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FOREWORD

This i,sVolume II of the Final Re,port on a Feasibility Study
$

of Umma_ned Rendezvous and Docking in l_ars Orbit, conducted by the

Marzln Marietta Corporation, Denver Division.

This study was performed for the Jet Propulaion Laboratory,

California _:stitute of Technology, uvder contrac_ 953746, and

was conducted during the period November 1973 through June 1974.

Mr. J. W. Moore of JPL was the Technical Manager of the study

which was sponsored by the National Aeronautics and Space

Admi_ istration,

This FLnal Report consists of two volumes as follows:

Volume 1 - Summary

_oluE_ Ii - Technical Studies and Results
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ABSTI_'_CT

i The technical feaslbility of achieving automatic rendezvous and docking

in Mars orbit as a part of a surface sample return mission was investigated ¢

based on using as much existing Viking '75 Orbiter and Lander hardware as

possible. Both 1981 and 1983/84 mission opportunities were considered. The

principal result of the study was the dcflnition of a three stage 290 ks

Mars Ascent Vehicle (NAV) capable of accepting a 1 kg sample, injecting it-

• self into a 2200 km circular orbit, a:_d rendezvousing with _n orbiting i

" spacecraft carrying an Earth Return Vehicle,

The modifications necessary to convert a Viking '75 Orbiter to the

sample return mission orbiter are defined. These consist primarily oi pro- :

pulsion t ystem changes and the addition of a rendezvous radar sensor. Re-

quired modifications to the Viking Lander are also described; the major

ones being the addition of a _qV erector/launcher mechanism and thermal

control canopy on the existing equipment platform and converting the ter-

minal descent propulslou to a pressu:e regulated system.

Digit_l computer slmulatious of dispe_sed F_kV ascent and o_-bit in-

jection and circulari,.ation were performed to establish the conditions :

at star_ of terminal rendezvous. Flight control laws were then established

which _muld be preprogrgmled into the orbiter's computer to effect final

closing and docking of the two vehicles in t|Le presence of dispersed as well

as nominal conditions at start of rendezvous.

Conclusions are that with state of _.he art systems plus limited ap-

plication of new developments in areas where feasibility has already been

denonstrated, e.g., solid rocket motor sterilization s it is possible to

land a sm_ll ascent vehicle capable of automatically ascending and rendez-

vousing _ith a modifi_d Viking '75 orbiter spacecraft. The mission can be

flown in 1981 or 1983/8_, but a dual launch or a larger launch vehicle than

the Viking TiLan III Cent_ur, or the use of space storable propellants for

Mars orbit injection, _uld be required in the 1983/84 opportunity.
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PCM Pulse Core Modulation

PSK Pulse Shift Keying

PM Phase Modulation

PN Proportional Navigation

PROM Permanent Read Only Memory

EAM Random Access Memory

RCS Reaction Control Eystem

RF Radio Frequency

RR Rendezvous Radar

RECIRC MAV Post Circularization Trim

S/A Safe/Arm (Device)

SCR Silicon Controlled R_ctlfier

STEM Storable Tubular F_tendible Member

TEl Trans-Earth Injection

TR Terminal Rendezvous

TRi Terminal Rendezvo,_s Initiation

THR Orbiter Thrust

URDMO Unmanned Re_Lde_vous and Docking in Ma_s Orbit
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LIST OF SYMBOLS

right ascension of thrust direction

8 declination of thrust direction

B ballistic coefficient m/CDA

y flight path angle

YE flight path angle at entry

AV delta velocity (vehicle velocity change)

AVC closing AV (for start of terminal rendezvous)

•AVH AV for Hohmann transfer

AVLBI differential very long baseline interferometry

AVMo I velocity change for MOI

AVpc velocity change for plane change

AVSTAT statist ical LV

AV T terminal AV (total AV used in rendezvous control law burns)

A change

&VI,AV2,AV3 orbiter trim maneuvers, control law burns

AYSTAT statistical flight path angle variation from nominal

8 angle traversed in terminal rendezvous (transfer angle)

8AIM angle between B-vector and _-axis

8MI angle between B-ellipse minor axis and T axis

80 initial launch ramp angle

8s cone half angle

O constant pitch rate after launch

p gravitational cons tant

OBMIN standard deviation of B-vector magnitude along minor axis
of B-ellipse

Ox,Oy,O z standard deviations of position _C-4rtesian components)

O.x,c,y,O_ standard deviations of velocity (Cartesian components)
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I
Ou,Ov,O _. standard deviations of position (orbit plav_e components)

06,0¢,o_ standard deviations of velocity (orbit plane components)

o. standard deviation in projected relative velocity
Pp

initial phase angle at o.e.
o

phase angle catch up rate

Q longitude of ._scend'[ngmode

w argument of periapsis, LOS .rate

A base area or reference area (in ballistic coefficlent)

a semi-major axi_

B-plane plane perpendicular to VHE vector

B-vector center of planet to B-plane impact point

b projection of ba._ellna vector
P

CD aerodynamic, drag coefficient (in ballistic coefficient)

DO parachute dlam_,ter (deflated)

E covariance matrix of launch errors

e eccentricity

HP orblter periapsis altitude adjust maneuver

h periaps:_s attitude
P

h apoapsis attitudea

i inclination

M injection sensitivity nmtrix

m mass (in ballistic coefficient)

O.D, Orbit Determination

o.e. occultation exit

P period

FINJ covariance matrix of injection dispersio,.,s
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P^.. pez'iodof orbiter orbit
UZ%&,

PMAq period of MAV orbit

Fphase period of phasing orbit

R ran_.e

R range rate

RA actual MAV position vector

radius of earth entry

BN entry capsule nose radius

R_.B entry capsule base rndius

r_, Earth-Mars distance

H_ -+ +

R, S, T coordinate axes for B-plane coorditates: S along VIZE, T in

J ecliptic, E completes landed syste:at

6t12,6t23 times between trim maneuvers #1, #2 and #2, #3

TA true anomaly

T1 thrust of stage #i

T2 thr,_stof s_8.ge#2

t t_me

tB burn time t

tBl time of stage #1 burn

tB2 time.of stage #2 burr.

?R time for rendezvou3

_E entry velocity

VEP hyperbolic excess velocity

V_ hyperbolic excess velocity

Wp propellant wei@ht

X generic dcslgnation for position

X generic designation for velocity .

xxl
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I OBJECTIVES, GblDELINES AND STUDY RESULTS Ii

The scle_tific value of bringing a Mars surface sample back to 'I'

Earth for cJreful analysis is f_r greater than casua] thinking may lead iI

one to believe. At Mars, where wind, volcanism, meteor impact, and I_
L

probably water, hav_ worked over millions of years to distribute surface

material, much can be learned from a single sample about the history
j

and evolution of the entire plan t, if the _nvestigating methods are

uophlstlcated and precise enough. Techniques now e_ist for geochemical,

petrological, organic and biological analysis of a small sample, that

have been proven on both terrestlal and lunar materials to be immensely

powerful.

These techniques involve meticulous sample preparation and extremely

accurate measurement. Moreover, many of the analysis procedures require

a flexible sequence of examination w_re the results of one step dictate •

the approach to be taken to the next.

Scientific workers in this field seem to express a near uniform con-

vlctlon that to attempt to duplicate this accuracy, flexibility and

reliability of Earth laboratory facilities in remotely operated instruments,

sent to the surface of Mars, would be infeasible_ both technically and

economically.

Therefore, if the scientific value of a Mars Surface Sample Return

(MSSR) mission is established, what are the key elements in a decisic_

to mount such a mission? There are three important questions to be

answered:

i) Is the mission technically feasible with current or predicted

state-of-the art? :i

2) Can any potential back contamination of the Earth's biosphere

by Martian biota be prevented or controlled?

3) Can the mission be performed within projected NASA budget

k_ levels?

I-i
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A. OBJECTIVES

The purpose of this study, as directed by the JPL Technical Manager,

Mr. J. W. Hoore, was to examine the first question listed above: is HSSR

technically feasible? Emphasis was to be on the feasibility of unmanned

rendezvous and dockir, g.

Assuming that flights between Earth and Mars, Mars orbital operations,

and Mars landings will have been prove_1 by previous Mariner and Vlking'75

missions, the q,Jest!on narrows somewb, at to the feasibility of mission

sequence_ peculiar to HS_R. These involve the ascen _. of the sample from

the Mars surface, the return to Earth, and recovery of the sampie into

safe keeping for analysis. O_Le o£ _.he most -ttractive _ethods for per-

forming these speclalized MSSR sequences is the Mars orbi_al cendezw_us

mode. In this mode, which is similar to the approach taken iv. Apollo,

the vehicle that will carry the sample from Mars back to Earth i-- not

sent to the surface but is kept in orbit abuut Mars. A much smaller

Mars A:_cent Vehicle (YAV) is landed and subsequently ascends, participates

in a rendezvous with the orbiting spacecraft, and transfers the sample

to the Earth Return Vehicle (ERV). The MORmode makes cor.Ltrol of back

contamination easier, and reduces the size (and probably the cost) of

some of the spacecraft elements. _{ost important to the issue of program

cost, the MORmode allows the use of modified versions of existing space-

craft to carry out the mission.

Huwewr, the MOR mode does pose _ome q_esr.ion of feasibllty in the

execution of un_nned, partly automatic, rendezvous, docking and sample

transfer at Mars.

The primary thrust of this study the-,was to examine the zes_libility

of unmanned rendezvous and docking in _;:s orbit. Hopefully these results

will be a useful input to the NASA de_ision making process en the NSSR

mission.

The study tasks, outlined in the contract statement- of work, focused

on the feasibility of unmanned rendezvous and docking in Mars orbit.

However, other parts of the _isslon were to be examined also to make

certain that approaches takc,n to implement rendezvous were compatible
t

with a technically feasible and cost-effective _otal spacecraft and mission

1-2
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design. The specific contract tasks were:

a. Mission Analysis

b. Spacecraft Tradeoffs and Design

c. Rendezvous and Docking

d. Sample Transfer

e. NJ.ssion Profile/Operations

f. Mars Sample Return Earth Entry Cspoule Study

g. Te:hnology and Programmatic Assessment _

,/

I-3

w

1975006730-025



i] .... "

7

B. GUIDELINES

A number of technical and progralmT_tic guidelines were suggested by

the JPL Technical Manager to focus the study effort. They included the

follc,wlng ground rules:

i. The 1981 and 1983/84 Mars missio_ opportunities were to
'=

be considered.

2. Mars planetary quarantine requirements were to be recognized

in the spacecraft and mi_slon designs.

3o Maximum use of existing hardware, experleD=e and facilities

was desired. The Mars lander was to be a Viking-class vehicle.

4. Sample size was to cover the range from 0.2 to 5.0 kg.

5. Sample acquisition, processing, environmental control apd

transfer for Earth return were the only science-related

functions to be studied for the mission.

To support the definition of the science requirement_ _n the acquisi-

_:ionand handling of _he sample, a one-day science work shop was held in ' i_

Denver on May 9, 1974 as an adjunct to this study. The attendees included

recognized scientists in the Apollo lunar sample analysis programs and
i

other scientists with extensive experience in planetary exploration missions o

Appendix A summarizes the results of this meeting and lists the

attendees. Table I-I outlines the major science guidelines followed in

the study.

t
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C, STODY RESULTS

!-he majo_ ...._=_It _^_ _h_ Jtudy ......._............._h_ ,_n_in_l o_ a baseline MSSR

mission, using the MOR m_del within which tradeoff studies were performed

and feasibility :-ested.

Figure I-I identifies the hardware elements of the baseline mission

and the ._,.'uctionstl;ey perform.

Before describing the b=seline concept, it should be pozn_=d out

_hat this configuration is only one of -_everal attractive option5 that

will .meet the ,.bjectives and guidelines of this study. 1Tie principal

choices come in the method of delivering the sF_cecraft to Mars. In the

baseline cor_ept a single launch of a Titan lllE Centaur injects a space-

craft consi_tir.g of an orbiter, a lander and an Earth Return Vehicle (ERV) _

to Mars. The lander separat.._s prior to M_rs encounter and performs a direct

pntry l_nding without going into orbit, The orbiter then carries the ERV

into orbit to participate in the rendezvous.

In Figure 1-2 a dual launch concept is shown in which the same

spacpc_aft element = are divided between two Titan IllE/CeL, taur launch

vehicles. The lander is ca. ried to Mars by a _imple cruise module that

flys on by the planet after the direct entry capsule Ls separated. The 1

orbiter functions the same as in the baseline. I

Figure I-3 shows another and perhaps more attractive dual launch option

in which the lander is carried into orbit by a second orbiter. This allows |
!

surveillance and certification of the l?nding site prior +o a commitment

to land and permits the u_e of; t|_e by then Viking-proven out of orbit

landing technique.

BOth dual launch options permit greater 1Bunch ,;chicle weight margins

and provide clean interfaces for possible international cooperation missions.

This extra weight margin can be carried into the critical, landin_ ascent

and rendezvous phases if i somewhat more extensively modified Viking-ciass

lander and an orbiter are used (at higher cost).

1-6
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Returning to the basellne mission i Figure I-l, the lander capsule,

having separated from the orbiter, touches down on the surface a little

oyez four hours later. The lander configuration is a basic Viklng'75

capsule modified to carry the Mars Ascent Vehicle as shown in Step 4.

The MAV weighs 290 kg. The lander is stripped of unneeded subsystems and

its terminal propulsion system converted from a blow-down to a fully

pressurized feed system to provide most of the increased landed weight

capability compared to Viklng'75.

The lander remains on the surface for II days during which time the

sample is collected and stowed, the position and orientation are updated

through Earth-based tracking and telemetry and the proper launch azi_mth

and elevation are calculated at Earth.

The sau_le, basellned st I kg in this study, is loaded in a seal-

able canister mounted in the nose of the MAV.

I U_)n receiving the launch tn_tructions from Earth, the MAV is

launched to an initial orbit of 100 x 2200 km altitude. The HAV ls a

three stage (two solid and one liquid) three axis stabilized vehicle

incorpor,lting comparatively sL_ple subsystems. After the second stage

injects into the initial orbit, the third stage becomes a maneuvering

Q satellite. It weighs 41 kg and is capable of being tracked from Earth,

being cc,.mmanded to perform orbital maneuvers, and partlcip_tlng in a

,_emi-par,,slve way in the subsequent rendezvous with the orbiter.

After the F_V third stage is tracked to determine it.s Init.ial orbit,

it is co._anded to circularize at 2200 km altitude into the rendezvous

orbit. The orbiter then is co_anded to maneuve_- from its initial

" capture orbit of tO00 x 100,000 km altitude, to a circular orbit o_

2250 Is. altitude.

Up to this point the only series of maneuvers not performed undez

Earth control have been the HAV ascent to 100 km and injection into the

initial orbit. The MAV and orbiter are brought into close proximity

thereafter wltn DSN tracking providing position information before and

after each maneuver. Conventlonal DSN doppler £r'acklng can determine the

position of each vehicle to an accuracy of 3 _n and the velocity to 1.5 mps.

I-]O
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Another data type, known as aVLBI can be used to determine the relative

positic, ns bet_'_en the two vehicles to an accuracy of 0.3 km and relative

velecities to 0.15 mps. AVLBI uses a double differenced very long base-

line interferometry technique and will be developed and proven for the :.

Pioneer Venus mission that will fly in i978.

By using these powerful tracking tools the o_biter can be brought

to an accurately known position relative to the MAV for the initiation

of the automatic terminal rendez_,ous ._

l_e orbiter will carry a:l S.-band rendezvous radar unit that will

lock on the MAV transponder to control the terminal rendezvous. The

same MAV t-ansponder is thus useo for both Earth tracking and rendezvous

par tIcipa tion.

The orbiter employs a aeries or propulsiolx maneuvers controlled by

the range, range-rate, and line of sight rotation information generated

by the rendezvow." rad_Jr, tc hT_[ it to a position approximately 30 m

away from the HAV. 7

At this point the sample car' _:: ._ extended from the nose of the

_V as shown in Step 8 _f Figure I-i, and the orbiter closes at 0.3 mps,

under accurate pointing control, until do_king and sample transfer are

accomplished.

The _V and the docking guide cone are discarded (Step 9) and the _"

ERV, now containing the sample, is ready for the return to Earth. _

In the baseline mission the ERV must w_ - in Mars orbit tot approxi-

mately 400 days before the planetary geometry is established for injection

to the return trajectory.

The total mission duration, for the 1981 opportunity, from Earth

launch to Earth recovery of the sample is approximately 1050 days.

Fig_zre 1-4 illustrates the sequence occurring at Earth to recover '.

the _ample in this baseline mission. The direct Earth entry mode is

shown This involves the sepsratlon of an Earth entry capsule from the

ERV that derelerates with a heat shield and parachute and is air snatched

or landed on the surface.

I-I I _i
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_he g_neral result of the analyses and trade studiec conducted on

this _aseline _SR mission concept is the conclusion that the mission

can b_ perfozme_ as described, using technology that, for the most part,

exists today, and, in many cases, u-ing spacecraft and subsystems that

will have been developed and proven in other programs.
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II MISSION ANALYSIS

Mission analysis for MBSR ha_ 4ealt primarily with the definition and !

!optimization of performanve characterisLics of thu various mission phases.

For this study, an underlyin_ premise of constrained launch vehicle capa- i

bility (specifically, single launch Titan lllE/C_itaur) has served to force

the design toward the maximization of all available performance, minimi-

zation of weight allocations whenever possible, and to deletion of Viking '75

spacecraft componem.ts and operations not essential to the sample return ob-

jective. Given this background, th_ baseline missien design evolved toward

a direct entry landing of the Lander/MAV, with an Orbiter/ERV inserting into

an initial capture orbit of high eccentricity, transferring later to a 2200

km rendezvous orbit. Analysis of ascent profiles for the MAV led to selec-

tlon of a three-stage cehicle, solld-solid-liquid, as th_most efficient

method to deliver a payload to rendezvous orbit.

This section develops performance and trajectory details of the base-

line mission selected for the 1981 Mars opportunity, presents the trades

critical to shaping that baseline, and examines the possibilities which

exist for algernative mission strategies with different launch vehicle

assumpticns or mlsslon opportunities.

A. LAUNCH ENERGY REQUIREMENTS

The general thrust of the performance analysis was directed toward

provision of sufficient w_lght allocatiun to the systems directly involved

with landing, ascent, r_d rendezvous, within a structure of Viklng-derived

spacecraft elements. Earlier in-house sizing of the MSSR mission indizated

that the 1981 opportunity would be severely weight limited, with the 1983/84

period _eing even more restricted. The current study concluded early that

given the constraint of a single Titan/Centaur launch, orbit insertion of

the entire spacecraft mass plus lander for an out-of-orbit descent would

require major redevelopment of existing systems. Landing instead from a

direct entry approach required 15% less launch weight, 33% less orbit in-

sertion propulsion, and led to a performance situation compatible with

mission feasibility. Direct entry landing is therefore carried through

the baseline development, while it is recognized that real-time site cer-

tification would not be possible, a.d that accepting either dual launch or

, Shuttle performance could reopen the out-of-orbit mission.

II-I
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In Table II-I are presented the pertinent trajectory _nd representativeJ

performance parameters for 20-d_y launch period_ deflated for both oppor=uni-

ties. Launch/encounter space has been optimized toward a design which in-

cludes deflection of a Lander/M_V (1374 kg typi¢_l) prior to orbit insertion,

with a subsequent burn into a highly eccentric initia], capture orbit. Follo_:-

ing initial capture s the orbit is trimmed to a iinal clrcular rend_zvou_ orbi_

with a maneuver sequence to be discussed later.

Table II-I indicates _he performance loss associated with a 1983/84

opportunity, in terms of a mission basel_ned for feasibility in 1981. Mini-

mum non-propulsive weight delivered to a 2200 km rendezvous orbit decreases

from 904 kg in 1981 to 739 kg in 1983/84. Given the weight-critlcal nature

of even the 1981 mission, an identical MSSR in [983/84 woul_ require either

a higher performance launch vehicle and increased orbiter propellant, or the

substitution of space-storable orbit insertion propulsion for the conventional

system adequate in 1981. The mission description which follews therefore con-

slders the 1981 opportunity as prime, and all referenced performance and navi-

gation analyses are appropriate for that case.

As a more specific comparison ot the two opportunities, Table 11-2 pre-

sents weight and performance figures for both cases, sized for the %orst end

of their respective launch windows. The first column reflects the 1981MSSR

baseline, with earth storable (V0) propulsion, and a MAV sized at 289 kg

llft_ff welght Here an orbited weight margin of 13_ kg exists using full

launch vehicle capability. For 1983 launch vehicle Injected weight capa-

bility is reduced to 4354 kg, and the second coiunm indicates that a base-

line comparable to that defined £or 1981 would exceed injeuted weight capa-

b_liLy (even with orbited weight margin reduced to zero), requiring a higher

performance Immch system. In the third column, space storable insertion

propulsion is substituted for the V0 '75 system, and using full launch vehicle

capability this essentially restores the orlglna[ baseline performance.

11-2
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B. DIREc! .XIRY MISSION DESCRIPTION

i
I. Approach and Nomi1_alMO£

The 198! MSSR ba,_e!inemission involve::deflection of the Lander/MAV

configuration four hours prior to }401, leaving only the Orbiter/ERV mass _.

to be insLrtcd into an or'oitabout .Fmrs. Figure II-I shows the sequence

in a pictorial. ;:rcmthv point of deflection, the Lander/MAV begins its ,

I trajectory which reaches the "entry interface" of sensible Mars atmosphere iat 243.8 km (800.000 it) above the mean surface radius. At the interface, _.
!

I relative velocity is 5.785 Im/see (18981 fps), with a range of flight path ,

angles from-17.6 ° to -21.0° for a 4° corridor. Following a final descent
$

very similar to thac planned for VO '75, the MAV is landed, collects a ,>

surface sample storing it within i'_sthird stage, and approximately eleven

days after Me1 performs its critical ascent to rendezvous. MAV weight at

llftoff is 290 kg, includi_ig its I kg of Mars surface material.

Meanwhile, the MOI sequence begins with an initial impulse which trans=

fers the 2518 kg spacecraft to a capture orbit of i000 by I00,000 km alti- f

rude, of 105 hour period. The full _I transfer sequence is illustrated

in Figure 11-2. The capture orbit serves as a waiting orbit while surface i

operations take place, and during this period the actual trajectory of

descent, location of landing _ite, and trajectory of ascent are determined ,!

by DSN tracking. These operations occur over an eleven day period, and at

that time the Orbiter/ERV resumes its transfer. Any necessary piano change .,:

is executed at apoapsls of the initial ellipse, one pass before the second

impulse which raises periapsis to 50 km above the nominal MAV orbit of :

2200 km circular, l]aisellipse is then trimmed in _poapsis altitude to _

2250 by 5904 km, an intermediate step before final circularization at "_,

2250 km. The 2250 oy 5904 km step is required to establish the proper time

phasing between D_V and orbiter, so chat at orbiter circularization the :

orblter leads the MAV by 44° central angle. After nine revs in this phasing _

orbit, _oth vehicles are positioned to begin terminal rendezvous.

2,, _._V .Ascent and Circularization _

As:ent from the Mars suriace is accomplisi_ed H,ya sc,_ged launch :_ystum ,

of three separate propulsiv: units. These stages each perform a critical

y
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Inter Orbit

2200x100,000km
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impulse in the a._cent t., rendezvous orl,it, li.c svqu.:,nc..,._Itrajectory

transfers p"oposed for t11e M\V _s ll!ustrated in Figur,., !1-3. The initial

MAV stage _.s a solid r_cket _:_gine, designed for 6672 n (i_00 Ibf) thrust ",

and 285 sec specific impulse, ,_ith al; associated 1:ass Iractton ot 0.88. : :

This stage launches the entire _XV liftoff weight af 290 kg on a ballistic

' trajectory that reaches an altitude oi I00 kin. Launch orientation is

inclined to a ra1,_pan<le of 57 °, cr 33° from local vertical. First stage

burn duration is 54 seconds (generating a &V = I.6_4 kin/see), and following -"

the cutoff and jettison of this stage, the upper stages coast for 217 sec-

onds to reach I00 kin. There stage two performs a posigrade burn of 2. 530

kin/see, 34 sec duration, to achic.ve a closed orbit of I00 by 2200 kn_ This

stage is also solid rocket, with p¢:rformance characteristics the same as

stage one. During the coast to apoapJis which _ollows, stage two is jettl-

soned and at apoapsls the final M&V stage executes a circularlzation burn

of 341 kin/see to achieve the 2200 km rendezvous orbit. The third stage,

with a mass of about 40 kg. consists of a restartable liquid propulsion

system of 200 n thrusi, 235 sec speclfi¢ ir_pulse, with a propulsion mass

of 22.5 kg. From this e'rcular orbit t_e MAV and Orbiter/ERV begin the

trims which ultimately lead _-o rendezvous, docking, and sample transfer.

Details of specific pltch profiles durlng the burn seq_lence are dis-

cussed in a later section on Guidance and Control. Tb_ simulations done _

for performance opti_u[zatlon co._sidered all burns appr_xi_._ted a gravlty

turn, with angle of attack dliven to zero.

3. Earth Returo Profile
,m

After the Mars surface operations are completed and ascent_ rendez-

vous, and docking have be,.,_successfully performed, the Orbiter/ERV con-

tinues in a parking orbit for about 420 days, awaiting the opening of the

Earth return window in No_ember, 1983. Prior to executing the return trans-

Earth injection (TEl) sequence, the orbiter and ERV separate, fhen follows ;

the multi-imp,.,lqe transfer from the parking orbit to the return hyperbola,
!

executeu Dy the ERV in : s3milar, but reverse, manner as ,.he MOI. The return

sequence is illustrated in Figure 11-4. An initial burn transfers to an el-

lipse nominally 2200 b,, I00,000 km. At apoapsis of this orbit, any required :

plane change would pro)ably be performed, along with a small impulse to lower _
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periapsls to I000 km. Near periapsls of the I000 by 100,000 km orbit, ._

the final burn is executed to transfer the ERV to the return hyperbola.

For the 1981MSSR opportunity, the return window proposed is presented

in Table 1I-3. A 20-day period has beets defined for November 1983, with

Earth arrival occurring in September-October 1984. Given the Earth entry

conditions associated with the return leg, a first estimate of landing

site accessibility for direct entry landing has been determined, and is

shown in Figure II-5. With Vhe equal to 5.5 _m/sec, latitude accessibility

extends from near the North pole to 40°S, depending upon the approach aim-

point selected. Timing the entry appropriately gains access to any Earth

longltude. Greenland is noted to show its posslbillty as an MSSR lamilng

location.

table 11-3. Earth Retarn Window for a 1981MSSR

Mars Launch E_rth Arrival C3 Trip Time Vhe
Date Date (km/sec) 2 (days) (km/sec)

11-15-83 9-26-84 5.44 316 5.34

11-24-83 9-30-84 5.42 311 5.52

12-4-83 10-4-84 5.44 305 5.69
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C. TRADEOFFS IN MISSION BASELINE DEFINITION

I. MOI and Capture Orbit Selection

In the context of extracting all avallable mission performance, toward

_he goal of enhancing weight allocations for ascent and rendezvous systems,

Mars orbit insertion (If)l) wa_ designed to offer both an energy-efflclent

• orbital transfer and compatibility with rendezvous navigation. The sequence

selected has been illustrated in Figure 11-2, where the final transfer objec-

tive is a relatively low circular orblt. Use of a _altlple-impulse trans-

fer yields the desired performance and degree of flexibility.

An initial impulse (AVI) achieves the primary capture at Mars into an

orbit of I000 km periapsis altitude, 0.9185 eccentricity, and 105 hour period.

This capture orbit is held for about eleven days while landing and surface

operations are performed, followed by MAY ascent and establishment of its

circular rendezvous orbit. After orbit determination has resolved the actual

_V trajectory, the MDI sequence resumes, with the orbiter raising Its perl-

apsls (4V2) to match the achieved MAV altitude. Plane of the orbit adjust-

Dents would be made from this hi,fly eccentric ellipse. Finally, the orbl- !

tar trims apoaps!s to the circular rendezvous altitude (AV3) , through one

or a series of steps as required for proper time phasing or orbiter and MAV

at final encounter. Additionally, it should be noted that a provision of

extra AV budget, totally 258 m/s, was made to account for midcourse correc-

tions, fln_te burn loss, statistical AV, and allocations for rendezvous and

orbit trims.

Details of this sequence and its re)atlon to navigation and rendezvous

a_e further addessed in the section entitled "Navigation Aspects." From

: a purely performance standpoint, this approach _s of value in moderating

_arn time durations and reducing burn loss. The only major concern existed

in the area of Mars quarantine constraints, which would require that the

initial capture orbit be stable for about 40 years. Before developing that

condltlot%, some mention must first be made of the philosoph> behind the

selection of orbit orientation for this baseline. In order to avoid a

serious mismatch in orbital geometry at the opening of the Earth return

window (about 14 months after MOI) an approach aim point was selected to

achieve that particular it,cAination which contained not only the incoming, !

t

11-13 [

'i

1975006730-048



but also the Mars-departure-to-Earth, Vhp asymptotes. The scheme is

!intended to reduce plane change requirements for return to a levei no

greater than that needed for minor trims. This select inclipation ranges

vernal equinox system). For that capture orbit definition, withelements

listed in the legend of Figure 11-6, a periapsis altitude history is pre-

sented over a flve-year period. Beginning with the design periapgis

altitude of I000 km, periapsis exhibits a rather orderly tendency to long °

term growth, a pattern which does continue throdghout the period of quar-

antine concern. The stability analysis was performed with the aid of the

lifetime program, ORBHIST (Ref. II-I).

_. Direct Entry Landin_ Trades

I As definition of the 1981 direct entry baseline progressed, the

reqoIrement to modify t_e lander to contend with higher entry velocities

and increased landed weights emerged as a principal control of the design.

i These modifications of the nominal Viking Lander spacecraft involved a
number of systems, but none are considered radical departures from the

basic vehicle. First, to partially compensate for the added weight of

the MAV, nearly all system_ superfl_ous to the basic objective of sample

return were stripped from the lander. Second, to counter the increased

aerodynamic loads with high direct entry velocities, the aeroshell and

heat shield were allowed to grow in m_ss and thickness oufflclently to

offset those conditions. Finally, the terminal descent propulsion was

redesigned from a "blowdown" system to a pressure regulated propellant

systen, affording higher average thrust levels, shorter burn time, and

hence more time and altitude for the parachutes to assist the descent.

Other departures from the nominal Viking mission plan involved tra-

jectory constraints and considered atmosphere models. For the MSSR mission,

a reduction of the terrain height uncertainty from i0,000 ft. to zero was

accepted. Also assumed was the use of a mean Mars atmospheric model, rather

than a _:preadof models. Both ass,lmptions were considered more reasonable

in view of the improved knowledge ,.xpected to be gained from the 1975/76

landing.

Given that background, the relation_hip between what nonpropulsive

dry weight could be landed for varying s_stem weights at entry interface
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was developed, and is presented in Figure 11-7. Entry corridor widths of
i

2° and 4° are compared by tile two upper curw_-s of the figure. With the

,.,_=.-_o,-,-_,..-t/,o_ r_,.=_ ,-,, iv _o .,,__ shallow _.,A _,,.+_._,_._...,,,_

straint, steeper design conditions require a heavier aeroshell and, rela-

tive to the 2° corridor, reduce landed weight potentlol by 2C kg. Yet

navigation analysis has indicated that onboard optical navigation would be

necessary to achieve the narrow 2° corridor, while DSN tracking is adequate

for 4°. Since inclusion of the optical system weight <#ould di_linish t.he

increase in landed weight deriving from u shallower entry and add to the

modifications required, the 4° corridor was accepted as a reference.

The lower curve in Figure II-7 is included only to illustrate the

perfor_mnce gain accruing from the pressure regulated lander propulsion

system. Where "Lander Limits" are denoted, thi_. refers to the maximum

curry weight for which the desc_nt thrust level and parachute deploym_:nt

altitudes are acceeta'ble.

An important characteristic of the direct entry landing mode for MSSR

is the limited range of landing site accessibility available if the asymp-

tote containment Frinciple discussed earlier is accepted. Figure II-8

illustrates the ._-.t,,.ationfor the select inclination (almpoint) design,

and for an un-_=_hricueu aimpoint case. A representative Vhp declination

is chosen, with the periapsis locus noted by the dashed llne. If inclina-

tion is restricted to the unkque value of 43 ° dictated by containment, the

&o entry corridor maps illto a 5° landing strip (arc) on the Mars surface,

extending in latitude only from 37°S to 39°S. Adjusting the exact encounter

time would allow this strip to be rotated 360 ° in longitude about the planet,

while still providing only limited accessibility.

If inclination is not restricted by containment, only by the %%p

declination, then rotation of the incoming trajectory about the lq_p vector

allows the 5° landing arc to be likewise rotated. This provides potential

access tr, all latitudes between 50°N and _5°S, and again by timing encounter

all longitudes can be accessed. This assessment of site accessibility is

strictly shaped by the performance aspects of the 1981 MSSR Earth to Mars

trajectory, and does not incorporate constraints which may arise from

other design areas. Certain inclinations, for example, may require the
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Figure 11-8 Landing Site Accessibility
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ERV to execute large plane change maneuvers in order to transfer to the '_

return hyperbola. Without asmyptote containment, this possibility exists _,

to sor_edegrep for all aimpoint orientations and would need to be further ,:"

examined to assess the i_p.act on ERV design for particular landing sites.

Dividing ar,y large plane change requirement between TEl and MOI should

also be examined for the complete analy::is of site accessibility and

system impact.

_ Ymrs Ascenc Profile Selection

An integral part of the 1981 MSSR design development involves the

selection of an efficier + reliable MAV ascent profile. Specifically

treated is the question of how to deliver the most non-propulsive payload _

to a circulcr orbit of some altitude compatible with rendezvous, given a

_V which is constrained in size and weight by the external dimensions

and performance of a minimally modified Viking Lander. _.

Of many possible approaches to the design of the ascent trajectory

and staging philosophy fo_."this situation, three options were examined in

degth, i.e,, analytically simulated and optimized by computer methods using
ii
/

the general optimization program POST I.Ref.11-2). Figure 11-9 illustrates

t o different ascent trajectory schemes, each designed ".oreach a final
i

orbit of _°an km circular. The first pictorial represents a "Hohmann '

Ascent" sequence, composed of three burns to three conics - i) an initial

boost to a ballistic trajectory thae coasts to I00 kin, 2) an impulse at

I00 km to establish an elliptic orbit with a 2200 km apoapsis, and 3) a

final ci_cularization burn at apoapsi_ to achieve 2200 km circular. The _

sequen=e readily lends itself to a staged MAV of two or three p=opulsive

units. This _scent profile was th_n evaluated for a three-stage MAV con-

figuration, staged propulsion being solid-solid-liquid. A restartable

final stage was neces_,ary for the MA_ to _erform _ts reudezvous function.

Solid stages were used d,e to their relatively easy _daptation to a staged,

impulsive, fixed AV application. ($,olidperformance assumed as follows: i'
Isp--_285 sec, mas_ fraction = .88, thrust = 6672 n. Liquid performance:

T.__.,__ 235 sec, mass fraction = .4, thrust = 200 n.) A two-stage D_V con-

figuration was also considered, staging being solid-liquid. In this case

the solid stage executed the initial boost to I00 l,m,with the liquid
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Figure II-9 Mars Ascent Vehicle - Staging Considerations i
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!

! =tage perforating all remai Ing i_pulges. (Solid performance as before.

I Liquid perforu_mce: Isp = 295 sec, mass fraction = 0.7, thrust = 6672 n.)
Each system was optimized in terms of trajectory profile and mass dlstrl-

i bution, for a controlled liftoff MAV weight of 250 kg with identical

I terminal flight par.hconditions (2200 km circular). With performance

i mea3ured by nrn-propulslve payloa4 weight d=izvered to rendezvous orbit

(including surface sample _ all supporting subsystems), the three-

stage MAV achieved a payload of 18 kg, while th_ t,:o-stage configura_ion

achieved only 7 kg.

l_e secono pictorial in Figure 11-9 illust..-atesthe third option

considered. Here a two-stage MAV with performance similar to the above

two-stage co_fi_,ratlon is treated, but the initial solid stage boosts

the vehlcle dzrectly to rendezvous altitude. At that point the second,

liquid stage perfo,_ns circularlzation. Optimization of this alternative

trajectory profile for a 250 kg MAV disclosed a payload potential similar -"

to the two-stage "Hchmarm Ascent", of 8 kg, still far below that achieved

by the th,ee-stage MAV.

The obvious performance superiority of the three-stage, "Hohumnm i

Ascent" concept led to the incorperatio_ of this design as an important

part of the baseline. Interaction of this approach with rendezvwJs navl-

gation and integration of the ascevt vehicle with the Viking Lander will

be d_.cus3ed later.

A. Rendezvous Orbit Selection and MAV Sizin_

All performance aspects of the various mission phases which ha_e been

ue_cr.bed to this point set the stage for what is the primary design trade

of the 1981 direct entry MSSR baseline. From whzt is available in terms

of laun_:hweight for the 1981 opportunity, certain relatively inflexible

weight allocations _st be assigned to various systems such as the orbiter

bus (530 kg), the ERV (261 kg), the basic dry lander (446 kg) excluding

the MAV, and to vehicle adapters and launch vehicle pecullars. A t'ypical

allocation is listed in T_ble 11-4. 'l_ere_,-minlngr_servoir of weight

can then be distributed, within limits, between the orbiter propul3ion

system and the total Lander/MAV complex. I_ is this distribution whJch

lends itself to performance optimization, and serves to control MAV _Izlng

and selection of the rendezvous orbit altitude.
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Table II-4. Typical Welgh= Distribution for a 1981MSSR

l_lunch Weight 4409 kg

Adapters, Bioshield, Lv_t_ 306

Spacecraft at MOI 281g

Orbiter 5us 53{)

' ERV 261

OrblC_d Weight Margin 134%

Propellant 1631

Prop Inerts 262 _-#=
3327

Lander/MAV at Sepazatlon 1285

Expendables (all) 509

Basic Dry Lander 446

MAV 290 _ :

Launcher 40

Since the critical objective of this approach Co MSFR involves bring-

ing =ogether the MAV and Orbiter/ERV in a coincident orbit, that orbit must
#

be selected which places the most reasonable demands on each vehicle given

their respective ccu_lexitles, enhances the _.Ike]ihood of mission success,

and ideally maxlmiz_s the payload weight which i_ deli_'ered from the sur-

face. Drawing from the given weight reservolr_ as that weight is increas-

ingly allocated to enhance the orbiter pzopulsi,_n system, lower rendezvous

orbit altitudes become possible. Although the ].ander/MAV weight allocation

is correspondingly reduced, the lower rendezvous orbit eases requirements

on l_V ascent propulsion. On the ocher hand, distributing more weight to

the Lander/MAV could possibly yield a more reasonably sized Mars launch

system which could deliver a larger payload to a higher rendezvous orbit.

The nature of this trade is _11ustrated by Figure II-i0. In the upper

cuzwe labeled "Entry Weight" can be seen the quantified effect of trading

wei_,t between the l_nder/MAV and orbiter propulsion (tradipg IdAVweight

against orbit altitude). O,rves below "Entry Weight" t_anslate the land-

lug spacecraft thrm_gh entry to weight on the surfsce. Subtracting the
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p,

446 kg basic lander from "Dry Landed Weight" leads to weight available

for the MAV and it_ launch mechanism, of which a0out 88% can be assigned

to the MAV alone.

LiuKts to this design trade exist on both ends. A maximum weigh_

for the Lander/MAV at entry of 1250 kg, derived from laader system limits

mentioned earlier, bounds the MAV to a maximum of 325 kg. Orbit altitude i

is in turn constraine_ to _,a],_es above 1500 km, a condition which reflects
[

the lowest orbit from which the ERV propulsion (in the 263 kg ERV preliminary

design) can effect a return-to-Earth. These hounds are better illustrated by

Figure II-II, which summarizes all basic elements of the trade. (It

should be mentioned here that this plot is representative of the analysis J

involved in MS$_ performance optimization, and although it may differ in

small degree from the most recent weight derivations, the analysis itself

and derived concluslons for 1981 remain valid.)

In Figure II-ii the curve ";Performance Limit" represents possible

combinations of MAV weight and rendezvous orbit altitude resulting from

the distribution of all available weight in the "reservoir". Points on

this curve use full mission capability. Points above the curve are pos-

sible and would provide weight mar_Ein, while points below the curve cannot

be achieved. The "ERr Limit" establishes a 1500 km minimum orbit altitude,

and the "Landed Weight Limit" bounds MAV weight to values under 325 kg.

If full mission performance is exploited, the range of possible design

solutions would ex+end from a "light MAV" of 215 kg with rendezvous at

1500 km, to the "heavy MAV', of 325 kg and rendezvous at 2600 km.

Remaining to be resolved, then, in some way to evaluate this range of

possibilities, to converge on an optimu_ Drawing from the analyses of

M_%V ascent profiles dlscJssed earlier, the sensitivities of final stage _,

payload weight to both _xV liftoff weight and desired orbit altitude could

Le approximated for the three-stage configuration. These sensitivities
/

were found to be greatly influenced by the assumptions made for the pro-

pulslon mass fractions and other inert weight requirements, but neverthe- !

less allow dedt,ctions to be made for _he specific optimization problem, i

Se_sitivity of Stage III non-propu!s_.,e payload to llftoff weight I_ about _;

L
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f
+0.07 kg/kg, and of payload to orbit altitude about -0.005 kg/km. A one

kilogram increase in non-propulslve payload could therefore be gained by

either a 14 kg increase in MAV llftoff weight, or by a 200 km reduction

I in rendezvous orbit altitude. 4
Using these sensltivit_es, a linear _pproximation of payload "con-

tours" has been superimposed over th_ design cu_ze_ in FiguL= i_-II. _le

resulting relationship of the performance curve _ith payload potential

I indicates payload is maximized "heavy solution. From purely
for the MAV"

a performance view, the optimal choice for the MAV weight vs. altitude

trade would be the 325 kg MAV to 2600 km, bumping the lander systems

boundary, an_ achieving 25 kg payload.

At this juncture of the study, factors involved with configuration

integration intervened. The size of the larger MAV with respect to the

external Viking Lander dimensions presented somewhat difficult integra-

tion proble_. Noting from Figure II-ii the relative flatness of payload

with respect to MAV weight at the heavy end of the perfolmmnce curve sug-

gested that a backoff position, with reduced MAV weight (and size), would

yield only a small compromise in final payload. Given this interplay of

performance and configuration analyses, a compromise design evolved. MAV

: containment within the lanier could be de_nstrated for a MAV weight of

288 kg, which, using full mission performance, would correspond to a 2200

km rendezvous orbit. Loss in payload po_entinl for this compromise posi-

tlon would be only I kilogram, from 25 kg to 24 kg, which was considered

acceptable. This mission scenario, of a three-stage MAV sized to about

288 kg, with rendezvous occurring in a 2200 km circular orbit following

a Hohmann ascent, was _herefore accepted as the reference for the MSSR

feasibility assessment of orbital rendezvous and docking.

Specific mass figures quoted in this :section for MAV stages a_ es-

pecially for MAV third stage payload are representative of system design

characteristics ass,-,ed for the performance analysis. Since these system

characteristics evolved continually during the course of nut study, direct

mass comparisons with other chapters, particularly Chapter VI, will show

slightly lower vehicle masses for the final MSSR spacecraft design.
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D. HIS:-LON .lr:A} YS[S St_b,.1$ v

The baseline mission suggested for a t98t MgSR in'.'ol,,ing rendezvous

and docking in Mars orbit, when constrained tt_ a singie launch Titan II£E/

Centaur, includes the direct entry landing of a _rs Ascent Vehicle. _d-

ifieations to the '75 Viking Lander are required to _cconmaodate the ?_V,

but these mods appear t_ b= of a reasonable nature. An Orbiter/ERV con-

figuration inset=c, t_y way of a multiple-impulse transfer, into a final

circular rend_mvous orbit of 2200 km altitude. After sample acquisition,

the MAV begins its ascent _,luence. In three stages, the M_V first boosts

to I00 km on a parabolic trajectory. A second stage then burns to achieve

a I00 by 2200 km ellipse. At apoapsis of that orbit, the third stage

(liquid propulsion) executes a circularization burn to achieve the rendez-

vous orbit.

From Lhis point rendezvous, docking, and sample transfer are accom-

plished following a series of phasing orbits. The MAV is jettisoned and

the Orbiter/ERV continue in parking orbit until the Earth return window

opens in November 1983. Then the ERV and Orbiter separate, and the ERV

begins a multiple-impulse Trans-Earth Insertion to the return hyperbola,

in a manner approximately the reverse of MOI. In October 198_, Earth is

° encountered, and the Earth Entry _.apsule is separated from the ERV for

its final descent through _he Earth's atmosphere.
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E. ALTER'_TIVE MISSIO'_ CONCEPTS

Three mission options for _rs sample return in 1981 are illustrated

and compared in Figure 11-12. The first oItion requires either dual

_itan _llE/Centaur launches, or the ava_%ability of a Shuttle launch. One

Viking-derived spacecraft essentially f_[lows the VO '75 mission plan, but

del_vers out-of-o_bit a lander modified t_ carry a MAV. A second Viking-

derived spacecraft carries an Eaxth Re_urn Vehicle (ERV) into the final
v

rendezvous orbit required to mate the :_.V and ERV for rendezvous, docking,

and sample transfer. Orbiter propulsion growth for both spacecraft is

about 5% beyond nominal Viking. In the second mission option illustrated,

all spacecraft elements (orbiter, EFV, Lander/MAY) are carried first into

a four-day orbit from which the l_nding is accomplished. Orbiter and ERV _

then transfer to the rendezvous orbit. This scenario requires the heav-

iest single spacecraft, and depends upon Shuttle launch performance.

The third option, our presented basel_ne, derive_ from the performance ,

capability of a single Titan lllE/Cen_aur launch. Landing is performed

from a direct entry trajectory at Mats, and the Orbiter/ERV insert into

the final rendezvous orbit after a multi-impulse transfer. Orbiter pro-

pulsion growth is about 15% above nominal Viking. This system is essen-

tially a modified VO '75 _pacecraft_ To fully exploit the greater launch

weight available with the first two options, requiring dual Titan IIIE/

Centaur launch or Shuttle, Doth the Mars Lander and Mars entry vehicle

would require modifications to the Viking '75 derived systems considerably

'L

g_eater than those identified in this study.
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III NAVIGATION ASPECTS OF ASCENT_ RENDEZVODS AND DOCKING

_ne MSSR mission described herein utilizes a so-called "slow" rendez-

vous profile as opposed to a "fast" direct ascent-to-rendezvous mode. The

slow rendezvous is considered more reliable and can be perfor,led with a

relatively simple open loop guidance and control package for MAV ascent.

Once the MAV has circularized, it assumes a passive role as far as orbital

maneuvers are concerned. Only the Orbiter is active in the rendezvous se-

quence from then on. The Orbiter _ctivity is composed of two phases: an

initial Earth-controlled phase and an automatic terminal phase. The Orbiter

; is maneuvered under Earth control until con_'itlons for terminal rendezvous

i initiation are satisfied--then the auton_atic _ystem takes command.

The initial rendezvous segment has a coarse phasing adjustment provided

by the maneuver designated "orbiter phasing" and a fine phasing adjustment

resulting from the "circular trim sequence. '_ Very accurate "knowledge" of

the 14AV/Orbiter relative state (position and velocity) is required to target

the circula_ trim sequence. Th%s info_tion is provided by sequential

filtering of multi-vehicle Differential Very Long Baseline Interferometric

(AVLBI) data. To obtain this type of data both vehicles must be simultane-

ously visible to the DSN. This is the fm_ction of the "Orbiter p_sing" I

maneuver. In the study the latter maneuver is computed with orbit estimates !

derived from conventional Doppler range rate data. 1

This section of th_ final r_port deals with the navigation aspects of

the MSSR mission as a whole _nd particularly with the initial Earth-controlled

portion of the rendezvous.

The reference mission was simulated by Monte Carlo methods in order to

test the mission design and maneuver strategies for trajectories disp_._ed

• by randummaneuver execution and orbit determination (0.E.) error. The

limiting effect of these errors on the "controllability" of the MAV/Orbiter

relative sta_e at a fixedMAV orbital position was examined. These disper-

slons in the actual state from the reference are generally referred to as

"control _tdispersions because they measure the ability to co_trol the state

to the reference. On the other hand, deviations in the estimate of state

from the actual state are referred to as knowledge dispersions. Iv addition

to relative state dispersions other simulation outputs of particular interest

I11-i
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are orbital dispersions, pointing errors and the statistical AV quantLties '

(denoted as AVstat). _ne latter is defined as the amount by which tD_e 99

percentile AV exceeds the nominal AV. This quantity is then the amount of

AV which must b_ budgeted above nominal so that 99% of the time there will

be enough _V to perform the mission. The u!tima£e succes_ of the Fmrth-

controlled portion of the r.ission will hinge on the simultaneous accepta-

bility of (i) AVstat loads, (2) dispersions at terminal rendezvous initiation

(TRI) and (3) orbiter trajectories for planetary quarantine. Part A of _his

chapter will present navigation analysis results "or five mission segments

defined below; Part B reports on the sensi_ivlty of mission performance to

navigation techniques and parameters; and Part C provide_ an a_-_ent of

overall MSS_ mission feasibility from a navigation standpoint.
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A. NAVIGATION P_ESULTS FOR MISSION P}LASES

The MSSR mission, from Mars encounter to terminal rendezvous initiation,

_. for simplicity divid=d in-o 5 segments or phases. These are: I) Orbiter

Capture to MAV Ascent, 2) MAV Ascent to MAV Circularization Trim, 3) OrbLter

Periapsis Change to Orbiter Circularization to First Occultation Exit, 4)

First Occultation Exit to Start of Circular Trim Sequence an4 5) Circular

Trim Sequence through 10th Occultation F,_it. Each mission phase is first

described in c_Lljunction with a figure having key events numerically called

out. A brief discussion explaining the mission design and key parameters

precedes the presentation of results for that mission pha_eo

i. Mission Phase #I - Orbiter Capture to MAV Ascent _

D_scri_. (See Figure !II-I)

#I) The orbiter performs a fixed attitude Mars Orbit In,_;ertic_n(MOI)

maneuver targeted to achieve an orbi[ with semi-major axis a = 53893.4 km

(nominally the i000 x I00,000 km capture orbit). This requires a finite

burn of A VMoI = Ill&, m/s. Tht;]_nder touches down near periapsis.

#2) The Orbiter state vector .s updated on Earthj based on approxi-

mately 1-1/2 ozb_ts of conventional DSN Doppler data.

#3) The Orbiter perfo'nns a coarse plane change nmneuver AV , if ,e-
pc

quired, to contain the outgoing hyperbolic excess velocity vector (VILE).

This occurs at the 2nd apoapsis.

,,_I Final determination of orientation of Orbiter plane of motion

prior to MAV liftoff. Based or_a I orbit of conventional DSN Doppler data_

#3) MAV liftoff when Orbiter at 3rd apoapsis.

Discussion. The approach tracking period[ and deflection maneuver time

are shown in Figure 111-2. Tracking data from E-30d to E-10d is used to tar-

get the last mldcourse correctiorL au E-lOd. The orbit deternination (O.D.)

accuracy at this time l_aits the orbit control capability for deflection

and MOI manew_ers. Tracking data for determination of the deflection maneu-

ver Ls taken fro_iE-30d to E-!gh since !2 hours are required for O.D. pro-

ces_,ing and maneuver computation..

State accuracies at this time poin represent the knowledge available

to target d_flection. Tracking down to E-12h may be used to target the MOI

111-3
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mn:_eever. Statistics of state dispersions are represented by the B-plane

_rcor ellipse cen_red at the nominal B (impact) vector. The orientation

of this ellipse is specified by the angle UMI" Note that the smallest dis-

persiou_ in the B-vector ;.,a_nitudc:occur when the B-vector _._ o__iented along

the ellipse m!hor axis (b). This _pproach °Ai M (i.e. 6AIM = OF'_) will there-

•-)T • yield the smallest entry fli,ght-p_th-angle (T) dispersions. A Monte

C..r:c simulation c f tht deflection ma:Aeuver computation and execution was

L_ed to determine entry control capabil_ty. A separate simulation was used

to determine the AVSTAT requirement for the Orbiter maneuver sequence through

circularization. These include MOI, periaFsis altitude adjust (HP) and cir-

_ulatizarion (CIRC). fbe dispersed approach periapsis altitude, unaltered

by MOI, i_ assu_ed to be adjusted back to nominal (2250 k_) prior to circu-

iarizinB at that altitude. As will be seen later this is an approximation

co the actual maneuver s_rategy.

The computation was performed assuming only encounter control and

knowledge uncertainties and maneuver execution error. B-plane control and

knowledge statistics are as shown in Table 111-I. An optimal set of MOI

burrL controls (a, _ tB, TA) is computed based on the pre-encounter state

estimate for each dispersed Monte Carlo case. 1_e actual state is then

integrated through the burn to produce the capture orbit. A similar tech-

nique is used to target the circu!arization burn except for this computation

no knowledge error is assumed (i.e. estimate = actual state). Statistics

_f total AV are computed for the three ..aneuve.s and AVsTAT output as the

99 |_ercentile sample less the nominal AV.

Table III-I Representative Control und Knowledge ilncertainties

Expressed in B-plane System

Control: 6XA XA - XK

Knowledge: AXE = XF_ " _A I "_B" R B.T 8SMAA

Knowledge I 210. km 60. km 90°
Control 227. km i01. km 97°

Resul_s, Tables III-2 through III-5 contain results for Mission Phase

#I. As shown in Table 111-2, a 25 km B-plane control Ind knowledge ellipse

semi-minor axis (sized by }_rs ephemeris error) allows for a .88 ° corridor
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width. Here it iE assumed that the approach B-vector lies along the minor

axis direction. The 4-huur deflection time was set by Lander power con-

s_dcra tions.

Table 111-o- Lander Deflection Summary

Nominal

Deflection Time Maneuver _YS'L%T AVsTAT

4 hours

(Range = 53500 kin) 83.9 m/s .88° 1.6 m/s

The total Orbiter fuel budget required to perform MOI, raising of peri-

apsis and circularization is 2192.3 m/s, made up in part by a AVs_AT component

of 37.5 m/s (Table 111-3). The total O_biter AVsTAT load ._ill be 37.5 m/_

plu_ the AV requirement for the circular trim sequence used to "catch" the

MAY. The MOI _VsTAT is due primarily to positzve dispersions in the approach

hp. If the MOI strategy targeted to the nominal ha instead of the nominal

semi-major axis it would be possible to reduce AVsTAT for the CIRC maneuver

to the execution error level.

Table 111-3 Or_i, er AVsTAT Summary

Nominal

_V _VsTAT

iMO_ 1115.9 m/s 2g.7 m/s
I

HP 22.0 m/s 6.1 m/s

CIRC 10% _ -_/.... m/s

Total J o,_', -.._._ m/s 37.5 m/s
_, I !

Table 111-4 presezlts ninety-nine perce.ntile (99%) capture orbit dis-

persions for representative B-plane uncertain=ies. Capture orbit h di_per-
P

sions are corrected by the HP maneuver whereas period variations are accounted

for implicitly in the phasing orbit computation. Inclination and nod_l errors

affect the time and azimuth of MAV ascent. Since h will .notbe dispersed I
P

down by more than 200 or 300 km, the orbit stays well out of the sensible

atmosphere and has been shown to satisfy plnnetary quarantine requirements.

Capture orbit O.D. results are found in Table 111-5. Systematic error

parameters uonsidered in the analysis are correlated station locations (at

the 3m, 5m, 15m leve]]_ aud Mariner 9 defined Mars gravity field uncertain-

ties. Results are extremely good when data is discarded on either side of

periaps is. ill- 7
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Table III-4 Capture Orbit Dispersions

Nominal 99% 99% 6

132.8 hrs. + 26.4 hrs.
Period 106.4 hrs. 83.0 '-"- "" ' Lz-S.. -- Z..J = _,I.&L_ . •

1394.0 km +394.0 km
h 1GO0 km
P 76'_9 _n -237,1 km!

