
NASTRANAS A RESOURCEIN CODEDEVELOPMENT

E. L. Stanton and L. M. Crain

Prototype Development Associates, Inc.

Santa Ana, California

T. F. Neu

Naval Air Development Center

Warminster_ Pennsylvania

SUMMARY

The heavy use of NASTRAN here and abroad has demonstrated

its value as a resource for structural analysis. This paper presents another

view of NASTRAN as a quite different resource. A case history is presented

inwhich the NASTRAN system provided both guidelines and working software

for use in the development of a major new discrete element program, PATCHES-HI.

At the 1973 Users wColloquium, there were two papers presented on the addition

of solid isoparametric elements to NASTRAN. At about the same time, devel-

opment of PATCHES-III for general solids of composite material was begun.

The grid point modeling system available in NASTRAN at that time was judged

inadequate to efficiently support the modeling of general solids. However,

there were many features of the program that would also be required in the new

code. To avoid duplication and take advantage of the wide spreaduser familiarity

with NASTRAN, the PATCHES-III system uses NASTRAN Bulk Data syntax,

NASTRAN matrix utilities and the NASTRAN Linkage Editor. There were

obvious problems that had to be overcome; GINO ,had to be transplanted to a

new environment to mention only one. This paper reviews how these problems

were solved and presents details on the architecture of the PATCHES-III parametric

cubic modelir_g system. This system includes novel model construction procedures,

new checkpoint/restart strategies and other features that may benefit future

versions of NASTRAN.

This development was sponsored by the Navy under contract number N62269-

73-C-0736 and was performed at McDonnell Douglas Astronautics Company.

37

INTRODUCTION

At a recent NASTRAN Users' Colloquium, software eugenics was

a topic of considerable interest, particularly as it related to the contiuned im-

provement of NASTRAN. Taking the symmetric view, NASTRAN can serve

as a resource in the development of other finite element programs. A case

history of one such development, PATCHES-III, is presented with emphasis
on the mechanics of how this was accomplished. Among the reasons for taking

this approach are the need for: (1) a standard finite element syntax familiar

to all; (2) reliable, efficient, out-of-core matrix utilities; and (3) a standard
file format for matrices. There are a great many finite element programs

today (Ref. 1) and they seemingly all use a different syntax. Ideally the structural

analyst would like to model his structure independently of the program selected

for analysis just as one codes in FORTRAN independently (more or less) of the

machine selected for processing. Although this goal remains unrealized,

NASTRAN's Bulk Data syntax has proved durable in a dynamic growth period

and is probably the most widely used data modeling system in structural mechanics

today. Also the NASTRAN matrix utilities are evolving into a system that can

serve as a standard both for operations and inter-program communication.

For these reasons, as well as for economy, NASTRAN's Bulk Data syntax and

matrix utilities were used in the development of PATCHES-III.

The first major integration step involved solving several interface

problems between the Linkage Editor and the PATCHES-HI program library.

Itwas then necessary to create a NASTRAN environment in which the general

input output system (GINO) could operate in support of the matrix utilities.

This system functions in parallel with a random access utilitysystem 0RASTUS)

in PATCHES-Ill. Installationof a NASTRAN module, such as XSCEI or RBMG2,

then consists primarily of matrix filemanagement. Matrix filesincluding

USET , the basic partitioning vector in NASTRAN, are constructed by various

routines in the host program, PATCHES-IH. The detailed link structure of a

modifield version of RBMG2 will be presented as an illustrationof a major

NASTRAN matrix module adapted for use in another finiteelement program.

There are important differences between PATCHES-III, a para-

metric cubic modeling system, and NASTRAN. The grid point modeling

available in NASTRAN requires voluminous input for two-dimensional structures

and truly staggering input for solid three-dimenstonal structures. To mini-

mize this problem, PATCHES-HI constructs finite line, surface and volume

models using operations which can reference data to be created by other opera-

tions (construction-in-context); then a queing algorithm orders the operations

for serial processing. In the case of one interlaminar stress analysis, input

data requirements were reduced from 2750 NASTRAN Bulk Data cards (Ref. 2)

to only 46 PATCHES-III Bulk Data cards (Ref. 3). There are also differences

in the approach to spill during decomposition and the checkpoint/restart

strategy that will be discussed. The final difference to receive attention is the

way in which the two programs interface with post-processor programs. This

issue is particularly important for graphic output and data editing.

