
NASA CR-

P-019

A DISCUSSION OF HIGHER ORDER SOFTWARE

CONCEPTS AS THEY APPLY TO FUNCTIONAL

REQUIREMENTS AND SPECIFICATIONS

by

Margaret Hamilton

December 5, 1973

(NASACR-=141653) A DISCUSSION OF HIGHER N75-18920

ORDER SOFTHARE CONCEPTS AS THEY APPLY TO
FUNCTIONAL REQUIREMENTS AND SPECIFICATIONS

(Draper (Charles Stark) Lab.0 Inc.) 23 p HC Unclas
CSCL 09B G3/61 12495

Reproduced by

4 4 NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

The Charles Stark Draper Laboratory, Inc.
Cambridge, Massachusetts 02139

P-019

A DISCUSSION OF HIGHER ORDER SOFTWARE

CONCEPTS AS THEY APPLY TO FUNCTIONAL

REQUIREMENTS AND SPECIFICATIONS

by

Margaret Hamilton

December 5, 1973

THE CHARLES STARK DRAPER LABORATORY, INC.

CAMBRIDGE, MASSACHUSETTS 02139

Approved: 1 ~
D. G. Ho j

I

ACKNOWLEDGEMENT

This report was prepared by the Charles Stark Draper Laboratory

under Contract NAS9-4065 with the Lyndon B. Johnson Space Center of

the National Aeronautics and Space Administration.

The publication of this report does not constitute approval by the

National Aeronautics and Space Administration of the findings or the con-

clusions contained herein. It is published only for the exchange and stimu-

lation of ideas.

ii

TABLE OF CONTENTS

Page

REQUIREMENTS 2

SOFTWARE 2

DESIGN. 3

SPECIFICATIONS . 3

ALGORITHM 4

STRUCTURED PROGRAMMING. 4

PROGRAM STRUCTURING . 5

STRUCTURED DESIGN CONSIDERATIONS FOR REQUIREMENTS. 5

PROGRAM STRUCTURING CONSIDERATIONS FOR REQUIRE-

MENTS 7

DESIGNS THAT SHOULD NOT BE INCLUDED IN THE REQUIRE-

MENTS 13

SPECIFICATIONS DESIGN CONSIDERATIONS. 15

SUM MARY 17

REFERENCES 19

iii

-1-

A DISCUSSION OF HIGHER ORDER SOFTWARE CONCEPTS

AS THEY APPLY TO FUNCTIONAL REQUIREMENTS AND SPECIFICATIONS

In order to demonstrate Higher Order Software (HOS) concepts as they

apply to the Shuttle Software System, a definition of terms is given. The

concepts discussed and the terms defined here are intended to be consis-

tent with Reference 1 and Reference 2. What is important, of course, is

not that these terms, per se, be used; but that the concepts discussed

below be more clearly understood.

A forthcoming CSDL memo will discuss, in detail, the application of

HOS techniqhes to an actual prototype MERCURY Module.

Consider the top-down problem solving process of a Shuttle Applications

example, Entry Guidance. The major steps might be as follows:

Step 1 - Shuttle Program Mission Requirements

Step 2 - Entry Guidance Mission Requirements

Step 3 - Entry Guidance Avionics System Requirements

Step 4 - Entry Guidance Software System Requirements

Step 5 - Entry Guidance Software Functional Requirements -
(Requirements Design Phase)

Step 6 - Entry Guidance Software Architectural Requirements -
(Specifications Design Phase)

Step 7 - Entry Guidance Software Verified Code.

-2-

(It is important to note here that Entry Guidance is an example of a

Section A Applications Module as defined in Reference 1, pages 6-11.

The relationship of the Applications Modules to the Systems Modules*

are defined in more detail in the Reference 1 report.)

REQUIREMENTS - are "something wanted or needed ' ' 5

In the above example, Step 1 defines the Mission Requirements of the

Shuttle Mission. Entry Guidance is defined as one of the Mission Re-

quirements from Step 1. Step 2 defines the Mission Requirements of

Entry Guidance. The Avionics System is one of these Requirements.