323.3° 327.6 dog_ + 4.3 de.g.
319.7 deg. - 3.6 deg.

i 42.5o 45.4 de_gz_+ 2.9 deg_
40.0 deg. - 2.5 deg.

t

Table 111-5 Capture Orbit O.D. (Io Uncertainties)

! INC a _ T # TP
Period HP j

10.0 sec .08 km .003° .004° .003° 9.6 sec

2. Mission Phase 2 - MAV A_;cent to MAV Circularizatlon Trim

Description. (See F-gure 111-3)

#6) The t_ MAV solid rocket stages inject the liquid third state

into a I00 x 2200 km crbit (period = 2.58 hours)• Liftoff is at an initial

ramp angle %o" A constant p_tch rate % is initiated after 2 seconds of

thrust to approximate the gravity turn pitch profiles.

t

#7) After 8 orbits of conventional Doppler tracking by the DSN the

MAV injected orbit and circularization maneuver are computed. Since 12

hours are allowed for computation time the _eneuver is not loaded onboard

the MAV until the 12th orbit.

#8) The circularization burn is performed (nomi_. WCIRC = 337.3 m/s)

: at 12th apoapsis.

#9) An_th__r state vector update a_tdtrim AV (RECIRC) is computed after

4 more orbits of co.ventional Doppler.

#i0) Ttte2nd attempt to circularize the orbit is made at the next

apoaps is.

#iI) Final MAV update, based on 4 more orbits of data required for

Orbiter periapsis adjust maneuver.

III-8
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Discussion. Since the ascent is e_ecuted open loop according to a pre-

programmed piLch profile there is no on-_oara sensed estimate of state from

which guidance corrections are computed. The injected state will only he

dispersed by ac_uai _'con-_u"")-deviations _n --^w_-_,,_.,1....._ cc--_putedpar____eter_

such as landing site posltion (6LONG, -LATL, 6ALT), 1-u_ch aZimuth (6AZL),

initial ramp angle (_0o), constant pitch rate (6_), liftoff weight (6WT),

burn times (dtBl , 6tB2) , thrusts (6TI, 6T2) and coast time (6tCST)O The

sensitivity of tqa Cartesian injected state to each of these error sources

was derived oy flyiL_g the ascent w_th the Ic_perturbed values. The sensi-

tivity matrix M, wlLere

_x
M = w (6 x 12) was used to form a covariance matrix for injectedoe

state deviations according to

PINJ = M E MT where (I)

E is the covariance matrix of launch parameter control deviations. E is

not diagonal since burn time and thrust are correlated -.98. The under-

lying assumption implying the validity of equation (1) is that any dispersed

state,6X, resulting fr_n a combination of launch errors, 6e, may be repre-

sented according to

6X = M _e i.e. linearity holds.

On each Monte Carlo pass through the Ascent-to-TRl simulation the matrix

PINJ was used to construct a random sample of injected state error. This

was then added to the nominal Cartesian state to form a random actual _n-

jected state. After Earth-based O.D. ia accomplished the MAV will be com-

manded to circularize (by firing at apoapsis) at whatever apoapsis altitude

it happened to be injected into from launch. This maneuver can be com_Jted

rather coarsely since the MAY has only to lift itself out of the gravity

well _.owhere the O.D. situation improves for the final trim. The MAV is

assumed c_pable of executing as accurately as the Orbiter. The Orbiter

execution accuracy is as specified by the Viking Orbiter Design Handbook

(Ref. III-i). Uncertainties correspond to _.heViking Orbiter specifications

and not to the mission requirements on sys_-_ design (MRSD). The I_ poJ,t-

ing misalignment is computed from

o [<.00232+= (2)
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and the AVmagnitude error (or bunl time error) is given by
!.

°tB = [(.027)2 + (.001 DVM)2]_ MASS/THR (3)

In equation (2) DVM is commanded AV magnitude in m/see where in equation (3)

D%_ is the same quantity in _m/se¢.

R_sults. The major sources o_ error affecting an equatorial ascent

trajectory are found in Table III-6 along with their _eparate (Io) effects

on period (6P) and apoapsis altitude (_hA).

T_ble III-6 Ascent Dispersions (1>=-2.58hrs, hA=2200 km)

6LATL 6LONG 6ALT _AZL 6e0 68

6P(hrs) O. - 0.07 + 0.06 0. 0.025 0.03b
T_

6hA(km) 0. -158.8 +126.5 O. +56.6 +80.2

/

" 6WT 6tBl 6TI 6tcsT 6tB2 6T2
J

6P(hrs) - 0.03 + 0.31 + 0.31 0. + 0.14 + 0.14

6hA(km) -71.8 +707.8 +725.5 0. +327.7 +330.2

E

Landing site _rrors are for the case where only landing footprint and

gyrocompassing are used to fix the landing site position. When S-band

; ranging to the Lander is used to solve for the landing site position the

i location errors are reduced so that their effect is more comparable to that

! of ramp angle, pitch rate and liftoff weight. Burn time errors and corres- ;

pondi_ thrust errors cancel because they are highly negatively correlated.

Coast time erro_ (controlled by on-board clock) has negligible effect on

i ascent. The 6hA dfopersions due to all these error sources fall in the

interval -462 km < 6hA _ 425. km. The periapsis #ispersions torte=pond

i to a MAV orbital lifetime of > 30 days.

Table 111-7 presents O.D. results for the I00 x 2200 km and 2200 x

2200 km orbits with a 2nd order gravity field (i.e. only uncertainties to

2nd order corrupted state estimates)_ The effect of drag and higher ocder
?

harmonic terms is discussed in the navigation sensitivity section. Uncer-

tainties in the harmonic coeffieLents were taken from _riner 9 results

(Ref. III-2).
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Table 111-7 O.D. Accuracies for Baseline Analysis _i_

i a o o o. o. o.

l(k_) (ok_)(k_) (m/Xl(m/_)(m/z) |
Circular Orbit .8 1.3 1.3, .2 1.2 I.O

Table 111-8 presents AVsTAT results for the MAV. The effect of maneu-

ver execution error on the circularization buz_ is removed by the "recircu-

larization (RECIRC)" trim. The total MAV AVsTAT is 41.6 m/s.

Table 111-8 MAV &VsTAT

Nominal AV 99% &V AVSTAT

CIRC 337.3 m/s 376.6 m/s 39.3 m/s

RECIEC 0. 17.9 m/s 17.9 m/s

To_al 337.3 m/_ 378.9 m/s 41.6 m/s
.i

3. Mission Phase #3 - Orbiter Periapsis Chan_e to Orbiter Circularization _

to First Occultation Exit |

Description. (See Figure 111-4)

#12) Orbiter s_ate update (based on I orbit of conventional Doppler).

This Orbiter estimate and the latest MAV estimate are uoed to compute an

Orbiter maneuver which will raise the Orbiter periapsis altitude to 50 km

above the MAV circular altitude.

#13) The Orbiter raises periapsls on the 4th apoapsis (_VNoM = 22 m/s

for hA = 2250 kin).

#14) Orbiter state vector update based on 1-1/2 orbits of conventional

Doppler data.

#15) Orbiter intermediate phasing burn (_VNoM = 720.6 m/s) and MAV

orbital position at this time.

#16) Orbiter state updated based on 4 orbits of conventional Doppler.

An additional 4 orbits is spent in the phasing orbit while the state and

clrcularization maneuver computations are being made.

#17) Orbiter circularization (AVNoM = 318.5 m/s) is targeted to achieve

a semi-major axis equal to the estimated radius of periapsis.

111-12
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#18) As a result of the phasing orbit period ¢alcu!_tion a 45° phase

angle is established between Orbiter and MAV when the MAV exits from the

Earth occultation zone for the first time after O_'biter circularization.

Discussion. After the Orbiter has circularized, to a radius 50 km

greater than the _.&V radius, the plan is to very accurately _et=_rmine the

relative state of the two vehicles, using an Earth-based simultaneous data

type, and then to trim up the Orbiter trajectory to set the initial con-

ditions for the automatic terminal rendezvous sequence• Simulta_,eous Earth

: coverage must be guaranteed for 4 orbits and 4 orbits are spent computing

the trim sequence. The trim sequence is executed in I orbit so that a total

i of 9 MAV orbits after the ist MAV occultation exit are required to set up

the TRI conditions. The time of the lOth MAV occultation exit is taken to

2°be the TRI time. At TRI a MAV/Orbiter phase angle is desired (deter-

mined from terminal rendezvous analysis)• This being the case the desired

phase angle (or Orbiter lead angle) at the Ist MAV occultation exit is

given by

= 9 _ + 2° where (4)
o

= 360 (PoRB- PMAv)/PoRB (5)

Equation (4) results since the orbiter "slips" in lead angle by an amount

every MAV orbit. Once _ is known the period of the phasing orbit mayo

be computed from

= toe+ 12PMAV (6)8 Pphase + At Aoe + _o

Equation (6) is for a minimum time spent in the phasing orbit--namely 8

revolutions. The quantity At is the time required by the MAV to moveoe

from its orbital true anomaly at the time of the Orbiter phasing maneuver

to the occultation exit (o.e.) true anomaly. Likewise Atoe_ is the time

required by the Orbiter to go from circularizatlon true anomaly to the true

anomaly of o.e. plus _o" Note that for each MAV injected radius a new _o

and phasing orbit period is computed. The nominal Pphase = 5.5 hours with

hA = 5904 km.

Results. The major source of error lim.iting the accuracy with whichi
may be set is the execution error in the Orbiter circularization maneuver.

o

• Table 111-9 shows the post-circularization dispersions for a Ic perturbation
Q
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in execution errors 6TA (true anomaly), 6_, 68 (pointing angles) and 6tB

* (burn time). These sensitivities are for a worst case insertion--namely

directly from the high capture orbit.
+.

Table 111-9 Po_t-Circularization Dispersions i

6a de 6i 6_ 6_ 6TA

6TA 0.I km -3.1(-4) 0. -22.1 _ 0.0 c 22.5_

6_ 0.2 km -2.4(-4) -0.02' -29.9 c -0.2c 30.0©

68 0.2 km 1.2(-3) -0.02' 20,,3 c -0.2 c -20.1 c

0. a 4.2' 0.'0c - 4.2 c
6tB -5.3 km -i.2(-3) I

It is assumed that the phasing is perfect pr_or to circularization.

Note from Table 111-9 that the primary execution error is burn time. (TTLis

is the case even with in-flight calibration of the accelerometers prior to

each maneuver.) Note also that the argument of periapsis (_) and the true

anomaly (TA) change greatly while the sum of the two is relatively constant. ,L___._

For this reason all Orbiter maneuvers after circularization occur at nominal _

+ TA. The question arises as to what relative state control dispersions

would result at the Ist MAV occultation exit if the 2° TRI conditions were

targeted for immediately without waiting for the additional Earth tracking

(i.e. instead of targeting for _ ). Table III-I0 presents these results
O _"

in the MAV, u, v, w coordinate system defined as follo%_:

= RA/IRAt; w = RA x VA/IR_ x VAI; v = wx u whereu

LA, VA are the actual MAV position and velocity vectors respectively.

Table III-i0 Dispersion Ellipse A_ First

Occultation Exit (_o = 20)

3 o = 25.8 km 3 o. = 60.8 m/s
u u

3 ov = 108.2 km 3 o_ = 9.5 m/s

3 o = 27.7 km 3 o. = 5._ m/s
W W _'

This ellipsoid places th_ vehicles within rendezvous radar range; however, "_

the pointing knowledge error (Table III-Ii) precludes the pre-circularization

computation of look angles which will produce a line-of-sight (LOS) within

the radar beamwidth (200). p
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Table I!i-Ii Line-of-Sight Error At
First Occultation Exit

6- LOS Error[

In-Plane 24e I
Out-of-Plane .2°

4. Missioi_ Phase #4 - First Occultation Exit to Start of Circular

Trim Seque,_c_ee

DescriD_ipno (See Figure 111-5)

#19) _Le simultaneous solution for Orbiter and MAV states is available

ac -135° true anomaly on the 7th orbit as shown. The O.D. solution is based

on conventional Doppler data on the Orbiter and multi-vehicle AVLBI (DLBI)

data on both vehicles. The updated states are used co _ompute a 3 Jrmneuver

circular trim-sequence (AVI, AV2, 5V3) which corrects phasing error and

radius error during the next Orbiter revolution. X%e 3 maneuvers (AV com-

ponents and maneuver times) are loaded in _he Orbiter memory at this time.

Discussion. The multi-vehicle A_BI data type results frmn Very Long

Baseline Interferometry on two coherent vehicle sources. The technique

d.epends on counting interference fringes for a specified time period--the

fringe rate being proportional to a component of the relative velocity vec-

tor. The data type may also be th_ght of as being the symmetric double

dzfference oi range changes of two spacecraft measured from two Earth-based

tracking stations (Figure 111-6). In this analysis it is _aodeled as a _ea-

sure of the component o£ relative velocity along the projection of the base-

line vector in a plane perpendicular to the Earth-Mars line. The inherent

measurement noise is given by

= (bp/rEM) Oop= .034 nml/sC _VLBI

since o_, _he uncertaintv in projected velocity, is computed to be 2 m/s.

(For a Ic fringe resolution the projected relative velocity uncertainty is
?

I0 t-I where t = fringe integration time, see Ref. III-3). _e relative

state error covariance matrix resulting from the sequential filtering of

four orbits (i hr/orbit) of AVLBI data was computed. In this cal=ulation

the only source of error was data noise. This matrix was used to compute

random samples of relative state knowledge error (SXYE) at the AVLBi update
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i time. The Orbiter est._te was computed ivitially and then the MAV estimate iwa_ fcmea by adding oi_ the relative state estimate, i.e.

I YE = YA + &YE f_r the Orbiter

YE - XE = XYE = )_{A+ AXYE for the relative state, and

XE = YE - EYE for the MAV.

_ Results. ReJ.ative state accuracies (knowledge) after four orbits of

AV_',BIdata processing and fcur orbits of prediction are shown in Table III-

12.

Table 111-12 Relative State Accl_racie._

An DLBI Update

I o "-0. 6 ]qn o. = 0.14 m/_

u u

= _.29 1_ n. = 0.03 m/s
r V

• _ = 0.08 lam o. = 0.04 m/s
W w

(T,_evelocity accuracy is c_nparable _o the quoted wind speed determination
[

.ccuracy of Ref. 11i-4, i.e., tens of centimeters/sec.) These O.D. uncer-

tainties allow the computation of intervehicular look angles to the accur cy

specified in Table III-13, i.e., the estimated IOS will be off the actual

i_ by thc. _ted amounts. Of particular importan;- is the actual pointing

=ec., af_er the 3rd circular tr/_ maneuvez. _.is must be sufficient to

_ _ii __iter radar acquisi::ion of the MAV at that time.

_ Table 111-13 Pointing Accuracy

_ at AVL_I Update :

I I _ In-Plane = 0"06° j6_ Out-of-Plane = 0.01°
2

5:.. Mission Phase #5 - Circular Tr_u, Sequence through 10th Occultation Exit
L

Description. (See Figure 111-7.)

_ #20) When ,,_ _fA =:'._+ TA)No_, corresponding to _e nominal position

' I of periaps_s, the Or_i_" performs the first of the circular trim maneuver:
_V I-

#21) After a fixed time 6tI later the 2nd trim maneuver is performed

(nomln_lly 180 ° fr_-_ the firut maneuver) to null radius error _r.
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; #22) After _ _ixed time 6t2 later (nominally 180° after trim #2) the

final (_- ""
•: ._u) tr_m maneuver is performed to circularize the orbit at Rf--the

_ desired final radius. Note that 6h was coL:_uted_so that __I_ : _t2 = ;t. ;

Where gt is the time required for the desired phasing point (dotted circle

: in Figure III-I) to cross the OrDiter line at a,+ TA.
)

#23) Immediately after trim #3 the vehicles are programmea c) look

al_g the relative position vector to ertablish r_ndezvou_ radar lock. The

optimum pl:aseangle of 2° is nominally achieved at the lOth MA; exi" from

the Earth occultation zone.

Discussiou. The 3 maneuver circular trim sequence corrects the Orbiter

radius error (6r) in an amount of time (6t) so that th__phasing error (6_)

is also nulled. This is accomplished by iteratively solving the following

equation for 6h:

½P (a 1) + ½P (a 2) = T (! -'- _6/360) (7)

a 1 = a 0 + _h/2; a 2 = a 1 _ 5r/2; a 3 = Rf

In equation (7) P(a) = 2_ (a3/v)_ and T is the _eriod of the desired final _

circular orbit of radius Rf. a0 is the initial semi-major axis (SMAA), aI

is the SMAA after AVI, a2 is the SMAA after AV2, and a3 is the SMAA 8Fret

AV3. The trim maneuvers are performed in-plane--no provision is made for

removing out-of-plane ezror. This trim strategy is very similar to the

Viking '75 Mission A strategy in that the purpose of trim #I is to establish

a prescribed phasing error at the time of trim #2 so that when trim #2 ad-

justs the radius a phase rate is produced which just cancels the phase

error 180° later.

For dispersed cases the Orbiter position vector at nominal m + TA

will not lie along the tin of apsides. A s_nallAV is initially used to

establish the veloci_5" vector perpendicular to _he position vector at _ +

TA prior to trim maueuver computations. Trim #I then is 4ctually the sum

of AV and the AVI computed for the Ist Hohnmnn maneuver in the trim sequence.

Results. The individual 99 percentile trim AVs (Table III-14) indicate

that considerably more AV is expended correcting phase error (23.2 m/s,

20.2 m/s) than radius error (I.2 m/s). The I.2 m/s velocity change produces

= 8 km of radius change.
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Table III-14 Trim AVsTAI7

I V [ '_9.' . _,,' ..Vs,fA 3

Trim ;;i[ O. ] 23.2 m;6 23.2 mls

Trier ,_ "I ." [ I o m/,_ 1.2 '

T_i_::,! ,,. -,.' ,_._.,:0.2_/_
_ !

Total ] O. [_2,6 m/s 42._om/s

Immediately after trim ,73the Orbiter and the blAVare programmed to

acquire rendezvous rad2r lock. The line-of-sight accuracy at this point

in the missie_n is Zl.o° in-plane (6c) and 1.9° out-of-plane (6c). The 30

dispersions in the actual Orbiter state relative to the actual MAV state

are shown in Table Iii-!3. These represent the limit for the Earth- -'

controlled portion of tl'¢mission. It h_s been sho_ that the aut_._tic

on-b_ard system can start with these conditions and alxcays effect a terminal

rendezvous.

, Table 111-15 Dispersion Ellipse At
-' lOth Occultation Exit

U U

3 _ = 71.7 km 3 _. = 2.9 m/s
V , V

3 _, = Z6.3 km ] 3 ,-_. = 5.7 m/s
t

_ 1.,/ ] W
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B. NAVIGATIOX SENSITIVITY SIX,DiES

This section _==I= w_th the _e_tiv_ty of mission performance to

various navigation parameters and techniques. The attempt here is to iden-

tify error sources and techniques that the mission performance is most sensi-

tive to and then to suggest how they may be dealt with in order to enhance

mission performance.

I. Approach Optical (TV) Guidance

On-board TV sightings of De_mos against a star background may be used

to simultaneously solve for the spacecraft and satellite states. This tech-

niqu_ has been used for Mariner 9 encounter O.D. and is planned as a backup

navigation aid ou Viking '75 (Ref. 111-5). The sightings are t_ken from

MO1-72 hrs to MOI-I@ hrs (Figure 111-8). Typical B-plane ellipse major

axes for this type of data ave of the order cf 25 km. Minor axes reportedly

may be as small as 12 km (Prof. 111-6). This allows very accurate entry

flight path _ontrol for any _AIM approach angle. Since a Mariner TV system

weighs at least 30 Ibs it i_ also necessary to examine the tradeoff between

4°corridor width reduction and increased Orbiter weight. Becau=e a corridor
$

wid_:h (6oy) is attai,mble with radio (DSN) tracking only the above tcadeoff

i was not considered in the scope of this contract. Fi_are 111-9 show_, how-

ever, that optic_l approach guidance has a great capability for enhan:ing

the approach O.D. Radio only _iB I capability (minor axis) is limited to
2°~ 25 km because of Mars ephemeris error. R_dio + optical allows a ,_or-

ridor width foz any h.vperbolic approach angle while radio°&nly affords 4°

a_c.racy for a very restri&_ive approach angle (namely along the miner axis

of the B-ellipse). A restrictive approach angle a1_so means limited latitude

accessibility. According to the approximate formula then (assumption #4

shown on Figure 111-9) it may be concluded that a 4° corridor is attainable

with radio only data (baseline design) and that to achieve a 2° corridor re-

quires optical sightings.

2. DSN Data Type Evaluation for Relative State Estimation

Thi.._sLudy evaluated the con%entional Doppler range rate data type and

an experimental interferometric tracking data type for relative state esti-

mation in Mars orbit. The evaluation of data types was carried out by com-

parison of the root-s_n of squares (RSS) of error components of estimation
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IL

1975006730-088



I

!

III-24

&

1975006730-089



IIL-23

1975006730-090



error covariance matrices. T1_e_nalysis pointed out that indeed aftez four

or five orbits of conventional Doppler range rate tracking the relative state

of two vehicles is better known than either ,_ingle vehicle state because the

single vehicle errors become highly correlated.

_ The multi-vehicle interferometric data type, however_ i-" intrinsically

better because it measures directly a component of the relative veic.'ity

vector and hence yields a more rapidly converging solution. Relative state

accuracies of--I km and _50 cm/sec are expected.

The Viking Navigation Analysis Program (VNAP) (Ref. £II-7) was used to

compute estimation error covari_nce m_rrices for single vehicle orbit deter-

mination in Mars orbit. The MAV is in a 2200 km altitude circular orbit

: (PI = 3.53 hrs) and the orbiter is in the 2250 km circular orbit (P2 --3.58

hrs). The orbi£a! inclination to the "plane-of-the-sky" (POS)* was large

(_108°). This minimizes the effects due to uncertainty in the POS ascend-

ing mode. The V_ was used in the sequential weighted least squares (WLS)

mode with sets of gravity field ignore parameters corrupting the state esti-

mate. The relative state covariance matrix (between the two vehicles) was

computed from the single vehicle VNAP results as follows: the error in the

single vehicle estimates is given by

A_l = (AT'%+PI)-I P11 _XEI + AI"B I AZ + _ Wn I (_)

= - T Wn 2 (9)

In equations (8) and (9):

A. = matrix of partial derivatives of measurements with res#ect
i

to vehicle (N x 6)

Bi = matrix of partial derivatives of measurements with respect
to igno_'eparameters (N x M)

W = N x N data weighting matrix

P. = 6 x 6 a-priori state covariance matrix for ith vehicle
1

a_i = a-priori error in ith vehicle state

n. = measurement noise vector for ith vehicle
1

_Z = vector of ignore parameter derivations

N = number of data points in batch

M = number of ignore parameters

* Plane perpendicular to the Earth-Mars line.
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These expressions _itte_ for hatched NLS estimates are also valid for the

sequential estimates at the end of the data arc.

The relative state estimate formed from the single vehicle states is

in error by

_X_R = _X_I - AXe2 so thaL the error covariance matrix is

P_"Ax_z(_R>_"Pl+P_-Ph "r_lwith (Io)

Pi2" -'X_l(Ax_2>z;P_ _Axe2(AX_l)_

2)T

The expression for PI= in equation (10) as derived _rom equations (8) and :

(9) is:

ass_sing no a priori weightin_ and m_cozre!ated noise vectors n I and n 2. i
p,

12 may be computed fro_ the VNAP quantities

A-' T
• Pi2 = "XE1 "_,'.2 and P2Z = "_XE2 "_ZT by noting from equations

(8) and (9) that i

so that _'-

P12 = P'lZ (AZ AzT) "l (P_z) T

Pi2 and subsequently P_ is computed by an auxiliary I.rogram named RELCOV.

Two sets of VNAP matrices are input to RELCOV for each PR compu'cation time.

The relative state covariance matrice_ resulting from sequential filter-

ing of multi-vehicle differential Very Long Baseline Interferometry (AVLBI)

tracking data were computed with the MSTRAK program. This is a modified

version of the PVTRAE program (_f. 111-4) developed for Pioneer Venus wind
/

determination studies. The following capabilities were added to PFIRAK: ',

I) propagation of bus state covariance matrix; •

2) addition of conic trajectory and propagation for second vehtc_c;

3) a tracking _chedule consisting of _my _umber of station pairs r

(input for any numbs# uf disJoi.nt tracking intervals), and

tracking interval start/s_op times.
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The multi-vehicle aVLBI data type results from very long b.*seline _nterfer-

ometry on two coherent vehicle sources. The technique depends on counting

interference fringes for a specified time period--the fringe rate being pro-

_! portional to a component of the relative velocity vector. The data type may

also be thought" of as being the symmetric dcuble difference of range changes I

of tw_ spacecraft measured from two Earth-based tracking stations. In this i

! analysis (MSTRAK) it is modeled as a measure of the component of relative

I velocity along the projection of the baseline vector in a plane perpendicular

i t.o the Earth-Mars line. When thought of as a double differenced range measure-ment it becomes _iear that errors due to tracking station location, frequency I

I biaseo and clock errors all cancel out and hence were not considered in this

i
analysis, l_e only error source considered in the _VLBI analysis was measure-

ment noise. For an Earth-controlled rendezvous utilizing _VLBI and conven-

tional data (or QVLBI data) the ground orbit determination system will pro-

! "cess both data types simultaneously and solve for both vehicle states (or

a single vehicle state and the relative state) simul_aneously.

The _VLBI measurement noise is computed from Ref. IIi-3:

i
= (bplrEM) =

_VLBI =_p .034 mm/s I

where b is the projected baseline magnitude, rEM , the Earth-Mars distance IP
i°and 7. the uncertainty in projected velocity. For a fringe resolation

PP

this quantity is equal to I0 t-I where t is the fringe integration time (i.e. ! ;
! •

o computed. Since the value
the more fringes counted the more sccu_'a_ely is p

comput=.d is only an average for the interval t, th= usefulness of a p. 7
i"

computed for too large an interval is questionable). The u. used here was i
pp

• 2 m/s corresponding to t = 5 sec. Table 111-16 shews a comparison of rela-

: rive state accuracies for conventional Doppler and _VLBI data types. These

single v_hicle results are no___tfor the same crbital geometry case as dis-

cu=sad e_rlier. These results are only to show that initially (af£er I rev)

the RSS r_.l. error is simply the RSS of the single vehicle errors (i.e.,

= 9193. 2 168.32 4 88.62 and 139.42 = 130.7" + 57.72 ) but that after 4 revs

the F_S relative error is considerably smaller than either single reticle

errors. T1is effect is due to build-up of correlated single vehicle errors

which cancel .J,.n the relative state is formed by subtractiot:.

i
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The second part of Table 111-16 shows relative state uncertainty after

_LBI (DLBI) tracking. It can be seen that this data tyoe provides a very

accurate relative position and velocity detemuination with only a single

orbit of data. The only added constraint o_ the mission plan is that simul-

taneous visability of both vehicles must be provzded. I

< 3. Sensitivity of State Vector Prediction Accuracy to Orbital Altitude

_able III-17 shows the effect of predicting the state ahead a number of

orbits after tracking for four orbits. Also shown is the resulting local un-

certainty at the end of 6.6 orbits, This is merely to show that sufficient

accuracy is available after only 4 orbits of data P_ve been processed (.9 kin,

1.4 m/s) but that additional data would further reduce the local uncertainty.

: The period of a 2200 km altitude orbit is 12700 secs or about 3,5 hrs. If

it is assumed that 12 hrs of time must be allotted for O.D. and maneuver com-

ps,ration, then a prediction capability of 3 or 4 orbits is imperative. Table

III-17 clearly shows a very gradual corruption of state accuracy with each

additional orbit of prediction (about .3 km/orbit RSS pcsition deg£adation

' and about .I m/s/orbit RSS velocity degradation). The growth of position and

velocity error is caused primarily by orbital period error as seen by the

large increases in OMEGA (argument of periapsis) and T # TP (time of periapsis

_ passage) uncertainties. This means that the RSS position error will be largely

due to the downtrack component and the RSS velocity error due largely to the

radial component since these two are highly correlated. Table III-17 results

appear acceptable for 4 orbits of tracking and the required 4 orbits of pre-

diction. For comparison purposes see Table III-18. In this case the orbital

altitude is only 1725 km--475 km closer to the uncertain gravity f_eld. Note

that uncertainties are generally a factor of 2 worse than those of Table

111-17. Seven orbits of data are required to reduce the un=ertainty to 2°2 i

xm and 3.5 m/s. It is _ ,, _sting that the same degradation per orbit is

found at 1725 km as was #ound at 2219 kin, namely .3 km and .i m/s. This is ,_

the case since the local 4 orbit and 7 orbit solutions have the same initial

period error, i

!

' I
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,_ 4. Gravit_ Field Uncertainty and Drag

Perhaps the greatest challenge of an MSSR missioq is orbit determination

in the presenc__ of an anomalous Mars gravity field. This field has been par-

tzaliy mapped by the Mariner 9 orbiter (Ref. 111-2). The gravity harmonics

solved-for frownMariner 9 data allow accurate state prediction for Mariner 9

class orbits but may not for MSSR type orbits. This is due to the non-

uniqueness _f harmonic solutions from a single type of orbit geometry. In

I_is study it was assu_ed, however, that the Mariner 9 derived field was

_ lid for "._SR orbits. This point of view was taken in the belief that

_ /ity field parameters which allow accurate state prediction comparable

to Mariner 9 would be determined during the MSSR mission. The 2nd order

representation along with quoted uncertainties was used to generate baseline

,' results for the rendezvo_s navigation analysis.

Since the MAV ascent orbit is not completely _ _'_of the Mars atmos-

phere (i.e. detectable atmosphere ez_dsat _ 243 k_ altitude) it was neces-

sary to determine the effect of d.2g uncertainty ozlthe ascent orbit esti-

m..tion accuracy. Atmospheric density uncertainty was modeled as drag co-

efficient (_, uncertainty. A value of I0% (p_st-Viking '75 result) was

•, used. In this section the sensitivity of O.D. results and AVsTAT results

t_ the higher order gravity terms and to drag is examined.

Table 111-19 presets O.D. results for the I00 x 2200 km and 2200 x

2200 km orbits with different sets of systematic error parameters. (Gravity

cncertainties ware taken from Ref. 111-2 and a I0% CD, drag coefficient, un-

certainty was assumed.) Note that 3rd order terms have a significant effect

for both orbits.

Table III-19 HAV Orbit Determination Accuracies

i i_cal ' Predic.t:ed "
-_ (7 Orbits Data) (5 Orbits)

i 'c" "ase RSS X ltSS X RSS X RSS X
•. ,,

A _, 32, C22, $22 4.6 km .9 m/s 3.2 km 1.8 m/s

loa _,
C _, J2, 622, $22, CD 7.7 ka 1.5 m/s 5.7 , i m/s
E ' ...... --,

N _, 32, C22, S22, 33, C31. I_.7 km 2.8 m/s 9.9 km I _.7 m/s
.; T S31, C32, $32, C33, $33, CO

/ C _, J2, C22, $22 .9 1_ 1.4 m/s 1.9 km 1.6 m/._

, _ R _, J2, C22, S22, C31, 1.5 km 2.5 m/s 2.5 km 2.6 m/s

: _ C 531, C32, S32, C33, $33

.i _) 111-33p.
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' The individual component errors for the ascent and circular u-bit updates

: of prediction whereas the circular orbit case is for 4 orbits of data and

4 orbits of prediction. It is apparent that 3rd order effects arc much more

important in the ascent orbit than the circular orbit as expected. It is

felt that even 4th order terms should be considered for the ascent orbit

but not for the circula_ one.

(kin)(_n) (_) (mls) (mls) (mls)
A !st, 2nd

' S Order i.I 2.3 2.1 .6 1.0 1.3

: C Ist, 2nd 1.4 4.7 2.8 .5 1.7 2.6
_._ E Order + Drag

_ N _ist, 2nd, 3.5 6.8 6.j I 2.0 3.1 4.3
, T i 3=-d + YYra_ I ....

" '(3_,'lst, 2nd I '" !
1 iOrder .8 1.3 1.3 .2 1.2 1.0 J|

! R I 1st, 2nd, ' - 1
• _C i 3rd Order .7 1.0 .9 .4 1.7 1.8 I!

_ Tables III-20 through 111-23 present a comparison of mission performance.

t parameters when O.D. accuracies are corrupted by the 2nd order gravity field

i and by the 3rd order field + drag. The effect on orbiter and MAV AVsTAT

! loads is minimal (Tables 111-20 and -21). The major effect i:_on Lhe control

'_ i dispersion ellipse at nominal TRI (Table 111-22). The downtrack position

_. i dispersion is increased by 20%. Since downtrack dispersions are acco,.mted

I for by varying the TILltime, this increase will not have an impact _-,. ter-

t
I minal rendezvous propellant. Table 111-23 shows that pointing accura_?

i after the 3rd trim maneuver is also significantly degraded by the degradedq !

O.D. capability. However, results are still well within the radar beam

width of 20°_ This means that sufficiently accurate pointing commands can

be _omputed before the trim se.quence to allow radar acquisition aft,r trim

#3_ Post-circularization MAV orbits were examined to see if somehow +.he
RE

_. poorly targeted CIRC burn might produce an unacceptable periapsis altitude.

This was found to not be the case as all orbits were quite acceptable.

111-34
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_ Table III-20 MAV _VsT_T Sensitivity

-. aVsTAT(m/s)
_..

2nd Order 3rd Order
Field Field ,_

CIRC 39.3 39.5

RECIRC 17.9 21.6

TO t_l 41.6 45.0

,- Tible III-21 Orbiter Trim 4VsTAT Sensitivity :

AVSTAT(mls) "

; 2nd Order 3rd Order

":' Field Field '

Trim #I 23.2 24.1

• Trim #2 1.2 1.9 "

Trim #3 20.2 21. I i
7

Total 42.6 45.0

• Table III-22 Dispersion Ellipse Sensitivity

• i I I....I% _v *w "_ % "O "

" ' ! ! I !2nd Order Fiela 7.7 71.7 26.3 39.3 2.9 5.7

Table III-23 Sensitivity of Pointing Accuracy
: To Gravity Field Errors

2nd Order Field 3rd Order Field

<

6_ 4.6 ° 5.9 °
In- Plan_ ....

; 6_ i.9° 3.4 ° i

- Ou_-of-Plane
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5. Trim Strategy Considerations

The Viking Mission A trim maneuver strategy and the MS JR cil'cular trim

strategy are very similar in nature• Viking trims #i, #2, and #4 '_ompare

very closely to MSSR trims #I, #2, and #3 (see Figure III-]0). Th_ circular

trim sequence does not aLtempt to correct out-o[-plane error resa!ting after

• circularization burn and hence there is no MSSR tri_n corresponding to Viking

trim #3 (a pure inclination change produced at the nodal crossing). Planar
!

corrections could be introduced into the circular trim sequency by choosing

(w + TA)No M = 90° for the Ist trim and adding an out of plane component to

rotate the nodal line. At the new nodal crossing (90 ° later) the inclin-

ation could then be adjusted with an additional trim similar to Viking.

This strategy would work better for higher inclination orbits. For low in-

cliration orbits the Ist trim should be placed so as t_ minimize the out-of-

plane &V component.

In the present trim strategy the orbiter "catches up" to the MAV by i

performing trim #I (a Hohmann transfer) to produce a lower radius orbit

(taking energy out of the orbit) and subsequently fires trim #2 to adjust 1

t,_e final circular orbit radius. It cften turns out that trim #2 is a posi- _ •

grade maneuver, thereby putting the same energy back into the orbit. In

cases like this, phasing corrections are wasteful of energy, if the orbiter !

: post-circularization radius is biase_ sufficiently greater than 50 km above i

%

L

the MAV and sufficiently further ahead than 45°, it should be possible to

require orbiter trim #I to always be a catch up maneuver (retrograde) and I

trim #2 to always lower the final radius (also a retrograde maneuver). !

This procedure would cut trim _VSTAT in half, thereby enhancing mission

performance.

6. aVsTAT Sensitivity to Rendezvous Errors

Table 111.-24 presents 99 percentile AV results for 8 different Monte

Carlo cases, each of which considers an additional error source. Nm,_en-

clature is as follows:

DVxI , DVx2 , and DV_T denote the MAV circularization, trim and

total aVs, respectively.

• DVyl , DVy2 , DVy3 , and DVyT denote the three orbiter circular

trims and the total trim AV, respectively.

-_ 111-36
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i
is the 99 percentile relative '" '....urDiter/MAv pusltion magnitude

at 10th occultatign exit where a pha_t angle of 2° is targeted

for.

9M_ is the 99 percentile relative velocity magnitude at 10th

occultation exlt where a phase angle of 2° is targeted for.

The following can be noted from the table:

I. Statistical variation in the total MAV AV (denoted -s-AV-TAT) i
is due solely to ascent dispersions. I

2. InJe&ted MAV agoapsis dispersions cause a 14 m/s difference

in orblter/MAV circular velocities when a 50 km separation is -

maintained.

3. MAV execution error requires a trim maneuver (DVx2) whicL does

not impact DVxT.

4. Orbiter execution error in the circularization maneuver deter-

mines the orbiter &VSTAT requirement.

5. Orbiter O.D. error de£ezmines RMAG, %_4AG.

TII-39
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C. ASSESSMENT OF NAVIGATION FEASIBILITY

The implications of navigation studies discussed in this chapter on

mission feasibility are summarized below. Feasioility per se is demonstrated

by results of the Monte Carlo ascent-to-rendezvous simulatio,_ which showed

acceptable TRI control dispersions, maneuver AVsTAT and antenna pointing

accuracies. Important O.D. and maneuver characteristics lead to these

results. Estimates of the initial MAV orbit (cumput_ from conventional

DSN range rate data) are accurate enough to target the MAV circularization

maneuver which lifts the MAV out of the gravity well. The maneuver compu-

tation is not very sensitive t3 exact knowledge of the Mars gravity field.

Orbit determination in tb.evicinit 3 of 2200 km circular is quite adequate

for rendezvous, As stated, MAV apoapsis altitude may be better controlled

to 2200 km by the use of S-band ranging measurements on the lander--although

this is not required for the baseline.

The use of multi-vehicle AVLBI tracking data will provide a very

accurate relative state e_Limate for targeting the circular trim sequence.

Viking Orbiter trim maneuver execution uncertainties have a negligible

effect on relative state control error at TRI. orbit dispersions introduced

by the larger burns, however, do have to be taken out by the circular trim

sequence.
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IV GUIDANCE AND CONTROL .A.SPECTS OF ASCENT a RENDEZVOUS AND DOCKING

The primary advantage of the Mars orbital rendezvous mode is that it -_

allows a drastic reduction in the spacecraft weight that is landed on,

and ascended from the planet surface. However, this advantage can cnly

be capitalized upon if the hardware and operational techniques required ,_
i

to perform the rendezvous sequence can be kept si ple and reliable and
i

if adequate control of off-nominal performance can be maintained, _.

The objective of this part of the study was to define guid:a_ce and :.

control (C&C) equipment and stre_.egles to support the MAV and orbiter I"

navigation sequences desczibed in Lhapter III, and the terminal rendezvous, ",

docking and sample transfer functions tha_ 2ollow them. The priorities

for assignment of decision making functions and operational complexity

were._ Earth control center fir.,_t-_-biter second; and, M_.V last. iI

The MAV ascent to the initial ] x 2200 km orbit, and the orbiter

terminal rer_dezvous maneuvers are the only portion_ of the baseline MSSR

mission profile that are done without Earth-based control. The study ..

approach therefore was to keep the performance tolerau_ces on these functions :_
L

as loose as possible and the hardware requirements simple. The result, as _

described in this chapter is a G&C hardware and operational concept that

features the following: I) a simple, reliable, "forgiving" MAV G&C system

that will deliver the vehicle to a safe, Earth trackable parking orbit; ,.

2) a simple in-orbit G&C system f,Jr the MAV tb_c combines pointing refer-

ence and command functions so the vehicle is always under the control of

the Earth or the Orbiter; and, 3) G&C systems for the other vehicles

(orbiter, l,gnder and ERV) that will have been proven in the Viking and

Pioneer Venus programs, i

f

,°
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A. PRELAUNCI{ OPERATIONS

The science guidelines followed in this study restricted the landed

science operations to visual imaging of the sdmpling site and gathering

the selected samples. _te ouly other required activities during the 11

days between landing and MAV lift-off are updating the lander position and

; attitude and calculating the required launch orientation. The_e functions

are performed on Earth using tracking and telemetry data from the lander, i
r

!+ The position of the lander on the surface, within the guaranteed Viking

landing footprint of 650 x 1748 km, can be determined by DSN tracking or

by on-board gyro compassing using the lander inerr'al reference unit. A
, !

lauder S-band transponder similar to the one used on rhc MAV is baseline_ i_

to provide direct DSN tracking capability. The lander position accuracy

for each Lype of determination is shown below:

Guaranteed Viking Footprint Accuracy

Latitude - 10.97° or 650 km (3u)

Longitude - 29.5° or ].748km (3_)

Gyro Compassing (Lander IRV)

Latitude 5° (296 km - 3_)

Azimuth - 5° (296 km - 3u)

Earth-based Tracking

Latitude - 0.3546 ° or 2] km, (3u)

Longitude - 0.03039 ° or 1.8 km, (3¢) '_

Altitude - 984.24 ft or 0.3 km, (3u)

The navigation simulation studies described in Chapter III used gyrocom- •

passing accuracy in predicting the lander position. Even so, this conser-

vative position accuracy assumption resulted in dispersions on the MAV -

ascent orbit parameters that were acceptable.

The lander attitude or local orientation on the surface can be

determined by using one of the MAV Sun sensors before the MAV is erected.

The Sun position as a function of time as sensed by the Sun sensor= which

has a known relationship to the L_nder, and those data are telemetered ,_
J y

back to Earth to calculate the lander attitude. Lander longitude can also

be described from this information.

" IV-2 _
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Th_ landcr position an,, attitude should be determined during the

early portion of the landed phase to allow time for the calculation of

the nominal launch orbit and a[.y contingency orbits. Contingency orbits

are alternatives to the nominal that might allow early launches (to

avoid surface environmental effects) or back-up launch opportunities to a

del_yed launch.

The MAV is not erected until just before launch, so it can be kept

within narrow temperat-re limits in the thermo-control canopy to guarantee

the performance of the solid propellant motors. The MAV is erected to the
n

correct attitude by predetermined and prestored commands calculated by

Earth-based computers and verified by the Sun sensor system. A small and

simple software program in the lander GCSC is used to automatically erect

the MAV. The attitude of the erected MAV is verified by comparing the

prestored position of the Sun at a certain time with that sensed by the

¢ Sun sensor system. The lander GCSC has a much greater capability than is

; required for these operations and can be used without modification to

augment the on-surface operation by controlling and verifyisg these opera-

tions. The MAV is launched at the azimuth corresponding to the inclination

of the orbiter orbit, and at a nominal initial pitch ramp angle of 54.8

degrees for the approximated gravity turn iL will follow. The MAV is

launched at a prestored and predetermined time with discretes from the GCSC.

More details on the hardware implementatioa for the prelaunch @hase

are provided on Paragraph E of this chapter.
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: b. :.L\V ' _,.'r._ AqCFNT AND OI_B[I'AL (_Pr'I,'AflONSlgl _J. _,, ) ....

During ascent, the _,t_Vis guided atttonom_,usly by its _,.,,nthr_c-axis

: stabilized guidance end co,-tre! (G&C) system to inject it into 4 rough,

but '_afe, initial nrbit. A study 'ms conducted to consider whether o

• thcee-axis or spin-stabilized syst_,m _s better for the ,4_rs sample return

mission. 'I"nt,three-axis s_abilized system ".'assulected because its weight

was founq to be only slightly greater than the spin stable system and its

:, performance was generally superior fer all phases of flighn. Either type

r of stabilization can be use,', but on]y if its weight advantage becomes

more pronounced should a spin staDiiized sysLem be considered° The results

_,, of the study comparing the two types of stabilization are discussed in

! Section F of this cha_ :er.

The MAV uses a sir.,p!eopen loop guidance system wit_, a con_ts_tt pitch-

": over rate to execute the ascent phase. The _IAV pitch profile and its dy-

namic pressure during the flight are shown in Figure, IV-I. The couctant

pitchover rate (8= O.16t + 54.8) that approximates a gravity turn, is also

., sh',wn. The dynamic pressure reaches a maximum of 515 kg/m 2 (105,3 Ib/ft 2)

at the end of the first stage burn.

figure IV-I shows the launch, ascent nnd Earth acquisition sequence

of the MAV. The 54.8 degree initial pitch angle of the bIAV must be held

to an estimated pointing accuracy of + i/2 degree. During the ascent

' phase, the MAV executes a constant pitchover rate turn of 0.16 deg/sec

with an estimated accuracy of 0.004 deg/sec, due to principally rate gyro

bias er' _rs, The description and the sources of derivation of the errors

assumed in the simulation of the ascent phase are shown in Table IV-I.

The numerical values of launch phase tolerances used in the simulation of

the ascent phase are shown in Table IV-2 with their nominal values. The

first stage burn takes 54.8 seconds and the MAV then coasts for _.8

seconds (see Figure IV-f_. T_,e second st,_gc is ignited with _ Lime disc,:ete

from the on-board comF,uter based on the transpo,_der clock ,'rodinjects the

MAV into a I00 x 2200 km altitude orbit. Th'. second stage burns for 31,2

:: seconds. Shortly after injection, the _h\'__s _:.nmanded by prestored and

precalculated co,remands to point toward the ],_'th. The NAV attitude pointing
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system, using Li_edUgle Ltdcktlt_ _y_Lem, acquL_e-_ the DSN and uses that

microwave sig;tal to control its pitch and yaw attitudes. The roll

attitude of the vehicle is"measured by th_-Sun sensor system, and is used

as input to the roll attitude system.

Earth acquisition represents the completion of the ascent: phase and

the start of the initial rendezvous phase. During the initial rendez_ous

phase, the MAV orbit is circularized and trimmed to a more accurate 2200 km

circular orbit. The orbiter orbit, which is a loose I000 x i00,000 km

orbit initially, is circularized and trin=aed to match the MAP orbit to be

within rendezvous radar acqui.oition range in the 2200 km circular orbit.

The vehicles Ire tracked between the orbital maneuvers so their orbits can

be determined and the m_meuvers necessary to inject the spacecraft into

the next orbit can be determined.

Figure IV-3 shows how the MAV executes the Earth-controlled orbital

maneuvers. At the start of an orbital maneuver, the MAV is Earth-oriented

so it can communicate and receive commands from Earth which it can store

in its mlnicomputez. The MAV is first commanded to execute a predeter-

mined roll maneuver by stored command to place the AV maneuver direction

in the pitch plane• This roll maneuver can be verified on board by com-

paring Sun sensor value to values calculated by Earth-based computers and

prestored in the MAV minicomputer. These values can be verified back on -'

Earth if time and power are available, since the vehicle is _till pointed '_

toward Earth. The MAV is then commanded, again by stored command, £o

execute a pitch maneuver until the vehicle has the correct orientation for
/

the orbital maneuver. This maneuver can also be verified on board with

'a small software program in the minicomputer by comparing Sun sensor values '_

to prestored velues. The maneuver is executed and the engine is shut down

based on time from the FL_Vclock. Th_ MAV is then commanded back to the

Earth pointing orientation and executes these maneuvers in the reverse i

order. _e MAV is then commanded back into the automatic Earth pointing

orientation control

The MAV is inertially oriented excep': durlng ascent and when it is

executing _cLital maneuvers. The MAV has the capability of operating in

three attitude control modes during its Earth-con_rolled orbital operations. _
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I During ascent _nd duLiag .........-''-of the _..... _h 211 tho attitudes
of the MAV are control_ed hy an on-board inertial reference system using

rate gyros. W_en the ,,ehlcle is being tracked in orbit and no occulta-

tlons occur it 'Ises the Sun sensor system and the Earth-pointing angle

tracking system to establish a celestial reference system. A third

hybrid reference mode is available on command to save power which uses the

plt_h rate Eyro and the Sun sensor system to control the vehicles's atti-

tudes.

At the end of the initial rendezvous phase, the vehicles have executed

maneuvers so they are well within rendezvous radar range and are celestially

oriented as shown in Figure IV-4. The MAV has an Ear,h-Sun orientation

and the orbiter has an Earth-Canopus orientation _n the celestlal mode.

The vehicles are commanded to point at each other by stored commands cal-

c.ulated on Earth and telemetered to each vehicle. The rendezvous radar

(RE) on the orbltel is then co._nanded on. As s:town in Chapter III all

predicted dispersions in relative position of the orbiter and MAV will

be well within the maximum range (750 km) _nd antenna beam width (20°)

of the orbiter rendezvous radar so that acquisition and lock-on will occur.
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C. TERMINAL RENDEZVOUS I

Terminal rendezvous initiation (TRI) occurs when t|,erendezvous

radar acquires the MAV. After terminal rendezvous initiation the orbiter

attitudes are controlled by th_ RR and tne MAV attitudes are controlled

by the ang[e tracking system using the RR microwave signal to give angle

pointing errors. Both vehicles are controlled to point along their mutual

line of sight (LOS) throughout the terminal rendezvous and docking phases

although this pointing is modified to control the LOS rotatiou rate duriog

the closed loop terminal rendezvous phase. The M_V transponder turns

around the tu, microwave signal to implement a cooperative rendezvous system.

The first maneuver in the terminal rendezvous phase is the initial closing

&V, executed by the orbiter when the relative range between the vehicles

, is reduced to I00 km as sensed by the RR. The closing _V maneuver is exe.-

cured along the LOS between the two vehicles to accomplish an approximate

interception between the two vehicles.

From our rendezvous simulation studies and the way the terminal ren-

dezvous phase was implemented, it appears that a fixed closing AV magnitude

cant_otbe used throughout the range of dispersions predicted by the naviga-

tien analysis. Either the n_gnltude of the closing &V has to be calculated

on board on the basis of the relative state between the two vehicles_ as

sensed by the RR, or the terminal rendezvous phase Implementer!on has to

be refined so that smaller AVs ate executed after the tniti_l closing _V

to compensate fcr dispersions.

A variable &V maneuver calculated as a function of the spacecraft's

re]atlve dispersions Is the approach used in the Apollo space p_ogram and

was baseline In this study.

One.way te derive the closing AV magnitude is to use sensltlvlty

theory to derive a sensitivity coefficient, which is a constant in the

orbiter control computer (CC) and is multiplied by the position dispersion

from the RR to set the &V w_gnitude. The rate of change of closit_ &V

magnitude required as s function of the disp_,rsion must be close to linear

to get an accurate determination, since linear perturbation theory is used.

Further studies should be conducted in this area to determine the optimum

method for executing the closlng AV maneuver.
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,_tter tile Ll,,a;,_ 4" rc,ancu,,'L has Le,.'n _,*rcuted., the orbiter is corn- _,

sanded into the closed lo, q_ contrt,1 portico of the terminal rendezvous

phase where the vehicles are brought to within 30 m of eaci, other for

decking phase. A number of types of rendezvous md intercept guitance

schemes were considered for the terminal rendezvous algorithm. The

following types were cunsider_,d as candidates:

Pursuit Course

Modified Pursuit Course

Constant Bearing Course

Properties, 1 Navigation _. ._

Optimum Cuid; nce Schemes

The rendezvous vehicle that uses a pursuit guidance utilizes a constant

rate turn to pursue the target, but requires a very large lateral .._cel- 4

eration capability that is usually not available. The modit*ea pursuit
&

course leads the target and requires less thrust capability, but still

requires large lateral accelerations. Constant bearing course (collision --

course) maintains a constant bearing--inertial orientation of LOS in

space. Proportional navigation guidance is the most popular and a practi- _

cal method of approximating a constant bearing type of guidance. The :,

optimum guidance schemes used.for terminal rendezvous involve complicated

on board calculations of orbital parameters and require cumplex hardware

and software implementation. '_

The proportional navigation guidance algorithm is the only type that
'%

has been implemented in previous U.S. or Soviet space programs and was

therefore the first choice for the baseline in this study. The Gemini ?

and Apollo spacecraft used this type of guidance to accomplish their

¢

rendezvous. In some cJses, the terminal rendezvous was executed automatic-

ally (unmanned) in the Apollo space program. The United States has ne_L i

demonstr_ted an autonomous (unmanned) docking. The Soviets demonstrated

automatic rendezvous and docking between Cosmos 186 and Cosmos 188 as .'

_arly as October 3,9, 1967, using a similar type of proportional navig_tlon '_

guidance (Ref. Iv-I). They dem_,nstrated it again with Cosmos 212 and

Cosmos 213. Ft ;'_ e IV-5 il lustrates the principal of proportional guidance. '-
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If two vehicles are on an approximate intercept course and the LOS rate

(OLOS) is kept small, a rendezvous between two vehicles is accomplished

when the relative range rate is driven to zero as the relative range goes

to zero. An interception i_ dp_ined as when the two vehicles positions

are matched at the same time. A rendezvous is defined as when the two ve-

hicles' positions and velocity are matched at the same time. The way that

proportional navigation is generally implemented is to have separate lateral

and axial engines. The lateral thrl,sters (TLAT) are used to keep the LOS

rate small and the axial thrusters cont=ol the axial acceleration of the

vehicle to match the vehicle's position and velocity. The axial and lateral

thrust control l_ws are shown on Figure IV-5. The lateral control law is

implemented lik,_a_y attitude rate control system. The axial control law

is implemented by p_ial thrust control curves which will be described later.

The proportional navigation guidance was implemented slightly

differently in this study to simplify the orbiter and MAV propulsion

systems and to allow a back-up option of having the MAV perform the ren-

dezvous maneuvers in the event of an orbiter malfunction. In the approach

used here the line-of-sight pointing control law is modified so that a

component of the axial thrust is used to control the LOS r_te.

Figure IV-6 shows zhe rendezvous propellant efficiency, which is pro-

portional to the 4V requirement coefficient (ordinate) as a function of

time of rendezvous in fractions cf an orbital period shown on the abscissa.

The angle a is the initial angle at the terminal rendezvous between the LOS

and the MAV velocity vector. If the orbiter is directly above or below

(-= 90°) the MAV, the rendezvous is most inefficient. If the orbiter

is in back or front of the MAV (-= 0 or a= 180°) at the start of the

rendezvous, then the longer time that is taken the more efficient is the

rendezvous. Although this method of rendezvous is the most efficient, i_

was not selected for this mission becaus_ possible _mbiguitics in the point-

ing direction would make the required field-of-view (FOV) of the rendezvous

radar too large or would require a rendezvous radar search mode to acquire

the MAV initially. In all cases, except when the MAV is in front of or

back of the orbiter, the terminal rendezvous that takes one-half of an

orbital period is the most efficient. A Hohmann transfer (-= 90°) is a

good example of the most efficient method of changlng orbits by using a

180 ° transfer.
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The term[rL.:l rt, nd_;:vvus 9h.._:;u ',¢:_s simulate(: or, Lhe dtp. ital Lomputer

to prove the feasibility of the approach and to ur,derstand the proportional

navigation type of guidance. The digital compute' simulation is described

in the appendices. The following studies were conducted using the simula-

tion tool :

i. Thrust control curve definition studies;

2. LOS rate gain studies;

3. axial thrust sizing studies;

4. terminal rendezvous initiation angle studies;

5. terminal rendezvous transfer at_gle selection studies;

6. 3_ dispersion studies; and

7. interception sensitivity to closing &V maneuver mangitude.

,: The results of these studies are discussed in more detail in the appendices.

Figures IV-7 through IV-13 show the results from the digital computer

simulation of the nominal case and the 3_ wo_st case (26 t.m out-of-plane

error). The other 3u worst cases (7.7 km high and low) are described in

the appendix. Previous simulation e',;perience of _h, terminal rendezvous

phase has shown that rendezvous propellal_t expenditure is much more sensi-

tive to position disparsion than to velocity dispersions.

