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SUMMARY

In the case of non-multiple eigenvalues, each of the three real eigenvalue
extraction methods available in NASTRAN will, for a given type of normalization,
give essentially the same eigenvectors. However, this is not so in the case of

_multiple eigenvalues. This apparent discrepancy is explained and illustrated
rby considering the example of a NASTRAN demonstration problem that has both
multiple and non-multiple eigenvalues.

I NTRODUCTI ON

The NASTRAN program provides three basic methods for real eigenvalue ex-

traction. In each of these methods, the eigenvectors obtained can be normalized

in three different ways (see Appendix).

In the case of non-multiple eigenvalues, each of the three extraction me-
thods will, for a given type of normalization, give essentially the same eigen-
vectors. However, in the case of multiple eigenvalues, the three extraction
methods will, in general, give different eigenvectors even though they may em-
ploy the same type of normalization. Furthermore, in this case (of multiple
eigenvalues), even a given method using a given type of normalization may yield
different eigenvectors under different conditions (e.g., different frequency
limits on the EIGR bulk data card) [I] I. This discrepancy may seem disturbing,
but it is explained in this paper where it is shown that the different eigen-
vectors corresponding to multiple eigenvalues obtained by different methods and
under different conditions have certain definite relationships among them and

1 Numbers in brackets indicate References given at the end of the paper.
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that these relationships depend on the number of arbitrary constants that are
inherently assumed in the computation of eigenvectors. This is illustrated by
considering the example of a NASTRAN demonstration problem that has both multi-
ple and non-multiple eigenvalues.

THEORETICAL BACKGROUND

The basic eigenvalue problem solved in NASTRAN can be formulated as

[Kaa -_ Maa] {x} : 0 (I)

where Kaa and Maa are respectively the stiffness and mass matrices (both of

which are real and symmetric) referred to the analysis set [2], _ is a scalar
quantity, and {x} is a column vector that comprises all the degrees of freedom
in the analysis set. Non-trivial solutions for {x} in the above equation are
possible if and only if the resultant matrix within the brackets is singular
[3,4]. The values of _ that satisfy this condition represent the required
eigenvalues.

Let _C be one of the eigenvalues of Equation (I). The eigenvector cor-

responding to this eigenvalue can be obtained from the equation by substituting

= _L and solving for {x}. We thus have

[Kaa -_ Maa] {x}_ = 0 (2)

where {x}£ is the required eigenvector.

Let n be the order of the problem and let x I, x 2, x3, ..... , x n be the com-

ponents of {x}. Equation (2) can then be rewritten as

n

_. Cij xj = 0 , i = 1,2,3, ...... , n (3)
j=l

where Cij are constants that depend on Kaa, Maa, and _.

Equation (3) represents a system of n linear equations in n unknowns.
However, not all of these n equations are independent. The exact number of in-
dependent equations depends on the multiplicity of the eigenvalue _L. If s
(l_sSn) is the multiplicity of_, then it can be shown that the rank of the
resultant matrix in Equation (2) is (n-s) [3,4]. The number of independent
equations in (3) is also, therefore, (n-s). Their solution thus involves s
arbitrary constants. The total number of eigenvectors available is therefore

equal to _s However, it can be shown that the number of linearly independent
eigenvectors is only s [4].
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Depending on the multiplicity s, it is useful to distinguish between the
_ollowing two cases:

;ase (a) Non-multiple Eigenvalues (s = l)

I
In this case, (n - l) of the n equations in (3) are independent and their

iolution involves a single arbitrary constant. An infinite number of eigen-
_ectors are thus available. However, the important thing to note here is that

:he relative values of the eigenvector components remain invariant.