Step 3 further defines requirements needed by Entry Guidance from

the Avionics System. Software is one of these Requirements. Step 4

defines requirements to Step 5 of the flight computer program for

Entry Guidance. Step 5 takes these software Requirements and pro-

duces Functional Requirements for Step 6. The Functional Require-

ments in Step 5 define how the software will solve the problem. It is

in this Step that the software functional algorithms are designed.

(This Step, the Functional Requirements, has been called different

things by different people. Examples of other recent labels are: Design

Equations , Level 1, Book 1, etc.). HOS refers to this phase of

software as the Requirements Design Phase. Step 6 defines the

Architectural Requirements for Step 7 (i. e., the detailed Functional

Requirements of the software). HOS refers to this as the Specifications

Design Phase.: The final Step, Step 7, produces the verified flight

computer code.

SOFTWARE - In each problem to be solved, HOS begins with the formula-

tion of the problem to be solved by a computer and ends with the final

verified code. In the example, Steps 5-7 are pure software steps. That is,

System Modules include FCOS and the Applications Support Software
as defined in Reference 3. The HOS concepts discussed here apply
both to Applications Modules and Systems Modules and are intended
to be consistent with the aims of Reference 3 and Reference 4.

-3-

the software process begins once a requirement for that process has

been defined.

Shuttle flight 'software', therefore, begins with Step 5, the design of an

'algorithm' for the flight computer, and ends with Step 7, the completion

of the verified code.

Discussion here will concentrate on HOS techniques as they apply to

Steps 5-7, i. e., the pure software development steps. (It should be

noted that HOS techniques are recommended for the higher levels, Steps

1-4 as well, for the process of software design is not unlike the process

of design in general.)

DESIGN - a process whereby one "conceives and plans.

If we look at Steps 1-7, there is a continuing design process in each Step.

The design for each Step is involved in producing Requirements for the

next Step.

The design process in Step 1 produces requirements for Step 2. The design

process in Step 2 produces requirements for Step 3, etc. Each Step

evolves from the previous Step. In this discussion we will concentrate on

the design processes of Steps 5 and 6 where Step 5 produces the Functional

Requirements and Step 6 produces the detailed Functional Requirements

(i. e., specifications design) of the flight computer software product. Un-

less specified, 'design' is used here to refer to the 'design' process of

both Steps 5 and 6 (i. e., Requirements and Specifications).

SPECIFICATIONS - "a detailed precise presentation of something or of

a plan or proposal for something. "5 From a global point-of-

view, for a given Step, one could say that the specifications evolving from

the previous Step (Step -1) are the same as the requirements for the next

Step (Step +1). Following from Step 5, Step 6 is the Software Specifications.

Step 5, the Requirements Step, is the first design of how the software does the

job (including functional and performance considerations). Step 6, the

-4-

Specifications Step, takes the requirements from Step 5 and evolves

them into further detail by taking into consideration the architectual

aspects such as the software tools (e. g., computer and language) and

software restrictions (memory and timing).

ALGORITHM - is a rule or process for solving a problem. There are

1) pure mathematical algorithms (such as a software square root

algorithm), 2) pure logical algorithms (such as a data management

routine), or, 3) algorithms representing both mathematical and logical

considerations.

In the software design process, algorithms are not developed until the

beginning of Step 5, i. e., the Requirements Step. At this time, algorithms

are designed from a functional point-of-view (that is, the performance of

the problem in question must be considered as well as the reliability of

the software that will result). A further evolvement of the algorithm

design is carried out in Step 6, the Specifications Step. At this time,

architectual considerations are brought into play.

Many of us, unfortunately, have been confusing the terms of 'structured

programming' and 'program structuring. ' One reason is obvious: the

terms are too much alike. Until we can come up with a better name for

program structuring, however, these terms will be used for the sake

of consistency. (Some of the terms that have been suggested for program

structuring are: program organization, design organization, heirarchical

organization, decomposition of modules, and HOS organization.)