Figures IV-7 throug l, IV-9 show the results from the simulation for

the nominal case. Figure IV-7 shows the axial thrust control curves used

to control the medium sized axial engines which control the relative range

'_ rate of the orbiter during terminal rendezvous phase. Two sets of control

curve_ are shown, where one set is used above the gain change range (alti-

tude) of 4.4 km (14,500 ft) and another set is used at closer range,_. In

each set, the upper c,_rves are the thrust-on control curves and the lower

curves are tht thrust-off control curves. The control curves are parabolas

described by tlte followii1g equations:

)2
: R ....T/M + RE when R _> 4.4 l,an*

T/I'I RK when R < 4.4 km _¢

* Determined by trial and error to minimize propellant consumption.
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= _lative range rate between vehicles (ordinate)

RK = asymptotic ranges

QI = control gain for thrust-on curve above 4.4 km

Q2 _ control gain for thrust-off curve above 4.4 km

Pl = control gain for thrust-on curve below 4.4 km

P2 = control gain for thrust-off curve below 4.4 km

T/M = average thrust-to-mass during TR phase

The orbiter coasts from the end of the AV clo_ing maneuver, when the

vehicles are I00 km apart, until it meets the condition of the thrust-oil

curve shown in Figure IV-7. The medium-sized thrusters on the orbiter are

fired to decrease the closing rate, until the conditions of the thrust-off

curves are met. The axial thrusters are then shut )ff at 4055 seconds (time

of flight is also indicated on this figure). The orbiter executes its

second thrusting period, when the relative range is reduced to 2 km after

4525 seconds have elapsed in the terminal rendezvous phase. The relative

range rate is reduced to about 4 m/sec after the second thrust period.

The third, fourth, fifth and sixth thrust periods are executed at 491§,

5096, 5215, and 5356, respectively. The total AV required was 21.6 m/see

where 7.5 m/sec was required for the closing AV maneuver ( AVC) and 14.1

m/see for the terminal rendezvous retro thrusting phase (AVT). The pro-

pellant required for the terminal rendezvous was 13.43 kg. The Hob-

mann transfer AV (AVH) , which is an optimum maneuver, is also shown for

comparison purposes. These simulation results show that the rendezvous

efficienctes achieved with proportional navigation algorithms are not

optimum but the allowable propellant margins on board the orbiter _re ade-

quate to handle the estimated 3_ worst cases. Further terminal rendezvous

studies should be conducted to investigate and improve the efficiency of

the terminal rendezvous phase.

The terminal rendezvous final conditions, which are also the initial

conditions of the docking phase, are also shown in Figure IV-7. The final

range, range rate and LOS rate are 33.5 m, 0.56 m/sec and less than 0.I

mrad/sec, respectively. The terminal rendezvous transfer angle is 151

degrees with a transfer time of 5355 seconds. Figure IV-8 shows the

rendezvous trajectory in the MAV centered tangential coordinates, where
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the ordinate is in the radial direction and the abscissa is tangent to I

the MAV orbit. 'thesmall insert show_ the final _hase of the terminal

rendezvous. Tbe orbiter accomplishes the final closure from above and

behind the target vehicle. The thrust period time (P) and AV are shown

for earlier thrust periods. Figure IV-9 shows the range, range rate and

LOS rate as a function of time during the terminal rendezvous phase. The

range rate is driven to zero in steps as the range is reduced. The LOS

rate builds up until it is reduced during the thrust pezlod by the com-

ponent of the thrust vector that is perpendicular to the LOS. The L06

rate is reduced below the threshold of 0.1 milliradian/second durlng

the terminal rendezvous phase.

Figures IV-10 through IV-13 show the simulation results for the 3a

worst case, which has a 26 km out of plane error. The terminal rendezvous

trajectcry in terms of range vs range rate is shown in _Igure IV-10. __he

&V and propellant requirement for the 3u worst case is shown, along with

the terminal rendezvous final conditions. The propellant required on

board to accomplish the worst case terminal rendezvous is 17.5 kg_ A

total _V capability of 40.14 m/sec is required where about 25 percent

(9.45 m/se_ is required in the orbiter main engine propulsion system. A

total &V capability of 80 m/sec was allotted on the orbiter in the baseline

design to allow for malfunction and reinitiation options. The In-plane

trajectory shown in Figure IV-II is similar to the nominal case. Figure

IV-12 shows the out-of-plane trajectory, where the orbiter starts with

a 26 km out-of-plane error. The vehicle accomplishes the final phase of

the rendezvous by closzng from the other side of the orbit and looping over

and under the MAV. The _eason the rendezvous was accomplished in this way

was to compensate for an off-optimum initial closing &V maneuver.
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D. DOCKING PI_SE

£

The docking phase is initiated when the vehicles are within 30 m of

each other and the sample canister has already been deployed (see Figure

; IV-14). The vehicles pointing will not be affected when the antenna

beamwidth changes due to sample canister deployment.

!

During the docking phase, a different axial control algor_r_- is used

to control the closing velocity lateral position and attitude of the

orbiter. The small RCS engines on the orblter are used as the propulsion

element. The attitudes of both vehicles are controlled to point in the

LOS direction during docking. The axial control algorithm co, ands the

orbiter to close at a constant velocity of 0.3 m/sec along the LOS while

LOS rate is reduced to below the threshold level of 5.0 miiiiradians/sec

in the I00 second docking phase. The combination rendezvous and docking

radar eal_sense range rate to an accuracy within 0.] m/sec. The allowable

sample canister angular misalignment tolerance of 1/2 degree should be

easily realized and can consist almost entirely of a_ignment errors as the

RR controlled pointing errors are very small (approximately 1.5 millirad

or 0.13°). An estimated range accuracy of 3 m (I0 ft) can be obtained by

the RR at 30 m range, but the range accuracy degrades as the range decreases.

The absolute range between the two vehicles is used only to change the

mission phases, and is never used at closer ranges than 30 m. The range
i

calibration needed to reinitiate docking, in the event of a malfunction !

: can be obtained by integrating the range rate from the RR, which is very

accurete (_+0.iraps). !

After the MAV is docked and the docking @iscrete is received by the

orbiter control computer, the MAV can be commanded over the Orbiter-to-MAV

command link to separate the sample canister and back the MAV away from the

orbiter° The MAV can then back off as far as needed, provided it does not

exceed the maximum range of the RR radar. The _V is then commanded back

to its Earth-pointlng orientation to reacquire the DSN signal for attitude

control. An orbital maneuver can be executed to place the MAV in a safe

orbit.

If propellant is available, the terminal rendezvous and _ocking can be

reinltiated as many times as needed. The terminal rendezvous relative state
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as sensed by the RR can be compared from _it,_ Lo timc to stnrpd ncminal

state information to determine whether terminal rendezvous should be redone.

If a docking discrete is not received after a few seconds from the expected

tithe,the MAV can be commanded to back off a few feet and to reinitiate the

final phase of docking. Propellant budgeting is discussed in Chapter VX-E.

Other malfunctio_ optlons are available during the terminal rendezvous

and docking phases. If t_:e_biter axial engines fail, the MAV can rendez-

vous or dock with the orbiter by calculating the MAV axial thrust aommands

with the orbiter CC and sending the commands over the Orbiter-to-MAV

command llnk to be executed by MAV. Another malfunction option is avail-

able if the transmitter section of the MAV gransponder fails; a passive

cooperative rendezvous can be accomplished from a degraded range of 8.5 km.

In this mode the orbiter rendezvous radar still tracks the MAV antenna

while the HAV transponder receiver continues to angle track on the orbiter

signal.

2
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iE. G&C HARDWARE IMPLEMENTATION

A number of small studies were conducted early in this contract to

define and understand the problems associated with designing and opti-

mizing the G&C hardware used in the ascent, rendezvous and docking _hases.

They involve:

I. launch and ascent error study;

2. selection of the MAV sensors;

3. spin vs 3-axis stabilization study;

4. methods to implement ascent guidance;

5. G&C basellne definition study_

6. terminal guidance selection study;

7. terminal guidance simulation study; and,

8. methods of implementing autonomous docking.

The first five of these studies were conducted before midterm to define

the preferred baseline design. A study to define whether a £pin or a

three-axls stabilized system should be used w_s conducted early in this

contract. This is described in the next section. The last three studies

were conducted after the mldterm to define the preferred implementation

to execute the terminal rendezvous and docking.

After the three-axls stabilized system was selected, a study wa_

conducted to define the best sensor implementation for that concept to:

I. determine the lander and the MAV attitudes on the surface;

2. determine the lander _urface position more accurately;

3. support ascent guidance;

4. determine the MAV attitudes in orbit;

5. u_date the MAV position _n orbit; and,

6. cooperate in the rendezvous and docking.

Body-_unted rate gyros were chosen as sensors to guide the vehicle du_ng

the _scent phase, during orbital maneuvers, and during Sun or Earth occul-

tations. The rate gyros keep track of the spacecraft attitudes from the

last inertial a_tltude update. A sensor system then hed to be selected

to get an inertial update by using a celestial reference. A Sun sensor

system is the cheapest and simplest method to get one of the two references

generally required to implement a celestial reference system. Another
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sensor is needed to fully imp)ement a celestial referenc_ system and the

: best choice for this sensor is not obvious. Planet sensors, horizon

sensor_ and star sensors were considered for this second se_or. Since

the HAV also required an Earth tracking transponder to work with the DSN

orbit determination, an attractive solution was found to usi_ this F_rth

pointing direction as the second celestial reference. Thus with else

multi-_nction transpo_er, the MAV can be tracked from Earth, can deter-

mine its own pointing reference, can receive and send con_a_s and engineer-

i_ data both ways, and also turn arou_ the rendezvous radar mlcruwave

signal to implement a cooperative rendezvous. The multiple use concept

also applies to the Sun sensor syst_ Which Is also used to determine the

MAV and lander attitudes on the surface of Mars. This sensor _ lementation
i

seems to be the lightest and simplest way to _chani_e the MAV G&C system

to the re_ired level of sccur_cy.

Once the MAV sensors and the method of vehicle stabilization have
/

been chosen, the launch and ascent errors can be est_ated on the basis

of selected s_nsor specifications, method of la_er u_ate_ and planet a_/

vehicle _ysical parameters.

Our approach to defini_ the preferred G&C _ystem _plementa_ _ca was

to firs_ select the simplest ascent g_id_nce system and to the_ iterate

to a more complex system only if it is needed and only when tb _ sensitivityi

to this change is u_erstood. An open loop guidance system _tilizing a

constant pitch-over rate to appreciate a gravity turn is the s_pie_

_ wa_ used in our first iteration. This type of guidance was simulated

on the digital computer _nd the flight path dispersion analysis results

i_icate_ it to be an adequate design for this mission, obviqti_ the reed to

e_mine u more complex guidance system.

The simple open loop _idance system used in the study baseliz_e is

shown bel_:

T__ _'_ ___ L ,,Dynam_ cs Attltude_tesI ._ ,
_,_.1_ _te _yro Pitch Program

VC'Y I ,pac_ge O = Constant

0 = Pitch Attitude _-32
- Yaw Attitude

¢ = _Ii Attitude
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The pitch program, which is no more than a constant in the MAV mi_-

computer, is used to torque the pitch rate gyro. The indicated operaLions

_o _. ) to form thrust I.__ performed nn th_ rate _vro sensed outp_4t (Ss, 4s, _s

commands (TC) from the attitude cot.hands ( 0c, _c' _ c)" This is a very

simple guidance system to implement in the _v_Vminicomputer. In the

celestial modes, which are similar to those used on the Viking'75 orbiter,

the celeatial sensors are used to sense vehicle attitudes and the rat

gyros cc_ be used to sense attitude rates.

The total HAV guidance and control system mechanization is shown in

Figure 1V-15. The rate gyros are needed to _=ide the vehicle during the

a_cent phase and to stabilize the MAV during Sun or F_trthoccultation.

During the normal celestial _ode of operation, pitch and yaw attitude

pointing errors are obtained from the Earth pointing system= while roll

attitudes are obtained from the Sun sensor system. During the commanded

power saving celestial mode of operation, roll and yaw attitudes are used

from the Sun sensor system and pitch altitude is used from the pitch rate

gyro.

Existing technology is needed to implement the MAV minicomputer which

utilizes CMOS solid state (medium-scale) integrated circuits. The mini-

computer was sized roughly to need a i000 word random-access memory (RAM)

and a 2000 wo_ d permanent read-only memory (PROM). A I0 bit word size

was assumed. The minicomputer must be programmed to con._rol, guide and

sequence the MAV mission from launch to docking. _e ACS logic, which

is similar to the Viking Orbiter logic, must be mechanized in the MAV

computer. The size of computez needed on the MAV was minimized by having

the orbiter control computer and the Earth-based computers do the calcula-

tions whenever possible. Table IV-3 shows the estimated weight of the

components of rue MAV G&C system. The uncased weight for the G&C components

are shcwn because a)l of the electronics are p_ckaged together. CMOS

technology is necessary, which is today's state-of-the-art, to op__raLe

the minicomputer on the power shown in Table IV-3. The other components

were included in this table to compare the tnree-axis stabilized NAV to

the spin stabilized MAV.
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The orbiter G&C system mechanization as shown in Figure IV-16 is

the basic Viking'75 hardware modified to accommodate the combination ren-

dezvous and docking radar. The orbiter CC software must be modified and

reprogrammed for this mission. Additional axial control laws are needed

in the control computer to control the axial engines. The rendezvous I

i

I
radar filters are either mechanized in the digital computer by software I

or in the rendezvous radar by analog circuits. These modifications

should be minor modifications to the existing orbiter G&C system.
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F, SPIN STABILIZED VS THREE-AXIS STABILIZED MAV

I Initially, the perfoLm_nce ..............

^_...._=_cs cf each method of vehicle

attitude stabilization were considered to see if one selection was an obvious

choice. Some of the more important attributes of e_ch type of stabilize- 1
tion system are shown in Table IV-4. The estimated weight and power

} required for the components needed for each type of stabilizatiou were I

then compared to see if an obvious choice emerged (see Tables IV-3 and

IV-5). The attitude control propellant needed to accomplish this mission 14

is also incluOed in the tables for a fair comparison since the weight needed i

:i for the spin stabilized MAV is very sensitive to the number of maneuvers | :
r

needed during the mission. Maneuvers to change the pointing direction,

are very expensive in terms of propellant needed on the spin stabilized

MAV because the vehicle is stiff due to spin stabilization and must be

precessed to the maneuver attitude. The weight of the two systems are

comparable if the maneuver propellant _s included; the 3-axis stabilized

system weighs 10.8 kg and the spin stabilized system weighs 9.1 kg. The

weight comparison is even closer because the 1.9 kg of ACS propellant in

the 3-a_is stabilized design adds to its AV capability during ascent.

This close weight comparison might be surprising considering the relative

simplicity of the spin stabilized system until it is recogp_zed that:

i. this mission requires many maneuvers; and

2. the MAV G&C system must perform several functions other

: thau stabilization.

The three-axis stabilized vehicle executes maneuvers more accurately

because they are executed by a closed loop G&C system. Open loop maneuvers

and vehicle precession during ascent, rendezvous and docking would degrade

the performance of a comparable spin stable system to a point where mission

i feasibility could _e impaired. The spin stabilized system would not he

selected unless detailed system design weight calculations show a pronounced

weight advantage. In that ca,_erer_ormance risks would have to be thoroughly

evaluated.

t
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Table IV-4 Attributes of Three-Axis vs Spin Stabilized _LAV

Three-A:ci_ Stabilized Spin Stabilized

Attitude maintained by slightly Attitude maintained automatically
heavier subsystems that at no expense of power on weight

continually consume power, of auxiliary subsystems.

_ore efficient at attitude Less efficient ac attitude

maneuver _. maneuvers.

Optimun system for missions Optimum system for long missions

requiring many attitude requiring few attitude reorien-
# •

reoriente c ions. tations.

: Less sen:;itive to dynamic More sensitive tc dynamic
imbalance, imbalance.

Higher power requirements. Probably lower overall power

requirements.

Does not provide sensor scanning. Does provide sensor scanning.

: Less complex computations to Complex calculations required

determine inertial attitude, for attitude determination.

i

Closed loop maneuvers. Open loop maneuvers.

Requires more complex uhermal Good thermal characteristics.

protection.

C_C hardware for rendezvous and Maneuvers must be executed in a

_ docking is simpler, rotating coordinate frame.

Vehicle dynamics can be modeled Mathematical modeling of vehicle

simply; minimal cross coupling dynamics is complex; requires

beLween equations of motion, sophisticated analysis and simu-

lation of cross coupling effects.

ACS system must correct for thrust. Minimizes thrust offsets.
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G. TECIlNOLOGY ASSESSMEY£

The G&C systems for the Mars sample return mission can be implemented

with current technology. Minor modifications are needed to the Viking

orbiter G&C hardware to integrate the rendezvous radar as an additional

sensor. It appears that no G&C hardware modifications are needed to the

lander to use it as the delivery system to the surface. The computers

on all the vehicles have to be reprogrammed for this mission.

The MAV is the only completely new vehicle that has to be developed

and existing and off-the-shelf components proved to be adequate in most ....

cases, to mechanize the G&C system. Table IV-6 shows the typical G&C com-

ponents that were selected for the MAV mechanization. All the components

are off-the-shelf and space qualified components except the Intel computer.

In order to meet the power and weight requirements of the MAV, this

computer will have to be implemented with CMOS integrated circuitry. This

technology exists today but has not been demonstr3ted in space qualified

applications. Another option available is to use the current NMOS circuitry

computer in an operating mode that has a lower power duty cycle.

Table IV-6 Guidance and Control Components (Typical)

Components _ Power

I All Attitude Sun Sensor Syste_ 0.45 kg (i.0 Ib) 0.45 watts
Adcole 14477 (Digital Sun Aspect Sensors)
Resolution 1/4°
FOV 128 x 128°

Accuracy + 6'
Size 8.75 x 8.75 x 2.54 cm

3 Rate Gyros and Electronics 1.36 kg (3.0 ib) 5.0 watts
U.S. Time (AC-AC)
Full Scale 10°/see

Accuracy 0.01°/see
Drift I/2°/hr

Size 17.15 x 12.1 x 7.6 cm

1 Computer and Sequencer 1,59 kg (3.5 Ib) 4.0 watts
Intel SIM8-OI

Memory I K x 8 RAM
2 K x 8 PROM

lO-bit Parallel CPU

Interrupt Capability
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V RAO_kR_;_'N_'_•_ _._. DESIGN FOR RENDEZVOUS AND DOCKING

_[s chapi.=r di_-"_s,_e_the rendezvous and docking sensor that per£orms

' the tracking functi_ _'equired for orbiter/MAV rendezvous, The design and

expected performavce ,._fs,,i,a sensor is described and its interaction with

the orbiter and MAV space vehicles is investigated.

:, A. REQUIREMENTS
?

The orbiter/MAV rendezvous and docking sensor must be capable of pro-

:: vidlng accurate measurements of range, range rate and angle between the two

vehicles during the final rendezvou_ and docking phase. The overall sample

return mission dictates that the sensor size, weight, and power requirements

be minimized and that the rendezvous sensor be effectively integrated into

the sample transfer guide cone of the Earth return vehicle. Similarly, ex-

treme restriction:s on the size and weight of the MAV transponder suggest

that the transponder perform multiple functions and that an integrated design

capable of operating effectively in cor_nction with the sample canister and

sample transfer :yst__mbe employed. The selected sample canister location

is directly in front of the transponder reflector antenna and thus represents

_ an important reference point in the design of the rendezvous system. Physical

tranQfer of the sample canister occurs when the MAY and the Earth return ve-

hicle are separated by i meter (distance between effective antenna aperture

• planes) or le_. Accurate measure--_ent-_of range rate and angle down to this

range are, therefore, essential to the rendezvous and docking mission. Strin-

gent weight and power requirements imposed on both the orbiter and MAV sensors

suggest that the rendezvous and docking functions be incorporated into a

': single, integrateu sen_or. It was also felt desirable to allow the orbiter

rendezvous system to operat_ in either a cooperative oz non-cooperative mode.

Thus, in csse of failure of the MAV transponder, the system could be switched

into the skin-track mode where the orbiter would be capable of tracking the i-

, MAV transponder antenna possibly out to ranges of approximately 8-i0 km.

In addition to the above requirements, a command channel must be pro-
%

vlded for the orbiter/MAV link and a telemetry channel for the MAY/orbiter

llnk. These systems should be integrated into the rendezvous and docking

i system in order to achieve the smallest and lightest electronics package.

: The command system must function both before and after transfer of the

k
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_ sample canister, so that in case of a ,;Joking malfunction the MAV vehicle

:. can be coannanded away from the docking cone prior to reinitiating the dock-

ing maneuver.

s The parameter measurement limits and the parameter measurement accura-
?
, ties required during rendezvous and docking were investigated and are listed

in Table V-I. It is interesting to note that a range measurement during the

final docking phase (R < 30 m) is actually not required as long as accurate

range rate and angle data can be maintained to impact.

Table V-I Rendezvous and Docking Sensor Measurement Requirements

System Parameter Measurement Limits Measurement Accuracy :"

: Range 30 m - 750 km 3 m (R ="30 m) '
T

Range Rate 0.3 m/sac - 50 m/sac 0.i m/see

Angle +I0 = 3 mrad

I Angle Rate 20 mrad/sec 0.1 mrad/sec

_ _ A number of possible implementations for the rendezvous, decking, and

'_ command system were considered. These included pulse, pulse/Doppler, and

cw sensors. The requirements for a unified sensor system dictated the use

of a cw system which has no inherent minimum range limitations and could,

• _ therefore, be employed for both rendezvous and docking functions. "urther-

more, such ._y_tems are smple, lightweight, reliable, and require minimum

• I
• power while _L_._)providing adequate long range performance.

!
1
|
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B. SELECTED SENSOR CHARACTERI_TICS

i i_. Orbiter Ele_ents
J

A simplified block diagram of the multi-tone PM/CW rendezvous and com-

maild system selected for incorporation in the orbiter is shown in Figure V-I.

This system can be employed to acquire, track, and rendezvous with the MAV

:. vehicle. It provides range, range rate, and angle data from a maxim ,, un-

ambiguous range of 750 km down to a minimum docking range of 3 meters. A

phase comparison monopulse syst_n utilizing four traveling wave antennas

located in the sample transfer guide cone of the Earth return vehicle is

employed to provide angle tracking in both the azimuth and elevation planes.

The location of _he four antennaJ along the guide cone permits the sample

canX_ter to be transferred beyond the effective aperture plane of the mono-

pulse array. This allows the command system to function even after transfer

of the sample canister. The antenna arrangement is illustrated in Figure V-2.

The anterAla array is fed by a monopulse beam formlng network and produces a

conventional sum pattern for ranging and an up-down and right-left difference

pattern for angle tracking. The beam-for_ing network _o !_oated at the top

of t,e cone to minimize transmission llne lengths. The rLndezvous system

transmitter and receiver are also located in this region, thus p£oviding a

compact assembly. Rigid strip lines are employed to feed the four travel-

ing wave antennas to minimize errors due to precomparator phase shifts.

Array near field amplitude and phase dis_ributlons for a 1.36 meter aperture

antenna are shown in Figure V-3 for various distances along the cone axis.

The symmetry of the phase distribution in the near field indicates that the

difference pattern null of the antenna pattern will be maintained during

the orbiter/MAY docking phase where accurate angle and range rate information

must be obtained.

_le transmitter tonsil's of a frequency synthesizer which generates

-! all the fixed frequencies required for coherent signal transmission and

_ reception. A VCO frequency of 19.1003 MHz in employed which is multiplied

by 120 in a solid state varactor frequency multiplier chain providing hlgh

reliability and adequate power output at S-band. The ranging modulation

consists of a sidetone ranging system utilizing 5 tones and _apable of a

maximum unambiguous range of 750 km. The minor tones are phase modulated on

the 819.2 kHz subcarrier. The command signal is added to the modulated
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I subcarrier to obtain a cvmposite modulation signal which phase modulates the

S-band transmitter. Dual mod,; operation of the rendezvous system is provided.

In the normal transponder mo,_e the tran._mit_ed ,q-h_nd s3gn_! (120 f =o

2282.48 MHz) is sent to the MAV transponder which coherently removes the

modulation fru_ the carrie, filters it, and remodulates the beacon trans-

mitter. The coherence ra io is 220/239 so that the retransmitted frequency

is 2101.03 MHz. When th.s signal is received at the rendezvous receiver,

i_ is mixed with a samp.e of the transmitted signal coupled to the three

receiver mixers throu_l a dlrectio_al coupler and power splitter. This

transmitter signal iF used as the local oscillator for the first mixer. A

triple conversion r,ceiver is r_mployed for maximum sensitivity, and identi- !

cal receivers are ,Jmployed for the three channels. The local oscillator !

signals for the s_cond and third mixers are provided by the frequency syn-

thesizer. After I.F. a_rplification the sum channel signal is demodulated

by a phase lock demodulator. This unit coherently removes the 819.2 kHz

range subcarrier frc,mthe carrier and transfers it to the range unit which

' contains the range tracking circuits. The ranging uni._ receives the ranging

subcarrier and minor tones, extracts the range data, and converts it to a i

17-bit binary number. Range is determined by measuring th_ phase delay

i between the received and transmitted multi-tone modulation waveform. Range

rate is obtained from a two-way Doppler measurement by measuring the received

Doppler cycles for a unit of time. In order to determine the Doppler fre-

• quency it is essential to maintain frequency coherence of the orbiter rendez-

vous transmitter through the MAV transponder and back to the rendezvous re-

ceiver where it is compared against a sample of the transmitter frequency.

Angle tracking is achieved in both planes with the aid of a phase com-

parison monopulse system. A conventional three-channel system is employed

to provide the sum and azimuth/elevation plane difference channels. In a

phase comparison system the angle of arrival is obtained by comparing the

phase of signals received by antennas separated a considerable electrical

distance but having parallel boresight axes. Thus, it is possible to in-

crease the angular accuracy of the rendezvous system by moving the four

traveling wave antennas further up along the sample transfer guide cone

which increases the electrical spa_ing between antennas. Furthermore, in

such a system the required angular accuracy is achieved with less stringent

mechanical tolerances than with aa amplitude comparison system.
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In the non-cooperative mode, which can be _nployed as a failure mode

for ranges up to 8 kin, the transmitted S-band signal remains at the same

frequency (120 f = 2282.48 MHz) but the local oscillator signals must be

shifted in frequency to provide the correct I.F. frequencies for the triple

conversion receiver. This is achieved by a single sideband modulator _;hich

offsets a s_mple of the transmitted signal received from a directional

coupler by the appropriate I.F. frequency for use as the local oscillator

signal. Transmitter feedthrough appears as a narrow band signal in the IF

amplifier, but the delayed signal is phase modulated and occupies a wide

spectrum. Feedthrough cancellor circuits are provided to null out this un-

desired feedthrough signal since the circulator isolation of 30 dB is in-

sufficient to achieve a low enough feedthrough level. A synchronous notch

filter is, therefore, employed to provide the additional isolation.

'l"nesidetone ranging modulation system consists of a five-tone system

where the four minor tones are phase modulated on a subcarrier. The sub-

carrier frequency is chosen so as to provide the highest frequency for a

• given bias error in the range measurement and must, therefore, he consistent

with the docking requirements. The highest tone is used to determine the

finest increment of range, and the lower frequency tones are used to remove

• range measurement ambiguities. The range tones are phased so that when the
f

lowest frequency tone has a zero crossing, the higher frequency tones also

have a zero crossing.

The frequency ratio between the tones should be high enough to allow

implementation of a practical system with a minimum number of tones. Eacl

tone must resolve the ambiguity in the next highest tone which equals I

cycle of that tone. Assuming the r.m.s, phase errors are equal and inde-

pendent for each tone, the frequency ratio must satisfy the inequality:

°T_ F

where: F = confidence factor in resolving ambiguity

R = frequency ratio

For 99.9% probability of correct ambiguity resolution, the value of F =

3.7. The quantity, aT, consists of uncor:ectable bias and random errors

and is set at 3 m.
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Tbe simplest implementation requires the smallest number of tones or

largest value of R. Past experience indicates that for reliable ambiguity

resolution R should not exceed 8. Thus, starting with the highest tone of

819.2 kllz, the minor tones are given by: subcarrier = 819.2 kHz

I. Minor tone = 102.4 kHz

2. Minor tone = 12.8 kHz

: 3. Minor tone = 1.6 kHz

4. Minor tone = 200 Hz

This implementation yields a maximum unambiguous range of 750 Icm,which

appears more than adequate for the MAV/orbiter rendezvous system.

The range tone spectrum as well as the command and telemetry subcarriers

are shown in Figure V-4. The command channel is required for the orbiter

to MAV link while the telemetry channel is needed for the MAV to orbiter

link. The simplest mechanizacion of this system is illustrated in Figure

V-5. l_e range extraction unit receives the detected range tones from the

receiver and the 819.2 kHz tone and reference pulses from the _one generator.

The time interval unit measures the time interval between the start and stop

pulse which is proportional to range between the orbiter and the MAV. The

range rate extraction unit determines Doppler by measuring the time required

to count a fixed number of cycles of the two-way Doppler plus bias frequency.

The time interval unit measures this time interval with the same method as

is used for the range measurement.

2. MAV Elements

• The primary mode of operation of the rendezvous system is the coopera-

tive beacon mode. The MAV transponder will be required to provide the co-

herent r_dezvous response and the MAV/DSN tracking function as well as an

indication of the angle between the MAV and the Earth-based DSN transmitter.

Thus, a monopulse receiver is also required for the MAV vehicle, even though

the angular accuracy requirements are much less severe than those required

for the orbiter rendezvous receiver. A phase comparison system is again em-

ployed for the angle measurements and provides an accuracy of _I/4 deg. The

antenna consists of a 50 em diameter dish fed by a 4 arm, dual mode, fiat

spiral antenna. Assuming an antenna efficiency of 65% and a mean carrier

frequency of 2.2 GNz the unblocked antenna gain is 19.5 dB. Aperture block-

i_,g introduced by the sample canister and the steel rod will cause a reduction
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in antenna gain, increase in antenna pattern sidelobe levels and pattern

changes due to phase error effects. Another important consideration is the

effect on the azimuth and elevation difference pattern nulls brought about
"i

by possible asymmetries in the location of the sample canister.

Two possible antenna mechanizations were considered:
I) Front-fed parabola

2) Cassegrain dual-reflector system

In the front-fed parabola, the dual-mode spiral antenna feed can be mounted

on the bottom face of the canister and the element arm orientation takes

the form shown in Figure V-6 below.

p

Figure V-6 Multi-mode Spiral Feed

The central portion of the dual-mode spiral feed antenna has been eliminated

to allow room for the 1.27 cm diameter steel rod. The minimum F/D ratio for

a front-fed design is about 0.4 which locates the spiral feed antenna 20 um :

from the vertex of the parabola. To eliminate the need for long transmission

lines between the spiral feed points and the bea_ forming network, it is

desirable to mount the four strip line 180 deg hybrid junctions directly

behind the spiral feed antenna. _his prevents the introduction of differ-

ential phase zhifts and losses that calfbecome very critical in monopulse

tracking system,,. _mother possibility is to include the sum channel and

error channel mixers and the I-IF preamplifiers in an integrated electronics

package mounted directly behind the feed antenna. This can be accomplished

with a minim_ weight penalty and would require a minhuum of four cables to

be brought out to the feed. A disconnect system is required so that when
.i

the sample canister is removed the spiral feed system will stay in place

unperturbed and allow the system to continue to function.
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In the Cassegrain dual-reflector system, the dual-mode spiral antenna

feed is located at the verte_ of the parabola and hyperboloid subreflector

is mounted on the bottom face of the _at_iste_. "- _.... --_.e -_-4-'---_F/D ratio for

this arrangement is about 0.3 which now locates _he subreflector only 15 cm

from the vertex of the parabola. Closer spacings are theoretically possible

but other considerations dictate against such shorter distances. In general

the feed aperture required for a Cassegrain antenna is larger than that re-

quired if the antenna system has the feed at the parabolic focus. This dif-

feremce in size increases as the F/D ratio decreases. It is very difficult

to increase the directivity of a 4-arm, dual-mode, spiral ar_tenna, so that

for a Cassegrain configuration it is essential to place the subreflector

close enough to the feed antenna to prevent excessive amounts of forward

spillover. The only other alternative is to place the spiral feed antenna

inside a conical horn so that the aperture area and directivity of the horn

will effectively control the illumination of the subreflector. This approach,

although somewhat heavier due to the inclusion of the horn, will then allow

larger F/D ratios to be employed. The principal advantages of the Cassegrain

system are location of all RF components at the antenna feed system thus

eliminating _.heneed for long transmission lines, image feed reduction, and

flexibility of the antenna para_eters to accommodate different designs.

Another important advantage in the MAY application is that no disconnect

system is required so that the subreflector can be permanently attached to

the s_,n_,lecanister package. After ejection of the sample canister, the

rendezvous system, including the command channel, will continue to operate

in a low-gRin mode despite loss of the subreflectoz

A prel_minary design of the MAV Cassegrain antenna was carried out to

determine the expected antenna performance and its dependence on the sample

canister. Since the size of the sample canister determines the hyperboloid

subreflector di_neter and the resulting aperture blockage of the main dish,

the antenna performance will be a function of the sample canister diameter.

It is desirable to satisfy the minimum blockage condition with a reasonable

main dish F/D ratio. Figure V-7 illustrates the minimum blockage condition

and the MAV antenna/transponder assembly. Two possible implementations for

_he sample canister configuration were considered and are show_ in Figure

V-7:
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i kg sample: D = 50 cm; d/D = 0.250

5 kg sample: D = 62.5 ,ram;d/D = 0.325

The mlnimm, blockage curves indicate that the large diameter main dish

design (5 kg f_ample) _rlth the increased diameter sample canister will allow

a higher main dish F/D ratio for the MAV antenna. One of the problmns en-

countered _ith these designs is that the subreflector diameter as well as

the main dish diameter are relatively small in terms of wavelengths at S-

band. The effect of subreflector blockage on antenna gain and sidelobe

level is shown in Figure V-8. For a sample canister diameter of 12.5 cm

(i kg fJample) and a main dish diameter of 50 cm, the net antenna gain is

18 dB a:g the SLL = -Ii dB. For a sample canister diameter of 20 cm (5 kg

s_.ple) and a main dish diameter of 62.5 cm, the net antenna gain is 19.3

dB and the SLL = -9 dB. The reduction in gain due to the subreflector ap-

pears to be tolerable despite the large blocking ratios. Another important

consideration is the effect on =he difference pattern nulls due to increased

aperture blockage and possible asymmetries in the subreflector location.

The MAV dual function transponder block diagram is shown in Figure V-9.

Single IF chain angle tracking is chosen over a conventional three channel

receiver since it is lighter and contains much less equipment. The simpli- |

Iflcatior, occurs by replacing the error signal IF chains by a crystal filter,

balanced modulator, and low frequency oscillator. Tradeoffs indicate for

thls system a reduction in size, weight, and power, and an increase in re-

liability. The price paid for this improvement is a 3 dB decrease in S/N

ratio and reduction in sensitivity due to phase shifts of about 0.6 dB.

The error signals are converted in the first IF with mixers identical

to those %n the sum channel. Each error signal is then modulated with a dis-

tinct tone in the balanced modulator producing sidebands whose amplitude is

proportional to the amplitude of the error signals. The error sidebands,

which are outside the normal modulation sideb_Jnd of the reference channel,

are added to the stunchannel. This composite signal after conversian to the

second IF passes through a multiple crystal filter which places a narrow

band pass about one of the sidebands of each error signal. The co_nand and

ranging signals are stripped off before th:._emultiple filters. After am-

plification the error signals are detected in coherent amplitude deue=Lors,

which are basically phase detecto1"swith refe=_nce signals which are in
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phase with the carrier signal. 1_e amplitude and phase cf the error tone_

are then determined.

The dual-ratio transponder utillzes the sum channel from the menopulse

antenna. The coherence ratio is 240/221 for the standard DSIF link and 220//

239 for the rendezvous link with the orbiter. For a 220/239 transponder

ratio, the transponder receives at 119.5 f and transmits at II0 f __%,ere
o o

fo is the VCO frequency. For a 240/221 transponder ratio, the transponder

receives at 110.5 fo and transmits at 120, fo" A syste,_ _f mixing and multi-

plication is employed to achieve these ratios, and the appr)priate chain is

selected for =ither the nSN or rendezvous function.

i.

It is essential to minimize the size and weight of the transponder

assembly in order to meet the _L%V weight restrictions. This can be accom-

plished by subdividing the transponder into eight subassemblies, in addition

to the power amplifier and crystal oscillator. These subassemblies will

occupy four circuit boards as shown below. The top circui_ board is the

strip line board which contains the RF subassembly _nd also serves as L.,e

ground plane for the antenna feed. The other three circuit boards are con-

ventional PC boards. The complete assembly will be foamed to allow it to

withstand the expected ii g acceleration environment.

" PC Boards Based upon this concept the

Crystal _____ _ _ _ transponder weight including

4-Arm : the antenna feed system has

Spki_ U__ #! Foam been estimated and % shown
in Table V-l. The _,_.ire

_. Steel assembly fits directly behind

/_RoJ _ the dish and provides an ex-

Stripline " z-_)_

Board"--_7....-_

J i
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C. SEIqSOR SYST_ _CA/_TIONS

In order to assess the performance of the rendezvou_ system, it was

| decided to perform system calcul_tions and to determine the range, range

rate, and angle errors inherent with this system.

Link _alculations were performed for both the orbicer/MAV and the HAV/

orbiter links. Four traveling wave antennas were employed along tbe sample

transfer guide cor_,ein a phase comparison _onopulse arrangemen _. The MAV

transponder a::t_,_,uaconsisted of a 50 cm Cassegrai_ dish as described before.

Transfer of the sample canister during the docking stage of the rendezvous

mission allows the bl_mronantenna to continue functioning in a low gain mode !

so _hat the command link will operate even after transfer of the sa_ple !
!

caniste_. ,

Orbiter to HAV Link:

PR = received power at MAV

PT = 300 mW= 24.8 dBm

LFI _ = orbiter circulator, BFN, cable Icsses= 2 dB
J.

£p = polarization los_ (linear to circular) _ 3 dB

LFS = path loss = 36.6 + 2U log R _ 20 lob (2282) = 103.8 + 20 log R

R = orbi_.er to MAV range in miles

= transmitting antenna gain = 15 dB (_/A _ 3.5, d/A _ 2)

GR = receiving antenna gain = 18.3 dB (50 cm dish; 12.5 cm subreflector)

LFT- = MAV circulator and R.F. losses = i dB

= 24.8 - 103.8 - 20 log R- 2 - 3 e 15 + 18.3 - iR

PR = 51.7 - 2 log R

The modulation of the transmitted carrier is as follows:

(a) Deviation of each mirror tone on the 819.2 kc subce.rrier:

0.6 radian peak each
I

(b} Deviation of the composite range tone spectr_ or the carrier:

1.0 radian peak
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then:

(I) Carrier Power: Pc = Jo (1)2 PR = PR- 2.3 dB

(?) lb..odt,!aredS,,hcarr_pr Power" P = Jl(!) 2 p _ _ mR
....... SC(u ) -R

: PR- 4.1 dB
(3) Power in Minor Tones:

= _J[Jl(_l)J°(_2)J°('_3)J°(_4)]2 PSC,,u)+ 3 dB = PR" 14.4 dB

f-

(4) Power in Modulated Subcarriar:

PSC(M )[Jo(8 )() _ _2 .• PSC(u ) " PR 7.3 dB

The signal to noise ratio at the MAV transponder:

(1_ Carrier Loop: IS! PR= _2--'_) - 2-3 dB

n = -167.5 dRm/Hz

2_ = loop two-sided noise bandwidth =

= I kHz = 30 dB

n(2BL) = -167.5 + 30 = -137.5 dBm

Then: S = (-51.7 - 20 log R) + 135.2
c

(2) Ranging Channel: The range tones are filtered in the ranging

channel and remodulated on the beacon transmitter. The bandwidth of th_

. ranging channel is 300 kc since no ranging is being done in the DSN llnk.

Then:

IN) PRR =_ - 4-I dB

= -167.5 dBm/Hz

B - 300 kc - 54.8 dB

B = -167.5 + 54.8 ffi-112.7 dBm

_) = (-51.7 - 20 log R) + 108.6

From Figure V-10 it is clear that there is no suppression of the retrans-

. mitred range tone power up to an orbiter/MAV range of Ii00 km. Maximum

range of the rendezvous system is estimated at 750 kin,although considerably

longer ranges are possible.
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MAV to Orbiter Return Link:

PR = received power at orbiter

PT = 150 mW = 21.8 dBm

LFII = transponder diplexe_ circulator and BFN losses = 2.5 dB

Lp = polarization loss (circular to linear) = 3 dB

LFS = path loss = 36.6 + 26 log R'+ 20 log (2101) = 103.0 + 20 log R

GT = transmitting antenna gain = 18.3 dB

GR = receiving antenna gain = 14.7 dB

LFI 2 = orbiter R.F. ]osses = 2 dB

PR = 21.8 - 103.0 - 20 log R- 2.5 - 3.0 + 14.7 + 18.3 - 2

PR = -55.7 - 20 log R

After modulation of the beacon transmitter the range tones are retransmitted

to the orbiter receiver. The signal to noise ratio at the orbiter receiver

is th,_nobtained as follows:

(I) Carrier Loop: /:_ PR

= _--_- 2.3 dB

2_ = i kc = 30 dB

_(2BL) = -167.5 + 30 = -137.5 dBm

(N) = (-55"7 - 20 l°g R) +135"2c

(2) Tone Filters: The composite modulation spectrum is demodulated

by the orbiter rendezvous receiver. The 819.2 kHz tracking filter locks to

the modulated subcarrier and demodulates the minor tones. The signal to

i noise ratio in the 819.2 kHz tone filter is then:

_r _B 7.3 dB

B = filter bandwidth = I0 Hz = i0 dB

_B = -167.5 + I0 = -157.5 d_m

(_) = (-55.7 - 20 log R) + 150.2RT

The signal to noise ratio in the tone filters of _he minor tones is:

= _-_- 14.4 dB

B = I0 Hz = i0 dB

_B = -157.5 dBm
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The various input signal levels and signal to noise ratios are plotted

in Figure_ V-10 and V-II. The range tones consist of the 819.2 kHz subcarrier

and minor tones of 102.4 kHz. 12.8 kHz: 1.6 kHz; and 200 Hz. At 200 Hz the

m,_ximum unambiguous range is 750 km, so that longer ranges can be considered.

In order to achieve a given range accuracy with a multitone ranging

- system it is necessary to conslder both fixed and random errors in the

range measurement.

Past experience with th_ Apollo/IM rendezvous radar indicates that

phase can be maintained within 3° as a function of temperature, aging, etc.

The basic phase relationship is given by: I"

(i) _= -_- d= d

. where: fm = highest tone frequency

72_fT_._

And: fT = 2-6d

To achieve a bias error 6d _ 3 meters, we can solve the above equation

f°r fT: ( )

(3)(108) 3
fT = (3.06) 3--_ = 818 kHz

Thus, for a 3 m bias error the highest tone should be 818 kHz. For a

flve-tone ranging system with a maximum unambiguous range of 750 kin, the

highest tone then turns out to be 819.2 kHz.

The range measurement accuracy is also affected by random errors. The

range measurement is basically obtained by a phase measurement on the

highest frequency tone and range ambiguities are resolved by measuring the

phase of succeeding lower tones. The rms phase error due to thermal noise

is given by:

1

(2) o_ = _(S/N)- T (S/N) T = signal to noise ratio of tone

The corresponding rms error in the range measurement is.
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To achieve a i¢ random error of oR = 3m, then, it is now necessary to

solve the above relation for the required signal to noise ratio. This

becomes:

1 !.

• _" (2rfT)

Tf the filter in the tracking-loop has a bandwidth of B=I0 Hz, then

:. the tracking loop time constant is 0.I sec, and the improvement through

integration becomes

(5) n= fT Ti _i2(S/N) T

and Ti=
where B = tracking loop bandwidth

Substituting in (4) we, then, obtain:

:   (slN)z =

0) (2_f T)
2

_
(_) 3/2; 2_ fT

For _R = 3 m, B = I0 Hz, C = 3 (10)8 m/s, anl fT = 8.19 (105) Hz, we get:

; (S/N)T = 2.24 (10-3) = -26.5 dB

: Thus, as long as the signal to noise ratio is greater than -26.5 dB it is _

theoretically possible to achieve the required I_ random error of 3m with a i

tracking loop bandwidth of I0 Hz. The sldetone ranging system utilizes

tones of 102.4 kHz, 12.8 kHz, 1.6 kHz, and 200 Hz in addition to the 819.2 kHz

subcarrier. The i_ random error associated with these tones has been calcu-

lated using the same _elationships employed above and the signal to noise

results obtained from the link calculations. Then, for a maximum range of

250 km the random range error becomes 238 m and for a maximum unambiguous

range of 750 km this error reaches a maximum of 754 m. The range error

is plotted as a function of system range in Figure V-12. It is evident that

although large random errors will be encountered at long ranges, the range

accuracy at short ranges is quite excellent. In fact, Figure V-12 indicates

that the random error can be kept at 3 m or below for ranges up to 65 km

which should be more than sufficient for the intended rendezvous mission.

V-26

1975006730-174



i

_ndom /1

// ,_ !

-30 _
I-4

I.J

: g

_!

I'

i

3 Bias , ,

f

0 IoC _,c 3'co, _'oc _,ee roc _oC _Ec I,.:,,:._
P,ar, ge in km

Figurs V-12 Rangev.27Errorvs Range i

1975006730-175



The lag error (f the ranging system will depend both on the relative

velocity and the integration time. For a system with a tracking loop band-

width of I0 cps, the integration time is 0.I seconds. Thus, if the lag

I error is not to exceed 3 m then the velocity must not exceed 30 m/s. If
| the velocity exceeds 30 m/s during the terminal phase of the rendezvous

missio_ then the tracking loop time constant must be reduced where it

appears that there is adequate signal Eargin.

The 819o2 kHz subcarrier is used to measure range. A time delay of one

cycle of the 819.2 kHz subcarrler is oquivalent to the range between the two

terminals changing by 183.5 m. The 819.2 kHz subcarrier is demodulated and

filtered by a phase locked tracking fi!t_r with a two-sided noise bandwidth

of I0 Hz. The signa! to noise ratio at a maximum range of 250 km is 51 dB

,_. and the signal to noise ratio at a maximum unambiguous range of 750 km is

41 dB. Tht r.m.s, phase jitter of a sine wave signal with additive noise

is

a = tan'l_/i/2(S/N) rad.

Thus, at the maximum unambiguous range the range error due to phase jitter

is given by:

o = tan'Iv'i/25,200 = tan"I 1/159 radians

!: o = 0.361 degrees

The ms Jitter in meters is then:

¢ = (0.361/360) (183.._)= 0.184 meters

Thus_ it is clear that both the bias and random range errors -rill be gre_ter

than the errors introduced due to phase Jitter.

Additional system error calculations have been performed and are given

in Appendix E. These calculations include range rate and angle error calcu-

lations for the orbiter/MAV rendezvous sensor. A smmnary of all range, range

rate, and angle error calculations is shown in Table V-2. This table also

shows similar data extracted from measurements on LM/CSM rendezvous radars

when these units were exposed to the vibration and thermal vacuum environ-

ment expected during the Apollo mission. The LM/CSM r_ndezvous syst_u is

also a sidetone ranging system and utilizes an amplitude comparison monopulse

system for angle tracking. The data shown represents typical I_ accuracies

from production line units. It is interesting to note that the orbiter/MAY
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I

rendezvous syst_ pr_uises to yield comparable performance to the flight-

proven L_JCSM syste_awith the euded advantage of providing useful radar

data during the final dockir,g phase.

!;

5

V-30 .:

_+ _

i_.... j :_

1975006730-178



i

D. SENSOR SYSTEM COMPARISONS AND COST CONSIDERATIONS

The rendezvous and docking sen'_or described in Sections A and B provides

range, range rate, and angle data to the comrJter. An S-band, all solid state

ew system was employed. Previous work in the area of rendezvou_ systems be-

tween space vehicles must be taken into account in assessing the development

time and cost involved in the design of an orbite:/MAV rendezvous sensor.

A comparison of four cw rendezvous sensors is shown in Table V-3. All of

these sensors use sidetone ranging systems and three channel monopulse re-

ceivers for angle tracking. Although the Apollo rendezvous system operates

at X-band, it is very similar to the orbiter/MAV system exceFt that it was

not designed for automatic docking. This similarity is illustrated in Table

V-4 which shows a comparison of the major system parmneters of the two ren-

dezvous systems. Over $20 M was spent during the LMRR development contract i

for design, development, and space qualification of the radar. This ex-

perience can be .'tilized in the design of the orblter/MAV rendezvous sensor.

In Table V-3, the non-recurrlng cost for the modified LM/CSM system proposed

for Shuttle missions is thus very low because of the experience factor and

the extent of the modifications.

The unified S-band system is a rendezvous sensor based on a system con-

cept where the S-band equipment performs all tracking, command and cowaunl-

cation functions in the Apollo system. It utilizes similar equipment in

both the LM and CSM vehicles, and provides a substantial reduction in both

system weight and power over the X-band systems. The orblter/MAV system

also performs all tracking, command, and telemetry functions and must oper-
i

ate in a fully automatic mode during rendezvous and docking. The stringent

MAV weight rcstrlctions and power constraints favor the use of a low-power

S-band system based on proven tracking techniques developed for both the

JPL-DS_F system and the _pollo rendezvous mission. Thus the orbiter/MAV "_

system will provide a high reliability _¢ndezvous link at v_ry low cost.

The co_ts shown in this table are based on realistic esClmates of equipment

development costs and space qualification costs, as well as past experimlce

in the design of range and range rate sensors in the X-band, S-band, and

VHF region of the _4 spectrum. Utilization of advanced packaging techniques

_nd inc_-eased use of microcircuit technology results in considerable reduc- '!

tior_in size and weight of the S-band systems. Extensive use of integrated i
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I

circuits in both the rendezvous sensor and the transponder will, furthermore,

improve syste= reliability and will account for the estimated increase in

KBTF to 3000 hrs for the S-band systems.

I
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E. RE%H)EZVOUS SENSOR RELIABILITY AND FAILURE MODE OPERATION

The rendezvous sensor must be capable of operating under various en-
|

vironmentai conditions and should have the capability to provide adequate |

performance in various failure modes. Calculations were performed to assess

the range performance of the rendezvous system in the non-cooperatlve mode.

In this situation, it was assumed that the orbiter antenna was pointed

within +i° of the MAV transponder antenna axis and that the MAV antenna was

matched to the transponder at the rendezvous transmitter frequency (FR = 0). !

The latter represents a worst case condition since any mismatch will contri-

ibute to the radar cross-section of the passive antenna target. The radar

cross-section of the hAY antenna is then given by:
%

G2A2 "
o = -- = .922 ,2 at A = 13.2 ca,

4_r
At +9° (3 dB pts) this would become o = .23 ,,,2and

2
at +I° a good estimate is ¢ =.8_0 m..

-The system acquisition range is given by: R = --

Let: k = 1.38 x i0-23 _(4r)2kT°BnFn(S/N)min

T .= 290°K
o

en --lkHz 2
A - .04385 m
e

F = 6.3n

Then: For S/N = I0 dB -* R = 1.73 km "

For S/N = 3 dB -* R = 2.58 km

For the above calculations an antenna gain of 15 dB was assumed for

the four antennas comprising the monopulse array. To achieve failure mode

operation of the rendezvous sensor out to 8-10 km requires an antenna gain

at S-band of 20 dB plus a 2.5 wa't amplifier in the orbiter transmitter,,

For a system without fad.luremode operation, a 15 dB gain ant¢_nna would be

sufficient, slnce system opecation would be restricted to the cooperative

mode. It was, therefore, decided to investigate the feaslbilJ_y of increas-

ing the antenna gain by utilizing alternate antenna desi_,ms, Cutren£ dimen-

sions of the sample transfer guide cone are given in the _ke_t-h below.

t
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L y

a = 45°

0 = _ -
2 a = 45 °

= 13.6 cm

L = 71.8 cm

1

[ q

,_----- 51 cm

Using the above configuration, the maximum length of each array would

be 71.8 am or 5.3 A. The peak of the array radiation pattern must occur at

8 = 45° from broadside, so that if a conventional, scanned broadside array

: is employed, the gain will be reduced by 1.5 dB from the broadside gain.

For a line source, the gain loss at 45 ° is only 0.4 dB if kL _ 33. In this

case, then, the antenna gain is given by:

C = i0 log _- 0.4 dg = 9.3 dB

In the sum mode, all four ante_ala.= are operated in phase and the total an-

tenna gain is given by:

GT = 9.3 dB 6 dB = 15.3 dB

It is, therefore, not advisable to employ a line _ource as the array element

since insufficient gain is produced for failure mode operation.

I[ a traveling wave antenna i_ chosen as the array element, then ,,_,, _i

should preferably bu smaller than 45°. For 0 = _-= 45° , the following

parameters have been calculated to guarantee that the tcaveling wave ant&nna

c_ntains only a sJn_'!e lobe:

)
: d/_ : 0.5fl

_l_g = o.41
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where d = element spacing of traveling wave antenna

Z = feed line length between traveling wav_ antenna elements.

The propagation constants are given by:

z free space propagation constantk

8 z _g feed line propagation constant

The main beam of radiation from the traveling wave antenna, occurring

at angle e, satisfies the following relationship, if it is assumed that the

elements are omni-directional:

kd sin 0 - 8_ - 2n_

where n = integer (0, +I, =2 etc.)

The slant length of the cone is L = 5.3_ so that with d/_ = 0.5_ _.hc

maximum length array that could be accommo,aated would have 9 elements (N = 9).

This traveling wave antenna would, then, take up the full length of the cone,

which represents an upper limit on the achievable gain from this ._ntenna.

The gain of the antenna is, then, obtained as follows:

G - i0 lOglo N - 1.5 dB + i0 lOgl0 gr (45°, 0°)

where gr = element gain factor at 8 = 45°, ¢ = 0°

_he only practical elements which can be considered for the traveling

_ave antenna are either dipoles or slots, and these have a low element gain

factor. AssLuning a unidirectional cosine power pattern fro_ these elements,

we then get

gr(45°,O °) = 2.04 = 3.1 dB

The traveling _ave antenna gain i_, then, given by:

G = 9.5 dB - 1.5 dB + 3.1 dB = II.I dB

Again 9 in the sLnnmode, all four antennas are operated iv.phase, and the

total antenna gain is:

C-T = ii.I dB + 6.0 dB ---17.1 dB

_hile =his is an improvement over the line source array, it still does not

provide the desired 20 dB gain. i
I

i
I
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In the original design a surface wave antenna was proposed a_ a feasible

array element for Lhe monopulse antenna. Again assuming uti]iza _on of the

_UlU_Lull SI_LL_ I_S._L _'_ _:ouid get for this

arrangement :

L= 5.3_

Instead of using a traveling wave antenna structure, an array of top loaded

monopoles on a ground plane fed by a dipole reflector combinatio._ could be

designed. Experimental work on such antennas indicates that the relative

phase velocity along the array for a maximum gain design should satisfy the

following relationship :

C l =i+_
V - _ _ (3_ < e < 8X)

7

or k
--= 1.063 for L = 5.3A

The gain of the surface wave antenna is then gicen by:

": IOL .

G _ I0 lOglo-- 17.2 dB

To avoid mechanical interference at the. feed with the sample canister, it

would be desirable to shorten the a, cenna and locate the feed poin_ further

_ up along the cone. This can be drone by shortening th_ antenna le_igth to

L = 4_., which then yield =. for the gain:

" G _ i0 lOgl0 40 : 16 dB

Again, in the sum mode all four antennas are operated i,_ phase, and the

total antenna gain is:

GT = 16.0 dB + 6.0 dB = 22.0 dB

This would appear satisfactory for failure mode operation of the rendezvous

system.

The above antenna options would require further experimental work to

determ._ne the actual performance of tbcse array,_ and tc verify that th=se

antenna gains can be achieved in practice.

