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SUMMARY

Methods are described by which the dynamic interaction of structures

_ith surrounding fluids can be computed by using finite element techniques.

lln all cases, the fluid is assumed to behave as an acoustic medium and is

iinitially stationary. Such problems can be solved either by explicitly
i

modellng the fluid (using pressure or displacement as the basic fluid unknown)

for by using decoupling approximations which take account of the fluid effects

without actually modeling the fluid.

INTRODUCTION

Recently there has been a growing interest in solving problems in which

structures interact with fluids. Within the Navy, for example, application

areas include underwater vibrations, ship silencing, shock response of ships,

underside slamming, flow-induced vibrations, and the motions of liquids and

gases in containers. The last two problem areas are also of interest to the

aerospace community.

Concern here is with the dynamic structural response of submerged

structures, including the determination of natural frequencies and the

response of submerged structures to sinusoidal and general transient

excitations. In the latter category, a very important application is the

shock response of submarines to underwater explosions.

i In all problems considered here, the structure is assumed to be initially

iat rest with respect to the fluid; i.e., there is no fluid flow initially.

Also, the fluid is assumed to behave as an acoustic medium in which each

material point undergoes only infinitesimal displacement from the static

[equilibrium position.

Such problems were apparently first formulated by using finite elements

by Zienkiewicz and Newton (refs. i and 2). Choosing pressure as the basic

fluid unknown, they applied a variational process to obtain the finite-element

equations for the fluid. These were then coupled to the usual structural
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equations in a consistent manner. The application of Zienkiewicz's approach
with NASTRAN(refs. 3 and 4) is straightforward but requires program modifi-
cations. In fact, a similar approach was adopted in the development of the
NASTRANhydroelastic analyzer (refs. 4 and 5). This latter capability is I
restricted to the case of fluids contained in axisymmetric containers, althoug_

the motions of the coupled fluid-structure system need not be axisymmetric.

Another approach to the interaction problem uses fluid displacements

(rather than pressures) as the fundamental unknowns (ref. 6). In brief, this

approach converts standard NASTRAN elements into "mock" fluid elements by

defining (in three dimensions) the 6 x 6 material matrix _ to be

G = k

i i i 0 0 O"

i i i 0 0 0

i I i 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

.0 0 0 0 0 0

(i)

In equation (i), the bulk modulus k is given by

k = pc 2 (2)

where p and c are the unperturbed mass density and sonic speed, respectively,

of the fluid. To the NASTRAN user, Kalinowski's displacement approach

(ref. 6) has the advantages of using a standard version of the program and of

generating symmetric matrices (in contrast to Zienkiewicz's approach which

generates nonsymmetric matrices). However, Kalinowski's method has the dis-

advantage of requiring three unknowns per fluid point rather than one

(pressure). This penalty affects adversely both the order and the bandwidth of

the assembled matrices.

The purpose of the remainder of this paper is to describe two additional

methods for solving fluid-structure interaction problems. Both use only

standard versions of NASTRAN.

A PRESSURE ANALOG METHOD

All approaches described in this paper treat the fluid as an acoustic

medium: a compressible, inviscid fluid which is initially stationary and

undergoes only small amplitude motion, and whose pressure satisfies the wave

equation

V2p = _Ic 2 (3)

Thewhere overdots denote partial differentiation with respect to the time t.

boundary condition at the fluid-structure interface can be obtained from

momentum and continuity considerations:
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_p
= -ou (4)8n n

Mere n is the unit outward normal from the solid at the fluid-solid inter-

lace, and p is the fluid mass density. A special case of equation (4) occurs
Lt rigid walls where

ap_= o (5)
_n

Lt a free surface, in the absence of surface waves, the boundary condition is

limply

p = 0 (6)
I

J The goals here are to solve fluid-structure interaction problems in

_hich the fluid is described by equations (3) to (6) and to use only stand-

rd capabilities available in structural analysis codes such as NASTRAN.