For every module (e. g., the GN&C module at one extreme and the lowest

sub-module within GN&C at the other extreme), concepts of structured

programming and program structuring are applied.

STRUCTURED PROGRAMMING - the exercise of organization and discipline

in the Requirements and Specifications design process. Design segments

are arranged sequentially; equations and data are organized so that the flow

-5-

of the design is visible. Each logical action in the design is expressed

by means of structured constructs (DO WHILE, IF THEN ELSE, DO

CASE, DO FOR). We recommend expressing structured designs using

the structured design diagrams (pages 12-15, Reference 2 and page 19,

Reference 1). A well-known example of proper use of constructs is to

eliminate GOTO's. 7

PROGRAM STRUCTURING - whereas structured programming applies

more to a design/programming style, program structuring applies to

the process of defining modules and their interfaces (recommended

program structuring techniques are described in Reference 1, pages

16-20, 29-31, etc.) There are two major phases of program structuring.

The first phase defines the functions and their interfaces from a strictly

performance and functional point-of-view. The second phase is concerned

with software architecture and is dependent on the language, computer(s),

etc. A natural division is to have Requirements worry about the first

phase and Specifications worry about the second phase (Reference 1,

pages 50-51).

STRUCTURED DESIGN CONSIDERATIONS FOR REQUIREMENTS

Requirements are being produced by several organizations and by many

engineers; they are using various tools and techniques. The most

important and most practical standards needed at the Requirements

level are that the Requirements designs:

* be structured designs. Structured designs can be
produced no matter what language or verification
tool is used in the design verification process.
For example, if a Requirements design is verified
using a language without constructs, such as DO
CASE, the design in the Requirements book can
still be represented by a DO CASE.

-6-

* represent the "start" of the Specifications, i. e.,
they should not go into a detail inconsistent with
or beyond the Specifications level. An example
of a Requirements design that is both inconsistent
and goes beyond the Specifications level is one
which shows an indexing scheme which is beneath
the level of a DO construct. Another example is
when the accuracy (precision) of a Requirement 8
depends on the set of operations in the algorithm

* be presented using structured design diagrams to
make the designs easier to communicate to the
Specifications designer '' .

* use terminology that is uniform wherever possible.
It is entirely possible that the engineer will use p
at the Requirements level and leave it up to the
Specifications engineer to define MU at the language
level. This would certainly make sense if the
design verification were done by hand or with a
hand calculator. However, if the Requirements
engineer provided structured design diagrams using
MU and/or wrote a HAL program, using MU, for p
the Requirements level has been carried closer to the
Specifications level in the process of completing
design verification. It would thus seem more prac-
tical for this next step of the design also to be
included with the Requirements. The Specifications
engineer would have the option of changing the term-
inology if there were a valid reason for it.

Those Requirements which have been verified using HAL as a language

will be closer to the eventual recommended Specifications than those

Requirements which have been verified using some other language (e. g.,

FORTRAN or MAC). Those Requirements using structured techniques

with HAL notation will be much closer to the eventual recommended

Specifications than those Requirements using structured techniques without

HAL notation. As to notation and design style, then, some Requirements

will be further than others.

See pages 39-45 of Reference 1 for example of structured design diagrams.

-7-

PROGRAM STRUCTURING CONSIDERATIONS FOR REQUIREMENTS

It is especially important that the first major phase of program structur-

ing occur at the Requirements level; for this is the level that should

determine what the functions (and thus resulting modules) are and how

they should interface with each other (at least from a strictly functional

and performance point-of-view). A major concern of the first phase

is to structure the functions" so that they will work no matter what the

architectural constraints are. For example, if architectural changes

have to be made later on in the Specification process due to memory

restrictions, an architectural change should be able to be made safely

without changing the functional design or performance characteristics.