38

NASTRAN USAGE IN CODE DEVELOPMENT

Early in the design phase of PATCHES-III it became obvious that

we could not afford the luxury of re inventing the wheel. Numerous programs

had solved in numerous ways many of the basic matrix processing

functions that would be needed in the timely construction of this major new

software system. However, the NASTRAN modules under consideration were

shown to rely heavily upon the NASTRANenvironment, in particular GINO

and the open core concept as well as an intrinsic dependence upon the linkage

editor. In addition, NASTRAN on the CDC system utilized a non-standard

RUN compiler and timing considerations had already indicated the necessity

for certain of the inner loop routines to be compiled with full optimization under

the FTN compiler. Thus in order to use the NASTRAN utilities, it was necessary

to simulate an environment within PATCHES-HI in which an FTN NASTRAN

system could be adapted.

The first major step in the incorporation of NASTRAN modules

into PATCHES-III was made through the acquisition of ar_ FTN NASTRAN Linkage

Editor (Ref. 4) as well as an FTN version of NASTRAN level 15.1 from the

Naval Ship Research and Development Center (NSRDC). Certain difficulties

arose in the use of the linkage editor. In the first attempt, the LINKLIB file,

from which externals are satisfied, contained relocatables from NSRDC as well

as from our own site. Such a hybrid system must be avoided as system and site

idiosyncracies can conflict. As long as the LINKLIB file is self-consistent,

the resultant system will operate identically at all facilities with no changes

required. A second problem with the use of the linkage editor arose from a

small set of PATCHES-HI routines written in CDC machine language, COMPASS.

The loader places a word of traceback information in the word prior to the

primary entry point of the routine. However, certain of the COMPASS routines

in the PATCHES-HI library had their primary entry point at other than the first

word of the routine which would result in execution of the traceback word in some

circumstances yielding obviously unpredictable results. When this and other

operational problems were circumvented (Ref. 5), a fundamental drawback

of the linkage editor became evident; it was designed for a large and relatively

stable system - NASTRAN, and not for a program in its development cycle,

subject to almost daily modifications. For example, if a referenced routine

is not explicitly positioned, it will "float" to the highest segment in the link

rather than being positioned in the segment from which it was referenced.

The impact of this problem was diminished by breaking the system into a structure

consisting of a resident link 0 and 18 subordinate parallel links, Figure 1,

thereby also minimizing the restriction that a routine can exist at only one loca-

tion within a link. Another difficulty is that any references to such unpositioned

routines are satisfied only from the LINKLIB' file therefore requiring con-

catenation of all program libraries onto LINKLIB. The linkage editor also

contains little diagnostic capability.

39

A job procedure library, essentially a Set of control card subroutines,

was created to minimize the potential for error in the development cycle.

One of these procedures, for example, effects a modification to the source

code and to the program structure and also handles all file management asso-

ciated with the creation of the new system. This procedure, diagramed in

Figure 2, requires three input card files: the UPDATE modifications to the

PATCHES-III source, the UPDATE modifications to the linkage editor direc-

tives and an input Case Control/Bulk Data deck to test the system. Typically,

the linkage structure of the system remains unchanged and only the code in

a few links is modified. For example, assume that subroutines refer-

enced in links 1 and 17 are to be modified. Having placed the linkage editor

directives for each link in a separate *DECK, it is possible in this instance to

generate the input to the linkage editor with only one card:

*COMPILE LINKM, LINK1, LINKIT, END

where deck LINKM contains thedirectives to modify an existing executable file

and deck END contains the ENDLINKS directive. In our example then the

following steps would be performed:

(D

(2)

(3)
(4)

(6)

UPDATE the PATCHES-III source and send the modified

routines to the FTN compiler

Augment/modify the previous version of the PATCHES-HI

relocatables per the updates
Create the new LINKLIB file

UPDATE the linkage directives

Execute the linkage editor using directives created in step

4, and create the new executable file

Execute the PATCHES-HI system as created

Armed with a functioning linkage editor, we could then begin the

process of adding selected portions of NASTRAN to the new system. The devices

used to solve these problems may not always have been the most efficient or

general, but they satisfied our needs given the time constraints. First it was

necessary to add the basic NASTRAN utilities and resident common blocks to

link 0 through the use of linkage editor directives. Figure 3, from Ref. 4,

diagrams the current configuration of the merged PATCHES-IH/NASTRAN

link 0. Block data routines TIME and GINO66 should also be loaded.

