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SUMMARY

A capability for the nonlinear vibration analysis of beamand frame
structures suitable for use with NASTRANLevel 15.5 is described. The
!nonlinearity considered is due to the presence of axial loads induced by
ilongitudinal end restraints and lateral displacements that are large com-
pared to the beam height. This paper includes a brief discussion of the
imathematical analysis and the geometrical stiffness matrix for a prismatic
Ibeam(BAR) element. Also included are a brief discussion of the equivalent
!linearization iterative process used to determine the nonlinear frequency,
the required modifications to subroutines DBARand XMPLBDof the NASTRANcode,
and the appropriate DMAPALTERSto determine the frequency. To demonstrate
this nonlinear vibration capability, four exampleproblems are presented.
Comparisonswith existing experimental and analytical results show that
excellent accuracy is achieved with NASTRANin all cases.

INTRODUCTION

In practical beamvibration problems, transverse deflections may be
Igreater than those assumedfor linear theory. Considerable attention has
been given, therefore, to the nonlinear flexural vibration of beams. Most
studies have dealt with simple uniform beamswith either hinged or fixed
support conditions at both ends. An excellent literature survey is given
by Eisley (ref. i) through 1964. More recent surveys are given by Ray and
Bert (ref. 2), and Pandalai (ref. 3). Nonlinear vibrational behavior of
non-uniform beamand frame structures found in manyengineering applications,
however, has not received muchattention in the literature because of
analytical difficulties. The use of the finite-element method overcomes
these difficulties and removes the uniform beamand limited support condition
restrictions.
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The purpose of this paper is to describe a nonlinear vibrational analysis

capability for determining fundamental frequency of beam and frame structures

suitable for use with NASTRAN Level 15.5 and to present results demonstrating

this capability. The paper includes a discussion of the mathematical analysis

and the derivation of the geometrical stiffness matrix that represents the

induced axial force in the governing equation_ the appropriate modifications

to the NASTRAN code, and solutions of example problems. Procedures for non-

linear vibration analysis with and without applied axial forces are available

for NASTRAN Level 15.5 by means of DMAP ALTERS and modifications of the

NASTP_ code given in the Appendices.
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area

amplitude of vibration

amplitude ratio, c/_'_

modulus of elasticity

element forces

height of beam

area moment of inertia of cross section

stiffness matrix

differential stiffness matrix

geometrical stiffness matrix

length

mass matrix

applied axial force on undeformed beam

axial force due to deflection

Euler load

inplane force matrix

nodal displacements

time
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x,y,z

w

0

{,}

0

Subscripts:

a,aa

e,ee

eq

element coordinate system

lateral deflection

mass density

normal mode

fundamental linear frequency

fundamental nonlinear frequency

system

element

equivalent

MATHEMATICAL ANALYSIS

Formulation of Matrix Equation of Motion

The strain energy in a deformed bar element of uniform cross section is

given by:

_jo _x2/ ax+ x _ _ ax+2j° 7 rx/

where Px = dx
JO

dx (i)

(2)

The first two terms of the strain energy expression are due to bending and

applied axial force, respectively. The last term is the nonlinear contribution

of the axial force P induced by large deflections. If the axial force P isx
neglected from Eq. x (i), the strain energy is reduced to that of the

linear theory.

The kinetic energy is given by:

T -_0 dx

(3)
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where the rotatory inertia term has been neglected.

In the finite-element approach, transverse deflection of an element is
expressed in terms of generalized displacements {ue} and interpolation
functions. The function chosen to represent the transverse deflection is
given by:

! x2 x 3) x2)x x 2 x3 )w = [(i - 3 + 2 -(l - 2 x + (3 - 2

(x - x 2) x j {ue} (4)

where x = xi (5)

This displacement function is the same as used for the NASTRAN bar element.