If a 20 dB gain array c_n be achieved the non-cooperative acquisition

range for a S/N = I0 dB is 3.OB _m while th,__ acquisition range f;,_-a S/N =
w

3 dB is 4°6 __,. 'fhe actual signal to nois_ required for reliable acquisition
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i depends on required probability rate, as I

the detection and false alarm shown

the enclosed figure (Figure V-13). Typically for PD = 90% and PFA = 10-3' !in

_ the required S/N = 10.7 dB. The lowest tone freauoncy._ is _n _.._and the

integration time is .I sac (BW = I0 Hz). Hence the integration gain is

_ given by:

_ N = [(200)(.1)] .7 = 20.7 = (8.1) .7 = 9.1 dB

[ Then the required signal to noise ratio is given by:

(10.7 dB -.9.1 dB) +margin = 1.6 dB + margin

• _ The minimum margin is 3 dB, so Lhat the S/N required is about 5 dB for
PD

_ 90% and PFA = 10-3 This is the minimum S/N required which must be used I

• I in the range equation. The following acquisition ranges are then obtained: !

For G = 15 dB R = 2.3 km

I

To increase the range to 8-10 kmwould, further require the inclusion i,

• of a power amplifier in the orbiter rendezvous transmitter as shown in ;

Figure V-I. Thus, if the _ransmitter power output were increased from 300 mW i

to 2.4 watts the acquisition range would increase from 4.1 km to 8.2 km.

The power amplifier would be switched in only during transponder failure
- i

mode operation to provide the higher transmitter power levels required for !

non-cooperative tracking and docking with the MAV vehicle. !

Further consideratio_ was given to the reliability of the system tom- !

ponents in the rendezvous sensor and :he transponoer. The only high power

components in these assemblies are th_ 2.5 watt power amplifier iu the ren-

dezvous radar and the 4 watt power amIlifier in the transponder. The former
i

is only employed during failure mode operation: while the latter is essen-. J

tial to the MAV/DSN link. The no1_ml procedure providing redundant i
J

transmitter power amplifiers wa_ considered. This approach did not appear

as attractive as designing the solid state amplifier to provide inherent

redundancy and graceful degradation of output power by virtue of the basic

mlplifier circuit arrangement. Th_s can be accomplished by providing a

large m_ber of amplifier stages in parallel with matched hybrids combining

the outputs from thcs= uransistorized stages• Thus, the lailure of one or

two stages will not have a catastrophic effect on the output power of these

systems. All circuitry in these assemblies is of the MIC variety on high
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dielectric al_ina substrates directly soldered, along with the devices,

to a thin almninum carrier to minimize weight. Conduction cooling ot the

amplifiers is accomFlished by mechanical fastening of the stripline carrier

to a suitable aluminum heat sink.
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F. NEW TECHNOLOGY DEVELOPMENT REQUIREMENTS

An assessment of the new technology requirements for the rendezvous and

docking sensor was undertaken, l_e design of the orbiter/MAV rendezvous

sensor is based on proven trac_king techniques developed for Apollo and post-

Apollo missions. Thus, new technology development work is required onl_ in

areas related to the Martian space environment and the orbiter/MAV rendez-

vous and docking mission. In particular, antenna designs required for the

orbiter and MAV space vehicles must be developed to satisfy space vehicle

and missi_ constraints. A phase-c_npa_ison monopulse system was selected

because of its high on-axis gain, high boresiBht null sensitivity, and low

probability of sidelobe tracking.

The design of both the orbiter antenna array and the MAV transponder i

antenna is greatly influenced by the presence of the sample canister and

the mechanical smnple transfer system. Thus, the monopulse antennR array

must be integrated with the sample transfer guide cone to establisn an

effective aperture plane ahead of the sample canister well. Antenna develop-

ment work is required on the traveling wave antenna_ and the monopulse array

with emphasis on pattern stability and side]obe red,Jction to assure that

the system has only one stable tracking null. The M_V antenna requires an

oversize subreflector to shield the sample canister irom the antenna feed

system. DevelopmeDt work is required to establish an optimum reflector

surface and to come up with a suitable feed design. _e Cassegrain antenna

system has been selected for the MAV antenna because of the convenience of

the mechanical arrangement whereby the feed and associated transmitter/ _

receiver are close together and the system hardwaze can be easily packaged
!

behind the dish. In such an arrangement the subreflector should be several
%

wavelengths in diameter and normally would not block more than a small per-

centage of the main dish aperture. In the MAV design, neither of these

conditions can be satisfied because of mechanical constraints and the choice

of the S-band operating wavelength. It is, therefore, mandatory to inve_ti-

gata the performance of Cassegrain system,s with oversize subreflectors where

both the main di_n _ie_eter and subreflector are not large compared to the

wavelength. The effect of large subreflector designs on both the sum chan-

n_l and erro_ channel patterns must be established. The MAV dual-ra_io

transponder o_era!es as a standard DSlF transponder or as a rende-/ous
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tzansponder. Further development work is required on this unit as well as

the angle tracking receiver, which uti!ize_ a _ing!e T_ eha..el rn cnns_r_e

weight and power and is an integral part of the MAV transponder package. A

summary of this new technology development requirement is given ill Table V-5.

• 1
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VI SPACECRAFT SYSTEM r_SIGN

! 1
This charter includes tradeoff discussions, r quireme_lt summaries,

and system configuration and performance descriptions for the Y_V, lander

and orbiter elements of the MSSR mission. It also contains the overall

spacecraft mass properties derivation and mass margin allocation consider-
r

ations. Other topics include a discussion of EKV candidates, failure modes

discussions and a sm,mary of t_a impact of the 1983/84 mission opportunity

on the 1981 system designs.

, A. MARS AS(_NT VEHICLE TRADEOFF AND SYSTEM DESIGN SUMMARY

I. Tradeoffs

! The major system lev_l tradeoffs conducted in this study iD_luded the

_ following:

Number of ascent stages,

Solid vs liquid propulsion,

Rendezvous altitude and MAV sizing,

3-axis stabilized vs spin s_abiliT_d third stage,

Size of soil sample,

Method of sample transfer.

These tradeoffs are reviewed briefly followed by a description of the system

desi_, thag evolved on the basis of the tradeoffs.

The primary driver in t5_ czse of the ascent staging tradeoff is maxi-

mizing the weight that can be launched into the rendezvous orbit for a given

launch weight. In this tradeoff, discussed in Chapter II, it was found that

almost three times the non-propulsive payload could be obtained with a 3,

stage system thaL could be achieved with a two-qtage launch vehicle. Also,

the smsll size of the propulsion svstam required plus the thin Mars atmos-

phere (which resul_s in very little drag or aeroheatlag penalties due to

the high velocities attained with solide) combined to _roduce a clear cut

advantage for the use of solids in the first t_o stages. This is the case

even though the performance of the _olids is somewhat Jegraded by the r¢-

quire_ent for steri]ization. Thls tradeoff, for which propulsion system
i

details may be found in Chapter Vll, included the evaluation of a liquid

I _;ystem to perform the functions of the second ano third stages. Ho,,,ever,

I Vl-i

r !

1975006730-193



4

a monopropellant hydrazine 3rd stage system Lhat provided both orbit cir-

cularization and attitude control during lo_er stage bur_s was f av_ to be •

superior, une dlsauvantage of this 3-stage vehicle is its relaLicely large

axial dimension. This requires stowing it in the horizontal l_o_ition op

the lander and then erecting it prior to launch. Th_ sqdatie., all-liquid _!

system or 2-stage solid/liquid system, could be integrated into the l_ader

in a fixed vertical position. However, the mass fractions achievable wit
=

the liquid system simply do not re=ult in enough non-propulsiw. _ system weJ_ht

to support the functions that the MAV has to perform in ascent rende..vouq

and docking.

In the rendezvous r,_hjt altitt,de tradeoff (Chapter II) it was found that _

= s_e_;hat larger M_v (325 kg) could be landed than the baseline 290 kg MAV. :

"_"hiswould have allowed more weight te be allocated to the _V third stage

which would in turn permit more capability for growt'a and t_us be 'esirable :

from a cost standpoint. However, seJecting the maximum weigl. MAj would

also result in larger MAV dimensions and this would agg_._vate l_e integra-

tion of the MAV with the existing size Viking '75 Lande -_. AJ.._ the

iac_ease in us-hle MAV third stage weigbt would rLot be as great a_ might be !

expected, i.e., the rendezvous altitude would have to increase (due to th,.

added MAV weight having to be taken cut of the orbiter propellant budget) :

and this added altitude would require more propellant in the MAV Coqse-

quently the 2200 km or__it altitude, corresponding to the minimum p_acuieal

, MAV size (290 kg) was adopted,

, Selection of _ 3-axis stabilized vehicle over a spi_ stabilized one was _.

i based primarily on the finding J_ Chapter IV that the 3-axis vehicle would not

: be much heavier t_an the spin stabil-'zed vehicle. In this sitration, the 3-

awls system is preferred since either docking with a spinn_ug v_hicle or

: despinning it just prior to docking would result in more com_!ex operations :

than those required with a three-axis stabilized system. The ,_rlmary r:_

sons for the 3-axis system being almoo-_' a_ ligb + as the spin stabilized vehicle

are the relatively frequent attitude _euvers required of the F_V which
!

impose a greater penalty on the "stiffer" spin stabilized vehicle, and!
i the _ ct that gyro systm_ technology has advanced to the pein_ that the

! traditional weight di_;advantagc of 3-axis vehicles relative to sp_n sta-

bilized vehicles has been gre_,tly diminished.

w- _ ,
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_ The impact of the surface sample size and location on tile syste_ de-

._ sign i_ discussed more fully later in this section. The findings are that

_ a sample much bigger than I kg rapidly diminishes the available system i

_ weight margin due to the I0 to I relation between MAV launch _eight and

third stage payload. (This corresponds to a 13 to I ratio between Mars :

lander e::tryweight and MAV .hird stage payload weight.) 'finissensitivity

: to third stage payload weight, along with recommendations from the science _

community that a I kg sample would be adequate, see Appendix A, resulted in

_ the selection of I kg as the baseline sample size for this study. Increas- :

_, ing the ;.mple tc 5 kg was found to require a large enough increase in i

landea -,e'ghtto c'_tate a narrower entry corridor which in turn would

_. necess_T.ate optical guidance. ._

, _inally, the method of transferring the sample from the ascent vehicle

J
to the Earth return vehicle wa_ studied and is reported in Section C of

! th'_ chapter. It was determined early in that study that a hard docking :

"_ ! scheme, as opposed to a toss and catch technique, was required t9 achieve

_ sufficient reliability, and that to minimize back contamination, jettison-

; able docking aids should be employed. Within these constraints there is a

: choice between simply extending the sample canister from the MAV and cap-

turing it with the orbiter (or ERV)_ versus fully mating the F&V with the

: orbiter and then internally transferring the sample to tha ERV. Since the

latter concept requires accurate positioning of the two vehicles in roll

_ _: attitude in addition to lateral direction and pitch and yaw attitudes plus

_ requiring an additional set of latches, it is the heavier and more difficult

_ concept to accomplish. Also it presents somewhat more uncertainty in jet- !

: tisoning the docking cone since it requires incorporating fairly elaborate

latches and disconnects. Consequently, the simpler version was selected ,

as the baseline for this study. :.

_; i The results of the above _radeoffs along with the study guidelines and

":" i constraints identified in Chapte.r I comprise the system level requirements _-

} on the Mars ascent vehicle, The resulting system design is described next x

I with detailed subsystem requirements and descriptions provided in Chapter _'-

1 VII (except fo_ C_C and Rendezvous Radar Subs>stems which are contained in :

i Chapters IV and _). ,.
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_} 2, DL_VSystem Description _

_ The selected configuration for the 2.1 meter high MAV is shown in

: the cutaway view of Figure VI-I. Spherical ,._olid rocket motors, 56 and 48 o

cm in diameter respectively, make up the two booste_ stages that effect _

_ launch and injection into the initial I00 km x 2200 km elliptical orbit.

= ; ._hrust levels for these stages are both 6672 Newtons. The tank and inter-

: ' stage skirt construction is of conventional design but the propellant for-

i mulation and grain support design will be a new development based on studies
?-

_ } of sterilizable solids currently under way at JPL. Performance estimated

_'_ i for these motors are an Isp of 2_95 N-sec/kg (285 sec) and a mass fraction

_i (_) of 0.88. Thrust vector control during first and second stage buxns is

i accomplished by the m0nopropellant hydrazine third stage th_sters.

t
!

The third stage is a very compact 3-axis stabilized spacecraft complete

i with all subsystems necessary for orbit circularization, attitude determln-
ation m_d control, Ear _h and orbiter communications, sample environmental

_ control, and rendezvous and docking operations. This stage is 66 ¢m

diameter and 50 cm long. It has a non-propulsion system mass of 21 kg of

= which 2.0 kg comprize the sample and its container. The main features of

:_, this spacecraft include: J

"' i) An 18.0 cm long by 13.7 cm diameter sample canister located flush _

-_ with the nose cap of the vehicle and mounted on the antenna feed.

The external surface of the canister cap may be coated with a

thin layer of ablative material. |

J"_ 2) An extendible boom for transferring the sample canister to the

_. ERV constructed similar to the VikLn_ '75 soll s_,ple boom.

_ 3) A 40 degree half-a_gle conical nose fairing and radome constructed

_ o_ RF transparent, reinforced plastic material.

_ 4) A 50.8 cm diameter Cassegrain antenna with monopulse feed located

in a fixed position on the vehicle centerline.

i 5) Two 0.815 sq meter solar panels utilizing violet cells that pro-

vide 10.5 watts of power in an attitude normal uo the Sun line.

Panels are hinged so that they may be deployed to an angle of

24 degrees to the body axis prior to orbital operations.

V_-4
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i +-7
6) Sixteen nickel hydrogen battery cells providing 57 watt-hours -_

- of electrical power.

I) Two 23-cm diameter monopropellant hydrazine tanks.

_ 3) Four RCS and orbit circularizatio_ thruster assemblies consisting

of: 4 aft facing 53 Newton thrusters;

I '4 forward facing .4 Newton thrusters;

4 tangential 1.8 Newton thrusters.

9) A flight control system that includes a sun sensor, 3 gyros and

a small computer capable of controlling the open loop, constant

pltchover rate turn in ascent, plus the Earth pointing maneuvers

in orbit. The computer utilizes CMOS technology and is estimated

- to weigh approximately 1.59 kg. It will require 4 watts of power.

I0) A telecomnunications system containing, in addition to the Casse-

grain antenna, an S-band angle tracking, dual ratio transponder;

provisions for receiving Earth and orblter-based co,and; and

provisions for telemetering data to Earth or the orbiter. Maximum

..... output of the transmitter is 4 watts.
i

11) Thermal control insulation, heaters and optical coatings for main-

taining equipment and sample temperature limits during orbital

opera tions.

_: The mass and inertia properties for the MAV are given in Table VI-I. De-

tailed mass properties for the total MAV can be found in Appendix F and

further descriptions of subsystems in ChaRters IV, V and VII.

Because of the relatively small size of the third stage, a close look

was taken at the packaging of the propulsion system, co_mnications and power

systems, and the flight controls system. Figure VI-2 shows the volumes

available compared to those estimated to comprise the various components and

elements. In the packaging concept envisioned, the electrical, electronics,

and G6C co_onents are integrated into a single package arranged to fit

around the propulsion tankage and sample canister extension mechanism. Com-

ponent locations within the 3 volumes sho_ in this package are selected to

minimize intercormections, and achieve a third stage center of gravity with.

in 0.5 an of the vehicle centerline. A reduction in component case mass

• over conventional packaging is achieved by essentially using the structure +

as the case. !

VI-6
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:' _ Table Vl-I 1981 _LAVMass Properties @

_ Element Mass, kg

_ Stage III
_. _ Structure and Mechanism 8.85 _

Radio Frequency I.63
r

| Telemetry Unit In RF

I Guidance and Control 3.09
Power 3.90 :_

Cabl ing .77

Propulsion Inerts 11.29
Contingency, 10% 2.90

_ Step 3 Burnout 32.43

_ Propellant 8.30
._ Delta V 6.49
: RCS 1.81

To _.al Step 3 40.73 _.

Sample i.00

Stage III at Liftoff 41.73

: Stage II

< Skirt 3.95
Propulsion Inert Ii.ii

.:_ Prope]!ant 81.55

' Total Step. 2 96.6______I

Stage II at Liftoff 138.34 -:-
l

Stage I

Skirt 5.67

_ Propuls ion Inert 17.51 _

Propellant 128.41

Total Step I 151.5_._____9 :

Stage I at Liftoff 289.93

: MAV Center of Gravity and Inertia

:. Center of Gravity Moment of Inertia, kg/m _ _'

Mass Longitudinal cm Lateral cm .;
From Nose From Centerline Roll Pitch/Yaw ._

Stage Ill 41.7 53.1 0.25 2.44 1.5

Srage II 138.3 80.8 0.25 5.63 9.1

; Stage I 290.0 123.0 0 11.58 62.2

-,'.
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• _ RF and telemetry subsyst_ns are located directly behind the parabolic +

antenna reflector. A hole through the center oi the package allows the _ _

• I shaft of the canister extension mechanism to extend up to tilecanister. !

Integral to this package is tlleRF antenna feed which extends through the :

center of the antenna reflector. All RF and TM system components are

mounted to four PC boards (see Chapter IV for details). The total package
will be foa_ed for structural rigidity and tied to the third stage outer

shell Structure by side rails which also provide a heat sink for the power

amplifier and crystal oscillator. With this arrangement and the use of a

Cassegrain feed, no coax or way, guides are required

Primary electrical components are located in the volume next to the

_ solar arrays thus reducing the cabling length required. The NiH 2 battery +f
which consists of 16 cylindrical containers, the battery charger, power :

_ regulator, and power controller are located in this area. Hard wiring will ,_
be used throughout the third stage to avoid the weight and space penalty of _-

connectors. :_

+

,_ The volume on the op[,osite side from the electrical area contains all

of the guidance and control components and the inverter/converter. The

G&C electrot_ic components are sized based on use of CMOS technology. Achier- +

ing the required size and weight can be done with today's off-the-shelf com-

puters, but achieving the low power levels requires use of CMOS technology.

Although this is essentially a state of the art technology, space-qualified

units are not yet "off-the-shelf" items.

_+ 3. Impact of Canister Size and Location on System Design

_, The selected canister configuration is shown in Figure VI-3. The

design is a can within a can with the inner one mounted on guides. The

inner can is driven out to receive the sample then in again by means of

an internally mounted, screw drive actuator. The canister is loaded while

in the horlzontal position and this concept minimizes the possibility of

sample particles impairing _he sealing process. A gold deforming seal was _

selected for this application. To avoid cycling the seal, the cover would _'

never be completely seated until after sample loading has been completed. _

An additional seal will be installed inside the outer can to cover the open- ,_

.. ing used to fill the inner can. This seal _s not nearly so critical as the •

Vl-9 :_
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co_,er seal in that its purpose is simply to ._onfine the sample and it is not

_ involved in back contamination considerations. _

The baseline sample cauister was sized for a i kg sample. This sample

was assumed to have a density of 1.3 g/cm 3, and a packing efficiency of 75%
L

of the total volume was assumed to account for the "pouring" method of in-

troducing Lhe sample into the container.

The sample canister is located on the forward oent.erline to maintain

the sy_netry of the MAV third stage; for ease of sample loading; and to :

simplify the docking and sample transfer operation. _

i To examine the impact of increased sample size, a 5.0 kg sample was _
/

selected. The significant changes to the MAV third stage to accoulnodate _

this sample included increasing the canister diameter and length from 12.7

cm diameter x 18 cm long, to 20.3 cm diameter x 28 ou long, see Figure VI-4.

While the necessary volume increase could have been achieved by other com-

binations of length and diameter increase, any greater increase in the length
?

dimension would cause interference with the lander afterbody when the MAV

is stored on the lander. Also, going to any larger diameter worsens the

antenna blocking situation.

For the 20.3 cm diameter canister it is necessary to enlarge the an-

tenna dish frnm 51 cm to 61 on to compensate for the increased blockage.

This in turn increases the fairing size and the length of the cylindrical _

t structural skirt as shown in Figure VI-4.

Increases in Stage III mass required Stage III propellant and pro-

pellant tankage weight increases which are compared in Table VI-2.

As also shown in Table VI-2, the increased sample mass and 5_age III ,

chpnges influence the entire MAV syst_. Total mass for a MAV and launcher

, designed for a 5 kg sample exceeds the landing capability of the baseline

_ landing system. However, there are several further lander modifications

which could increase the landed weight capability to accon_odate the larger

_ sample. These include reducing the entry corridor (AY E) to 2° instead of40; increasing parachute and/or aeroshell size; or increasing terminal

? _ engine thrust. Reducing _he entry corridor requires the addition of an

optical guidance system but this is feasible. The main disadvantages of
{

VI-II
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the increased sample size are that the dimensional growth of the D_V causes _

more distortion of the Viking '75 lander capsule shape than is desirable, _

and the system weight margin is decreased significantly.

Table VI-2 I kg vs 5 kg MAV Mass Comparisons

I k_ Sample 5 kg Sampl e

Sample I.0 5.0

Stage III Non-propulsive 20.0 21.6 _

Stage III Propulsion 20.7 22.4 ;

Stage II including Skirt 96.6 112.9

Stage I including Skirt 151.6 117.2 _

" Total MAV 289.9 339. i

L Launcher 41.0 45.1

Total MAV System 330.9 384.2

4. Effect of Sterilization on MAVComponents

Because the MAV vehicle contains many subassemblies and components i

> which have not been qualified for the Viking sterilization requirements,

a study was conducted to determine whether these systems could meet steril- i

! ization requirements and whether any increases in mass would result from ;_

making them compatible with such requirements Because some of the subsys- _
/ •

terns involved are new designs, the approach used to evaluate their sensi- "

tivity to sterilization cycling was to examine the effect of sterilization

on typical components and piece parts which have already been evaluated for

! _ the Viking program.

, The results of this investigation relative to guidance and control and

" electronics components indicates that for selected MAV components weight

increases due to sterilizauion will be negligible. Viking engineers respons-

ible for testing, packaging, parts selection_ and reliability all agreed that

if Viking experience is followed in the design there will be no difficulty

from sterilization. The following paragraphs smmaarize Viking sterilization

findings and possible MAV impact. :.

Battery. The battery specialist indicated that for the selected Ni-
• i_

Cad battery weight increase due to sterilization was negligible while for

?, ; Vl-13
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the silver zinc batteries considered for Viking at ope time some weight

increase would be expected. The proposed URDMO battery is Ni-H2 and a

manufacturer of this type battery has indicated that if Ni-Cad can be

• : sterilized then Ni-H2 shoul_ be no problem. !

Piece Parts. In general, any part which is based upon silicone tech- i

" nology such as transistors, diodes, ICs, etc., sees a temperature during
i ?

manufacture higher than the sterilization temperature and therefore will be _:

_ no problem. This applies to most of the electronics components selected

! for MAY including the computer memory. Conventional parts such as resistors, !

, i capacitors, etc., can be procured in sterilizable configurations. The series

of components which gave the most trouble on Viking were wet slug tantalum j

capacitors which at first would not pass sterilization. This item which

weighs between .003 and .018 pounds was redesigned to pass sterilization

_ for approximately a 5_ weight increase and is now a Viking standard. _
q

PC Boards and Flat Flex Cable. It was found that if these components

: were top quality they passed sterilization tests. If, however, quality was

marglnal_ failures frequently occurred after sterilization cycle.
f

Housing Material. The original magnesium alloy housings had a creep

_roblem associated with sterilization. Parts were changed to magthorium or
%

beryllium and slightly heavier flanges, resulting in small weight increases.

MAV weight requirements depend upon lightweight el_ctronic packaging which

, cannot be achieved using conventional Viking casing design, ra_her the struc-

ture wall form the casing. Consequently, sterilization requirements will

become another structural design requirement, and while it may limit the -_-

i choice of materials and processes it should not add to system welght.

i Parts Mountings. Becaune of sterilization it was found tlmt me-

_ _ ehanlcal fasteners required careful selection, special washers and torquing

i instructions. However, weight effect was negligible. ,_

Gyro@ and Accelerometer. Viking Lander utilizes a similar gyro which

has more stringent _equirements than MAV. This gyro has successfully

passed sterilization qualification testing. The only special consideration _

given to sterilization was to size the fluid bellows which is approximately _

in. diameter x % in. long, large enough for the fluid volume over the full

temperature range, a negligible weight item.

VI-14
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Solar Panels. A separate investigation was conducted on the sterili-

zation effects on solar panels and is reported in Chapter %_I-B. The con-
<

clusion of the investigatio, was Chat solar panels with proper mechanical

* design can be sterilized. '

; The conclusion of this investigation is that steril, ization will not

affect the MAV component weights. However, meeting sterilization require-

ments, in particular the testing required to qualify components will be a

relatively costly proposition.
[

._-

: i
2

f _
2

1

!

' t

J

(.
f

L

• , , , ........ 1, •

......... 1975006730-207



B. LA':DER SYSTE'-I DESI(;":

I. Requirements Imposed on the Lm,.der by the ;.kqSR Mission

k-

i_ The lander requirements stem from the guideline to use as much of .!

the existing Viking'75 lander system design as possible as well as from

; the results of the :,*W syst_,mv trade-ells discussed earlier. These

include requirement.-, to:
k

: o Maintain the Viking l_,nder capsule basic shape :d size. :
e

•; : o Retain existtn_ aerodecelerator (parachute) and terminal descent

_ ' engines . _-

o Delete engineering and science components not required to a'upport

: the MSSR ,.ission and relocate oth'-r sysrem_ as necessary to pre-
Y
;. vent interference with the MAV.

o Provide thermal control of MAV during cruise, entry and aescent

: and during pre-ldunch operations on the surface.

o Support the MAV structurally during Earth launch and Mars landing.

_ o Remain stable dr:ring entry, descent, landing and MAV erection. ' !

_ o Provide newer for pre-launch MAV oper,ations. '7

l o Provide telemetry and command loop for pre-launch data irons- _.

; mission and for Earth based launch co.hands.

_ o Provide an erection mechanism c_pable of controlling MAV azimuth

T and elevation to within .25 and .5 degrees respectively. ,, _'
g

_-- 9.. Lander Modifications

Figure VI-5 shows the major modifications to the Viking Lander ,

Capsule. These include:
?

o Beefing up the aeroshell and increasing heat shield thickness in :
c

order to survive dLrect entry. .:.

o Enlarging the after body bioshield cap, and ,_eroshell base cover. _

._ o ,.Modifying the parachute support truss.

Also, a number of modifications are required on the Lander itself to _ ,_

acco,_odate the .xtAVand i t_ eretria.1 mechanism and to permit proper align- _ :
,

ment of the MAV tar lift off. The basic geometry of the lander along ,

t with the landing leg assembti.e._ remain unchange:l, ltowever, sever_l of the i •

g _
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Viking components sr,-not required for the sampl_, return mission and

will be deleted. Thes,,deletions are sho':n in Figure VII-6 and are:

o UHF antenna with electronics

o Seismometer

o CCMS _ith processor

: o Biology with processor

o X-ray fluorescence experiment

o Meteorology

o One camera
l

Other modifications include: replacing the 35 watt RTG's with

smaller 20 watt units; deleting _he thermal switches and adding heat

pipes as defined in Chapter VII; re]ocating the surface sampler to

f facilitate interfacing the sample collector with the sample canister;

modifying the S-band antenna mast so as not to iuterfere with the _V

erection and alignment; and incorporating a blow down terminal descent

propulsion system to accommodate additional landed weight. In the

proposed pressure regulated system one terminal decent tank would be

replaced with a pressure sphere and the full propellant load would be

carried in the other Viking tank. This solution is practical because

the resulting center of gravity shifts during terminal descent can be

tolerated by the RCS system.

_ To this stripped down and modified lander is added the MAV with its

support and erection mechanism or launcher. The Jauncher is attached

to and supported by the lander equipment mounting plate. The launcher

incorporates a turn table or turret capable of rotating the MAV 3600in

azimuth. Torque motors located at the top of each of the two support

posts raise the elevation arms and produce the 75° elevation c_pability.

. Prior to erection the MAV _s cradled at fore and aft support points on

the lander body so located that Earth launch and Mars landing loads are

_ransmitted directly into the lander side panels. Thee loads do not go

i through the launcher. Upon landing, the MAV is released from the cradle

freeing it for _he launch alignment process. The thermal short created

: by the launcher structure is _lmajor contributor to the environmental

I control problem of survival on Mars surface. The proposed solution is

I Vl- 18
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to add _ _nopy to the lander that would enclose not only the MAV but

the launcher mechanism as well and be heated by heat pipes whose heat
t

source is waste heat from the RTG's. The construction of the canopy would _

i be similar to the Viking RTG wind screens. C

k The thermal/mechanical interface of the lander/launcher/NAV is

_ the most difficult design problem determined in this study. It stems

"_ i primarily from the requirement for maintaining the NAV _olid propellants

:: ! above 4°C at lift off while the average daily temperature could be _

! as low as -45°C. This situation would be considerably alleviated if _
: I solid rocket propellants could be developed whose performance at lower _

temperatures was more repeatable. (Conventional motors have been fired _ i

I successfully at very low temperatures but performance is variable.)
) However, the canopy approach appears to be a feasible solution and should

4
i be achievable within the 41 kg weight budget allocated as shown in Table _ -_;

i VI-3.
!

! Table VI-4 gives the mass properties breakdown for the modlfied "

lander. It is presented in two parts showing first the changes to the

lander bus, and in the second a derivation of the total lander system.

: ! Data are presented in a sequential mass statement format showing those r.

items taken directly from the Viking Lander System and noting changes

; _ required to achieve the URIMO system. Major changes are those associated

i with direct entry and providing space to carry the NAV. i

• _ More details on _ander.modifications are presented in Chapter VII

subsystems discussions.

3_ URDHOLanded Weight Ca_sbillt_ !

Greater landed weight is achieved in the URDMOmission than in the
i

Vlklng'75 mission, 776 kg vs 590 kg, In spite ol the higher entry veloclCy

of the direct entry mode. The higher velocity sn_ heavier vehicle

require over 75 kg to be added to beef up the aeroshell and heatshield.

However, the landed weight capability is still increased due primarily to

three factors as shown in Figure Vl-17. Changing the blowdown terminal

descent propulsion system to a pressure regulated system provides the

biggest portion of the increased performance. The higher average thrust

VI-20
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Table VI-4 Lander Nass Derivation ' >

Part I Lander Derivation

Kilograms

Viking Lander - Landed (2/19/74) 594.2 ,_
Remove UHF - 5.85

Reduce RTG Size -22.54

Remove One Battery (1/2 Package) -11.47
Remove Data Storage -13.83

Modify Thermal System - 5.35 .
Remove Science (except one camera & soil sampler) -60.55

Add Regulated Pressure System + 1.45
Modify Telemetry - 6.58 "

Modify S-Bsnd to MAV Components -15.15

Remove Cabling - 9.98 a

Beef-up Landing Struts + 2.07
Add MAV +288.93

Add MAV Launcher (incl. Thermal Protection) + 41.05

URDMO Landed 776.40 :

Part 2 Lander System Derivation

Kilograms

Landed Mass 776.4

Landing Propellant 70._____8

Terminal Ignition 847.2
Aero Decelerator Structure/Viking'75 65.8 -

Raise Parachute 55 cm 8.___7 _ >

On Chute Aeroshell Separated 921.7 I
Aeroshell and Heat Shield/Viking'75 119.6 ".
Deorblt System and Miscellaneous�Viking'75 66.8 :

Aeroshell Structure (Direct Entry) 50.0

Heat Shield (Direct Entry) 13.6 ;
Remove Science - 7.8 ;

Less Heat Shield Ablated - 5.4 :
On Chute Aeroshell Attached 1158.5 '

Parachute/Viking'75 41.2
Add Heat Shield Ablated 5.4 "

Entry 1205.i
Deorbit Propellant�Viking'75 72.0 '_

M1scellaneous/ViklnE'75 7.9

Separated Lander System 1285.0 i

, , J , i ,
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level it affords mL,ans a shorter burn time and thus more time for tile

parachute t,_reduce the descent- rate. Also. more propellant can be

carr_ed without an increase in tank weight.

The other factors are the designation of a zero terrain height

requiremen: and us_ of the mean atmosphere model instead of the large

: spread in atmosphere mode_s used in Viking. These revised constraints

! used in the URDMO baseline are believed to be reasonable in view of

:_ the improvement in the knowledge of the _tmosphere model and the planet

;' radius (mea, surface level) anticipated following the Viking mission.

However, it is possible to select values for these constraints intermediate

between Viking-'75 and the URDMO baseline and still attain the required

_ landed weight by further increasing the propellant loading, see the

; dashed curve in Figure VI-7.

4. Lander Stability Study

Due to the 307 greater mass and the 6 inch higher CG of the URDMO

lander, a landing impact study was conducted using the Viking'75 Dynamic

Landing Analysis Computer program. Both "flat" landings and "steep.t

slope" landings ,.,ereevaluated. No attempt was made, however_ to

duplicate the hundreds of runs made in stablishing the statistical per-

_: formance of the Viking'75 landing gear system. Twelve cases were

selected including those that were intuitively on th" severe side. The

touch down parameters shown below were drawn from Viking'75 specifica-

_ tions.

o Vertical Velocity (Vv) = 8 + 3 fps (e.g., 3_ = II fps)

o I{orizontal Vel_city (VH) = 0 + 4 fps

o Roll Angle (_R) = 0° to 360° (Random distribution)

o Ground slope ang]e (_,) = Per Mars Engineering model<

o Direction of Slope Fall Line ( f_) = 0° to 360° (Random distri-

_ but ion)

O Pitch aud Y_w Angle (_p) = 0° to + 5°

o Attitude R;0tes, Engine Thrust

• o Toil _,ffV,_ri_tion in Strut Loads _ Not considered in this study

Results of the.onalyses are presented in Tables VI-5 through VI-7.

Conclusions from these analyses _re summari;:_,dbelow:

VI-24
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: o The g_eater mass of the URDM0 lander does not cause crushable

; materi_l in the legs to bottom out. A 3a (Ii fps) flat landin_

does result in 4 inches less ground clearance and local beef-up

of gear and attachment fittings will probably be required to

maintain clearances.

o Stability of URDMO vehicle in up slope and down slope landings

does not appear to differ significantly from the Viki_g'75 lander.

o Adaptation of Viking'75 system is feasible within weight constraints :

; identified for URDMO.

• 5. Sample Acquisition

Comprehensive tradeoffs were not conducted since a single "grab"

sample was considered adequate to meet mission requirements. This could 1

be accomplished with the Viking '75 surface sampler thereby taking advantage

: of the resulting cost savings.

The baseline acquisitioL_ scheme involves scooping up some soil with

the surface sampler and pouring it directly into the opening in the top

side of the sample canister. The process is repeated as necessary to _

fill the canister. The physical relationship of the sampler to the MAV

is shown in Figure VI-8. The entire loading process would be completed

while the MAV is in the horizontal position on the l_,Ider to i_Isureproper

alignment between the canister and sampling unit.

A camera is included o_ the lander to provide the flexibility of being

able to sample the most interesting portion of the sampling field. It

would be desirable to use the existing Viking camera and this configura-

tion is shown in Figure VI-8. However, due to limitations in the field

of view seen by this camera (due to partial obstruction by the MAV and the

surface sampler itself), a new camera design and/or relocation would

better suit the r_quirements of this mission.

Sample acquisition methods other Lhan the "grab" ¢on¢ept that could

' have appl[cati{)n in this mission includes drills for subsurface coret

samp]es; chipper, brush, and abrader ad_Ipters for the Viking sampler;

and concepts for segregating _r_b s_Imples by encapsulation. ;

VI-?8
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C. ORBITER SYSTEF DESICN

1. Requirements Imposed on the Orbiter by the HSSR Mission

The follouing requirements stem from _dapting the existin o Viking'75

Orbiter )esign to carry the heavlcr t_RDMOLander capsule along withan

Earth Return Vehicle, and to achieve rendezvous, docking and sample

transfer with the Mars Ascent Vehicle. These requirements include:

t

o Physically mounting a 263 kg, sp_n stabilized Earth Return

Vehicle and a 1285 kg Lander Capsule on the Orbiter such that
?

after Lander Capsule separation, the ERa will be in a posi-

tion that facilitates docking and sample transfer.
f-

o Providing aGditional Mars orbit insertion propellant to accomplish ' _

the _V required by the 2200 kmrendezvous orbit.

o Providing an auxiliary propulsion system with forward iacing ten-

: dezvous control thrusters.

: o Providing an attitude control system capable of orbiter transla- .
i

, tion in the docking phase and capable of handlingthe increased -

mass and inertia of the total spacecraft during trans-Nars cruise.

o Providing a jetciscnable cone for docking assistance and back i,

contamination control. -:

o Providing c_pabilicy for -ommanding the _V from the orbiter as

a backup mode_ !

o Providing an S-B CW range rate, and angle tracking system for _

tracking the MAV during terminal rendezvous and docking. •

o Providing the computer for implementing the rendezvous initial

closing _V and control law burns. _

o Removal of all science experiment_ and associated ,late handling,

storage and transmission systems. _ /

o Providing for an additional 400 days of life while mated with the

ERV in Mars orbit.

2 Orbiter Modilications
• _t

i "- The physical arrangement of the orbiter with the other elements of

ne complete MSSR spacecraft is shown in Figure VI-9. The ERV, containing _

Vl-30
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the Earth Entry Capsule, mounts to the orbiter and in turn supports the

MSSR lander capsule. Attachment to, and separation from the ERV and

orbiter is similar to the attachmunt and _eparat_on of the Viking'75 !

capsule and orbiter, however a new conical adaptor is required to

span the difference in diameter between the orbiter hard points and those

of the Pioneer Venus derived ERV.

The most significant modifica:ions to the orbiter are:

o The removal of 87 kg of orbital science along with the 33 kg

scan platform and 31 kg of associated data storage equipment, _ :

o Lengthening the barrel section of the main propellant tanks by _
L

12 cm t_ accommodate the 15 percent increase in propellant :

_- required,

o Replacement of the cold gas RCS system with a monopropellant "

hydrazine auxiliary propulsion system that provides both the _

RCS functions for the longer mission and the intermediate thrust _

levels, 140 N, required in the rendezvous and docking phase. _ -

(This system is similar to that planned for the I_IS'77 space- _ ,
z

! craft and could share components with that system),

o Adding a 60 cm long, 90° included-angle docking cone containing : _

an Ig db, three channel monopulse antenna and receiver. (These

element_ are not mounted directly to the orbiter but rather to

the ERV),
i

o Providing software changes to the existing orbiter computer to

accommodate the flight controls requirements during rendezvous

and docking.

Table VI-8 gives the mass distribution for the modified orbiter.

Details of the above modifications can be found in the subsystems discussions

in Chapters V and VII.
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fTable VI-8 Derivation of Modified VO'75 Orbiter for the HSSR Mission

i Kilograms ,

i Viking Orbiter (Dry) 926.9 :
Remove Science -87.0

i Remove Scan Platform -32.8Remove Data Storage Sys. -31.4c

: Remove Cold Gas RCS (Incl. Gas) -46.2 -

; Add Auxiliary Propulsior. Sys. (Dry) 22.8
Main Propellant Tank Stretch 23.9

Add Docking Cone and Rendezvous Radar 15.3 :

Modified VO'75 Orbiter (Dry) 791.5 ;.

Auxiliary Propulsion Propellant 38.0

RCS 5.0 ,_.

? Terminal Rendezvous 33.0 33.0 :

Orbiter Less Main Tank Propellant 829.5
Main Tank Propellant 1542.0

"_1 MOI 1534.0 :
"_ Main Eng. Rendezvous 8.0 --

7 Orbiter Post Mtdcourse 2371.5 -:

:, f Midcourse Propellant 51.0 ::

Orbiter Pre Midcourse 2422.5

y -;

i
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3. Sample Transfer Tradeo£fs

The baseline sample transfer scheme is shc'n in Figure VI-IO. A

number of factors were instrumental in arriving at this design. Risks

associated with a "toss and catch" concept were sufficient to quickly

drive the design to_a more positive transfer, but back contamination

considerations still dictated a minimum of contact between the MAY and

the ERV/EEC. The baseline configuration meets both these criteria by,

first, not releasing the canister until it has been driven home into the

ERV and second, all hardware on the ERV that comes into contact with

the MAV is jettisoned prior to the return trip to Earth. :

The sample canister is mounted on top of the antenna feed and is y

presented for transfer by an extendable boom similar to the Viking sur-

face sampler. The extention is completed prior to final closure between

the orbiting spacecraft and the MAV. The structural adapter cone that

supports the Viking lander capsule also supports the inner cone that guides

the canister into the receptacle in the EEC. As the canister is secured, <

a switch is activated which releases the extendable boom from the cani- "_
J

ster. After the Orbiter backs away from the b_V, the adapter cone is

jettisoned.

With the sealing considerations shown in Figure VI-II, only the lid

of the canister is exposed to the Martian environment and this lid is

subjected to aero heating and skin friction forces during ascent thru the

Mars atmosphere. Back contamination possibilities are thus minimized

and as an additional safeguard, the canister recuptacle in the EEC is

_ealed prior to the re_urn trip. !

Another consideration is the possibility of biota transfer from the

MAV to the ERV prior to actual docking. As seen in Figure VI-12 the

closest the ERV will get to the MAV before their orientation relative to

each other is controlled will be [00 km. At this r_nge, the c_nce of '

any soll particles that become dislodged from the MAV reaching the ERV _ :_

is negligible. When the range between the vehicles has closed to 50 _ _•

meters the jet_isonable docking cone screens the ERV from line of sight i ;

traveling particles. This includes the instant of initial docking contact _

between the vehicles (in addition, such contact has been determined not 1

!VI=34
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to be sufficiently energetic to c.,use particle dislodgement, see Appendix

G). Between 50 meters and 100 km range some view factor will exist

between the sides of the ERV and the surface of the _V, however, cun_id-

'_ ing the low population density probability of biota on the MAV, the very

small fraction of ERV surface exposed until the range greatly exceeds 50 m,

and the energy required to disJodge a soil particle (i.e., it takes a

_ micrometeorite hitting the surface), it is concluded that biota transfer

possibilities can be kept within acceptable limits.

Alternative samp!e transfer schemes utilizing Velcro, o_e-way petal,

and the space bola capture concepts were investigated but did not meet the

requirements for a positive transfer; maintaining a stable CG in the - :

return vehicle; and minimizing the back contamination probability. With

these requirements, there is relatively little flexibility as to the

method used to transfer the sample; however, an alternative transfer
/

: concept that differed somewhat from the baseline design was evaluated

": _ This concept involves docking the upper stage and the _V with the i

orbiting spacecraft by means of a docking alignment cid as shown in

Figure VI-13. This alternate approach requires exposing the entire

sample canister on the nose of the MAV as the extendable boom is not a

part of this design. For this reason, and due to the close proximity of

the MAV and ERV during transfer, back contamination is of greater concern

than with the baseline concept and the complexity involved is much greater.
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i). EARTtt RETURN VEHICLE CANDIDAT[_S

Several possible Earth Return Vehicles have been examined briefly.

Because of the long cruise phase, and minimum maneuvers required of the
i

, ERV a spin stabilized spacecraft appears to be the most desirable

vehicle. The ERV will carry tlle Earth Entry Capsule containing the i

Mars sample from Mars orbit to Earth encounter. The ERV itself does not

enter the Earths atmosphere or inject into Earth orbit. -

The mission baseline assumes an ERV spacecraft with a dry mass of

105 kg and 130 kg of propellant. This spacecraft carries a 28 kg EEC, of

which 2 kg is sample and container, for a total vehicle mass of 263 kg. _.

Achieving the 263 kg mass requires major modifications to the existing _

; Pioneer Venus spin stabilized vehicles which have grown from their

originally planned size due to the selection of the Atlas Centaur launch

vehicle for the PV mission. It is feasible, however, to derive a 263 kg '_

vehicle by using most of the PV spacecraft components and designing a

more compact structural framework.

; If less modified versions of the PV vehicle are desired, to lower

ERV costs, more of the MSSR mission margin could be allocated to the ERV.

=_ i_reliminarymass estimates were conducted on two such configurations. ,

The minimum modification design removes only those structural elements not

• required and adds a support for the Earth Entry Capsule (EEC). The ;

maximum modification design reduces the spacecraft diameter from 2.54 m dia.

: )_
to 1.8 m dia. This diameter still provides space for propellant tanks

and the required solar array area. In each case the subsystem mass was

derived by stripping those items not required for ERV from the Pioneer
i

Venus estimate. Principal items removed were science and high gain

antenna and their supporting components. Based upon reduced electrical

load the solar panel area (even at the greater distance Mars is from

the Sun) is 3.35 m a reduction of approximately 2 m 2 from the Pioneer

Venus probe bus.

The _V schedule for Earth re_urn is first burn 1044 m/see, 2nd burn _/

, 22 m/see _nd final burn 667 m/see. It Ls proposed that the first burn ,

use a solid propellant motor and the 2nd and 3rd burns use biprope_.laLLt

Vl-4O
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! liquid propulsi,)n systems. Bipropellant was chosen over monopropellant

for reduced mass and volume. Four PV propellant tanks appear adequate ;

' for the bipropelldnt system including monopropellant hydrazine for RCS.

_ Thus, the modification to the PV propulsion system would consist of
/
: _dding two propellant tanks and bipropellant thrusters for an estimated

!_ 8 kg.
-7,

: Summary mass statements for the two spacecraft are presented in

_. Table gI-9. Version A could be flown on the baseline mission only if

essentially all the weight margin were to be allocated to the EKV while

with Version B the weight margin could be split between the lander/MAV ..

system and the ERV. See also Figure VI-14. ,"
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Table VI-9 Candidate ERV Mass Summaries Based on Modifi_.d Pioneer V_,nus

Spacecraft

Mass - ks

Element Version A Version B
(Min Mod) _Max Mod)

Communications 10.50 10.50

i Data Handling 7.44 7.44 •
i

i Control 10.42 10.42

I Structure 87.40 74.60

i Power 25.20 25.20

i Propulsion 19.60 19.60

i •Contingency 5% 8.04 7.44

Total ERV Dry 168.60 155.20

I Earth Entry Capsule 28.00 28.00 _

! Total ERV Dry + EEC 196.60 183.20 , :

_ RCS Propellant 6.00 6.00 !

I Liquid Propellant 50.30 46.90 !

Solid Rocket Motor 138.80 129.60

!

ERV Gross 391.70 365.70 _ _;

i

¢
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E. TOTAL SPACECRAFT MASS DISTRIBUTION AND MARCIN CONSIDERATIO_:S

i The physical arrangement of the Mars sample return system elements

| was sho_n in Figure VI-9. 'Iqle4408.9 kg throw ma_s capability of the

Titan III Centaur establishes the mass of this total system and this

section develops the mass distribution among the various elements. _V

budgets used to establish the system mass distribution are shown in

" _ Table Vl-lO and the resulting orbiting system mass is shown in Table VI-I].

Table VI-IO AV Budget in H/Sec

N,_omlna____!l Statistical Tota___l

Midcourse (Main Engine) 35 35

Orbit Insertion (Main Engine)

MOI AV 1098

Hp _V 22

Circular A_ 1044

Finite Burn 56

2220 37.5 2257.5

Initial Rendezvous Trim 0 50 50,0

TeTmlnal Rendezvous & Trim

Closing _V _ 7.5 2.0 9,5

Margin J (Main Engine) 9,5
19,0

T-rmlnal _V) 14. 1 16.6 30, 7

Margin J (Auxiliary Engines ) 30.._.._3
61.0

;(422.5

RECAP

Midcourse (M/C) 35.0 M/Sec '

Total Main Engine (Less M/C) 2326.5 M/See

•. xiliary Propulsion (Less ACS) 61.__0M/Sec

2422.5 M/Sec

'!
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Table VI- II Orbi ti.'..: Svst_,r_ Mass I;crivatton

Throw ,_ass 4408.9

Les._: Launch Vehicle Pe_aliar -104.3

Adapt_r S/C to i;ooster _ ci.2

Bioshield Cap - 53. 7

-219.2 - 219.2

Spacecraft Pre-_-Udcourse 4189.7

Less: Midcourse Propellant 51.0

Spacecraft Post-Midcourse 4138. 7

Less: Adapter Orbiter to Lander - 13.7
!

_ Bioshield Base - 73.3

Separated Lander -1285.0

-1372.0 -1372.0

Orbiting System Mass 2766.7

The orbital system is considered to consist of th. modified VO ' 75

orbiter, the Earth return Vehlcle (including the EEC but without the

sample return canister). The orbiter propulslon system is sized to place

the total Orbiting system into Mars orbit aud is assumed to remain as

part of the total mass during rendezvous and docking.

Mass estimates have been made for all of the orbiting system elements

and the difference between the sum of these elements and the mass whlch

can be placed in orbit is considered as the system margin. This margin

may be allocated throughout the system with various benefits. Determlna-

.. tlon of the magnitude of thls margin in terms of additional nonpropulslon

system weight which could be put into Mars orbit for the baseline config-

uration is given in Table VI-12.

|

f
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".- ! Table VI-12 Determinati_-n of In-Orbit Margin for the :
Basezine Configucat ion

i J
lilo_

Orbiter System Mass 2766.7

Less: Orbiter Post-Hidcourse (Table VI-8) -2371.5 :

ERV (263 less 2 kg for sample :'
and container) - 261.0

-2632.5 -2632.5

Margin 136.2

: Alternative margin allocations are identified in Figure VI-14. The _

calculations shown assume that the in-orbit margin derived above is reallo- :_

cated to the pre-orbit insertion reriod. Thus the 134 kg of in-orbit mar- -;

gin becomes 368 kg (it took 234 kg to put the 134 kg into orbit) and this "_

• amount may be applied to the various system elements. Figure VI-14 shows -

several possible applications of this margin. The lander system can oaly ._

_ be increased by 69 kg without exceeding its landed weight capability as
." f

constrained by use of the existing lander with the minimum modifications :,

identified in section VII-B. Allocation of this maximum usable margin to

_ the lander system results in a 3.7 kg margin in the MAV Stage III with : :

116 kg remaining as in-orbit margin. More extensive lander modifications

Could increase this MAY margin allocation. In-orbit margin may be applied

either to the ERV or to the orbiter rendezvous propellant or hardware. _-

However, the rendezvous AV budget currently appears adequate and there-

fore some further allocation of margin to the ERV is practical.

y
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F. FAILURE MODES AND BACKUP PROVISIONS

; Due to weight constraints it was not deemed practical to build com-
i

plete redundancy into al, critical functions associated with tL:_ ascent, i

: rendezvous and docking. However, the baseline system does provide mlny

": , areas where failure of the nrimary system is compensated for by use of a

backup mode. These are identified in Table VI-13. Additional redundancy "

features can be provided but a more comprehensive study is required to !

pinpoint the areas where the existing weight margin can be most effectively

utilized.

The situation relative to potential single point mechanical system #
L.

: failures does not differ significantly from that for other space program _:
{ J

missions, i.e., propulsion system failures, separation system failures,

chute failures, etc._ and it does not appear desirable to try to provide :i

dual systems in all these areas.

G. TRADEOFF CONSIDERATIONS RELATIVE TO KEEPING THE ORBITER

AND ERV MATED DURING THE 400-DAY PARKING ORBIT AT MARS

The baseline design provides for not separating the Earth return _:

vehicle until the approximately one-year duration stay in orbit is com-

plete This approach is based on the following considerations: i

o The orbiter has more conprehensive and sophisticated _ ;

station keeping and telemetry subsystems• .

o The larger mass of the combined ERr/Orbiter does not

cost significant attitude control propellant.

o The ERV design is simplified in that onty the-trans-

Earth cruise mode need be addressed.

o The possible degradation of the orbiter systems that ?
might compromise subsequent ERV separation is less of "

a concern than imposing a one-year-greater lifetime on

the ERV systems, i

VI-47 _
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H. FEASIBILITY OF PROVIDING FOR LANDER SURVIVAL AFTER MAV LAUNCH

The baseline mission was deliberately limited in science objectives

to include only the accomplishment of a sample return. This was done to

make it a minimum weight and cost mission. However, the question arises as

to the impact on this system of performing additional science experiments

after the ascent vehicle (MAV) has been launched. In our baseline design,

an integration concept for the I_V and launcher was selected which was the

best compromise between launcher operation and thermal control of the I_AI

while on the lander. With this concept it would be difficult but not

impossible to return the entire lander to operating condition after launch-

ing the MAV. A substantial weight penalty would be incurred however if

this were done. However, it would be possible to carry out some experi-

ments after F_V launch by providing a separate compartment inside the

lander which would be designed to survive MAY launch. These two approaches

are summarized in Table VI-14. _re ambitious experiments than could be

contained within the lander body would suggest revising the baseline

thermal/mechanical integration concept of the MAV. These have not been

evaluated.

I. IMPACT OF THE 1983/84 MISSION OPPORTUNITY ON SYSTEM DESIGNS

In the 1987/84 opportunity, because of the increased entry velocity,

several changes will be required of the lander system. Assuming the same

landed weight of 776.4 kg, the following changes will be required:

Increased Terminal Propellant I.8 kg

Increased Aeroshell 12.2 kg

Increased Heat Shield 8.2 kg

Total Increase 22.2 kg

This will result in a total lander system mass of 1307.2 kg.

Assuming the same launch vehicle is used as in the 1981 baseline

design, the increased launch energy requirements, plus the larger MOI AV

requirement and the slightly increased lander mass result in a negative

m,_rgin for the orbiting system. This indicates that a single launch in
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I
1983/84 will require t, ither d larger launch vehi.cle than the Titan III

: Centaur or that space storable propellants will have to be used for Mars

i orbit insertion. Another alternative would of course be a dual launch.i

Assuming an adequate launch system and the '81 baseline orbiting

system components, a further stretch of the VO '75 tankage would still

" allow the modified VO'75 orbiter to be used. In th_s case the total pro-

pellant required would be 1773 kg i_cluding midcourse and the tank stretch

: would be 26% or 22 can.

:_ The 19gl M_V design _.ould not be affected since the landed weight ,

= would rcamin constant:. ERV sizing would depend on whether the 1983[84 _" :

: mission were flown with o larger leunch vehicle (or dual l_unches) or

with space storable _I propellant. In the latter ease the ERV situation <_

_ would remain approximately the same as for 1981. In the case of a larger

launch vehicle, perhaps a heavier, eg, a less modified Pioneer Venus

spacecraft, could be flown.

< l ,)_

?

2 _

i i_

• i

2

i

y '%

?

?
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VII SUBSYSTEM DEFINITION FOR ALL MISSION PHASES

A. COMMUNICATIONS

Subsystem requirements and a description of the proposed telecommuni-

cations subsystems for the MAV, Orbiter, and Lander are discussed in this

section. Included are provisions for telemetry, command, and ranging as

used during rendezvous and docking between the MAY/Orbiter. In all cases,

the systems are compatible with the NASA Deep Space Network which utilizes

i S-band transmission. The MAV communications subsystems are described first.

_ i. MAV and Orbiter Communications Subsystem

Several options were considered in providing communications for the

_. Mars surface operations preceding the MAV launch. Commands and tel_metry as

required for collecting a surface sample and launching the MAV into its ini-

tial crbit could conceivably be provided using S-band equipment mounted in

either the Lander or the MAV. Initial findings tend toward use of S-band :

on the Lander for surface operations to provide daily Earth contact, if _.

required. A disadvantage of use of the MAV S-band equipment is the necessity

for a high gain antenna that cap be gimbaled to track Ea;th and the need !

for an onmi antenna for co,_and backup. These, even though they could be

separated from the MAV in the launch attitude, require extensive RF inter-

face and impose weight penalties for the MAV. Thus, employment of S-band

equipment in the Lander is preferred.

The need for an Earth reference for the MAV attitude and the require-

ment to determipe the MAV orbit from Earth tracking leave little option for

use of other than an S-band MAV/Earth co_nunications capability. For a

three-axis stabilized MAV, a monopulse type angle sensor and a typical DSN

two-way Doppler, command and telemetry system appear to best fulfill the

needs.

