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' SUMMARY

A irery general method for calculating compressible three -dimensional laminar and
turbulent boundary layers on arbitrary wings is described. The method utilizes a non-
orthogonal coordinate system for the boundary-layer calculations and includes a geometry
package that represents the wing analytically. In the calculations all the geometric
parameters of the coordinate system are accounted for. The Reynolds shear-stress
terms are modeled by an eddy-viscosity formulation developed by Cebeci. The govern-
ing equations are solved by a very efficient two-point finite -difference method used ear-
lier by Keller and Cebeci for two-dimensional flows and later by Cebeci for three-
dimensional flows, )

Preliminary results for a swept wing look very encouragiﬁg. A typical computation
time (CPU) for one surface of the wing which roughly consists of 30 z-stations and 20 x- _
stations with 30 7 -points across the boundary layer is a little over 30 sec on an-

IBM 370/165 computer. I S

INTRODUCTION

The development of an efficient and accurate method to compute three-dimensional
boundary layers on wings of arbitrary shape requires:

(1) The velocity distribution at the boundary-layer edge

(2) A convenient coordinate system

(3) A model for the Reynolds stresses

(4) A numerical method to solve the govei‘ning equations

The velocity distribution must be obtained from the pressure distribution. In gen-

eral, the pressure distribution can be obtained either theoretically or experimentally.
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When obtained theoretically, the velocity components in the streamwise and spanwise
diréctions ¢an be calculated without too much difficulty and thus satisfy the first require -
ment. When the pressure distribution is obtained experimentally, the calculation of the -
velocity componentsis rather difficult; . Certain approximations must be made to get the

- velocity distribution from the experimental pressure distribution. In the section "Gov--.
erning 'Equafions "' the difficulties and the procedure used to calculafe the velocity.com-
ponents from the exper1menta1 pressure distribution are drscussed

-~ In: selectmg a coordmate pystem for the boundary-layer calculatlons an lmportant_

mpomt to consider is that the coordinate system should be calculated only once for.each .
geometrical configuration. This rules out the streamline coordinate system since for . ..
each angle of attack the streamlines must be calculated repeatedly. Another important
point to consider is dictated by utility. The measured or calculated external velocity
distributions are usually given in planes containing the local chord line. Hence it is
natural to select one surface coordinate in planes parallel to the defining sections. 'The_
other surface coordinate may be lines either orthogonal or nonorthogonal to that coordi-

_nate line. However, the selection of an orthogonal system causes a number of inconve-
niences to’gether with lengthy interpolation procedures. As a result, a nonorthogonal
coordinate system appears to be the most convenient system-with which to perform the
boundary-layer caiculations as discussed in detail in.the section ""Coordinate System."

" For turbulent flows the governmg boundary- layer equations contain the Reynolds
stress terms which requlre closure assumptions.such as mixing-length, eddy-viscosity -
~ concepts or "higher order turbulence'" models. Although the latter have the potential to
compute more. complicated turbnlent flows, mixing-length, eddy-viscosity approaches
' have proven to yield quite satisfactory results for boundary-layer flows. (See refs. 1to 4.)
The - use. of higher order turbulence models also increases the cornplexiity of already com-

 plex equations leading to high computation times. Furthermore, for compressible flows

their accuracy may not be as good as the 31mple mixing -length eddy-viscosity methods.
For this reason, in our study the Reynolds stresses are modeled by using an’ accurate
eddy-viscosity formulation (see the section ''"Turbulence Model") developed by Cebeci.
(See refs.-3 and 4.) ’

When physical coordinates are used, the solutions of the governing boundary-layer
equations are quite sensitive to the spacings in the streamwise direction (x) and to the
- spanwise direction (z) and require a large number of x- and z-stations. In calculations
such as the ones considered here where the computation time and storage become impor -
tant, it is necessary to remove the sensitivity to Ax- and Az-spacings.  This can be done
by expressing and solving the governing equations in transformed coordinates. There-:
fore, in the section "Transformation of the Governing Equations," a convenient transfor-
mation to express the boundary layer equatlons in terms of transformed varlables is
considered.
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In the section "Numerical Method,” the solution of the governing equations by the -
Cebeci-Keller Box method is discussed: This is a very efficient two-point finite- = .
difference method developed by H. B. Keller and applied to the’ boundary-layer equatlons,_:
.by Keller and Cebeci. (See, for example, refs. 5 and 6.) _ L

"In the section "Results and Discussion,” results for a planar turbulent boundary- :
layer flow approaching a three-dimensional obstacle and results fora swept wing are
- presented. Finally in the section ""Future Work," additional work that needs-to be done
in order to develop a complete desngn tool for computing the flow field past an arbltrary

wing is discussed.

SYMBOLS

A N " Van Driest damping length, :ﬁ,(%ku,f),gP/Pw)l/ 2
b =)

c - . ‘.=‘pu/(peue)

Cp o presﬁme coéfficienf, 20 - pw) /(Poo“wz) )

c ' the ratip pe/;;; local chord v‘ } |
cf‘ s . skin-friction co‘ef_vficignt‘

E total enthalpy ratio,. H/He

| S traﬁsformed ;rectof potential for ¥ -

G -E |

g : transformed';rector poténtiai for A<I> »'

é' = w/We

H. total enthalpy
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hhy,hg ,?n;et.l'i'c cqeff‘i;:.ients;. S C ey R

N

1,7,k - unit vectors in X-, §-, and Z-directions of Cartesian coordinate system in
which wing is defined

R . curvature vector of coordinate line =~

geodesic carvatures
Kz = Kg :

K19,K91 geometric parameters

L modified mixing lengtix S
: Mo free-stream Mach number
.. NPr. " Prandtl number -
) n | , unit vector normal to the qurfggg L
P péramgter denqting either coordinate, é._orﬁ ’y; point :_