In classical elasticity theory (ref. 7), the x component of the momentum
_quation is

f + _ + o + = p_ (7)Oxx,x xy,y xz,z Pfx

where p is the mass density of the (solid) medium, u is the x component of

_isplacement, fx is the x component of body force, and the partial

differentiation with respect to a coordinate is abbreviated with commas:

a
---( )( ) 'x _x

jln programs such as NASTRAN, the stress and strain components are generally
described with vector notation as follows:

(8)

0
ZZ

°xy [

o
yz

&°xz

, E =

CXX

£ I

YY

ZZ

%1
Yyz

Yxz

U, x

V,y

W, Z

U,y + V,X

+
V,z W,y

+ u,W'x Z

(9)

where u, v, and w are the three Cartesian displacement components. Thus, for

linear materials, Hooke's law can be written in terms of a systematic 6 x 6

material matrix G, where
I

= G c (10)

By substituting the strain definitions (9) into (i0) and (i0) into (7),
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the wave equation (3) can be obtained if

u = p (ii]

v-w-0 (12)

GI4 = GI6 = G46 = 0 2 1

GII = G44 = G66 = pc

(13)

f : 0 (14)
x

In other words, the x component of displacement u can represent fluid

pressure p if v and w are fixed everywhere in the fluid, if no body forces

are applied, and if six of the material constants are as prescribed in equa-

tion (13). Although the other 15 constants can be arbitrarily chosen, it is

convenient to choose them so that G is invariant under a coordinate system

rotation (i.e., G is isotropic). A necessary and sufficient condition for

to be isotropic is that it have the general form

G _.

X+2U X X 0 0 0i X+2_ X 0 0 0

X X+2p 0 0 0

0 0 p 0 0

0 0 0 p 0

0 0 0 0

(15)

where X and p are the Lame constants (ref. 7).

both equations (15) and (13) is

The only G matrix satisfying

2
G=pc

i -i -i 0 0 0

-i i -i 0 0 0

-i -i i 0 0 0

0 0 0 i 0 0

0 0 0 0 i 0

LO 0 0 0 0 i

(16)

With G isotropic, there is no need to be concerned about using finite elements

whose material matrices are based on some local element coordinate system.

To summarize, the fluid is modeled with standard elastic finite elements

(e.g., QDMEM in 2-D and general solids in 3-D) having material properties give

by equation (16), where fluid pressure is represented by the x displacement u.
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Boundary Conditions

_nterface Condition

i The boundary condition that the pressure p must satisfy at a fluid-solid

interface is given by equation (4). To evaluate the left-hand side of equa-

tion (4), compute the directional derivative of p in the direction of the unit

outward normal _ from the fluid at a surface point. Replacing p with its
structural analog u yields

_u

8v Vu.v = + + u (17)- U,x_ x U,y_y ,zVz

iBy using the constitutive equations (i0) and (16) with equation (17) yields

_u 1

(OxxV x + _xyVy + OxzVz ) (18)_v 2
pc

where the parenthetical expression is equal to the x component of the stress

vector T(v) acting on a surface with unit outward normal _ (ref. 7). Hence,

T (v)
_u x

! _v 2 (19)
pc

JIf the surface is discretized by a finite number of grid points, the surface

itraction T(9) can be replaced by its lumped equivalent
x

i T(v) Fx
x = -_ (20)

!where Fx is the x component of the force applied to a particular point (on the

surface with outward unit normal v) to which the area A has been assigned.

Hence, from equations (19) and (20), the final expression for the directional
derivative is obtained as

F
_u x

_--_ = pc2A (21)

Since all symbols in equation (21) refer to the fluid, including u which

represents the pressure p, merely combine equation (21) with the boundary con-

dition of equation (4) at the interface to obtain the lumped interface condition

F p = (pc) 2 Au (22)
x n

in which _ = - _ and the superscript p has been placed on Fx to emphasize that
the "force" is applied to the pressure variable. That is, if the outward normal

component of structural acceleration at a point is Un, the effect on the fluid

pressure is that of a "force" given by equation (22) applied to the fluid
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variable p. In equation (22), p and c refer to the fluid.

