satellites (Davis, 1969 and 1971).

d) Dust Layers over the Ocean

The capability of lidar for observing aerosol layers in the clear air is further illustrated in
Figure 4 which shows data acquired by a lidar operated in an aircraft flying over the sea in the
Barbados Oceanographic and Meteorological Experiment (BOMEX) in 1962 (Uthe and Johnson, 1971). The
figure shows a computer-generated representation of positive and negative departures of the lidar-
observed S-value profiles relative to a best-fit exponential curve. To the extent that particle size
variations and attenuation can be neglected, this cross-section thus shows concentrations of particles
in layers, notably that at about 1.8 km altitude. This layer is interpreted as being caused by the
stréam of dust carried by the north-east tradewinds to the Caribbean area from the Sahara Desert. The
assumpfiun that attenuation is negligible in such conditions, and the relationship of the lidar data
to absolute volume concentrations was investigated with the help of particle size distributions that
were made available from an independent aircraft sampling program. Using these data and Mie theary,
expected lidar signal returns were computed. These are shown for three occasions in Figure 5.
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The Tight short dashed lines represent simulated relative lidar returns, ignoring the effect of
atmospheric attenuation of the energy pulse. The corresponding 1ight solid tines represent another
set of simulated relative lidar returns obtained after taking inte account the attenuation of the
laser energy. A lidar altitude of 3 km is assumed. By comparing the dashed and solid profiles,
which show only 1 dB difference at the surface for the two hazy days, it is seen that the neglect of
atmospheric attenuation does not significantly affect the return signal profile. In such coenditions
of low or moderate turbidity, lidar observations over short path lengths can be interpreted directly
without the need for rigorous solution of the lidar equation.

The lidar system constant in this experiment may be inferred by comparing the computed lidar
returns. The relative signals from three Tidar traces each recorded during the aerosol sampling
period are shown in Figure 5 as heavy lines. The three computed and three observed profiles were
first plotted on two separate graphs and the horizontal displacement between these graphs was adjusted
for the best overall fit of computed and observed data. The abscissa values represent the gbserved
lidar signals in relative legarithmic units.

Good agreement exists between computed and observed relative lidar return signals in terms of
both day-to-day and altitude variations. The result indicates that the absolute aerosol densities
could be inferred from the lidar backscatter signatures, subject to errors due to nan-linear vari-
ations between particulate density and the volume backscatter coefficient.

e) Stratospheric Particulate Layers

In an ongoing program, we are making lidar observations of the variability of particulates in the
stratosphere between 10 km and 30 km. These observations are part of the program of the CIAP Office
of the Department of Transportation to assess the impact of climatic changes that may result from
perturbation of the upper atmosphere by the propulsion effluents of high-altitude supersonic air-
craft.

The objective of the SRI lidar experiment is to provide information on particuiate material in the
natural (unperturbed) stratosphere, by observing the spatial and temporal variations in a series of
periodic nighttime measurements over Menlo Park, California. A ground-based lidar containing both a
pulsed ruby laser and a tunable dye laser is being used to obtain data over an 18-month period to
extend earlier observations of a similar type (Grams and Fiocco, 1967; Kent and Wright, 1970; Hirono,
et al.,1972) and complement other current programs {Dynatrend, 1973; Schuster, et al., 1973; Melfi,
et al., 1973).

Beginning in October 1972, the results of each observation are present as vertical profiles {(with
a resolution of 250 m to 500 m in altitude 2z} of two quantities indicative of stratospheric aergsol
content.

* The "scattering ratio," R{z), equal to the ratic of total (molecular plus
particulate) atmospheric backscattering coefficient to molecular back-
scattering coefficient.

+ The particulate backscattering coefficient, BA(Z) (per meter per steradian).
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The Tidar backscattering data for a single observation period are obtained by integrating the
return signals from up te 1000 single-pulse transmissions. This signal integration extends for a
period of approximately 1 hour .

Figure 6 shows the three principal steps in the analysis of the recorded backscatter data. The
first step [Figure 6{a)] consists of matching the measured (range-corrected) vertical prafile of lidar
backscatter signals {indicated by the solid curve) with a computed vertical profile of molecular back-
scatter (indicated by the dashed curve). The measured profile of backscatter data has an observational
error estimated to be only 1 to 2 percent. The profile of molecular {Rayleigh) backscatter is computed
by using an assumed vertical profile of atmospheric attenuation [Elterman, 1968], and a measured
vertical distribution of molecutar number density corresponding to the Oakland radiosonde data nearest
in time to the lidar chservation period. (Oakland is approximately 20 miles north of Menla Park).

The matching of the two profiles clearly shows a large bulge in the measured profile near 20 km, and
it must be attributed to a significant contribution to the atmospheric backscatter from particulate
matter.

Matching is accomplished objectively and relates the Tidar observations to the backscattering coef-
ficient of the atmosphere at levels at which minimum ratio values suggest that aerosol concentrations
are non-existent. This relationship is the basis for the derivation of the scattering ratio profile,
R(z), illustrated in Figure 6B. The validity of the assumption that the reference layer is in fact
purely gaseous is clearly critical to a determination of the absolute magnitudes of the aerosol back-
scatter. This commonly used approach has been widely discussed in the 1iterature (e.g. Grams and
Fiocco, 1967; Kent and Wright, 1970). It is generally believed that any errors due to the presence
of aerosels in the supposedly clear ltayer will be small--smaller in fact than those due to measurement
uncertainties. In-situ observations {Davis, 1971; Newkirk and Eddy, 1964; Bigg, et al., 1970) tend
to confirm the presence of clear, gaseous layers, but it must be pointed out that the experimental
methods employed in in-situ sensing have themselves limited sensitivity to detect extremely small con-
centrations of particulate material.

At the very Teast, there appears to be.ample ground for claiming these lidar evaluations of
scattering ratio profiles based upon the assumption of a clear layer are mot in error by more than 1%
or 2%, and that any error in this assumption must lead to the conclusion that the aerosol backscatter
cross section, derived from the profiles of scattering ratios, (see Figure 6C, for example}, are too
small rather than too large. It should, of course, be noted that the uncertainties noted in no way
affect the relative variations of scattering ratio or aerosol backscatter cross sections as a function
of height.

Both the scattering ratio and the aerosel backscattering coefficient are integrated aptica)l
quantities, and as noted earlier they cannot be converted to unambiguous values of total scattering
coefficient (extinction), particle number, or mass concentration without auxiliary infarmation on
particle size distribution, shape, index of refraction and mass density. This auxiliary information
. may be obtained concurrently with the lidar measurements by means of direct sampling equipment on air-
craft or balloon platforms. Alternatively, typical values of these auxiliary data as inferred from
a representative direct sampling program may be used to convert the lidar data. The advantage of the
1idar over the direct sampling techniques lies, of course, in its ability to rapidly observe stra-
tospheric regions of large vertical extent, in the fact that it does not alter the quantities that it
is sampling, and its significantly lower cost per observation.
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Even without the auxiliary data or assumptions necessary to convert them to extinction coefficients,
abosolute number or mass concentrations, the lidar data provide direct information on stratospheric
aerosol content given the reasonable assumption that particle size distributions and refractive pro-
perties (as discussed in Section Ilc above) do not vary in a capricious manner over large ranges from
height to haight, or within continuous layers from observation to observation. The profiles of
scattering ratic and aeroscl backscattering coefficient thus immediately reveal the presence, altitude,
and variability (in space and time) of stratospheric aerosol layers. As such, they can provide a
valuable phenomenological basis for modeling and other studies that attempt to describe the dynamic,
radiative, physical, and chemical processes responsible for natural and man-made changes in the
stratosphere. For example, on the basis of the lidar cbservations already carried out in this program,
the following can be concluded:

+ The level of the tropopause {12 to 15 km at Menlo Park, California) appears
to be a level of relative minimum aerosol content.

» The presence of a layer of relative maximum aerosol content near 20 km is
evident in all the observations. The ruby lidar data for this layer show a
particulate contribution to the atmospheric backscatter that is 10 to 15
percent of the assumed molecular contribution. This may be compared with
particulate contributions that were 50 to 100 percent of the assumed molecular
contribution during 1964 and 1965 when the Agung volcanic material was present
in the stratosphere {Grams and Fiocco, 1967).

Although not direct evidence of atmospheric transmission, lidar observations
of atmospheric backscatter coefficient may be used to infer atmospheric ex-
tinction coefficients to a useful degree as discussed in Section Ilc above.
The reduction in the stratospheric aerosol since 1964, has of course led to a
reduction in atmospheric attenuation. This has been noted among others by
ETterman et al (1973) who in the reference cited, gives data on his latest
searchlight determinations of atmospheric turbidity obtained in MNew Mexice in
1970. The values given there approximate conditions believed to obtain in the
pre-Agung period in early 1963. However, our current lidar observations
(Russell, et al., 1973a, b) indicate that present (1973) stratospheric parti-
culate extinction is considerably lTower than even the 1970 values.

The lidar data show large differences in the vertical distribution of the
stratospheric aerosol from one monthly observation period to the next.

Sequential ruby (X = 0.6943 pm) and dye {x 0.5890 um) Tidar observations on

the same night produced scattering ratio profiles having the same shape; how-
ever, the scattering ratios R(z} at the shorter dye wavelength were consistently
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Tawer than those at the Tonger ruby wavelength. This confirms that the enhanced
return from the 20 to 25 km layer is of a particulate origin rather than from

an anomalously molecular layer, since the variation in scattering ratios
observed indicates the presence of non-Rayleigh scattering., Differences

between the particulate backscattering coefficient BA(Z) at the two wavelengths
are nearly within the uncertainty of the measurements, but the possible wave-
length dependence suggested by this observation is consistent with size dis-
tributions for the stratospheric aerosol that other investigators have

measured and. suggested.

The lidar observations reveal a slight increase in the aerosol backscattering
coefficient of the 20-km layer from 2 x 10_9
October 1972 to 6 x 1077 per meter per steradian in May and June 1973. On

the assumption that the refractive properties, shape, and size distribution of
the particulates in this layer remained constant, the observed increase indi-

per meter per steradian in

cates that the particle number density increased by a factor of 3.

As shawn in Figure 7, which compares the change in layer mean aerosol back-
scatter coefficient (EA) as a function of height by month, the largest vari-
ability in particulate backscatter was observed between 22.5 and 27.5 km.

In the 25 to 27.5 km layer, the 1idar-observed aerosol backscattering coef-
ficient showed a decrease by a factor of about 10 from December 1972 to mid-
January to April. Whether this variability was caused by a change in aeraosol
number density, an influx of large particulates, or a significant change in
the nature of the particulates cannot be determined at this time. However,
it is most interesting to note that the decrease of backscattering in this
layer (and the corresponding but smaller decrease in the 22.5 to 25.0-km
layer) coincides with a change in the zonal wind (which is also plotted in
Figure 7) from a westerly to an easterly direction at those altitudes. This
reversal from westerly to easterly flow at the levels in question occcurred

at the time of the seasonal sudden stratospheric warming. The subsequent
increase in backscattering in those layers coincides with a return of the
wind direction from easterly to westerly. It is suggested that the preceding
change from westerly to easterly wind direction atoft brought a relatively
"cleaner” air mass overhead. MNevertheless, caution must be applied in inter-
preting  this coincidence of wind and particulate variability, because a
subsequent change in zonal winds from westerly to easterly during April, May,
and June was evidently not accompanied by a corresponding decrease in parti-
‘culate backscatter. (It should also be noted that the wind data is acquired
by daytime rocket sounding at a site some 200 miles SSE of Menlo Park where
the tidar observations are made at night). We will continue to observe the
relationship os stratospheric winds and particulate backscatter to determine
if significant correlations are present over a long period of time.

383



* On the basis of the lidar observations made during the past eight months,
the conclusion is that Tlarge natyral variations in the aerosol can be expected
in the stratosphere. For example, if routine measurements of particulate mass
Toading were made between 25 and 30 km, variations by a factor as large as 10
could be attributed to natural changes--at least when the concentrations are
as low as those currently observed.

4, CONCLUSIONS

To summarize, we view the role of lidar in atmospheric studies concerned with radiative energy trans-
fer and remote sensing, not as an end in itself, but as a valuable supporting or complementary capability,
that can greatly enhance data obtained by other (passive) techniques.

