
APPLICATION OF NASTRAN FOR STRESS ANALYSIS

OF LEFT VENTRICLE OF THE HEART*

Y. C. Pao

University of Nebraska-Lincoln

Lincoln, Nebraska

E. L. Ritman

Mayo Graduate School of Medicine
Rochester, Minnesota

H. C. Wang

IBM Corporation

Endicott, New York

SUMMARY

Knowing the stress and strain distributions in the left ventricular wall

f the heart is a prerequisite for the determination of the muscle elasticity

nd contractility in the process of assessing the functional status of the

Eeart. NASTRAN has been applied for the calculation of these stresses and

trains and to help in verifying the results obtained by the computer pro-
ram FEAMPS which was specifically designed for the plane-strain finite-element

_nalysis of the left ventricular cross sections. Adopted for the analysis are

he true shape and dimensions of the cross sections reconstructed from multi-

lanar x-ray views of a left ventricle which was surgically isolated from a

log's heart but metabolically supported to sustain its beating. A preprocessor

_ been prepared to accommodate both FEAMPS and NASTRAN, and it has also
ilitated the application of both the triangular element and isoparametric

luadrilateral element versions of NASTRAN. The stresses in several crucial

regions of the left ventricular wall calculated by these two independently

leveloped computer programs are found to be in very good agreement. Such

:onfirmation of the results is essential in the development of a method which

Issesses the heart performance.

_This work was supported in part by research grants HL4664, HL3532, and RR7

from the National Institutes of Health, and by the Engineering Research Center,

University of Nebraska-Lincoln.
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INTRODUCTION

Structurally speaking, humanand animal hearts are very complex not only
in geometry but also in material characteristics. The finite element method
therefore presents itself as an effective tool for analyzing the stresses and
strains in the hearts. In order to assess whether or not a humanor animal
heart is functioning normally, it is necessary that the working characteristic
of its left ventricular wall muscle (myocardium) be adequately ascertained, f_
it is the contraction of the left ventricular myocardiumthat pumpsthe
oxygenated blood to circulate in the body. For the investigation of the left
ventricle of the heart alone (not to be involved with the other chambers, righ
ventricle, and left and right atria), experiments of surgically isolated but
metabolically supported, beating left ventricles of dogs are often prepared sc
that the dynamic changes of the shape and dimensions of the cross sections of
the left ventricles during cardiac cycles can be recorded on videotape and by
use of reconstruction techniques involving multiplanar x-ray projections or
ultrasonic echoes of the cross sections (ref. I).

The reconstruction technique using x-ray is schematically illustrated in
Fig. I. For a certain cross section of interest, a numberof x-ray projection
are taken by rotating the cross section with a chosen angle increment about it
normal axis. The shape and dimensions of the cross section can then be recons
tructed by use of algebraic algorithms (ref. 2). With a life supporting syste
(Fig. 2) for the isolated left ventricle of a dog experiment, any desired
anatomic site selected at 0.7 mmintervals along the entire apical-to-basal a_
of the ventricle can be reconstructed. Figure 3 shows a sample rectangular
array of 35 apical-to-basal cross sections at a certain instant of a cardiac
cycle. Further details and discussion of the reconstruction and data collecti
techniques are given in an internal publication (re_. 3), which is available
upon request.

During relaxation (diastolic) phase of a cardiac cycle, the myocardium
extends as the blood fills into the left ventricle. Based on the values of t_
left ventricular pressure and volume concomitantly recorded during the dog
experiment, the history of the external work being done to the left ventricle
can be calculated. Meanwhile, the finite element method can be applied for t_
analysis of the reconstructed instantaneous shapes of the left ventricular crc
sections to determine the stresses and strains in the wall muscle and conse-
quently the change of the strain energies. Upon relating the external work ar
the strain energies, the dependencyof the elastic stiffness of the myocardiun
on the chamber pressure can then be estimated.

While the calculation of the external work is straightforward, it is for
the calculation of the stresses and strains in the left ventricular cross
sections that this paper reports the application of NASTRANas a verifier for
the plane-strain finite-element computer program FEAMPSwhich was specificall,
developed for the study of the left ventricles.
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LEFT VENTRICLE MODELS AND FEAMPS

Since the thin-walled shell model was found to be adequate only for calcu-

ating the mean stresses across the wall thickness of the left ventricle, a
umber of thick-walled models have been proposed for obtaining the variation

f the wall stresses (ref. 4). Most of the thick-walled models approximated
!he geometry of the left ventricle as a shell of revolution, either as a circu-

ar hollow cylinder, hollow sphere, or hollow prelate spherold, all having uni-
form wall thickness. When biplane silhouettes of the left ventricle could be

aken by application of the roentgen-, cine- and videodensitometry techniques
ref. 5), it became possible to incorporate some of the dimensions, such as the

ariations of wall thickness and chamber radii, of tile left ventricle into the

_hick-walled models to determine the wall stresses by axlsymmetric finite-
llement analysis. Now the advent of cross-sectional reconstruction from

,ultiplanar x-ray views enables the thick-walled models of the left ventricle

!o be further improved by adopting the true shape and dimensions of the left
ientricular cross sections.