Equation (22) provides the influence of the structural motion on the
pressure. The inverse relationship (that of fluid pressure on the structural
motion) is obtained merely by applying a normal force to the structural point
equal to pA.

The final set of matrix equations takes the form

MU + KU = F

where, with the subscripts s and f denoting solid and fluid,

lul r [o7U M M__Ss 0 K__Sf__ = -- -- = K__ = S

p -

(23)

(24)

In equation (23), the vector of unknowns U includes both the structural dis-

placements and the fluid pressures. In equation (24), _fs is a matrix which I
is assembled by placing the term -(pc)2A in the row corresponding to each inter

face p variable and the column corresponding to the associated structural norm_

displacement. Similarly, K_sf is a matrix which is assembled by placing +A in i

the row corresponding to each surface normal displacement and the column corre-

sponding to the associated p. In NASTRAN, both _fs and _fs can be inserted by i
using direct matrix input (DMIG cards).

Infinite Fluids

The foregoing derivations apply directly to a wide variety of fluid-solid

systems of finite extent. For structures in "infinite" fluids, interface

disturbances travel far without reflection so that radiation damping may be

significant. Although one should generally consider other approaches to solve

such problems, approximations involving the current method can also be

derived.

The approach here is to truncate the fluid model at a distance

"sufFiciently far" from the structure and apply the radiation condition

(ref. 8) there:

_n c _t
(25)

This condition has also been referred to as the nonreflecting boundary con-

dition (ref. i) or the wave-absorbing boundary condition (refs. 6 and 9).

Equation (25) can be applied with NASTRAN by combining with equation (21),

where again the pressure p is replaced by its structural analog u. Hence,

the radiation condition becomes
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Fp = - pcA_ (26)
X

In other words, a grounded scalar dashpot with damping constant pcA should be

connected to each p variable.

i Numerical Example
i

I These concepts can be illustrated by considering the two-dimensional

problem of a steel ring vibrating in water (ref. i0). The ring has a radius
of ten inches and a radial thickness of one inch. The inside is evacuated.

The fluid region is a circular annulus with an outer radius of 32.6 inches.

The outer surface is a "free" surface (where p=0). The problem was solved

(ref. i0) by modeling with NASTRAN a 90 ° sector comprised of eight BAR

elements representing the ring and an 8x6 mesh of QDMEM elements representing

the fluid. Typical results for the in-fluid natural frequencies (in radians/

second) are as follows:

Fourier NASTRAN Analytical

Harmonic frequency frequency

0 4333. 4364.

2 231.6 226.1

4 1486. 1432.

6 3884. 3724.

The analytical results were derived by Schroeder and Marcus (ref. Ii) based on

a method developed by Junger (ref. 12). Calculations reported in Ref. I0

!indicate that grid refinement does result in convergence to the analytical

results.

DECOUPLING APPROXIMATIONS

For problems in which a structure interacts with a fluid of infinite

extent, it may be expensive to model enough fluid to produce satisfactory

results, even if the radiation condition (eqs. (25) and (26)) is applied at

some arbitrary outer surface. Since the interest is in the structure rather

ithan in the fluid, various schemes can also be used that approximate the fluid

!effects without actually modeling the fluid (refs. 13 and 14). These schemes,

generally referred to as decoupling approximations, result in an analytical

_expression (in differential equation form) describing the relationshipbetween

the fluid pressure at the interface and the interface motion.

For certain dynamics problems in which the source of the disturbance is

in the fluid rather than in the structure (e.g., underwater explosions), the

decoupling approximation supplies only the radiation pressure. However, the
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other contributors to the total dynamic pressure (the incident free field

pressure and the scattered pressure) can be computed as if the structure were

rigid and stationary and thus comprise the usual right-hand-side forcing

function.

One decoupling approximation which has been used with NASTRANwas

developed (but not yet published) by Dr. Hansen Huang of the Naval Research

Laboratory. For axisymmetric cylinders modeled with conical shell elements,

the interface pressure-motion equation is approximated by

Pn + (cn/r)Pn = pCWn (27)

where Pn

C

P

r

w
n

is the n th Fourier harmonic of the radiation pressure

is the speed of sound in fluid

is the mass density of fluid

is the radius of cylinder

is the n th Fourier harmonic of the outward normal component of

shell displacement

Equation (27) is equivalent to the so-called doubly asymptotic approximation

of Geers (ref. 13), which was formulated for more general three-dimensional

situations.