At the very least, it can contribute greatly to a more realistic understanding of the nature of the
real atmosphere and its variability. For example, it can show both in general terms and for particular
circumstances, the sort of problems an effective radiative energy transfer model must be able to cope
with in treating aerosol tayers. Further, it can provide quantitative data on the thickness and heights
of such layers for use in modelling studies. This information is also significant for remote sensing
techniques, that are affected by the particulate material in the atmosphere even although they are con-
cerned with measurements of the gaseous state (e.g., temperature, humidity, etc.) or with the condition
of the surface of the earth seen through the atmbsphere. And'fina11y, as illustrated by the CIAP
Project, the technique can provide most useful direct information {and more economically than in situ
sensing) on the stratospheric aerosol for a specific purpose. Here again, apart from characterizing
the natural varfability of the particulate content of the upper atmosphere, lidar abservations can pro-
vide inputs to the modellers as well as raising important new questions--such as the reason for the
parallelism noted between zonal wind direction and particulate loading in the lower stratosphere.

In the field of atmospheric radiation studies, particularly in connectien with such pertinent
questions as possible climatic change, there appears to be an increasing realization that the need to
obtain a better understanding of the nature and scope of the interrelated factors on the natural scale,
is greater than the need to probe further into the finer details. It is our hope that lidar obser-
vations can, at least in regard to the role of particulates in the atmosphere, provide assistance and
stimulation both in formulating the relevant problems and in their solution.
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1. INTRODUCTION

This paper will very briefly summarize recent work on methods for calculating the transfer of
infrared radiation in planetary atmospheres. Because several volumes, natably those by Kondratyev
{1965) and especially by Goody (1964a) have reviewed this field up to about a decade aga, the emphasis
will be on developments since that time, It should also be nated at the outset that this review will
emphasize results published in the U, 5. and ‘lestern Europz, while directing less attention to work

done elsewnere, notably in the U.5.5.R,

There are two principal reasons for making calculations of infrared transfer. The first is for
the study of the radiative terms in the atmosphere's energy budget, which must be known for making
predictions of weather and climate. The second is to infer information about atmospheric structure
by comparing such calculations with measurements.,

Three developments have strongly influenced the improvement of computational methods. The ability
to make better measurements has led to requirements for more accurate calculations. Huch better para-
meters for radiative transfer calculations have been obtained, often in the form of lists of spectral
1ine parameters. Since these are described elsewhere in this volume by McClatchey, nothing more needs
to be said except to note their availability, The ready access to large, fast computers now makes
possible very detailed and exact calculations, either routinely or, more usually, to check approxi-
mate calculational schemes,

Although infrared transfer through cloudy and turbid atmospheres is a very active field at present,
this review will treat transfer in molecular atmospheres only, in order to keep within a reasonable length,
This is a crucial problem however, for if we cannot make good calculations for clear atmospheres,
we are likely to be in a worse position with turbid ones.

The calculations can usually be done in a brute-farce way, but one that is quite time consuming,
even on the fastest available computers. The problem is often toselect a methad that possesses enough
of the basic physics to have sufficient (and verified) accuracy for a specific use. With the assumption
of a non-scattering atmosphere in thermodynamic equilibrium, the equation of transfer may be written

I_i(S, UJAV.i = ﬁ“'i I\,(Ss u) dv

-f K, (p(2'), T(z'))o(z') dz
0

u
oo &

V.
i

n
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where I{s,y) is the intensity of the radiation at s, proceeding in a direction which makes an
angle g = cos"u with the outward normal,

th

i subscript denotes an average value over the i~ finite spectral interval, avj wide

subscript denotes a monochromatic value at frequency
0 indicates a point (almost invariably on a boundary) at which Iv may be conveniently cal-
culated
k {p, T} is an absorption coefficient, which depends on the local pressure and temperature
pvis absorber density

B is the Planck black body radiance.
v subscript denotes a monochromatic value at frequency v
The problem may be elucidated by considering the spectral variation of the quantities on the

right hand side of (1}.

The Planck function, B, .is a very slowly varying function, with a scale of approximately
1000cm']. The abserption coefficient k  varies on three scales, however. An individual vibration-
rotation band may be 100-200 en” ! wide? with lines spaced 1-2 e !
1 at the surface to 0.001 el in the stratosphere. The interval over
which the transmission T through a mass a of absorber may be regarded as obeying Beer's law

apart. The Tines have half
widths varying from 0.1 cm”

is considerably smaller than the smallest of these, which could lead to the order of 105-106
separaté points per band. Clearly something more clever must be done.

In Section 2 the most exact technique, detailed spectral integration, or line-by-line calculation
is described. Section 3 describes recent developments in band modeling, treatments of inhomogeneous
paths are described in Section 4, while flux and heating rate calculations are described in Section 5.
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2. DETAILED SPECTRAL INTEGRATIONS (LINE-BY-LINE CALCULATIONS)

Detailed spectral integrations or line-byline calculations, as they are more commonly known,
rely on a direct integration over frequency. Direct integration requires that manochromatic trans-
mittances be calculated at a number of points, sufficiently closely spaced to represent the rapid
variatfon with frequency. A quadrature formula is then applied to obtain an integral over a finite
spectral band, This method was first used by Hitschfeld and Houghton (1961} for narrow intervals
in the 9.6 u m band of ozone, The approach was subsequently used by Gates {1962), but Drayson [1966)
popularized its use for calculations of atmospheric transmittance. In addition to allowing detailed
integrations over frequency, it is possible to allow for the variation of parameters such as line
half-widths and intensities with altitude. The atmosphere may be broken into thin slabs which may
be assumed isothermal, and over which an analytical integration over pressure may be made. In ad-
dition, the 1ine shape changes from a pressure broadened Lorentz shape near the surface to Doppler
shape at hign altitudes. This variation was also easily included in his calculations.

Ta indicate the kind of procedure required, Drayson's method will be described. The spectrum
was divided into intervals 0.0} cm'] wide, and spectral 1ines were located at the nearest hundredth
of a wave number., If a line was present on a particular point, the region near the center was
divided into intervals from 00.001 to (.004 cm'I wide, and a four point Raussian quadrature mesh
was applied over those narrow intervals, If there was no line, larger intervals up to 0,01 cm'] were
taken as the minimum ifnterval, over which a four point Gaussian quadrature mesh was extended. In

these calculations, all lines within an interval above 10 cm-] wide were included exactly.

The wings of all lines more distant than 10 em”!

were calculated separately. These data were
stored every .5 em™!

and values interpolated to the quadrature points.

Once the total absorption coefficient was known at a particular frequency, it was multiplied by
the absorber amount to give the optical depth. Taking the negative exponential of the optical depth
gave the monochromatic transmission. The frequency quadrature was performed on the transmission,
using the mesh points established above,

When a number of lines are close together, or a line falls at the end of an interval, slightly

more complicated expressions are used. The results were averaged to give values over every 0.1 cm"|
interval.

A more recent calculational scheme has been described by Kunde and Mchuire (1974). Details of
their spectral mesh are shown in Fig. 1. Fig. la indicates spacing of up to four Gaussian quadrature
points when no spectral lines fall within a 0.1 em! interval. If there is only one line as in Fig,
1b, two subintervals of width d]= 0.01 cm'] are formed on either side flanked by subintervals of
width dz and ¢, going to the ends of the 0.1 cm'1 interval. Gaussian quadrature is preformed over
each d], d2' d3 subinterval. The use of these subintervals results in two to three significant figure
accuracy. When more than one line is present in the interval, the division is as shown in Fig. lc.
This scheme leads to between four and eighty quadrature points in an interval.
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In order to compare the detailed spectral integration calculation with measurements, the cal-
culated transmittance or radiance over the 0.1 cm'1 intervals must be convolved with an instrument
response function, This has usually been done in a straightforward way; these authors used a fast

Fourier transform approach to perform the convolution,

Results of such a calculation by Drayson, et al, (1968} for a homogenegus path (constant pre-
ssure and temperature) are shown in Fig. 2, where transmission through a cell of carbon dioxide is
compared with experimental data by Burch, It can easily be seen that there is good quantitative
agreement between the two, deviations being generally less than 5-10%. Discrepancies are in the main
@ branch, where calculated transmittance is considerable Tower than the measured value, and also in
the § branches at 640 and 720 wave numbers. One difficulty in these regions is that the true instru-
ment function must be known very accurately to give accurate values.

An additional use of such calcualtions is apparent in the figure, in which the results using
two different 1ine half-widths for all lines of a band are compared with values using the half-
widths varying with rotational quantum numbers. While it is hard to draw conclusions from a cursory
inspection of the diagram of the figure, it is clear that the half-widths must be greater than

0.06 ::m'I near the band center.

A similar calculation for the 701 c:m"1 (14 micremeters) band of ozone is shown in Fig. 3. Here
a line-by-line calculation of Kunde and McGuire is compared with experimental data of McCaa and Shaw

(1968}. Again, overall accuracy is 5-10%.

Before showing results of detailed integration through the atmosphere, mention should be made of
an ingenious suggestion by Kyle (1968) that a much faster integration could be done with a uniform,
coarse mesh. This scheme is illustrated in Fig. 4. Here numbers on the abscissa indicate the Tocation
of quadrature points for a net centered on a spectral line, This woyld Jead to the result shown by
the dotted Tines. However, if the quadrature net is offset from the line center by A, the dashed lines

would result. Alpha is the line half-width.

Kyle showed that normalization of the area under a line cives A (defta) as an unique function of
D/a, where D is the spacing of the quadrature points. For the atmosphere, delta is approximately 1/6 D.
The total absorbance was calculated as a function of the dimensionless parameter sU/2na, which s ona2-
nalf of the optical depth at the 1ine center, and parametrically as a function of D/a. The results in
Fig. 5 show that to minimize the maximum error, D/« should be approximately one; thus quadrature points
could be spread approximately .05 cm'7 apart at the surface. For paths gaing through the strataﬁphere,
however, the quadrature points should be spaced 10'3 r;m'T apart, Since this is of the grder of the
spacing for Draysen or Kunde and McGuire, there 1s not much difference in fact. Kyle's scheme has the
disadvantage of requiring closely spaced calculations even when there are ng 1ines, Additionaliy the
error is somewhat Targer than one would like.

A
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The results that .can be obtained by line-by-Tine integration through the atmosphere are illus-
trated in Fig. &, from Xunde, et. al. (1974). They compared interferometer spectra taken from the
Nimbus-4 satellite with calculations between 425-1415 cm']. The computations, were based on a
0.1 km vertical interval. The transmission was computed in this fine spacing by calculating trans-
mission at a coarser vertical mesh, 0.5-4 km spacing, and then interpolating to finer vertical
spacing. Not all spectral lines need to be included. Lines having intensities Tess than 10'6
2 atms.'] were omitted {giving a total range of seven arders of magnitude of Tine intensity).
This still resuited in over 8,000 lines of carbon dioxide in the interval 300 to about 1100 cm'1.

o

The departures of actual line shape from the Lorentz line shape are easily included in a detailed
spectral integration. The wings of the carbon dioxide band at 667 cm—] (15um) have been found ex-
perimentally (Burch, 1970} to be pne percent of their Lorentzian value. Kunde and McGuire applied
this correction to their line wings. In addition, they employed the Bignell (1970) scheme of self
broadening for water vapor in the 1000 ar ! window region,

A number of familiar spectral features are immediately seen, including the water vapor ratation
band between 425 and 580 cm'1, the carbon dioxide band between 580 and 800 cm'1, the 1040 cm-1 ozone
bands (on the observation only), and the water vapor band centered at 1600 cm_1. Not as apparent

are the contributions by methane and nitrous oxide near 1300 wave numbers,

The accuracy achieved by these authors 1s indicated in Fig. 7, where percentage error is plotted
as 4 function of wave number, Note that the errors in the rotational water vapor band and water
vapor continuum are generally less than 5%, Because of lack of data on ozone distribution, the ozone
bands at 1040 and 701 t:m'.i were not included, contributing to larger errors in those regions. The
N20 band at 588 wave number was not included, while the NZO band near 1200 c:m'1 and a methane band
near 1300 c:m'T were included only crudely, Surprisingly large errors, 10 to 15%, are seen in the
667 cm'] band of carbon dioxide. These are rather surprising, and impartant in view of the widespread
use of this bana for temperature determination, However, the authors believe much of this error 1%
due to inadequate temperature measurement in the atmosphere.