4O

To follow the flow of a typical execution will serve to illustrate the

necessary steps in a combined PATCHES-III/NASTRAN run. Table 1 gives a

brief description of each of the links diagramed in Figure 1. Figures 4, 5,

and 6 describe the basic flow of a PATCHES-III execution. In links BEGIN and

INITNS, the program initializes the NASTBAN subsystem. Toward this end,

a call is made to BTSTRP which determines the machine type and sets machine

dependent constants. Then the time-to-go clock is initialized via a CALL

KLOCK (TBEGIN) where TBEGIN is located in common block/SYSTEM/..A

call to GNFIAT is made to determine the number of logical files available

and to place an entry for each in the file entry table XFIAT. A call to

GNFIST then sets up proper linkage between data blocks and the files upon which

they reside. This call to GNFIST should be followed by an OPEN and CLOSE

operation on file NPTP setting a necessary first pass flag. Room must be allocated

for the NASTRAN system working storage beyond the open core region and this

is accomplished by decrementing word 76^ of core by 4000° in a small COMPASS
t5 o

routine CORE76, called from the initialization link. It is this word which is

queried on each call to CORESZ, the open core utility, and this action then

prevents any utility from referencing the NASTRAN system region. The

PATCHES-HI executive modifies the field length of the program as necessary

prior to the execution of each link. Therefore, the CORE76 routine must be

utilized to modify word 768 on each change of field length.. At the same time,
the NASTRAN system region must be translated to its new location below

open core. As NASTRAN modules utilizing the time-to-go feature are employed,

a TIME Case Control card should be processed setting the first word Of common

block STIME to TBEGIN + 60 times the time estimate in minutes.

At this point, we are able to reference any of the NASTRAN utilities

including GINO. The above steps have created entries in the FIAT and FIST

tables such that references may be made to any GINO file numbered 201 through

216 and 301. References to other file numbers should not be made. For

example, a reference to file number 301 + i results in an actual reference to

file 200 + i. As this was an adequate number of GINO files for our application,

we did not use pooling and unpooling of files. Whenever a file is no longer

necessary, it is made available for use by a new module simply through a

close with rewhld request. Since the communication to most NASTRAN utilities

references the GINO file number through either calling parameters or common

blocks, in most cases only the driving routine needs consider the bookkeeping

problem and the NASTRAN routines can usually remain unmodified.

41

Many of the NASTRAN modules require some additonal information
in the form of the USET table and trailer. The major constituents of this file
are mask words - one per degree of freedom of the problem indicating the types
of constraints associated with each degree of freedom. The USET trailer con-
tains in location three the number of degrees of freedom and In location five
the logical OR of all the mask words in the fable. The entire file can be constructed
in approximately a dozen lines of FORTRAN, primarily through calls to GINO
utilities.

The above operations have succeeded in creating an environment
suitable for many NASTRANutilities. All that remains is to establish the proper

interface to drive them. A number of the modules in the PATCHES-III system

such as the input processor, model generation and data verification links consist

almost exclusively of PATCHES-HI routines, Figure 7 (P,ef. 6). Certain other links

consist primarily of NASTRAN routines, for example XSCE1 the single point

constraint eliminator, and SSG the static solution generator. The other links

are a marriage of both systems and as an example, consider the matrix decom-

position link, RBMG2D, shown schematically in Figure 8. The driver routine

determines if a checkpoint or restart is requested and calls the PATCHES-1TI

controller CKPTL or RESTL as appropriate. These routines then write or read

the necessary files on the restart tape through the use of the NASTRAN utilities

OUTPT1 or INPTT1. Matrix decomposition is performed, when required,

under the supervision of RBMG2D through a call to the NASTRAN driver FACTOR

which in turn calls RSPSPC, a slightly modified version of NASTRAN's RSPSDC.

There are certain steps which, in general, must be performed to create a

NASTRAN environment for a module such as RBMG2:

(1)

(2)

(3)

(4)

The driver routine must allocate storage for the appropriate
COMMON blocks used to communicate file numbers and

header records within the module.