However, the 35 apical-to-basal cross sections shown in Fig. 3 were ob-

tained by a reconstruction system using only one x-ray source and one detector.

lhe system requires the position and geometry of the left ventricle to be kept

!onstant throughout successive cardiac cycles. This "stationarity" requirement

is a serious disadvantage to be overcome by use of a spatial reconstruction

;ystem which will have multiple x-ray sources and multiple detectors. At

resent, the available data include (I) the dynamic changes of the cross-

Lectional shapes and dimensions at a few sites along the apical-to-basal axis

_f the left ventricle but are complete for several cardiac cycles, and (2) the

ihapes and dimensions for all,apical-to-basal cross sections of the left ven-

Ticle but only at a few crucial instants of cardiac cycles. So these data
_uffice to investigate the cross-sectional behavior but not the ultimate three-

limensional analysis of the left ventricle.

FEAMPS is an abbreviation for Finite-Element Analysis of Myocardium by
_lane-Strain Theory. The left ventricle is approximated as a hollow thick-

_alled cylinder with uniform cross section having the shape and dimensions re-

Constructed from multiplanar x-ray views. When the cylinder is subjected to
Jniform chamber pressure, it is assumed that all cross sections will deform

!dentically. By looking at the silhouette shown in Fig. 4 constructed from

tacking all cross sections in Fig. 3, it appears that plane-strain analysis

hould give a reasonably good prediction of the cross-sectional-behavior in
_he vicinity of the base of the left ventricle.

It has been well established that the left ventricular n_/ocardium is
fibrous. Several investigations of the left ventricular wall with fibrous mate-

_ial properties had been reported (refs. 6,7). However, only scattered data are

_vailable regarding the changes of the fiber directions during cardiac cycles;

the results of these investigations remain to be verified by more thorough ex-

)eriments. FEAMPS follows the approach of assuming the left ventricle as a

_omogeneous, isotropic and elastic medium and proceeds to evaluate the effec-

tive elastic stiffness for such an equivalent model (refs. 8,9). Since the

_ffective elastic stiffness is to be inversely determined on the basis of the
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work-energy principle described In the Introduction, its value is assumedto
be equal to I in the incremental-loading analysis of FEAMPS. Regarding the
other material constant, Poisson's ratio, of the left ventrlcular myocardlum,
the issue whether it should be assumedequal to 0.415 (ref. I0) or nearly
incompressible equal to 0.49 (ref. II) is still not yet settled. So the re-
sults for both values wlll be discussed.

FORMATIONANDANALYSISOF ELEMENTS

Figures 5(a) and 5(b) show a typical change of the shape and dimensions c
a cross section near the base of the left ventricle reconstructed from multi-
planar x-ray views during the early and ending stages of the diastole of a car
diac cycle, respectively. The diastolic phase is the resting period of the he
during which the relaxed left ventricular chamber is filling with blood and
the wall muscles are passive and extended. The two-dimensional in-plane tri-
angular elements of FEAMPSare generated by adopting 9 nodes across the wall
thickness and 30 nodes around the perimeter of a reconstructed cross section.
Additional elements may be necessary for the papillary muscle at certain level
within the ventricle. Figure 5(c) illustrates that the end-diastolic cross
section shown in Fig. 5(b) is partitioned into 508 triangular elements using
290 nodes, of which 20 are for the formation of the 28 triangular elements fo_
the peninsulalike papillary muscle.

The only input data required for FEAMPSare the coordinates of 30 pairs (
points on the inner (endocardial) and outer (epicardial) boundaries of the
cross section, plus additional pairs if necessary for the papillary muscle. !
preprocessor which consists of several subroutines has been prepared to carry
out the sequential numbering and calculation of the coordinates of all nodes,
to composethe interconnected triangular elements by defining their respective
constituent nodes, and to generate the nodal external loads. Plot subroutine_
are also madeavailable for drawing of only the borders of the cross section
or the partitioning pattern of the cross section either with or without the
labelling of the node and element numbers.