The conclusion that we may draw from these results are that the 1ine-py-Tline calculation scheme,
in conjunction with good spectral data for atmospheric gases, gives results in good agreement with
measurements made by carefully calibrated satellite borne spectrometers., Differences still exist,
of course, which may be traced in part to the absclute calibration of the satellite instrument and to
inadequacies in the in-situ measurements, As the authors note, the outgoing radiance 1s more sensi-
tive to Planck radiance {temperature) than to details of the transmittance model. Therefore, this
is not a good way of improving knowledge of atmospheric transmittance.

Based on these calculations, we may regard the adequacy of the line-by-line calculations as es-
tablished; however, they are obviously quite elaborate, and requirve a great deal of time on a fast
digital computer. They provide information with high spectral detail, but this is not required for
many applications. Let us next look at simpler schemes for calculating transfer through the atmosphere.
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3. BAND MODELS

Band models provide means of calculating transmission across finite spectral intervals. They are
based on analytical deductions from plausible assumptions about lipe positions, intensities and half-
widths. They may be used to treat an entire band, or some fraction of it. Goody (1964a) discusses a
number of band models in detail.

Elasser (1942) proposed the first band model, an infinite array of lines of constant intensity
and half-widths spaced uniformly in freguency. This is often referred to as the regular band model.
At the other extreme, Goody {1952} described a model in which the lines in the array were randomly
positioned in frequency, and the line intensities were prescribed by a probability distribution function.
Three distributions were reviewed by Goody (1964a), i.e. a delta function {all lines havingthe same in-
tensity) and probability falling off exponentially with line intensity, and probability inversely pro-
portional to line intensity. (A fourth, newer distribution is discussed below). The random model was
originally developed for water vapor, the spectrum of which exhibits a random appearance to the eye.
One surprising result has been the discovery that carbon dioxide, which appears to be a relatively
regular band, and also ozone can be parameterized reasonably well with the random model.

Fig, 8 taken from Goldman and Kyle (1968) shows a comparison of detailed tin-by-line calculations
of ozone transmission in a random band model with exponential line intensity distribution. A close
agreement can be seen. This finding is at odds with earlier results which suggested that ozone trans-
mission could not be well represented by a random model.

Random band models can also be fit to experimental or computational results (Goody, 1964a;
Rodgers and Walshaw, 1966). One requires agreement in the weak 1ine limit and the strong line Timit;
the behavior in between is determined by the band model. One must investigate the agreement between
the band mode] prediction in the intermediate region and the data to assess its usefulness for a par-
ticular purpose.

An example of such a fit is shown in Fig. 9 (Gille, unpublished). Here the plot is of - In T/p
as a function of the ratio a/p, where T equals transmission, p is pressure, and a is the amount of
absorbing material in the path, For the random bands, this plot yields a universal curve for each
distribution nf line intensities. The line of slope 1 at the Tower Teft side of the figure is the
weak line region, while the line of slope 1/2 at the upper right side is the strong line Timit. Here
agreement has been forced at the two ends, and a reasonable fit is obtained over nine orders of mag-
nitude. The calculated points, taken from CO2 transmission values calculated hy Yamamoto,Wark et al
{1963) fall below the 1ine in the transition region. For a distribution in which all lines have
constant intensity, the transition region 1s sharper and higher; (Fig. 11) g2 probability dis-
tribution with a S'] distribution, the line would 1ie lower, and in better agreement with the data.
This indicates the need to include more weak lines than the exponential distributicnwill allow.
Nonetheless, carbon dioxide transmission in this fnterval fits a random exponential model reason-
ably well. Maximum transmission errors are ~15%, The random-exponential madel does not fit data
for spectral regions containing the 667 c:m'.l Q-branch at all well,
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This inability of the random-exponential modsl to fit data because of a lack of weak lines ap-
pears to be a common occurrence. Gille and Goody (1964} found that it was necessary to add weak
lines to obtain agreement between crude NH3 spectral data and emissitivity measurements. Lee (1973,
unpublished) using much better spectral data, again found better agreement with the s distribution,
This indicates that transmittances calculated from theoretical spectral line data must be tested where-
ever possible against experimental observations, since the total number of weak lines may not be ade-
quately catculated.

The effect of large numbers of weak 1ines was also explored by Plass (1964). He noted that, with
the addition of a large number of lines 10'4 as strong as the strongest line in an interval, the in-
termediate region between the strong and weak 1ined asymptotes became longer and more irreguiar. This
point was considered further by Maikmus {1967}, Fig, 10, from his paper, shows plots of probability
distribution functions for the exponential distribution of line intensity (Curve C)} and two curves
(A, B) having an S'] distribution. Curves A and B differ in the range over which the distribution
holds. Malkmus considered adding exponential tails on the high and low value ends of the S'1 dis-
tribution, and showed that a simpler expression for the transmittance results. Fig. 11 shows the
plot of - In T/p versus a/p for four distributions of line intensities. The f distribution is
for all lines at the same intensity; e is for the exponential distribution; g is for the 5"1 dis-
tribution, and h is Malkmus exponential tailed 57 distribution. The addition of more weak lines
in the Malkmus' model leads to a broader transition region. Advantages of this distribution are a
more realistic distribution of higher intensities, and a simpler algebraic representation, Rodgers
(1968) derived this model from samewhat different considerations, and showed that two bands of this
form give a good representation of Walshaw's {1957} data on the 1040 cm” ) bands of ozone.

A1l band models to this point have been based on two parameters, (5/8 and o/8). Zachor (1968)
has generalized this by pointing out that

1 \? 1 \? 1 \? M
() - (w)  (w) v
is a representation of a random band model if M = 0. Here TW’ TS represent the transmittance in
the weak and strong line regions, respectively. Addition of the final term can lead to a slower or
more rapid approach to the asymptotes, depending on whether M is greater or less than zera. He
showed that this expression is also a very good approximation te the random, reqular, or Curtis model

(random distribution of lines of equal intensities) if M 91s determined from a single point on the
curve,

Zachor also noted that King (1967) propased a two parameter fit to the strong line region, given by

TS =1-P

1 ]
n,[n[‘(n) {2 Cap/m) /2] /n‘

402



where n {s an adjustable parameter depending upon the ratio of the variance ({;) of the line
spacing to the square of the mean line spacing (62) and P{a, x) 1s the incomplete gamma function.

1 A .
P{a, x) = [F(a)] ‘/; LIPSl

This expression for Tg provides a continuous set of trial functions, inctuding the regular model

(n=0,5} and the random model {n=1). Clustering of the lines leads to values of n greater than one.
The transmission may naw be written in terms of the four parameters $/8, M, n and C for each wave-
length interval,

Gibson and Pierluissi {197}) have extended the model slightly further, while getting closer to
the concept of a model as a {complex) curve fit, by noting that

..lf
Ty = Sa/6 =B, 7*

and writing

VLB, B L Bus
T 2 2

where BW’ Bs > 3, BNS < BNBS'

With Kings expression for the strong 1ine 1imit, this is now a five parameter model. Applying
this formulation to calcu]ated CO transmittances at 300K averaged over 50 cm ], they found rms deviations
of 18.2 x 1073,3 » 7 x 107 %and 2, 3 x 1073 for the Goody random model, the Zachor model, and the five
parameter models, respectively., Pierliussi (1973) found similar results for 5 cm -1 experimental data

on a €0, band at 4853,6 !

By comparison, Smith (1969) used a straightforward fit of 1In(-In T} to a, p, &, ap, ad, a2 and
in some cases higher terms still, where T came fram experimental results and 6 fs temperature. The
rris errors are of the order of 1%, which suggests that the 5-parameter medel {s more economical.

In a somewhat similar vein, McClatchey, et al, (1972) have presented nomograms for obtaining em-
pirical transmittances. A program is now available to compute these {Selby and McClatchey, 1972).
Accuracies are stated to be of the order of 10%.

The final example of a band model is the quasi-random model, described by Wyatt, et al. (1962),
although the fdea is implicit in Goody's (1964a) discussion of general random models. This is physi-
cally motivated, but relies much more heavily on computer handling of cata than other band medels,
and therefore in some ways falls between the simple band models, and Ytine-by-line calculations., It
is motivated by the realization that line positions in real bands are neither completely regular nor
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completely random, and that Tine intensities are not simply characterized nor uncorrelated with 1ina
positions. The approach is as follows:

1. The spectrum is divided into small intervals, e.g. 5, 50, or 100 cm']. Spectral
lines are located within the correct small interval, but are assumed to be randomly
located within it;

2.  The spectral line intensities in the interval are characterized by a histogram of
actual line intensities;

3. An analytical expression is used for the absorption by the spectral lines in the
interval, and the actual number of lines are used;

4. The transmission for each group of lines in the intensity histogram is calculated,
and these transmissions are multiplied to give the effect of all local lines;

5. The transmission by the wings of lines in other intervails is calculated, and mul-
tiplied by the effects of local Tines to give the total transmission by the interval,

Obviously, this requires a computer to do, but is far less time consuming than a detailed frequency
integration. An example of some transmittances calculated by Stull et al. {1964) according to the
quasi-random model and their comparison with laboratory measurements is shown in Fig, 12. The agree-
ment is seen to be generally quite good, although there are problems near the 3 branches.

Another quite different approach has been recently explored by Arking and Grossman (1972}, al-
though the idea, mentioned by Kondratyev {1965, 1969) goes back at least to Lebedinsky (1939). In
this methed, rigorously applicable anly to a homogeneous atmosphere, the absorption coefficient k(v)
is transformed into a k distribution function, giving the frequency of occurrence of absorption co-
efficient k within a wavenumber interval. The authors point out the advantages of such an approach -
exact and relatively simple treatment of integrals over frequency and zenith angle., They have also
provided considerable insight by showing the distribution functions for single line reqular and ran-

dom band models, as well as an example for a portion of the 15 um band of COZ.

In practical application, this generally becomes a 4istogram of absorption coefficients in a given
band, such that

N
-k, a
T{a) = E b,e 1

i=1
N

where clearly 2{% bi = 1, and both b1 and ki are functions of the conditions 1n the homogeneous layer,
'1:

This approach is often used in heat transfer engineering, Kondratyev (1965, 1969) discusses examples

of its use in the USSR, Raschke and Stucke (1973) show the agreement of such fits with experimental
data,
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4, TRANSMISSION THROUGH INHOMOGENEQUS ATMOSPHERE

Because the variation of pressure and temperature along a ray path may be calculated directly in
a line-by-line scheme, the treatment of atmospheric inhomogeneity is a problem only for band model
calculations.

The Curtis-Godson {CG) approximation is the standard method of treating radiative transfer through
an inhomogeneous atmosphere, Goody {(1964) presents a derivation of the required expressions. The
goal is to replace the inhomogeneous path by an "equivalent" homogenepus path, for which the results
of the preceeding section will be valid. This equivalence is defined by requiring exact agreement in
the strong and weak line Timits, which would be expected to yield reasonably accurate values over the
entire range. Several studies (Kaplan, 1959; Walshaw and Rodgers, 1963; Goody, 1964b; Zdunkowski and
Raymond, 1970) have in fact indicated that the CG approximation generally gives very good results,
with the exception of situations in which there are small amounts of absorber at‘high pressure and
large amounts at low pressure. The form in which it has been most widely used most recently was de-
veloped by Godson and applied by Rodgers and Walshaw (1967).

This has, for the amount of material in the equivalent path

E=_/w(T) da

and .
pa = f¢(T)p da

1 v/ '
where (T} =Zsi(T}/ZSw, o(T) = Z (51“1) 2/’Z:(Smocm) 2, and subscript 0 refers to con-
i

ditions at standard temperatufe. The functions vy and ¢ contain the information on the temperature
dependenca. ’

Goody {1964b) has used an early formulation of van de Hulst to develop a higher approximation to
cbtain more exact results. The algebra is complex, but expressions are given which may be used to
correct for the amount of absorbing material.

Armstrong (1968d) considered several improvements to the CG approximation for single lines. The
most accurate method evolved from performing the integral over pressure (altitude) by Gaussian quad-
rature. This is equivalent to dividing the path into two or more sequential homogeneous paths. The
Tabor involved appears to be less than that required by Goody's method. ‘

Following a different approach,Yamamoto and Aida {1970) found excellent results for a uniformly
mixed gas in a non-isothermal atmosphere by introducing a suitable mean temperature. Following this
approach, Yamamoto et al., (1972) cbtained a better approximation for non-uniformly distributed gases
by defining a suitable mean half-width & from ‘
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@)E = fsof du/fdus.