:ase (b) Multiple Eigenvalues (l<s_n)

In this case, the number of independent equations in (3) is equal to (n - s)

ind their solution involves s arbitrary constants. In contrast to the case of

_on-multiple eigenvalues, the most important thing to note in this case is that

!he relative values of the eigenvector components are not invariant, but depend

n the relative values of the involved constants themselves. Also, it is clear

hat the solution space in this case is much larger than in the case of non-

ultiple eigenvalues.
I

i EIGENVECTOR COMPUTATION IN NASTRAN

The exact procedure for eigenvector computation in NASTRAN depends on the

ethod used for eigenvalue extraction and is described in detail in the Theo-

etical Manual [2]. Thus, in the Inverse power method, trial eigenvectors are

Bssumed and iterated until convergence occurs. In the Determinant method,

_igenvectors are computed by the method of backward substitution after each of
the corresponding eigenvalues has been calculated. In the Givens method, all

the eigenvalues are first obtained and then the required number of eigenvectors
lis computed by repeated use of backward substitution.

The orthogonality of eigenvectors of closely spaced eigenvalues is guar-

anteed by the procedure employed in the Inverse power method. NASTRAN employs

the Gram-Schmidt orthogonalization procedure [4] for the purpose in the case of
!the Determinant and Givens methods.

Whatever the method employed, the eigenvectors obtained all exhibit the
tcharacteristics described in the previous section and also involve the inherent

'use of one or more arbitrary constants. In general, for a given mode, the in-

volved constants for the computation of the corresponding eigenvector will not
be the same in all the three methods. It should also be noted that the user has

ino control whatever on the selection or the choice of these constants.
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EXAMPLE

To illustrate the points made in the paper, we consider the problem of the
vibration of a square plate with hinged supports at all the four edges. (This ]
is the sameas NASTRANDemonstration Problem 3-I. See Reference 5 for details. J

I

The finite element model employed is shown in Figure I. Only half the

plate has been modelled and sjnnmetric boundary conditions used on the center-lir

in order to reduce the order of the problem as well as the bandwidth.

The parameters of the model are as follows:

Length = _ = 508.0 mm (20.0 in.)

Width = w = 508.0 mm (20.0 in.)

Thickness = t = 25.4 mm (l.O in.)

Young's modulus = E = 2.06843 x IOII N/m 2 (3.0 x lO7 psi)

Poisson's ratio = _ = 0.3

Mass density = p = 2.20197 x lO9 Kg/m 3 (206.04393 Ib.-sec2/in.4)i

The eigenvalues and eigenvectors for the first six modes of the model were
obtained by the Inverse power and Determinant methods. 2 For each method, four

separate runs were made with different eigenvalue extraction data. The detailed

data for all the eight runs are given in Table I. Since the number of degrees

of freedom in the analysis set (or a-set) in this problem is as large as 590 ;

and only the first few modes were required for the purpose of the present paper,
the Givens method was considered unsuitable.

The eigenvalues and natural frequencies obtained in the eight runs (as well

as the corresponding theoretical values [6]) are presented in Table 2. It can

be seen from this that the third and fourth modes together represent an eigen-

value of multiplicity two, that is, a double root. The other modes yield non-
multiple eigenvalues. °

Tables 3 through 7 present, for the first six modes, the eigenvector com-

ponents corresponding to the vertical displacements at points Ill through 121

(along the line AB in Figure l). The results for the third and fourth modes,

which represent a multiple eigenvalue, are included together in Table 5.

The runs were made on the CDC computer using an improved version of the 15.5
level of NASTRAN.

It is true that no conclusions can be drawn from Table 2 regarding the murti-

Dlicitv of the eigenvalue for the sixth mode because, in general, at least
(m + l) eigenvalues must be obtained before one can examine the multiplicity

of the mth eigenvalue. However, in the present problem, the non-multiplicity

of the sixth eigenvalue was confirmed from additional runs with more than six

eigenvalues.
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An examination of Table 3 (corresponding to the non-multiple eigenvalue of
the first mode) reveals that the eigenvector componentsfor all the runs are
essentially the same. (Actually, the results for all the runs except Run 3 are
identical. The extremely small differences between the results of Run 3 and
,those of others are so inconsequential as to be practically meaningless.) The
:results thus show that they are essentially unaffected by differences in the
eigenvalue extraction data.

i Tables 4, 6 and 7 (corresponding to the non-multiple eigenvalues of the
second, fifth and sixth modesrespectively) need someexplanation. Note that
fall the eigenvector componentsgiven in these three tables are extremely small
in magnitude. Actually, the corresponding theoretical values are all zero [6].
For all practical purposes, the differences amongthe various runs in these
tables can, therefore, be considered as quite insignificant.
I