‘P1,Pg,. . .,P10 parameters in transformed differential equations

e
B - o

p | "~ static pressu.r.e
Pt ’ . total pressure
Re : = uAesll/ve, Reynolds number
r : see figure 7
r

position vector for point on surface, X,¥,2)
S ' stagnation point

8 distance along a streamline
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81 curve length along x-coordinate line P el R

et time R o L CL e A e
t unit tmxéent vector along coordi;xgte line - . g .
u,v,w,t dependent variables in fifst-&rde’r, transforr;led differ-enti'al‘eilu'a;tions, f", '
', g',and g" ‘ ' ‘

u see fig'uré 7 | )

| ug | total velocity (ut evaluated at the edge) . o
ug total .or resultant velocity o ;
ur ~ friction velocity, \FWTW" ) e
v velocity nqrmai to surface in physical differential ec'lu-a-t‘ioq_s“; . )
X,2,¥ . indépendent co.ordlnates in boundai'y-'layer equations
X,¥,Z Cartesian coordiriatel system ﬁsed for wihg definitlop._ (
a | local georri'etfié angle of a&ack of wing section chord lines ‘, '
B = sinYup/ug) | . .- R S
4 : - ratio of specific heats, ¥ =1.4
elor ey)eg | -eddy viscosity 'a'hd'gddy conductivity, respectively - -
n " transformed coordinate normal to surface .
8 angle in tangeht“plane between x- and z-cbbfdinate' ies :
A local sweep angle, meas;lfed between plane normal to free-stré'a_im velocity -

vector and z-coordinate line . - e

H
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g molecular viscosity

By,4g,k3 Pparameters in transformed energy equation

7 kinematic viscosity

p . - density

nw 7 resultant wall shear stress
x> T2 shear ‘stres_se{s

é) | strétching variable defined in fiéure 3

Q,tp tﬁo-;omponent' vector potentialé,_éqﬁation (56)

Subscripts: | |

e o ‘outer edge'

g N ge-odesic.

: 1 o input stations

ih,d(lt , inner and outer regioné for eddy'lviscosity
. le L léading edge‘ :

h . “ '-inota.l boints, l.e., stations at which boundary layer Ais com;}uted
t wing tip

te  trallingedge

w  wall.



© free-stream conditions
Primes denote differentiation with respect to 7.
GOVERNING EQUATIONS

The governing boundary-layer equations for a nonorthogonal coordinate-system are..
given in references 7 and 8. With a slight change of notation for compress1b1e laminar
and turbulent flows, they are given by ' :

Continuity equation:

2 in6) +2 in 6) + 2 mey=0 . Q)

5=(puhg sin 6) + 57 (PWhy sin 6) + ay(ﬁﬁhlhz sin 6) = 0 _ (1)
x-momentum equation: RO

©p 08U W du au _ ul ) 2 9 - , : .

o hy ox +p hg o2t pv & 5y pKu® cot 8 + pKgw# csc 6 + pKjouw .. . .

2 .

-£8c20 9 oot § csc § 9P ou _ o o gy

S Sy &y ) @

z-momentum equation:

plaw+pwaw+pv—w -'pszzcote+pK1u2csc6+pK21uw ST

hydx " " hy oz By
_cotfcsc0d csc?odp, ow == :
h; ox hy oz (”- 3y va) | (3.)-

Energy equation
pWOH, ,woH spoH_2|H 3_H+ u< .1' -: 1: _fi_(ﬁf)_p—v.n. CeemE ::.-._(:1),.;
h; 8x hg 9z dy 8y|Np, 9y - Np,/y\ 2 o | )

where pVv = pv + p;v' and h; and hg are metric coefficients. .The latter ;are func-
tions of x and gz, that is,

hy = hy(x,2) hy = ha(x,z) S (5)

Also, 6 represents the angle between the coordinate lines x and: z.‘:‘;Fp%r. an orthog- .
_onal system 6 = /2. The parameters K; and Ky are known as the geodesic curva-
tures of the curves z = Constant and x = Constant, respectively. They are.given by
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= 1
K; =

1

Kg = —>t—
2 hphg sin 8

~1_|
- = -K12= 551
1
217 5ino

hyhg sin 6

-
-(Kz +

1

h2 2z

[;_x(hz cos 9) *’a_hz%
[alz(hl cos 6) -

The parameters Kjg and Kgi are defined by

3h2
ax

-‘?-Q) + COS G(Kl +

+_Lae)_

h2 oz

hlﬁ'

1 98

(6)

(Tb)

The total velocity within the boundary layer u; is given by

ut=(u2+W

2

+ 2uw cos 0

)/

(8)

One obvious procedure to calculate the velocity components ug and We from the
glven pressure dxstrlbutlon is to evaluate equations (2) and (3) at the edge of the boundary

layer. This gives

Ug Ue  We 2ue _

h_l ox h2 oz Klu
and

Up dWg . We OWg

hy o Eé‘ 9z

K2we2 cot 9 + Klue

2

‘eg cot 6 + szez csc 8 + Kyguewe =

csc 6 + K21UeWe

csc2 (] 3P
h1pe ax "

cot 6 csc 6 3p
the . 0z

(9)

csc2 9 3P
th 3z

= cot 8 csc 0 3P
4h1pe ax

(10)

Equatlons (9) and (10), which may be expressed in the form

‘ hl ax h2 8z
and
E‘ aWe We aWe -
h1 X h2 0z

F(ue,We »X, Z)

G(ue,We»X, Z) .

(11).