During rendezvous of the MAV and orbiter, the MAV S-band subsystem used "
i

for MAY/Earth communications and pointing error data during MAV orbit adjust-

ment could serve the same functions in interfacing with the Orbiter as with

the DSN by adding a ranging turnaround capability and providing a means for

• operating at appropriate frequencies. The alternative is to provide a

i - separate rendezvous and docking subsystem which would result in weight,
VII-I
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power, and volume penalties. Consequently an angle tracking dual ratio

S-band transponder has been selected that provides pointing, communication_

and tracking capabilities when interfacing with either the DSN or the Orbiter
i

in the MAV orbit and MAV rendezvous modes.

• Requirements. Basic requirements for the MAV teleconmunications sub-

system are shown in Table VII-I. The requirements are based on the decision

to integrate MAV/Earth direction sensing, rendezvous, and docking functional

requirements into the telecommunications subsystem. Maximum range for Earth/

_ MAV communications is 257 x 106 km based on completing MAY/Orbiter rendezvous

_ within 38 days after arrival at Mars as shown in Figure VII-I.

: Subsystem Description. A block diagram of the selected MAV telecommuni- i _

cations subsy3tem is shown in Figure VII-2. The subsystem consists of a _

monopulse-fed 18 dB gain antenna, an angle tracking dual ratio tzansponder, .

command detector, command decoder and telemetry data handling circuitry

packaged in an iLtegrated case. Angle tracking errors are obtained by a

, cassegrain monopulse feed and frequency sharing o= a common sum channel re-

ceiver by generating error channel sideband signals and frequency multi-

plexing the sum and error signals.

Telemetry and command are DSN compatible PCM/PSK/PM with two-way co-

herent Doppler. _Irnaround _atio is 240/221 for DSN operation and tenta-

tively 220/239 for Orbiter interfacing. Turnaround ranging is intended only

for the MAV/Orbite_ rendezvous. The co_nand subsystem has a single channel ,

using a sinewave subcarri=c. Telemetry is a single-charnel squarewave sub-

carrier. The 4-watt MIC power amplifier is sized for MSC 3005 transistors

and 20 volts dc input.

° The Guidance Control and Sequencing Computer (GCSC) provides the power

turn-on control for the telecommunications except that an uplink receive i

signal enables turn on of the coummnd detector and decoder. Low power

_ designs are contemplated for all units.

Detail descriptions of the antenna and the transponder are given in

Chapter V. The command detector and command decoder provide the same

functions as the Viking '75 Lander command detector and counuand decoder

but are to be designed for minimum weight, size, and power using technology

available for a 1981 mission such as _OS/LSI. An integrated package to

include the transponders the command detector, and command decoder functions

VII-2
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Table VII-I. MAV Teleco_unications Functional Requirements

i. MAV on the Surface:

t_ultiplex and format _ngineering data, from the various MAV sub- J

systems, into a PCM oata stream for transmission at 8-i/3 bps over i
the Lander-to-Earth S-band link.

2. MAV During Ascent fr_ M_s Surface:

No telecommunications functions, i

3. MAV During Orbital Operations Prior to Rendezvous Mode:

a. Provide X and _ error signals indicating Earth pointing error

magnitude and direction using S-baud signal from Earth as point

source. Accuracy of error signals are to be less than 0.5
degree within 8 degrees of borcsight.

b. Provide standard DSN 2-way Doppler using 240/221 transmit to

receive frequency ratio.

c. Provide 8-I/3 bps telemetry-to-Earth capability at bit error

rate of better than 5 in lO_ for telemetry.

d. Provide singl °_ channel command detection and decoding capabili-

ty at rate of 4 symbols/second and bit error rate of better than

i in I05 (use Viking Lander format and subcarrier waveform)--

co_nd subcarrier frequency must be high enough to fall outside

the MAY transponder carrier loop under strong signal conditions

• during th__ and the rendezvous mode:.

e. Provide a capability for telemetering a read out of stored com-

mands to Earth for verification of MAY maneuver command parame-
ters,

4. MAV During Rendezvous and Ducking:

a. Provide a transoonder transmit-to-receive frequency _urnaround

ratio of 220/239 for cooperative rendezvuus with the Orbiter.

b. Provide X and Y error signals for use in pointing the MAY
toward the Orbiter using the Orbiter S-band range and rate

transmission as a point source. Pointing error signal accur-

acies of 0.5 degree or less are required.

c. Provide a ranging turnaround channel capability assuming a
819.2 kliz subcarrier and 300 kHz ranging signal bandwidth.

d. Provide an engineering telemetry transmission and command
channel reception capability identical to _hat provided
during orbital operations prior to the rendezvous and docking
_Ode.
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was designed. Table VII-2 shows phys!cal properties of the subsystem. The

total size (192 cu in.) is based on an electronic package density of 40 lb/
2

cu ft. _:

Table VII-2 .MAV Telecmun_cations Weight and Power Estimates

Average IUncased Size,
: Quantity Component dc Powor,iWeight,

watts J Ibs cm3/in3 _

'-_ i Antenr_ Feed and Hybrids 0.3 _

I Circulator 0.7 ?

i S-band Power Amplifier 13.0 0.5
2

_ I _ S-band Receiver 3.5 0.8 > 3160/192
i S-band Modulator/Exci ter 2.3 0.6 "

I Co=anand Oe_ector 1.0 0.3
I

I iCcqmnand Decoder O.5 0.3 4

j._ i _Case for Above 1.0

: i ** Telemetry Data Handli=g Unit 1.0 0.9 -:

m A

_ , Note: * Integrated Package _ :_
•* Packaged with G&C ,

, ?

In the normal rendezvous and docking mode the MAV S-band transponder ?f

_ provides turnaround for a coherent ranging signal, demodulates a command

subcarri_r, and combines a PSK modulated oubcarrie_ with the ranging for !

transmission to the Orbiter. Commands from the Orbiter will be required

only in event the Orbiter cannot maneuver for renuezvous. In this case the

MAV could be commanded to start ur stop thrust. Thus, co,_mand is backup

only. Telemetry from MAV-to-Earth via the Orbiter is an option available _

at additional cost and was not investigated. .;

The Orbiter must perform the rendezvous and docking maneuvering once

it is in the desired orbit. To accomplish this, an S-band range, :ange

rate, and angle tracking s)stem is pr_ ,_ded using =n 18 dg mruopulse an-
?

tenna and receiver system, a 300 mW transmitter, and coherently generated

range tones. The higheJt frequency tone is 819.2 kRz which provides a reso- _.

lution of approximately 3 meters. Four additional tones are used for re-

solving range ambiguity for the maximum required _ange of 750 km. These

Vll-6
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tones are modulated onto the highest frequency tone prior to transmission

by the Orbiter a,,ddemodulated wheel received from the MAV turnaround.

The presently conceived Lnterfece for the Orbiter equipment is to

mount it near the sample tranbfer cone (using the cone to support surface

traveling wave antenna elements) and carry power and digital sisnals

_hrough connector interfaces between the ERV and the Orbiter main body. :

_ After docking and transfer, the cone and S-band equipment _y be jettisoned.

A block diagram of the proposed Orbitez/MAV co.,-unicat!ons network is shown

in Figure VII-3.

•E:_ecomunication design control tables have been prepared for MAV/

Eartb comnand and telemetry links for purposes of sizing the transmitter

• power amplifier and autr_na and assessing performance m-rgins. Table VII-3

,_ shows the major parameters of the telemetry link. Adequate margin is indi-

cated at a range of 2.57 x 108 km for an 8-1/3 bps uncoded data rate using

a 4-watt transmitter, an 18 dB MAV antenna and the 64 meter DSN net when

the MAV is pointed up to 10 degrees from the FAV Eart_ line. The range

indicated is for the 1981 mission and is based on csmpleting - the MAV ren-

devious within 38 days after Mars arrival as shown in Figure VII-I. The

relative Mars/Earth geometry would be similar for the 1983 mission so the .

range would also apply to that mission.

Table VII-4 shows _he link parameters for an Earth-to-MAV command llnk _
.!

using the 64 meter PSN net and a I0 kW transmitter. Adequate margin is

available to allow use of the 26 meter net for an Earth pointing reference

in place of the 64 meter net but a downlink capabi: ity (MAV-to-Earth) is

limited to :.he 64 me,:er net. Energy per symbol or oit and additional data

channel losses (lines 20 and 22 of Tables VII-3 and VII-4, are estimated

based on Viking design control tables for purposes of sizing the system.

: MAV/Orbiter link calculations to detemine range, range rate, and :

pointing accuracies during rendezvous and docking operations are discussed

, in Chapter V. The comand and telemetry links between the MAV and Orbiter

are, however, shown in Tables VII-5 and VII-6.

! o
" i MAVTelemetry Requirements. The MAVsubsystems were reviewed to deter-

I mine parameters and events to be instrumented and transmitted to Earth via !

i the telemetry link. Some of the data are relayed to Earth via the Lander

' J V_I-7 '-
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Table VI!-5. Telecommunications Design Control Table -Turn Around Ranging
with MAV-to-Orbiter Telemetry

Nora. Adverse
No. Parameter Value Tolerance

1 Total Transmitter Power (dBm) 300 mW + 24.8 0.5

2 Transmitting Circuit Loss (dB) - 2.0 0.5

3 Transmitting Antenna Gain (dB) MAV Dish + 15.0 0.5

4 Transmitting Antenna Pointing Loss (dB) - 1.0 0 _

5 Space Loss: F=2782 MHz; R=-300 km (dB) -148.4 0

6 Polarization Loss (dB) - 3.0 0.2

7 Receiving Antenna Gain (dB) Orbiter + 18.3 0.5

8 Receiving Antenna Pointing Loss (dB) - 1.0 09 Receiving Circuit Loss (dB) - 1.0 0.3 _

I0 Net Circuit T._SS (dB) -123.1 2.0 =

Ii Total Received Power (dgm) - 98.3 2.5

12 Receiver Noise Spectral Density (dBm/Hz) -167.5 0.7

Noise Temperature (OK) 1500

13 Carrier Modulation Loss (dB)* - 4.8 1.0

14 Received Carrier Power (dBm) -103.1 3.5

15 Carrier APC Noise BW: 2 _LO = i K_+ 2 Hz (dB-Hz) + 30.0 0 :

16 Carrier SNR in 2 BLO (dB) + 34.4 4.2

17 Carrier Threshold SNR in 2 BLO (dB) + 10.0 0

18 Threshold Carrier Power (d_n) -127.5 0.7

19 Performance Margin (dB) + 24.4 4.2 =

Turnaround Ranging (4 minor tones each modulating
a 819.2 kHz tone at 0.6 Red. peak)

20 Ranging Modulatlon Loss: 1.1 Pad. + 107. (dB) - 6.4 1.0

21 Rangin 8 Signal Power (d_n) -104.7 4.5

22 Rangin 8 Noise BW (dB.Hz) 300 kHz + 54.8 0.8

23 SNR at Limlter Input (dB) + 8.0 5.3

24 Limiter Suppression (dB) 0 0.4

25 Radio ARsembly Output Power (dBm) + 20.0 0.5 :
i t i

* Carrier modulated by ranging and command subcarriers -

each at i.! tad peak.
, , m , , | _ _,,

- Continued-
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Table VII-5o Telecommunications Design Control Table - Turn Around Ranging

with HAY-to-Orbiter Telenetry (continued)

Nom. Adverse

No. Parameter Value Tolerance

_-maround Ranging (concluded)

26 Transmitting Circuit Loss (dB) - 2.5 0.5

27 Transmitting Antenna Gain (dB) MAV Dish + 18.3 0.5

28 Transmitting Antenna Pointing Loss (dB) - I.0 0

29 Space Loss: F=2103 MlLz; R=300 km (dB) -147.7 0

30 Polarization Loss (dB) - 3.0 0.2

31 Receiving Antenna Gain (dB) + 15.0 0.5 #

32 Receiving Antenna Pointing Loss (dB) - 1.0 0.5 ;

33 Receiving Circuit Loss (dB) - 2.0 0.5 _
%

34 Net Circuit Loss (dB) -123.9 2.7

35 Total Received Power (dBm) -103.9 3.2

36 Receiver Noise Spectral Density (dBm/Hz) -167.5 0.7

Noise Temperature (°K) 3000

37 Carrier Modulation Loss (dB) - 2.6 O.5

38 Received Carrier Power (dBm) -106.5 3.7

39 Carrier APC Noise BW: 2BLo=I kHz(+O,-2OZ)(dB-Hz) + 30.0 0 :

Carrier Performance - Data Demodulation

40 Carrier SNR in 2 BLO (dB) + 31.0 4.4

41 Carrier Threshold SNR in 2 _O (dB) + 10.0 0

42 Threshold Carrier Power (dBm) -127.5 0.7

43 Performance Margin (dB) + 21.0 4.4

Itmagin_ Channel

44 Ranging Modulation Loss: 0.9 Pad. + 127. (dB) - 5.5 1.0m

45 Total Ranging Suppression (dB) - 5.5 1.4

46 Ranging Signal Level (Total) (d_m) -109.4 4.6

47 Tone Subcarrier Modulation Loss (dB) - 3.2 0.5

48 Received Subcarrier Power (dBm) +112.6 5.1 : :

49 Tone Subcarrier Loop _W (dB) I0 Hz + I0.0 0.8 ;

50 Required Loop SNR (dB) + 20.0 0 :
m

- Continued -

!
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Table VII-5. Telecommunications Design Control Table - Turn Around Ranging

with MAV-to--Orbiter Tel_uetry (concluded)

!
Nom. Adverse

No.__. Parameter yalue Tolerance

Eangin_ Channel (concluded)

51 Threshold Tone Power (d_n) -137.5 1.5

52 Primary Tone Performance Margin (dB) + 24.9 6.6

53 Secondary Tone Hodulation Loss (dB) + 10.2 1.5

: 54 Received Secondary Tone Power (dBm) -122.8 6.1

55 Secondary Tone Noise Bandwidth (10 Hz) (dB) + I0.0 0.8

56 Thzeshold Secondary Tone SNR (riB) + I0.0 0

; 57 Threshold Secondary Tone Power (d_n) -147.5 1.5

58 Secondary Tone Performance Margin (dB) + 24.7 7.6

" Telemetry Data Channel,

-_ 59 Subcarrier Modulation Loss (dB) - 10.0 1.5

60 Waveform Distortion Loss (dB) 0. 0

_ 61 Loss Through Radio System (dB) - 0.5 0.2

62 Subcarrier Demodulation Loss (dB) - 0.1 O. 1

63 Bit Syvc Detection Loss (dB) - 0.I 0

_ 64 Received Data Power (dBm) -114.6 5.0

65 Bit Rate (8-1/3 bps) (dB.bps) + 9.2 0

66 Received STB/N ° (dB) + 43.7 5.7

67 Required STB/N ° (dB) BER = 5 x 10-3 + 5.2 0

:_ 68 Threshold Subcarrier Power (d_n) -153. I 0.7 !

69 Perfoxmance Margin (dB) + 38.5 5.7

VII-13 :
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Table Vll-6. Telecommunications Design Control Table -

MAV-to-Orbiter Con_nand and Ranging Uplink

Nom. Adverse

No Parameter Value Tolerance

I Total Transmitter Power (d_m) 300 mW + 24.8 0.5

; 2 Transmitting Circuit Loss (dB) - 2.0 0.5

3 Transmitting Antenna Gain (dB) MAV Dish + 15.0 0.5

_ 4 Transmitting Antenna Pointing Loss (dB) - 1.0 0

= _ 5 Space Loss: F=2782 _[z; R=300 km (dB) -148.4 0

: 6 Polarization Loss (dB) - 3.0 0.2
i
i 7 Receiving Antenna Gain (dB) Orbiter + 18.3 0.5

• _ Receiving Antenna Pointing Loss (dB) - 1.0 0

Receiving Circuit Loss (dB) - I.0 0.3

: _ Net Circuit Loss (dB) -123.1 2.0

_ Total Received Power (dBm) - 98.3 2.5

_ _ Receiver Noise Spectral Density (dI_n/Hz) -167.5 O.7

i Noise Temperature (OK) 1300
l Carrier Modulation Loss (dB)* - 4.8 1.0

_ Received Carrier Power (drl,) -103. I 3.5
!

i Carrier APC Noise BW: 2 _O=I K + 2 Hz (dB.Hz) + 30.0 0i

_ Carrier SNR in 2 BLO (dS) + 34:4" 4.2

! Carrier Threshold SNR in 2 BLO (dB) + I0.0 0

: : Threshold Carrier Power (d_n) -127.5 0.7

! Performance Margin (dB) + 24.4 4.2

i Command Channel

: i Subcarrier Modulation Loss (d_) - 6.4 1.0

! Waveform Distortion Loss (dB) 0 0
; i

LoSS Through Radio System (dB) - 1.5 0.2

! Subcarrier Demodulation Loss (dB) 0 0

i Bit Sync Detection Loss (dB) 0 0

Received Data Power (dBm) -I06.2 3.7

_ Symbol Rate (dB) 4 sym/sec _ 5.0 0

Received ST_ym/N^._v (dB) + 55.3 4.4

Required STsym/N ° (dB) BE_ = 10-5 + 11.5 1.0
Threshold Subcarrier Power (dBm) -150.0 1.7

Performance Margin (dB) + 43.8 5.4 " i

* Carrier modulated by ranging and cormnand subcarriers each at I.I _-

tad peak.
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! telemetry link while the MAV is still attached. During docking with the

_ ERV, the MAV is not oriented towards Earth and data are relayed to Earth

i i via the ERV telemetry link. Except for these two times, the instrumented :

data will be transmitted to Earth by the MAV S-band telemetry system.

The total time from Lander separation to ERV d cking is approximately

16 days. During this time the MAV is oriented towards Earth. The tctal

time that Earth is in view of the MAV has not been determined; therefore,

the total time available for data transmission has not been established.

This will be required before a sample rate can be established for each

measurement on the MAV. The present data transmission rate is 8-I/3 bps

to Earth via the S-band DSN. This rate has not been verified since the •

establishment of symbol rates and formats are beyond the Scope of this , :

_ study.

Table VII-7 is the MAV measurement list for the subsystems. The events

and parameters shown are necessary to monitor the MAV events during the

16-day period from Mars launch to rendezvous with the ERV. The list is

preliminary with anticipated ranges. Final ranges can only be given after
i

: hardware requirements have been established. Data formats can be estab-

lished after the ranges are finalized and the sample rates determined.

Frequency Allocations. The various telecommunications, command, track-

i in_, and rendezvous/docking functions require a large number of links which

must be coordinated under a unified frequency allocation plan. Basic tele-

! cmmnunications requirements for the Lander and MAV during surface operations,

MAV in orbit, and MAV during rendezvous and docking "_th the Orbiter must be

satisfied. 1_o-way links between the Orbiter and DSN and the Lander and DSN _

must be provided. The rendezvous and docking sensor and the MAV transponder

include cu,mmnd and telemetry channels between the two vehicles. With the

MAV in orbit, a tracl,ing and command capability from Earth is required to

circularize the orbit. Table VII-8 lists the various links, their respec-

tive functions, and the proposed frequency allocations. It is clear that

=he frequency separation between some links is extremely small and this

needs to be further investigated before arriving at a firm, definitive fre-

quency allocation plan. Furthermore, in the event of a dual launch where

two orbiters and two landers are employed, it would be necessary to provide

additional two-way links between the DSN and the second orbiter as well as
,l

• the DSN and the second lander.

VII-15
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• Table VII-?. MAV Measurement List

"_ Subsystem Measurement Title Ra_

• Sample Canister Canister Internal Temperature -I00 + 300°F
Canister Internal Pressure 2 mb + 1 bar

Canister Separation 1-Mated, 0-Separated
= Canister Cover Lock 1-Mated, 0-Separated _.,%

.< Canister Weight 1-Empty, 0-Filled
Canister Boom Position 1-Stowed, 0-Extended

; Electrical Solar Panels Deployed 1-Stowed, 0-Deployed
Solar Cell Voltage 0-30 V dc

Cell Array Current 0-I A dc

Charge/Discharge Voltage 0-30 V dc _ "
!_ Battery Charge Current 0-i Adc

Shunt Regulator Current 0-i A dc
.! Battery Discharge Current 0-2 A dc

Load Bus Current 0-2 Adc
d- • -

_, ._ Battery Temperature O-150°F _

: Guidance and
Command Sun Sensor Roll and Yaw 0-360 °

Mode Indication 1-Celestial, 0-1nertial _

< Computer Output 2 bps .=

Transponder Elevation Error Out 0-i V :
Azimuth Error Out 0-1 V

Signal Present 1-Present, C-Absent =

_: VCO Lockup 1-Locked Up, 0-Sweeping '
Command Present 1-Present, O-Absent :
Decoder Output 0-1 V de :
Ranging Output 0-I Y dc _ "

AGC Voltage 0-2 V dc '

Power Amp Output 0-0.5 V
: Oscillator Switch 1-On, O-Off
: Oscillator Temperature 50-200°F

Power Amp Temperature 50-200°F

; Transponder Baseplate Temperature 50-200°F

: Input Voltages 0-12 V dc
" 0-20 V de
_ 0-28 V dc

_ Telemetry Transmitter Power 0-4 W
Telemetry Transmitter Drive Current 0-0.5 A de

: Data Handling _

Unit A to D Reference Voltage 0-5 V dc !

• Baseplate Temperature O-150°F i

Propulsion Stage III Tank Pressure (2) 0-500 psla I :_

'i Stage III Tank Temperature (2) 0-150°F I _

Stage III Nozzle Pressure (4) C-200 psia !

Stage II Solid Propellant Temperature 0-150°F { i

,: Stage II Separation 1-Mated, O-Release 1
.: Stage II Ignition - Chamber Pressure 1-Burn, 0-Off •

Stage I Solid Propellan_ Temperature 0-150°F I

Stage _ Separation 1-Mated, 0-Release I 'Stage I Ignition - Chamber Pressure l-Burn, 0-Off , _
r

i i i _,ii, Jl [
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Reco_nended Additional Studies. Two additional tasks related to MAV

telecommunications are recommended for the next phase of work. Further

consideration should be given to the possibility of having a stored ACS

mode to search for Earth, if necessary, to bring the MAV to within 8 degrees

of pointing toward Earth so that the DSN signal may be reacquired should the

MAV lose it due to being off the proper attitude. An alternative is to pro-

• vide an omni command link for the Earth/MAY link. Consideration should also
|

be given to reliability tradeoffs since the baseline contains many single- i "

string systems. I i

2. Lander Communications Subsystem

: P_uirements. Functional requirements of the Lander telecommunication

subsystem were established assuming use of a direct S-band link between

Earth and the Lander during operations on the Martian surface. These re- _

quirements are listed in Table VII-9.

Subsystem Description. A simplified block diagram of the Lander tele-

_ coununications subsystem is shown in Figare VII-4. Commands are initially

received via the omni ante_ma and receiver. Once uplink command lock-up of $

the receiver/demodulator and decoder has been accompllshed, the downlink L

transmitter and associated equipment can be activated for operation using

the high gain antenna (HGA). The HGA and pointing control can be identical

to the V0'75 equipment. Antenna pointing is under control of the GCSC. The

balance of the telecummunications subsystem can be derived from the "light-

weight" MAV telecommunications designs to save considerable weight, as corn- _ _

pared to the present VL'75 designs. The 4-watt RF power amplifier is all /

solid state based on an MSC 3005 or 4005 output transistor operated at about

20 volts dc with an efficiency of 30%. The transponder (modulator exciter

plus receiver) is the same as the MAV unit except for reduced cartier track-

ins loop bandwidth and without the receiver error channel equipment and the

extra dual range frequency multiplier strings (needed only for MAV pointing _

and a 220/239 ratio needed only for MAV/Orblter rendezvous). The two Lander

receivers are identical. The command detector and decoder is identical with

that of the MAV. i_

The telemetry data handling unit is assumed to be designed to accept

both analog and digital inputs for multiplexing a_d formatting the downlink :

VZI-18

l

1975006730-261



Table VII-9. Lander Telecommunication_ Functional Requirements

I. Receive S-band transmissiuns from the Deep Space Network (DSN)

while on the _rtian surface and prior to MAV launch.

2. Transmit S-band signals to Earth with the transmit carrier co-

herently related to the receive signal by a ratio of 240/221 time_
the receive frequency (no transmission required after MAV launch).

3. Provide a capability for t_e following modes of communicatiuns at
maximum range of 2.57 x I0° km (1.72 AU):

a. Receive co,hands from Earth at a rate of 4 symbols/second on an

omni antenna to provide a Lander transmitter turn-on capability

and means of controlling surface operations.

_ _ b. Using a high gain _ntenna to provide two-way Earth/Lander com-

munications for the following:

I) Simultaneous planetary ranging and engineering telemetry

• (8-1/3 bps wa_ selected for engineering telemetry);

2) Simultaneous co_nand and downlink telemetry;

3) Transmission of engineering data without ranging;

4) Transmission of higher rate telemetry for scan camera or

program storage _eadout (250 bps is the rate ass,nned).

i 4. Provide a telemetry subsystem capable of conditioning and multi-
plexing analog and digital inputs _rom Lander subsystems and MAV

subsystems--the latter via an umbilical between MAV and Lander.
A digital interface is assumed between MAV and Lander and between

FAX camera and the telemetry subsystem.

5. Telemetry =ubcarrier and tele_,etry bit rate clocks are included in

the telemetry da=a handling functions.

6. Provide a co_nand subcarrier demodulation and decoding capability

identical to Viking format and subcarrier waveforms. Command de-

coder output interface will be identical to Viking '75 for descrip-
tive purposes.

7. Lander subsystems sequencing and power control functions will be

provided by the Lander GCSC.

i 8. Storage of data for delayed telemetering, if required, will be
provided as part of the GCSC function.
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(to Earth) data. This unit can also be identical to the MAV unit for cost

savin_ a_though the MAV as presently conceived transmits at a single data

rate; _.herefore, this commonality approach would impose a slight weight

penalty on the MAV. Weight_ .ize_and power estimates for the telec,_muni-

cations subsystem are given in Table VII-IO and are _.ased on estimatcs of

available 19$I tec,mology. _

Yn order to size the Lander transmitter and high gain antenna require- _

men_s, design control tables (link c_Iculat'.ons) were prepared for telemetry,

coemand, and ranging slmultaneously with telemetry for the Lander/Earth link.

In prepacing these tables certain approximations were made i n determining :

energy per bit requirements and losses due to subcarrier wavefom, radio

i loss, bi_ 3ync loss and subcarrier demodulator loss. These were estimated

based on V0'75 and Viking Lander link calcuiations and lumped rather than -

perf0ming the detailed calculations for each item. _

Table VII-11 is the design control Cable for the 250 bps Lan :er-to- _

Earth link based on a 4-watt S-band transmitter, the Viking Lander HGA and

Viking Lander block coding (32, 6) using P(lq/PSK/PH modulation. Performance

margins exceed the sur., of the adverse tolerances for both the carrier and _

data channels.

Table VII..12 is the design cable for the Earth-to-Lander command link

using the DSN 64 meter net, the 10 kW command transmitter, and the Lander

low gain antenna. Perfor-_nce margins exceed the sum of adverse tolerances :i

by 2 to 3 dB. Coding and format are the same as for the Viking Lander.

Table VII-13 is the design control cable for simultaneous ranging and

8-1/3 bps telemetry for t le Earth/Lander up and downlinks using the 64 meter
4

net, i0 kW D_N transmittel, and the Lander HGA. Margins are 5 dB or greater

thmt the sum of the adverse tolerances for this mode of operation.

From the calculations in Tables VII-11, -12, and -13, one can conclude

that the design is adequate for thL required performance depicted in Table _i
VII-14.

Table VII-15 lists the telecommunications eqdipment which must be _

powered during various phases of Lander operations. Related equipment on ;, _;

both tbe Lande_ and MAV are shown.
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Table 9-11-10. Lander Telecommunications Physical Properties

-, Average

dc Powe_ Weight, Size,
"; Quau. Component _ watt kg (lb) cm (in.)

I Low Gain (_i) Antenna 0.14 (0.3) 8.89 (3.5) dia. "_
9

i High Gain Antenna (HGA) & 7.48 (16.5) 76.2 (30) dia. -!

Mast, same as Viking Lander
_ 1 Circulator/Diplexer 0.32 (0.7)

S-band Power Amplifier 13.0 0.23 ( 0.5i J,

': _-band Receiver & dc/dc Cony. 3.5 0.36 (0.8)

: 1 3-band Modulator/Exciter 2.3 0.27 (0.6) 7.62x13.97x20.32
:: _mud Detector 1.0 0.14 (0.3) (3 x 5.5 x 8) .

_mnd Decoder 0.5 0.14 (0.3) -

., _ase for Above 0.50 (- 1.1 ]

1 S-band Receivar 3.5 0.54 1.2) 17.62x13.97x10.16
. (Omni Command) (3 x 5.5 x 4)

•-"- I HGA Drive (VL'75) 0.59 Incl. in Note I 1

:_ Antenna iI HGA Controller (VL '75) 2.0 1.81 (4.0) Note I

: I Power Pre-regulator (857.elf) 4.0 1.45 (3.2) i

,, 1 Telemetry Data Handling Unit 2.0 1.68 (3.7) 5.08xS.08x10.16 i(2 x 2 x 4)

• Note I. Same as Viking circuitry. ,

I
!

?
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Table VII-13. Tple-ommunications Design Control Table - Planetary Ranging

with Downlink Telemetry (Lander) _ _

Nora. Adverse
Parameter Value Tolerance

Total Transmitter Power (dBm) 10 kW + 70.0 0.0

Transmitting Circuit Loss (dB) 0.0 0.0

Transmitting Antenna Gain (dB) 64-m DSN + 60.4 - 0.7

Transmitting Antenna Pointing Loss (dB) 0.0 0.0

Space Loss: F=2UO.6 MHz; R=237xlO 6 km (dB) -267.1 0.0

Polarization Loss (dB) - 0.4 0.0

Receiving Antenna Gain (dB) VL HGA + 21.1 - 0.3 :

Receiving Antenna Pointing Loss (dB) - 1.0 0.0

Receiving Circui_ Loss tdB) - 1.3 - 0.5

Net Circuit Loss (dB) -188.3 - 1.5 :

Total Received Power (dBm) -118.3 - 1.5 _.

Receiver Noise Spectral Density (dBm/H=) -167.5 + 0.7
Noise Temperature (OK) 1360.0 +240.0

Carrier Modulation Loss (dB) - 8.6 - 1.4

Received Carrier Power (d]_-) -126.9 - 2.9 ;

Carrier _ Noise BW: 21_ = -1_ & Z ltz (dB.ltz) + 12.6 + 0.5
#

Carrier Performance

Carrier SNR in 2 BLO (dB) + 28.0 - 4.1

17 Carzier Threshold SNR in 2 BLO (dB) + 8.7 0.0 _,

18 Threshold Carrier Power (dBm) -146.2 + 1.2

19 Performance Margln (dB) + 19.3 + 4.1

Turnaround Ranging

20 Ranging Modulation Loss: 1.19 Rag. + I0", (dB) - 0.6 - 0.3
t

21 Ranging Sig_ml Power (d_.) -i18.9 - 1.8 '.

i 22 Ranging Noise BW (dB.l{z) • 61.8 + 0.8

23 SNR at Lhniter Input (dB) - 13.2 - 3.3

• 24 Limiter Suppression (dB) , - 15.2 - 3.3 "

25 Radio Assembly Output Power (dBm) -_36.0 - 0.6

26 Transmitting Circuit Loss (dB) - 0.9 - 0.2 ,

27 Transmftting Antenna Gain (dB) VL HGA + 22.1 - 0.3
28 Transmitting Antenna Pointing Loss (dB) - 1.0 0.0

- Continued-
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Table VII-13. Telecommunications Design Control Table Planetary Ranging
with Downlink Telcmletry (Lander) (continued)

Nom. Adverse
i

No_.__.Parameter Value Tolerance

Turnaround Ranging (concluded)

29 Space Loss: D=2292 MHz; R=257x106 km (dB) -267.9 0.0

30 Polarization Loss (dB) 0.0 O.0

31 Receiving Antenna Gain (dB) 64-m DSN + 61.3 - 0._

32 Receiving Antenna Pointing Loss (dB) 0.0 0.0

33 Receiving Circuit Loss (dB) 0.0 0.0

34 Net Circuit Loss (dB) -186.5 - 1.0 :_

35 Total Received Tower (dlln) -150.5 - 1.6 " _ :

36 Receiver lqoise Spectral Density (dEm/Hz) -183.8 + 0.5
Noise Temperature (°K) 30.0 + 3.9 _ "_

37 Carrier Modulation Loss (dB) - 4.1 - 1.2 _

38 Received Carrier Power (dBm) -154.6 - 2.8 '

39 Carrier APC Noise BW: 2BLO=I2 Nz(+Og-2OT=)(dB,Hz) + 10.8 0.0

Carrier Performance - Data Demodulation

40 Carrier SNR in 2 BLO (dB) + 18.4 - 3.3 _,i

41 Carrier Threshold SNR in 2 _£ (dB) + i0.0 0.0

42 Threshold Carrier Power (dBm) -163.0 + O.5

43 Performance Margin (dB) + 8.4 - 3.3

Rangin 5 Channel

44 Ranging Modulation Loss: 0.45 Rad. + 127. (dB) - 10.4 - 2.0

45 Total Ranging Suppression (dB) - 25.6 - 5.3 : :

46 Ranging Signal Level (dBm) -176,1 - 6.9

47 Ranging SNR in I Hz (dB) + 7.7 - 7.4 :

48 Required SNR in I Hz (dB) (4.6 rain.; TACQ nora.) - 6.0 0.0

49 Performance Margin (dB) + 13.7 - 7.4 •

50 Ranging Code Acquisition Time (sec)

TACQ = 70/(SNR) IHz, (80 sec rain) + 80.0 + 80.0 !

- Continued- ,
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Table VII-13. Teleconnnunications Design Control Table - Planetary Ranging
with no,hi!ink Telemetry (Lander) (concluded)

Nom. Adverse
No..__.Parameter Vah,e Tolerance

Telemetry Data Channel

51 Subcarrier Modulation Loss (dB) - 3.8 - i.I !

52 Waveform Distortion Loss (dB) 0.0 0.0

53 L,_,._s Through Radio System (dE) - 0.5 - 0.2 _
54 Subcarrier Demodulation Loss (dB) - O.I - 0.i

55 Bit Sync Detection Loss (dB) - 0.I 0.0

56 Received Data Power (dBm) -155.0 - 3.0

57 Bit Rate (8-I13 bps) (dB-bps) + 9.2 0.0

i 58 Received STB/N° (dB) + 19.6 - 3.5

59 Required STB/N° (dB) BER = 5 x 10-3 + 5.2 0.0

: 60 Threshold Subcarrier Power (dBm) -169.4 + 0.5 •

61 Performance Margin (dB) + 14.4 - 3.5 _:

Table VII-14. Lander Telecommunications Performance _

Command Error Rates I in 105 bit errors ;

Science Error Rates 1 in 102 word errors

Engineering Telemetry 5 in 103 bit errors

Ranging Code Acquisition Time 4.6 minutes

• i
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Table VII-15, Lander/MAV Equipment Operating Sequence for Surface Operations

co to to to •o= o= o= o =
•"._ -,4,_ e# -_ ,4 -,4 = ",4 C

_ _ _ e_ e_ 00 _ _ .,4 _ G ,_

_" .,4 *,4 _ -,4 -_ .r4 .,4 _ _-4

LANDER EQUIPMENTf

Telecommunications

_- S-band Power Amplifier X X X X X X

_ S-band Receiver

S-band Mind/Exciter Transponder X X X X X X

.; Cm_and Detector X X X X X X X

Command Decoder X X X X X X X

S-band Receiver (Primary) X X X X X X X

HGA Controller X X X X X X

: HGA Drive X X X X X X

_- Power Freregulator X X X X X X

Telemetry Data Handling Unit X X X X X X !

o. Othe.___._r

•. GCSC X X X X X X

TV Camera X

Other Subsystem Senscrs X X X

MAT EQUIPMENT i!

Telemetry Data Handling (only) X X X

All Telecommunications X 0 i'_

Other MAV :_

- GCSC X X X X _

_ Other Subsystem Sensors X X 0 x

X- Powered ._

_ 0 - On During Checkout of that Subsystem

4
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Two other approaches were considered for Lander/MAV communications

during surfaL_e operations. These were:

I. Use the MAV S-band equipment for surface communications
L

with Earth thus eliminating Lander S-band equipment;

2. Use a UHF relay between Lander and Orbiter for surface

communications with Earth.

The first option would require mounting an articulated HGA and LGA on the

. MAV for use while on the surface or tying the Lander HGA and LGA to the MAV

S-band system. This equipment, eventhough it could be jettisoned if located

on the MAV, would severely complicate the MAV telecommunications and would :_

require additional 3rd stage MAV weight due to the RF interfaces. For these

reasons the first option was discarded.

The second option (use of Viking '75 type _ relay to Orbiter and

add an Orbiter-to-Lander command link) was discarded due to the poor relay

communications opportunities associated with an elliptical (103 x 105 km) i_

Orbiter capture orbit (4-day period) as well as the limited range and com-

plications of relaying data to and from Earth via the Orbiter.

Table VII-16 is a summary table of the telecon.nunications link margins

for the four MAY conditions. The weakest RF link is when the MAV is on t_e

surface. The 4-watt transmitter adequately handles 250 bps but 5 or 8 watts

would improve this link. The command link is limited by the available SNR

of the command receiver. The uplink transmitted power and antenna gain #

can not be increased; therefore, a lower receiver noise temperature must be i

achieved in order to improve the conmmnd link margin. The other telemetry

and command links have satisfactory margins.

Recommended Additional Studies. Additional studies should be conducted

before finalizing the telecomzaunications system for the Lander/MAY during

surface operations. Additional thought should be given to Lander operations

and timelines in considering time required to update the MAV (numbe_ of

command words divided by rate capability, etc.) and to verify the co,_aand

program stored in the MAV. Also time to check out the MAV prior to launch

and to verify attitude should be estimated includin_ any 2-way Earth-Mars ;

time delays_ etc., to verify timelines for trouble and for power profile

verifications. While accomplishing this_ one should verify that the bit

rates are indeed adequate.
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B. POWER

The two primary concerns of the power system evaluation portion of

this study were to investigate the feasibility of supplying the power re- :

quired by the Mars Asce,_ Vehicle (MAV) during ascent, rendezvous and

< i docking, and to establish any modifications required to the orbiter A"r

design was defined for the MAV permitting power and evergy needs to be
J

identified. Also, equipment modi[ications to existing Viking Lander and :
:' Orbiter vehicles were identified. Based on these modifications and known

power requirements for the 1975 Viking vehicles, it was possible to define

new power totals for the MSSR mission. The Eorth Return Vehicle is

assumed to be based upon existing technology, but since the design was

• not detailed in this study, power requirements were not identified

quantitatively.

1. Baseline Designs

Viking Orbiter _VO) 1975 Power Subsystem. This design utilize_

arrays of photovoltaic cells arranged on four double-section, folding

solar panels to furnish primary power for all sun-oriented operations.

Two identical nickel-cadmium batteries are used as a secondary source of

power for off-sun operations s_d to share the load when power demand ex-

ceeds the solar array capacity. Redundant power conditioning and disrri-

: bution functions are provided with two battery chargers, two booster regu-

lato'cs, two 2.4 kHz inverters, two 400-Hz 3-phase inverters, two 30-Vdc

converters, and associated power source logic and control and switching

i functions. The power suosystem provides the VO with 2.4 kHz single phase,

400-Hz three-phase, regulated dc (30 and 55.2 V) and unregul.ced dc power. _,

Unregulated dc power is also provided to the Viking Lander Capsule.
' 7

It is expected that the V0'75 power system will be used without

change for the URDMO mission except for modification of the distribution

system to accommodate removal of the orbital science, the scan platform,

data storage and the addition of a rendezvous radar requiring 14 watts.

VikinR Lander Power Subsystem. Two radioisotope thermoelectric

venerators (RTCs) rated at 35 watts each provide prime power. Four 8 ,,@:_

ampere hour mlckel cadmium batteries provide energy storage to carry peak , ._ .

loads bsyond the RTGs capability. Th_ batteries are maintained in a dis- _

charged state during interplanetary cruise and charged using orbiter

Vll-31 .:
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f

supplied power prior to deflection into the Mars entry trajectory. The

RTGs are shorted out and the Lander Capsule is supplied from the Orbiter

until preseparation checkout when the short is removed and power is trans-

ferred to the RTCs.

In order to obtain mass and volume allowances to permit installation

of the Mars Scent Vehicle (MAV) for the URDMO mission it is necessary to

reduce the rating of the Lander power subsystem. This was schieved by

using only three out of the four 8 ampere hour batteries used for the

1975 mission and by replacing the two 35-watt RTGs by two 20-watt RTGs of

_ higher specific output. Since 1968, the Atomic Energy Commision have

sponsored a technology contract to develop a new high efficiency, high

temperature material. One of these, TPM, is a selenide base material with

• a potential efficiency of twice that of presently used materials. A pre-

liminary design has been described for a 20-watt generator operating with

a moderate temperature of 800°C at the thermoelectric hot Junction. This

generator would develop an efficiency of 8 percent and have a mass of 5.5

kilograms.

:_ M_rs Ascent Vehicle Power Subsystem. The MAV is mass critical and

i emphasis is placed on holding power levels and evergy demands to a minimum

• and usir_ advanced technology. Also, MAV components must be capable of

undergoing dry heat sterilization prio to Earth launch. Due to the mission

duration it is necessary from a mass optimization viewpoint to use a solar

': cell/battery system. High efficiency violet cells are incorporated into

a 0.163 square meter (1.75 sq it) solar array. These solar cells have an

output of 12.14 watt_ at a solar distance of 1.44 AU. Sixteen 3-ampere

hour nickel-hydrogen cells provide peak power capability. (The nickel

hydrozen battery is under development, see the technology development dis-

cussion at"end of section.) The shunt regulated circuit arrangement is _

shown in Figure VII-5. The shunt r_gulator acts as a variable load to c_n-

trol voltage and is enabled by the control unit when the array power ex-,

• ceeds load current and battery charging needs. When the bus voltage de-

creases slightly due to load demand exceeding array capability, the dis- I
|

charge regulator is enabled and the battecy supports the bus through the

step-up dlscharge regulator. Loads are supplied directly from the 28 volt

_, bus except for the S-band power amplifler supplied from the converter and

the rate gyros operating from the inverter

-_ _' VII132
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Earth Return Vehicle i'owe- Subsystem. Altho, gh eci fic req,irements

have not been established for the Earth Return Vehicle (ERV) it is ex-

pected to utilize a solar cells body-mounted on a spinning vehicle. The

ERV will carry the Earth Entry Capful (EEC) incorporating a power control

i unit and a beacon. Both of these devi_es require a battery supply which

is discussed in Chapter IX.

2. Power and Energy Requirements

Viking Orbiter. Viking Orbiter modifications include removal of

science associated items including all orbiter science, the scan platform,

and the data storage system. This results in tl_e fo|1owing power needs

during orbit cruise:
?

!
i Table VII-17 Orbiter Power A_locatlo_

Item Power (W)

E_Bineering Loads 165.90

Science Loads .00

Total 2.4 kl_z Inverter Load 165.90

Inverter Efficiency .902

Total 2.4 ".Hz Inverter Input 183.92
Total Booster Regulator Load 200.92 •

: Boostec Regulator Efficiency .899

Total Booster Regulator Input 223.50

Total Unregulated Power 408.10

System Efficiency .982
Total Raw Power 415.58

't

?
• When adjustment [s made for operation at t_o p_rcent off the maximup

a power margin of 196.1 watts is attained. This is obtained from using

the solar array's rating of 620 watts. For the 1981 mission the distance f

to the Sun is less than that for the 1975 mission; 1.4_" AU ws 1.66 AU. $

This will result in a greater solar array capacity for the 1981 mission. :,

777.5 watts, giving additional margin.

During terminal rendezvous with the MAV a small radar is [n operation.

This requires 14 watts of power. During orbit insertions, orbit trim and

• terminal rendezvous, the sola_ p_,n_,Is of the Orbiter may !o_e their orien-

tation to the Sun, necessitating operation from the baLterv system. Listed
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below are ener_.y r:_q,:ire_,ents wh_c"_, n:av be imposed upon the battery to-

gerber _itil the res_l_i'lg margins.
• -5

T_ble VII-IS Orbiter Energy Requirements and Margins During Maneuvers "

Batter_ (Wh)

Item Energy Needs Energy Mar_ins':."

Orbit Insertion Maneuver Turn 250.7 1651.3

Orbit Insertion Maneuver Burn 334.8 1567.2

Orbit Trim Sequence: 1127.5 774.5
(3 burns, 3.5 hr Total Duration)

Terminal Rendezvous

:_ (3.0 hr duration) 966.4 935.6 _. :

* TN-3770004, Issue 23, Viking Orbiter Power Status Report, June I, :'

_ 1973, gi-,espower and energy requirements for V0'75 for different

operational modes. Adjustments of Operational Mode 29 (3.6 hr
Solar Occultation) were used ii settJ-g valt,es for the orbit trim

sequence and terminal rendezvc.ts. 3

The tabulation shows thzt le...th_ _ one-half of the energy in the batteries

: (1902 Wh) is required for the first two operational uz)des. Thus, these

: operations can be carried out even if only one battery is connected. The

load can _e adequately provided with power for the last two up _.rational

modes if botn batteries are on the bus. Whether the load could be carried

in _he event of failure of one battp-.y and its removal from the bus will/

depend upcn ._"e amount f load sharir,.g with the solar array. Determining _

this wll[ req-'_-_ defi'_cion of panel orientation with "espect to the Sun

during ma .,,ve

Mars Lander. Figure VII-6 shows the Lander power requirements during

the =ime period from separation of the Lander from toe Orbiter (-4.17 hours) :

to touch_own. Total erergy requirements during th_ deorbit coa_ period

: amount to 624 watt hours of which 427 watt hours is allocated to the guidance

and control subsystem. Energy available trom the RTG/battery subsystem is

680 _,attho_:_s leaving a margin of 56 watt hout_ (based upon an allowable _.

; depth of discharge for the batteries of 75 percent). Landed cperatlons are _

reflec'cd by the power profile shown xn F'_gure Vll-7. Most of the energy _.

(2532 watt hours) is requi_ed to maintain command capability for the Lander. :'I

,: Two-way comn_anication, transm_ting to Earth an image cf the site from which

1
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the soil sample i3 to be taken, science and HAV positioning provide the bal-

ance of power needs ducing the 263.75 hours of landed operations. The total

energy required for this period is 2744 watt hours giving an av_.rage |Dad
_

of 10.4 watts. TLese together with th_-mal control needs can be provided

adequately by the two 20-watt RTGs.

Mars Ascent Vehicle. The major power requirement during the _[AVmission

is set by operation of in, S-band transoonder during doppler measurements

used for trajectory corr=-ctions. This is illustrated in Figure VII-8. In

order to operate within the capability of the power subsystem, limited in

, rating beacuse of mass restrictions, equipment operates at high power during

these periods for only 50 minutes of each 3.5 hour orbit. The battery _

supplements solar power during these tracking periods and is permlttcd a :_

discharge depth of 75 percent prior to being recharged during the remainder

of each orbit.

, Rendezvous and docking with the orbiter is accomplished in approximately

three hours from the tim_ the MAV and orbiter are reoriented to point toward

each other. During this period the solar cell panels may be displaced from

their normal orientation to the Sun by an average of as much as 45 degrees,

but the S-band power amplifier operates at reduced power lowering energy

needs and the battery again supplements the solar array power. Table VII-19

lists the power utilization _tems and their vower needs for both the orbit i

tracking and the rendezvous and docking modes of operation.

Table VII-19 MAV Power Utillzatlon

Power Mode (Watts)

: I tern il_t_ Lo__ww Standby
(In O_bl t'-_ring (Rendezvous (In Orblt-Between

Dopple Tracking) & Docking) Tracking Periods)

i S-Band Power Amplifier 13.0 2.5

S-Band Modulator Exciter 2.3 2.3

S-Band Receiver 3.5 3.5
• Command Detector l.O 1.0

Command Decoder 0.5 0.5

Telemetry Unit 1.0 1.0
S,'nSensor 0.35 0.35 0.35

Valve Drive Amplifier (15 W Peak_.

_: Rate _.yros (2) 3.3 3.3
,," Rate Gyros (I) I.7 I.7 I.7 :
_, Computer 4.0 4.0 O.5
_ Inverter Losses 1.05 1.05 0.35

_. 31.7 20.2 2.9
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3. Equipment Development Impacting System Availability. Although solar

cells have been a key device in the space progrm,, little improvement in

efficiency occurred over a period of ten years. With the space program

being virtually the only market for solar cells, production capacity has _

exceeded the demand. This has narrowed the solar cell producers from five

to two companies and has limited research and funding. Recently as a result

of independent work at COMSAT Laboratories, improvements in efficiency from

11 percent to 13 percent have been reported. This was achieved by exrend-

Ing the spectral response from 0.5 ,,m to 0.3._fm. The mechanisms involved i

were elimination of the highly damaged "dead layer" found on the surface of i
the conventional photocell and providing a fine electrode current collection

geometry. This improved solar cell is called the "violet cell". ::

Progress has also continued in fabrication of lightweight arrays by _"

use of thin coverslides and solar cells mounted on lightweight substrates.

Solar cells having a titani_-palladimn-silver contact system were resistance

welded together using silver-plated molybdenum interconnections. Solar cell '

modules using this technique were fabricated and thermally shocked from

-196°C to +200°C through 500 cycles. No failures were found upon completion '

of tests. The top limit far exceeds the 125°C level required for sterili-

zatiun.

Work now underway by several manufacturers premise to make available

two types of secondary batteries in addition to the widely used nickel

cadmium. The new cells have an energy density capability between 55 and

150 W-hr/kg and will suffer no capacity loss with sterilization. The cells

are built combining either a nickel or silver electrode with the long-life

hydrogen fuel cell electrode. Hydrogen under pressure is consumed during _

discharge and released upon charging. The cell is not damaged by over-

charge simplifying control. Work on the nickel-hydrogen cell has been

sponsored by COMSAT for use on communications satellites.

In the RTG area a selenide base thermoelectric material, developed

] under AEC sponsorship, offers twice the efficiency of previous materials.

Efficiencies to between 14 and 15 percent are predicted for these materials

when operated at 1OO0°C. For a small generator, operation at 80O°C with

an 8 percent efficiency should be readily a_hievablc _

[
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The thermoelectric couple utilizing this material is composed of tx;o

selenide compounds. The p-leg of the couple is fabricated from copper

selenide while the n-leg is made from gadolinium selenide. The materials

have been under development since 1968 by the Minnesota Mining and Manu-

facturing Company (3M), working under a technology contract with the Atomic

Energy Co_inission. The technology for the p-leg is well in hand but more

effort is needed on the n-leg material to achieve full capabilities. The

n-leg material is refractory in nature and is more difficult to bond than

the p-leg. Tungsten is used as contacts on the hot junctions. Consequently

at this stage of development it appears possible to build a generator using ,

• the selenides, which would operate at 800°C on the hot junctions and achieve

8 percent efficiency. This generator, however_ would use pressure rather

than bonded contacts on the hot side of the junctions. This arrangement

was used on the SNAP-27 and other earlier generators. Later it is expected

• that technology will be developed to the point where generators yielding

lO percent efficiency and operating at lO00°C can be built, i

The ArC currently holds contracts with 3M and Teledyne Isotopes to _
f

produce a 20-Watt converter module by the end of CY1974, together with

designs for the isotope fuel capsule and systems engineering for tile gener-

_ ator. Data from this program would give a firm basis for estaSlishing re-

_ quirements for a generator program such as the one outlined in Figure VII-9.

Energy sources having long life in the inactive state are needed for the

Earth Entry Capsule, described in Chapter IX, since three years will elapse

from the time of launch L_ntil use during Earth entry. %_o condidates have

been considered: automatical]y activated silver-zinc batteries and prlmary
?

cells utillzinB lithium with an organic electrolyte. The latter is a new

• type, high energy battery now in production with a l_n_ shelf life. Energy

density is as high as 270 watt hours per kilogram com_ ed to 70 watt hours

per kilogram for the self-activated silver-zlnc battery. The stable elec-

trochemistry is expected to yield a shelf-llfe as lor_g as I0 years. Al-

though the design is completely sealed and the ceils have been used in high

altitude bolloons, they have not as yet been space qualified. Selection

between the two t_'peb wil] depend upon estsbllshlng specific requirements

incll_ding those for actuatin_ pyrotechnic devices.
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C. PROP_,SION

I. Propulsion Requirements

Accomplishment of the _rs sample return mission requires the use of

several major propulsion systems in addttinn to launch vehicIe propuIstoa.
.e

l_ese inciude the Viking Orbiter, Lander Deflection and Terminal Descent

Systems, and the Mars Ascent Vehicle (_V) propuIston. Of these only the

NW propuIston system was studied tn considerable depth because it is a

completely new system and Its performance and associated weight Impact

critically on the feasib_.Iity of the mission. The ocher propulsion

c systems require some modiflcations to satisfy URDMO mission requirements,

but in general these can be accomplished without m_jor difficulties or

excessive costs. These modificationswere studied in sufficient depth to

verify feasibility and evolve valid weight estimates.

The general requirements of each of these systems are qualitatively

"summarized in Tabl. VII-20 along with a brief dlscriptlon ef the selected

baseline designs. Pertinent quantitative parameters are defined in sub-

sequent paragraphs. Major results evolving from the study are as

follows:

I) Ascent from the _Nrs surface to the rendezvous orbit requires

a completely new vehicle comprising three propulsive stages;

the first two stages employ solid propellent motors to achieve

an elliptical orbit, the third stage uses monopropellent

hydra:£ne for orbit elreularlzatlon and attitude control.

2) _le Viking OrbiLer maln propulsion system must be modified by

stretching the propellert tanks to provide a 14% increase In

propellent load; The cold gas attitude propulsion system wlll

' be replaced wlth a new hot gas system that wlll provide rend-

ezvous capability in addition to attitude control.

3) The Viking Deorb!t propulsion system can be used without !

modl fi_ ion. _

,, ' 4) "_e Viking Terminal propulsion system must be modified _o

provide both additional impulse (147 increase in propellent ;

load), and a higher average thrust level (achieved by re-

placing the blowdown pressurization sysLem with a regulated ":

_ GN2 system), i
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2. MAV Propulsion System

General Lharacterlstics. Propulsion requirem_,ts that evolve from

thL. selected MAV mission profile consist of two iarg_, delta Vs (1654 and

2530 m/set: respectively) to achieve a I00 x 2200 km orbit; a smaller

delta Vs (391 m/set total) for orbit circularization, trim, and rendezvous;

and attituJe control and stabilization throughout the entire MAV mission.

To satisfy these requirements, a 3-stage baseline propulsion system has

, _een selected consisting of two solid propellent motors to provide the

r_ tWO large deita Vs, and a single monopropellent hydrazine system to

provide the smaller delta Vs in addition to the attitude control functions .
L

' during all phases of the MAV mission. A two-stage vehicle employing a

_ solid propellent first stage for Mars Ascent and a liquid bipropellent

second stage for orbit insertion and circularization was also studied,

._ but was eventually rejected because of poor overall performance (see

Appendix H).

Sol_d motors were selected because of their supeclority (high Isp

• and mass fraction) in the impulse range of interest _o MAV. Of their

major limitations: inflexible configuration, lack cf _ostart capability,

high thrust-to-welght ratio, and non-s_er_lizability, only the latter

prese, Lts problems for the MAV application. Ster_]izable solid propellents

are not state-of-the-art, but are under development and should be avail-

able on a time scale compatible with the proposed Mars sample return

mission as discussed subseiuently.

Monopropollent hydrazine appears to be an ideal sele_tio_ £or the _,
)

third stage propulsion system because of its comparative simplicity and

high rellability., relatively high performance, and closely conLrollable
f

.impulse over an extceme!y wide range. It results in a relatively light- _.

weight, compact installation.

, Ma_or feature.s of the MAV propulsi system are shown in Figure Vll-lO,

and are discussed in the following sections. .
i.