The input, output, and scratch GINO file numbers should be

placed in the appropriate common blocks or subroutine para-

meter lists consistent with their usage in other links.

The linkage editor must be used to position any necessary

open core arrays to a REGION following the segment from
which it is referenced.

Any files which are opened should be closed and rewound

prior to exit from the link.

Experience has indicated that a typical major module such as the

decomposition module requires approximately three weeks of iteration to install

and debug. Adaptation of a smaller utility, such as INPTT1 and OUTPT1

requires substantially less time.

k2

DIFFERENCES IN PHILOSOPHY

There are a number of significant differences in philosophy between

PATCHES-III and NASTRAN that may be useful to consider for future versions of

NASTRAN and other systems. Prior to illustrating these differences, an overview

of the capabilities of PATCHES-III is appropriate. More detailed discussions

can be found in References 3, 7, and 8. PATCHES-III determines the linear elastic

response of a general heterogeneous anisotropic solid under thermal loads, mechan-

ical loads and imposed displacements. The analysis model is based on a sixty-four

point isoparametric solid discrete element with variable material properties. This

element efficiently models the strain discontinuities at heterogeneous material

boundaries as well as the continuous strains at homogeneous boundaries. The pro-

gram constructs models for both geometry and physical data using parametric cubic

interpolation over lines, surfaces and volumes. This system automates the con-

struction of discrete element models and can reduce input data requirements by

more than an order of magnitude. In this system, construction operations are

available that reference data to be created by other operations (construction-in-

context). Conceptually and in practice, this system is analogous to an interactive

model generation system. Instead of sequentially processing requests from a

terminal, all requests are made at once (batch mode via Bulk Data) and a queing

algorithm orders the requests for serial processing. This approach is also used

to create models for physical data and imposed displacement constraints. Thus the

same interpolation functions and most of the construction tools used to model the

geometry are also available to model any physical data input to PATCHES-III.

Both zero and non-zero constraint options are available that constrain the entire

face of an element witha single bulk data card using either the reference frame
or the local surface frame.

Consider the construction of a hyperpatch for one segznent of a thick-

walled circular cylinder. Two quite different but nearly equal constructions illustrate

the procedure for a simple shape. In the first, Figure 9, grid points 1 and 3 are

input and a straight line connecting them is created with a LINEPC Bulk Data card.

This line is rotated about the e 3 axis through 90 ° to form one quadrant of a cylindrical
surface using a PATCHR card, In this process grid points 7 and 5 are automatically

created. The surface 1-3-7-5 is expanded a unit amount in the direction of its

normal to create a hyperpatch using the HPN card. The grid points 2, 4, 6 and 8

are automatically created in this process along with the parameters defining the
element or hyperpatch. The final figure is a 90 ° segment of a circular cylinder of

unit thickness. The construction of this 192 parameter hyperpatch required five (5)

cards of very simple format. Now consider the same construction problem but

this time input grid points 1, 2, 3 and 4, Figure 10. A quadrilateral surface is

created with a PATCHQ card and this surface is rotated about the e3axis throt/gh
90 ° to form the hyperpatch using the HPR card. The construction this time

required six (6) bulk data cards. These examples illustrate the method, not the

complexity of the geometric shapes that can be created (c. f. Ref. 7, page 2-22).

In fact the geometry for all of the general elements in NASTRAN, including iso-

parametric elements, can be constructed using the modeling system in PATCHES-III.

43

Consider next a PATCHES-III analysis of an interlaminar normalstress

problem. One of the few three-dimensional composite laminate problems for which
corroborative solutions exist is a four ply graphite-epoxy plate under uniaxial load.

A finite difference solution of the elasticity equations (Ref. 9), a stress-function

discrete element solution of the elasticity equations {Ref. 10), an analytic solution

of certain higher order laminated plate theory equations (Ref. 11) and the PATCHES-

III displacement-function discrete element solution of the elasticity equations all

agree well for the interlaminar normal stress. Stresses are computed for the

0_/90°/90°/0 ° laminate shown in Figure 11 under a uniform imposed displace-

ment in the axial direction. Taking full advantage of symmetry, a simple four

element PATCHES-III model was created from the forty-six bulk data cards shown

in Figure 12. This is a substantial reduction from the 2750 Bulk Data cards

necessary for a comparable solution using NASTRAN (Ref. 2) and the savings

in the user's model definition and debugging cycle is of comparable magnitude.