(12)

constitute a system of first-order. quam -linear partlal dlfferentlal equations in ug and
- The differential relatlonshlps for these variables-are
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due=21-1-§dx+32§dz ' . (13)

ax oz
dwg = - dx + T dz . . | | (14)

If we let s denote the distance along a streamline, and. ug the total velocity (u¢ eval-
uated at the edge), that is,

: 1/2 ey
ug = (ue2 + Wo2 + 2ugWe COS 9) / (15)
' équations (13) and (14) can be expressed in the form
duE _ ue aUe We aUe : o . ' R -
"S3s "hy ox @ hy 0% : (16)
and
us We _ Yo 2We | We BWe a7)
ds hl ox h2 oz
by noting that
‘ = g§ =h _@(_ wWe =h | @ | I 1 .
"= at te =M gt e” 2 (18)
Comparison of equations (11) and (12) with equations (16) and (17) gives
dUe _ F dWe _ G '
T s T us (19)
In addition, we have the following relationships
dx _ Ve ' dz _ _We - ' . : (26)

-CTg " hll.ls 55 - hzus

The system of four first-order differential equations (eqs. (19) and (20)) allows one to
calculate the variation of ue, we, X, and z along a streamline. In principle, these
equations can be solved as an initial-value problem. However, it can be shown that the
system of differential equations (11) and (12) has characteristics which are idiéntiéal to the
inviscid streamlines. As a result, the initial-value problem cannot be started from lines
which are streamlines. Thus, with initial points on the stagnation line or in the plane of ‘
symmetry, the solution is quite difficult except for the initial lines themselves. To obtain
the solutions over the entire surface, the initial values of ue and we must be known
along a line which is not a streamline itself. - However, this information is not available
in general. A satisfactory solution requires considerable study. In this study approxi- -
mate methods are used. The simple sweep theory is known to give reasonable answers
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when applied to regions of high-aspect-ratio wings that are outside the influence of root ...
and tip effects. In the absence of spanwise pressure gradients, this approximation is. ,
almost exact. Thus, for weak spanwise pressure gradients, we can obtain the velocity:, -
components on the midportion of a swept wing with reasonable accuracy by using the. )
sweep theory. In reglons of root and tip influence, the simple sweep theory w1th a cor-
rection to the sweep angle is applied. The procedure is explained below. '

Consider the velocity vector in the tangent plane at a point P on the wing. (See
_fig..1 ) ‘The-basic assumption for the simple sweep theory is that the’ velocity component
ui) in the z-direction is given by:

. Up=Ugp sind ) o o (21)

The sweep angle A represents the angle between the spanwise direction and the z-
coordinate line through the point P. The parallelogram addltlon of vector components
' yields S :

Ug _Ug cos B

Us  Ue 50 6 (22)
E=gs_-sin/8sin9--cos-6cos[3 : ' . 4 '-(23)
SO, Uy ~ sin 6 '
where _:s_in“B = E&?n—i
Elimipation_ of B from equations (22) and (23) yields"
Ye . (ug/u,)? - sin2 A o | ‘ 1)
iy sm.A T 6 | P oo .(25)_,
The total velocity ratio ug/u. is calculated from
. 5 B 2 § )4 %
.. ) R _il( Y CpM 2)
T = B (20
S B (R )V
2

with pt 1- and pt 9 denoting the values of total pressure before and after the shock,
respectlvely, and Cp is the pressure coefficient, =P - Poo) / (1/2pu°° ) Equa-
tion (26) is valid for an adiabatic flow through a shock wave, but since the total pressure
- ratio across the shock is seldom known, its effect will be neglected. This approximation
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introduces only an error of a few percent into the velocity calculations because the total
~ pressure jump across a swept ‘shock is small even for free-stream Mach numbers’ '
approaching unity. The total pressure ratio must also remain close to one for- the first=
order boundary-layer theory to be valid in'front of and behind the shock wave. e

Equatlons (24) to (26) are apprommately valid for the root and tip reglons if the
local sweep angle XA is replaced by an effective sweep angle xeff

heff A - F rAr .

(21
Aeff = A - Fog -
where Ar and A; denote the root and tip sweep angle for the given z-coordinate line
and Fr and Fy are the spanwise interpolation factors for the root and tip, respectively.
These parameters are shown schematically in reference 9 as a function of nondimensional
spanwise distance in terms of root or tip chord.

COORDINATE SYSTEM

. The wing is defined in the X,¥,Z coordinate system. Here, the X-axis is in the
direction of the airplane's longitudinal axis and the y-axis is in the spanwise direction. -
It is assumed that the wing is defined by a number of airfoil sections in the planes }
¥ = Constant, which involve the specification of Z; and X; for constant values of ¥j.
1t is also assumed that the pivotal points along the chordwise direction - (i/c)p' where ¢
denotes local chord are given, as are the spanwise stations §p where the boundary-
layer calculations are to be made. These parameters are shown schematically in
figure 2

The defining airfoils are usually given by n pairs of values of xl and zj. But
because all aerodynamic data related to airfoils are customarily given in terms of frac-
tion of the total chord c, the input data are converted to an xz-coordinate system (see
fig. 3) based on the local chord (maximum length line). The rélationships between x,
X, z,and Z are :

X= %[(i - ile) cos a - (E - Z)e) Sin a] (28)
[('x‘ - Kjg) sin @ + (2 - Ele). cos a] | o - (29)

where

2]1/2. ' (30)

cs= ‘[(ﬁte - %1e)? + (Zte - Fpe)
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- Zi, - Z . ’ .
a=-tan-1le_te B S - (31)
xle xte

The subscrxpts le and te refer to the pomts at the leadmg and tralhng edges. '_I‘hey
must be specified. ) Co

‘The curves ?J = Constant and the curves connecting the points x/c = Constant
on all the defining airfoils form a convenient coordinate system However, the movement

of the _stagnation point S with angle of attack gives. rise.to. amblgulty --For-example;- -

“the same x/c value may correspond to two z/c values on a given sectlon To avoid
this problem, another variable ¢ defined by :

Ao e

is'introduced. Here, ¢ =0 corresponds to the leading edge, ¢ =7 corresponds to the
trailing edge. The value of ¢ is positive for the upper surface. ‘On the lower surface
¢ is negative.