Table 5 (corresponding to the multiple eigenvalue of the third and fourth
imodes) is interesting. It can be seen that the results given by the runs em-
iploying the Determinant method are essentially the sameand that they are
lessentially unaffected by differences in the eigenvalue extraction data. The
Isamething is not wholly true for the runs employing the Inverse power method
Ibecause slight variations are noticeable amongsomeof them. (In this con-
I o

_nectlon, it should be emphasized that the association of a particular eigen-

_vector with a particular mode number in this table is irrelevant because the
inumberinq of the modes for this multiple eigenvalue is completely arbitrary,)

The most important point to note in this table, however, is that the eigen-

vectors given by the Inverse power method are completely different from those

given by the Determinant method. At first sight, this discrepancy in the

iresults may seem disturbing. However, it can be explained from a theoretical

viewpoint and the discrepancy may be shown to be apparent and not real.

Now, since the third and fourth modes involve a multiple eigenvalue of

order two, it follows from the theory presented earlier that their eigenvectors

involve two arbitrary constants in them and that the relative values of the

eigenvector components depend upon the relative values of these two constants.

The differences among the various eigenvectors shown in Table 5 are therefore

clearly due to the fact that they represent different relative values of the
two involved constants.

The theory also shows that, in the case of a multiple eigenvalue of order

two, the total number of eigenvectors possible is doubly infinjte. The solu-

tion space is thus much larger than in the case of non-multiple eigenvalues.

The theory further shows that the number of independent eigenvectors in this

icase is only two. This means that every eigenvector in the solution field can

be obtained by the linear combination of any two eigenvectors that are them-
selves linearly independent. This can be shown to be true in the case of the

eigenvectors given in Table 5.
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Let {x}ij represent any eigenvector in Table 5 where i denotes the mode
numberand j denotes the run number. It can be seen from the table that there
are several eigenvectors that are identical and, therefore, linearly dependent.
Onesuch set, for instance, is given by the eigenvectors {x}31 and {x}42.

Another such set is given by {x}32 and {x}43. Yet another such example is the
set comprising {x}35, {x}36, {x}37 and {x}38. A fourth such set is given by

{x}46, {x}47 and {x}48.

As an example, consider the eigenvectors {x}36 and {x}46 in Table 5 which

are clearly linearly independent. It can be shown that every eigenvector in
Table 5 can be obtained as a suitable linear combination of these two eigen-
vectors. Simple algebra shows that, for instance, the eigenvector {X}32 in
Table 5 can be obtained from these two independent eigenvectors by the following
(approximate) relationship:

{x}32 = 0.9850782{x}36 - 0.1917116{x}46
(4)

Similarly, it can be shown that the following (approximate) relationship

can be used to obtain the eigenvector {x}34 from {x}36 and {x}46:

{x}34 = 0.9850979{x}36 - 0.1914862{X}46
(5)

In a like manner, similar linear relationships can be shown to exist be-

tween any eigenvector and any two linearly independent eigenvectors in Table 5.

The above discussion and relationships clearly show that the discrepancy

in the results presented in Table 5 is thus only apparent and not real.

It is interesting to note that the plate problem considered in this

example yields multiple roots at many higher modes also. Thus, for instance,
modes 9 and lO represent a double root. So do modes 12 and 13. Results simi-

lar to the above can be expected to occur in these cases also.

CONCLUSIONS

NASTRAN provides three basic methods for real eigenvalue extraction. In

the case of non-multiple eigenvalues, each of these three methods will, for a

given type of normalization, give essentially the same eigenvectors. However,
this is not so in the case of multiple eigenvalues. This apparent discrepancy

has been explained and illustrated by considering the example of a NASTRAN de-

monstration problem that has both multiple and non-multiple eigenvalues.
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APPENDIX

The NASTRANprogram provides three basic methods for real eigenvalue ex-
faction. These are:

The Inverse power method,

The Determinant method, and,

!) The Givens (or Tridiagonal) method.