The displacement vector describing bending of a bar element in the xz plane

(see figure i) is defined by:

{u } = {u @ @yb }T (6)e za ya Uzb

Substituting Eq. (4) into Eqs. (i) and (3), gives:

i }T [kdee ] [kgee ]U = _ {u ([kee] + + ) {u }e e (7)

and

l }T
T = _ {6 [mee] {6 } (8)e e

where [keel, [kdee ], [kgee] , and [mee] represent the element stiffness,

differential stiffness, geometrical stiffness, and mass matrices, respectively

and [kgee ] is a function of {Ue }" Substituting Eq, (4) into Eq. (2) yields

Px = {ue}T [Pee ] {Ue } (9)

where [Pee ] is the inplane force matrix.

e62



Substituting Eqs. (7) and (8) into Lagrange's equations, that is,

(%)+ = 0
dt i = i, 2, .._n (I0)

where n is the number of elemental degrees of freedom, leads to the matrix

equation of motion for the large amplitude free oscillations of a bar element

which is given by

[mee] {Ue } + ([keel ÷ [kdee] + [kgee]){Ue } = {fe }
(ii)

The mass, stiffness, and differential stiffness matrices of the bar element

are 12 x 12 matrices relating the forces and moments acting at the ends of the

bar (see ref. 4). The portion of the differential stiffness matrix, for

example, that describes bending in the xz plane of figure I, is given by

[kdee] =

u 0 0
za ya Uzb yb

m

6P P 6P P
xo - xo - xo - xo

5£ i0 5Z i0

2£P P £P
xo xo - xo

15 I0 30

6P P
xo xo

5£ i0

2£ P
xo

15

(12)

The relations between [kdee], [kgee ], and [Pee] can be found from Eqs. (i)

and (2) and they are

p

[kgee ] = I -x [kdee ]2 P (13)
xo
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where

P
x

and

= {u }T [Pee ] {u } (14)e e

[ eeJ
- P [kdee ] (15)

xo

Solution Technique

The goemetrical stiffness matrix [kgee] in Eq. (ii) is displacement
dependent (see Eqs. (13) and (14)). Therefore, the frequency for

nonlinear vibration also depends on the amplitude of vibration. This

phenomenon is different from the linear case, in which the frequency is

independent of amplitude. In the following the frequency associated with

the linear vibration problem is referred to as the linear frequency, and the

frequency associated with the nonlinear vibration problem is referred to as

the nonlinear frequency. To determine the nonlinear frequency, an iterative

procedure with an equivalent linearization technique is used and is illus-

trated by the simplified flow chart shown in figure 2. The system matrices

indicated in figure 2 are assembled from the element matrices by a standard

finite-element procedure. The basic idea is to replace the displacement depen-

dent geometrical stiffness matrix [kgee ] by an equivalent matrix [kgee]
using the mode shape of the linear vibration problem as the e_irst

approximation to the displacement. This reduces the nonlinear system

equation of motion to a linearized equation which can be solved as a standard

eigenvalue problem. The mode obtained by solving this eigenvalue problem

may be used to recompute [kg ]e- for the next iteration in the nonlinear
vibration iterative solutione_ro_edure. The solution procedure is illustrated

as follows. The first step is to solve the linear vibration problem:

2
o [maa] {_}o = [kaa] {_}o

(16)

where _ is the fundamental frequency of the linear problem, {4} represents
o o

the corresponding mode shape normalized by its maximum component, and the sub-

script aa represents the system matrices. Solving Eq. (16) provides the first

approximate displacement in the form

{Ua} 1 = c {_}o (17)
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Therec is the amplitude of vibration. The equivalent geometrical stiffness
_atrix now can be obtained using {Ua}1 which leads to a linearized eigenvalue
equation of the form

2 [maa] {¢}I = ([kaa] + [kdaa] + [kgaa]eq){_}l (18)

where _ is the fundamental nonlinear frequency associated with amplitude c,

_nd {_}i is the corresponding mode shape. The iterative process can be

repeated by using

{Ua} 2 = c {_}i

s the second approximation, and similarly the i-th iteration
isplacement is of the form

(19)

approximate

{Ua i}" = c {_}i-i (20)

The iterative process can be continued until the nonlinear frequency converges

to the desired accuracy or the mode shape {_}. satisfies some convergence

criterion (e.g., the modified Euclidean norm 1of ref. 5).

MODIFICATIONS TO THE NASTRAN CODE

To compute the geometrical stiffness matrix [kg ], subroutine DBAR was
NO " " ee
I dlfled to take advantage of the fact that the differential stiffness matrix
and the geometrical stiffness matrix are related as shown in Eq. (13).

Appendix A shows these changes in CDC UPDATE format. The core storage require-

ment for DBAR was increased by 6478 locations.