, MAV Stase I and II Characteristics. Propulsion requi_eme.nts for th_ :

MAV are summarized in Table VII-21. These comprise two large delta Vs

=o acquire a I00 x 2200 km orbit, _olluwed by sma]ler delta Vs to clrculariz_ .;
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and trim, plus the usual attitude control functions. From these require-

ments a three-stage vehicle has peon evolved as an optimum configuration.

For a vehicle that has an inltia] gross weight in the range of 250

to 300 kg, and a propulsion system that provides a specific impulse of

2840 N-s/kg (achievable with ca_ventional solld propellents or earth-

storable " |uld blpropellents), the quantity of propellent consumed in

providing the initial 1654 m/set _V will be in the neighborhood of
#

125 kg. Likewise for a second stage burn providing a _V of 2530 m/s _-

it is found that 80 kg proFellent will be consumed. Referring to _

Flg_re Vll-ll, it is seen that solid propellent motors appear to be the -_

best choice to satisfy these requirements. The specific impul_e provided

by the solid motors is no better tha. _h_t for _'propellent liquids, but

the mass fraction is considerably higher. Also the solid motor is in-

herently simple, so it also may be expected to be more -_liable. These

motors do possess definite limitations regarding flexibility of con- ?

figuration, thrust, to-weigh_ ratio and impulse control, but the e do not

appear to be detrimental to the MAV application. One itmitatlon that

does present a problem is that state-of-the-art solid motors are not

sterillzable, bu_ this app_d_'s to be solvable. Recent R&D programs con-

ducted by JPL and AGC have culminated in a successful firing (by AGC)

of a full-scale solid propellent motor following (8) sterilization cycles

to 125°C. Considerable additional effort ia this area is r-:quired before

flight qualified sterilizable motors will be available, but a major mile-

stone has been passed and there is every reason to believe that the de-

sired end goal will be reached. Because of the importance of this work

to the proposed MAV design, a detailed discussion of it is included in

Appendix I.

Although'it is expected that sterilizable motors will be available

on a time scale compatible with MSR mission requirements it will be note_

that _he sterilization requirement does impose some penalties. The pro-

p_llent formulations are limited to a considerable degree by the thermal

cycle requirement, and the motors are heavier due ._ the need for a unique

flexible liner co support the :,ropellant grain v/thin the motor case. As

a result the best that can be expected from sterilized motors is a specific

Impulse of 2795 N-s/kg and a mas_ fraction of _. Thls is in comp_cison
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to a specific impulse of 2840 N-s/kg and a mass fraction of .9 for the

current generation of high performance motors in the I00 kg (propellent)

class (Figure VlI-ll).
t

Followlng a number of iterations, the baseline M_V Inltlal weight

has been establlshed at 289 kg, and the corresponding propellent loads

for Stages I and _£ are found to be 129 and 81.3 kg, respectively. These

are based on the values of Isp and A cited above, and the AVs prevlous]y

given. The general configuration of the motors will be similar to the

sterillz_d SVM-3 motor that was successfully fired by AGC (see Appendix J). _

Pertin_it characteristics of each motor are summarized in Figure VII-12. i

The two _tors are of identical configuration, having submerged nozzles _-

_ith an area ratio of approximately 50:1 and being loaded with the same

: propellent formulation. Burning characteristics ,my _ tailored to some

degreo to suit speci :ic requirements, but it is proposed that both motors
;

operate at an average chamber pressure ot approximately 414 N/cJ

: (600 psla) and produce a thrust of approximately 6675 N (1500 Ibf). The

first stage will be sllghtly larger in diameter (57 vs 48 cm) and slightly

longer (81 vs 74 cm), and will have a longer burning time (55 vs 35 sec).

MAV Stage III Characteristics. Selection of a monopropellent hydra-

_ zlne propl_Ision system to provide all propulsion requirements except the

| two initial large AVs was arrived at primarily 1tom considerations of the !

size of the system (quantity of propellent) and the need for a very flex-

ible duty cycle. Solld propellent motors are out of the question because

of the requirement for multlple burns and close)y controlled im_.ulses.

Bipropellent systems are not appropriate because of the small quantity of

propellent involved and the low thrust levels antic_ated. Cold gas

systems are not attractlvc because of their low performance capability

and resultant high weight and volume requirements.

Using the Stage I and Stage _I propellent weights and mass fractions

cited previously, and assumin_ Stage I and Stage II skirt weiEhts of 5.7

and 4.0 kg respectively, it is readily determined that the MAV weight

following Stage II separation (initial Stage III w_ight) is 40 kg. Then

assuming a propulsion system with a specific impulse of ?300 N-s/kg

(achlevable with monopropellent hydrazlne catalytic thrusters), the
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quantity of propellent consumed to provide the remaining 391 m/s AV is

found to be 6.5 kg. If a cold gas system were selected in place of a

manopropellent hydrazine system, the quantity of propellent needed would

be in excess of 20 kg (specific impulse = 685 N-s/kg), and the total

system weight would be in the order of 60 kg. This is greater than the

allowable weight of the entire third stage, and it still duesn't account

for propellent to 2e consumed in attitude control functions. Therefore,

a liquid monopropellent system appears to be the best, probably the only,

solution to the problen_

Thrusters. The MAV Stage III propulsion system has a number of

functions to perform, but it has been concluded that these can be provided

by a total of only twelve catalytic thrusters. Four of these are aft-

firing thrusters located on the periphery of the HAV as shown in Figure VII-IO.

They perform the dual functions of attitude control during Stage I and

Stage II solid motor burns, and orbit clrcularization for Stage IlL They

will pulse on as required to maintain proper attitude during the solid

motor burns; they will operate essentlally continuously during orbit

clrcularizatlon, except for occaslonal off-pulsing to maintain the desired
!

MAV attitude. The nozzles will be canted outward approximately I0 ° to

minimize impinge_.ent effects on the first two stages, and to provide an

increased moment arm wlthout entailing a significant loss in usable impulse.

Sizing of these four thrusters is based primarily on the requirement

to compensate for solid motor thrust misallgnments and upsetting aero-

dynamic forces. The latter is found to be the predominant effect, with

maximum forces occurring at Stage I burnout (maximum q). The approximate

level of force required to overcome these upsetting moments is found to

be approximately 50 N (11 ibf) as shown in Appendlx J. This leads to the

selectlon of the Hamilton Standard Model REA 22-4 =atalytlc thruster as

a loglcal candidate, though there may be others. This thruster is rated

at 55 N (12 lbf) and weighs .7 kg.

Roll stabilization throughout the MAV mission is provided by four

tangential firing thrusters arranged in opposing pairs 180 ° apart on

the periphery of the Stage III vehicle. These must be large enough to

overcome disturbing moments arising from aerodynamic effects and solid

VII-52

1975006730-295



- .i ............ 11 I I - I ...... I,imu " "II I i ILILIL_]± /I I "T_'_'f "_'J"

propellent exhaust torques during Stage I and Stage II burns, but also

ernst be capable of providing very small impulse bits during Stage III

limit cycle opera_ion.

Sizing of these thrusters is not straightforward because of the

difficulty encountered in atte,_ :ing to define the magnitude of the

disturbing moments. The approach that was finally taken was to provide

torques for HAV that are roughly equivalent to those that have been

successfully applied in the Surveyor and Burner IT programs, i.e.,

a roll torque of approximately . 025 N cm per Newton of solid motor

thrust. For NAV, which operates at a thrust level of 6675 N (1500 lb_

and has a roll moment arm of 35 cm, this evolves to a thrust level of

approxlmately 2.4 N (.55 Ibf) per thruster. The Hamilton-Standard

No_el Rea 17-6 thruster would satisfy this requirement.

Pitch and yaw stabillzatlon during Stage III orbiting is provided

by four forward-flring thrusters located Just forward of the four aft-

firing thrusters. These thrusters are not required to provide space-

craft Delta V, so they can be a; small as practlcable to a," sure a low

propellent consumption during llmlt cycle operation. The thruster select-

ed has a no_nal output of . 5 N (. 1 lfb) thrust, the smallest size of

catalytlc thruster currently avallable. The Kamilton-Standard Hodel RFA

10-14 thruster is representative of several candidates in this thrust

range. To provide as small an impulse bit as posslble, it is proposed to

Install a restrlctor such as a Viscojet in series with each thruster. It

is expected that this _r111 permit impulse bits in the range of 2.5(10) "3

N-s to be achieved.

Propellent Conpu_tlon, To determine the propellent requirement

for the Stage lit baseline propulsion systemp the operation of the system
!
:, has been studied in considerable detail. The K_V fllght has been divided

!_ into seven major phases as identified in Table VII-22, and the consump-

_ tiou during each phase estimated as accurately as possible. The cable

also includes the approximate duration of each phase, and id_ntification

of the operating thrusters and their functions.

vl'r.,._3

. , < .,• mmlg ii i i,u iii., , u i i .

1975006730-296





The estimate of Stage III propellent consumption, during Stage I

burn is based primarily on the requirement to overcome a solid motor

thrust mtsalignment of . 25 cm at the FAV center of gravity. It is

found that the average Stage III thrust required to compensate for thi_

_salignment is approximately 35 N ' lbf), equivalent to one thruster

operating two thirds of the time. Assuming a specific impulse of 2260

N-s/kg (230 sec) this evolves to a total consumption of .9 kg during

the 55 sec Stage I burn. Aerodynamic ,_nents are significant for only

a few seconds near burnout, requiring only short duration thruster burns !_

that do not add significantly to the propellent consumption. C_usumption !

of the roll thrusters is based on the assumption of a 50_ duty cycle to {

compensate for disturbing roll moments. Two 2.2 N (. 5 Ibf) roll thrusters _

will consume .1 kg propellent during" a 55 second time period at this

duty cycle.

Stage 111 propellent consumption during Stage II burn has been

estimated in a similar manner, but the results are different because of

different moment arms and burn time. The average Stage III thrust

required to overcome Stage II thrust nttsalignment is only 22 N (5 lbf),

which results in a propellent consumption of only . 3 kg during the 35

second Stage II burn.

Propellent consumption during the Delta V burns (combined orbit

circularization and rendezvous) has already been shown to be 6.5 k8

of which 5.8 kg is used for circularization and . 7 k8 is allocated to

rendezvous. The propellent consumption rate of the roll thrusters

during limit cycle operation (Stage III orbiting) is found to be

approximately 5.5(10) -8 kg/r_c based on the size of the impulse bit

previously cited and a wide half-angle deadband of . 174 radians (see

Appendix I). This evolves to a total consumption of about . 1 k8 during

the K_V 400.hour orbital life. Similarly, the consumption rate of the

pitch and yaw thrusters is also found to be approximately 5.5(10) -8

kg/see per axis, based on _ch s_aller impulse bits, but also a much

narrower deadband. Total consumption got the pitch and yaw axes com-

bined is about .2 kg during the orbital life. Then allowing an addition-

al 10% propellant for contingencies, the total requirement becomes

approx_.mately 9 kg £or all Stage Ill operations.
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S_stem Characteristics. "l_nemajor features of the baseline Stage III

propulsion system are identified schematically in Figure VII-13. For

packaging convenience two propellent tanks are provided, each approximate-

ly 23 cm in diameter, and weighing 1.0 kg. They are state-of-the-art

design, fabricated from titanium alloy, and fitted with elastomerlc

bladders for effective propellent management. Blowdown pressurization

is provided using GN2 as the pressurant. A propellent-to-tank volume _,

ratio of 2:3 has been assumed, providing a high blowdown pressure ratio 1

(3:1). This provides high available -hrust levels early in the MAV _
|

flight when they are most needed, a:Id low thrust levels near the end of I

the flight when low impulse bits are important. The tanks are designed

to withstand the sterilization environment following loading. This does

not impose a weight penalty because the tank wall thickness is limited by

the use of minimum gage materials.

Propellant loading is accomplished through a pvro fill valve, then

pressurization with GN2 is accomplished through a similar valve. Au

Inltlal charge pressure of approximately 207 N/cJ (306 vqla) has been

selected to provide the desired thrubter outputs. Following pressurlza-

tlon, the tank ullage volumes are isolated from each other. Tank pressures

are monitored throughout the MAV mission by means of the two pressure

transducers shown on the schematic. These pressures will decay to a

level of approximately 69 N/cm z (160 psla) at the end of the mission.

The twelve thrusters are fed propellent through a set of pyro isola-

tlon valves as shown. The propellent will remain isolated from the thrus-

ters until shortly before MAV liftoff. In the event of a thruster

malfunction, the thrusters can again be isolated while the nature of the

malfunction is being assessed. Then, assuming that a suitable solution

to the problem has been found, the propellent system can be armed a second

time. Redundant thrusters could be added to improve the reliability of

the system, however, these are not included in the baseline design since

a more comprehensive study is required to 6stablish how to most effectively

allocate the weight margin to the various components and subsystems of

the MKV.
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Component weights (included in Figure VII-13) ate based on state-

of-the-art designs and are believed to be realistic. Dry system weight

is estimated to be about 9 kg, approximately the same weight as the

propellent. This leads to a mass fraction of approximately .5, a rela-

tively high value for such a small multi-purpose systenu

3. OrbiTer Propu!slon System

General Requirements and Characterlstlcs. To accommodate the Mars

sample return mlsslon, several modification, must be made to the Viking

Orbiter propulsion system. These arise from the following requirements

that are imposed on the orbiter by the MSRmisslon:

i) Additional propel ent is required for orbit insertion because

the MSR spacecraft _s somewhat heavier than Viking '75.

2) An additional AV of approximately 20 m/s is required of the

main propulsion system to accommodate initial rendezvous.

3) An additional rendezvous AV of approximately 60 m/s is also

required, but with the _hrust provided in the opposite direction

from the main engine thrust, and of a much lower level (in

the range of 200 to 250 N thrust),

4) A small nV capabillt_ is needed for pitch and yaw translation

during final rendezvous.

5) Pitch, yaw and roll attitude control is needed slm/lar to that

required of Viking '75, but for a longer period; i.e., 400 days

following rendezvous.

Possibly a number of dlfferene ,olutions to these requirements could

be found, but it appears that the best solution is to incorporate _wo

basic modifications to the VO '75 as follows_

I) Enlarge the VO '75 propellent tanks to accommodate 14%more

rropellent that is required to accompllsh orbit insertion for

the heavier spacecraft and to provide the initial rendezvous

AV.
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2) Replace the VO '75 cold gas attitude propulsion system with a

_. completely new hot gas system that provides al.'necessary

attitude control, plus the final rendezvous AV, It is pro-

posed that this system include (4) 50 N thrusters for final

rendezvous AV and (16) 1 N thrusters that provide 3-axls

stabilization as well as a small translational AV along the

pitch and yaw axes.

..Me.inPropu!sion :_stem, Schematically (Figure VII-14) the basic

VO '75 system will remain unchanged. The major hardware change will be

to the propellent tanks which will be enlarged by inserting a larger

cylindrical barrel between the two hemispherical end domes. The barrel

section will be lengthened 18 cm, ext .Jing the overall tank length from

140 cm to 158 cm. This degree of stretching of the tanks can be accom-

modated without necessitating major changes to the VO '75 structure.

This modification will add 8 kg to the weight of each tank and will

necessitate at least a partial requalification of the tank design. ._

Enlargement of the propellent tanks will also necessitate enlarge-

ment of the propellent management device by an equivalent amount. The

basic design concept of the PMD will remain unchanged, but the redesign-

ed PMD, like the propellent tanks, will undoubtedly require requalifice-

tion. A weight increase of approximately 1 kg in the PMD is to be expected,

bringing the tL_tal weight increase of the tank and PMD to 9 kg.

A 147. increase in the quantity of helium pressurant will also be

required. If the bottle design pressure remained unchanged, the required

14% volume increase could be accommodated by increasing the bottle diame-

ter from 63.5 to 67.3 cm. The resultant weight increase in the bottle

would be approximately 5.5 kg, which added to the approximate 1.0 kg

additional helium required, brings the total weight increa_ for the

pressurant to approximately 6.5 kg. It should be noted, however, that

final decision on the size of the helium bottle should be based on flow

test results of the VO '75 propulsion syste,_ Precise sizing of the

pressurization system ia very difficult due to the heat transfer accompany-

ing the pressurization process, so it is conceivable that the existing

bottle already has adequate capacity for the proposed MSR mission.
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Components in the VO '7.5 flow system do not appear to require any

modifications whatsoever, though they may have to be qualified for ;-he

._onger llfe in orbit. The propellent Isolation assembilies have the cap-

abil_ty of an almost unlimited number of isolation cycles, so a modified _i

engine duty cycle should present no problems. The engine Itself will be
t

required to provide a single burn of 52 minutes for urbit insertion

instead of 45 minutes, and a total burn time of 62 minutes instead of

53 minutes to accommodate trim maneuvers ard rendezvous. It is doubt- i

ful that any redesign of the engine will be required, but certainly
_r

requallflcatlon will be in order. _"

Orbiter Aux_ li_aryPropulsion. The proposal to replace the cold gas

attitude propulsion system with a hot gas system arises principally from

the requirement for a AV capability of 60 m/s for final rendezvous. It !_

is readily determined that this requirement is best satisfied by a mono- _

propellent hydrazlne system, so it is logical to combine the attitude _

control requirements and this AV requirement into a common monopropellent _
hydrazine system.

It is proposed that the AV thrust requirement be provided by (4)

50 N monopropellent hydrazlne thrusters, possibly the Model REA 22-4

thruster pzJduced by Hamilton-Standard. These provide the proper level

of thrust for the AV maneuver, and they can be operated diff_zentially

for pi_ch and yaw control. An ideal location for them _ppears to be on _

the surface of the bus within the structure that supports the solar

panels as shown in Figure VII-15, Assuming a specific impulse of 2250

N-s/kg, and a spacecraft weight of i150 kg, the mass of propellent to be >'

consumed by these thrusters in providing the 60 m/s V is computed to

be 30 kg. _

To provide the APS requirements, it is proposed to locate quads of s

I N thrusters on the bus surface in the vicinity of the 50 N thrusters,

as shown in Figure VII-15. This location (on the bus) is necessary to

minimize thermal control problems, but it tends to be inefficient insofar ii

as propellent consumption is concecned because of the relatively small
%

moment arm provided. 'l_e selection -f i N tl.rust arises from the de- "

slrabillty of providing the same to_qu_, as the cold gas APS foa spacecraft

maneuvering. The moment arm o_ the _let B_ thrusters will be only about ;_,
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1/3 that of theecold gas thrusters located on the tips of the solar !m
panels, so the thrust level (I N) must be approximately 3 times that

of the cold gas thrusters (.3 N).

The use of a total of 16 APS thrusters is necessitate_ by the re-

qulrement Lo provide small tr_nslational AVs along the pitch and yaw

axes. The four sets of tangentially firing thrusters will be fired in

pairs to provide this capability; two of these sets will be fired

differentially to provlde roll control. Arrangement of the thrusters

in two strings, each protected by an Isolation assembly, will permit

isolation of one-half the thrusters in the event of an individual thruster
failure (Figure VII-16). This will reduce the APS capability to that of

providing on1?, moments instead of pure couples, but this is no different

from the capability to that of providing onlymoments instead of pure

couples, but this is no different from the capability provided by the

VO '75 cold-gas APS.

To precisely determine the propellent requirements for the APS

entails extensive analysis which is beyond the scope of this study, but

it is not difficult to compute the consumption in the limit cycle mode,

a mode of operation that normally accounts for about one-thlrd of the

APS consumption. Computed consumptions (see Appendlx C) are sunmarized

below:

Consumption Rate Total Consumption

, Mode (Ibm/sec_ _Ibm)

Cruise, Roll .013(10) -6 .33

Cruise, p and y .0029(I0) "6 (each axes) .14 (both axes)

Orbit, Roll .024(10) -6 .83

Orbit, p and y .021(I0) "6 (each axis) 1.45 (both axes)
n

2.75 (1.25 kg)
It is evident that the propellent consumption is low during the cruise

• phase when the spacecraft moments of Inertia are large, but becomes

significant during orbiting when the moments of Inertia are small

Assuming that the total propellent APS consumption for attitude

control functions (exclusive of that for AV) is _ times the limlt cycle

concumptlon (typical for this type of mission), a value of 3.75 kg is a
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obtained. Then adding this to the AV consumption brings th_ grand total

consumption to 33.75 kg. Allowlng a 107.contingency factor, the total

?repellent requirement evolves to approximately 37 kg.

It will be noted that the propellent allowed for contingencies is

much smallcr than that provided for the VO '75 cold gas APS system.

This is due to two factors; i.e., leakage is not significant with the

hot gas system, and excessive propellent losses are prevented by prompt

isolation of thrusters in the event of a fail-open failure (Figure VII-16).

Also, it will be noted that even though there may be a large percentage

error in the estimated propellent consumption for attitude control func-

tions, this will have relatively little effect on the total propellent

to be provided.

Assuming that the 37 kg propellent (N2H4) will be contained in two

spherical tanks, and that blowdovn pressurization will be employed with

a blowdown ratio of 2-1, the required volume of each tank is found to be

approximately 37,000 cc, and the diameter is approximately 41 cm- It is

proposed to install these tanks in place of the original cold gas pressure

bottles, though the latter are slightly smaller in diameter. It is ex-

pected that minor repositioning of internal components will permit the

slightly larger hydrazine tanks to be accommodated.

It is predicted that a mass fraction of 0.6 will be achievable with

a hot gas propulsion system of this size, leading to a total system

weight of 61.5 kg, or a dry system weight of 31.5 kg. This is in contrast

to the VO '75 cold gas system which has a total weight of 44.8 kg, but

carzies only 14 kg propellent. The hot gas system weighs only 16.7 kg

more than the cold gas system, but carries 23 kg more propellent.

4. • Lander Terminal Propulsion System

To acco_uodate the increased landed weight associated with the Mars

sample return mission, it is necessary to modify the Viking '75 terminal

propulsion system to provide both an increased total i_q_ulse and an in-

creased thrust level. The need for increased impulse arises directly

from the increase spacecraft weight to be decelerated; the increased

thrust is needed to improve the propulsive efficiency so that the over-

all propellent consumption may be minimized.
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After considerable study it was concluded that the most attractive

solution to the problem is to provide a regulated GN2 pressurization

system in place of the blowdown system used on Viking '75. This will

permit the propellent feed pressure and thrust level to be maintained

constant during termlnal system operation (instead of decaying to

approxlmately one-half the Inltlal values), and will also permit a

greater quantity of propellent to be loaded into the tankage. Maintain-

ing the thrust level constant at slightly greater than 2670 N (600 Ibf)

results in a propellemt requirement of 75.5 kg for the MSR mission,

only 9.1 kg more than that required for Viking '75.

A number of posslble options were considered for packaging of the

propellent. The solutlon flnally selected is to eliminate one of the

propellent tanks and load all the required propellent into the remain-

ing tank: The Viking '75 tanks are normally loaded to only about 30Z

of their capacity so that excessive pressure and thrust decay will not

be experienced during blowdown. Loading the full 75.5 kg usable propel-

lent into one of the tanks results in the tank being only about 70% full.

Use of a single tank greatly simplifies the packaging problem on the

lander, and at the same time ellminates a potential problem of cross

flow and gas Ingestlon between tanks under the action of 8£de loads, and

simpllfies the propellent feed syste_ The use of a slngle tank located

some distance from the lander centerllne does result in a shift in the

center of gravity during system operation, but it appears that the lander

guidance and control system can accomnodate this shift without dlfflculty.

The tank may require some redesign and requallflcatlon to accommodate the

Inczeased propellent load, but this does not present a major probleuL

Some addltional weight saving presumably could be achieved by use of a

somewhat smaller propellent tank, but it is doubtful that this is worth

the addltional development effort and cost involved.

The adoption of a regulated GN2 pressurization system entails the

addition of a high pressure bottle for storage of the GN2, and a pressure

control assembly to regulate and control the GN2 flow. Precise determin-

ation of the GN2 requirements is _omewhat difficult because of the complex

• nature of the heat transfer during system operation, but reasonably
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accurate estimates can be made using s_plified approaches. The approac_

that was used involved the assumption of a polytropic expansion of the

GN2 in accordance _r_th the e_ation 1_ 1"3 = constant, and the assumption

of tustantaae_s mixing of the gas In the propellent tank ullage volume,

but no heat transfer between the gas and the propellent. An additional

Q important assumption that entered into the sizing of the bottle was that

the pressurization system is to be sterilized follmrfng GN2 load4_ug. This

requires Sat the bottle be loaded to a pressure level of only 1550 N/tin 2

(2250 psia), when designed for a pressure level of 2070 N/cJ (3000 psia),

in order that the design pressure is not exceeded when the bottle is

subjected to the sterilization environment (125°C).

Based on the above, it has been determined that the total quantity

of GN2 regnlred for pressurizatlou is approximately 6.8 kg, of which

5.9 kg is i_,Itia?.ly stored in the bottle and ,9 kg in the propellent tank.

The bottle to ccatain this quantity of CN2 will be approxlmately 40 cm

in diameter and wLll weish approximately 9.5 kg. An approximate weight

co_arison between the unmodified Viking '75 te_nal propulsion system

and the modified system is presented in the table below.

_stem Wet_ts _

Propellent Tanks 14. 8 7.4

GN2 Pressurant 6.5 6.8
Pressure Bottle 9.5

Pressurant Control Assy 4. 1

Propellent Control Assy 8.I2

Totals 29, 5 32.8

The estimated dry weight of the modified syl_em iS seen to be only 3 k8

greater than the uu_dified system because the increased weight associated

w_th the regulated pressurization system is neatly compensated by the

_ weight saving _n propellent tankage and the propellant feed 8yst_ One

_r propellent tank is elin_tnated, and one propellent isolation assembly is
S

,: , eliminated, though the remainin$ isolation asiembly may requite some

: '_ _ medi_teation to reduce its flow resistance, j

_ VII*G?
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The modifications described above are summarized in Figure VII-i7.

One of the original propellent tanks remains on the lander in its normal :

location, the other one has been removed and replaced by the CH2 pressure

bottle and its associated pressurant control valviug. The number, sizes,

and locations of the seven thrusters used in the Viking '75 terminal

propulsion system remain unchanged. .
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D. THERMAL CONTROL _

The thermal performance of a space or planetary vehicle is uniquely _

determined by its temperature response to three sets of superimposed

forcing functions: (i) the thermal configuration of the vehicle, i.e.

the matrix of heat flow paths and thermal inertia provided by the struc-

tures and components (including thermal control); (2) the internal heat
%

dissipation profiles; and (3) the external environments. These functions _!
are time- and mission phase dependent, hence a valid assessment of thermal _

concerns and potential solutions of any given mission phase must take into

consideration the total mission performed by the total spacecraft. In

th_ section the thermal forcing functions of the MSSR Lander and MAV are

examined in light of Viklng'75 thermal technology, and the required modi-

fications and. new developments for the implementation of the MSSR mission

are determined.

I. Sterilization-Through-Landing: The Viking'75 thermal control approach

for these phases of the mission provides sufficient flexibility to assure

adaptability to the MSSR mission, with modifications required at the

detailed design level. The overall approach Includes the use of a fluid

loop for RTG temperature control during dry-heat sterilization, coupled

with air conditioning during prelaunch operations; radiant distribution

of RTG waste heat within the confines of the aeroshell and base cover for

temperature-control of the lander and its external components during cruise;

supplemental control of deorblt- and terminal propulsion systems by elec-

trical heaters; the use of thermal inertia to maintain equipment tempera-

tures during short transients, such as during boost, entry_ parachute- and

terminal descent, and mldoourse maneuvers; and the use of coatings and

insulation to control heat transfer through the capsule/envlronment inter-

faces. The requirements for modifications at the detailed design level

are imposed primarily by two factors_ the lower heat dissipation levels

of the MSSR RTG's, and the conflguratlonal differences between the MSSR-

and the Viking'75 landers.

2. Lande _ Operations: The most significant differences between the

MSSR and Viking lander thermal chsracterlstlcs occur during this phase of

the mission:
VZZ-70
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(I) The presence of th_ _V on the top of the MSSR londer incredses

the volume of the hardware requiring thermal control by a significant

amount, the correspo_.ding area of the lander/environment thermal interface

being approximately three times that of the Viking'75 lander. The most

significant problem associated with this thermal configuration is maintain-

ing the MAV propellant temperatures within their required limits. The MAV

propulsion system is characterized by bulky geometry, the absence of

internal heat sources, narrow temperature limits, and low internal conduct-

ances. The supply and distribution of heat for therm_l control of the MAV

is, therefore, the central problem in the thermal control of the MSSR

lander.

(2) Internal heat dissipation by equipment within the MSSR lander is I '_

Iapproximately 25 to 30 percent, while total RTG heat dissipation is 40 per

cent of the Viking'75 levels. I

(3) The environment on Mars during the MSSR mission is expected to

be slightly warmer on the average, with somewhat narrower range of extremes,

when compared with the Viking'75 mission. This is illustrated on Figure

9"£I-18which shows that for the initially assumed MSSR land%ng site accessi-

bility latitudes of +30 ° to -30° the range of expected temperature extremes

is in the order of 22°C (vs. 56°C for Viking), the '_ot" extreme tempera-

ture being approximately 5°F warmer, than in the case of the '75 mission.

The conditions for the specific lattitude band identified in Figure _1-8

of Chapter II will be somewhat less severe than thoso analyzed here.

The planned eight-day stay on Mars surface is too long to rely on

the thermal mass of the propellants for temperature control. An analysis

has indicated that the use of electrical heaters in combination with insula-

tion as the principal means of maintaining propellant temperatures would be

inconsistent with the weight and power limitations of the MSSR lander;

the product of insulation weight and thermal, watts required would range

from 40 to 120 watt-power x ks insulation from hot to cold extreme situa-

tions, respectively. Because of the bulky nature of the propulsion system,

and in view of the thermal configuration of the lander as d_scribed under

(1) above, the thermal switch concept used on Viking'75 would be ineffective,

when used to control MAV temperatures. In view of these considerations, a
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significant departure from Viking technology will be necessary in the

thermal design of the MSSR lander/MAV configuration for Mars surface

operations. The recommended approach is described'below.

The baseline concept for Lander/MAY thermal control on Mar3 surface

is depicted on Figure VII-19. The MAV is enclosed within a canopy on

the top of the lander, which is thermally communicating with the lander

equipment compartment through the equipment plate, The compartment and

the canopy for_ an integrated thermal enclosure.

The "canopy" concept uses R_G waste heat as a source for thermal

control, supplied in the form of "line-sources" via heat pipes. The

heat pipe temperatures will be between 170 and 250°C. Radiant heat

from the heat pipes will be directed essentially upward by IE reflectors

(polished aluminum) as shown, and the radiation will be re-reflected and

distributed around the MAV propulsion system by the reflective finish

ov the interior surfaces of the canopy. The "gap" between the canopy

and the MAV serves as an insulator with effective conductivity = con-

ductivity of Martian atmosphere + convective effects. Available experi-

mental data indicate that the convective effects inside the canopy should

be acceptable. A relatively thin layer of fibrous insulation is provided

around the canopy to further aid in retaining the RTG waste heat inside

the canopy_ see Figure V11-19.

Control to accommodate hot and cold extremes is achieved in one or

a combination o£ three possible ways: (R) rotation of the reflectors

around the axes of the heat pipes via bimetallic actuators or equivalent;

(b) size the system to survive the hot extreme, compensate for cold extremes

by electrical heaters; (c) size the system for an appropriate nominal

environment and qualify propulsion system for the hot and/or cold extremes.

The canopy will be terminated short of the tip of the conical nose of

the MAV to provide access for sample acquisition (as shown)_ and supple-

mental electrlcsl heating is provided to maintain the liquid propulsion

temperatures within Stage IIl of the MAV. The upper port%on of the canopy

will be attached to the erection mechanism and will separate from the

lander upon MAV erection prior to launch. For the baseline design no

further thermal contro[ of the lander is required after MAV launch.
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Functionally, the above basellne therm_llcontrol concept differs _ _'

from Viking'75 la_:der thermal control in three essential aspects: (a) _ .
all of the RTG waste heat i9 dissipated insid, a thermal enclosure; _ :

(b) the actively controlled part of RTG waste heat is the heat lost to _ "_.

the enviro._ment(as oppc-ed to hea_ into the compartment); (c) beat dis-

tributlon within the compartment is primarily by radiotion channelling _ !

(vs. equipment plate conduction i_Lthe case of Viking'75). _ :

MAV Ascent and Orbital Operations: Thermal control during this

phase of the MSSR mission is accomplisked by the use of standard methods, !.

as ,'epictedon Figure Vll-20.
/

This concept takes advantage of the constant solar orientatl'm of :

the MAV. Equipment compartment temperatures ave maintained by passlve ,i

thermal balance between the absorbed solar and omitted IR radiation i

through the "thermal window". The interior of the com_qrtment is thermally _

coupled to the "window" by radiation, and it is thermally isolated from

the rest of the spacecraft and from the space environment by multilayer _:'

i-_sula_ion(except the window). _:

A similar concept is used to control the temperature of the sample ;_

container, with an sbsorptlvity/emissivityratio of,a/e = 0.5, iv order

to maintain its temperature below 0°C. The solar attglewas assumed ":

constant at 35 degrees from the vehicle axis. ,-

The.-mal control of the shaded propulsion thrusters is achieved by !

insulation and thermostatically controlled electrical heaters.
$,

Sample Container Thermal Control - Docking Through Earth Entry. During

the approximately 730 days comprising Mars orbit- and Earth-return cruise,

_h_ sample container temperatures will ba controlled as shown in Figure

VII-2I. Consideration was given to two types of anticipated requirements: 4-

a) the upper temperature limit of the sample Is specified (e.g. O°C as in- >__
dica_ed on the figure), In which case thermal control can be achieved by ,!

passive _eans only; b) in addition, a relatively narro_ range of controlled

_empera_ures Is also specified (e.g. -5 to-25°C as showu_, which requires ;i
_he addition of a I watt thermostatically controlled heater to minimize un- i_

cer_atnties aesociated, wi_h maintaining the lower temperature limit and the i
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i required gradients through the sample. The requirement of maintaining the

receptacle lid in the shade--except for short tr_nslents, such as during

midcourse maneuvers--is consistent w_th current concepts of the mission

profile.

\
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E. AERODYNAMICS _

lu this study the proposed configuration for the Mars Ascent vehicle

has been evaluated from an aeroheating as well as from aerostability

standpoint. Also, the modified Viking Lander Capsule was examined to •

confirm that the necessary cg shifts and after body shape changes were _,

acceptable. The MAV is discussed first.

i. HAV Aerodynamics

A large amount of aerodynamic coefficient data for slender vehicles

have been collected. Because for this type of vehicle the normal force

coefficient variation wlth angle of attack is essentially linear up to

about 25 degrees, this coefficient can be used for most purposes in derlva-

rive form with respect to angle of attack as a function of Mach number only.

Also, the axial force coefficient and the center of pressure location are

essentially invariant with angle of attack. Therefore, the aerodynamic

coefficients can be presented in the simplified form shown ._.n Figure V11-22.

The MAV cecter of gravity is located about 33 inches from the cone-

cylinder juncture and the aerodynamic center Of pressure is located very

nearly at the juncture. Thus the vehicle is statically unstable_ so that i

artificial stabillty (a reaction control system) is required unless tall

fins are used. It has been estimated _hat cruciform fins with each panel

having an area of about 0.4 ft 2 wouln stabilize the _V. However, it is

not clear that positive stabillty is desired because in a strong cross wind

the vehicle would tend to turn into the wind, whereas, without fins it

would drift laterally with the ACS maintaining the desired attitude.

Posslbly, Just enough fin area to provld_ neutral stability would result in

a savings in ACS fuel. For the baseline however no tail is specified.

Fo:- the tailless _hicle, at the time shortly after liftoff, while

the forward velocity is small, a cross wind would produce an angle of attack

of 90 degrees. Under this condition the center of pressure occurs about ':

at the centroid of the cross sectional area, Just about coincident with the _

center of gravity. Thus the overturning moment would be essentially zero

and the vehicle would gradually assume a lateral drift rate (relative to

the ground) equal to the wind velocity. _
/
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As the forward velocity increases, the center of pressure location will

move toward the cone-cyllnder juncture. Later in the trajectory the vehicle

may be subjected to wind gradients. The NASA M&rs Engineering Model specifies

wind shears of 0.1 m/s/m up to 20 m/s. The peak value of 20 m/s is really

Insignificant. The gradient of 0.1 m/s is equivalent to an induced pitch

rate of 0.1 rad/s. This is the disturbance which the ACS must be able to

control. For the classical linear, sprlng-mass system the steady-state

response to a ramp input is linear of the same magnitude with some time lag.

This analogy is quite appllcable to the MAV. Thus the control system will

sense a pitch rate of O.I rad/sec and react accordingly. The rate of

reaction s i.e., _le torque required, will probably be established by the

rendezvous rccuracy requirements, since the rate of 0.1 rad/sec is small.

Because of the low atmospheric density on Mars' surface the dynamic

pressure for a horlzontal wind velocity of 90 m/s is only 2 psf. This

pressure acting on the MAV in the upright position results in an overturning

moment of only 106 ft-lb which is insignificant compared to the weight of

the lander/MAV which produces a moment of 3946 ft-lb.

The cg of the lander/erection mechanism/MAY is 51 in. above the surface.

This results in a tip over angle of 28 degrees. The wind effect on this

angle is insignificant also.

Stagnation point heating rate as a function of time is shown in Figure

VII-23 and the heating rate distribution for the HAY nose cone is given in

Figure VII-24. This curve was obtained via a wind tunnel test in CO2. Can-

didate heat protection options are also shown in Figure VII-23.

2. I_SR Entry Vehicle Aerodyna_c Stab£1it7

For the very blunt type of entry vehicle (EV) configuration, such as

the Viking EV, _e static aerodynamic characteristics are dominated by the

forebody gecauetry. The nose radius, cone angle and edge radius are all

important. The static stability, that is, the slope of the pitching moment

e%
curve_ _ = _Xcp - x cg), is not strongly affected by longitudinal centern

of gravity location because the center of pressure is so far aft (weLl aft

of the body) that small distances within the body are relatively insigni.Ci-

cant. The center of pressure for the Viking EV as a function of Mach number

is shown in Figure VII-25.
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The dynamic stability is strongly dependent on the pitch damping co-

efficient derivative, Cmq + Cm_ , which is very sensitive to c.g. location

and afterbody geometry in addition to forebody geometry. Of particular im-

portance is the angle of the afterbody Just aft of the plane of maxlmum dia-

meter. Another important parameter to dynamic stability is the ratio of

body diameter to radius cf gyration in pitch, D/_y. This ratio for high

drag EV shapes must usually be greater than about 3.5. (The value for the

Viking EV is about 5.3 because of the small, compact lander relative to the

EV di_-eter. The reason for the importance of D/_y is that in the pitching

equation of motion it appears as a squared multiplier on Cmq + C_.

The aerodynamic coefficients for the Viking EV will apply for the

vehicle if che geometry is not significantly different. Because with

the presently conceived modifications the initial afterbody angle is not

altered and the additional length is relatively small, it is believed that

the Viking aerodyn_ic characteristics are quite applicable.

A slightly different degree of transverse c.g. offset (_ cg/D) is re-

quired for the MSSR entry capsule to achieve the same L/D since the axial

e.g. location (xcg/D) is aft of that for the Viking entry capsule. However

this amounts to only about an 0.12 inch change.

The pitch damping coefficients for the Viking EV have been detemined

through au extensive wind tunnel test program. First, a number of candidate

shapes were studied and then the selected shape was thoroughly tested. The

resultant coefficient which pertains in the range of the trim angle of attack

is shown as a function of Mach number in Figure VII-26.

A brief study of the dynamic stability characteristics of our EV has

been made by computing the Coakley stability criterion for various points

along the entry trajectory using the four Cq + C& functions shown in
Figure VII-23 and various values of roll rate. A sSmilar study has been

made for the Viking EV for comparison. Although rolling is uot intended for

either mission it was deemed of interest to examine how close to roll reso-

nance these configurations might be because in flight the roll control sys-

tel will produce certain roll rates depending upon the severity of atmospheric

disturbances experienced.

VII-85

1975006730-328





The results of the study are shown in Figure VII-27 which delineates _:

stability boundaries as functions of altitude and roll rate. By "stable"

it is meant that an angle of attack disturbance will tend to converge. It

is immediately apparent that for a value of C + C equal to zero, both
mq ma

vehicles become unstable below about 28 km during entry. This boundary

corresponds to the destabilizing effect of the negative dynamic stability

gradient subsequent Co the passing of peak deceleration. It is apparent,

since all of the boundary curves for the Viking EV occur at larger roll

rates than our EV_ that the Viking EV is somewhat more stable. This results

mostly from the larger value of V/Oy. At zero roll rate both vehicles
become unstable at an altitude of about two kilometers with the number 2

dmmping coefficient curve. This is of no real significance because in

both cases parachutes are deployed well above this altitude. For the MSSR

EV with the number 2 curve the vehlcle is very close to being passively

unstable at about 21 kmof altitude. It is quite possible that the vehicle

would traverse this region before significant angle of attack divergence

occurs even without its ACS system in operation. However with the Viking '75

ACS system in operation in the MSSR (URR4D) vehicl%stability is assured.
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F. STRUCTURE i

The structural elements necessary to accomplish a sample return

mission can, for the most part, be derived from existing hardware. The

exceptions to this are the Mars Ascent Vehicle (MAV), the Earth Entry

Capsule (EEC), and, to some degree, the Earth Re_urn Vehic!? (ERV). A
7

Titan�Centaur with _ Viking uose fairing was selected as the launch vehicle

for the baseline mi=sio_. A modified Viking spacecraft would be used to "

accomplish the remainder of the mission. The Earth launched payload is
/

shown i- Figure _II-28.

,equlrements: A significant portion of the structura] design effort :_

is as a result of the modifications that are required tc existing hardware.

These include stretching the orbiter propellant tanks and support truss;

modifying the orbiter/VLC adapter structure to accommodate the ERV; enlarge

bio-shield cap; enlarge base cover; redesign parachute support truss; and

modify lander body to accept the MAV with its launcher. :

MA___V:The Mars Ascent Vehicle ia a new-build item. Stages I and II

consist of solid rocket motor assemblies with interstage skirts. The

proposed motor assemblies would be spherical titanium tanks with nozzles

constructed of low density carbon phenolic and glass phenolic. The skirts
£

would be chem-milled aluminum cylinders with a ring frame at either end.

Staging would be accomplished by using explosive nut_ and the necessary _
<

fittings would be integrated into the skirts and frames. In addition, i ::

the Stage I skirt contains the fittings to interface the 1gunther mechanism.

%

Stage III of the MAV would be packaged as a single black box. The _

primary structure would be an aluminum cylinder with a transition section

on the aft end to interface the smaller diameter Stg. II skirt. The nose

fai._'B would be constructed of R/F transparent, glass reinforced, phenolic

to allow operation of the antenna mounted inside the MA_. Subsystem ' ,_

cumponents would be mounted on an ah_minum rack which would also provide i

support for the titanium propellant spheres. Sealing the stage to protect _ j_

the components from the martian environment is s major conce-n. The aft
!

?
end, splice frames, propellant feed line and solar vanel wiring penetra-

tions, and the nose fairing interface with the sample canister, all would _

need to be sealed. ._
/
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Mechanisms are required in Stage III to deploy the solar panels,

open the canister to receive the sample, present the canister for transfer,

i and to release the canister following transfer. The solar panels would

i

be soleL_oidreleased; the canister opened and closed by a screw drive

actuator; the canister presented for transfer by a Viking type extendable

boom, and a pyre release for the canister from the boom.

The sample canister is a can within a can. Again, aluminum alloy

would be used to construct the can and a gold deforming seal would be

employed to seal the container for the return trip.

Lander: The Viking lander body geometry, construction technique, J#

and materials used would remain unchanged. The structure would be modi-

fied as required to accommodate component additions and/or deletions. The

most significan_ of these is the addition of the RAV launcher which would i

be supported off the lander equipment plate. Enough components have been

deleted from the pl_te to make this structurally feasible. By beefing up i

the landing leg load limiters, the leg assemblies appear adequate to land

the increased weight imposed by the IIAVbased on analysis discussed in

Chapter VI-B. The launcher would be turret mounted and provide a two

point attachment with the MAV at it_ CG. It is capable of raising the ?

MAV to desired elevation angle and rotating to the proper azimuth angle,

Elevation angle movement would be provided by torque motors while the gear

driven turret provides azimuth.

Installation of the HAV on top of the lander forces the parachute
?

canister aft thus redesigning the parachute support truss and enlarging 1 :

the base cover and bloshield cap accordingly. I
Increased heat loads on the aeroshell/heat shield due to d_ect entry i

make it necessary to increase frame height and material gages on the aero- I

shell. The deletion of entry science in the aeroshell simplifies these mods.

Orbiter: The most significant structural change to the Viking orbiter

is the stretch to the propellant tanks. The amount o_ propellmt required

tS increased by 15Z over the Viking'75 and this could best be accomplished

by increasing the length of the tank barrel sections by approximately 12 cm

and modify the thermal blanket accordingly. The remainder of the prlnmry i
orbiter structure would not be sf£ected except for _dd_ion and deletion of

component brackets. _'
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ERV: A major change to the Viking spacecraft is the addition cf the

Earth Return Vehicle between the orbiter and the Viking lander capsule.

A Pioneer Venus derivitive was assumed to be the ERV design. A conical

adapter skirt of skin-stringer construction with a £rame at either end

would be used to transfer loads from the ERV ro the orbiter. On the

other end"of the ERV is another conical adapter to attach the VLC to the

ERV. This skirt serves two purposes in that it contains a liner that is

used to guide the sample canister into the receptacle in the EEC. The

skirt interfaces the existing VLC support points and the ERV thrust cylinder.

The adapter will have the capability of being jettisoned from the ERV

followlng sample transfer.

The ERV would coatain the Earth Entry Capsule. To do this it would

be necessary to relocate the Pioneer Venus antenna installation in order

that the EEC could be installed on the vehicle centerliue. Details of

this antenna relocation were not worked under this study and should be a

part of a _uture assessment of the entire Earth R_turn Vehicle. The Earth

Entry Capsule would be clamped into the ERV so as to allow separation for

Earth entry.
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VIII MISSION P&OFILE/OPERATIONS

Part A of this section presents a detailed tlmeline for the MSSR

mission. The ttmeline is the result of an exercise in the scheduling of

mission activity carried out to uncover potenti_l problems.

Part B deals with identification of Mission Opportunity Dependent

quantities and their impact on the mission timellne presented above.

A. 1981 DETAILED MISSION TII_LI_

Table VIII-1 contains a detailed profile of the l_Sg mission as con-

ceived in this study. Particular emphasis is placed on the orbltal rendez-

vous, docking and sample transfer phases. The purpose here is to:

1) Delineate key computations (i.e. show what computations

are made and when they are required in the mission)

2) Shoe where computations are performed (i.e. either in the

mission control center or onboard one of the S/C)

3) Display the sequence of operations

4) Point out DSN tracking arcs in terms of number of orbits

and type of data

5) Distinguish various maneuver types (i.e. pure attitude changes

vs. thrust through center of gravity)

Certain groundrules and assumptions were used in establishing the time-

llne. These are:

1) Twelve hours allowed for O.D. and maneuver computation

2) _ne hour for attitude maneuvers after C_ reception

3) MAV has power for 50 minute tracking per orbit

4) Continuous CMD capability for vehicles in orbit

The busiest periods of mission control activity occur prior to M_V

liftoff and prior to initiation of orbiter circular trim sequence. Most

li_toff quantities can be computed once the MAY position and attitude have

been determined (within three days of landing). Only the launch tim and

azimuth computations must be deferred until the final orbiter state is

_vatlable.
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The busiest onboard activity period starts with circular trim sequence

and ends with hard dock, Control is entirely with the orbiter. Guidance

and control requirements for this period have been examined. With present

Viking orbitez maneuvering (attitude rate) capability enough time is avail-

able for all events as presented.

No p_riods of activity (for either _/C or mission control) have been

found to be to complex or busy to rule out this HSSR mission mode.
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B. MISSION OPPORTUNITY DEPENDENF QUANTITIES

The following mission opportunity dependent quantities are identified:

]) Encounter O.D. accuracies

2) In-orbit O.D. accuracies

: 3) Landing site lattitude

< 4) Orbiter capture maneuver and plane change for return

5) Lander position determination accuracy

6) S/C C/K) opportunities

7) ERV TEl requirement

i Haneuver related quantities will limit the MSSR launch/encounter space

ix but have little or no effect on the sequence of events presented in part A.

Tracking requirements on the other hand will change the time between events

depending on how much data is needed to produce a desired level of O.V.

accuracy. Single vehicle Quasi Very Long Baseline Interferometery (QVLBI)

data may be used to keep this variation to a minimum. During the encounter

phase approach O.D. accuracies will impact the likely period of the inserted

orbiter. This in turn will effect the period of the phasing orbit, etc.
.!

None of these quantities above, however, will change the ordering or contents i
T

of the sequence of events presented earlier. I
I

VIII-14

L

1975006730-349



IX EARTH ENTRY CAPSULE STUDY

The Earth Entry Capsule Design Study was added to the MSSR Study after !
t

the mld-term review. Its inclusion was prompted by the results of a study

of the potential failure modes tdlich could cause contamination of the Earth

in the Earth Entry Capsule method of sample return and recovery. That study,

conducted by L. A. Manning, Ref. IX-l, indicated that an unacceptably low

probability of successful sample recovery existed for the initially proposed

capsule design because of the total dependance on successful parachute deploy-

ment. (Other capsule failure modes such as entering at angles steeper than

the aerosbe11/heatshield design corridor were found to have acceptably low

p_obabilitles of occurrence._ Contamination of Earth by the i_acting bus

(ERV) was also identified as a concern in the Reference IX-I study and pro-
\.

viding a propulsion system on the Entry Capsule to permit a capsule deflec-

tionmode was suggested. However, for purposes of this study the bus de-

flection was specified so that the emphasis in the capsule design could be

placed on enhancing the entry, descent and especially the i_act survlval

aspects of the capsule design. Task descriptions, ground rules and criteria

for the study are presented in Section A and B with system descriptions and

performance data in Section C. Recommendations for further enhancing the

rellability of sample recovery are also provided.

A. TASK DESCRIPTION

This study task is comprised of three subtasks: 1, definition of a

capsule which has the capability of surviving entry and protecting the 1 kg

sample canister from impact damage in the event of parachute failure plus

providing a locator beacon system and flotation provision that function unJer

normal conditions, i.e., successful parachute operation; 2, evaluation of

extending the impact procec=ion to include the beacon and flotation systems;

and 3, evaluation of expanding the sample size to 5 kg.

As it became apparent very early in the study that the second version

of the capsule, the complete system impact protection version, was not appre-

clably heavier or more complex than the sample-only protected version, it was

adopted as the "baseline" in establishing the subsystem designs. The other

versions were also examined r.nd the rzsults are reported herein.

!
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4

. GUIDELINES

: The assumptions and groundrules for the conduct of the Entry Capsule

Study are summarized below:

I. Sample Payload 1.0 kg and 5.0 kg.

2. Nominal Entry Angle, "/, =- I0 °.

3. Design Entry Angle Corridor = -b u (skipout) to -15 °.

4. Parachute deployment altitude and capsule descent rate on the parachute

will be based on Air Force Aerial Recovery Criteria.

: 5. For one version of the capsule the ssmple canister shall be designed _

, not to fall if the entry capsule Impacts the surface at termlnal

velocity in the event of parach, Ate failure. For the other version of

the capsule design, the surface impact protection shall be extended _

to include the beacon/f!otat_.on system as well as the sample canister.

6. The ERV, or bus s is assumed to provide all functions during Nars/Zarth

flight includlng deflectir_g the bus after caosule separation, i.e.,

the capsule has no defle¢.tion propulsion system on board.

IX-2 _
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C. CONFIGURATION TRADEOFFS

Since the requirements for this entry capsule a_e somewhat different

from those of previous earth or other planetary entry vehicles, it ts appro-

priate to review some new configurations as well as existing entry vehicle

shapes. For example, a sphere would provide the simplest arrangement and

would be the most fool-proof from the standpoint of entry and earth impact

survival. However, it would also be by far the heaviest design due both to

the increased heat shield weight and the higher impact velocity caused by its

Iow drag coefficient. The impact g's and hence the thickness of impact limit-

_ ingmaterlal would be 5 or more times as great for the sphere. The sphere

would also create a very difficult docking and sample transfer in Mars orbit,

i.e., a heat shield cap would have to be emplaced and sealed after transfer,

see Fig. IX-l, and the reliability of the primary aerial pickup mode would

suffer due to di_ficulties in deploying a parachute through the heat shield

from a tumbling vehicle. For these reasons the sphere was dropped from

further consideration in this study.

The other class of vehicles considered all depend on achieving a pre-

scribed orientation during entry, and also during earth impact in the event

of parachute f_ilure, by means of their aerodyrmmic shape and/or an active

attitude control system. The Apollo shape has very well known characteristics

and can be designed to have the mildest entry and earth impact conditions of

any of the shapes due to its high dcag coefficient. However, this shape

requires an active attitude control system to maintain its orientation and

is thus inherently less reliable and more expensive to build than a shape

that is passively stable. Shapes which are passively stable in both the

hypersonic entry regime and the subsonic terminal velocity descent regime

include the family of 3pherically blunted 45 ° to 70° half angle cones being

developed for planetary entry probes. Consequently these shapes wet deter-

mined to be the most appropriate for the Earth Entry Capsule.

From this family of shapes, the 60 ° half angle cone was selected as

representing the best compromise between high drag (low impact veloclty

and low entry heating), and passive stability (ability to damp out pitch and

yaw disturbances). Also considerable aerodynamic coefficient and aeroheat-

ing data exist for this shape from Viking and pre-Viklng studies, and a

IX-371
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series of 60° cone scale model vertical wind tunnel tests were conducted at

Langley Research Center as a part of the MMC Venus Probe Phase B Study, see

Ref. IX-2. Based on these data, it is estimated that limit cycle pitch

oscillations for this shape in terminal descent will be small, < 15°, and

that the impact limiting material can therefore be concentrated in the fore-

body area. (All-acound protection is discussed as part of an Enhanced Proba-

bility of Recovery Capsule in part H of this chapter.) Afterbody shape is

important from bo_ a stability and aeroheatin 8 standpoint and data from the

above studies were used to establish the geometry of the selected shape.
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D. SEQUENCE OF EVENTS

The capsule events from Earth entry on are depicted in Figure IX-2,

culminating in recovery either by air snatch or pick-up from the water or

land surface. Approximately 6 hours prior to entry, the capsule is separated

from the spinning ERV. This separation ta_'es place at a capsule attitude

(established by the ERV) such that the angle between the capsule body axis

and the capsule flight path, the angle of attack, is zero at entry. This

capsule attitude is maintained during the 6 hour coast period by the spin "

=omentum imparted to the capsule by the spinning spacecraft (spin rate is

5 rpm. This imposes a constraint on the capsule (which is met by the selected .-

configuration but not be the configurations with half cone angles less than

45°) that the spin axis moment of inertia be greater than the moment of in-

ertia about the pitch/yaw axes.

The entry heat pulse lasts for 50 seconds and the heat is dissipated by

the half inch thick layer of ablative material. Heat soak through to the

sample is prevented by providing sufficient ablator to keep the peak tem-

perature of the back face of the heat shield (the outer face of the aeroshell

structure) to less than 360°F and providing multilayer insulation between

the structure and the sample receptacle. At approximately 15,200 meters

(50,000 feet) altitude the drogue chute is mortared out through the afterbody
•

cover. Upon inflation the drogue pulls the pyrotechnically released after-

body cover free of the capsule exposing the main chute and then extracts the

main chute. The dynamic pressure and Math number at this point are 864 N/m 2 -'

(18 psf) and 0.3 respectively, which are very mild in terms of existing para-

chute design experience.

!
An antenna is also deployed at this point and the rescue beacon is

activated.

