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SUMMARY
••..

A very general method for calculating compressible three-dimensional laminar and
turbulent boundary layers on arbitrary wings is described. The method utilizes a non-
orthogbnal coordinate system for the boundary-layer calculations and includes a geometry
package that represents the wing analytically. In the calculations all the geometric
parameters of the coordinate system are accounted for. The Reynolds shear-stress
terms are modeled by an eddy-viscosity formulation developed by Cebeci. The govern-
ing equations are solved by a very efficient two-point finite-difference method used ear-
lier by Keller and Cebeci. for two-dimensional flows and later by Cebeci for three-
dimensional flows.

Preliminary results for a swept wing look very encouraging. A typical computation
time (CPU) for one surface of the wing which roughly consists of 30 z-stations and 20 x-
stations with 30 77-points across the boundary layer is a little over 30 sec on an
IBM 370/165 computer.

INTRODUCTION

The development of an efficient and accurate method to compute three-dimensional
boundary layers on wings of arbitrary shape requires:

(1) The velocity distribution at the boundary-layer edge

(2) A convenient coordinate system

(3) A model for the Reynolds stresses

(4) A numerical method to solve the governing equations

The velocity distribution must be obtained from the pressure distribution. In gen-
eral, the pressure distribution can be obtained either theoretically or experimentally.
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When obtained theoretically, the velocity components in the streamwise and spanwise
directions can be"calculated without too much difficulty and thus satisfy the first require-
ment. When the pressure distribution is obtained experimentally, the calculation of .the ;
velocity components is rather difficult; Certain approximations must be made to get the
velocity distribution from the experimental pressure distribution. In the section 'VGovr .
erning Equations,!' the difficulties and the procedure used to calculate the velocity.com-
ponents from the experimental pressure distribution are discussed.

In selecting a coordinate system for the boundary -layer^calculations, an important
point to consider is thatjthe coordinate system should be calculated only once for.each
geometrical configuration. This rules out the streamline coordinate system since for .
each angle of attack the streamlines must be calculated repeatedly. Another important
point to consider is dictated by utility. The measured or calculated external velocity
distributions are usually given in planes containing the local chord line. Hence it is
natural to select one surface coordinate in planes parallel to the defining sections. The
other surface coordinate may be lines either orthogonal or nonorthqgonal to that coordi-
nate line. However, the selection of an orthogonal system causes a number of inconve-
niences together with lengthy interpolation procedures. As a result, a nonorthogonal
coordinate system appears to be the most convenient systenvwith which to perform the
boundary-layer calculations as discussed in detail in. the section "Coordinate System."

For turbulent flows the governing boundary-layer equations contain the Reynolds
stress terms which require closure assumptions such as mixing-length, eddy-viscosity
concepts or "higher order turbulence" models. Although the latter have the potential to
compute more complicated turbulent flows, mixing-length, eddy-viscosity approaches
have proven to yield quite satisfactory results for boundary-layer flows. (See refs. 1 to 4.)
The use of higher order turbulence models also increases the complexity of already com-
plex equations leading to high computation times. Furthermore, for compressible flows
their accuracy may not be as good as the simple mixing-length, eddy-viscosity methods.
For this reason, in our study the Reynolds stresses are modeled by using an accurate ,v
eddy-viscosity formulation (see the section "Turbulence Model") developed by Cebeci.
(See refs. 3 and 4.) ,

. When physical coordinates are used, the solutions of the governing boundary-layer
equations are quite sensitive to the spacings in the streamwise direction (x) and to the
spanwise direction (z) and require a large number of x- and z-stations. In calculations
such as the ones considered here where the computation time and storage become impor-
tant, it is necessary to remove the sensitivity to Ax- and A z-spacings. This can be done
by expressing and solving the governing equations in transformed coordinates. There-,
fore, in the section "Transformation of the Governing Equations," a convenient transfor-
mation to express the boundary-layer equations in terms of transformed variables is ..,-
considered.
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In the section "Numerical Method," the solution of the governing equations by the
Cebeci -Keller Box method is discussed. This is a very efficient two-point finite-
difference method developed by H. B. Keller and applied to the boundary-layer equations
by Keller and Cebeci. (See, for example, refs. 5 and 6.) .

In the section "Results and Discussion," results for a planar turbulent boundary-
layer flow approaching a three-dimensional obstacle and results for a swept wing are
presented. Finally in the section "Future Work," additional work that needs to be done
in order to develop a complete design tool for computing. the flow field past an arbitrary
wing is discussed. .

• : • • • ' . . SYMBOLS

A Van Driest damping length, 26(f/uT)(p/pw) '

Cp pressure coefficient, 2(p - P

c the ratio pe/p; local chord

Cf skin -friction coefficient

E total enthalpy ratio, H/He

f transformed vector potential for

g transformed vector potential for

g1 :• =w/we

H total enthalpy
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h,h},h2 metric coefficients

T,T,ic unit vectors in x-, y-, and z-directlons of Cartesian coordinate system in
which wing is defined .

2 curvature vector of coordinate line

geodesic curvatures

geometric parameters

L modified mixing length '

Moo free-stream Mach number

Npr Prandtl number

if unit vector normal to the surf ace' r • . . - . . . > •

P parameter denoting either coordinate, <£ or y; point

Pl»^2»' • •»**!() parameters in transformed differential equations

p static pressure

Pt total pressure

Re = UeSi/i/e, Reynolds number

r see figure 7

F position vector for point on surface, (x,y,z)

S ' stagnation point

s distance along a streamline
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Sj curve length along x-coordinate line T • . .

t • ;- - "time . - . • : . - . . . - . ' •••• ' . ' ' • • . .'-'.. *- - ' •• ' ; • ; ,".''