Figure 13, from the PATCIIES-III plotting post-processor, shows a six element

model of the interlaminar stress problem; an additional pair of elements has been

used in the vicinity of the free edge to improve transverse shear stress accuracy.

Lines in addition to the element boundaries are also drawn to show surface

effects. Figure 14 shows the deformed geometry view of the model with hidden

surfaces removed. The magnitude of the displacements has been magnified

substantially to make the deformations visible. Figure 15 is a data surface

plot; the lower surface represents the undeformed geometry along the laminate

mid-plane; the upper surface represents the normal strains such that each

point :'r. the upper surface lies in the normal direction to the undeformed surface

and at a distance proportional to the magnitude of the normal strain at that point

plus an initial offset.

Although similar in many ways, there are some basic philosophical

differences in the operation of the programs. A fundamental policy in PATCHES-III

which is sometimes absent from NASTRAN concerns the diagnostic package. In

PATCHES-III, an attempt is made to detect every error in model or data gen-

eration including Case Control-Bulk Data cross references prior to execution

of any of the time consuming modules. Any diagnostic messages are explicit

and informative and reference the card which precipitated the error condition.

In concert with this philosophy, a "DRY" Case Control directive exists which

indicates that this is to be a dry run of the data for the purpose of diagnosing

any input errors. Another difference is that the field length used by PATCHES-III

varies automatically during a run. This can result in a significant reduction

in computing charges for larger analyses in a multiprocessing environment.

Although conditions may change with the release of Level 16, the current

release of NASTRAN consumes large amounts of I/O time for a matrix decom-

position operation that "spills." In PATCHES-III when the spill condition is

detected, the program switches to a combination decomposition-conjugate gradient

solution scheme which allows the user to buy as much accuracy as he requires

up to and including complete convergence at a substantially reduced cost.

##

Bulk Data processing and model generation consume relatively little time

in PATCHES-III when compared to generation of the element stiffness matrices

or decomposition. Accordingly, the checkpoint/restart strategies employed by

PATCHES-III differ from those of NASTRAN in that a checkpoint dictionary is not

required. Rather, the Bulk Data deck is resubmitted on a restart run and the

necessary tables and files are recreated. For design applications, the ELEMENT

checkpoint is of use when a few elements are being modified. The LOADS check-

point is utilized in analysis applications in which only the loads are changed.

A special output called the User Information Messages file is printed

subsequent to all output from PATCHES-III. This listing details CP times and

field lengths of each of the major modules encountered during execution. It also

summarizes additional information concerning the dimension of certain matrices,

the usage of random access storage, and other salient features of the execution.

A major departure from NASTRAN involves PATCHES-III's generation

of a post-processing data file, PPDATA. This file uses a straightforward format

written with unformatted binary FORTRAN write statements, and serves as an easy-

to-use data base for post-processor programs. By no means a replacement

for the OUTPT2 capability in NASTRAN, the PPDATA file does offer significant

advantages: (1) it makes possible a wide range of DMAP independent post-processors;

(2) it is far easier for the average structural analyst to use and adopt to his own

requirements; (3) use of the post-processing scheme permits support of the

blossoming array of hardware devices, in particular plotters, to be offloaded from

the primary system; and (4) the post-processing environment is a necessity for

experimental or special case analyses such as failure models which would be

inappropriate to include in NASTRAN. In PATCHES-IH the PPDATA tape contains

n+l files: one file containing the invariant data such as geometry, and n subcase

files containing the load conditions and the results of the analysis.

PATCHES-III itself assists in the creation of post-processor programs

by supplying a library of utilities which the post-processor may reference within

the framework of a procedure library designed to aid in the construction of such

systems. The most obvious and highly used post-processing system for PATCHES-III

is the plot system. This program accepts free form inputs similar to Case

Control cards to direct the plotting of the deformed or undeformed three dimen-

dional elements. Surfaces may be subdivided to any requested extent and labeled

contours of data surfaces may be requested on the data or geometry surfaces.

Many options similar to those in NASTRAN for view, perspective andhidden line
control are available.