Other Possible Coordinate Systems

“ In this section, other possible coordinate systems are discussed. ' Because of
impractlcalltles with these systems, the nonorthogonal coordinate system is the most
convement to perform the boundary—layer calculations for wmg surfaces

As pomted out in the Introductlon one surface coordmate must be chosen m planes
parallel to the defining sectlons Consider an orthogonal system in whlch the orthogonals
are constructed between the intersections of planes parallel to the defmmg sectlons and
the wing surface. Trial calculations showed that orthogonals started from the wing-root

congregate at the leading edge; ‘leaving large portions of the wing uncovered. (See fig. 4.)

This is especlally true for a wmg with a sharp trailing edge. A rounded trailing edge - - ‘
rectifies the situation somewhat but there is still a large area of the wing where the’
orthogonals are sparse. ' '

The orthogonal coordinate system in figure 4 was constructed with the pola'r angle
¢ =xg at the root section as the other surface coordmate As is seenfrom this figure,
-there are computational difficulties at the trailing edge. To show this, consider flgure 5,
‘in which the surface coordinates X; and Xxg are obtained by extending the surface cov-
erage with the dashed lines. Here, AA'" is the stagnation line, AB is the root section,
and D is apoint on the trailing edge. Starting from the initial lines, the boohdary layer
can be calculated along the line BC" including the root chord. However, the point D "
cannot be obtained in a straightforward manner. This is algo-true for the rest of the
trailing-edge points D', D', and D'". Because of the difficulty in’ calculatmg these
trailing - edge points, the orthogonal coordinate system is not practical.
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Another possnble coordinate system can be obtamed by representing the ng by one
or more separate conical surfaces. Figure 6 shows such a representation. Here the
wing panels ABDC and CDFE form two comcal surfaces with apexes at P and Q,
respectwely The shape of the panel ABDC and the coordinate system in the developed‘
plane are shown in figure 7. The initial lines are AC and AB. Line AC is the stag -
nation line and AB is the wing-fuselage junction. Calculations can be started at corner
A. A linear coordinate transformation can be used to avoid marching into the negative r
direction. Such a coordinate system without taking the thickness into account (this
amounts to representing wing sections by flat plates) was used by Nash and Scruggs
(ref. 10). The disadvantage of this coordinate system is the dlfflculty of domg calcula-
tions in the overlap region, ‘ :

Present Coordinate System

The most convenient coordinate system on the wing surface and the one used in this
study is a nonorthogonal coordinate system given by the lines ¥ = Constant and
¢ = Constant. The new independent variables ¢ and § are selected to correspond to--
the independent boundary-layer parameters x and z,’ respectwely, in equations (1) to
(4). Before the boundary-layer calculations are performed, it is necessary to decide on
the surface locations for which the bbundary-layer solutions will be output. The best
method is a chordwise point distribution in terms of percent chord. The information can
then be converted to give the ¢p -values for the pivotal points. As is hkely to happen the'
points on the wing defining sections will not correspond to the p1votal points for'the’
boundary - layer calculations. Thus interpolation is necessary. At each spanwise defining
station, the ¢1 corresponding to the input data can be found by using equations (28) to
(32). Next, Xy versus ¢; and Zj versus ¢p are curve fitted with cubic spline fuhc-
tions az}d ipl and 'z'pI are interpolated for at each spanwise station. Then the . pr
and sz are spline fitted versus yJ for each ¢p and are mterpolated for xp .and

Zp at ¥p.
" Calculation of the Geometric Parameters of the Coordinate System

Once the coordinate system is selected, it is necessary to calculate its geometlh'ic.'
parameters, namely, the metric coefficients h; and hg and -K; and Kg which
appear in the governing boundary-layer equations. These are calculated by the procedure
described below. ‘ : :

The metric coefficient along one curve in space is given by

hz’(%)z*(%)Z*(%)z o . +(33)



‘The angle between the coordinate lines is then ~ ~

with P denoting a parameter. For P = ¢ along the curves ¥ = Constant, equation (33)
can be written for h; as

2 2 - -
2 _ 97 '
h = G5, * <a¢>) | 34)
Similarly, for P =7 along the curves ¢ = Constant
. _ 2 2 v ' ) ..
hy2 =1+ (gx) (32) S ¢ 1-) JA
R Vo o5l -

The derivatives in equations (34) and (35) namely (ax/a¢>) (az/aqb)y, (ax/ay)¢, and
(02 /9y a‘)¢, can be .obtained as byproducts of spline flttmg the points along the chordw1se
and spanwise directions at the plvotal points.