The plane-strain finite-element analysis of FEAMPSfollows closely the p
cedures delineated in Zienkiewicz's book (ref. 12). The displacements at any
point within the triangular element are assumedas linear polynomials of its
coordinates. This results in constant strains throughout the element. For
saving computer storage spaces, the structural stiffness matrix is formulated
rectangular form by taking advantage of symmetry and discarding all of the ze
elements that are on the outside of the diagonal band. In order to handle su
a rectangular coefficient matrix, the Gauss-Jordan elimination method has bee
accordingly modified for the solution of the nodal displacements. This appro
has reduced the computer storage core requirement for the structural stiffnes
matrix from 580x580 to 580x22 floating words in the analysis of the end-
diastolic cross section partitioned as shown in Fig. 5(c). In case that furth_
reduction of core storage in the computer is necessary, the zero elements insi(
the diagonal band of the structural stiffness matrix mayalso be discarded and
all nonzero elements compacted into a vector, and the Gauss-Seidel iteration
methodcan be applied for the solution of the nodal displacements (ref. 13).
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i Since the left ventricular cross sections are subjected to uniform internal

_essure only on the inner (endocardial) boundary and there are no boundary con-

rraints at all, the nodal displacements determined by machine computation may
_ntain the superposition of a free body motion. To ascertain whether the some-

jmes very large free body motion will introduce significant errors in the sub-

_quent calculation of the cross-sectional stresses, studies of the cross

_ction with added fictitious boundary conditions have been conducted. More
_talls on these studies are presented in the Discussion of Numerical Results.

i

FEN_PS also has the built-in provisions for the calculation of the nodal

tresses by averaging the stresses of the adjoining elements, the extrapolation

the stresses for improved accuracy at the boundary nodes, the calculation of

he strain energies, and for various plottings of the stress distributions of

he cross section. Figure 6 displays a sample plot of the nodal circumferential

tress distribution (normalized with respect to the uniform internal pressure)

# the end-diastolic cross section with the exclusion of the almost uniformly

bmpressed papillary muscle. Full details and computer program listing of FEAMPS

!re given in ref. 3. Nevertheless, the above synopsis should suffice for the

liscussion of the present paper.

APPLICATION OF NASTRAN

Attempts have been made to apply _ASTRAN Rigid Format I to the two-

iimensional plane-strain static analysis of the reconstructed left ventricular

fross sections. With the availability of the FEAMPS preprocessor, preparatory
.orks that can be expedited are the generation of the coordinates of the nodes,

!he division of the cross section into either triangular TRMEM or quadrilateral

IDMEMI elements,and the conversion of the uniform internal pressure on the

!nner (endocardial) boundary of the cross section into equivalent concentrated
oads at the endocardial nodes.

I As has been mentioned in the preceding section, there are no boundary con-

_traints at all in the plane-strain analysis of the left ventricular cross
_ections. Test runs are necessary for the determination of acceptable ficti-

"ious points of support which can be adopted as the constraints data for the

;PCI cards and will not introduce additional external loading. For instance,

Fn the analysis of the cross section shown in Fig. 5(c), the decision to con-
_train node 6 in both the x and y directions and node 19 in the y direction

_as based on the verification by the printout, via SPCFORCE request, that the

"eactive forces at these two nodes were insignificantly small relative to the
_xternal loads at the endocardial nodes.

Since the left ventricle is assumed as a homogeneous, isotropic and elas-

tic medium, the MAT2 cards specifying the material properties were prepared

_ith the values of the Young's modulus, E, equal to I and the Poisson's ratio,

_, equal to 0.415 and 0.49, same as for the FEAMPS cases.

The extreme stresses are known to occur along the inner boundary of the

left ventricular cross section; the four regions of primary concern have been
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particularly pointed out in Fig. 7 to facilitate the comparison study of the
FEAMPSand NASTRANresults. These regions are the inner borders of the pos-
terior, septal, anterior and free walls in the vicinities of nodes 247, 253,
258 and 264, respectively. Figure 8 gives a close-up view of these four
regions with the node and element numbers indicated.

DISCUSSIONOF NUMERICALRESULTS

I

Level 15.5 was used to generate all NASTRAN results reported herein.

Table I shows that for _=0.415, the values of the principal stresses (normalizq

with respect to the chamber pressure) in the end-diastolic cross section deter
mined by FEAMPS and NASTRAN are almost identical when both used triangular elel

ments. The last two columns of Table I reveal that the principal stresses in i

quadrilateral element are very close to the average values of those of the twol

adjacent triangular elements which have been combined to form the quadrilatera!
element. Since the number of the elements is reduced to half for the QDMEMI

analysis but the computer time is about doubled, the TRMEM analysis was select_
for further studies.