The parameter ¢ depends upon 52/ 3 and an exponent n, whose value can be determined from initial
calculations which include the vertical distribution,

The percent error of integrated absorption by a single ozone line from the top of the atmosphere
to the surface is shown in Fig, 13 as a function of absarber amounts (slant angle). Clearly this
approximation provides results more accurate than those given by the Curtis-Godson or Goody approaches.

The simplest method of handling atmospheric inhomogeneity is by the scaling approximation,(Goody,
1964a). This has recently been employed by McClatchey, et al. {1972) by expressing transmittance as
a function of ap" where n=0.9 for water vapor, Q.75 for C02 and 0.4 for ozone,

A further problem that becomes important in the stratosphere, where the pressure is Tow is the
appearance of Doppler effects on the spectral lines and the emergence of Voigt (combined Doppler-
Lorentz) 1ine shapes. Several authors including Young (1967), and Hummer (1964) have written on num-
erical methods for computing the Voigt profiles for single lines. These have been Tucidly discussed
by Armstrong (1967). Tabulated values of equivalent widths of single Yoigt lines have been prepared
by Jansson and Korb (1968).

The effects of Doppler broadening on a random array of lines with exponential distribution of
intensities is shown in Fig. 14, from Gille and El¥ingson (1968)., As H/a/L is proportional to
-In T/p, and u to a/p, the axis are those seen above. The parameter d s 2uL/uD where subscripts
L, D, ¥V will refer to Lorentz, Doppler and Voigt respectively. For small d, where the Voigt shape
is relevant, the weak line region extends to larger values of a/p, followed by a flat region merging
eventually into the square root region,

Gille and Ellingson showed that the transmittance of this band may easily be corrected for Doppler
effects, since

T, = exp (-AL)

and

Y

exp (-AV) = exp 'AL .

where ( = AV/AL ts a function of a/p and d, as shawn in Fig. 15, This same correction should
give a good first approximation for other random models.
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5. FLUX AND HEATING RATE CALCULATIONS

Time does not permit a discussion of all the schemes used for atmospheric calculations. Rodgers
and Walshaw (1967) developed a code employing the random-exponential band model based on spectral data
and an analytic form of the integration over zenith angle to obtain the flux, defined as

F= 2ﬂfu1(u) dy

for a homogeneous plane parallel atmosphere. They concluded that, to nearly the same accuracy, one
could use a diffusivity factor r = 1.67. This allows calculation of the flux from a flux transmit-
tance, which is

TF(a) = T(fa)

{The theory of the diffusivity factor has been extensively investigated by Armstrong, 1968b.) They

also incorporated the Curtis-Godson approximation, to treat the variation of temperature and pressure
along atmospheric paths, and Gaussian quadrature in the vertical direction to minimize errors. Finallyy
they solved for heating rates instead of fluxes.

Ellingson and Gille (in preparation) have developed a model employing many of the same features,
They used newer spectral data. The principal differences between this model and the Rodgers-waishaw
{RW) model are that this model has 100 spectral intervals, about ten times more than RW, in order teo
follow the rapid variation of atmospheric absorption with frequency more closely. Other important
differences lie in the atmospheric absorbers included, and the sources of transmission data, The ozone
bands at 9.6 and 14 ym were included, along with less detailed treatments of methane (CH4) and nitrous
oxide (NZO) bands near 7.75 wm. Temperature dependence was included for all bands. Finally, Bignell's
{1970} e type continuum was included in the window region,

This model can also be used to compute the upward intensity at the top of the atmosphere which
can be compared to satellite measurements. An example is shown in Fig. 16, where the value computed
by the Eliingson-Gille model is compared to measurements obtained with the Infrared Interferometer
Spectrometer (IRIS) experiment on Nimbus 3 (Conrath, et al., 1970}, The agreement is seen to be quite
good. Percent differences in individual spectral intervals are less than 5% in individual intervals
{except for two beyond 1320 cm']). The integrated difference 1s 1,12%, This is typical of five such
comparisons under clear conditions, This comparison is significant, as it 1s one of the first between
a calculation scheme designed to give fluxes and heating rates in the atmosphere and precise satellite
observations. Comparisons with low, cost, expendable radiometersondes do not yield as good agreement,
as the study by Gille and Kuhn (1973) shows. '

If no spectral resolution is required, emissivity type calculations may be made. Sasamori (1968}
and Manabe and Wetherald (1967) have described traditional calculations of this type for use in gen-
“eral circulation modeling where speed is crucial, Cox {1973) has also developed a model of this type

407



to study the sensitivity to the e type continuum,

Emissivities may also be thought of simply as parameterizations which can be chosen to give bast
results. Rodgers {1967} has explored several different formulations for the emissivities, and found
that separate emissivities for upward and downward fluxes, obtained by fitting values calculated by
more accurate schemes to temperature corrected absorber amounts, gave excellent results.

Another method for calculating cooling rates relies on the fact that above the lower troposphere,
most of the cooling is due to Toss to space, and may be approximated by Newtonian cooling. Originally
used by Murgatroyd and Goody (1958), this has been developed most fully by Dickinson (1972, 1973} for
the atmospheres of Venus and Earth.

6. CONCLUSIONS

The comparisons between direct spectral integration and high precision measurements suggest that
calculational techniques are sufficient for molecular atmospheres. However, such computations are ax-
tremely time-consuning.

A wide range of approximate treatments is available. Traditional band models are much faster,
but may introduce undesirably large errors. More sophisticated models and ways of using them, developed

over the last 10 years, appear capable of providing quite good results with relatively modest increases
in computational effort.

The problem of transfer through turbid atmospheres is now under active investigation in many places.
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FIGURE CAPTIONS

Figure 1. Schematic of spectral mesh used for 0.1 cm'] interval.
a) No spectral lines, one interval, four mesh points;
b) one spectral line, six sub-intervals, 24 mesh points;
c) two spectral lines, 11 sub-intervals, 44 mesh points.
{After Kunde and McGuire, 1973).

1 band of carbon dioxide

Figure 2. Homogeneous path comparison for the 667 cm
between low resolution laboratory measurements by Burch, et al. (1962)
and line-by-line calculations. Experimental conditions: absorber
amount, 6.30 atm cm; equivalent pressure, 0.0205 atm; temperature,

300K. (After Drayson, et al., 1968).

Figure 3. Homogeneous path comparison for the 701 cm‘] ozaone band between
labaratory measurements by McCaa and Shaw {1968) and line-by-Tine
calculations. Experimental conditions:

a) absorber amount, 2 atm cm, pressure, 0.0876 atm; room temperature;
b) absorber amount, 9.4 atm cm; pressure, 0.701 atm; room temperature.
{After Kunde and McGuire, 1973).

Figure 4. I1lustration of two quadrature nets, with A, the offset of the mesh
from line center, equal to zero {dotted line) and offset by A (dashed
line). {After Kyle, 1968).

Figure 5. Percent error .of the integrated absorption of an atmospheric line for
the step sizes D/o shown above the curves, for optimal A. Abscissa
is one-half the optical depth at the line center.

Figure 6. Comparisen of observed and calculated radiances for a clear atmosphere
near Guam at 15.1°N latitude and 215.3°W longitude on April 27, 1970.
{After Kunde, et al., 1974).

Figure 7. Percent difference between observed and calculated radiance for the
Guam case shown in Fig. 6. (After Kunde, et al., 1974).

Figure 8. Comparison of absorption spectra obtained by line-by-line calculation,
(curves 1), and by the statistical model calculation, {curves 2}, for
the 9,6 um ozone band. The line-by-Tine calculations are displaced by
20%. Conditions: A curves, pressure, 0.0197 atm, path length, 97.88 cm,
For both calculations, line half width was taken to be 0.08 el atm'1.

temperature, 233°K. (After Goldman and Kyle, 1968).
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Figure 9. Fit of a portion of the 667 crrt"‘I band of 002 to a random band model

with exponential distribution of line intensities. (Gille, 1965,
unpublished).

Figure 10. Line intensity probability distribution functions. Curve C is the
exponential intensity distribution P(S) = § -1 exp (-5/5). The dashed
curves A and B are the truncated S™) distributions P(S) = (S In R)'T
(SM/R <5 g_SM), P(S} = D (otherwise). The solid curves A and B are
the exponential-tailed S \distributions P(S) = S{In R)'1 [exp(-5/Sy)-
exp(-RS/SM)]. For curves B, R is 103, for curves A, R is 10%. 1nan
cases, P(5) is normalized and 5 denotes the mean intensity: 3% =.[SP{S) ds.
For A and B, § is equal ta (R-1) (R 1n R)']SM. The figure demonstrates
the greater emphasis placed on weaker lines relative to stronger lines
in the distributions proportional te § . (After Malkmus, 1967).

Figure 11. Curves of growth for random band models composed of pressure broadened

1ines for four different intensity distribution functions: f{x_}, al}

)
lines of the same intensity; e(xE), expohential distribution, -
P(S) = exp(-45/mS); g(x ). ogival distribution, P(S)es™I(S <),
P(S) =0 (5> Smax); h(xE), exponential tailed ogival distribution,
P(S) = 5'1 exp (-S/nSE). Xp = ca/p. Quantities are defined so that

asymptotes are the same in all cases. (After Malkmus, 1967).

Figure 12. Homogeneous path comparison for the 667 on”) band of carbon dioxide
between laboratery measurements by Burch, et al. (1962) and quasi-
random model calculations. Experimental conditions: absorber amount,
46.4 atm cm; pressure, (.0205 atm. {After Stull et al., 1964).

Figure 13. Percent error of integrated abosrption of the R(44) line of ozone as
a function of absorber amount {slant angle) for paths between the sur-
face and top of the atmosphere, for three treatments of the inhomogeneous
atmosphere. The arrow indicates values that actually occur in the
spherical, terrestrial atmosphere, (After Yamamoto et al., 1972).

Figure 14. Mean curves of growth for a line in a random band of lines having ex-
ponential distribution of line intensities, for several ratios of
Lorentz to Doppler half widths. Curves are marked with values of
d= 2aL/aD. Pure pressure broadened (Lorentz lines} correspond to the
line d ==. On this scale, the Tine d = 1 cannot be distinguished
from d = =, (After Gille and Ellingson, 1968).
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Figure 15.

Figure 16.

C= AVIAL as a function of u « a/p for several values of d. The
x- axis {C=1) corresponds to pure Lorentz lines. Plus signs show
values calculated according to a modified Curtis approximation (Rodgers
and Walshaw, 1966). An improved approximation is available {(Rodgers,
1973, private communication.)

Comparison between observed (dotted lines) and calculated (solid line
histogram) upward radiances from earth and atmosphere near Barbados,
W.I. on June 4, 1969. (bservations were made by Infrared Interfero-
meter Spectrometer (IRIS) experiment on Nimbus 3 (Conrath, et al., 1970).
The smooth curves give values of the Planck function for the indicated
temperatures. Calculations are from Ellingson and Gille, 1974.

415



O.lem'

(a)

d; d d, dg d, d, ds

FIGURE 1

416




AN

TRANSMITTANCE

0.0

i ——  EXPERIMENTAL
¢ — —— VARIABLE @
i —«—- @, =0.08¢cm’'

¥ e @ 20,086 cni!