The unit tangent vector t “along a curve is given by

-{_dr _dr 1 ldi: (36)

ds dP.ds/dP h dP

The unit tangent vector. t 1 along the curve ¥ = Constant is

R AN e

where 1, 7,and K are unit vectors in the coordinate directions X,  J, and Z,
respectively. The unit tangent vector. Tz along the curve ¢ = Constant is

- i c Y

cosf =1ty -tyg= hiiy

The curvature of a curve in space is given by

ds dPds/dP h aP
The geodesic or tangential curvature Kg qf a curve on the surface can 5e ‘obtained from -
Ky = (t x@l) - K | ' o o (41)
Here, mois the'vectorn_cir'ma'l to the surface which by def'in;lt_ion is

n sin 8= -t.l X ?2 ' ' 42)



or

g 1| (e8] (X oE _osEoz\}, (X )
" h{hs sin 9[ (a¢>>l (acp 8y oy a¢>>] * (w)] - A L 43)
With the use of equation (36), equation (40) can be written as
R Y " . 2 ) N Y
S H T TG BT E 20 g
h dp2 h h2\dgp dP ap2 / pidP . dP " " dP /\4p2 dP
4y dz_ d? N d2z dz . - - - 44
ap2 dP T 4p2 dP S o L

The geodesic curvature Kgl_ for a curve y = Constant is
Ky, = -(Txd) By ' . @)
The minus sign on the right-hand side of equation (45) is mtroduced to obtam

Kg 1= -(1/hyhg)(8hy/9z) in the case of an orthogonal coordmate system With ¢ as:
the parameter, the expression for K1 is

- % ~ 025 = 1 /% - . 22 ; o
Ky=-L(8X7,2Z k) L(ﬁl‘-u )3 8 T
. <a¢2 092 / V0P 9% /iag2 8¢ a¢2 % o
Substituting équations (37), (43), and (46) into equation (45) gives, after simplifidétioné [
_I_(a_xzz_.azzz_ 2% o7 _o% 8%\ (47)
1 hy%hg sin 9\0P 87 9 9¢/\ap2 3¢ 592 3¢

The geodesic curvature ng for a curve ¢ = Constant is given by
‘Kg2=(t2xﬁ)-K2’ s e

With ¥ as the parameter, the expression for Kz is

Ry=-L (X7 ,0%F) . LEET.7+25)2 _%x_z.+_%zaz (49)
h24a§r' 3y y2ay

The expression for the geodesic curvature Kg is obtained by substitution of equa-
tions (38), (43), and (49) into equation (48):

Ky, = — 1 (ﬂﬁﬁ@)(ﬁﬂﬁéz)+<ﬁﬁz+ﬁa_i) (50)
2 h1h24 sin @ a¢ 8y 9y 9¢ 8372 9y 372 9y :
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The second -order partial derivatives appearing in equations (47) and (50) are also
obtained as a byproduct of the spline-fitting techmque In terms of parameters appear-
ing in boundary-layer equations, we set Kj =1Kgl and Kj = .ng. In addition to 6,
h;, hg, Kj, and Ky, the boundary-layer equations contain K;9 and Kg; whichare
functions of the previously mentioned parameters. Also, the partial derivatives, 86/8¢
and 960/9y, are contained in the boundary-layer equations and obtained by spline-fitting
6 versus ¢ and 7.

- TURBULENCE MODEL

The solution of the system of equations (1) to (4) requires closure assumptions for
the Reynolds stresses, '-p-lI'v_', -pw, and -pﬁ.‘ This can be done by a number of
approaches. One approach is to use simple eddy-viscosity and mixing-length formulas
for the Reynolds stresses. This method, also called the mean-field method, has been
used by Cebeci and Smith (ref 11), Bushnell and Beckwith (ref, 1), and Harris (ref. 2) as
well as several others. Another approach is to use expressmns that consider the rate of
change of the Reynolds stresses in the governing equations. ~This method, called
transport-equation method, has been used by Bradshawi(ref. 12), Donaldson and Sullivan
(ref. 13), Hanjalié and Launder (ref. 14), and several others. In reference 15, Bradshaw
presents an excellent discussion of both these methods.-

~ For. low—‘speed flows, both approaches work equally well. For high-speed flows,
however, the mean-field method seems to be slightly better than the transport-equation
method, chiefly because of the inadequate closure assumption accounting for the mean
compression or dilatation effect. However, a recent report by Bradshaw (ref. 16) seems
to improve substantially the predictions of his meth(')d for compressible flows. In e1ther
~case, equations (1) to (4) are already quite difficult to solve, and there is no needto
increase the computatlon time by using higher order turbulence models. For this reason,
an eddy-viscosity formulation developed by Cebeci (refs. 3 and 4) is used in this study.
~ According to this formulation, the boundary layer is divided into two regions, called inner
and outer regions, and eddy-viscosity formulas are defined separately in each region.

For a nonorthogonal system (assuming no mass transfer), the inner eddy viscosity
is defined by -

9 9. 1/2 :
ém, in = Lz[(g;) + (g—;’) + 2 cos 9( y)(g;")] , R - (51)
where o ,
L = 0.4y[1 - exp (-y/A)] | o (52)
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The total shear stress évaluated at' thé wall is

au\2 | [ow\2 u\ [OW 1/2
rtw= kB« () r2eoso(®) (B0

The outer eddy viscosity is defined by the formula

€m,out = @

o0
go (ut,e -udy| -
where

Ut ¢ = (ue2 + wez + 2ugWe COS 9) 1/2

1/2
u = (w2 +.w_2 + 2uw cos 0) /

and « =0.0168.

TRANSFORMATION OF THE GOVERNING EQUATIONS

Boundary-Layer Equations

Two-component vector potentidls y and ¢ are defined such that

. . - 31P N
puhg sin 6 ‘—ay
ing = 22
pwhy sin 6§ = 5y >
— . _ [ 9P
pvhyhy sin 6 = -(a ¥ —)J

>4 oz
The following transformations are also defined
X=X

z=2

1/2
_[_Ue
dn = (Pe“esl) P dy

¥ = (Peleuesy) 1/2h2 f(x,z,m) sin 0

® = (Peleuesy) 1/2 34: h, g(x,z,n) sin 6

(53)

(54)

(55a)

(55b)

(56)

(57a)
(5'b)

(57c)
(57d),

(57e)
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where
X
5 = XO by dx (58)

Substituting equations (56) and (57) into equations (2) to (4), after gdnéidérable algebra,
gives the following:

x<momentum equation:

’ (bf'“)f;_Plff' +Pgle - (7 + Pglc - ') + Pgl'g + Pyle - (& 7 - xPlo[f of! g of

-momentum equation:

(bg")' + Plf + P4(C -f'g") + P3[c - (g')2] + Psgg" + Pg[c - (f')2] = xPlo[f' aaix -g" %

., 8
+'P7(g agz - agil

60)

Energy equation:
(H1E")" + poE' + pj = xPlo[f' E.pZ., P7(g' O _ gg}l  (61)
Here, primes denote differentiation with respect to 7 and -
1, 51 Bue 81 Kj9 cos 6 + Kgy\
Py=35+ + -81(Kycotf - —=2 <2 2
1727 Zuehy ox * Zpeiehy 3x(pe“e) 1( ' sin 6 - (62)
b o781 O : S
P2 = 'l—leTl—é; - KISI cot 6 (sz)
Py = Tohs =T K281 £ COt 0 | o ‘ (6_2(:)
s ow ' _ : IR :
1 e ‘
Py = —=+K .
47 yonp ox ' 2181 , (62d)
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.and

Sl due
P5 = (l( 281 Uehz 3z)

51 ow s du s 1 881':
Pg = uel: 1 e__°"°1 €, 1 ’Q'(Pe“e)"'——""‘,

wehg 92  2ughg 3z  2pguehg 92

K 6
- 51(Kg cot 6 ﬁz_+_22_1_ﬁ>s_>
_ sin“ 6
= D1 we

2
Pg = -u:e) Kgsq csc 6

Pg = %ﬁe- K)s; esc I

Npr\ 1
p1=Cl + ¢t
1 ( Npr t>NPr
Heg = Plf + P6g
" C 2( _ _L) £ 4 2 g gn +cos @ e(g'f" + f'g")
37 He Npr ue2
=H
E Hq
- _PU
Peke

b=C(1+¢h)

o
N
|5

. (620)

. (62f)

(62g)
(62h)
(621)

(62§)

(63a)

(63Db)

(63c)

(63d)

- (63e)
_ (631)

~ (63g)
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In the preceding equations, eddy-viscosity and eddy-conductivity concepts have been used
in order- to satlsfy the closure conditions for the Reynolds stresses. They are defmed by

w

-PU'V' = pem -PW'V' = pem g3 -pvH' = pey 3? (64)

3Y
The turbulent Prandtl number Npr,t and the dimensionless transport coeffxclents are
defined by

€+ € . - : GH : .
U ""”Npl‘;t‘= __'_IB_ L Mel"n~= v%,__ _€+.=-_\/§ e;n_ U ..,,eﬁ_-_- - T T (65)-_ —

Equations (59) to (61) are subject to the following boundary conditions: - )
‘n=0 - f=g=0 f'=g'=0  E'=0 (adiabatic wall)
' (66)
M= Ne f'=1 g'—1 E-1 .
Eddy-Viscosity Equations

The eddy -viscosity formulas given by equations (51) to (55) can also be transformed
and expressed as -

1/2

77 - A P ' w 1" [o t e fv ’ '
) qn,in = %2[0.4(50 %Q drb (1: -e v/ ),p_;jl Rel:(f' )2 + ‘Tf-' g (2f' cos 0 + :—eﬁ g ):’ | _(67‘)
e out =0, 0168( ep)\/Re S\O 5 [1 . (2 cos 0 + a—f)}
- : - 1/2 S T
2 1 We . o
[(f ) e ~£g (21‘ cos 6 + == e g)] dvz o - (68)
where |
- 1/2 . 2 1/4 -
“ 1 4 p/p T’p ? w 1" A w 1"

% =_21§< _Z) Re/ ( Ce) SO Fe dn:| |:(f",v)2 + u—: gw<2f'w cos @ + ﬁf gw>] (69)

NUMERICAL METHOD

_ The Cebec1 -Keller Box method is used to solve the governing boundary-layer equa-
, tlons given by equatlons (59) to (61). This is a two-pomt finite-dlfference.method devel-
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F

oped by H B Keller (ref 17) and applied to the boundary-layer equatlons by Keller and
Cebeci (refs 5 and 6). The method is discussed in detail in references 6 and 11. For
this reason only a brief description Wlll be given here,

One of the basic ideas of this method is to write the governmg system of equatlons
in the form of a first-order system. Thus derwatlves of some quantities with respect
to the "normal" variable must be introduced as new unknown functions. Derivatives with
respect to all other variables occur only to first order as a consequence of the boundary-
layer approximatibns. With the resulting first-order system and an darbitrary rectangular
net, centered difference quotients and averages at the midpoints, of net rectangles and net
segments are used, as required, to getA 0(h2) accurate finite -difference equations.

‘This method is unconditionally stable; however, the equations are highly implicit
and nonlinear. Newton's method is employed to solve them. In order to do this with an
efficient and stable computatlonal scheme, a block-tridiagonal factorlza.tlon scheme is
used.

Numerical Formulation of the Momentum Equations

New dependent variables u(x,z,n), v(x,z,7), wi(x,2,7), and t(x,z,m) are intro-
- duced, so that equations (59) and (60) can be written as

(bv)' + Pyfv + Pylc - u?) + Pglc - uw) + Pggv + Pglc - w2) = xP 10[“ o Sfc

au _ é‘g’) @
+ P7<‘””az v az] (70a)

(bt)' + Pyft + Pylc - uw) + P3c - w2) + Pggt + Pg(c - u?) = xpm[ ow ¢ ot x

N + P7(W by %)] " (100)

' =u | o B . (100)

u' =v ) ‘ (70d)

g =w | _ - o : . - (70e)

w =t (701)
For the net cube shown in ffgure 8, the net points are .