The Inverse power and Determinant methods are "tracking" methods and as
ch are efficient in those cases where only a few of manyeigenvalues are de-
red. On the other hand, the Givens method is a transformation method that is

ifficient only in those cases where all eigenvalues or a high proportion of all
!igenvalues are required [2].
t
I In each of the three methods, the eigenvectors obtained can be normalized
n any one of three different ways. The three types of normalization (NBRMS)

ailable are [1]:

!) normalizing to unit value of the generalized mass (MASS),

) normalizing to unit value of the largest component in the analysis set

(MAX), and,

normalizing to unit value of a specified component in the analysis set
(P_INT).
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Table 2. Eigenvalues and Natural Frequencies

Mode
no.

I a

2 a

3 a

4 b

5 c

6d

(Runs

NASTRAN results

1 through 8 --- See Table I)

Natural frequencies

(Hz)

Theoretical values

(Reference 6)

NaturalEigenvalues

(rad/sec) 2

Eigenvalues

(rad/sec) 2

frequencies

(Hz)

3.237408E+01

2.022407E+02

8.111597E+02

8.111597E+02

1.352052E+03

2.355330E+03

9.055634E-01

2.263364E+00

4.532870E+00

4.532870E+00

5.852169E+00

7.724066E+00

3.246970E+01

2.029356E+02

8.117425E+02

8.117425E+02

I. 371845E+03

2.345936E+03

9.068997E-01

2.267249E+00

4.534499E+00

4.534499E+00

5.894848E+00

7.708648E+00

a Obtained by all runs.

b Obtained by all runs except Runs

c Obtained by Runs 3, 4, 7 and 8.

d Obtained only by Runs 4 and 8.

1 and 5.
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Table 6. Eigenvector Components

Eigenvalue = 1.352052E+03 (rad/sec) 2

Grid point

(see Figure I)

III

112

113

114

115

116

117

118

119

120

121

Run 3

-5.699912E-07

-6.080192E-07

-7.113474E-07

-8. 501140E-07

-9.820411E-07

-I.061947E-06

-I .052001E-06

-9.304697E-07

-6.970452E-07

-3.735721E-07

0.0

!

Corresponding to Vertical Displacements for Mod I

Natural frequency = 5 852169E+00 Hz

Run 4

-I.843495E-06

-I.758002E-06

-I .517318E-06

-I .165451E-06

-7.652404E-07

-3.849968E-07

-8.408051E-08

9.946076E-08

1.565069E-07

1.080931 E-07

0.0

Run 7

-2.183520E-12

-2.089282E-12

-I .771980E-I 2

-I .135621E-12

-2.059582E-13

7.125514E-13

1.267204E-12

1.520344E-12

1.396781E-12

8.658139E-I 3

0.0

Inverse power method

Run 8

-7.436551E-12

-6.985661E-12

-5.644270E-12

-3.503232E-12

-8.178176E-13

1.746165E-12

3.572532E-12

4.248741E-12

3.669778E-12

2.111212E-12

0.0

Determinant method

See note given under Table 3.
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Table 7. EigenvectorComponentsCorrespondingto Vertical Displacementsfor Mode6

Eigenvalue= 2.355330(rad/sec)2 Natural frequency= 7.724066E+00Hz

Grid point
(see Figure I)

III

112

113

114

115

116

I17

118

119

120

121

Run 4

-4.899823E-I0

-4o359024E-I0

-2.854791E-I0

-7.157563E-II

1.590946E-I0

3.561466E-I0

4.764730E-I0

4.937036E-I0

4.039232E-I0

2.265359E-I0

0.0

Inverse power method

Run 8

-6.518056E-12

-5.832685E-12

-3.934395E-I 2

-I.252190E-12

1.593764E-12

3.982927E-I 2

5.414795E-12

5.612997E-12

4,588831E-12

2.571805E-12

0.0

Determinant method

See note given under Table 3.
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Symmetric
boundary

1 1 1 2 1113 114 115 11!6 117 llB 119 1,_O 121
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Hinged
support

Figure I.

Fn []

Hinged support o Grid Points

I= w_ _I F-l Elements2 254 mm (I0 in.) -I

Finite element model of square plate in the Example.
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