A function at the Requirements level should not depend on its working,

for example, as a PROCEDURE, or on how many or how few multiplies

there are. This is what we mean when we say that the Requirements

Step should produce flexible functional designs. Without the structuring

process during the Requirements phase, a new functional and performance

design phase would be necessary later in order to both produce the

eventual reliable software, as well as to confirm the reliability of the

stand-alone Requirements, i. e., there would be two design efforts,

rather than one. Without the structuring process at the Requirements

level, the original designs are to be trusted less (for after all, they

are software too, since they are verified using software). In addition,

in order to allow for reliable and efficient comparisons of the design

at both the Requirements and Specifications Steps, the functional

relationships should be maintained throughout both the Requirements

and the Specifications Steps. With functional consistency, new

designs (those applying program structuring) would have valid baselines

for comparisons. Test results could then be compared at meaningful

checkpoints which in many cases might no longer exist if the functional

relationships were no longer the same between the Requirements and

Specifications Steps.

See page 50 of Reference 1 for an example of a functional structure.

-8-

1
HOS Techniques assume program structuring to include top-down,

modular' design. Since the terms "non-unified" and "unified" have

been used in making design trade-off decisions, some definitions are

in order. For it is possible that what some people think of as "unified"

could very well be "non-unified" and vice-versa.

1
By HOS definition, a typical unified module is one where only that

module in a software system assigns a given data set; and where that

module must ask about control information already known on a higher level.

A B

X Y X Y

X Y

X1 X2 Y1 2

Where modules for X and Y assign a data
set for A using the set of operations of X
and Y 1 ; where modules for X and Y assign
a data set for B using the set of operations
of X 2 and Y2

FIGURE 1: Module Members of a Unified System

We distinguish what we mean by modular since it means different things
to different people. Modularity is defined in Reference 1, pages 20-27

-9-

A B

X1 Y1 X2 Y2

Where modules for X and X2 assign the same
data set but the set ofloperations for X1 is
different from the set of operations for X;
where modules for Y and Y 2 assign the same
data set but the set oJ operations for Y is
different from the set of operations for Y 2

FIGURE 2: Module Members of a non-unified system

As design modifications are made to a unified module, the resultant

logic can easily become more complex and thus harder to understand, more

difficult to verify and more difficult to change; for often the decision to go

"unified" is made solely for reasons such as memory saving or common

use of common data without regard for software reliability. On a long-term

project, such as the Shuttle, the flexibility to make reliable changes is a

major factor. Forcing a module to become unified ultimately results in

misuse of control decisions. An example of this is redundant control

decisions being made at lower levels that are or should have been made

at higher levels. If a decision is made to go "unified" for some modules,

the levels above those modules should be clearly understood in order to

prevent the necessity of pulling apart an obsolete integration of sub-modules

within a unified module.

It appears, then, that the first step in the Requirements process would be a

non-unified step. If unified modules are to be designed, they would

be integrated from the previous step.

If more than one function requires an existing non-unified module (e. g., if
C requires the function performed by X 1 for A 1 , then C can invoke X 1.

-10-

At present, trade-off studies of non-unified vs. unified designs are

being made in order that more definitive guidelines can be defined

for practical application to the Requirements integration process.

The use of non-unified designs does not mean that there cannot be

common use of common functions (a further refinement of common use

of common functions is an important role for the software Specifications

design phase).

Here A and B invoke the common function Z.

A B

z z

The Z module performs the same set of
operations for A as it does for B. Z
operates on a data set specified from A.
Z operates on another data set specified
from B.