580

600 620 640 660 680 700 720 T40 760
' WAVENUMBER (cm')

FIGURE 2

780



TRANSMITTANCE

EXPERIMENTAL —
THEORETICAL ---

06 |- (@) |
a ] ] 1 | | |
500 600 700 800 900
1.0 l !
06 .
EXPERIMENTAL — \/
0.2 |- THEORETICAL --- *~ Y ]
500 600 700 800 500

WAVENUMBER (cm™)

FIGURE 3

418



FIGURE 4

o
"

JINVLJEHOSEY Q3ILVHOILNI
30 304493 %

FIGURE 5

419



02t

RADIANCE {erg.sec cm:®sri/emt)

t/l T T T T T T
120 GUAM 4/27/70
— OBSERVED
----THEQRETICAL
80
40 v
225°K v
o 3 4 1M .
\202 K Mhm”
0 Loy e e TR — —— LAACTr R A

400 600 800 1000 1200 1400
WAVE NUMBER (cm™ ")

L | 1 1 i i 1 | 1 1 1

25 20 15 10 9 8 7
WAVELENGTH {(micrometers)

FIGURE 6



2r

m] (percent)

1
Nm

20

10 I~
0 Vi L,
721cm H,0
I Cop— |
-10F 2
_20 1 1 1 1 1 1 i 1 1 1 1
400 600 800 1000

1
| GuA

M, 4/27/70

Nz O~

WAVE NUMBER (cm™)

FIGURE 7




TRANSMITTANCE

100
100
100
80
60
40
20

i 1 i | 1 1 I 1 1 1 1

i i

1000 1010 1020 1030 1040 1050
WAVE NUMBER (cm™)

FIGURE 8

422

1060

1070



T | ! T T T T T |
-Ln T

vs a/P
675-700 cmi’'
- e I.LOATM

o .l

— A .0l
x .00

\\RANDOM BAND, P{S)= -é'.—e s/ |

1 i ! I L I I i 1
-3 -2 -1 0 | 2 3 4 5 6 T
LOG a/P {(cm)

FIGURE 9

423



S P{S)

FIGURE 10

424




O ; '
——f (Xg)
10 f---elXe) ]
a | g(Xe)
S ]
S
0 !
-2
10 P E—
. 3
6° 16 1 1o 1% 10
ca/p
FIGURE 11

425



TRANSMITTANCE, %

100
90
80
70
60
20
40
30
20

A
\ 7
) J
b ‘ ’
d Al
Ty
Lt / !u;
1] 1
IR &
Y t
\ i v
|}
{
h“ h
K U — EXPERIMENTAL
~—-|THEORETICAL

600

700 800

WAVE NUMBER (cni')

FIGURE 12

426



32 '"--cunn;-soosu-,,}’\\ 6, Ri44T]
- —soooY PRI -
24 f—rmmame SN
16 | ’,’ by -
R / » .
’, \\\
8r - R
- - N=2.3 .
0 it /30%
\‘ e !-5 .
5 =Y > -
-8 [ — -
0.0l Q. 1.0 100 1000
Xeo
FIGURE 13

427



-2-1 012345678

LOG u

FIGURE 14

428



60 LA L

LA
L1 11

|
“I‘[IO

LI LA RLL
+ 1 ) t1laln

FIGURE 15

429



Otv

SPECIFIC INTENSITY (ergs/sec-cm-ster)

140

120

100

80

60

40

20

-~ OBSERVED
———CALCULATED

800 1200 1600
WAVE NUMBER (cm™)

FIGURE 16



N?5 115¢1

MOLECULAR ABSORPTION
PARAMETERS IN ATMOSPHERIC MODELLING

Robert A. McClatchey
Air Force Cambridge Research Laboratories (AFSC)
Bedford, Massachusetts

Abstract

The report describes a compilation of the molecylar spectroscopic parameters for
a number of infrared-active molecules occurring naturally in the terrestrial
atmosphere. The following molecules are included in this compilation: water
vapor; carbon dioxide; ozone; nitrous oxide; carbon monoxide; methane; and
oxygen. The spectral region covered extends from less than 1 um to the far in-
frared, and data are presented on mpre than 100,000 spectral Tines. The para-
meters included in the compilation for each line are: frequency, intensity,
half-width, energy of the lower state of the transition, vibrational and ro-
tational identifications of the upper and lower energy states, an isotopic iden-
tification, and a molecular identification. Using this data compilation, band
mode] parameters are presented ( IZS; and I{Sjaq)!/z)} for water vapor, carbon
dioxide and ozone averaged over 20 wavenumber intervals between 10 and 2500 cm-1,
Using these parameters in a random model formulation, transmittance spectra are
provided and compared with both degraded monochromatic caTculations and labora-
tory data.

1. INTRODUCTION

The molecular data described and used in this discussion are part of an extensive compiiation of.
molecular spectroscopic data for atmospheric molecules compiled by McClatchey, Benedict, at al, 1973.

About ten years ago a program was initiated to compile spectroscopic data on individual vibration-
rotation lines of water vapor-in the 2.7 um region (Gates, et al, 1964). This work continued resulting
in a publication on the 1.9 and 6.3 pm bands of water vapor (Benedict and Calfee, 1967}. Other workers
have published similar results on the 15 pm bands of co, {Drayson and Young, 1967), the 9.6 um bands
of 03 {Ctough and Kneizys, 1965}, the CO bands whose fundamental is near 5 um (Kunde, 1967}, the

CH4 bands near 3 and 7.5 um (Kyle, 1968) and the unpublished rotational water data calculated by
Benedict and Kaplan in 1959 (see Goody, 1964, p. 184). '

431



About five years ago an effort was initiated at AFCRL to continue this work with the aim of providing
a complete set of data for all vibration-rotation Tines of all naturally accurring molecules of signi-
ficance in the terrestrial atmosphere. With such data at hand, it would be possible to compute the
transmittance appropriate for atmospheric paths by first computing the monochromatic transmittance many
times in a finely spaced frequency grid and then degrading the results to any appropriate spectral
resolution. Up to now the molecules shown in Table 1 have been included in this compilation.

A1l of these molecules except oxygen are minor constituents of the atmosphere, but nonetheless
represent most of the absorption lines in the visible and infrared. Although there is some evidence
for decreasing concentration with height of NZO’ €0, and CH4, it is probably reasonable faor most
purposes to assume that all of these gases except H20 and 03 are uniformly mixed by volume in the
atmosphere unless other specific information is available. Table 1 provides concentrations for these
uniformly mixed gases. Water vapor and ozone are, of course, not uniformly mixed and an appropriate
set of models useful in considering the radiation effects of these gases is provided by McClatchey,
et al, 1972. The number of entries of each molecular species covered is also given in Table 1.

2. DESCRIPTION OF COMPILATION

In order to compute the transmittance due to a given spectral line in the atmosphere, it is necessary
te describe the absorption coefficient as a function of frequency for each line. The four essential
line parameters for each ]1ne included in Tab1e 2 are the rescnant frequency, v 0(cm ) the intensity
per absorbing molecule, S(cm” /molecule em” ) the Lorentz line width parameter, uo(cm /atm) and the
energy of the Tower state, E"(cm . The frequency, vy , is independent of both temperature and
pressure (except for possibly very sma]] pressure effects of less than 0.0] cm'] atm, which have been
ignored here). The intensity, S, is pressure-independent, and, as discussed below, its temperature
dependence can be calculated from £" and v.

The line half-width at half maximum, a, is by definition proportional to the pressure, p, and its
temperature dependence can be estimated as discussed below.

The precise 1ine shape is a matter of some uncertainty, but in the derivation of line parameters from
laboratory measurements, it is customary to start from the Lorentz shape {see Goody, 1964) given in

Eq. (1),

Sa
k = 1
v (v - u0)2 + az )

wr
n

Jk({v) dv

The validity of Eg. (1) to describe the true line shape is subject to two limitations. The first,
which can be precisely estimated and corrected for by the use of the Voigt shape, occurs when
oy P/ap < 1.0 where o is the doppler Tine width which varies with frequency, temperature and molecular
mass as given in Eq. (2).

2kT on 2 /2

£ = 4.298 x 1077 w(1/m)'/2 (2)

Vv
Oy = -
b ¢
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where M = molecular weight and here k = Boltzmann's constant and m = mass of a malecule.

For atmospheric molecules and infrared frequencies, modifications of the Lorentz shape begin to be
required at pressures below 10 to 100 mb.

The second limitation concerns possible inadequacies of the Lorentz shape, especially in the distant
wings of a line (]v - v0| »>> a) (see Winters et al, 1964, and Burch, et al, 1969) or when the long
range intermolecular forces responsible for collision broadening are dipole-quadrupole, leading to an
exponent 1.7% rather than 2.0 for (v - uo), (Varanasi, 1972). Throughout this compilation we assume
the validity of the Lorentz exponent.

The Tine intensity is temperature dependent through the Boltzmann factor and the partition function
as indicated in Eq. (3) (the induced emission term has intentionally been omitted here),

_ s, (1) 0, @7,) exp + 1.439E" (T-T_ ) 3)

Qu(T) Qu(T) TT,

where E" (in cm']) is the energy of the lower state of the transition and where Q, and Q, are the
vibrational and rotational partition functions. The vibrational partition functions for the most
abundant isotopes are given in Table 3. Partition functions for the other isotopes are similar. The
temperature dependence of thelrotationa1 partition function is given by (T/Ts)J where j is also provided
in Table 3 (TS is taken to be 296°K). :

It is also necessary to know the temperature variation of . In the absence of specific indications
discussed under each molecule, the equation a(T)/a(Ts) = (T/Ts)'", with n = 1/2, corresponding to the ‘
assumption of temperature-independent collision diameters, may be made. The validity of the assumption
is more uncertain, the larger the dependence of the diameter on the particular rotation-vibration
transition (that is, it is most unrealistic for HZD and the low-J transitions of the other molecules).
The theory of Tsac and Curnutte (1954} when applied to the determination of line width for HoO Tines
gives a wide variation of n about the mean value of 0.62 {Benedict and Kaplan, 1959)}. Measurements made
with a CO2 laser (Ely and McCubbin, 1970) indicate a value of n = 1.0 for the P20 line of the 10.4 um

CO2 band,

An examination of Egs. (1) and (3) indicates that it is necessary to know the Vg S(TS], u(PO,Ts)
and E" value for each line in order to compute a spectrum. The data compilation described here contains
these four quantities for each of the more than 100,000 Tines between 1 um and the far infrared be-
longing to the seven molecular species listed in Table 4.

In order to establish the "Criterion Intensity Minimum" values given in Table 4, an extreme atmos-
pheric path was considered, assuming the gas concentrations specified in Table 1 and maximum concen-
trations over the path of 3 x 1024 mo1ecules/cm2 for water vapor and 1 x 1020 mo]ecu]es/cm2 for ozone.
This extreme radiation path was the atmospheric path tangent to the earth's surface, and extending
from space to space. Using this criterion, lines yielding less than 10 percent absorption at the line
center would normally be omitted.
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Although this absolute 1ine intensity cutoff was estabiished, it has not always been possible to
achieve. In some cases it would have been unrealistic to push calculations te this limit when experi-
mental confirmation fell far short. There are two specific areas in which this absolute cutoff has been
violated: (1) 1In regions of very strong absorption, very weak lines above this absolute 1imit have
been neglected; (2) Q-branch lines below this limit have occasionally been included where it is felt
that the accumulation of many weak, closely spaced lines would still produce an appreciable absorption
under some atmospheric circumstances. In some cases, (for example, COZ), sufficient laboratory measure-
ments and theoretical work were available so that this limit was exceeded throughout the infrared.

In the past, line intensities have been defined in various units, different for each molecular
species. It was common to define water vapor concentration in precipitable cm, or g/cmz, in the path
in question. On the other hand, the amount of C02 and the other uniformly mixed gases in a path were
- often given in cm-atm of gas at STP. In order to unify the units and ultimately to lead to less
confusion, we decided to use the more fundamental quantity, mo]ecuies/cmz as a measure of absorbing
gas abundance aleng the path. The appropriate conversion factors are:

1 (cm-atm)STP 2.69 x 1019 mnlecules/cmz

1 g/emt of H,0 = 3.34 x 10%2 molecules/cn?

il

It was also decided, as indicated in Table 4, to define 1ine {and band) intensities at 296°K, the normal
room temperature at which most measurements are made. Intensities of all bands are based on the total
number of molecules of a given species of all isotopes in their normal abundance, not on the number of
the particular isotope responsible far a given band.

Half-widths of lines have been added where available. Details are discussed in the report by
McClatchey, Benedict, et al (1973). 1In some cases, it is felt that insufficient data exist to warrant
the inclusion of a variable half-width. In these cases, a mean, constant value has been inserted for
each molecular species and values are given in Table 5.

In Table 6, I have provided some information concerning the accuracy of the data contained in the
compilation. As can be seen, it is difficult to simply specify accuracy because it is different from
molecule to molecule, from band to band, and is also a function of the line intensity, there being much
more experimental confirmation available for strong lines than weak lines. The reader is referred to
McClatchey, et al (1973) for a more complete discussion of accuracy.