45

CONC LUDING REMARKS

NASTRAN has shown itself to be a valuable resource in code development,

both as a reference and a source of software. Once the steps have been identified,

it is not difficult to implement any of the NASTRAN utilities in an existing or developing

cede. Since a major expense in code development is usually associated with the de-

bugging and optimization phases, it is a tremendous asset to have NASTRAN as a source

of efficient and effectively error-free software.

The NASTRAN Case Control-Bulk Da_ syntax was used to make a new finite

element program, PATCHES-III, easier to learn for many users. More needs to be

done to make structural modeling less dependent on the syntax of individual appli-

cations programs.

A number of major differences in the operations of PATCHES-III and

NASTRAN have been noted. In particular, the construction-in-context of geometry and

data models and the post-processor data file should be given serious consideration
for inclusion in future versions of NASTRAN.

46

lo

e

B

o

t

o

.

Q

o

10.

11.

REFERENCES

W. Pilkey, K. Saczalski, and H. Schaeffer, Structural Mechanics

Computer Programs, University Press of Virginia (1974).

T. F. Neu, "Finite-Element Analysis of Edge Effects in Angle-Ply

Composite Laminates," Naval Air Development Center Report No.

NADC-74051-30, March 1974.

E. L. Stanton and L. M. Crain, "PATCHES-llI User's Manual,"

McDonnell Douglas Astronautics Company, Report No. MDC G5538,
November 1974.

Roger J. Martin, "A General Purpose Overlay Loader for CDC-

6000 Series Computers; Modification of the NASTRAN Linkage

Editor," Report 4062, Naval Ship Research and Development Center.

E. L. Stanton and L. M. Crain, "Three-Dimensional Parametric

Discrete Element Program for the Analysis of Composite Structures,"

Progress Report Number 6, Contract Number N62269-73-C-0736,

pp. 12-15, June 1974.

L. M. Crain, "PATCHES-Ill Program Structure and Subroutine

Descriptions," McDonnell Douglas Automation Company, Report

No. MDC G5795, April 1975.

E. L. Stanton, "A Three Dimensional Parametric Cubic Discrete

Element Program for the Analysis of Composite Structures,"

McDonnell Dot_glas Astronautics Company, Report No. MDC G5716,

Jantmry 1975.

E. L. Stanton, L. M. Crain, and T. F. Neu, "A Parametric Cubic

Modcling System for General Solids of Composite Material."

McDonnell Douglas Astronautics Company, Paper No. WD2606, July 1975.

R. Byron Pipes, "Solution of Certain Problems in the Theory of Elasticity

for Laminated Anisotropic Systems," Ph.D. Dissertation, University of

Texas (1972).

E. F. l_bicki, "Approximate Three-Dimensional Solutions for Symmetric

Laminates Under Inplane Loading," Journal of Composite Materials, Vol. 5,

1971, pp. 354-360.

N. J. l:*agano, "On the Calculation of Interlaminar Normal Stress in

Composite Laminate," Journal of Composite Materials, Vol. 8, 1974,

pp. 65-'81.

#7

Table 1

PATCHES-IH LINK DE SCRIPTIONS

LINK

0

1

2

3

4

18

6

7

8

9

5

10

12

13

14

15

16

17

11

NAME

MAIN

BE GIN

INPCN

GET

MATCN

LOADS

_-ITNS

BIGMSH

IMDISP

MPC

*EKIJ

TTEKTD

SMA

XSCE1

MCE1

*RBMG2D

SSG

SDR

SUBCCM

FUNCTION

Executive control and common storage

Initialize PATCHES-IH system

Input control. Construct geometry and data models

Initialize integration tables

Material properties mbdule

Generate element load vectors

Initialize NASTRAN sub-system

Generate element meshpoint connectivity

Imposed displacement module

Multipoint constraints (not active)

Generate element stiffness matrices

Transform element matrices to analysis coordinates

Structural matrix assembler

Single point constraint eliminator

Multipoint constraint eliminator (not active)

Matrix decomposition

Static solution generator

Stress recovery

Subcase combinations

*Link_ thatuse majority of the CP time.

48

E

F
E,

F_

[_

,!

i
c_

0

' -d:,

c_
°P,I

z

r_

!