FIGURE 3: Common Functions

-11-

The use of common functions not only saves storage,

but it also saves on the design, implementation and verification time of

both the Requirements designs and the flight software. Higher Order

Languages encourage common functions (e. g., Matrix and Vector in-

structions, SIN routines, etc.). Common functions at a much higher

level (some day these could become part of a higher-higher order language)

should be likewise encouraged, since they enhance considerably the

reliability of the software (for the same reason that an algorithm coded

in HOL is more reliable, i. e., easier to use, read, verify, etc. than

one coded in assembly language). The important thing that must be

adhered to in use of common functions is to guarantee that the function

in question is a valid one (see rules for defining valid functions on

pages 12-31, Reference 1, and the summary of rules on pages 12 and 13 of this

memo). Determining the validity of a function is a major part of the

process of program structuring. It is this phase of program structuring

that should not only come first, but become an integral part of the

Requirements design phase.

Specific reasons why program structuring from a functional design point-

of-view is so important are applicable not only to the final resulting flight

software, but to the reliability of the Requirements designs themselves.

The proper application of program structuring therefore affects both

phases of software development. The end result of applying the first

phase of program structuring to the Requirements level of software is

that the Requirements are:

* safer

" more flexible to work with at both the Requirements
and the Specifications levels

* easier to modify

* cleaner and simpler

* more modular-easy to plug in modules or take out
modules

* able to be frozen - each module is a unique function
that can exist on a stand-alone basis as well as be
replaced by another frozen module

-12-

* easier to understand

* able to be changed without affecting other areas
of software

* not compromised by modules being forced to
satisfy all needs to all users (if a higher level
changes, a lower level module is not dependent
on that change)

* compatible for system integration - the same
rules apply for all modules

* easier to verify - fewer paths for exhaustive
testing

* easier to develop at different times or in
parallel - no function is held up by another one

* integration is less costly and more reliable.
(If, for example, all main modules were waiting
for a unified common module to be developed,
all modules would have to wait for each other's
needs to be incorporated into the unified module.
Likewise, the unified module has to wait for all
modules for itself to be completed. This could
result in a "deadly embrace" of a design effort!)

* not required to know about other functions to be
completed

* made up of fewer interfaces

* defined to prevent an improper function from being
distributed among many different modules, thus
preventing more complex logic in each different
module as well as in a function itself.

The following is a summary of HOS program structuring considerations

at the Requirements level of software (see Reference 1, pages 12-31 for

more detail):

* every decision made within a module is directly
related to the module function (e. g., an IMU moding
module would not depend on crew response procedures)

* data produced per function is related only to module
function (e. g., a navigation module should not produce
TGO where TGO should be produced by a guidance
module)

-13-

" a module function should not specify how it is to
be used (e. g., a module should not SCHEDULE
itself)

* a module may only invoke lower level modules

* a module may only invoke other modules to perform
its particular function (e. g., navigation does not
invoke the DFCS)

* a function (and resulting modules) should be designed
with sub-functions, top-down

* known information on a higher level should not be
brought up again at a lower level. For example, if
a mode is already known, it should not be necessary
to interrogate the mode.

* a function which is required to deal with asynchronous
events should be designed to be asynchronous, i. e.,
artificial time constraints should not be forced

" artificial control constraints should not be imposed
on a module (e. g., if ascent guidance can call a
common routine, LAMBERT, before breaking down
into n ascent guidance modes, it is better than having
each guidance mode call LAMBERT)

* flexibility (developmental and real-time) is a major
concern. It should not be compromised for efficiency
(time and memory) unless it becomes an absolute
necessity.

DESIGNS THAT SHOULD NOT BE INCLUDED IN THE REQUIREMENTS

LEVEL

There are designs that should not go into the Requirements document, if

it can be helped. They usually fall in the areas where an engineer can

go too far in a direction that is incompatible with what the eventual specif-

ications level designs should be. Examples of things to be avoided in

the Requirements design stage are:

-14-

* incorporating factors such as constants which may
later need to be changed, e. g., incorporating
a fixed cycle time as part of the design rather
than a parameter

* presenting the designs in a lower language level

than HAL (e. g., indexing for a DO LOOP, or
design for a matrix inverse routine when HAL
has it in the language)