3. TRANSMITTANCE MODELS

The compilation of molecular Spectroscopic data pertinent to atmospheric abserption has had as its
objective from the beginning the straight-forward calculation of atmospheric transmittance by line-by-
line or degraded monochromatic techniques. In principle the availability of such a compilation removes
the need for band models, Curtis-Godson approximations, etc. In practice, low resolution calculations
(spectral resolution Tower than about 1.0r 2 cm-1) performed by line-by-line techniques cannot be done
in connection with the reduction of field measurements except on an occasional basis due to computer
time and storage 1imitations, This is particularly a problem in connection with remote sensing
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measurements because of the necessity to iterate the sotuytion of the remotely sensed variable with a
recomputation of the transmittance.

Thus, it is recommended here that this molecular data compilation be used to generate synthetic
spectra for a range of conditions which can then serve as a basis of comparison of various models. It
can further serve as a basic source of the fundamental parameters required in various band models.
Although T have sounded pessimistic about the use of line-by-line calculations in routine analysis of
field measurements, it should be recognized that very high spectral resolution measurements and laser
measurements require this calculation technique and in those cases, there can be no band model short-
cuts.  Such high resolution measurements of atmospheric transmittance and emission are being made and
tidar is being used as a remote probing tool. Figures 1 and 2 show measurements of both transmittance
(solar spectra) and emission made from a balloon platform. Figure 2 shows a comparison of a calculated
and measured emission spectrum in the 20 um region. These measurements were used by A. Goldman, et al
{1972) to infer the stratospheric distribution of water vapor. Figure 3 is a comparison of solar
spectral measurements in the 15 um region with calculations of the 15 um CO2 band. These kinds of
calculations depend on the availability of the molecular data compilation. Another important appli-
cation of these data is the comparison of high resolution synthetic spectra with measured spectra in
order to detect additional trace gases (natural and pollutant). The previously shown Figure 2 is an
indication of this in the case of HN03. Figures 4-6 show calculations of transmittance through a
vertical path at various spectral resolutions. Figures 7-9 show sample high resolution spectra for
horizontal paths and are samples of curves covering most of the infrared provided by McClatchey (197193,
McClatchey and Selby (1972a and 1972b).

As indicated above, an important use of the molecular data compilation is the generation of band
model parameters and the subseguent checking of band models against degraded monochromatic calculations.
To this end I am providing here in Figures 10 to 13 curves of % Si and % Si o for the spectral region
from 10-2500 cm™! where $; is a line intensity in the units of cm'1/m01ecu1e-cm-2 and o; is the haif-
width at half maximum in units of cm'1/atmosphere. Curves are provided separately for the water vapor,
€0, and ozone data jncluded on the data tape. ngs have been computed for overlapping 20 wavenumber
intervals so that resuits are provided every 5 cm .

Various researchers have applied the Goody random model to the caiculation of atmaspheric trans-
mittance with varying degrees of success. Rogers and Walshaw {1966) applied it to the 6.3 pm and
rotational water vapor bands with apparent success. They felt less comfortable applying it to the
15 um 002 band and they felt that its application to the 9.6 um band of czone presented "difficulties".
Goldman and Kyle (1968), on the other hand, found that the statistical model agreed with Tine-by-Tine
calculations for the 2.7 um H20 band and 9.6 um 03 band to a level exceeding the agreement between
either one and experimental data. Following the example of Goldwan and Kyle, we have used our data
compilation to generate appropriate band model parameters for water vapor, CD2 and ozone summed over
5 cm'] increments and spaced 1 cm'] apart. Figures 14 though 16 show the results of using these
parameters in a Goody random madel formulation and then comparing these calculations with the 1ine-by-
line technique. The results are also compared with experimental data for the 6.3 um water vapor band,
the 15 um CO2 band and the 9.6 pm ozone band. Table 7 summarizes the results of calculations made for
each of these band complexes for a number of different conditions.
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4. CONTINUOUS ABSORPTION BY ATMOSPHERIC GASES

Although noetpart of the data tape of primary concern in this report, a few words should be said
about the relatively continuous regions of absorption of particular interest in the atmospheric
"windows" near 2500 cm | (4 um), from approximately 1250 cm™' to 700 cm™ (8 wm -~ 14 um), and near
450 cm'1 {22 um}. In other spectral regions the contribution by nearby absorption lines is much greater
than that by the continuum absorption, so that for practical purposes the continuum effect can be
neglected, although it may be greater than in the windows.

This continuous absorption is caused by one or more of the following processes: (1) extreme wings
of strong coliision-broadened absorption Tines centered more than 10-20 cm'1 away; (2) pressure-
induced absorption resulting from transitions that are forbidden for unperturbed molecules; and (3}
the possible existence of the water dimer (HZU;HZO) in the case of the 8 to 14 um region.

The abscrption coefficient due to continuum absorption can be expressed as

k=CpP+cp {4)

where Cs is the self-broadened coefficient and Cb is the foreign gas broadening coefficient, P is the
total pressure and Pb is the foreign gas pressure.

Figure 17 gives the spectral dependence of CS for water vapor absorption in the 8 to 14 um region for
three temperatures (Burch, 1970}, The Cb value has been most reliably measured by McCoy et al, 1969,
and is found for nitrogen to be Cb = 0.0050s at room temperature.

Figure 16 gives the spectral dependence of CS for the water vapor absorption in the region near 4 um
for four different temperatures {Burch et al, 1971a). Note that the T = 296°K curve is an extrapolation
based on the measurements at higher temperature. These same workers found the ratio Cb/CS for nitrogen
broadening to be 0.12 *+ 0.03.

Figure 19 gives the spectral dependence of the absorption coefficient due to the pressure-induced
nitrogen absorption centered near 2330 cm-] (Burch et al, 197%a). Measurements have also been made by
Shapiro and Gush, 1966, and Farmer and Houghton, 1966. Since the foreign gas broadening in this case
results from a gas {oxygen) having a constant mixing ratio in the atmosphere, Eq. { 4) reduces to

K = Const. x P (5)

Since the nitrogen abundance in the atmosphere is'also directly proportional to P, the absorption
depends on P2 and Figure 19 has as ordinate the absorption expressed in the units, atm'2 Km'].

Since line wings as given by the Lorentz shape, Eq. (1), have been found to be in error in the ex-
treme wings, an appropriate rule to follow for the truncation of Tine wings and the introduction of
continuum absorption coefficients in accordance with Figures 17 through 19 s difficult to state. It
s recommended that the user familiarize himself with this prablem (see, for example, Burch et al, 1969)
and in any case the use of the Lorentz shape beyond 20 or 30 wavenumbers of line centers is inappro-
priate. A suggested lipe shape modification for C{)2 lines is given in Table 8 taken from Burch {1970}.
Recent laboratory experimental work by Long, et al {1973) and confirmed by Burch (1972} indicates a
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super-Lorentz nature of water line wings in the 6 um H20 band. Monochromatic (laser) errors of about
a factor of two in the absorption coefficient would be made if the Lorentz shape were assumed to extend

10 em™! from the center of a strong line,
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Molecule
H20

CO2

03

N20

Co

CH4

0,

Table |

MOLECULES INCLUDED IN COMPILATION

Abundance (ppm)

Variable (3xl024 moleculeslcmz)
330

20 moleculeslcmz)

Variable (Ixi0
0.28

0.075

.6

2.1x10

No. En_tries

38, 145
32,839
19,328
14,969
354

|, 741
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A 4

Tahle 2

PARAMETERS INCLUDED IN COMPILATION
v Line Frequency
S Line [ntensity
o Line Half-Width
E" Energy of the Lower State

Qv Quantum Numbers of Upper
and Lower State

I|SOT  |sotopic Identification

MOL  Molecular |dentification
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TABLE 3

Vibrational Partition Functions

296

Molecule Tempera- 175 200 225 250 275 325
ture

HZO 1.5 1,000 1.000 1.000 1,000 1,000 1,000 1.001
CO:2 1.0 1.0095) 1.0192 | 1.0327 | 1.0502 | 1.0719 | 1.0931 1.1269
03 1.5 1,004 1,007 1.013 1.022 1.033 1.046 1.066
N20 1.0 1,017 1.030 1.048 1.072 1.100 |-1,127 1.170
CO 1.0 1.000 1.000 1,000 1.000 1.000 1.000 1,000
CH4 1.5 1.000 1.000 1.001 1.002 1,004 1.007 1,011
02 1.0 1.000 1,000 | 1.000 1.000 1,000 1,000 1.001
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TABLE 4

Intensity Criteria for Lines Included in Compilation

Criterion Intensity

Existing Intensity

Molecule Identification No. Minimum at T=296K Minimum at T=296K
H,O 1 3 x 10727 3 x 1027
-26 -27
CO 2 2.2 X 10 3.7 x 10
2 -24 -24
03 3 3.5 x 10 3.5 X 10
-23 -23
N,O 4 3.0 X 10 4.0 x 10
2 -23 -23
CO 5 8.3 X 10 1.9 X 10
CH 6 3.3 x 10724 3.3 x 10724
4 -30 -30
02 T 3.7 X 10 3.7 X 10
. . -1 -2
*Units are ecm ~ /{molecule-cm )
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TABLE &

Mean Half-width Values

Molecule Half-width (cm_1 fatm) References !
CO, 0.07 Yamamoto et al (1969} |
0.11 Lichtenstein et al {1971) | |
0.08 Toth {1971)
C%) 0.06 " Bouanich and Haeusler (1072)
CH,4 0.055 Varanasi (1971) {see Section 6.3)
O9 (.060 Burch and Gryvnak (1969)
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TABLE 6

ACCURACY OF DATA
vicm ™ S «
+ 0.00001-0. 05 1-10% Rotat.
10%-X2 others
+0.0l + 5%
+0.01+1.0 + 10%
+0.0 + 5%
+ 0. 00}-0. 0t + 2%-++ 10%
+ 0.0l + 20%
40,0l +10%

+ 10%-X3

+ 10%
Constant Value
Constant Value
+10%
Constant Value

Constant Value
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TABLE 8

MODIFICATION FACTOR FOR ATMNSPHERIC C02 LINES
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N7S 115892

INFRARED REMOTE SOUNDING

C. D. Rodgers, Clarendon Laboratory
Oxford, England

INTRODUCTION -

The potentialities of artificial earth satellites for remote sounding of the earth's atmosphere
were first realised towards the end of the 1950's, at about the time the first satellites were Taunched.
Kaplan (1959} pointed out that the thermal radiation emitted by the atmosphere depends on the distri=
bution of temperature and absorbing gases, and proposed a practical method whereby the temperature
distribution could be sounded using the absorption band of CO2 at 15 p.

0Ff course it is not only temperature that can be observed. Any guantity that affects the emitted
radiation can in principle be measured. Fig. 1 shows two typical spectra of the earth's atmosphere
measured from a satellite using the IRIS instrument (Hanel et al 1971). We can clearly see features
due to thermal emission by carbon dioxide (667 cm'1), water vapour (everywhere) and ozone (1040 cm']).
With a 1ittle care, emission due to methane and nitrous oxide (1300 cm"]) can also be distinguished.
In window regions, the nature of the surface affects the spectrum. Information about the atmosphere
can alsp be obtained from reflected solar radiation. However as the theory and techniques are dif-
ferent from those for thermal radiation, this paper will be restricted to thermal sounding in the
infrared and microwave regions. The spectra of Fig. 1 are of relatively low resolution. Many of
the broad scale features actually consist of thousands of spectral Tines. To illustrate this, Fig.2

1 interval in the Q branch at 15 p.

shows an absorption spectrum of carbon dicxide in a 0.7 cm
This calculated spectrum shows the scale of wavelength on which there is information. No satellite
instrument could hope to measure the emission by the atmosphere at this reéo]ution. S$ti11 less could
we hape to make use of all the information that there is in the spectrum. We must be selective. 5o
far we have only mentioned wavelength as one of the variables, There is also information in the way
the spectrum varies with position and angle, for example we may use imaging and limbscanning tech-

nigues. This gives us an even wider choice of possibilities,
The radiation emitted by the atmosphere may be measured as a function of:

* wavelength (wavenumber)

* position {of the observer or the emitting element)
* angle

* time

an



It is determined by the distribution of:

* temperature

* cloud, aerosol

* composition - 602, H,0, 03, CH4, N0, etc.
* surface emissivity and height.