Xo=0 Xp = Xp_1 + Kp n=1,2,...N) ' - (T1a)
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20 =0 Zi=2zj1+T] . (i=1,2,...,0 ~ (T1b)
o =0 nj=mj.1+ by G=1,2...,9 (1)

where kp, rj, and h; are defined in figure 8. . .

The difference equations which are to.approximate- equations (70c) to (70f) are

obtained by averaging about the midpoint ;x_ 1, L7 1
" (”'i il 2)

o ) _fn—’i”__ fn9.i
— =ulbl (72a)
by i-$ "~
n,i _ni _ o -
‘_‘J__h_il_: Bt | , B o (72b)
. j ]__ . Lo . -
ni o ni : - :
g’ gy . -
1 j 1 =_Wn’ll . R - - (720)
hj j-= » ] ] : .
wpii _-’W!l,i S . L Co ’ I P
Al _yni L (129

l1
The difference equations used to approx1mate equatlons (70a) and (70b) are rather
lengthy To illustrate the difference equations, an example equatlon similar to equa-

tions (70a) and (70b) is chosen as follows:

' = Q! ’ QB : ’ :
\ fPlfY,.x(u ax+P7w az) - _ (73)
The difference equations for this equation are
R ' 1 4 S 1 e
Vi -Viq o o M-5 - n-& AU =T L) n-z  fu -u, . '
e R 1<Jk_n;1'>+'(1’7) & 1(‘l—rl—l> o
b AR T A WP B 2 b AN 4 IR

‘where, for example,

7. = 1fmi L yni-1 , yn-lji-1 _ on-1i
Y 4(1 +VJ AR )
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Ty = 1od 4 i i 4 ol

Cmelegeeld)

1
N-=
2 n n-1 n-1
P %(p”p 1+1>l +p11)

|
-3

The boundary conditions for equations (70) evaluated at x = Xp andat z=1z; are

fg:i =0 ) gg’i =0 ug)l =v0 )
(75)
Wn’i =0 un’i =1 : wn’i =1
0 . J J

n-1,i-1 yn-1,i-1 yn-1,i-1 gn-1,i-1 Ln-1,i-1 n-1,i-1) (pn,i-1 yn,i-1 yn,i- 1
I (fi L AR & LW TNy ) (fJ b
g;‘ i-1 wJ!‘»i‘l t;"i'l) and (f;"l’l u;“l’i v;"l’l,g;"l’i w;“l’i‘t;"'lyl)‘are assumed to be
known for 0 =j = J, then the difference equations (70a), (70b), (72), and (75) yield an

implicit nonlinear algebraic system of 6J + 6 equations in as many unknowns

(f?,u] vi & ,Wn j) This nonlinear system is solved by means of Newton's method. The
resulting lineanzed system is then solved very efficiently by using the block elimination

" method discussed by Isaacson and Keller (ref. 18).

Numerical Formulation of the Energy Equation

A new dependent variable G(x,z,7) is defined as _
. G=E R (1Y

and equation (61) is written as

1 . 9
(#1G)' + 1aG # nj = xpm[ 2E g fpr,( 3E _g ag)] (76b)

‘The difference equation for (76a) is written again by averaging about the midpoint
Xp,2j,7, i), and is similar to those given by equation (72). The difference equation
i-5 : = : - oo

for equation (76b) is written simiiar to equation (74).. The bouri&ai‘y conditions for an
adiabatic wall are

Gpl=o0 Epl=1 | N o



The resulting algebraic system of 2J + 2 equations in as many unknowns (E%”i,G}" i),
which is linear, is directly solved by the block elimination method.

3

- RESULTS AND DISCUSSION

One obvious difficulty in evaluating the accuracy of the three-dimensional turbulent
boundary-layer calculations on wings is the lack of complete, reliable data. Fortunately,
_however, there are a few good data available for flows.with simple geometries. -Calcula- -

tions for these flows serve the useful purpose of evaluating the turbulence models used
for the Reynolds stresses. . References 3 and 4 present several comparisons of calcula-
tions with experimental data. Although these comparisons are for flows over simple
geometries and the calculations are for a coordinate system different than the one consi-
dered here, the generally good agreement observed in those calculations gives some con-
fidence in the accuracy of the turbulence model used in this study. Figure 9, taken from
reference 19, shows the flow geometry and comparisons of calculated and experimental
results for a planar turbulent boundary-layer flow approaching a three-dimensional
obstacle. The results shown are for velocity profiles in a gradual'ly>s'teepening adverse
pressure gradient flow off the plane of symmetry. The calculations were made for a
Cartesian coordinate system which can be obtained from the present equations by settmg
hi=hg=1, K1—K2 ‘K13 =Kg1 =0, and 9"'7r/2 '

Skin-frlctlon coefficients are presented in figure 10 for the upper surface of a swept
wing whose planform is given in-reference 10. The calculations were made by obtaining
the velocity components from the experimental pressure distribution by the precedure
. discussed earlier. To simulate the actual geometry, a reasonable thickness distribution .

was added to the planar ng conmdered in reference 10 As m reference 10, the calecu-

stream Mach number Ms of 0.5.- In the figure 2z = 1.778 m. represents an inboard
station on the wing and z =4.572 m represents a station in the middle of the outboard
panel of the wing. The skin-friction coefficients are defined as surface shear-stress
.components normalized with free- stream dynamic pressure. Here, cf x represents

the shear-stress component in the x-coordinate direction and Ct z represents the shear-
stress component normal to the x-coordinate in the tangent plane In physrcal and trans-
formed coordinates, they are defined by the following formulas:

_Tx + Ty cOS 0 ZCW/Pe) ( )Zf" UeWe

cf x gy cos 6 . : (78)
Tl (RP "t o

Uoo

: T, sin 0 _ 2CyPe\u . . l
o,z = z W/m> eve o wsing - (79)

Louue? VP
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' Althoxigh the preéénf results and those of reference 10'are qu;aiitatively similar,’ .
there are several quantitative differences between the two predictions. One possible
reason for the differences could be the starting procedure used to compute the initial
conditions along the spanwise direction. Our calculations were made for a turbulent flow
starting at approximately 3-percent chord whereas the calculations of reference 10 were
made with transition to turbulent flow occurring at 10-percent chord." Another possible
reason for the differences could be the procedure used to-get the velocity components
from the experimental pressure distribution.