To illustrate how approximations such as equation (27) are applied with

NASTRAN, consider a cylindrical shell subjected to an underwater shock loading

(ref. 15). In the absence of radiation pressure p, the usual transient matrix

equation would apply

_mu_"+ ku = f(t) (281

where the forcing function f consists of the sum of the incident and scatterec

pressures. The radiation pressure, which depends on the shell motion,

supplies an additional load on the structure so that the equilibrium equation_

for the structure, from equation (28), become

m5 + ku + hp = f(t) (29'

where £ is the vector of radiation pressures at each point, and h is a matrix

of area factors converting pressure to force.

Because of the mutual dependence of the shell motion and the radiation

pressure on each other, equations (27) and (29) must be solved simultaneously

This solution is accomplished in NASTRAN by defining a new set of scalar degr

of freedom representing the radiation pressure at each surface point. The se

of all such pressures is grouped into the vector £. Thus, to NASTRAN, the

vector of unknowns (displacements and pressures) is
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Iu}u = (30)
- .p_

After equation (27) has been written at each point and combined with equa-

lion (29), the resulting matrix equation which NASTRAN integrates is of the
_sual form

[ ..

MU + .....BU + KU = F(t) (31)

• e contributions to M, B, and K corresponding to the u variables are computed

;irectly by NASTRAN based on geometry and material properties. The contribu-

:ions to M, B, and K corresponding to the radiation pressure variables (p) are
!he coeffi--cie--ntsappearing in equation (27). Hence, they are computed exter-

_ally to NASTRAN and input directly (using the TF bulk data card) into the

)rogram. Thus, the matrices M, B, K, and __Fin equation (31) take the unsym-
_etric form

= (32)

_ASTRAN integrates equations (32) by using the Newmark-Beta finite-difference

_igorithm, which is unconditionally stable if equation (32) is stable.

Unfortunately, specific numerical results are not yet available for

_eneral publication. However, early success with decoupling approximations

Las convinced the authors that such approaches have great promise as an alter-

Lative to the explicit finite element modeling of fluids of "infinite" extent.

GENERAL REMARKS

Two methods by which NASTRAN can be applied without modification to the

_olution of fluid-structure interaction problems have been described.

The first, the structural analog, is the "lumped" equivalent of the

zonsistent formulation described by Zienkiewicz and Newton (refs. 1 and 2).

_owever, the lumped approach has the advantage for the NASTRAN user that it

nan beapplied without program modification. Otherwise, the two pressure

ormulations have similar characteristics, including nonsymmetric matrices.

his is in sharp contrast to displacement approaches (ref. 6) which assemble

symmetric matrices, but at the expense of having three times the number of
fluid unknowns.

It should be emphasized that although the analog method was developed

specifically for an acoustic fluid, the same technique could be applied to a

wide variety of problems in mathematical physics, including heat conduction

(ref. 16), the Helmholtz equation, electrical or magnetic potential problems,

the torsion of prismatic bars, potential fluid flow, or seepage through porous

media. In the present context of fluid-structure interaction problems, the

calculation of added mass matrices can be accomplished directly, since it
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involves solving Poisson's equation in the fluid region where the source
terms occur only at the fluid-structure interface. Such equations can also b_
solved with standard three-dimensional steady-state heat conduction codes
such as those contained in NASTRANLevel 15.5 (ref. 4), the Navy's thermo-
structural NASTRAN(refs, 17 and 18), or the CINDAthermal analysis program
(ref. 19).

For infinite media, the explicit modeling of the fluid is often
uneconomical comparedwith someof the competitive methods. For fluid-
structure interaction problems, the use of decoupling approximations pro-
vides an attractive alternative. For other general field problems (e.g.,
potential flow), integral equation techniques are widely used (ref. 20).
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