In principle it should be possible to determine all these quantities by remote sounding. In
practice some quantities are more easily sounded than others. Temperature distribution is the
simplest, and is that which has received most attention. Of the possibilities, it is probably the
most important meteorclogically. The only gases whose distribution has been measured so far are
water vapour and ozone, but instiruments are being designed for future spacecraft which will measure
the distribution of other atmospheric trace gases such as CH4, co, N,0, NO, N02. Fig. 3 gives
a general indication of the composition of the atmosphere in terms of trace gases and Fig. 4 shows
some of the spectral features that can be used for measuring them.

THEQRY OF RADIATIVE TRANSFER

Much has been said elsewhere in the proceedings of this conference about the direct problem, i.e.
the dependence of thermal radiation upon the state of the atmosphere, o :hat derivation of the equa-
tions is hardly required here (e.g. Gille 1974). The intensity [ of thermal radiation emitted at
the top of the atmosphere can be written as

1(v, 9) = B(v, 6(z)) §2 2 *) a2 + 8(v, 0(9)) T(v, g, 0) 1)

where v 1is wavenumber, ¢ is angle of emergence, B is the Planck function, &(z} is the temp-
erature at height z, and g 1is the ground. T{(v, z, ¢} is the transmission of the atmosphere from
height z to the spacecraft. This is a function of the distribution of those absorbers which have
significant absorption at wavenumber v. We note that T{v, 2, ¢} +1 as z+w, and = 0 as
z+-= . Thus dT/dz must have a peak of some shape at some value of 2. The height and shape

of this peak depend on the absorber distribution and absorption coefficient. Thus the measured in-
tensity is a weighted mean value of the Planck function profile, with dT/dz as the weighting func-
tion. A typical set of such weighting functiens is shown in Fig. 5. These are for the vertical

sounding of temperature in a cloudiess atmosphere using the 15 p band of CU2 by the SIRS in-
strument on Nimbus 4,

Qualitatively we can see that it should be passible to measure the temperature profile with a
vertical resolution of about 10 km using radiation emitted by C0,. However, to reach great heights,
line centres where kv s large must be used, but this requires very high spectral resolution. Low
spectral resolution allows a range of kv to be seen, and this smears out the weighting function
giving poorer resolution.
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We can obtain higher vertical resolution by using limbscanning methods as illustrated in Fig. 6.
The weighting function as a function of distance along the line of sight is still very braoad, but
when the geometry is transformed so that it is expressed in terms of absolute heights the weighting
function is very narrow (Fig. 7).

Distribution of absorbing gas is less straightforward to sound than temperature. It affects the
measured intensity through the shape and height of the weighting function, and therefore enters the
equation in a grossly non-linear manner. Qualitatively we can say that if the absorber amount is in-
creased then the height of the emitting layer (peak of the weighting function) rises, and the emitted
radiation changes because the temperature of the emitting layer changes. Thus we measure the dis-
tribution of absorber as a function of atmospheric temperature. If the temperature profile is measured
independently, it should then be possible to relate the distribution of absorber to height.

Clouds may be regarded as absorbers throughout most of the thermal infrared, but normally the
absorption is so great that they can be treated as black bodies. Their irregular distribution in
both the horizontal and the vertical, and their effect of masking radiation ariginating in lower layers,
makes them the most important and difficult problem in retrieving atmospheric information from measure-
ments of infrared radiation. The only way of bypassing this problem is to use microwave sounding,
when clouds are largely transparent.

RETRIEVAL METHODS

The problem of finding the best value of a quantity given measurements of related quantities is
shared by many disciplines. 1In the particular case of remote sounding the problem is unusually dif-
ficult because the observables are related in such a complex way to the reguired quantities.

There are two aspects of the retrieval problem that can, in one sense, be treated separately.
The obvious aspect is the problem of inverting the equation of transfer so that the atmospheric state
is expressed as a function of the observed radiation., The less obvious aspect is the question of
the information content of the observations. This second aspect involves such questions as the ver-
tical resolution of the derived profiles of temperature and composition, the accuracy of the solution,
and just which components can be measured and which cannot.

We will discuss the "information content" problem first, before dealing with the more practical
problem of inverting the equation of transfer. To do this, we will use a simplified version of the

equation of transfer:
M
L= 2 KyBptey T
z=1

where I, is the measured radiance in spectral interval i, B

{2)

2 is the atmospheric state vector, Kiz
is the transformation applied to BZ by the instrument (the weighting function), and €5 is the ex-
perimental error. The integral in equation 1 has been replaced by a summation. This equation is
a good approximation for some types of observation {e.g. microwave sounding for temperature), or
it may be regarded as a step in an iterative process for the solution of more complicated problems
(see below). '
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The first question is whether a unique solution of this equation is possible at all. The answer
must be no, on two counts. The presence of the term € implies that we only know I within certain
1imits. Thus even if we could solve the equation for B if ¢ =0, we find that Ehere is un-
certainty due to e. The second count hinges on the relative sizes of N and M. The number of
spectral intervals used for a particular observation is necessarily finite. The height co-ordinate
is continuous. Thus M should be infinite. Therefore the problem is underconstrained, and there
must be an infinite number of solutions consistent with the observations even in the absence of noise.

The question of retrieval must now be restated as "Given the ohservations I, the statistics
of experimental errar £, and the instrumental function K, what can we say in a physically mean-
ingful way about g?” There are several ways of looking at this:

* Deduce a 'good' approximation to B, and estimate the statistics of its error.

* Deduce a 'good' approximation to some specified (linear) function of B, {e.q.
total water amount, thickness between pressure surfaces), and estimate the
statistics of its error.

* Find a physically meaningful tinear function of B which could bhe deduced
exactly from the observation in the absence of noise.

If we are going to try to solve for B, we must impose some constraint so that we obtain a urique
solution., Exampies of such constraints are:

* Make B a function of N variables. One must then investigate how well the
real atmosphere may be represented by the particular form chosen

* Choose the 'most likely' solution consistent with the observations. This
requires a knowledge of the statistics of §

* (Choose the 'expected' value of B. This is the average value of all §'s
weighted with their probabilities of being a solution.

* Constrain the solution to be 'near' a first guess of some kind, and within
experimental error of the observations.

* Choose the solution which is 'smoothest' within experimental error of the
observations.

Another aspect of the information preblem that must be clearly understood is that of independence of
observations. Typically the weighting functions overlap considerably, so that different spectral in-
tervals measure contributions from the same part of the atmosphere. The instrument scrambles infor-
mation about the profile B by the transformation K, before presenting it to the observer as radiance
I. One question in trying to unscramble it again tomd1scover how many independent measurements we

have of a particular profile, given N non- 1ndependent measurements I] to IN‘ To do this, we must
find a linear transformation (L) of K, =L+ K, such that the transformed weighting functions

@ are independent. We can then regard M as a set of independent windows through which we view the
atmosphere. Independence requires MMT Ay a diagonal matrix. Thus

Lk L=
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If we also require that the transformation E be orthogonal, i.e. EET = U, the unit matrix, we see
that L s the matrix of eigenvectors of EET, with eigenvalues Ai' The transformed observations
are I' = M- g=L- KB = L-1I. It can easily be shown that if the §'s are regarded as independent
quantities of equal variance then the variances of the elements of 1', the transformed observations,
are proportional to the corresponding eigenvalues Ai. It is found that some of these eigenvalues

are very small, implying that there is Tittle information in the corresponding observation. In fact
the number of independent observations that one can make with a given set of E's is the number of
eigenvalues of EET which are greater than the square of the experimental noise/signal.

This analysis tells us about the nature of the instrument. However, the atmosphere itself has
correlations between its prupérties, so that the number of statistically independent quantities that.
can be measured is smaller than the above analysis shows. A statistical analysis requires us to
diagonalise the covariance matrix of the observations themselves, and cocmpare the eigenvalues with
(noise/signal)2(Rodgers 1971).

INVERSION OF THE EQUATION OF TRANSFER

The precise details of how the equation is inverted depend to some extent on the constraints
applied.

If the eguation is linear, and quadratic form constraints ave used, i.e., we minimise
- el a- -0 W @D
where H 1is the inverse of the constraint matrix, and E 1is the covariance of the experimental
error, then we can solve the equation to give
et (B4 kK) (1-T)+8 ()

Unfortunately in most cases the equation is not linear. However we can use the same basic principle
of a quadratic form constraint, and minimise

(1-1EN e -1+ BB W -B)

where I(B) is the appropriate direct model. The minimisation can be carried out by a general min-
imising process (e.g. Powell 1964), but this may be inefficient in a particular case. A Newton-
Raphson process may be used if the direct equation is not too nonlinear. This requires linearising
the equations about the current iteration, and salving it as a linear problem using equation (3) to
find the next iteration.

For some problems particular features of the equation of transfer and the instrument design may
be used to advantage.
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For example, the ITPR instrument on Nimbus 5 uses a scanning arrangement (Fig. 11) which enables
independent measurements to be made close together in space. If it is assumed that adjacent obser-
vations are of the same temperature and humidity profile, and cloud height, but differ enly in cloud
amount, then it is possible to eliminate the cloud mathematically, and estimate what the radiances
would have been in the absence of cloud,

The relaxation method of Chahine (1968} is of value when the equation of transfer is too non-
linear for the Newton-Raphson approach to work efficiently. For example, when the sounding frequen-
cies are widely spaced. However it does require a set of weighting functions with distinct peaks.
The iteration is of the form:

)+ 1

3(ri™), v - B(1{""), v ORTISHUOR

J obs calc

where Tgn} is the nth iteration for the temperature at a height defined by the peak of the

(“j) s the calculated radiance for an atmospheric profile defined by the {n-1)th iteration

values T§n'1).

Backus and Gilbert (1970} have developed a quite distinct approach to retrieval methods. Their
particular problem is sounding the solid earth using seismological information, but mathematically
the equation to be solved is similar to our equation of transfer. In their case the kernels do nat
have peaks at various depths, they all peak at the surface. This is akin to the atmospheric remote
sounding problem for an observer at the surface. Backus and Gilbert investigated the question of
taking T1inear combinations of kernels so that the result has a peak at a specified position. The
same linear combination of their observations would then correspond to the function sounded at the
position of the peak. They found it possible to do this, but in constructing the narrowest pos-
sibTe peak (i.e. best resolution) the noise in the observations was amplified so that the result
could in some cases be useless. Their next step was to Jjointly minimi ze the width of the peak and
the noise in the solution, thus producing a “trade off" between noise and resolution. One of the
results of their analysis is a set of "trade off curves" showing how the noise is amplified as re-
solution gets better. Thus it is possible to say just what the vertical resolution is for any par-
ticular accuracy in the estimation.

This approach has been applied to the IRIS instrument by Conrath (1972). Fig. 8 shows some of
his trade off curves. In this diagram o7 15 the error in the temperature measurement, and Of
is the noise equivalent temperature in the radiometer. ‘Spread' is a measure of vertical resolution.
Curves A are for a measurement of the temperature at 780 mb, and curves B are for 50 mb. The
dotted lines are for 7 spectral regions, and the full Tines are for 16 regions. These curves show

how rapidly noise goes up if it is attempted to improve the vertical resolution beyond a certain
point.
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EXPERIMENTAL TECHNIQUES

Infrared remote sounding techniques have been widely used from earth satellites, and one plane-
tary probe {Mariner 9) has used thermal radiation to seund the Martian atmosphere. Several dif-
ferent types of instrument have been used. These can be classified broadly as:

1. Michelsen Interferometer
2. Grating Spectrometers

3. Filter Radiometers

4., Microwave detectors

The Michelson Interferometer has the advantage in an experimental situation that it records the
whole spectrum of the atmosphere. This means that the interesting spectral regions can be chosen
after the instrument is launched, and unexpected features of the thermal emission are not Jost. How-
ever, very high resolution cannot be used, as this leads to a problem of data storage and telemetry
because of the high data rate required. The IRIS experiments on Nimbus 3 and 4 and on Mariner 9 have
been of great value. A typical spectrum has already been seen in Fig. 1.