To avoid going through the modified section of code each time DBAR was

called, a new parameter, NLVIB, was added to the DMAP calling sequence for

module DSMGI. The contents of NLVIB are passed through blank common from

DSMGI to DBAR. The default value for NLVIB, set in block data subroutine

!XMPLBD, is zero (0). When NLVIB = 0, the new code in DBAR will not be

executed. To set NLVIB = 1 and execute the new DBAR code, the following

icalling sequence for the DSMGI module is used:

DSMGI CASECC,,SIL,,PHIG,CSTM,MPT,ECPT,GPCT,

DIT/KGGG/V,N,DSCOSET/C,N_I $

The underlined parameter sets NLVIB to i.
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Once the changes shown in Appendix A were made to DBAR and XMPLBD, they

were compiled and replaced the old DBAR and X}_LBD in the NASTRAN object

library. Link 1 and Link 13 were relinked and a new executable NASTRANwas

created. Although this procedure was done on a CDC computer, similar proce-

dures will produce similar results on both the IBM and UNIVAC computers. In

order to use this nonlinear vibration capability in NASTRAN, extensive alters

have to be applied to either Rigid Format 5 and Rigid Format 13, depending

on how the capability is needed. A summary of the applicable analyses, their

governing equations and their appropriate Rigid Formats is given as follows:

ANALYSIS EQUATION RIGID FORMAT

Normal Modes _ 2[m] = [k] 3
o

Buckling [k] + %[k d] = 0 5

Normal Modes with
2

Differential _ [m] = [k + k d]

Stiffness o

Nonlinear Vibration

Analysis

Nonlinear Vibration

Analysis with
Differential

Stiffness

_2[m] = [k + k g]

2 k d[m] = [k + + k g]

13

5 with ALTERS

13 with ALTERS

where % is an eigenvalue.

The appropriate DMAP alter sequences for both Rigid Formats 5 and 13 are

shown in Appendix B. The alters between the statements

LABEL CONV $

REPT CONV, i $

will go through two iterations. If the user desires more iterations, the

integer in the REPT statement must be increased. The only other input re-

quired to use this capability is the addition of a PARAM card in the Bulk

Data deck. The parameter AMP is used to specify the amplitude of vibration

of the structure.
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EXAMPLESANDRESULTS

The nonlinear vibration capability developed for use with NASTRANhas
been demonstrated by solving two examples of a nonlinear vibration analysis
and two examples of a nonlinear vibration analysis with differential stiff-
ness. NASTRANsolutions are comparedwith previously published results.

Nonlinear Vibration Analysis

The first example is the vibration of a uniform beamwith various end
support conditions. Evensen (ref. 6) obtained approximate amplitude-
frequency relations for uniform beamswith fixed-fixed, hinged-hinged, and
fixed-hinged boundary conditions using a perturbation method. Goodagree-
ment is obtained between the NASTRANand perturbation solutions as shown in
Figure 3. For the hinged support case, the two amplitude-frequency curves
coincide.

The second example demonstrates the effect of the amplitude of vibration
on a rectangular frame structure. The frame is 304.8 cm (i0.0 ft.) wide,
609.6 cm (20.0 ft.) long, and is madeof 1.27 cm (0.5 in.) diameter steel rod.
There are i0 equally spaced cells lengthwise and 4 equally spaced cells along
the width. All four edges of the frame are fixed. A plot of the undeformed
frame is shownin figure 4. Only one-fourth of the frame is used in the
analysis due to symmetry. The linear frequency and nonlinear frequencies for
values of the amplitude c (see Eq. 17) up to 7.62 cm (3 in.) are as follows:

Amp!itudo _ e Frequency_ Hertz

cm (in.)

0 0 4.638 linear

1.27 0.5 5.319

2.54 1.O 6.830

3.81 1.5 8.565

5.08 2.0 10.295

6.35 2.5 11.940

7.62 3.0 13.478

The results indicate that the amplitude has an important influence on

the frequency. In this example, a 5.08 cm (2 in.) amplitude at the center'

of the frame increases the fundamental nonlinear frequency to more than twice

the linear one.
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Nonlinear Vibration Analysis with Differential Stiffness

I

The third example is a hinged rectangular beam subjected to an applied

axial tensile force of 105.4 N (23.7 ibf). The same problem was solved in

ref. 2 using three different approximate analytical procedures, and results i

from these procedures, as well as experiment results, are given. One procedure

is based on an assumption for the spatial dependence of the displacement

function, one is based on an assumption for the temporal dependence of the

displacement function, and the third procedure is the Galerkin procedure. The

beam has the following properties:

Length

Width

Height

Material

Elastic Modulus

Specific Mass

50.8 cm (20.0 in.)