For _=0.415 but for the early diastolic cross section shown in Fig. 5(a),

Table 2 is presented to depict the effect of imposing fictitious boundary con-

straints to the cross section on the principal stresses. It is clearly indica.

ted that restricting the x-displacement u of node 6 and the y-displacement v

of nodes 6 and 19 causes no significant change to the values of the stresses.

It also helps to demonstrate that the free body motion of the cross section

which may result by FEAMPS analysis will not alter the values of the stresses.

The cases of treating the left ventricle as a nearly incompressible mate-

rial with _=0.49 have also been investigated. Table 3 summarizes the normaliz.

principal stresses for both the early and end diastolic cross sections shown i_

Figs. 5(a) and 5(b). The results exemplify the changes of the stresses during

the diastolic phase of a cardiac cycle. As in Tables I and 2, these results

obtained by FEAMPS and NASTRAN are in very good agreement.

Since FEAMPS has a feature for calculating _he nodal stresses, the normal-

ized principal stress distributions through the wall thickness at the four re-

gions of concern during early and end diastole have been obtained and are pre-

sented in Fig. 9. It is noteworthy that some compressive circumferential
stresses may develop at the innermost (0% of wall thickness in Fig. 9) myo-

cardial layer in the septal and free walls where the curvature are small and

sometimes even turn convex inward. Because other axisymmetric models of the

left ventricle assumed cross sections to be of annular shape, in no portion of

the cross section could the wall be curved inward. As a consequence, no

comp_ssive circumferential stress in the left ventricular wall had ever been

determined by these models.
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CONCLUDING REMARKS

The evaluation of the cross-sectional elastic stiffness (ref. 14) of the

left ventricle during diastole depends in large measure on the accuracy of the
values of the stresses and strains in the cross section. So it is indeed re-

assuring that these values can be confirmed by FEAMPS and NASTRAN.

This comparison study has also proved the applicability of NASTRAN for the

plane-strain analysis of the left ventricular cross sections. Certainly, the
other capabilities of NASTRAN can further help resolve some of the problems

connected with the ongoing research of the three-dimensional analysis of the

left ventricle, for which a special-purpose computer program is being developed.

In the computer program, the true three-dimensional geometry of the left ven-

ricle determined by the multiplanar x-ray views of its cross sections will be

utilized and the analysis by treating the myocardium as a fibrous material using

adjusted elastic stiffnesses and incremental loading will be incorporated.

It may also be anticipated that NASTRAN will contribute to the ultimate dy-

lamic analysis of the left ventricle which will consider, among others, the ef-

fects of the myocardial contraction, the dynamics of the heart valves, and the
iinteraction of the blood flow in the left ventricular chamber.
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Table I.

R
E
G
1
0
N

P
0
S
T
E
R
1
0
R

S
E
P
T
A
L

Comparison of principal stresses

section (E-pi-I and v=0.415).

[ 1ement

Number

425
426

427
428

429
430

431
432

439
440

i

441
442

443
444

445
446

A 453
454N

T
E
R
!
0
R

F
R
E
E

455
456

457
458

459
460

463
464

465
466

467
468

469
470

FEAMPS

Trt angular

Elements

01 0 2

2.14 -1.16

0.34 -3.15

9.64 3.53
4.60 0.12

5.82 1.25
8.54 0.59

6.41 -1.48
4.48 O. 34

-0.61 -1.34
0.07 -I .06

-1.06 -1.55
-0.76 -1.7_

-0.88 -I .85

-I .05 -1.70

-0.03 -1.08
-1.16 -1.85

4.96 0.37
7.42 -0.99

7.95 -0.23
5.42 -0.35

4.88 -0.65
7.62 O. 05

5.11 -I .36
3.53 0.22

-1.40 -2.11
0.52 -0.43

-1.55 -2.21
-0.62 -1.58

-1.26 -2.10
-1.12 -1.73

-0.15 -1.11
-1.03 -1.97

l

for the end-dlastollc cross

ii

Triangular

NASTRAN

Elements

01 02

2.14 -1.16
0.34 -3.15

9.62 3.53
4.59 0.12

5.81 1.24
8.53 0.58

6.40 -1.48
4.47 O. 34

-0.61 -1.34
0.07 - 1.06

-I .06 -1.55
-0.76 -1.74

-0.87 -1.84
-1.05 -1.69

-0.03 -1.07
-1.16 -1.85

4.95 0.37
7.40 -0.99

7.93 -0.23
5.40 -0.35

4.87 -0.65
7.60 0.04

5.10 -I .35

3.52 0.22

-1.40 -2.11
0.52 -0.43

-I .54 -2.21

-0.61 -1.58

-1.25 -2.09

-1. ] 2 -1.72

-0.16 -1.11
-1.03 -1.96

Isopa rametr ic
Quadri latera I

E1ements

a I 02

1.95 -1.30

7.50 ] .55

7.83 1.05

5.80 0.16

-0.42 -1.15

-1.06 -1.62

-1.09 -1.72

-0.99 -I .64

6.43 0.08

6.78 -0.48

6.64 -0.17

4.39 -0.48

-I .13 -I .59

-I .11 -I .65

..1.20 -1.81

-1.04 -1.86
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Table 2. for the early diastolic cross