* incorporating efficiency considerations that will
become obsolete as more is know about such things
as the compiler, flight computer, etc. For example,
a Requirements design should not concern itself
with the number of multiplies or divides vs. an
alternate table read-in method for the sake of
efficiency, since the eventual compiler might take
longer to read in a value than to multiply it (or
vice-versa)

* requirements which are dependent on architectural*
considerations. For example, from a Requirements
point-of-view, a design should be valid:

(1) whether or not it is a COMSUB or
an internal PROCEDURE

(2) whether or not data is explicitly
carried from one function to another
(parameter passing) or implicitly
used (by means of common data within
common scope)

(3) whether or not a function is in-line,
CALLed, SCHEDULEd, etc.

This is not to say that the Requirements engineer should
not include the next step of a design, i. e., architectural
designs in addition to the Requirements,if they have been
completed as a natural step in verifying designs, and

Architecture design is the second major phase of program structuring.
The second major phase worries about the modules from a language and
computer(s) mapping point-of-view. This includes partitioning. The
major concern of the first phase is to structure the functions so that they
will work no matter what the architectural constraints are, i. e., the
functional design is flexible. There could be exceptions, but they should
be avoided whenever possible.

-15-

have followed Specifications rules. Architectural
considerations are a major job at the Specifications
level. However, many of the designs (e. g., a sub-
set of GN&C design modules) will be verified in HAL
and they will be using an architectural mapping that
in some cases will resemble the final product. It
would seem beneficial for those designs that have
been architectually "mapped" out for design verifica-
tion purposes to be submitted with the Requirements.
The Specifications level still has the option, of course,
of changing the architecture. This type of change
might be labelled as a Specifications design change
rather than a Requirements change unless it was
crucial that performance relied on a unique architec-
tural requirement.

* representing decision logic based on n design candi-
dates (where the final outcome will be less than n)
and where the decision logic is only there to show
that the design is an either/or type of design. In
this case, the Requirements should show A in a
functional design where A is equal to A1 , or A 2, or
A3' *

* If two or more point designs are intended to perform
the same function for different users of a same func-
tion, only one of these designs should be chosen'.
There should be no reason why one user should invoke
a completely different design of a function than another
user, if the function needed by both users is truly the
same function. Here, efficiency is of concern to the
Requirements integration effort; the Specifications
level would not have the means of preventing this type of
unnecessary redundancy, since the fact that more
than one design performs the same function would
not be obvious.

SPECIFICATIONS DESIGN CONSIDERATIONS

Specifications designs are the responsibility of one organization for

Shuttle software. Since Requirements are submitted from several

organizations, the Specification designers have a key role of integrating

and standardizing these designs at the Specifications level. Major tasks

to be performed by Specifications engineers include:

See Reference 8 for methods of algorithm comparisons.

-16-

" learning the Requirements

* indicating faulty requirements designs (see page 13).
In addition, if structured programming and program
structuring concepts have not been applied to the
Requirements, this should be done before the
'Specifications' Step is begun (see page 5).

* evolving Requirements into Specifications without
altering functional relationships (this includes
performance considerations) unless, of course,
the Requirements were wrong.

* partitioning functional Requirements for different
computers

* providing architectural mapping" within each computer.
This includes: 1) determination of those functions which
are to be COMSUBS, PROCEDURES, PROGRAMS,
FUNCTIONS, etc.), 2) determination of data scope
which includes that data which goes into the COMPOOL
level, PROGRAM level, PROCEDURE levels, etc.,
3) determination of real-time interfaces (relative
priorities, cycle times, etc.), and 4) determination of
asynchronous and synchronous logic.

* memory sizing considerations (this could include
further refinement of common use of common code',
breaking up the program into modules dependent on
memory read-in from tape), use of 'Macros', etc.

* determining compilable units of the program (specifically
for development purposes)

* refinement of code dependent on timing efficiency con-
siderations (only if necessary)

* standardizing modules and their components (includes
naming conventions, methods for verification, etc.)