1.27 cm ( 0.50 in.)

0.081 cm ( 0.032 in.)

Titanium Alloy
100.6 GPa ^ (14.6 x 106 psi)

5.15 Mg/m _ ( 0.186 lb./in. 3)

One-half of the beam modeled by six BAR elements was used for the analysis

_ree analytical fundamental frequencies and an experimentally measured one fro

ref. 2 and the NASTRAN solution are shown in figure 5, Comparing the results

demonstrates that the NASTRAN results provide the closest comparison with the

experiment.

The fourth example is a beam-column subjected to an applied compressive

force with various support conditions. Based on linear theory, Lurie (ref. 7)

has shown that the relation between the square of the frequency and the axial

load is linear for a beam that has identically shaped vibration and buckling

modes. He also showed that the condition of zero fundamental frequency cor-

responds to buckling. The linear vibration-stability problem studied by Lurie

is actually the limiting case of a more general phenomenon of large amplitude
vibrations under the influence of axial loads. Burgreen (ref. 8) obtained

an exact solution in terms of elliptic functions for a uniform beam hinged at

both ends and also verified his results experimentally. Srinivasan (ref. 9)

used Galerkin's method to study beam-columns with both ends hinged. Table 1

shows good agreement between the NASTRAN solutions and the results given by

Burgreen and Srinivasan, and NASTRANgivesbetter predictions than the one-term

Galerkin method. The load-frequency curves for different amplitude ratios of

vibration, d, for beams with various support conditions are given in figure 6,

where d is the ratio of amplitude to the radius of gyration of the beam. No

comparison is made for the cases of fixed-hinged and fixed-fixed because there

appears to be no solution available in the literature. It has been found from

this example that (i) the effect of amplitude is more pronounced for a less

stiff structure, and (2) nonlinear theory shows that the frequency of a column

at the Euler buckling load is not zero for finite amplitudes of vibration.
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CONCLUDING REMARKS

Nonlinear vibration capability for beam and frame structures has been

developed for use with NASTRAN Level 15.5 by means of DMAP ALTERS and modi-

!fications to the NASTRAN code. A geometrical stiffness matrix for a bar

element has been developed for NASTRAN by modifying subroutine DBAR. An

equivalent linearization technique and iterative process used to determine

nonlinear frequencies are implemented into NASTRAN by the DMAP ALTERS. The

!versatility of the finite-element method enables the analyst to determine

nonlinear frequencies of vibration for non-uniform beam and frame structures.

Comparison with previously published results show that excellent accuracy

is achieved with NASTRAN.
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APPENDIX A

MODIFICATION OF CODE

*INSERT,DBAR,I I I

DOUBLE PRECISION PXT,COEFF,HOLD(6),TEMP(36),PXP,STOR(36)

*INSERT,DBAR,185

C

C INSERT NEW NLVI6 PARAMETER INTO oLANK COMMON

C

COMMON ICOM,NLVIB

*lNSERT_DBARo638

IFINLVIBoNEoOoANDoFXoEQoOoODO) FX=I oOI)O

_INSFRT,DBAR,646

*INSERT,DBARo766

IFINLVIBoEQoO) GO TO 621

C

C DIVIDE FX OUT OF KDGG MATRIX

C

DO 900 KK=I 4144

KD(KK )=KO(KK)/FX

90G CONTINUE

C

C COMPUTE

C

C

C

C

T E*A

PXP = U * --- * (KDGG) * U

2*L

C WHERE U IS A 6X1 VECTOR

C

C

C

KDGG IS A 12X12 MATRIX DIVIDE INTO FOUR 6X6 MATRICES

IF(IPVT.NE,I ) GO TO 621

COEFF=DA*E/(2,0DO*L)

PXT = O,ODO

DO 920 IPl = I ,4

JPX = I

JCNT=O

IF(IPI,GE,3) GO TO 930

ILO=I

IHI=72

GO TO 940

930 IL0=73

IHI=144

940 DO 960 I = ILO, IHI, 1_

JLO=I

JHI=JLO+5

DO 950 K = JLO,JHI
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APPENDIX A

950

960

912

915

JCNT = JCNT+I

IF(IPI.EQ.I.OR. IPI.EQ.3) TEMP(JCNT)=KDIK)