After 20 minutes, at approximately 3050 meters (i0,000 feet) altitude,

the descent velocity is 7.6 m/s (25 fps) and the aerial recovery aircraft
/

engages the parachute with grappling hooks and reels it on board. This

operation involving a number of planes can continue if necessary down to with-

in a few hundred feet of the surface. If aerial _ickup fails, the capsule

impacts at 6 m/s (19 fps) and three flotation buoys are deployed to stabilize

the vehicle and keep it afloat, impact velocity is 35 m/s (116 fps) if the
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parachute system has failed to deploy, but the crushable impact limiter ,,

material causes the deceleration forces to remain within levels that tile !

sample canister and its seals and the flotation/beacon systems can with-

stand, 1250 g's. The beacon system has an auxiliary battery capable of

30 day life. Its nominal range is 300 miles.

If impact occurs on land, the forebody impact material is still sufficient i

to maintain the integrity of the sample and capsule subsystems. However, if i

land recovery is desired as the primary mode of recovery, the capsule should i \

be modified to include some impact limiting material in the afterbody area i

to cushion against secondary shock caused by rollins or tumbling after the L.. _;_

initial impact. Also, a pair of internally flush mounted rescue beacon :!

antennas: one facing forward and one aft, would replace the pop-up antenna

used in _he water recov_zy version. These modifications would result in

approximately a 10_ to 157. weight increase.
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E. DESCRIPTION OF BASELINE CAPSULE

i, General Arrangement

The baseline capsule, shown in Figures IX-3 and IX-4, is arranged to

facilitate insertion of the sample canister into a very sturdy cylindrical

receptacle; to seal this receptacle in a positive manner; and to provide

impact protection.for both the sample and the flotation/beacon system in the

form of crushable honeycomb. Reliable sample insertion during automatic

docking with the Mars Ascent Vehicle in Mars orbit dictates the aft center-

line location for the sample receptacle. Providing room to stow the recep-

tacle lid and to install a motor driven linkage to move the lid into place

establishes, in part, the afterbody dimensions. The other considerations in

sizing the capsule are impact limiter thickness and parachute packaging

design. The two-plus inches of crushable honeycomb stem from the assumption

that the electronics equipment g-limits are of the order of 1000-,1250 g's.

This corresponds to the capability of existing aircraft search beacon systems

and is slightly greater than the 900 or so _'s that the more sophisticated

Pioneer Venus Probe electronics will have to withstand during entry. Higher

values might be achievable with special development.

The toroidal shape for the parachute container results from an attempt

to keep the capsule as compact, and thus as light, as possible based on the

sample occupying the aft centerline location as described earlier. Thiu

arrangement results in somewhat unconventional chute packaging and bag strip-

ping operations as _ell as requiring an offset drogue mortar. These features,

however, have been studied extensively (Ref. IX-2) and are believed to be

sound. Further parachute design discussion is presented in part 3 of this

section.

The lid which seals the sample canister also closes off the afterbody

of the capsule, i._., it forms an aerodynamic seal where it presses against

the flexible ring surrounding the opening on the aft centerline. A small

amount of heat shield, 0 .i0 inches, is provided on the outside surface of

the lid as well as the other external surfaces of the afterbody.

Separate components house the flotation system and the beacon s.Jtem

with its power supply. The beacon used will probably be a standard Air

IX-9
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Force recovery beacon with the addition of primary cells utilizing lithium

_ wi_h an organic electrolyte.
?

Structural elements are sized for the 1250 g's and in the case of the

o aeroshell for the entry dynamic pressures also. These loads, however, do not

require very heavy gages due to the small dimensions and relatively light-

weight components. One of the areas which appears to require some develop-S

ment is the separation hardware required at the afterbody cover/afterbody
b

interface. The voltareavailable in this region is too small for standard

explosive nuts or pinpullers. Also the sample receptacle seals, which are

_ the main line of defensc against the exposure of the capsule to any biota i

contained on the surface of the sample canister, are also a development item. [i

They are conceived as one-time actuated, deformablc metal seals.

i
: A summary of the characteristics of the key subsystems is given in

Figure IX-5 and a complete weight statement is contained in Table IX-I.

More detailed information on the individua? eler_nts of the capsule is pro-

vided in the following paragraphs.

2. !ieat Shield Design

The severity of the entry heating conditions for this capsule falls

between the conditions that existed for the Apollo vehicle and those pre-

dicted for the planned Pioneer Venus probes. The entry velocity of 12.8 km/

sec or 47,000 fps (which corresponds to the highest velocity in the 1981-1984

: : opportunity period) is greater than the 36,000 fps for the Apollo and Venus

entcy situations. This velocity difference plus the smaller nose radiu_ and

steeper entry angle for the Earth Entry Capsule _ause the peak convective

heating rate to be about 4 times that for Apollo while radiative heating

rates are comparable. Since in addition co convective heating ratesm sur-

face pressure gradients and shear stresses are also several times greater

? than Apollo, the relatively low specific gravity (0.5), ablauive_aterial

used on Apollo canL,ot be used for this capsule.
f

Relative to the Venus Entry Probe conditions, howe_er, the much shallower

entry angle of the Earth Entry Capsule, -15° max vs -60°, result_ in convective

heating rates that are less than 1/2 the Venus probe values and rad_atlve

IX-12
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Table I7.-1 Baseline Earth Entry CapsuleMass Distribution Estimate
(I kg Sample)

L

Mass Kilograms

Structure 8.14

Sample Receptar.le 1.86
Aeroshell Structure 3.91

(incl. 2.5# Crush Material)
Inner Structure .93 :

Upper Frustum .61 ! :
F Lower Frustum .83 L..

Ablator 5.76 !

Parachute System 3.54 2

: Flotation System 1.36

Power and Cabling System 1.81

Electronics 2.95

: Pyrotechnics .91 2

Contingeucy 5_ 1.5___3

_ 26.00

Sample and Container 2.00

28. O0 -_

, }
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i
rates that are even less severe. Consequently one of the lower-density

Iversions of the candidate materials for Pioneer Venus appears to be a

' good choice.
!

_ Table IX-2 smmmarizes the conditions for several entry angles and body

locations for a ballistic coefficient of 74 kg/m- (which is slightly greater

than the 59 kg/m 2 of the baseline capsule). Figure IX-6 illustrates the

time history of the nominal entry angle heat pulses.

The response of the selected heat shield material, quartz nitrile
;
L

phenolic with a specific gravity of 0.98, is shown in Figure IX-7. Thermal

properties were taken from tests conducted in both MMC and Ames Research

Center combined convective and radiative heating facilities in connection

with the study of Reference IX-2. AS indicated in Figure IX-6, approximately

1/3 of the 0.5 inch thick forebody heat shield is ablated away during entry.

The structure behind the heat shield does not start to increase in temperature

until after dynamic pressure loads have subsided to low levels. Peak struc-

tural temperature is maintained below 350°F with the 0.5 inch ablator thick-

ness which is well below allowable adhesive bond line temperatures. Depending

on the overall conductance of the crushable layer and internal insulation

layers it may be possible to further reduce the heat shield thickness, however

the 0.3 inch thick heat shield provides a confortable margin on both recession t

and temperature soak-through and is recou_nended for the baseline design. It

represents about 20% of the total entry weight.

3. Parachute Design

The Air Force has been successful in recovering satellites by deploying •

a parachute from the entry capsule and engaging the pa ,,re with hooks

suspended from an aircraft flying by with a sink speed al to that of the

descending'capsule. Consequently this approach was selected as the primary

recovery mode for the MSSR Earth Entry Caspule.

The two major requirements that the main chute has to meet are: i) provide

a descent rate of 25 fps or less at I0,000 feet altitude and 2) be deployed

for 20 minutes prior t_ reaching the I0_000 ft level. In addition, the chute

must be reinforced to withstand the air snatch loads and have a canopy/rlser/

bridle design that minimizes oscillations during descent. The ring slot
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canopy configuration has become a standard for this application and is the

basis for our preliminary parachute system design in this study.

Chute Sizing - The UILinflated diameter of the chute, Do, is set by the

25 fps terminal velocity descent rate requirement at I0,000 it, i.e.,

WC_ PSULE
= I12 V 2 = i12 .001755 (25)2

(CD S)CHb'TE PlO000 I0000

Wc
--= .548

%s

where: WC = WE " WH/S ABLATED " WAFT COVER -NDROGUE CHUTE

= (61 - 5 - i - I) = 54 Ib

CD = .55 for ring slot chute

S = ---0--°
4

substituting

54
.5-_ D 2/4 = .548

0

Thus D = 15.1 ft (4,6m)
O

The velocity profile for this chute is shown in Figure IX-8. From this

plot the lowest allowable deployment altitude, based on the 20 minute elapsed

time requirement between I0,000 ft and deployment, is seen to be 52,000 ft.

(15900 m).

An analysis of the influence of the entry angle on conditions at the :
;z

deployment .altitude was also conducted and the results are shown in Figure IX-9.

These results show that below 70,000 ft (21400 m) the Mach number and decelera-

tion (or dynamic pressure) are invariant with entry angle and consequently

that a single design will work for any entry angle in the prescribed corridor. ,_

The final selection of a deployment altitude would be based on staying close

to the minimum allowable al_itude to minimize the Mach number and dynamic i/

pressure and facilitate simulating the conditions in test flights, whilestill

providing some margin on the 20 minute time period required by the recovery

squadron.
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Packa_inK and Deployment Considerations - The ideal arrangement for

deploying the main chute would be to mortar it out of a cylindrical container

i located on the aft centerline. A cylindrical container for the 15 foot

(4.6 m) diameter chute would hav_ to be about the same size as the sample

receptacle,.however, and it could _ot be packaged in this manner without

substantially enlarging the capsule beyond the size required to house the

sample canister. ,

#

Since weight and volume are critical, an alternative packaging and de-

ployment technique was adopted based on preliminary design work accomplished
i

in Ref. IX-2. This arrangement utilizes the volume around the sample recep-

tacle and aft of the beacon and flotation system compartments for the parachute

_ system. The main chute, folded into a bag, is stowed in this nearly toroidal

volume as shown in Figure IX-4. A snmll 4 ft (1.22 m) diameter drogue chute

and mortar are packaged in a cylindrical container mounted vertically along

side the sample receptacle. Lines from the drogue chute are tied to the

aft cover and a second set of lines from the aft cover are tied to the bag

containing the main chute. When the drogue becomes taut, the aft cover is

pyrotechnically released and the main chute is extracted by the drag force

of the drogue. When the main ,_hutelines become taut, the _ag is stripped

from the main chute canopy; the drogue and aft cover float free; and the

_ main chute inflates.

; A calculation was made to determine the allowable distance the drogue

i chute can be offset from the capsule center line without inducing unacceptable
i

pltching moments when it is mortared out. For a 50 fps mortar velocity, the

allowable distance is 7 inches which indicates the proposed design will not

: experience undesirable pitch rates.f

: 4. Electrical System DesiKn

Electrical requirements for the Earth Entry Capsule (EEC) are derived

from the groundrules established for the capsule. The capsule must be

self-contained and have a timer, control logic, command capability, ordnance

', initiation, and a locator beacon. Environmental requirements will define

certain hardware selection and packaging techniques.
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A functional block diagram of the EEC electrical system is shown in

Figure IX-IO. The Power Control Unit (PCU) is powered by a 12 V battery

. and contains the pyro firing circuits, conmland sequencer, a coast timer, :

:_ and power control circuits. The timer operates for 6.5 hours from ERV _

separation until the EEC is retrieved. The g-switches are redundant and

sense entry deceleration and water impact and provide inputs to the _e

quencer as intelligence in the logic sequence.

A dual redundant hot-wire system is used for ordnance initiation with

a mechanical S/A relay and SCR firing relay. The relays operate on 12 V

and the squib firing circuit requires 5 A at 5 V for i0 ms. The power

cartridges are the standard i A, i W no-fire for 5 min. with two bridge-

wires in a single case. This design provides a simple_ lightweight rystem

with high reliability and dual redundancy. A set of two 2.8 V cells are

provided for the redundant squib firing circuits.

_ The PCU provides commands to the mortar, aft lid cover, "lotation, and !

antenna via the appropriate ordnance initiation circuitry. An electrical

; command is issued via a relay to energize the beacon to an "on-only" con-

dition so that it can not be turned off once energized. This removes the

dependency of the beacon upon the PCU or 12-V battery after initial exe-

utlon. A backup g-s_..tch is also included in the transmitter package to

sense water impact and deploy the second antenna. The power control unit

is powered by two lithium primary batteries, one for the electronic circuits

and the other for firing the pyro squibs. The first battery will be com-e

posed of two parallel strings of 8-Ahr cells with five cells in series in

each string. The second will consist of two cells of the same rating.

Each cell has a nominal operating voltage of 2.8 and mass of 83 g resulting

in a total 9ell mass of 996 g (2.2 ib). Each cell is in the shape of a

standard D-size (6.1 x 3.3 cm dia.) battery.

The locator beaco_ transmitter is energized by command after the EEC

is on the parachute at approximately 15.3 km (50,000 it) altitude. The

: antenna is a "pop-up" STEM monopole antenna (61 cm long) actuated by an

,, ordnance-lnitiated lid-release switch. If an air recovery is not executed,

[_ a second antenna will be deployed after water impact with a g-switch to act
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Figure IX -i0 Earth Entry Capsule Electrical Func=Jonal Diagram,
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i
as a backup in case the first antenna does noc survive the shock of water

impact. The second antenna _ill be deployed by a mechanical lid-release

switch operated in conjunction with the g-switch. A water-activated switch •

• could also be used as a backup for the second antenna, l_e beacon requires

! _n input power of 18 mAwith 9 V from a separate battery and operates con-
<

tinuously for 30 days. The beacon operates on the emergency rescue fre-

/ I quencies of 121.5 and 2A3 MHz simultaneously and t: beacon h-_ an RF out-

put level of 300 mW with a range of 480 km (300 miles). The beacon/oattery

pack is waterproof and is insulated to prevent the structural temperature of

350°F (17b°C) due to Earth entry from damaging the components.

The beacon battery consists of two strings of four primary lithium

cells in series. E_ch cell has an 8-A hr capacity and provides 2.8 V. 13
r

A-hr is required _o operate the transmitter for 30 days. With this arrange=

ment, 16 A-hr of energy is available. The mass of the cells used in the

battery is 664 g (1.45 ib).
%

Phys£ca, properties of the hardware tha_ compzises the electrical sys-

tem of the JEC are listed in Table IX-3. The 12 battery cells include the

12 and 5 V sources of power. The antenna network includes tw_ STEM mt_ennas, :_

a coaxial circulator, coaxial cable, and tw_ lid-release rwltch_s. _:

Table IX-3 Physical Properties of the EEC Electrical System

Total.Mass
Eleggrical Hardware Cgm_HEr.entSize, cm kK _Ib

Power Control Unit 20 x 20 x 20 2.11 4.6

g=Swltches (3) 4 x 2.5 dia. .45 1.0

Batteries (12 cells) 6.1 x 20 x 6.9 1.00 2.2

Beacon Transmitter 9 x 4.5 x 4 .45 1.0 Z

Beacon Battery (8 cells) 6.1 x 13.2 x 6.9 .66 1.4
Water Switch 4 x " x 4 .09 0.2

Ordnance Power Cartridges (4) 2.6 x 1.6 dia. .04 0.I i
Antenna Network 7.6 x 6.3 dia. .76 1.7

Wiring .13 0.__._3 ,!

Total 5.69 12.5 :

),

5. Mechanical/Structural Decign

ODe of the main objectives of the capsule design sLady was to provide

a capsule capable of _Ithstandi,4 impact on a nonyieldlng sucface in the
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event of parachute failure, ql_. teru:inal velovit_ for this _ituation is

35 m/s (115 fps).

While it is possible to design a boilerplate container for the sample

itself that would not rupture u=_der this impact, insuring the integrity of

the blota-barrier seals, or the b:acon system electrLnic components 3 requites

reducing the deceleration forces in a more controlled manner. In the manned

Earth entry programs, Mercury3 Gemini, and Apullo and in studies of hard

: landers for Mars, the approach has been to provide a layer of crushable ma-

terial sach as aluminum honeycomb to attenuate the impact g forces. This

appears to be the best approach for this capsule as well.

The relation between impact g's and the thickt,ess of the crushable layer

is given in Figure IX-II which was taken from a Hexcel Corporation design

handbook, brom this figure t is _pparent that bringing the g levers down to

a hundred or so require:; u= cceptably large thicknesses, floweret, the g

levels do not need t be thi_ drastically reduced. Conlnercial aircraft res-

cue beacons ._ withstand about I000 gs and the more complex electronic
i

packages on the Pioneer Venus probes will have to withstand similar levels

daring entry deceleration. Consequently a value of !250 g's was selected as

a :_asonable design value foc sizing the crushable layer. The resulting i

design has a thickness of 2.4 inches (6.1 cm). i

The dens l of the crushable material is established by equating the i

Kinerl _ _nerg _f _he capsule to the work don in crushin3 the honeycomb.
.:ractural framework flat comprises the sample receptacle and the

electronic and parachute eupport structure is seen from Figure IX-12 not to

require particularly heavy gases to withstand the 1250 g's that reJult from

use of the cr_shabie hvneycomb. In addition the honeycomb can be used as the

core in a sandwich construction aeroshell, as in the Apollo comr:_nd ,module

design These factors substantially reduce _he weight penalty incurred in

the crushable material approach.

t

[
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F. SAMPLE-PROTECTION-ONLY CAPSULE DESIGN

_11eminimum capsule design is one in which only the s,mple canister is

protccted from impact damage. Even in this case, however_ there is a require-

ment to maintain the inte_rlty of the seal between the sample receptaclu _nd
i

its lid since presumably the outside surface of the sample canister may be

= contaminated. Again the use of crushable material is indicated to achieve

• a controlled g level. However, now the g level can be several times the

1250 level selected as the max allowable in the beacon-protected version.

' The crushable material is placed around the receptacle, 0.8 inch thick on

the forward end and 1.2 inches thick on the sides where the masses of the

: supporting equipment could impose locally high inertia loads on the sample

receptacle. For this version a considerably heavier-gage sample receptacle

: cylinder is required, see Figure IX-12, but the reduction in crushable

material thickness allows the capsule diameter to be reduced from 25.1 inches

(63.8 cm) to 23.1 inches (58.7 cm). This version of the capsule is depicted

in Figure !X-13.

! The net mass reduction, primarily due to the heatshield and aeroshell

. structural area reductions, is approximately IOZ (25 kg vs 28 kg).

The mass reduction does not appear warranted in view of the fact that

if the capsule is not recovered due to loss of the beacon or flotation system
there is a likelihood that the initially intact sample container will ulti-

mately undergo sufficient degradation to permit interaction of the contents

with the earth's atmosphere or oceans.
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G. 5-kg S_,_LE CAPSULE DESIGN

To evaluate the impact on the Entry Capsule Design of increasing the iE L

sample size from I kg to 5 kg, the 5 kg sample canister d_veloped in Chapter

VI, Section A3 was used as the basis.• This canister configuration was de-

signed to facilitate integration into the Mars Ascent Vehicle, i.e., to mini-

mize blockage of the rendezvous radar sensor and to cause as little growth

in size and weight of the _V as possible. This is significant in that

without these constraints the larger weight and volume samples could be con-

rained in a broader, shallower canister which would have less effect on the

overall dimensions and weight of the Earth Entry Capsule. !

Comparing first the sample-protected only verisions it was found that !

the capsule diameter had to grow from 23.1 inches (58.7 cm) to 27.1 inches

(68.8 cm), the o-perall length from 13.2 inches (33.4 cm) to 16.9 inches

(42.9 cm). The mass would increase from 25 kg to 37 kg. Figure iX-14 shows

this 5 kg sample capsule configuration.

For the capsules designed with impact protection for the beacon and

flotation systems as well as the sample canister, the capsule entry weiBht

increases from 28 kg to 41 kg to provide the 5 kg sample capacity.

o
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H. EN}L4_CED-PRO]I%BILITY-OF-SUCCESS CAPSULE DESIGN

Keeping weight and volume to a minimum was one of the major ground-

; _ rules in establishing the baseline capsule described earlier. Within these

constraints, features were incorporated that significantly increased the

probability of successful sample recovery over that of an earlier capsule

design that was totally dependent on successful parachute operation. How-

ever, still further improvement is possible if more weight is available.

The added weight could be obtained by assigning a portion of the margin

identified in Chapter VI to the Entry Capsule, or it might be obtained by

: gofmg to a dual launch or by the use of space storable propellants in the

Orbiter main propulsion system.

A brief study was therefore conducted to assess what changes might

: be made if additional weight were allocated and to estimate cost trends [

accompanying these changes. The results are summarized in Table IX-

and discussed in the following paragraphs.

The first column of Table IX-4 reiterates the design features of the

baseline version of the capsule and characterizes what might be called a

normal development and qualification test program for that design. In the

first level of an enhanced success probability capsule, column If, a change

is made to a more conventlonal, but bulkier, main chute packaging arrange-

ment. This increase8 the reliability of the system since more direct bene-

_- fit is derived from the many successful satellite recoveries by parachute

as well as the series of successful manned flight entry vehicle recoveries

and the Viking program parachute development work. This change, however,

_ requires a substantial increase in capsule volume, diameter, and surface

area since amain chute package in the form of a cylinder would be about

the size and shape of the i kg sample receptacle. This change is estimated

tO require a 25% larser capsule diameter and consequently a heavier aero-

shell, heat shield andmain parachute. The total impact on system weight

is estimated to be 12 kg.

This version of the capsule also incorporates an active attitude control

and RCS system whlch functions bo_h in the initial entry phase, to insure

proper orientation of the heat shield at entry, during the pre-parachute

- deployment descent phase, and in the event of unsuccessful parachute oper-

ation, in the terminal _e_cent phase as well. The biggest benefit of this
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feature is that the possibility of a failure occuring due to the capsule

impacting on the relatively unprotected afterbody (which conceivably could

happen in severe wind storm conditions) is effectively reduced. An alterna-

tive to adding an active ACS that also attacks this problem would be the

provision of impact-limiting material on the afterbody. This approach would

not improve the entry heat protection system reliability (as would the active

ACS approach) and it would adversely affect the parachute deployment relia-

bility and the sample transfer reliability unless omitted over the aft center-

line. However, being passive in nature, the added afterbody protection

approach would not be subject to failure of electrical or propulsion devices
.

as would the ACS/RCS system approach. The weight penalty for adding an ACS

system plus impact limiLer material on the afterbody, except over the canis-

ter and parachute, is estimated to be of the order of I0 kg.

Another feature of this version of the capsule is the use of larger

than normal factors of safety in the design of the heat shield and aeroshell

structure, e.g., 2.0 instead of 1.5. The weight increase would be almost

proportional to the safety factor increase, or about 6 kg. _

?

This makes the capsule we%ght increase in version II due to all of the

above changes approximately a factor of 2.0, or an increase from 28 kg to

56 kg.
7

Associated with these design changes in Table IX-4 for costing purposes

are some steps that could be undertaken in the development and qualification

of the capsule to enhance its recovery reliability. Foremost of these is a

series of capsule drop tests from an aircraft or helicopter which would in-

clude all possible capsule attitudes, pitch and roll rates, lateral veloci-

ties, surface slopes, surface hardness and wind conditions. These tests

would include functional operation of the beacon and _,Ltenna systems. They

would be relatively expensive in that after each drop the crushable material

would have to be replaced. The overall relative contrachor co3ts cf the

design changes and the enlarged development and qualification test proi-am

are estimated to be a factor of 1.7 greater than those £or the basic

capsule. The er_._._c_:mentin reliability is impossible to state quantitative-

ly, but would be very substantial.
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The last column of Table IX-4 represents what might be done if wei6ht

and cost were of no concern. It is not obvious how completely redundant

subsystems could be accomplished, particularly in the area of the parachute,

but assuming this could be done, it would up the reliability by a large

amount. Likewise, if a full-scale Earth entry descent and impact test were

• made a part of the capsule qualification or proof test program_ the overall

reliability would go up sharply. A very crude weight and cost e£tim_te for

this case was made and Table IX-4 lists the results.
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X TECHNOLOGY AND PROGRaL_£MArlC ASSESgMENT

The results of this study suppor" t_e conclusion that the rendezvous, _

docking and san:p1_ transfer ol,erations required in the MSSR NOR m_d_ can

be impl_mentL-d with existing technulogy. A no point were specific tech- _

nical problems enc_untered for which solutions have not been at least I i

demonstrated in curre_t techn.,logy d_velopment programs. _

There are a number of ureas, however, where further technology 1

development work will be required to: i) evaluate the application of _

_ i_
current space qualified .eehnology to the specific conditions imposed by _

the MSSR mission; or, 2) exI:end needed technology that bas been demon- _

; strated but not space qualified. !

: A. TECHNOLOGY DEVELOPMENT REQUIRED _

Table X-] summarlzes the technology development items identified in !

i. th_s study. The following paragraphs provide a brief assessment of each

_i of them. More details on technology requirements are provided at the end

of appropriate chapters in this volume. _ ,_

i. Sterilizable Solid Rocket Motor. The high impulse to weight ratio

and compactness of solid motors proved to be a distinct advantage in the

selection of the baseline MAV configuration. The motors defined in this

report were based on current development work being directed by JPL.

Thi_ program has been highlighttd by the successful firing of a 67 cm

diameter motor containing 360 Kg of propellant that had been subjectec to

eight 53-hour sterili:_Lion cycles at 125°C. (See Appendix I.) _*he con-

tinuat_on of this _ork would definitely enhance the MSSR mission.

• A related development, listed in table X-I as Lower _emperat:'re Solid _i[

Rocket Moto__r, would accomplish a calibration of the sterilizable MAV

motors to relieve the thermal control constraints on the MAV during

landed operation prior to launch. In the cuzrent baseline the motors

O
have to bc held within a temperature range of 4 _ to 32°C to guarantee

their spec performance. If data were available on the performance

characteristics at lower temperatures, then MAV te,_peratures could be

allowed to go lower and the actual valves telemetered back to Earth ':o be

used i_ launch el_var_on and coast time calculations.
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2. Sterilizable Solar Panels. Actual e::posur(, of solar panels to sterili-

t zation cycles has net been demonstrated but a number of related tests

have provided assure.l_ces that b-,th current and advanct:d panels can with-

stand the requirement. JPL has tested 3lar_ner type panels to 125°C for

as much as 1000 hours in storage evaluations. Advanced panels using

resistance welded interconnects nave been thermally shocked from -196°C

to +200_C through 500 cycles without failure.

3. Sterilizable NiH Battery. The development of long life NiH cells

has b, an stimulated by tileComsat Carp and a number of commercial firms are

now p_n'ducing them. These cells have an energy density capability between

55 and 150 W-l_r/kg. The ability to withstand sterilization cycles has

not been demonstrated but the manufacturers have expressed confidence, that

there will be no p_'oblems.

4. 20 Watt RTG. The RTG selected for the lander in this baseline use

a selenide base thermoelectric material developed under AEC sponsorship

by Teledyne Corp. A de_o'_tration of this tee,u_logy in an RTG is planned

for February 1975. Current development plans provide for flight articles

to be available in time to meet a 1981 MSSR opport,mity.

5. Rendezvous Radar Systems - Multipurpose. The orbiter rendezvous

radar defined for this baseline is based on tecimology used in the

Apollo rendezvous radar. The transponder used i_l the MAV is also based

on current technology and available parts and components. However, a

number of features of the system as used in the MSSR rendezvous should be

evaluated in o development program. These include: a) the five-tone

ranging system used in the orbiter radar; b) the orbiter traveling _ave

antenna array built into the docking cone; e) the multiple functions of

the MAV tr.an_pnnder (Earth tracking, telecommunicatiun_, command, angle

tracking and rendezvous radar turnaround); d) the pointing accuracy of the

MAV and orbiter systems at close range; and e) the interaction of the MAV

and orbiter antenna paLterns at close range. This development program

should start early, i.e., FY75 or FY76 fo_ the 1981 opportunity, and be

condt,cted in conjunction with the development (,fthe rendezvous algorlthm

discussed be lo__.
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6. CHIOS Electronics. The MAV guidancu and control computer will benef.t
k

greatly by the availabi1_ty of space qualified, low power CMOS circuitry. .

This technology has been widely demonstrated and proven but space qualified

computers have not yet been developed. Because of the traditional problems ":
t

_ involved in Spacecraft computer development, work on the MAV computer ! /

. should start early, even though its design requirements are relatively I

simple. !
J _

7. Distributi_,. "-¢Waste Reet by Radiation/Convection. This item refers !

to the thermal control system defined "in the baseline configuration to )
|

keep the HAV solid motors within the required temperature limits (see item I"

I above). The technique selected uses the RTG waste heat, distributed I

ithrough heat pipes into a thermal control canopy that covers the MAV

_ prior to launch. It appears to be an attractive design solution that is7

simple and workable. However, as in most thermal control designs proof

_ of principal can only be established by test. A rather simple test program

" using a space simulation chamber would establish confidezlce in this

approach.

8, Soil Sample Container Seals. The sample canister must be sealed to
L

;, at least "air tight" conditions after the sample is loaded and the seal

._ integrity must be maintained throughout the remainder of the mission.

The Earth entry capsule receptor must have a similar seal. Work ha_.be_P

' done by Martin Marietta on gold deforming seals for an advanced Mars

i biology instrument that must meet much more stringent leakage tolerancesC
L.

th,ln_qSR re,,uirements, This effort has been sponsored by the Ames Research

- Center. Additional development should be conducted on seals of the size

-_ required on the MSSR mission and on methods for preventing soll particles

_' ; from interfering with the sealing action.

:,: 9. AVI_I Tracking Techniques.. This technique for determining the relative

:_'- position and velocity of two spacecraft by Earth based tracking is described

:,_ in chapter III of this volume. It invclves the simultaneous tracking of

: both vehicles by two separate Earth tracking stations and the processing

_ . of the data by double differencing interferometry techniques, AVLBI will

!" _ be experimented with as the Viking 75 mission and will be used in the

}" Pioneer Venus mission in 1978 (for wind drift measurements on the probes).
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: A paraJlel effort should be maintained to factor these developments aod

,. any other evolving information into the MSSR rendezvous design.

10. Rendezvous Algorithm. This is probably the most significant ana-

lytical development item identified in this study. The developmev_ of

optimum strategies and control factors for executing the terminal rendezvous

and docking phases is _ complex procedure that involves a great d__a[ of

trial, iteration and refinement. Methods for optimizing the initial

' closing 6V maneuver, tllesubsequent range rate and line of sight control,

and the docking algorithm must be analyzed and then demonstrated in computer
4

and physical simulations. Such work should commence immediately (i.e., :;
L
.. FY 75176). _.

Ii. Optical Guidance. This item relates to the onboard guidance techniques ::-

used by the orbiter to target the direct entry lander to a narrower entry

• corridor than that used in the baseline mission (2° vs 40). While not :

: directly _elated to the rendezvous and docking phase, it will allow greater

lander weight performance which could in turn enhance the performance of '

: the btAV. JPL hat investigated a number of onboard optical navigation

techniques and the one most appropriate to the HSSR mission shot_Idbe .-

-: examined for this application.* Ir the option to increase the baseline '
: r:'

sample size from I to 5 kg is selected, the 2° entry corridor will be \

: required, necessitating the use of optical guidance.

.!2, Sp_ace Storable Propellants. In order for the baseline mission

described in this report to be performed in the 1983/84 opportunity, addi-

tional orbiter propulsion capability will be required. One alternative, -:
.j

and the one that will still permit the use of a single Titan llIE/Centaur

launch, is the conversion of the orbJ+.er to high energy space storable ..:

propellants. Space storable propulsion system development has been going

on at JPL for a number of years. Continuation of this work to include i

specific application to the Viking orbiter configuration would enhance

the MSSR mission. _r
F

13. Advanced*Sol..1Samplln_ Device. The guidelines of this study specified

the return of a single bulk sample. However, discussions _ith members of

the science community have produced reco_endations that more sophistlca_ed ._

,

*Optical guidance was demonstrated In the Mariner 9 mtssionj as an experiment,
using the sacellites of Mars imaged against a star background.

X-5 ::
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sampling techniques may be desirable. '[echniques for selectin_ specific

fragment sizes by raking or sieving, segregating and separately sealing

samples taken from different locations, and taking separate atmosphere

samples should be among the things investigated and developed.

B. CONCERNSREQUIRING FLqITHER STUDY

Although the baseline spacecraft and mission concept de_;cribed in

this report does appear to be a feasible approach to ,mrrylng out the

MSSR mission, there are several areas that should be e_.aluated in more

detail before a final concept is chosen. Three of the_e areas are: I)
i

evaluation of weight margins to make certain that major development avd

progz_matlc problems are not being built in by margins that are too

small; 2) review of science objectives to identify any additional science

_,strt_ts that might be required on the lander or the orbiter; and 3)

further assessment of the sample transfer technique used in orbit so as to

define the safest, most reliable cm_cept.

X-6
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APPENDIX A SCIENCE CONSULTANTS' _]COM_NDATIONS - MSSR SEMINAR,
(Donver, Colorado: .May 9, 1974')'" i

l

I. llowmuci) sa',ipiLb: rcquir_.dand what would be the ailocatlons to

biology, _rganir aa_lssis, inorjanic analysis, pathogenic evaluation

and reserve for future analysis?

Inorganic Anal_sis - ii sorting or sieving can be done to guarantee
that sample particles are between 2 and I0 mm in size, then i00 grams

per sampling site is adequate. If no sorting can be done, 500 grams
will be required. Sorting is strongly recommended.

Organic Analysis - this group doesn't have the competence or experience
to define this requirement. An intuitive feel says the sample should be

a few hundred grams.

2. _lat types of sampling are desirable, e.g., surface, subsurface, loose

rocks, bedrock chips, and atmosphere?

No strong requirement for core sampling partly because of the difficulty

in accurately identifying the lecels from which the parts of the sample
came. If mobility is available the required variety of sample can prob-

ably be obtained by going horizontally instead of vertically. (Layered

terrain will expose different stratifications.) The ability to take

samples from the bottom of trenches of various depths was considered

desirable. Biological and organic analysis samples should be fines.
Inorganic analysis samples should be 2-10mm sized particles. There was

no support for a pure ttmosphere sample.

3. From what location on the planet should the sample be taken?i

The objective is Lo obtain samples from as many geological regimes as

possible. If only one sampling point is available it would be desirmhle
to have it at the mouth of a channel or stream bed.

4. How valuable would a rover be on the sample return mission for_
a) collecting the sample to be returned; and b) operating after the

ascent vehicle has launched and during the one-year wait period?

There is strong support for a rover. This would allow more different

geological regimes to oe sampled. Each additional geological regime
sampled is equivalent in value to another mission. As described in

the Mutch report, a rover could provide qampling from five geological

regimes.

5. How should the sample be segzegated, sealed and environmentally
controlled during the return?

Sample should be sieved to 2-10 nm in size and mechanically segregated
into packages for each sampling site. Segregation into separately

controlled envlronments is not necessary. Loss of II2 in the sample
should be minimized by properly coating the interior of the sample

containers, e.g., w[th gold. Temperature should be kept as close to
the Mars environmen_ as possibl_ but thls can be done roughly. No

extraordinary thermal control capability should be added. Temperatures

below the freezing point of H20 are probably not necessary, but tem-
peratures as little as 10-15 ° above the maximum Mars day time levels

could alter the sample adversely.
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6. What sort of, if any, documentation of the sample and its setting are

required, e.g., fax camera picture, film camera picture, atmospheric
temperature and pressure, humidity, rime of day, etc?

A camera to help select the sample is recommended. It would also

indicate how deep a sampling trench is, etc. Sensing other environ-
mental conditions such as temperature, pressure and humidity was not

considered to be important. It would be desirable, if possible, to record

the temperat,lre of the soil when a subsurface sample was being taken.

7. What is the recommended back contamination control concept:

a) direct entry return, sealed and protected sample;

b) capture in Earth orbit for pathogenic evaluation;

c) sterilize sample?

The two aspects that characterize the back contamination issue are

scientific and political. Scientif_cally speaking, back contamination

poses no major uncontrollable problems. Politically, however, one or
two vocal people can always keep the issue firmly in the picture, so

we must be prepared to llve with some constraints. The obvious solution

seems to be to capture the sample in Earth orbit and examine it in a

shuttle delivered laboratory. The probl,_ in outfitting and operating
this lab will not be trivial, however. Viking '75 results may influence

opinions on the criticality of the back contamination issue. From the

viewpoint of the organic and bio chemist the unsterilized sample could
be as much as 5 orders of magnitude more valuable than a sterilized one.

8. What other science is desirable on the lander and orbiter as part of

the MSSR mission other than that required to directly support the
sample return?

The major objective of _he MSSR mission is and should remain to bring
back samples. The only additional science recommended is that that can

be accommodated easily _£tcln weight and cost budgets. Some thought should
be given to providing science that will make use of the wait time at Mars ';

and that will provide some scientific return in the event the sample does
not get back to Earth. These activities could be on the Lander, the _

Orbiter or both. There was some question as to the value of the XRFS or
alpha backscatter spectrometer from a geochemistry point of view. Others,

however, thought such instrumentation could support the sample return t
mission and provide some education transferrable to the next mission.

9. At this time, does logic seem to weigh in favor of a 1981 MSSR mission,
a 1983/84 mission, or a later one?

There are two basic strategies: i) fly a precursor mission, then an MSSR

mission; and, 2) go right to the MSSR mission. For strategy 1, 1983/84

is probably the earli-st opportunity for MSSR. For strategy 2, MSSR

could go in 1981. This group expressed general support for strategy I.

The value of the precursor would be to: i) survey the surface composition "

on a global basis (with an orbiting gamma ray spectrometer); 2) survey
the local terrain at high resolution (appearance and size of particles, '

inhomogeneity at small scale, soll compaction, etc.). The alternatives

for the precursor mission in order of preference were: I) Viking '79

with a rover; 2) Viking '79 without a rover; _) an orbiter with gamma ray _
spectrometer; and 4) an actual ASSR mission with a rover In which the

surface characterization would be done at the same time the sample was

being sought. A-2
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i0. Other Comment s_

: Some of the group thought that the support for the MSSR mission may not

be as wlde-spread as it now avpea_s. People whose budgets will be
threatened by MSSR allocations can be expected to fight it.

It was suggested that a good article on the scientific value of MSSR

_: in a journal such as Science would be useful in coalescing more general
and better informed suppor,',for the mission.

A Viking '79 rover mission repeated with a subsequent MSSR mission was

suggested as a possible cost effective way of improving the sampling

capabilities of the MSSR. The rover could be targeted to attempt an
overland rendezvous with the MSSR lander.

Consultants in Attendance
j"

Dr. A. W, England (USGS, Denver)

Mr. H. Masursky (IP_GS,Flagstaff)

Dr. W. Fninney (NASA, 3SC)

Dr. B. C. Clark (Martin Marietta, Denver)

Dr. M. B. McElroy (Harvard)

Dr. J. S. Lewis (HIT)

Dr. T. M. Donahue (Unlv. of Pittsburg)

Mr. H. J. Allen (NASA-ARC, Ret.)

Dr. R. E. Vogt (Cal Tech)

Dr. D. M. Hunten (Kitt Peak National Observatory)

• Dr. G. H. Pettengill (HIT)

:_ Dr. C. Ponnompermaa (Univ. of Maryland)
°

i

>

j

3

i

:_ A-3

1975006730-395



/

APPENDIX B DESCF,!PTION OF ASCENT TO RENDEZVOUS SIMULATION

The _imulation described here was devised to test the mission design

:_ and maneuver strategies for trajectories dispersed by random maneuver execu-

" tion and orbit determination (O.D.) error. The effect of these errors on

mission performance is simulated by carrying along an "actual" and an "esti-

. mated" state (XA and XE respectively) for each spacecraft. The deviation

between these two, the so-called knowledge error (AXE), is initially deter-

: mined at an update time by randomly sampling an appropriate O.D. error

distribution characterized by a six dimensional position and velocity- co-

_ variance matrix. (Samples are con._tructed from the eigenvalues and eigen-

vectors of the covariance matrix.) The state estimate is used to compute

maneuver targets and a cormnanded AVc Randomly drawn samples of execution

_ error corrupt AV to produce an actual AV for implementation. After an
_ c a

._: impulsive maneuver then, the best estimate of state is given by

,;
• _ = XE + t_%/ whereas the actual state is

L J

: The estimate will be improved at the next O.D. update time.

Simulation outputs of particular interest are 99 percentile AVa require-

nmnts (for each maneuver and for the sum of maneuvers) orbital dispersions,
j

_i_ relative state dispersJons and pointing errors.

• I_ Fu|Lctiona! "Flow DiaRram

_:, The MAV active portion of the simulation is relatively straightforward

_ and need not be explained here. 'Note in the *MAV active* 'flow however that

,, the elements in the dashed box are equated to'the operation "Use aVc to

compute AVa." This expression will represent those operations later on.

The *orblcer active* portion of the simulation begins with computation of

the post-circularization orbiter estin_te as would be available pre-clrcu-
t

larizatlon. This state YE_ is d function of the MAV state estimate XE_.
'c

_ B-I
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_ Note that

_ YE_ (I) = semi-major axis (a)

' YE4 (2) = eccentricity (e)

'_ YE4 (3) = inclination (i)f
%

"'_ YE4 (4) = argument of periapsis (w) ,

.i', YE_ (5) = longitude of ascending node (ll)

YE_ (6) = true anomaly (TA)

._ Before circularization the orbiter orbit was adjusted so that, to the best

: "knowledge" the inclination and longitude of ascending node matches the

} estimated MAV values. The two period esti,_ates, PXE and PYE, are used to

compute the phase angle PHI_ desired at the first MAV occultation after

_ orbiter circularization. The actual orbiter state after clrcularlzation

is then computed using the matrix of sensitivity PARINS. Where

: PARINS -- a 6x4 matrix.
O(a, ]_, TI, TA)

The assumption of zero pre-circularizaticn phase error (i.e. at the

first occultation exit (O.E.) the orbiter would lead the MAV by exactly

PHI_ if the circularization maneuver were performed perfectly) now allows

the computation of the MAY actual and estimated states immediately after

orbiter circularization. The phase angle when the MAV is actually at O.E.

:, (i.e. _A) is obtained by propagating all vectors forward by DT_% and then

_ computing the included angle between position vectors. The error in that

angle is the difference between _A and the PHI_ which would be computed from

_'. PXA and PYA. The elapsed time from first O.E. is kept track of by TT_TAL.

After the AVLBI update is performed at TA = TAYY-YA_(4) the desired

:_ orbiter state vector, YED, is computed from the new XE and YE. All vectors,

_ YE, "A, XE; XA, YED are then propagated forward to the orbiter TA = TATRMI

_ -YE4(4). Here the commanded circular trim sequence AVIc , AV2c and AV3c and

_ times _t12 , 4t23 are computed. These are then executed in the simulation

_. and actual and estimated states updated appropriately after each maneuver.

_'. llm_ediately after the third trim the estimated line-of-sight (L_S) cohtpon-

{:_ ents are computed in the U, V, W system defined by the actual relative state

and stored in the SAVE3 array. The error in the relative state at this time

¢ is also computed and stored in the SAVEt_ array while the actual relative%1

-f, B-2
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J,

j,

': state is stored in SAVE5. The actual time from trim number three to lOth

MAV occultation exit will vary with each Monte Carlo cycle. This time to

go (TG_) is computed as shown using TT_TAL. Vectors are propagated forward

? by TG_ and pertinent output quantities are stored. Whr,n NCASE cycles have

:i been processed, statistics on the stored quantities are computed. These

• are basically sample means and variances and ordtred sample sequences from

t which sample size percentiles may be ascertained.

f

2. Input Description

: Variable Definition

/

XR_ Kepler elements for reference MAV ascent
f
_ orbit

5 TAXXI, TAXX2, TAX_q True anomalie_ of the three O.D. updates
_ for F_V

TAYY T_u_ anomaly of the O.D. update for the
orbiter

XC_NTR, YC_NTR Vector of F_V and orbiter execution error
standard deviations

NCASE Number of Monte Carlo cases

XJD Julian date of encounter

VALXXI, VECXXI Vector of eigenvalues and matrix of elgen-
vectors of covariance matrix for first MAV

update

VALXX2, VECXX2 Vector of eigenvalues and matrix of eigen-
vectors of covariance matrix for second MAV

update

VALXX3, VECXX3 Vector of eigenvalues and matrix of eigen-
vectors ot covariance matrix for third MAV

update

VALXX, VECXX Vector of elgenvalues and matrix of elgen-
vectors of MAV ascent injected covariance
matrix

VALXY, VECX_F Vector of elgenvalues and matrix of elgen-

vectors of covariance matrix for AVLBI update

VALYY, VECYY Vector of elgenvalues and matrix of eigen-
vectors o_ covariance matrix for orbiter

update

SlGA(_), SIGB(@_) Standard deviations of orbiter p_inting
errors during circularization

SIGTI(_tB) Standard deviations of orbiter burn timeerrors during circularization

B-3
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Variable

...._ SIGTA(_,) Standard deviations of orbiter initial TA

., _n error during circularization

_- PARINS Matrix of partial derivatives of post-clrcu-

larization state with respect to execution errors

DCA Desired closest approach distance @ NOEth
occultation exit

N_E Number of occultation exits to TRI

TATRMI Nominal argument of Isttltude, (W+TA)NoM,
for orbiter circular trim number one

 i, ii
B'4
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1_=k:L_===-= ,._==_ ...... __....=_,___= L:i____ r_i ...._ _'__

!
FLOW DIAGRAM FOR MAV ASCENT TO RENDEZVOUS SIMULATION

Input: XR_, TAXX1, TAXX2, TAXX3, TAYY, XC_NTR, YC_NTR,

NCASE, XJD, VALXXI, VECXXI, VALXX, VECXX,

VALXX2, VECXX2, VALXX3, VECXX3,VALXY,

VECXY, VALYY, VECYY, SlGA, SIGB, SIGTI, SlGTA,
PARINg, DCA, N_E, TATRMI.

L..........

1
Compute Earth-Mars unit vector

in Mars equatorial frame, iEM

Obtain RA, DEC of Earth.

i Tran'f°_n _LAV Kepler _ Set _onte Car-_ o I
elements Xl_ to _ cycle index i = ICartesianp XR.

I
* * * MAV * * * * * * * * * * * *. * ACTIVE * *

1
Initialize Actual MAV State XA

G at Orbital Injection: Generate
sample 6XA from (VAI.XX,VECXX)

and random vector.
XA - XR + 6XA

Perform DSN update at TAXX1
after MAV injection:
generate sample AXE using
(VALXX1, VECXX1) and a random
vector.

XE - XA + AXE

I

Use XE to compute t_e, AtD,
to apoapsia clrcularlzatioh
maneuver.

1
Propagate XA and XE forward 1an amount _Lp
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Use XE to compute comm_nded I

MAV circularization m_neuver i

__c i

- I ,

I burn controls a, _, tB, TA I

Use A_c to [ I U_. XC_NTR to senerate rar tom

compute A_a "_ somples of execution error
_a, _, 6tB, _TA 1

Actual controls given by I[ _' = _ + _a, _' = _ + _g

I tB' = tB + 6tB' TA' = TA + _TA I

Use actual co -_ compute
_Va

i .1 "_U

Perform DSN update at TA = TAXX2 - _ -|1

/after MAV circularization: generate

sample AXE using (VALXX2, VECXX2) and
a random vector. XE - KA + AXE

I

_" I Compute time to aT,oap51_ Jbcircularization t'cim. _i

' I PropagateXA. Z_,":c apoapsis ] "

5

7' ' • /
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_" _ .......... ,-_,.--__.> _ _"v_-

| pute commanded MAV -_

I circ.larization trim _VC
I

l_ [ " 1Use A_C to compute AVa-

_ l " q

t. _ zat._on trim
XA ffiY_ + 0]?_

L,,.a.J

!
i. ,_.E<2.i>-!_*al I_

" IsA_ (3,0 ffiSAVE(1,i) + SAVE(2,i)

' l
Perform DSN update at TA ffiTAXX3 - _
after clreularization trim: generate

:_ _ sample AXE using (VM/X3, VECXX3) and

random vector. XE - XA + AXE ._

Transform Cartesian MAV state

XE to Kepler elements XE_:

.i' Compute estimated MAV period
PXE

l
* * ORBITER * * * * * * * * * * * * ACTIVE * * *

Initialize Orbiter Estimate _

A__tCireularlzatlon

Targeted orbiter state post- .
c__rcularlzatlon:

YE¢(1) = XE_(1) + 50.
i YE¢(2) ffi.001

-_ YE_(3)ffixz_(3)
YZ¢(4)= 2s8.68
_E¢(5)= xz¢(5)
YE¢(6) = 0.

?
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.

,_. Compute estimated orbiter pcriod PYE and
targeted phase angle -:

_ eUI_- NOE*[(P_.-eXE)/_E]'360. + [DCA/XE_(1)],180/,_ _

Using SIC-A, SIGB, SIGTI, SIGTA
Compute random 4-vector, RVEC,

'- of orblter clrcularlzation

:_ execution error.
•

Compute dispersed post-clrc.

orbiter state: 1

6YA_ - PARINS*RVEC

YA#- r_ + 6YA_

, J .}

Transform actual o':biterKepler [ _;
state _&_ to Cartt:sian YA

1.,
Compute TA of estimated orbiter

state at Earth occultation exit. [

(O.E.) + PHIl: i.e., compute

IA(O.E. + PHI¢)

I "
Compute estimated time, DTY___EE, _
for orbiter to move from

TA = 0 to TA(O.E. + _o)

?

.- Compute TA(O. E,) for estimated
MAV state and DTXE the estt- _

mated time for the MAV to move

from XE_(6) to TA(O.E.)

Propagate XE .b XA forward by _,

DTXE

4

i

!
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?

I"
I:

Propagate XE & XA backward by _-

DTYE. These are the HAV states iafter orbiter circularlzatlon. Y

Compute TA of actual HAY state
at Earth occultation exit and

DTXA the actual time for the
MAV-----tomove from XA_(6) to

TA(OoE.)

Propagate XE, XA, YE, YA for-

war.___dby DTXA. These are the
MAV and orbiter states when

; the FakV is _ctually exiting
from the occultation zone.

i

Compute actua2 orblter/MAV I :1"

phase angle, _A, -coming out of
occultatlon zone

*A= cos-1 [XA(I), YA(I)]

Compute time DT SAVR2(J,i) = actual relative position '
r.

to AVLBI update SAVE2(J+3,i) = actual relative velocity _.
'" 3-

L
_ i i ill "

Propagate orbiter and MAV
states to AVLBI update TA =, \.

TAYY - YA_(4): form actual _reletlve state XYA - XA - YA _

i i =l ill i

Generate sample &YE using .}
(VALYY, VECYY) and a random ::
vector, YE = YA + AYE '_:

k

:_.

B-9 _'

19750067:30-404



I I •,$TTOTAL _ TTOTAL + Atl2 + At23 ._

l

i SAVE(4,i) ffi [A_la I ,I ?

Execute Trim #I '
r

i
Propagate to Trim #2 .

' (forward by _t12)

!
; Use AV2c to compute A_2a

i 1 •

i

i

"r

I Propagate to Trim #3 1
(forward by 6t23) _

i
[°- i" A_3C to compute _3a

j ?

!

l
Execute Trim #3

.._
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Generate sample AXYE using I

(VALXY, VECXY) and a random [
vector XYE = XYA + 8KYE I

!

Update the MAV according to: I
XE = XYE + YE !

1
Compute desired current orbiter state:

Desired radius; YE_D(1) - XE_(1),+ 50
MAV period; PXE ffi 2_ (XE_(1)3/_)_
Time to G_; XTG_ = N_E*PXE - TTOTAL

Desired period; PYE = 2_ (YE_D(1)3_) ½

Desired phase lag ;
8_ - (360.*XTG_)/PYE

6+ = (XTG_ /PXE)*360. + [DCA/XE_(1)]*I80/_-6+
_ - -2_ 4 _ * _/180.

Use 6_ and XE to compute YED, the desired orbiter
Cartesian state at 8VLBI update time

l
[ Compute time, DT, to TA "

TATRMI -YE_(4) for the Ist
trim maneuver

1,,

I
|

Propagate orbiter states to /
time of ist trim J

• i

Propagate desired orbiter state, I; YED, to time of Ist trim.

Compute Commanded trims A_IC ,
'_ A_2C , and time increments

, , Atl2 ' At23.

rSB-I1
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! 1
?

J

I Compute components XYI of esti-

! ,Lated LOS in U,V,",'coordinate

_ _ system defined by _he actual

. [ LOS. SAVE3 (J,i)=XYI, (J),J=l, 3

)

2 -- I "
Compute the error in the esti- I

mate of the re]a£ive state DXYE j

: SA%_4 (J,i)=DX_/E(J),J=l ,6 !
¢

Compute the actual relative
+ state XYA.

SAVE5 (J,i)=XYA(J), J=l,b

Compute actual time to go (TG_)
for MAV to cross occultation
exlt for 10th time:

TG# = N#E*PXA-TTOTAL

Propagate XE, XA, YE, YA: forward by XTG_
j,

"1
,_ Compute actual HAV/orbiter

- phase angle at TRI/

- cos-l[yA(1) ,XA(1)]

SAW(8,1)=

--: Computeabsolute magnitude of
actual separation and velocity

RHAG = YA(1) - XA(1)
,- SAVE(9,/) - P,_AG
. . VMAG = ¥A(4) - XA(4)

: SAVE(IO,i) = VMAG

Compute actual relative state
XYA = YA - KA

SAVEI(J, i) - XYA(J), J=l, 6

?

" !i
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i i
L I *i = i+l _ t = NCASE?

Yes :_.

I

Compute sample means and j

variances for SAVE(k,i),

k=l,10; i=l, NCASE _

1

Compute vector mean and co- j
variance matrix for SAVE1 _

(control at occultation exit

NOE), SAVE2 (control at ist ._
occultation exit), SAVE3 (LOS
knowled8 e error after Trim #3),

SAVE4 (relative state knowledse ._
error after Trim #3), SAVE5

(relative state control error l

after Trim #3) i:

:?

?,

2t

i,

4

d
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APPENDIX C RENDEZVOUSDIGITAL COMPUTERPROGRAM

A digital computer program was de:,eloped to simulate the initial

and terminal rendezvous phases. This program is a six degree-of-freedom

simulation'with three translational coordinates. It assumes perfect

dynamic control of the rendezvous vehicle attitudes, i.e., a perfect

control system. The vehicles orbits are determined by their initial

conditions and the planets gravitational field. The program has the
t

capability of using one type of r,ndezvous scheme (Type II Guidance)

for initial rendezvous maneuvers and another type (Type I) for the

terminal rendezvous phase. Guidance errors can also be included _n

both phases.

Type II guidance uses approximate guidance equations to command

. and execute impulsive maneuvers, so the rendezvous vehicle will inter-

" cept the target vehicle. This type of rendezvous scheme requires target i

• ephemeris data and the angles between the LOS vector _nd the spacecraft

: velocity vecotr. Up to two corrective thrust periods can be used to

bring the relative positions between the spacecrafts to within the range

of the rendezvous radar, where the Type I rendezvous is used for the

< final closure.

< The terminal rendezvous is accomplished by causing the relative

velocity and relative position between the spacecrafts to converge to ,

_ zero between two optimum switching curves. A new set of swltchlnE

curves are required for each spacecraft design. A different set of

switching cuzves is required for ranges closer than RM to optimize

the vehicle rendezvous trajectory at both are and close ranges.

Each set of switching curves consists of thrust-on and thrust-off

: parabolas tlat are selected for a near optimum rendezvous These control_'_

curves are mechanized in the rendezvous vehicle control computer and are

_, implemented to control the axial thrust of the vehicle.

_ The flow block diagram of the digital computer mechanization of

_, the rendezvous program called RENDZ is shown in Figure C-l. The s_nbols

used on this figure are defined below:

'_ C-I
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I DRM Range rate used in program

DT Time increment

DTC(K) Time increment for phase K

IGFLG Type of guidance flag

K Phase indicator

L Range flag

M Ipdicator of no. of maneuvers during Type II guidance

N_N No. of engine thrusts

Q Rate gains

QI, Q2 Control gains

RB Gain change altitude

RM Range at start of Type I guidance

RR Range

RRM Range used in program

T Time

TA Thrus t-to-Ma _s

TG Vehlc le thrust-to-weight

T/M Vehicle average thrust-to-Mars

TWX, Vehicle thrust
TW .