R
E
G
I
0
N

P
0
S
T
E
R
I

0
R

S
E
P
T
A
L

A
N
T
E
R
I
0
R

F
R
E
E

Comparison of principal stresses

section (E=Pi=l and v=0.415).

Elen_nt

Number

427

428

429

430

431

432

433
434

436

437

438
439

440

441

442
443

446
447

448
449

450

451

452
453

454

455

456
457

458

459

460
461

i

NASTRAN

u6=v6=v19=O

o 1 ° 2

5.01 1.44
2.76 0.48

1.96 0.30
7.14 2.73
5.5] 6.06
0.15 -I .38

1.66 -0.31
2.63 0.11

0.44 -0.83
-0.10 -1.21

-0.11 -0.82

-0.81 -1.25

0.004 -I .05

-0.01 -I .02

-0.54 -I .23

0.26 -0.71

O.ll -1.59
2.07 -0.01

1.51 -0.97

2.63 -0.17

3.13 -0.96

3.60 -0.49

2.45 -0.56

2.54 -0.50

4.08 0.02

2.40 -I .32

I.80 -0.56

0.99 -I .19

1.71 -0.22

0.82 -l .22

0.72 -0.88
0.58 -I .07

im i

FEAMPS

No

u6=v6=v 19=0

a 1 o 2

5.01 1.44
2.76 0.48

1.96
7.14

5.51
0.15

1.66
2.63

o.44
-0.I0

-0.11

-0.81

o/oo5
-0.005

-0.54

0.26

0.11

2.08

1.51
2.64

3.13
3.60

2.46
2.55

4.09
2.40

1.80
0.99

1.71
0.82

0.72

0.58

0.30

2.73

0.06

-I .38

-0.31 I.66

0.II 2.63

-0.83 O. 44

-I. 21 -0. I0

-0.82 -0.11
-1.25 -0.81

-I .05 0.004

-I .02 -0.01

-l .23 -0.54

-0.71 0.26

-I .59 0.11
-0.10 2.08

-0.97 1.51
-0.17 2.64

-0.96 3.13

-0.49 3.60

-0.56 2.46

-0.50 2.55

0.02 4.09

-I .32 2.40

-0.56 1.80

-I .19 0.99

-0.22 1.71

-I .22 0.82

-0.88 0.72

-1.07 0.58

Boundary
Constraints

01 02

5. O1 1.44
2.76 O. 48

I.97 0.30

7.14 2.73

5.51 0.06

0.15 -I .38

-0.31
0.11

-0.83
-I .21

-0.82
-1.25

-I .05

-I .02

-1.23
-0.71

-l .59

-0.I0

-0.97
-0.17

-0.96

-0.49

-0.56

-0.50

O.02
-I. 32

-0.56

-I .19

-0.22

-I .22

-0.88

-1.07
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Table 3.

R

E

G

I

0

N

Comparison of principal stresses for the early and end diastolic

cross sections considered as a nearly incompressible material

v=0.49 (E=Pi=l).

EARLY DIASTOLE END DIASTOLE

FEAMPS NASTRAN FEAMPS NASTRAN

a1 a 2

p 5.69 2.81

0 3.87 I.86

S I.83 -0.08

T 8.40 4.65

E 6.96 0.29

R -I .54 -3.42
I

0 2.72 O.68

R 3.56 O.84

0.30 -0.88

-0.24 -I .45
S

E

P

T

A

L

A

N

T

E

R

I

0

R

0.88 -0.44

-I .57 -3.06

2.73 I.24

-0.44 -2.60

3.47 1.10
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Xotote Heart X-RAY IMAGE
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Figure I. Reconstruction of cardiac cross section from multi-

planar x-ray views and LJv use of el_cbraic al_orithm.
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Figure 2. Schematic of the surgically isolated, metabolically

supported canine left ventricle.
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igure 9. _ormalized circumferential stress distributions across the wall

thickness at the four regions of the left ventricular cross
section.
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