49

I
_0

LINK 0 Structure

Core (_)8

NASTRAN

10

• 20

NASTRAN

and

LINKLIB

Routlnes, Common

/LINKO$/

MAIN

"EXEC

IABORT

.STOPEX, _APUP, KOPY, BRKPTR, CORE76, MESAGE

GfNO "

'PAKUNPK

"XCORSZ, CO]_SG

"I06600

-DUMP, RETURN, XEOT, TMTOGO

WRTTRL, RDTRL, WR'NrRLZ, FRAME

OPNCOR, WRTCOR, RDCOR, OPNCORZI PRELOC, LOCATE, PRELOCZ

"GOPEN, FREAD, CLSTAB, SS_KCH, DSIGN, SAVEA

"/SYSTEM, GINOX, TIME, GIN066, ZDLPKX, ZNTPKX, PACKX, UNPAKX, STIME/

j/INDEX, BB, UNIT, FLRUN, PI, CC, TT, OU, SUBT, FLAGS, PARAM/

/IEGRID, IEEID, GRIDZ, LINEPTI

./CHKPNT, RESTRT , BRKPNT, VER, PATID, HPATIO, FLLINK/

/MASTER, RCODE, SUBIX, KRASS, PASS/

"/NSEGO, NSEGG, GRIDIC, DGIC, NPLOT, BPATID, CASE, FDB, NUL, TRAP, SPEC/

"/XFIST, XFIAT/

/ZPRELOC, ZOPNCOR, TWO, ZWR'FfRL, XXFIAT, XPFIST, XLINK, SEM, OSCENT, OUTPUT/

-/XDPL, XVPS/

/STAPID, XCEITB, XMDHSK, MSGX. DESCRP, NAMES, TYPE, BITPOS/

SYSTEMS

HAPFNS

"INVAL, NOWT, REWINM$, O.UTPTCS, XLOADER

_GETBIT, SHIFTS, ANDS, ENDFILS, GETBA, It|LINK, RECOVRS

ACGOER$, LOCF$, OUTPTS$; REMARKS, TIMES, XIORTNS, CPC

"READB, XFL, DROPF, SIO$

"OUTPTB$, INPUTBS, LINKERR, CORDUMP

[FTNFIX, IORANDM, IO, REGPRT "

KODER$, /ENTAB$/

Figure 3: PATCHES-Ill Link 0 Structure

I PEGIN

I

I INPCN

I

!

I

I LOADS

I

INITNS I

I

I

I

MPC

l

[EKIJ [
I

(Element Checkpoint _ EKIJ checkp°int,i

no [= I

I

I
IXSCE,"l

l

MCEI

]

[RBMG2D]

I

(Loads Checkpoint _yes

no

I ssG [

I

[SDR [

RBMG2D checkpoint]

Figure _: Basic PATCHES-III Flow

_2

I INPCN (SETCOM)' 1

I

_ New L°ads_ es
L--

no i

_es 1: New MPC
k

• Constraints

Jyes

i_s_ I
I

I

J Sl_o

I

JXSCE I

I

r_c_' 1
.- J

J SSG J

I

LOADS j
!

MPC I

Figure 5: _dditional Subcase _Flow

_3

I BEGIN -i

I
[IN'CN !

i
I GET 1

I

l MATCNI

[
I LOADS" 1

I

I
[IMDISP 1

I
MPC

t
I

(Loads Restart _ yes

]no

< Element Restart _ EKIJ Restart l

noI Ii EKIJ

TTEKD

I

SMA

I

I xscE' [
i

I MCEI

I

[RBMG2D 1

I SSG

I

[SDR]