* enforcing programming conventions (e. g., preventing
specifications from using in memory two integration
routines, where only one is necessary

See page 51 of Reference 1 for an example of architectural mapping.

From a software reliability point-of-view, this is a tough problem at
the specifications level. This subject will be covered in greater detail
in a later memo.

-17-

* taking Requirements designs that have gone to the
functional level (or pre-functional level) and evolving
them into the detail of Specifications from the point-
of-view of using HAL effectively, the computer, etc.

* determining new language/compiler features that bring
about more reliable code (e. g., automatic checking
features in the compilation or verification tools)

* integration of those "frozen" modules from the
Systems and Applications libraries (Reference 1,
page 6). For example, the Requirements level might
show a use of A , or A for function A. In this case
the Requirements level 2would include two functional
designs for A, Al and A 2 . The final Specifications
would include only one.

* design and integration of many system functions
(specifically those close to the compiler) which might
not be included at the Requirements level (e. g., self-
test, additional error checking logic, uplink, downlink,
etc.). These would include designs which were existent
solely for the reason that unique features of the AP101
required them. If any code needed to be written in
assembly language, designs of this code could fall into
this category.

* verification of Specifications results against Requirements

* final verification of the software program with its inter-
faces (hardware, man-machine, etc.)

SUMMARY

If you are going to have a Requirements design phase, it makes more

sense to do it right the first time, rather than saving it for a later phase.

If a design is bad, then the problems encountered in implementing and test-

ing are increased and the chances of obtaining a reliable flight software

system are minimized.

In general, the responsibility of the Requirements is to concern itself

with the first phase of program structuring (that is, the determination

of valid functions). The responsibility of the Specifications level is to

concern itself with phase 2 of program structuring (that is, the architec-

tural mapping of the design). In some cases, the Requirements will not

-18-

complete the first phase. In some cases, it will go further. An im-

portant interface function between Requirements and Specification is

knowing to what extent the Requirements have been defined and there-

fore relaying this information to the Specifications people.

Some designs (e. g., GN&C) may be more crucial than others (e. g.,

PMS) to apply proper integration design techniques to, for the per-

formance of some functions are highly dependent on mission-critical

events. Thus the proper integration of these designs at both the

Requirements and Specifications levels are of high priority consideration.

If some Requirements designers used HAL effectively, and structured

techniques using HAL notation as tools for design verification, these

should be submitted with the Requirements. Why not stamp a higher

level of approval on these designs as being further along in approaching

the Specifications level than,say, some others. On the other hand, if

designs do not meet the recommendations that are set forth for Require-

ments, these should be stamped accordingly.

The use of structured constructs with design diagrams is much easier to

read, understand, etc. Thus the communication between Requirements

and Specifications is much more reliable, as well as the designs them-

selves.

The program structuring determines the functions, and thus the resultant

modules. These should be consistent from the Requirements phase through-

out to the final flight software product.

-19-

REFERENCES

1. Hamilton, M., Zeldin, S., "Higher Order Software Requirements,"

CSDL - E-2793, August, 1973.

2. Hamilton, M., Zeldin, S., "Top-down, Bottow-up Structured Pro-

gramming and Program Structuring, " (Revision 1), CSDL - E-2728,

December, 1972.

3. "Software System Design Guidelines, " IBM Electronics Systems

Center, Owego, New York, Contract NAS-9-13548, September,

17, 1973.

4. JSC Internal Note No. 73-FS-1, "Shuttle Avionics Software System

Assumptions and Goals, " June 25, 1973.

5. Webster's Dictionary

6. "Space Shuttle Guidance, Navigation and Control Design Equations,"

JSC-04217.

7. Dijkstra, E. W., "Go To Statement Considered Harmful, " Commun-

ications of the ACM, 11, 3, March, 1968, 147-148.

8. Zeldin, S., "An Example of Algorithm Comparison Using Higher

Order Software Criteria, " CSDL - P-017, December 6, 1973.