IFIIPI.EQ.2.0R. IPI.EQ.4) TEMP(JCNT)=KD(K+6)

CONTINUE

CONTINUE

IWLEFT=37

IFIIPI.GE.3) IWLEFT=73

IWRGHT=37

IF(IPI.EQ.2.0R. IPI.EQ.4) IWRGHT=73

CALL GMMATD(KE(IWLEFT),6,6,I,TEMP(I ),6,6,0,STOR(I ))

CALL GMMATD(STOR(1),6,6,0,KE(IW_GHT),6,6,0,TEMP(I ))

DO 915 IP2 = 1,36

TEMP(IP2) = TEMP(IP2)*COEFF

CONTINUE

IFIIPI.EQ.2.0R.IPI.EQ.4) JPX = 2

IF(IPI.LE.2) CALL GMMATD(UA(I ).6.1.I.TEMP(I ).6.6.0.HOLD(I ))

IF(IPI,GE,3) CALL GMMATD(UB(1 ),6,1,I,TEMP(I ),6,6,0,HOLD(1 ))

IF(JPX -EQ, I ) CALL GMMATD(HOLD(I ),146,0,UA(1 ),6,1,0,PXP)

IF(JPX ,EQ,2) CALL GMMATD(HOLD(1 ),I,6,O,UB(I ),6,1,0,PXP)

C STORE SUM INTO PXT

C

PXT = PXT+PXP

920 CONTINUE

C

Z PXT=.5 * PXP * KDGG

C

PXT = PXT*.5DO

62 I CONT INUE

• INSERT. DBAR. 790

IF(NLVIB.EQ.O) GO

[C

C CALCULATE KDGGG AND STORE

C

TO 653

DO 652 IPX=l,36

JPX=IPX+IO8

KEP(JPX)=PXT*KEP(JPX)

652 .CONTINUE

653 CONTINUE

i-_-COMP ! L_, O_3AR

'DELETE , XMPL_D, 78

,DELEIE 10. 4HDSMG.4HI.WTI33-LIZ_.39

DIVENSION MPLOI (

I.I0. I. i. -1, I. 0

MPL02(178). MPL03(191). MPLO/4 ( 1 79)
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APPENDIXA

*DELETE,WTI5B-LI6,8
COMMON/XGPI2/LMPL,MPLPNT,MPL(1621 )

_DEL.ETE,WTI33-LI4,42,WTI33-LI4,46
3 , (MPL( 227),MPL03(1))
5 , (MPL( 597),MPL05(1 } )

7 , (MPL( 858),MPL07(I ))

9 , (MPL(II72),MPLO9(I) )

*DELETE,WT155-L16,9

! , (MPL(1538),MPLI i (i) )

_COMPILE,XMPLBD

, (MPL( 418},MPL04(I ))

, (MPL( 723),MPLO6(I ))

, (MPL(IO67),MPL08(I))

, (MPL(1351),MPLIO(I ) )
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APPENDIX B