_The method described in the preVioué_ section resulted in the three computer pro-
grams which are used separately from each other. One computer program deals with
the calculation of the velocity components from the experimental pressure distribution by
using the sWeep theory, Obviously if the velocity components are known from the invis-
cid flow theory, then this 'program is not needed. The second computer program deals
with the calcuiation‘ of the nonorthbgénal coordinate"systein and its geometric parameters,
‘ namely, the metric coefficients hl, hg, Kj, and Ko appearmg in the governing:
boundary-layer equatlons Through the use of this program, the coordmate system and
its geometrlc parameters are caICulated once and for, all for a given wmg The data is
punched out on cards to be stored. If no changes are made in the airfoil cross sections,
then this data can be used for any number of boundary-layer calculations without using
. the second computer program again'. The third coinputer' program deals with the solu-

" tion of the governing boundary-layer equations for a nonorthogonal system using the very
efficient and accurate Cebeci-Keller Box method. This program assumes that initial
conditions on two intersecting lines are given. In the present program, the two intersect-
ing lines correspond to the wing-fuselage junction and to a line along the span a small
fraction of the chord length away frgm the leading edge. This computer program solves
the boundary-layer equations in a éurprisingly small amount of time for a given external
velocity distribution (either experimental or theoretical) and for a given wing coordinate
system for both incompressible and compressible flows. The results in figure 10, for
example, were obtained for a wing consisting of 29 z-stations and 19 x-stations with
30 n-points across the boundary layer. The total central-processing-unit (CPU) time for
- all stations is approximately 30 sec on an IBM 370/165 computer.

FUTURE WORK

The method described here has been tested for only one flow condition, It lacks
certain important features and capabilities that may become very useful at different flow
conditions, particularly for the third computer program which solves the'boundary-layer
equations. These features and capabilities conveniently can be divided into three separate
tasks.
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1. It is desirable and useful to include the canability of starting the calculations at
the stagnation line rather than some small distance aft of the stagnation line as in the
present procedure. This task involves the solution of a special set of equations, called
attachment-line equations. With this capability, the solution of one of the initial lines
(stagnation line) becomes exact but remains approximate (though a’ good approx1mat10n)
on the other initial line (wing-fuselage juncture) as before.

2, In the'present method, the dimensionless cross-flow velocity is defined by -
g"=w/we. -However, this definition is not very convenient.. In some problems where
“the outer-velocity component™ 'wg changes sign, certain ambiguities arise. For exam- =
ple, if the cross flow at the outer edge of the boundary layer becomes slightly negative
but remains positive in the rest of the boundary layer, the value of g' will suddenly
change sign from one station to the next. This introduces some discontinuity in the flow
f1e1d since as wg goes through zero, the value of g' becomes infinite at some net ‘
. pomt between the two ‘calculation stations. To avoid this problem the transformation
needs to be changed slightly and the cross-flow velocity w normahzed by some refer-
ence- velocity Whlch does not change sign.

3.A very important study that needs to be conducted involves the procedure with
whlch the calculations are advanced in the spanwise direction, In the present program,
a speclal solution at the root station is obtained prior to calculatmg the boundary layers
on consecutive spanwise stations. At each spanwise station the solution starts with an
initial profile and proceeds along the chord until we becomes negative. ~At that point,
the program proceeds to the next spanwise station and initiates the calculation at the
leading edge and so on. With this procedure the wing is covered from the root to the tip.
It should be noted that region I is defined to be the region where We is positive. - The
calculations in region II (this corresponds to the region where we is negative) start
_ from the wing tip.. The same approximate boundary-layer equatlons are-solved as-for - ---
the ng -root section to generate the 1n1t1a1 conditions along the chord at the wing tip.
The rest of the calculation procedure is identical to region I except that now marching 1‘s
“in the inboard direction as the boundary layer is calculated in consecutlve spanw1se sta-
tions all the Way to the wing root.

This procedure of marchmg back and forth requires further study, If there VlS‘
another region where the cross-flow velocity wg . changes sign, proper loglc must be
mcorporated in the computer program.

An alternatlve procedure to define separate reglons can be utilized by the appear-
ance of negative cross-flow velocity. In such cases, a procedure s1m11ar to the present
marching p'rocedure can be used. The proper marching procedure requlres an extensive
and careful stu'dy since the locus of streamlines is unknown a priori on complex geome-.

tries. An efficient method can only be found by makmg the actual calculations. and chang-
: \

ing and testing the logic as requlred
. \
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Figure 1.~ Velocity vector in the tangent plane
at a point P on the wing.
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Figure 2.~ Schematic of typical wing.
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Figure 4.- An orthogonal system for the wing.
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Figure 7.- Notation for conical section ABDC and
the coordinate system in the developed plane.
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Figure 8.~ 'Net cube for the difference equations
for three-dimensional flows.
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(a) Schematic drawing of test setup.

Figure 9.- Comparisons of numerical results with experimental data.
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Figure 10.- Calculated skin-friction coefficients for upper surface
of a swept wing. Schematic of planform illustrates notation and .
does not represent calculated wing. '