VA Total velocity

VINT Accumulated velocity

VRM Relative velocity in program

FM Vehicle velocity

VR Relative velocity

VT_T Total _V

W2 Vehicle total LOS rate

W2M Total L06 rate in program

W Vehicle weight

WFR Fngi_e total flew rate

C-5
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i i+APPENDIX D ADDITIONAL RENDEZVOUS STUDY RESULTS

A number of studies were couduct_d using a digital computer simula-

Jtion of the terminal rendezvous phase to define a good design and size

the terminal rendezvous system. The digital computer simulation called

RENDZ of the terminal rendezvous phase is described in Appendix C.

The following studies were conducted to define the terminal system:

I. LOS rate gain studies,

2. Axial thrust sizing studies,

3. Control curve definition studies,

4. Terminal rendezvous initiation angle studies, i

5. Terminal rendezvous transfer angle selection studies,

6. 3_ dispersion studies, and

7. Interception sensitivity to closing AV maneuver magnitude.

The LOS rate gain sizing studies determined the bit rate gain to

control the ,OS rate of the vehicle. Rate gains of I0 and 3 were deter-

mined to be optimum fo_ the far and close ranges respectively. These

gains reduced the maximum LOS rate during the terminal rendezvous phase.

These gains were the smallest rate gains that could be used and still

control the LOS rate during the TR phase. Small rate gains did not

control the LOS rates of the vehicle adequately. High rate gains did

not decrease the LOS rates.

Axial thrust sizing studles were conducted to determine the optimum

_ize thrust to execute the TR phase. The amount of thrust sedmed to

effect principally the AV required for rendezvous. A vehicle using a

smPller thrust required considerable more AV to accomplish the terminal

rendezvous. ^xlal eDgines with 132 newtons (30 Ibs) of thrust seemed

to be the optimum thrust ipvel for the orbiter. Higher thrust levels

than this did not improve the efficiency during TR phase, but reduced

the pointing angles needed to control the LOS rates.

The control curve defit,itlon study defined reasonable control

curves to execute the terminal rendezvo,_s phase. The control curve

design approach used was imperical. Additional study is required to

develop theoretical techniques. The control curves can be changed by

D-I
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7

raising the control gain, _ain changt, alt_tud_ arid position of curves.

In the studies conducted during this cor:t_,_c__, onl> the- position of the

:. curves and the gai_ chang_ altitude wa._: v_riod to determine the b_st ones

_. to be used• The control curve gains were determined from formulas deter-

mined from prev'ous stu_ies. These formulas may not b_, optimum for this

{ mission and should be further ev31u-_ted in future studies.

$ The optimum terminal rendezvous initiation angle selecticL, is inter-

related with the selection of the terminal rendezvous transfer angle. The

.; initial relative velocity, which is a function of the initiatlon angle,

• affects the control curve design, and the time and angle of transfer. A

discontinuity is produced due to keeping the LOS inertial attitude con- :

stant throughout long transfers. Terminal rendezvous transfer angles

t
:- greater than 155 degrees could not be implemented due to large initlaticn

angles used. The interrelation between the initiat'_on angle and the I ._
I

" terminal rendezvous transfer angle should be stud£ed further to try to '_

-. get 180 degree transfers, which should be the most optimum•
A

-_ The control curves were designed initially for the nominal case, but

did not accomplish the rendezvous in the worst 30 cases. The 3,, initial

conditien dispersions were too large to use the nominal control curves

for the worst case_, i.e., resulting intercept errors were too large.

;_ Consequently, control curves had to be designed that 'initiated maneuvers .i_

at very long ranges, floweret, these caused the initial termin.=l rendez- ::

vous maneuvers to be too large Two anproaches were considered to handle _;
q

' the 3u dispersions, One approach would be to limit the size of the early

closed loop maneuvers by puttiLlg a constraint on the AV burns as a function

of range The other approach is to change the closing AV magnitude as a

• function of the dispersed state between the two vehicles. The latter

approach was baseJ.ined for this mission and a method to process this

algorithm on board the orbiter was devised. Further study of both _

approaches whould be p_rsued to determine the best method to accomplish

the approximate intercept. Th_ closing A_" maneuver is designed so tht

orbiter lags the MAV _hen the orbiter crosses the MAV orbit. The closed

loop maneuvers take out this lag and ultimately match the velocities

between the _wo vehicles by trimming the orbits in progresslv,-ly smaller

D-2 _'
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•• !i Ithrust periods. The sensitivity of interception range to in-plane and

out-of-plane errors was studied to find a _thod to calculate the closing

_V on b-ard. The sensitivity of the closing IV magnitude to in-plane and

out-of-plane dispersions was determined by perturbing the values of clos-

ing AV. The sensitivity so determined was multiplied by the 3_ dispersion

(which would be sensed by the rendezvous radar) t° get the required clos-

_ ing _V maneuver magnitude. Termin_l rendezvous was accomplished in all

: _ the 3_ dispersed cases when the AV maneuver magnitude calculated in thisK

i manner was used. The same axial control curves were used as in the nominal

case.

Figures D-I through D-4 show the results of the digital computer

simulation of the 3q dispersed cases where the orbiter is 7.7 km higher

than the nominal orbit. The terminal rendezvous propulsion system requlre-

: ment was established by this case since this is the worst case found in

terms of the propellant required. A factor of two was applied to the pro-

pellant allocation to allow for malfunction and reinltiation options.

_ Eight thrust periods are needed to accomplish the closed loop portion of

. . the terminal rendezvous as shown in Figure D-l, which shows the range rate

vs range trajectery. The weight of propellant required for the terminal

rendezvous phase for this case is shown on the figure. The terminal ren-

_ dezvous phase final conditions or the docking phase initial cenditions

l are also shown in this figure. Figures D-2 and D-3 show the rendezvous

trajectories in tangential and inertiai coordinates respectively. _igure

:. D-4 shows the range rat_s a_d LOS rates as a function of rendezvous time.

The thrust period times are also shown on this figure. A maximum LOS

rate of 2.6 mrad/sec is reached before the end of the TR phase.

_" Figures D-5 through D-8 shcw the results of the digital computer si_i-

latlon where the orbiter is 7.7 km lower than the nominal attitude -- a 3o

position dispersed case. The AV for each phase, required weight and final

: conditions for terminal rendezvous are shown in Figure D-5. The rendez-

vou_ trajectory in tangential and inertial coordinates is shown in Figures

D-b and D-7 respectively. Figure D-8 Shows how the relative range rate

and LOS rate vary during the terminal rendezvous phase.

D-3
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APPENDIX E RENq)EZVOUS SENSOR ERROR CALCULATIONS

_ystem calculations to determine the range performance of the rendez-

vous sensor were performed in Section VB. These calculations included

an assessment of bias and r3ndom range errors inherent with a sensor

employing a sidetone ranging system. Additional calculations were performed

to determine the range rate and angle measurement accuracy of such a

system and these calculations are described in this Appendix.

The Doppler shifts on the carrier and the range tones were determined.

Let the maximum range rate = 122 m/s.

f = transmitted carrier frequencyc

f = 2282.48 MHz (Orbiter to MAV)
¢

f = 2101.03 MHz (MAV to Orbiter)
c

fd ffi(2v/c) fc = 8.14 x 10-7 fc

Then: fd ffi1.855 kHz (Orbiter to M,V)

fd = 1,708 kHz (MAV to Orbiter)

The Doppler shifts on the range tones are the Doppler shifts at the range

tone frequencies. These are given by:

819.2 kHz tone 0.666 Hz

102.40 kHz tone 0.0833 Hz

12.8 kHz tone 0.0104 Hz

1.6 kHz tone 1.3 x 10 -3 Hz

200 Hz tone 1.63 x 10-4 Hz

The Doppler measurement accuracy must be determined. The two-way frequency

shift will be the difference between the transmitted reference and the

received signal and is obtained as follows:

(1) Transmitted frequency = 120 f = (120) (19.1003) (106 )o

(2) Received frequency at MAV = 120 f (1+v/c)o

(3) Transmitted frequency by MAV = 120 f (l+v/c) (220/239)o

(4) Received frequency at orbiter = 120 f (1+v/c) 2 (220/239)o

(5) VCO frequency in orbiter recelvar = (120/II0.5)(220/239)(I+2 v/c)

E-I
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This frequency appears at the output of the carrier VCO, is multiplied by 4, I

and, then mixed with 4 fo to yield:

f = 4 f [I - K (1+2 v/c)]m o --

Where: K = (120/110.5)(220/239) = 0.99964

The bias is then given by:

4 f (l-K) = (4)(19.1003)(106)(3.597)(10 -4 ) = 27.38 kHz.
o

The maximum expected Doppler shift is then given by

4 f (2v/c) = (4)(19.1003)(106)(800/9.83x108) = + 62 kHz.
O --

The Doppler measurement is obtained by counting fo cyclea for a period of

time equal to 512 cycles of fm This period is: _

T = 512/fm = 512/4 fo[l'K(l+2v/c)]

The time for one count of 4 f is T = 1/4 f
o O O

The number of counts of f per period of T is then given byO

T/T° = = 5Z2/[Z-K,'.Z+2v/c)]
The range rate counter, then, contains a bias count of

N --: 512/1-K = 512/(3.597)(10 "4) = 1.425 x 106 under zero Doppler

condit ions.

The signal to noise ratio of the velocity measurement will be dependent

upo_ the phase jitter in the phase locked loop. This phase jitter is given

by:

A 8 ffi%/Z/2(SiN)

The signal to noise ratio at maximum range is about 36 dB, so that A# _.013

tad _ .725 degrees. However, a degradation of 12 dB in S/N ratio must be

taken so that the actual S/N ratio at maximum range is 24 dB for which A0_

.0456 rad _ 2.62 degrees. The phase Jitter at 4 f is then 0.0238 degrees,
O

and the effect of the Jitter is to _a_rease or decrease the counts by an

m-ount equal to 0.0238/360 or 6.61 x 10``5of a cycle. Since counts of the

reference signal are accumulated for 512 cycles of the 4 fo-£m difference,

the r.m.s, error in any reading is given by:

• (6.61)(10"5)/512 (V_) = 1.835 x 10-7

This corresponds to (1.835 .x 10"7)N or 0.26 counts at zero Doppler. Since

a count at zero doppler is equivalent to 0.0536 m/s, it is concluded that at

a range o£ 250 km the range rate error will not exceed .05 m/s. If the

maximum range is extended to 750 km the signal to noise ratio will drop to

E-2
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<.... 14 dB which is an r.m.s, error of 5.69 x 10 -7 corresponding to 0.81 counts

at zero Doppler. Thus, it is clear that even at this maximum range the

_ rendezvous system will provide extremely accurate range rate measure_u_nts.

! The signal to noise ratio in the error channels of the rendezvous

receiver must be determined. The gain in the error channels relative

to the gain in the sum channel affects the signal to noise ratio at the

error output of the receiver. For a phase comparison monopulse system the

error channel gain is approximately 2.6 dB below the sum channel gain.

_ Hence, the increased power at the rendezvous receiver error channel antennas

iS given by:

i PR = -55.7 - 20 log R- 2.6 = -58.3 - 20 log R

The signal to noise ratio required for a given angle error is given by:

= 1/8 [X/.e-d] 2e

Taking a nominal spacing between surface wave antexma phase centers of d/k_-2,

we, then, have:
ffi 2

(S/N)e 3.17 x i0"3/8e

where 8 - angle error in radlanse

This relationship has been plotted in Figure E-I. Taking the above relation-

ship for the received power at the error channel a_tennas, the angle error

("0e") is shown in Figure E-2 as a function of range.

Additional calculations were performed to ascertain errors intro-

duced in the rendezvous sensor by the monopulse antenna array. There ar_

three general sources of phase and amplitude imbalances in the antenna

system:

1. Inequalities of transmission lines and antenna elements due to

thermal gradients radiation and vibration.

2. Inequalities of radiating elements.

3. Mechanical alignment.

These error sources will be briefly analyzed to assess their effects on

the system.

1, Transmission Line and Component Errors

The major _rrors introduced here are due to thermal expansion of

E-3
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_ transmission lines feeding the traveling wave antennas. This can be

i counteracted by symmetrical 'mechanical design, careful thermal desi_-n, _ _

_ and use of identical rigid transmission lines feeding the four antennas. J
! _ Differential precomparator phase shifts can also be introJuced by the sun

:- t illuminating one traveling wave antenna while the others are shaded thu_

creating an unavoidable thermal gradient. In this case the dlfferential

phase shift introduced is given by:

27 (L1-L 2) 2_AL

" Asst_e a thermal gradient: 8T = 250°F

Assume a transmission line coefficient of expansion:

; _ = i.I x 10-5 units/unit/°F

Then: AL-- LI - L2 = (L)(AT)(7)

" where: h' _2 = precomparator transmission line length

_ _ = wavelength

The shortest line lengths are achieved if the beam-foming network is

; placed a_ the base of the cone _ith its four outputs in line with the

travelling wa'e antenna elements. This allows the employment of rigid

striplines for the four transmission lines and minimizes the number of

fittings and discontinuities b£tween the _ an._the antennas. Under

these conditions the maxim_-- transmission lin,.-length will be approximately

_. 30 cm and the BFN, transmission lines, and antenna elements can all be

__ alto.inure stripline construction. This appears to be a near optimum design

and will yield the following errors:

_ AL = (30)(250)(I.I x 10-5 ) = 0.01 cm

2.(0.01)
' _ = 13,61 = 0.0039 tad. = 0.332 degrees

The angular error corresponding to this differential phase shift is then:

+-_ 0.0039

:_ _e =--2_d = 6_ = -+.0002/tad. = _0.012 des.
T

We shall next assume that, in addition to the transmission lines, the

; antenna elements themselves are subject to thermal gradients producing

differential phase shifts. Utilizing the same procedure we can combine

: E-6
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the transmission line errors with the antenna element errors, which would

yield:

_T = 0.025 ¢m

= 0.012 rad.

= -+0.036degreese

2_ Inequality of Antenna Arrays

If the reflection coefficient of the 4 traveling wave antennas is

different, then both amplitude and phase imbalances will occur which could

affect the angular error. The magnitude of the reflection coefficient is

related to the VSWR by:

Ipl=WRolVSWR+I

When the VSWE is less than about 1.5, as it is expected to be for the

travellng wave array, the fluctuations in "p" will be about half the

fluctuations in VSWE, and:

AIpI --
The expected value of the fluctuating imbalance between antennas would,

then, be:

[&VSWR]2
= 2

This assumes that the angle of the reflection coefficient is a random

variable, and that each antenna is subject to independent fluctuations in

reflection coefficient. The resulting angular error due to reflection

coefficient imbalance is then:

AVSWR
m

2
= AVS*_g

_e _ _ _ rad. = 1.52 (AVSWR) deg.
l^l

For a 9 element traveling wave array a change in VSWR of the order of -+0.03

due to thermal gradients and mechanical changes appears a good assumption

from past experience. This variation thet: yields:

_e = (1"52)(+0"03) = ±0.045 degrees

E-7
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3. Mechanical Ali_uuent

Displacement of the traveling wave antennas with respect co each

other will result in both amplitude and phase errors. Precomparator

phase shifts are introduced by such motions and their magnitudes must be
r
#

evaluated. We assume the geometry shown in Figure E-4 below:
q

Figure E-4 Antenna Array

- d. "i

Traveling Wave Array #I

t
! -

.: y,___....___

Trave I ing Wave

Array #2 = _ _ - Phase Center .

This figure shows only 2 of the 4 traveling wave arrays, since the up-

down and right-left channels are identical. The difference pattern of the i

angle tracking channels is given by:
-¥

2_ -j_-_(xcos_ + ysin_)j--_(xcos_ + ysin_)

a(#) = El(,) e - E2(*) e

where x, y, are the coordinates of the antenna phase centers of the travel-
,/

ing wave antennas.
%

,. Lateral motion (motion in the y-z plane) introduces a precomparator phase

shift given by:

2_ 2_
: _ ="_ (Yl + Y2) sin* =--_ (Yl + Y2) *

' The antenna spacing "d" is the physical distance betwsen antevna phase "

.. centers. Then: Yl = d/2 + AI

Y2 = -d/2 + A2

And:

.2_ (/_1 _2 _, ,= . )_

E-8
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Obviously for broadside operation lateral motion w£1i produce zero phase

errors, but in reality the actual boresight will differ slightly from zero.

Mechanical _.olerances and the rigidity of the antenna system determine the

values of tI and A2" Although the values of hI and A2 are not known at

this time, we shall assmne that the traveling wave antennas are allowed to

move laterally d.:e to misalignment so that:

_I = A2 -=-+0.13 cm

Then, for % = 1O, we get:

Za

= 13.6---'--I[0.13-(-0.13)]1,1.0) = 0.i16 degrees

Longltudinal motion, i.e., motion along the X-axis, will introduce a pre-

comparator phase shift given by:

Rgain, there is little knowledge at this time of the actual values of

and X2 to be expected from an actual desi_. However, due to the s_etry

of the cone it is reasonable to assume that the maximum longitudinal dis-

placement should be considerably less than the maximum lateral displacement

and, we assume that we have:

= X2=-+0.025 cm

Then, we get:

2 _

= 5.3----6[0.025-(-0.025)] = .023 tad. = 1.34 degrees

Now, it is important to realize that the only mlsalignment errors that need

to be considered here are errors introduced after the array has been bore-

sighted, i.e., errors which may be introduced by environmental exposure, so

that the maximum values chosen here certainly do not appear unreasonable.

It is, also, clear that induced phase shifts due to longitudinal displace-

ments have a much greater effect than those due to lateral displacements so

that a rigid cone design is to be preferred to minimize such errors.

The expected angular accuracy of the radar due to these antenna errors

can now be calculated by treating each of the foregoing sources of error

independent of each other. We, then, obtain:

i' )2 "= (0.030
_T _'0"996)2 + 2 + (0"116)2 + (1"34)2

CT = ¢2--.-8": 1.675 deg. : 0.0293 rad.

E-9
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The corre.:ponding total l_S angular error is, then, given by:

iT--

= _T 0.0293

(2_ = 67 = 0.00156 rad. = C.089 degrees

A summary of all the system errors associated with the rendezvous

sensor Is given in Section VB.

I-
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APPENDIX F 1

1 kg Sample H+ v Detail Mass Derivation (Mass in kiio_rams)

Structur f 8.85

R,-turn Capsule .91
Outer Can and Lid .45

Inner Container .23

Opening Mechanism .23

Canister Deployment Unit 1.0

R.F. Transparent Cone (.030 Fibre Class) .36

Antenna Dish and Reflector .54
Dish Honeycomb .23 m" @ 1.95 kg/m2 .45

Reflector Dish .09 .

Body Structure 2.81 :

Upper Ring .36
Lower Ring .36

Interface Ring m2 .23Outer Shell .63 @ 1.59 kg/m2 1.00

(020 Outer shell)
Inner Structure .68
Miscellaneous .18

Equipment Packages (.25x_t. Equlp't.) 2.08

RF Package 1.63 x .25 = .41
Elect Box 3.0C x .25 = .77
G&C 3.6 x .25 = .90

Insulation and Paint .45

Solar Panels Substrate and Deployment .68

(.163m2 @ 2.44 kg/m2 for mechanism)

Radio Frequency System and 'DiPackage 1.63

G&C 3.09

Rate Gyros (3) 1.35

Sun Sensors (4) .16 ,

Valve Drive Amplifier (uncased) .68 _,

Computer (Hybrid CMOS Technology - uncased) .90

Electrical 3.9

Solar ,Array 1.75 .163 m2 @ 2.45 kg/m2 .41

Battery Ni-H 2 57.6 _att-hc-tr 1.22

. F-I

ammmmmmm_ .-

1975006730-435



!

Battery Charger (uncased) :_

Power Regulator (uncased) 1.45

i: Fower Control (includes Pyro Function) _

Inverter Converter .82

Cabling "".ll

Contingency 10% 1.81

, Total Nonpropulsive Stage III 20.04

Prol_ulsionDerivation Stage III

_- Payload = Nonpropulsive 20.04 •

Sample I kg 1.0 :i'
21.04 _

4

Preliminary calculations indicated propellant required approximately

6.58 kg plus 1.81 kg for ACS.

Check Propellant initial wt. = Payload 2i.04

Prop. Inerts a.2.3_._8 (below)

33.43 :-

AV = 391 m/sec

AV/ Isp = 391/2206 = .177 e_V/ Isp = 1.194 i
r

_V/ Isp 1
Wp = 0dI) e - = 33.43 x .194 = 6.48

Propulsion Components

Thrusters (Ham. Std. Units) 3.99

12# Thrust (REA 22-4) 4 @ .5t'4= 2.18

.4# Thrust (REA 17-6) 4 @ .272 = 1.09 :_
v

.!# Thrust (REA I0-14)4 @ .181 = .72

_: Valves and Piping 1.9 o

Tanks 2 @ 1.0 2.0 !

: T_.nk Supports 2 @ .72 1.45

Engine Mounts 4 @ 0.8 1.45 _'

:, Residual Gas .i Propellant .4 .5 ;

Contingency 10% 1.09 .:.

: Total 12.38 ;"

F-,2 _
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Propellant AV = 6.48

RCS = 1.81

Total Stage III Propulsion 20.67

Nonpropulsive Weight (p. 2) 20.04

Total Stage III Empty 40.73

Samp]e I.00

Total Stage III 41.73

Derivation of Stage II

Skirt 3.94

Area 50.8 x 33 = .527 m2

Mass .527 m2 kg/m2= x 5.86 3.08

Cabling Connectors, etc. .86 j

Stage P/L Weight = Stage lIT 41.73

Skirt 3.94

RCS for Stag= I and II -1.31

44.36

Solid Motor ffi.88 Isp= 2795 n-sec/kg

&V = 2530 m/set

AV Used = 2530 - 5 m/set for RCS During Stage II = 2525

Sizing Equation

Mp = (Wp/L + (1-.88/.88) Wp) e AV -Z
2525/2795M

(44.36 + .136 Wp) e -Ip=

= (44.36 + .136 Wp) 1.47

.80Mp= 65.21

Mp= 81.51 Mt + 179.7/.88 = 92.63 MCASE = 11.12

Check Mp =(44.36 + ii.]2) 1.47 = 81.55
!

Derivation of Stage I /

Skit t :i!

Area 50.8 x 45.72 = .73 m2 5.67 _
Weight = 7.85 x 6.35 kg/m2 = 4.b3

Cabling Connectors, etc. .45 :;
t

Errector Fittings .59 :_f

F-3 _,
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Stage Payload" Weight

Stage II P/L 44.36

Skirt 5.67

Stage II Prop 81.51

Propulsion Inert Ii.12

RCS for Stage II .3_____6

143.02

AV = 1654 m/sec or 5426 ft/sec

AV Used = 1654 - 7 mlsec for RCS during Stage I

= 1647

ME = (143.02 + (I-.88/.88) Wp) e 1647/2795 -i

•, (143.02+ .136Wp).8
.891 Mp = 114.40

-128.39 wT:14s.51W_s_ 17.51

Check Wp = (143.0 + 17.5_ .8 = 128.39

Total Weight

P/L Stage I 143.02

Propel 1ant 128.39

Propulsion Inert 17.51

288.92

RCS Propellant Stage I and II .95

Total Liftoff 289.87

F-_
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APPENDIX G

The attached report was prepared by Dr. J. F. Vaadrey as part of

our Feasibility Study of Unmanned Rendezvous and Docking in Mars Orbit

-, (JPL Contract 953746).
C

Dr. Vandrey did the analytical work on the Viking Project to predict

the probability that Earth organisms on the unsterilized Viking Orbiter

could contaminate the Lander. He has applied this background plus his

wide ranging scientific acumen to the potential problem of bringing Mars

biota back to Earth on the Earth Return Vehicle (external to the sample

canis fez ).

Ste_,.1. i_robable Number of Viable Organisms in Martian Soils

The existence of any life on Mars is uncertain at the present time.

Should it, however, exist at all, it is very difficult to imagine that these

Martian organisms could be active in more than very few particularly favor-

: able locations, such as in the vicinity of perhaps existing still active or

recently ext_r.,_ volcanoes where there may be some liquid water in the ground.

Estir_ating ._].dtt_:-eq areas total a few 103kin2 on the planetary surface se_us

to be realistic, may even be generous.

: Everywl_c_e else: on the Martian surfac-, the conditions are less favorable

to llfe as we know it than in high-altitude terrestrial desert_, e.g., in some

parts of the Andes, or also in some valleys of the Antarctic. Any viable Mar-

tian organisms could then exist over the greatest part of the Martian surface

only in dormant forms, not unlik_ the "spores" of terrestrial bacteria.

In order to attempt an educated guess of the ntw.ber of Martian micro-

organisms we may at most expect _t an "average" landing site on the planet,

we can use as guidance some data on the abundance of viable organisms in the

most unfavorable terrestrial locations: While normal "garden soil" contains the

order of 109 organisms per grem, the average bacteria count in the "bare"

regions of the Antarctic is between the orders of 102 and 103 per gram, and some

bare Antarctic valleys, some parts of the High Andes deserts, and of the Sahara

appear even to be practically sterile, which means that they contain less than

• e.g. one viable spore per gram of soil.

O-I

1975006730-439



I
I" " |

Important for us here is that this "practical sterility" of a desert soil

can exist in locat:ions only a few hundred kilometers Cor even less) from other

locations which ¢o.-.talngreat numbers of microorganisms in their soils, and in

the presence of an atmL,cphere which can transport all sorts of spores readily

from place to place.

Using this admittedly meager information as a guide, although it may not

quite apply to the llfe forms which may (or may not) have evolved on Mars,

the writer would llke to suggest that a number of _4artian organisms two orders

of --gnitudeless than the average _f the Antarctic, or

_ i0° to 101 organlsms/gram (i)

is about the greatest one could reasonably expect at some distance from the very

few and very small locations where an active life might be possible at the

present time.

Before accepting this estimate as valid for most of the Martian surface,

we have to consider again as well as possible in a very "nebulous" situation, a

different remotely conceivable origin of the "dormant microorganisms" at an

"average locatlon" on Mars: Since there is some evidence in recenLly obtained

pictures of the Martian surface that there was more water there in the distant

past, these organisms could be dormant remnants of a much more abundant local

population which have remained viable over a very long time. If this _uld be

so, there might well be more than an average of 1 to 10 "spores" per gram of

Martian soil at a randomly selected landing site.

It is, of course, impossible to say anything definite against this sug-

gestlon. The writer would, however, consider it as very unlikely that this

could have happened, if the hypothetical Martian llfe forms are in any way

slmilar to the terrestrial ones. His reason is that some of the presently

practically sterile terrestrial soils are in locatlons which have seen a quite

appreciable llfe activity in the geologically not so very distant past. The

Sahara Desert, for instance, is geologlcally quite young. As recently as

during the last Ice Age, much if not all of it was in a warm and moist zone,

and it dried out only after the Central European Ice Sheet melted away, prob-

ably less than 30,000 years ago.

G-2
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S,tep 2. Estlmate of the Dust and Biota Load of the Lift-off Rocket at Take-off

This will have to depend on test results in simulated Martian dust storms.

Very roughly, the exposed surface of the rocket is of the order of I m 2, it may

collect something of the order of I g of dust from dust storms and smaller events

such as dust devils (if they can occur). The collection of dust on the (prefer-

ably very smooth) surface is likely to be somewhat selective, smaller particles

will stick to the surface more easily than larger ones.

This has some bearing (although perhaps not very much) or the biota load

of the rocket surface. Supposing that the Martian "spores" are of similar size

as here on Earth, i.e., typically a few microns*, it is likely that most of the

Martial "spores" will adhere to small dust and sand particles in the soil, and

also in a dust storm, so that those attached to the larger dustgrains would have !

a smaller chance to be deposited on the rocket surface, and to be taken aloft

with it.

Supposing that thi_ selective deposition is not too important, we c_ make

the educated guess that the biota load of the rocket at take-off is probably on

the average only a few spores, somewhere between i and ]O (?).

Step 3. Estimate of Biota Losjses During the Ascent of the Nor et through the

Atmosphere

There are two mechanisms which can lead to a loss of Martian biota during

the ascent of the rocket through the atmosphere:

i. they may be blown off by the relative wind;

2. they may be killed by aerodynamic heating.

For an analysis of both cases, one has to have a knowledge of the.boundary layer

over the surface of the rocket throughout the ascent through the se_sible atmos-

phere_ and particularly through its supersonic part.

According to estimates of aerodynamic separation which the writer has done

a few years ago for another purpose, the separation of individual spor_s from

the surface is much more difficul_ than the separation of larger particles to

* This is not unreasonable, but by no means certain. The only Justification the

writer can give for this contention is that, acc_rding to Rasheoski's studies in

Mathematical Biophysics, a growing cell would become dyns_nically unstable (and

tend to divide) at about the same size of a few microns at which we normally

observe it to occur.

G-3
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which these spores may De attached. Depending on the way one accelerates the
c

rocket upward, one may, for instance, b_ow off all _articles of sizes 30 microns

or larger, most of the particles between 20 and 30 microns_ and very few of the

"_ smaller particles. To convert this into an estiz,ate of the biota loss, one has "

? to have a modei of the size distribution of the dust load, supplemented by an _

_ assm_ption such as that the b_ota are "uniformly distributed over the total sur-

face area of all the dust grains."

How much help one can get from this possible aerodynamic separation is Aif-

ficalt to say, but the writer would be surprised, if this mechani3m could be

: shown to reduce an initial biota load to less than ½ of its initial value.

A, rodynamic hemting, on the other hand, may be an effective way to reduce

:! the biota load, if the surface temperature of the rocket becomes high enough. ._

How high it should be is again difficult to say. One would clearly hesitate

to say that the customary spacecraft sterilization temperature of 135°C (which

kills all kno%m terrestrial spores within 24 hours) is high enough for the few

minutes of significant aerodynamic heating of the ascending rocket. On Lhe other

• hand, it is difficult to imagine that even very hardy dormant organisms (cf pne-

_- sL,nably very similar chemical composition as here) could stand the typical "deep-
T
: frying temperatures," such as 185-195°C for doughnuts, more than a few seconds,

since the brown color of a baked doughnut indicates the thermal decomposition of

important organic materials (polysaccharides). Some deiinite criterion on this

will, of course, have to be established by the NASA Office of Planetary Quaran-

< tlne. It seems, however, to the wri: .r that a value such as 200°C will not meet

very much opposition.

As an afterthought: We have become accustomed to building vehicles which

will be subjected to severe aerodynamic heating as blunt-nosed. In the present

case, however, we may well want a little more surface heating for killing any

Martian organisms, and might then look at less blunted nose configurations. It
>,

might also be mentioned that turbulent boundary layers are more favorable for /

both heat transfer and aerodynamic separation of attached partlcles than laminar

ones, so that one may consider an artificial induction of turbulence into the

boundary layer, should this be needed.

G-4
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Step 4. TraPsfer Probability of Martian "Spores" from the Ascent Rocket to the

Earth Retu£.l Vehicle

Some years ago, the writer had made a study of the possible r:lease mechan-

isms o[ small particles from the surface of a spacecraft in an orbit around Mars,

with t,_eresult that suggested electrostatic and other effects could not lead

to an e_ection of attached Farticles, and that the only way in which this could

occur was by the shockx,ave which is pr_Juced in the spacecraft surface material

by the impact of a micrometeorite.

Even this has a rather modest effect. A micrometeorite of mass m can "clear"

a circular area of radius

r < 4.8 x 106 /7 d m 0p/ps [cm] (2)

• of particles of diameter d and density _p from a _urface with the density Ps'

where 7 ! I and usually << I is a coupling factor for the energy transfer be-

tween the particle and the shockwave. Assuming, for instance, a typical grain

diameter of i0 microns = 10-3 cm for the dustgralns to which the presumably

smaller Martia_ "spores" arz _Lcached, and a typical micrometeorite mass of

I0-II g as in the writer's earlier work, we obtain with the maximtmL value of

7 = I and Pp/Ps '_I a value of r ""5 ,sn,or a cleared area of less than I cm2.

This is less than 10-4 of the total surface area of the ascent rocket which
2

is of the order of I m .

We assume now an original biota load of I0 organisms, and a loss of e.g.

half of them during the ascent through the atmosphere because of aerodynamic

heating and/or blowing off. The probability of one of the remaininb five then

becoming separated from the surface by a single micrometeorite impact is then

!
10-4

I

Psep 5 x= = 200---'_ (3)

Micrometeorite impacts are_ _wever, rat_r ra_e oc^urrenc_s, we expeut an aver-

age of no moze than one per day on a square meter in a Martian orbit. Assuming

then that the docking maneuver takes about 2 hours 1/10 day, we conclude that

the probability of separation of a single spore during this critical time is

only one-tenth of this, o\'1/20_000.
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I Separation does, however, not yet mean that the spore hits the Earth Return

Cehicle, and sticks to it. Without going into the details which will depend on

the relative geometries of the rocke _ and the vehicle, we can say that it will

not be v_ry difficult to achieve a further reduction of the contamination proba-

bility by at least an order of magnitude, i.e., to 1/200,000, and that an even

much better result can be achieved with a suitable design and a more detailed
L

and careful a_alysis.

J
Concludin_ Remarks and Recommendations

.: The preceding example illustrates that the contamination probability of

2 the Return Vehicle is in any case a very small one, even if one assames an,

in the opinion of the writer> unrealistically high initial biota load of the >
2

Ascent Rocket.

By its very nature, however, the precedingly outlined analysis of the con-

tamination hazard for the return vehicle has to be based on a number of assump-

tiuns which should be discussed in detail with the NASA Office of Planetary

:: Quarantine and with _ number of interested and qualified scientists (Drs. Lederberg,

4_ Sap_, and Rorowitz, for instance).

In particular, the writer would like to recommend such a discussion for the

basic question of the probable biota content of Martian soils, and then of the.

surface temperature at which one can assume that all Martian "spores" ,Xll be

_ killed by aerodynamic heating. Furthermore, one should discuss which probability -

_- of contamination would be acceptable as a design criterion, e.g. i0-6, or more,

_2_ or _ss.

As a resul_ of these discussions, the Office of Planetary Oua_antlne could ;
i

then establish a basis for the analysis of the Return Vehicle Contamination

Problm_ which is as good as we can make it at the present time.

_ i It is, of course, to be expected that we shall know more about the question ?

_ i of life on Mars after a successful completion of the first Viking mission. A

i positive outcome of its biological experiment may force u_ to correct the assump-

: tion of the biota contents upwards, and a negative outcome may permit a drastic

downward correction, al_hough not neaessarily to absolute zero.

_. G-6
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APPENDIX H ALTErnaTIVE MAV BIPROPELLANT STAGE

m

One I_V propulsion concept that appeared attractive and was stud fed

i in considerable depth was a two-stage propulsion system using a solid

i motor first stage, but a bipropellant second stage that combines the

functions of this baseline second and third stages. This concept appeared

attractive for two reasons; i.e., the use of a liquid second stage pro-

vldes packaging flexibility that is not available _Ith _olld propellant

motors, and the bipropellant liquid performance (delivered specific im-

pulse) is slightly higher than that of solid motors, though the mass frac-

tion is lower. The liquid system can be packaged to provide a relatively

short squatty MAV that conceivably could be contained in the lander in a

vertical position so that elevation prior to launch would not be required.

To permit a direct comparison of the two-stage vehicle with the base-

line three-stage vehicle, the same gross weight was assumed for both (250

kg at this stage in the study), and identical flrst-stage solid motors

were assumed. The blpropellant stage was assumed to use N204 and N2H4 as

propellants. These earth storables provide a _igh specific impulse, and

also permit small monopropellant thrusters (for attitude propulsion) to

be fed directly from the main fuel tanks. For optimum packaglng, a

total of four propellant tanks was assumed, these being pressurized by

a regulated helium pressurization syste_ Four thrusters were selected

to provide the desired packaging configuration, and also to permit pitch

and yaw attitude control by off-pulslng of individual thrusters. The

proposed system is sho_ schematically in Figure H-l; the proposed

arrangement of major system components is shown in Figure H-2.

Considerable effort was devoted to the accurate determination of com-

ponent sizes and weights so that the system mass fraction would be accu-

rately know. A mass fraction of .7 was initially assumed for performance

calculations. This permitted the propellan_ requirement to be determined

(from the known gross weight and Delta V of the stage), from which the

tank sizes were establlsbed and all component sizes and weights estimated.

Pertinent results are sum_.arized in Table H-I which lists the components,

their capacities in terms of pressures, volumes and thrust levels, the

H-!
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space program providing the needed component technology, and the esti-

mated component weights. The weight of required propellant is seen to

be 113.5 kg, leading to the selection of propellant tanks with a volume

of 1710 in 3 each. These are fitted with bladders for effective pro-

pellant management. The associated helium pressurant tank requires a

volume of 560 In 3 when designed for a pressure 3800 psia. The size of

the thrusters was not flrmly established, but a thrust level of approx-

Imately 500 N (each) appears to be optlmtu_ At greater thrusts the pro-

_ pulsive efficiency improves somewhat, but at the expense of additional

i inert weight. At lower thrusts the thruster weight decreases, but this

is compensated by a loss in propulsive efficiency. The most significant

result to be noted is that the computed mass fraction is .69, approxlmately

the same as the value origlnall_ assumed. Therefore, it is concluded

that this value can be used with confidence in computing N_V performance

•nd inert weights.

A performance comparison between the two-sta@e and the baseline

three-stage MAV is summarized in Table H-2. The definite superiority

of the baseline FRV is Immedlately apparent. The baseline design provides

a payload weight (non-propulsive) of 20 kg, whereas the two-stage con=

cept provides only 2.7 kg. Obvlously the sllghtly hJgher specific Im-

pulse delivered by the blpropellant system does not adequately compensate

for the relatively low mass fraction that must be accepted.

In an effort to improve the performance of the two-stage vehicle,

the stages were reapportioned so tha.t the first (very efficient) stage

would provide a greater percentage of the total Delta V requirement.

Several cases were studied, including those in which the first stage

weight exceeded 200 kg, but the largest payload that could be reallzed
f

was approximately 8 kg, less than one-half that obtained with the " Lse-

llne configuration. Therefore, the concept of a blpropellant second stage

was _bandoned in favor of the three-stage basellne design which uses two

solid propellant stages t_ provide the requl/ed ascent Delta V.

: H.5
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APPENDIX I STERILIZABLE SOLID PROPELLANTS FOR MAV
, i

_ hasellne configuration selected for the MAV propulsion system

; comprises three stages, the first two of which use solid propellant

: motors. This selection of solid motors was made primarily because b_V

: weight is extremely crltical, and t_e solid motor offers definite

; weight advantages over liquid propellant system in the size (total Im-

• pulse) range applicable to MAV.

It is the purpose of this discussion to present a summary of >
i

sterillzable propellant s_ate-of-the-art, and finally, a prediction of

;. performance to be expected from propellant to be available in the future.

Sterilization Requirements. To assure adequate biological sterl-

: llzation of planetary landers, it has been determined that the hardware •

must be subjected to a sterilization cycle involving exposure to dry
d

heat for an extended period of time. The particular combination of time

and temperature specified by the Viking Project for Flight Acceptance

Tests is 233 _ 3°F (I12°C) for a period of 54 hours. Then to assure that

each type of component can successfully withstand this sterilization

environment with a high degree of confidence, a component Qualification

Test requirement has been evolved consisting of the following:

2 - 54 hours cycles at 254 _ 3°F (123 _ 2°C), and

4 - 40 hours cycles at 254 _ 3°F (123 _ 2°C).

Since thi_ combination of time and temperature refers to the coldest ..

portion of the hardware, it is evident that the sterilization cycle •_

will subject some portions of the hardware to an even more severe en- "-

vironment than that specified. This sterilization requirement poses a
J

formidable challenge for the solid propellant chemist because solid

propellants are not ordinarily required to withstand temperatures "

greater than 120 to 140°F.

Sterilization Effects. The two principal adverse effects of the

heat sterilization process on solid propellants are:

a) Decomposition due to long exposure at high temperature, and

b) Mechanical failure (cracking, etc) due to overstressing.

I-I
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Therefore, to satisfactorily withstand the sterilization environment,

the propellant must possess:

a) Extremely high thermal stabl]Ity, and

b) Excellent physical properties over a wide range of temperatures.

; The importance of propellant thermal stability is readily appar-

ent when consideration is given to the chemist's "rule of thumb" that

reaction rates approximately double for each lO°C temperature increase.

Therefore, at a sterilization temperature of 123°C, chemical reaction

(2)7.3rates may be expected to be -_ 150 times as great as those at a

_ typical propellant maximum temperature of _50°C. Degradation of per-

formance or formation of gas bubbles and propellant voids that might not

be detectable as a result of exposure at 50°C may become major problems

when the propellant is exposed to temperatures of 123°C. Void formation

presents an extremely serious problem because it results in increased

burning surface which can readily lead to catastrophic failure of the

rocket motor case.

The importance of good propellant physical properties becomes

evident when one considers the stresses imposed on the propellant by

differential thermal expansion as the temperature is varied over a

: wide range. An especially difficult problem is presented by the widely

different coefficients of expansion exhibited by the propellant and the

motor case. The end result is often the formation of cracks within the

propellant or separation of the propellant from the liner, both of which

introduce additional propellant burning surface with resultant posslble

catastrophic failure. In addition, it is necessary that the propellant

possess a sufficiently high modulus at high temperature that it is not

subject to deformation by plastic flow.

i. Early Investigations

_ Because of consideration given to the possible use of solid propel. •

lant motors on Viking, there was considerable activity beginning _ 1965

regarding the development of ste_llizable solid propcllaats. This work

_ , was conducted principally by five different organizations; i.e., JPL,

N&SL Langley, Acrojet, Thiokol, and UTC. The investlgarlons conducted

1-2 "
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were concerned principally with propellant research focused on the

critical problems of propellant thermal stability and enhancement of

mechanical properties. No large scale motors were ever fired, but con-

siderable progress was made in evolving a class of propellants that could

withstand he_t sterilization. These programs are suummrized briefly in

the following paragraphs.

JPL. Some of the earliest significant work in the area of sterl-

llzable solid propellants was performed by JPL. Work began_1965 and

continued for several years. Of several candidate propellant formula-

tions considered, saturated binder propellants (binder containing a

saturated secondary hydroxyl terminated polybutadlene prepolymer chain

extended with tolylene dilsocyanate and cross-linked with trlmethylol

propane) exhibited excellent thermal stability and mechanical proper-

ties, and were selected for as many as ten sterilization cycles (56 hours

at 275°F), and small 2 Ibm motors were loaded and successfully fired.

However, attempts to load 12" diameter motors were unsuccessful because

of the many voids that formed in the propellant. Ultimately, it was

concluded that the primary factor influencing void formation was the

oxidizer (anm_nium perchlorate).- The relative effects of particle

size, age, and moisture content on thermal stability eventually were

well characterized, but the effort did not proceed to the point that a

completely .satisfactory propellant formulation was evolved. Detailed doc-

umentatlon of this work is presented in Ref. I-I and 1-2.

Thlokol. During the late 1960's, Thiokol was engaged in both In-

house and contractual work in the area of sterilizable propellants. The

latter effort (JPL contract 951405) consisted of a design study only and

did not proceed to an experimental phase. This work was completed in

mld-1966 and is reported in Ref. I-2.

Thiokol In-house investlga_lons were concentrcted on a propellant

fo1_0ulation designated TP-H-4002, using a saturated hydrocarbon hinder

in combination with a total solids content of 837,, of which 15% was

aluminum. This iormulation displayed some changes in physical properties

and a measurable weight loss when subjected to the heat sterilization

cycle, but these did not prove detrimental. It was found that void for-
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marion could be minimized by use of an azirldlne additive and by care-

ful contrel of the oxidizer purity and particle size. Testing of inert

liner and insulation materials resulted in identification of several

different promising candidates. Ultimately, Thlokol successfully sub-

jected 3" x 3" propellant cubes to seven sterilization cycles at 275°F

with no evidence of void formation. Also, small motors containing this

propellant for_mlatlon were successfully fired to determine ballistic

characteristics, but loading of full-scale motors was never attempted, I •
l

NASAm.Langley. Langley Research Center was Involved in the steri- _.

lizable propellant program for a period of at least five years, but | :

primarily as a technical monitor of contractual work. Langley sponsored

early contractual efforts by both AeroJet and UTC, and attempted for a

time to continue an In-house effort after the contractual work was com-

pleted. Finally, in 1972 NASA responsibility for the sterillzation

program was assigned to JPL, so Langley is no longer involved. It was

not possible to uncover any of the results from work done in Langley's

in-l_ouse program, so none are presented here. l_e contractual work of

UTC and AeroJet is summarized below. _

UTC, UTC was awarded a slzable contract by NASA Langley in the _

mid-1960's to develop a sterillzable solid propellant, but the program 0

appears not to have produced results pertinent to this mission. There-

fore, no attempt was made to uncover detailed information concerning

their program, Numerous problem areas were identified by UTC, but in

telephone conversations, UTC personnel have displayed considerable op-

timism regarding their capability to produce a sterilizable propellant

(given addltional time and money).

AeroJet, AeroJet was awarded a contract (NASI-IOO86) in the late

1960's to "demonstrate the heat sterilizability of an integrated solid

: propellant rocket motor system". This initial effort was not intended

to demonstrate sterillzabillty with full-scale motors, but rather to demon-

strate the technology through the use o_ selected propellant specimens.

Preliminary investigations were conducted with free standing specimens

2 1/2 x 2 1/2 x 5" in size. Then tests were conducted of 2.75" strain
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motors; i.e., 3" dla. alumSnum tubes into which the propellant was loaded

and bonded.

Numerous propellant formulations were evaluated, as well as liner 1

materials and bonding techniques. The sterilization cycle employed was _

essentially the same as that used. by other investigators; i.e., (6)-53 hour

cycles at 135°C. Considerable progress was made in identifying the prob-

lem areas and their potential solutions, but failures (in the form of

i cracks) occurred frequently in the straln cylinders. Eventually, it was 1concluded Lhat a more flexible support system was required to attach the

propellant to th_ motor case. This led to the evolution of Aerojet's

! concept of the "stress relieved motor" in which the propellant is loos_ly
/

supported within the motor case so that differential thermal expansion

does not cause excessive stresses to be transmitted between the ease and

; the propellant.

2. Current Prosrams

Currently, investigations to evolve sterilizable propellants are

being conducted by only two organizations; i.e., JPL and Aerojet.

AeroJet's current program is being conducted under contract NASI-10861,

initially sponsored by NASA Langley, bur currently monitored by JPL.

In addition, JPL Is conducting an in-house program to evolve a steriliz-

able solid propellant. These programs are described briefly in the

following paragra_ _s.

)
Acrobat. The current Aerojet program, defined by the contract

Statement-of-Work (Ref. I-4) has as its primary objective the "design,
!

development, manufacture, and testing of two solid propellant rocket

motors (exclrsive of nozzle and igniter) capable of callable operation

after exposure to dry heat sterilization". Secondary objectives are

"that the propellant exhibit reasonable performance, and the =mterials

exhibit acceptable margins of physical properties following the required

(6) sterilization cycles"• Objectives are to be achieved through the use

of "the 18-inch spherical SVb_3 rocket motor case and nozzle" (Fi_. I-I).
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The propellant formulation _elected for the demonstration motor

(designated ANB-3438) was evolved during the earlier propellant investi-

gations conducted by Aerojet. It contains 84% solids and should be
?

capable of producing a specific impulse of,_285o It is supported inside

the motor case by the liner concept previously referred to as the "stress

relieved motor". This liner is relatively heavy and results in a mass 1 •
fraction penalty of about ,02. In addition, the nozzle being used in

_ the demonstration motor is very heavy, so that th_ resultant motor mass

fraction is only about .84.
During the past few mont_,_ the contract h_ en brought to a

i successful conclusion. Thermal cycling of the two motors was begun _nthe fall of 1973, and completed early in 1974. One motor was subjected !

to six 53-hour sterilization cycles at 135CC (10°C greater than the tem-

perature required for Viking component qualification), with X-raying

accomplished between cycles to detect any evidence of promellant deterior-

ation. The motor successfully completed three cycles, but showed evidence

of a small flaw after the fourth cycle. The flaw grew and broke through

the inner surface of the grain during the fifth cycle but didn't develop

further during the sixth cycle. As a result of this small surface crack,

it was decided that the motor would not be fired, though the probability

of catastrophic failure was very low.

The other motor, lagging the first one approximately one week in

thermal cycling, was subjected to eight 53-hour cycles at °_5°C. It

successfully completed all eight cycles with no evidence cf any flaws

whatsoever. Consequently, it was conm_itted to static firing _hich was

successfully accomplished on 21 February ?974. Thus, a major milestone

in the stage-of the-art of sterilizable propellants _as passed. Per-

formance (specific impulse) was approximately 2.5% lower than expected,

but otherwise, resu]ts appear to have been entirely satisfactory. De-

tailed results are contained in an AGC final report soon to be published.

It is tentatively planned to extend the AGU contract to permit shock

and vlbr_tion testin_ of the first motor to typical qualification levels.

If this test is also successfully passed, it will do much to enhance the

1-7
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probability that operational sterilizabie soii,I propellant motors will be

available for the MAV application. On the other _._nd, the current fund-

._ ing level is very low, and co_slderablc additional funding will have to

be provided if the desired end goal i._ to b,_ raached.

JPL. The JPL iv-house program is being conducted somewhat along the

same llr,es as the AGC program, i-ut ohlv one motor is involved, and it is

not to be statically fired. The JPL moL_=, however, is r_uch larger than!

the AGC motor, so it will provide evld_nce of the sterilizability of very

large propellant _rains. The motoL- case, a surplus ATS Apogee motor, is

28" in dlamete_ and accommodates a vropei!ant load of 800 ibm. The&

# propellant is a "saturethane" formulation evolved from JPL's earlier in-

vestigations. It contains only 817= solids so would be capable cf deliver-

ing a specific impulse of only about 275. The gr_in is not bonded to the

case, but is free to expand and contract independent]y from the case, the

_ same as it would be if _.t were supported by on__ of "he "stress-free" liner ,

concepts. It -viii be noted that although the motor is not designed to be i

fired, the ability of the grain to withstand the sterilization cycles i

will be adequately proved by the X-raying to be accomplished.

Loading of the motor was completed early in 1974, but cycling andi

X-raying are proceeding very slowly due to corfllcts in the use of the

. temperature conditioning facilities at EAFE.. Only two sterillzat_on

" _ cycles had b_en completed as of May 1974, and there was no firm schedule '

for coa_letlng the _dditlonal six cycles.

3. Conclusions
I

Based on the work accomplished to date, =.nd forecasts of key

, personnel who have been active in the investigations of steri!izable

: solid propellants, the following conclusions have been evolved:

a) Sterillzable propellant technology will be sufficiently

' advanced by the late 1970s that a highly reliable solid

motor design can be assured for the MAV application, pro-

- i vlded that funding Is available to support continued de-

._ velopment during the next few years.

I-8
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b) The best solid propellant specific impulse that can be

expected for the M_V application is 285 to 287 sec. It is

technically feasible to Increas_ this value by _15 sec by

substituting beryllium for aluminum in the propellant forr_-

latlon, but the associated toxicity hazards are probably not

acceptable.

c) The solid propellant motor mass fraction that will be attain-

_ able for the MAV application is only about .87 because of the

heavy liner required. This could probably be increased to .88

if an advanced design carbon nozzle were used in place of a

more conventional nozzle.

d) Igniters appear to present no problems whatsoever with regard

to effects of the sterilization environment.

e) Life requirements imposed by the MSR mission should be easily

satisfied by the new generation of sterilizable solid propel- !

lants, because they have much greater chemical stability

than conventional propellants.

f) Effects of long term exposure to space vacuum (if any) are ,,

readily circumvented by applying a hermetically sealed closure

to the nozzle exit.
&
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APPENDIX J THRUSTER SIZlI_C AND PROPELIANr CONSUMPTION

;, l. Aft-Firin_ Thzuster Size

During Stage I and Stage II solid motor burns, the aft-firing

I Stage Ill thrusters must be capable of maintaining the proper attitude

L of the MAVby providing moments that offset those arising from aero-

: dynamic forces and solid motor thrust mlsallgnments. The maximum dl_-

tux Jng moment is found to occur at Stage I burnout when aerodynamic

" forces are highest (max q). During Stage II burn, the atmospheric

density is very low so that aerodynamic forces do not present a problem

Pertinent forces acting on MAV during solid motor burns are shown

on the diagram presented at the le_t in Fig. J-l; the numerical assump-

? _ tions and pertinent computations are included at right. It will be seen

that for additive moments due to thrust misallgvm__ent(.i in at the center

of gravity), and aerodynamic forces (1/3° maximum angle of attack), the

disturbing moment is 174 Ibf in and the required thruster force is 10.9 Ibf.

_ "iherefore, the selection of a 12 Ibf thrust is realistic.

Shortly after liftoff, the aft-flrlng thrusters are also required

to provide a moment for the pitchover maneuver, but this is found to be

a negligible value compared to the above. For the assumed maximum pitch

acceleration of .02 rad/sec the required moemnt is only about II Ibf in,

. less than 10% of the maximum aerodynamic moment.

2. Limit Cycle Propellant Consumption

Determination of propellant consumption in the .__tcycle mode is

of considerable importance in the URDMO study becaust the proposed

use of hot.gas thrusters for most attitude control functions. The thrusters

tend to have high consumption rates in this type of application because

the spacecraft moments of inertia are often low (particularly, for MAV),

the thrust levels are relatively high (.5 N minimum), and the moment arms

are small (the thrurters are located on the spacecraft surface to sln_Iify

thermal control problems).

J-t
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The symmetrical limit cycle prope.11ant consumption rate is computed

from the equation: "_t

r It .7
(v = ibm/see

4@I I
o sp -._

where r = thruster moment arm ft _

It = minimum impulse bit (two thrusters, !
if providing couples), Ibf sec

O = deadband (are half-angle) radlans ..

I = specific impulse (in limit cycle

Sp mode, sec)

I = spacecraft moment of inertia,
O

slug ft 2

Then the total consumption is determined by multiplying the rate by the

appropriate time interval, and by the number of axes as applicable.

For the case of the Stage III MAV in roll, the assumed conditions

are:

r = i.167 ft

_ 0 = i0° = .174 tad.

I = 1.758 slug ft2
O

I = 120 sec
sp

I = .004 ibf see (obtained at low feed

t pressure)

Substituting these in the above equation yields a consumption rate of !

,_ 12. Ibm/see 5.7(I0) "8 kg/sec , or a total consumption less than i

, .I kg for the MAV 400 hour orbital life.

{ For the case of the Stage III MAV in pitch and yaw, the assumed

conditions are:

r = I.167 ft

0 = i/4° = .00436 tad.

I = 1.16 slug ft2
O

I = 120 sec
sp

It = .0005 Ibf sec (throttled thrusters)

J-3
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Substituting these in the above equation yields a consumption rate of

!2(10) 8 Ibm/sec 5.5 kg/sec for each axls, or a total consumption :

of approximately .2 kg (both axes) during the MAV 400 hour orbiLal llfe.

For the case of the Viking O_biter attitude propulsion system the

assumed conditions are:

r = 4 ft

: @ = .004 rad.

I = 120 sec.
sp •

I = .0004 Ibf sec.
t

7

.,: I° = 2500 slug ft2 (cruise, roll)

= 10,600" (cruise, p and y)

= 1360" (orbitlrg, roll)

= 1560" (orbiting, p and y) i

Substituting these values in the above equation, four consumption

rates are determined. Then the total consumption during the entire mission •

is determined by accounting for the time interval for each phase of the

ml_slon; i.e., 300 days of cruise and 400 days of orbiting. Results of

these calculations are tabulated below: _.

: Consumption Rate Total Consumption :

Mode (lbm/sec) _ Gbm)

Cruise, Roll .013(I0) -6 .33

Cruise, p and y .0029(10) -6 (each axis) .14 (both axes) i

Orbit, Roll .024(10) -6 .83
2

: Orbit, p and y .021(i0) -6 (each axis) 1.45 (both axes)

2.75 (I. 25 kg)

J-4
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