DMAP ALTERS

For Nonlinear Analysis

ilD NLVBF,BEAM FRAME

APP DISP

SOL 5,0

TIME 5

!$ NONLINEAR FREE VIBRATIONS OF BEAM AND FRAME STRUCTURES

IALTER 19,23

,GP3 GEOI_3,EQEXIN,GEOM2/,GPTT/C_N,123/V,N,NOGRAV/C,N,I23 $

ICHKPNT GPTT $

!ALTER 31,31

'ALTER 5_

EQUIV MGG,MNN/MPCFI $

CHKPNT MNN :_
'ALTER 66,70

MCE2 USET,GM_KGG,MGG,,/KNN,MNN,_ $
[CHKPNT KNN,MNN $

iLABEL LBL2 $

,EQUIV KNN,KFF/SINGLE /MNN,MFF/SINGLE $
'CHKPNT KFF,MFF $

COND LBL3,SINGLE
SCEI USETqKNNgMNN_,/KFF_KFS,KSSgMFF_ $

!CHKPNT KFS,KSStKFFgMFF $

LABEL LBL3 $
EQUIV KFF,KAA/OMIT /MFF,MAA/OMIT $

,CHKPNT KAA,MAA $

IALTER 79
SMP_ USET,GO,MFF/MAA $

ChKPNT MAA

ALTER _I,129

ALTER 134,141

SETVAL //V,N,_REAK/C,N,I/V,N,LINK/C,N,-I $

SAVE BREAK,LINK $

LABEL CONV $

EQUIV KAA,KDAA/BREAK $

EQUIV MAA,MDAA/BREAK $

READ KAA,MAAt_,EED,USET,CASECC/LAMA_PHIA_MI_OEIGS/C_N,MODES/V9

N,NEIG/C,N,2 $

SAVE NEIG $

CHKPNT LAMA,PHIA,MI,OEIGS $

OFP LAMA,OEIGS,,,,//V,N,CARDNO $

SAVE CARDNO $

CO_D FINIS,NEIG $

SDRI USET,,PHIA_,,GO_GM_KFS_,/PHIG,,_QG/C,N_I/CgNtREIG

CHKPNT PHIG,BQG

EQUIV PHIG_PHIAMP/BREAK $

ADD PHIG,/PHIAMP/V,Y_AMP $
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APPENDIX B