Grating Spectrometers have been flawn on Nimbus 3 and 4. The instrument (SIRS) is a spectro-
meter of fairly conventional design using an array of detectors or a set of fixed exit slits. This
produced radiance measurements in specified spectral regions, rather than a continuous spectrum, as
did the IRIS. SIRS 3 had seven channels in the 15 u band of carbon dioxide, and one window chan-
nel, SIRS 4 included further channels for water vapour sounding,

Many instruments have used the rather simple basic design of a filter radiometer. This consists
of a set of optics to condense the incoming radiation onto a detector, with a filter at the appro-
priate place in the system to select the required spectral region. The first instrument to measure
atmospheric temperatures from a satellite was of this type. This was MRIR on TIROS G, which had
a filter covering the whole 15 p band, thus measuring the mean temperature fof the whole strato-
sphere.

An improvement on this basic design came with the iantroduction of Selective Chopping and Sel-
ective Absorption in the SCR instruments on Nimbus 4 and 6. The height of the peak of the weighting
function depends on the absarption coefficient. If this varies widely within the spectral pass
band of the instrument, then the weighting function will have contributions from a variety of heights,
and will be brpadened compared with the monochromatic case. This problem accurs when using mole-
cular vibration rotation bands, as can be seen from Fig. 9. Selective absorption reguires an ab-
sorbing cell at CUZ ta be included in the instrument to remove radiation from Tine centres. Thus
the detector only sees radiation from the troughs between Tines, where the absorption coefficient
is much less variable. The jmprovement in the shape of the weighﬁing functions is shown in Fig. 9.
selective chopping is in a sense the reverse of selective absorption. By one of a variety of tech-
niques the difference is measured between the total radiation reaching the detector, and that
reaching the detector after selective absorption. This difference signal is proportional to the
radiation in the centres of the CO, Tlines, where the absorption is high, and results in a weighting
function which is high in the atmosphere (Fig. 10). Alternatively, the difference signal may be
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measured between two patﬁs containing different amounts of C02. This gives weighting functions
of intermediate heights. ‘

Another filter radiometer is the ITPR which is flying on Nimbus 5. This instrument has seven
channels specifically designed for tropospheric sounding. It uses a narrow field of view which is
scanned over a grid of 140 elements, as described above (Fig. 11).

An entirely different approach to the problem of cloud is the use of microwave sounding. Ther-
mal radiation is easily measureable in the microwave region to very high spectral resolution using
conventional though carefully designed microwave receivers. One such instrument is NEMS on Nimbus
5. The spectral region used is the 5 mm 0, band, together with a window channel, and a water
vapour channel. The major advantage is that most clouds are transparent in this region, so that the
retrieval is straightforward. Only in the case of large precipitating clouds is there any problem,
{Staelin 1969).

For future spacecraft there are more basic designs under development.

A limb scanning radiometer (L.R.I.R.) is to be flown on Nimbus F. (GiTlle 1972). This instru-
ment will provide soundings of the stratosphere with a much higher vertical resolution than has
been availabTe until now, although its horizontal resolution is relatively Tow. It comprises a
radiometer measuring emission from the 15 u band of carbon dioxide through a very narrow angular
field of view which is scanned over the 1imb by means of a moving mirror.

A further development of the selective chopping principle is the Pressure Modylator Radiometer
(PMR) which is due to be flown on Nimbus F (Taylor et al 1972). In this instrument only one cell
of carbon dioxide is used, but its pressure is modulated by means of a piston. The detector mea-
sures radiation at the modulation frequency; this originates in the line centres. The use of a
single cell eliminates the problems of balancing between two halves of an optical system, and sim-
plifies the optical design, thus allowing mare energy to reach the detector. The Nimbus F PMR
should measure temperature fram 40 km to B5 km.

A limb scanning PMR is being desinged for Nimbus G, in order to measure both the temperature
profile, and the distributien of trace gases. The gas to be measured is used in the modulator cell,
and acts as a filter to detect its own presence in the atmosphere.

SOME APPLICATIONS QF REMOTE SOUNDING

One of the most important applications of remote sounding is, of course, in monitoring the tem-
perature profile in the troposphere and lower stratosphere on a global scale as basic information for
weather forecasting, Remote sounders on Nimbus 3, 4 and 5 have been used for this purpose, and now
there is a remote sounding package (VTPR) for the ITOS series of operational sateilites. This aspect
of remote sounding has been widely discussed in the literature. Here we will discuss some of the
scientific and research applications.
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Remote sounding provides basic data sets for study of the atmosphere on a global scale. The data
is global in coverage and uniform in quality, thus removing many of the problems of patching together
data from irreqularly placed and often incompatible instruments. A typical example of this is shown in
Fig. 12, which gives the global distribution of ozone for one particular day, based on IRIS measure-
ments. The high concentrations of ozone can all be related to low pressure areas. This map could
never have been produced by conventional means (Prabhakara and Conrath 1971).

Fig. 13 shows how satellite measurements can contribute to c¢limatology. Here we have a sequence
of zonal mean temperature cross sections based on Nimbus 4 SCR data. The cross section for 13 Decem-
ber 1970 shows a typical early winter situation with an extensive cold area over the winter pole, and
the strong horizontal temperature gradient at a height of 30-50 km in the Tatitude region 40-60° K.
By 8 January there has been a midwinter warming, and this temperature gradient has reversed, making
the temperature at 45 km over the north pale similar to that over the south pole. The original sit-
uation is re-established by mid February, but by mid March the cross section shows the south polar
region cooling and the north polar region warming up. The June 1971 situation is approximately the rey-
erse of that in December 1970, except that the south polar stratosphere is 10° cooter than the cor-
responding north polar stratosphere. This 15 probably due to the ellipticity of the earth's orbit; we
are further from the sun in June than in December. By 21 September 1971 there has been a warming in the
southern hemisphere showing general similarities to the January 1971 case, but there are marked dif-
ferences in the 50° S region.

The details of these warming events can be very clearly seen from remote sounders (Barnett J.J.
1973). Figs 14-17 show one such event. Fig. 14 gives the temperature seen by the highest channel
of the Nimbus 5 SCR {at about 45 km) on 24 January 1973. A warm area has bequn to develop over
Western Europe. Four days later (Fig. 15) this warm area has grown considerably, and the pattern
has developed into a typical "wavenumber one warming”. The temperature field has one maximum around
latitude circles, and the Tongitude of the maximum is more easterly at higher latitudes. Fig. 16
shows the temperature field lower in the atmosphere {at about 30 km). A comparison of Figs. 15 and
16 shows that the maxima and minima of temperature slope westward with height. Fig. 17 shows that the
southern hemisphere is hardly affected by these massive perturbations in the Northern hemisphere. The
westward slope with height of the temperature extreme is clearly seen in Fig. 18. This is a cross
section around a latitude circle of deviations of temperature from the zonal mean. A similar plot
is also shown for geopotential height. The event is a similar one to the above, but two years earlier.
It is a much more intense warming; notice that the temperature contrast around the latitude circle at
3mb is about 100° K.

Wave number two is often present in the temperature field, and on some occasions dominates the
event. Fig. 19 shows such an occasion, the southern hemisphere winter of 1871. The units in this
figure are radiance rather than temperature. Channel A is at about 40 km, showing a hot area aver the
pole, flanked by two cold areas. Channel D is at about 20 km, showing & cold area over the pale,
flanked by two warm areas. The deviations from the zonal mean showed the same westward tilt in this
case as in the northern hemisphere. This pattern remained essentially unchanged, except that it
ratated about the pole, for a period of 30 days. The track of the cold centre of channel A is shown
in Fig. 20. The rate of progression was fairly uniform at about 360° in 25 days,. as can be seen from

Fig. 21.
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Wave motions in the atmosphere can be studied in general by means of Fourfer Analysis of the
measurements. A typical example is shown in Fig. 22, which shows more stratospheric wave sctivity
in higher latitudes than at the equator, and more activity in the winter hemisphere than the summer

hemisphere. In all cases the amplitude decreases with increasing wavenumber, this effect being most
marked for the high latitude winter case.

Fig. 23 illustrates an entirely different application of remote sounding, this time to ozone
photochemistry. There are a large number of chemical reactions involved in the maintenance and
production of ozone in the stratosphere, and it is not yet c¢lear which reactions dominate at var-
igus Tevels in the atmosphere, because some reaction rates are not known sufficiently accurately.
Each set of reaction rates will, however, Jead to a particular temperature dependence of the equi-
librium ozone concentration. A measurement of this temperature dependence will provide constraints
on pessible reaction rates. Fig. 23, plot (a), shows ozone concentration at 1.9 mb measured by the
B.U.V. {Backscattered Ultra Viglet} instrument on Nimbus 4 plotted against SCR channel A {about 2 mb)
temperatures on a log-reciprocal scale, giving a clear measurement of the temperature dependence.
Plot (b) shows less correlation, because the two instruments are not seeing the same part of the
atmosphere, but this may be improved by using the westward slope with height of temperature dis-
turbances, and plotting the temperature from the previous orbit (plot (c¢)).

CONCLUSIONS

This survey of remote sounding in the infrared has necessarily been brief, and somewhat selective.
The field is very large and is growing rapidly, and it is not possible to cover all aspects and des-
cribe all the experiments and their applications in the time and space allotted. A comprehensive
review of this and other aspects of remote sounding may be found in Houghton and Taylor {1973).

The immediate future for infrared remote sounding is clear: microwave techniques will be further
developed and used operationally for tropospheric Soundings, limb scanning will improve vertical re-
solution in the stratosphere and mesosphere, and the distribution of more trace comstituents will be
measured. After this, I hesitate to predict.
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FIGURES
Spectra of thermal radiation emitted from the earths‘atmosphere {Hanel et al 1971)
A calculated spectrum of carbon dioxide in the Q branch at 15 microﬁs.
Typical mixing ratios of atmospheric trace gases in the stratosphere and mesosphere.

Spectral features that may be used to measure distribution of atmospheric trace gases
{J. H. Shaw}

Weighting functions for remote sounding of atmospheric temperature by the SIRS instrument
(smith et al 1970)

Geometry for Limb sounding

Weighting functions for a 1imb sounding instrument.

Trade off curves for the IRIS instrument (see text for details) (Conrath 1972}

a. MWeighting function for an Elsasser band medel, i.e. a spectral interval containing
several spectral lines

b. Weighting function for an Elsasser band model after selective absorption.

¢. Monochromatic weighting function.

I1Tustrating Selective Chopping ‘

A, 15 micron Q branch weighting function

B. 15 micron Q branch weighting function, after absorption by C02 in the instrument

C. Difference between A and B.

The ITPR scanning arrangements

Global distribution of ozone determined from IRIS data for 22 April 1969 (from Prabhakara
and Conrath 1971)

Gicbal zonal mean temperature cross sections from Nimbus 4 SCR measurements.

Equivalent temperature channel BI1BZ Nimbus 5 SCR. Northern Hemisphere 24 January 1973.

481



Fig.

Fig.

Fig.

Fiq.

Fig.

Fig.

Fig.

Fig.

Fig.

20

21

22

23

Equivalent temperature channel B1B2 Nimbus 5 5CR. Northern Hemisphere 28 January 1973,
Equivalent temperature channel B3B4 Nimbus 5 SCR. Northern Hemisphere 28 January 1973.
Equivalent temperature channel B3B4 Nimbus 5 SCR. Southern Hemisphere 28 January 1973.

Deviations of temperature and geopotential height from the zonal mean for 64° N 5 January
1971 '

Channel A and D radiances from Mimbus 4 SCR. Southern Hemisphere 26 September 1977.
Track of the cold centre of channel A. Southern Hemisphere 7 September - 7 October 1971.
Progression of wave number two pattern around the south pole. 7 September - 7 Octaber 1971.

Spectrum of Planetary Waves. Average amplitudes of zonal wave numbers 1 to 6 during the
period 21 November 1971 to 6 March 1972 (Barnett 1973)

Ozone mixing ratio at 1.9 and 0.9 mb plotted against the Nimbus 4 §. C. R. channel A
temperature.
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Equivalent temperature(K) channel BIB2 Nimbus V SCR
Northern Hemisphere 24 January 1973

FIGURE 14

497



Equivalent temperature(K) channel BIB2 Nimbus V SCR
Northern Hemisphere 28 January 1973
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Equivalent temperature(K) channel B3B4 Nimbus V SCR
Northern Hemisphere 28 January (973
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Equivalent temperature (K) channel B3B4 Nimbus V SCR
Southern Hemisphere 28 January 1973
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