RBMG2D Restart I

Figure 6: Restart Flow

L|NK____2 .Structure

r..ASEA

ATTACH. PFNAJ_E.
JETFO8, ZPACK
RAS_S

7EK /PAIRS/

PHTRX I_/"ATAL_ PLARC PP_TB PHPB
FPARAH PI4AT1 _PLXHE PPATP

_'PLIN[B PP_TQ
_Pt.INEC PSCALP
_LSPLH PATSAV
SEQEr PATCHL
_LOZPC
_SEQDET
_LINE
_umcl

110K_

HSU
ARCPC1

[HE"fiN I [XCLUD "_
T i V.ISMIT SEARCH

FIELD SCALP

43.38K
|EPCN

ICONM

/FORCE/

lifO, TXTL[O, [RFI__,G, U_PAK, OEBLNK

INPUTC$, ZEROUT, EOFXLE, STOREE. SQRTE, PLACE, SINCCSE

S'TOREP

SRCHO, HOVE, DETN, I,_.ARO, PD_

DROPF, WRITHS$, INZTHSS. REAO_LSS,ZHYP

I_AKER5

BULK

CI'YP]:', BDGE'T, ZRANGE _ 1
RANGE, GRIDPT, FIPF]T CASEO
HULT, UNIQUE, SRC_, ALMOST

DETHRLI
�SO1

ILIHEC/

I CASED

DATOUT

PHP6P
PHPL
PHPHEX
PHPR
PHPN
PSCLPH
HPZPAT
NORV.AL
HVERFY EUL_
CKHYP SYHE76
HYGRID FOEV:3
BTHOOE I.TRA?_SE
FORMJ I _YBT_
ABCT IDEhT
GETG/'I
HSN
MIDNI:U4

PCHE CLRBIT I SGRIDL I PATCHQ
SETB|T I SPLINE I SEF=EV

TAPERP
LIREPC

 :LPC i oPA LGAP PDPATa
STI.INE PDPATP
POLZNP PDHPEX
LPTB PDPATA

HP6P1
PATL4
FBF'T
It;TERG
GBGT, HP2P1
PALE, FLI';[
HYSORT, HY?TB

] SETCOH

HYDTP, LBTP, X[SNTT
HYPRI_'T,HYPR_I, PTPRhT, PTPRNI

SCALER

PPLOD3 J PSDC1 Z PCATLG
I DISCARD

PFORT ' JC,_TALOG
• DISFDB

CATFDB

FTE)IP

PFORL3

PDHPS

FSLDFDB

Figure 7: PATCHES-III Link 2 Structure

LINK 15, STRUCTURE

RESTL

INPTTI

- RBMG2D

-INF,, WRVH, TITLEq_, CLRBIT, ERFLAG

-MATDUM, PAGE, TAPBIT

- NEWKLL, MOVE

- RSPL_

- TABPRT

.hFACTRX/

43.38K

TABPRX/

RBMGZ I CKPTLFACTOR _UTPTI

RSPSPC

(Open core)

n_plxx/ OUTIXX

REGION

54.4K

Figure 8: PATCHES-HI Link 15 Structure

56

Step Bulk Data Option Cards

1 GRID 2

2 LINEPC]

3 PATCHR l

4 HPN 1

Figure 9: Hyperpatch Construction Example - Method One

e3

0 4

e3

4
£2

1

d _t_-3

e 6 4

l GRID

2 PATCHQ

3 HPR

Bulk Data Option Cards

4

l

l

Figure lO: Hyperpatch Construction Example - Method Two

_8

2h=5.08 cm i

-F I 2b

7?
7-

40.6 cm

I

0o/90o/90o/0 ° Laminate

Elastic Stiffness of 0° Layers

Cll = 139 GPa

C22 = 15.2 GPa

C12 = 3.9 GPa

C23 = 3.3 GPa

C44 = C55 = C66 = 5.9 GPa

17(

15(

3'

18

,/

12 6

4

2

e2

Figure 11.. Four Element Model of a Graphite Epoxy Laminate

_9

we

tM

L

D
,14

J
taJ
o..

h.

.J
u_

6_

J

t_
".1

I

D

• .j ;
W

b."

J

k,.
°_

mr,

rm

Ill

b.

qr_ 't"

• -_ n
J

m- uJ

.1[a.

U t9
I

J

0
e-, .j

o.G
kb

J a

U

I

i
, t

!'

,1
I I
' I

!
qre _.f
O_

i
I

ina,_

i
I I ,

! i I

i th ir_

I

i t .
• I

' oO

; i

-i
!,

, ,_;

i

o

o

o 1

° I I

!7o! i i,
I I i .

_ . o i i

2

i i ' " I i

"_ I ! iI i

_ ; "i , ! i
i I '

• : . _ _ _ I •
"" IIItllllllllllllllll IllilllIIIllilllllttlilli

(1)

_>

I::i

Q_

IrCS
0

r_

c_

61

62

P_
Q_

o

c_

o

mii

x
°l--I
rJ2

T--I

63