CHKPNT

EQUIV

DSMGI

CHKPNT

ADO

CHKPNT

EQUIV

CHKPNT

COND

MCE2

CHKPNT

LABEL

EQUIV

CHKPNT

COND

SCEI

CHKPNT

LABEL

EQUI V

CHKPNT

COND

SMPI

CHKPNT

SMP2

CHKPNT

LABEL

EQUIV

EQU I V

REPT

ADD

ADO

ALTER

ENOALTER

CEND

PHla_P $

PHIAMP,PHIG/LINK $

CASECC,,SIL,,PHIG,CSTM,MPTtECPT,GPCTtDIT/KGGG/V,N,

DSCOSET/C,N,I $

KGGG $

KGGG,KGG/KDGGG $

KDGGG $

KDGGG,KDNN/MPCF2 /MGG,MDNN/MPCF2 $

KDNN,MDNN $

LBL20,MPCF2

USET,GM_KDGGG,MGG,t/KDNNgMONN_,

KONNgMDNN $

LBL?D %

KDNN.KDFF/SINGLE /MDNN,MDFF/SINGLE %

KDFF,MOFF $

LUL3D,SINGLE
USET,KONN,MDNN,,/KDFF,KDFS,,MDFF,,

KDFF,KDFS,MDFF $

LBL3D $
KDFF,KDAA/OMIT /MDFF,MDAA/OMIT $

KDAA,MOAA $

LBL5D,OMIT $

USET,KDFF,_,/GDO,KDAA,KDOO,LDOO,UDO0,,,,,

GDO,KDAA $

USET,GDO,MDFF/MDAA $
MDAA $

LBL6D

KD_A,KAA/LINK $

MDAA-MAA/LIN_ $

CONV,1 $

_DAA,KDAA/KMAA $

PHIAMP,/PHIM

157,1%d
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APPENDIXB

Nonlinear Vibration Analysis With Differential Stiffness

tO NLVDS,BEAM FRAME
IPP DISP
;OL 13,0
FIME 5

NONLINEAR VIBRATION MODEWITH DIFFERENTIAL STIFFNESS FOR BEAM
; AND FRAME STRUCTURES
WLTEP 50

!QUIV MGG,_NN/MPCFI $

_HKPNT MNN $

_LTER 62_7_

_CE2 USET,GM,KGG,MGG_t/KNN_MNN., $

HKPNT KNN,MNN $
.ABEL LBL2 $

QUIV KNN,KFF/SINGLE /MNN,MFF/SINGLE $

HKPNT KFF,_FF $

;OND LBL3,SINGLE

_CEI USET,KNN,MNN_,/KFF,KFS,KSS,MFF,, _

_HKPNT KFS,KSS_KFF,MFF $

ABEL LBL3 $
QUIV KFF,KAA/OMIT /MFF,MAA/OMIT $

_HKPNT KAA,MAA $

_LTER 75
5MP2 USET,GO,MFF/MAA $

_HKPNT HAA$

ALTER I06,12b

ALTER 130,130

SETVAL //V,N,UREAK/C,N,I/V,N,LINK/C,N,-I $

AVE BREAK,LINK $
ABEL CONV $

EQUIV KAA,KSAA/BREAK $

EQUIV MAA,MSAA/BREAK $

READ KAA,MAA,,,EED,USET,CASECC/LAMA,PHIA,MI,OEIGS/C_N,MODES/V,

: N,NEIGV/C,N,2 $

ALTER ' 136,137

SDRI USET,_PHIA,,,GO,GM,,KFS,,/PHIG,,_QG/C,N_t/C_N,BKLI

'CHKPNT PHIG,BQG $

EQUIV PHIG,PHIAMP/BREAK $

!ADD PHIG,/PHIAMP/V,Y_AMP $
ICHKPNT PHIAHP $

EQUIV PHIAMP,PHIG/LINK $

DSMGI CASECC,,SIL,,PHIG,CSTM,MPT,ECPT,GPCT,DIT/KGGG/V,N,

DSCOSET/C,N,I $

CHKPNT KGGG $

ADD5 KGG,KOGGgKGGG,,/KSGG $

CHKPNT KSGG $
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EQUIV

CHKPNT

COND

MCE2

CHKPNT

LABEL

EQUIV

CHKPNT

COND

SCEI

CHKPNT

LABEL

E QU IV

CHKPNT

COND

SMPl

CHKPNT

SMP2

CHKPNT

LAgEL

EQUIV

Eg,JIV

REPT

ADD

ADD

ENOALTER

CEND

KSGG,KSNN/MPCF2 / MGG,MSNN/MPCF2 $

KSNN,MSNN $

LBL2S,MPCF2 $

USET,GM,KSGG,MGG,_/KSNN,MSNN,, $

KSNN,MSNN $

LBL_S $

KSNN,KSFF/SINGLE / MSNN,MSFF/SINGLE $

KSFF,MSFF $

LBL3S,SINGLE

USET,KSNN,MSNN,,/KSFF,KSFS,,MSFF,, $

KSFF,KSFS,MSFF $

LBL3S

KSFF,KSAA/OMIT / MSFF,MSAA/OMIT

KSAA,MSAA $

LBL_S,OMIT $

USET,KSFF,,,/GSO,KSAA,KSOO,LSOO,USO0_9,,,

GSO_KSAA $

USET,GSOgMSFF/MSAA $

MSA_ $

LBL6S

KSAA,KAA/LI,_K $

MSAA,MAA/LINK $

CONV,I $

MSAA,KSAA/KMAA $

PHI_P_/PHIM
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TABLEi. FREQUENCYRATIOOFA HINGEDBEAM

Axial Load,
Pxo
PE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Method

NASTRAN
Ref. 8
Ref. 9

NASTRAN
Ref. 8
Ref. 9

NASTRAN
Ref. 8
Ref. 9

NASTRAN
Ref. 8
Ref. 9

NASTRAN
Ref. 8
Ref. 9

NASTRAN
Ref. 8
Ref. 9

NASTRAN
Ref. 8
Ref. 9

0.0

1.0000
1.0000
1.0000

.8944

.8944

.8944

.7746

.7746

.7746

.6325

.6325

.6325

.4472

.4472

.4472

.0026

.0000

.0000

Amplitude Ratio,

1.0

1.0889
1.0892
1.0897

.9928

.9930

.9937

.8864
.8864
.8874

.7653

.7649
.7665

.6210

.6194

.6225

.4309

.4236

.4330

C

2.0

1.3183

1.3178

1.3229

1.2401

1.2389

1.2450

1.1566

1.1543

1.1619

1.0666

1.0627

1.0724

.9682

.9617

.9747

.8586

.8472

.8660

.7329

.7105

.7416

3.0

1.6260

1.6257

1.6394

1.5631

1.5618

1.5772

1.4976

1.4949

1.5125

1.4291

1.4246

1.4448

1.3570

1.3502

1.3739

1.2810

1.2708

1.2990

1.2000

1.1851

1.2196
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Z

Uzo

Y

a Uzb

yb

b

X

Figure i. Bar coordinate system, showing displacements

due to bending in the xz plane.
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Assemble [maa], [kaa], [k aa ]

Solve mo [maa]{Ua } = [kaa]{Ua}

I {u } for amplitude _A
Compute given

e I_

I Assemble [kgaa] I

Iso, + I[maa]{U } = [k + kd kga am as as a

I Convergence test and Iteration count I

Fail

Figure 2. Simplified flow diagram for nonlinear vibration analysis.
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1.6 - 3.0

1.4

1.2

3J3° 1.0
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Z
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Figure 6.

Pxo ! Pxo
I

I

HINGED ENDS

___m FIXED-HINGED

FIXED ENDS

i

0

I I I I

.2 .4 .6 .8

AXIAL LOAD, Px____o
PE

Variation of frequency with axial load for various

support conditions.
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