T unit tangent vector along coordinate line ,

u,v,w,t dependent variables in first-order, transformed differential equations, f,
f', g', and g" ;

u see figure 7
•*- • * ' ' * ' • * ., , . • _ • - ' ',

us total velocity (ut evaluated at the edge)

ut total or resultant velocity

ur friction velocity,

v velocity normal to surface in physical differential equations

x,z,y independent coordinates in boundary-layer equations .

x,y,z Cartesian coordinate system used for wing definition
' ' -. * * * • " * •

a local geometric angle of attack of wing section chord lines

y ratio of specific heats, y = 1.4 *

e(or em),€H eddy viscosity and eddy conductivity, respectively

77 transformed coordinate normal to surface

0, angle in tangent plane between x- and z -coordinate lines

local sweep angle, measured between plane normal to free-stream velocity
vector and z -coordinate line
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/i molecular viscosity

Ml»M2»M3 parameters in transformed energy equation

v kinematic viscosity

p density

rt w resultant wall shear stress

Tx»Tz shear stresses

0 stretching variable defined in figure 3

4,^ two-component vector potentials, equation (56)

Subscripts:

e outer edge

g geodesic

1 input stations

i,J,n indices ..

in,out inner and outer regions for eddy viscosity

le leading edge

p pivotal points, i.e., stations at which boundary layer is computed

t wing tip

te trailing edge

w wall

\
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free-stream conditions

Primes denote differentiation with respect to rj. ~ " ' : - .'

GOVERNING EQUATIONS : :

The governing boundary-layer equations for a non orthogonal coordinate system are.
given in references 7 and 8. With a slight change of notation for compressible laminar
and turbulent flows, they are given by • • ; . ,

Continuity equation:

—(puho sin 0) + -^-(pwhi sin 0) +
Qv » " ' f\ *7 V -^ 'C7A \J L»

sin 0) = 0

x-momentum equation:

ax h2 9z
.

ay
. pKlU

2 cot 0 + pKoW2 esc 0 + pK12uwx * ' L£

.^t^ cotj^csc^l 9P ̂ Q _ f , , 8u
37

z-momentum equation:

cot csc 9

(1)

_ COt 0 CSC 0
9x

Energy equation:

9x h2
-

9y 9y
JL. m
Npr9y

, 8 /„ aw
9y \T 9y "

JUL&

where pv = pv + p'v1 and hj. and
tions of x and z, that is,

hj = hj(x,z) hj

(3)

(4)

are metric coefficients. -The latter .are func-

= h2(x,z) (5)'

Also, 0 represents the angle between the coordinate lines x and z. Fpr an orthog- .
onal system 8 = if/2. The parameters Kj and K2 are known as the geodesic curva-
tures of the curves z = Constant and x = Constant, respectively. They are-given by .,
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Kl =

K2 =

hjh2 sin 0I&NC0i

. A(hj cos 0) -

The parameters Kj2 and K2j are defined by

~ sin"0 - h2

(6)

(7a)-

The total velocity within the boundary layer u^ is given by

= (u2 + w2 + 2uw cos 0)
1/2

(7b)

(8)

One obvious procedure to calculate the velocity components ue and we from the
given pressure distribution is to evaluate equations (2) and (3) at the edge of the boundary
layer. This gives

ug aue we aue _ K 2 ^ fl K 2 csc e + K12uewe = . CBC' 0 JE-+ cot 0 csc 0
hj ax h2 az i e 2 e 12 e e

and

^+?^-'W!cot9 +

(9)

csc 0 + K21uewe = cot 0 csc gap . csc2 0 JP21 e e h dx h dz

Equations (9) and (10), which may be expressed in the form

ue 3ue we 3ue _,— —S + _E—E = F(ue,we,x,z)
hi 9x h2 8z ^' e' '

(10)

(11).

and

aw
(12)

constitute a system of first-order, quasi-linear partial differential equations in ue and
we. The differential relationships for these variables are
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due = edx + ed2 (13)e ax az

, awe , 3we _• . ,, .vdwe = — 2 dx + — H dz (14)e ax az

If we let s denote the distance along a streamline, and us the total velocity (ut eval-
uated at the edge), that is,

us = (v^2 + we
2 + 2uewe cos 0) (15)

equations (13) and (14) can be expressed in the form

=
s ds h! 3x h2

and

u. § . + fi (17)
ds hx ax h2 3z

by noting that

Comparison of equations (11) and (12) with equations (16) and (17) gives

ds us ds us

In addition, we have the following relationships

dx _ ue dz _ we /
ds hjus ds h£US

The system of four first -order differential equations (eqs. (19) and (20)) allows one to
calculate the variation of ue, We, x, and z along a streamline. In principle, these
equations can be solved as an initial-value problem. However, it can be shown that the
system of differential equations (11) and (12) has characteristics which are identical to the
inviscid streamlines. As a result, the initial-value problem cannot be started from lines
which are streamlines. Thus, with initial points on the stagnation line or in the plane of
symmetry, the solution is quite difficult except for the initial lines themselves. To obtain
the solutions over the entire surface, the initial values of Ug and we must be known
along a line which is not a streamline itself. However, this information is not available
in general. A satisfactory solution requires considerable study. In this study approxi-
mate methods are used. The simple sweep theory is known to give reasonable answers
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when applied to regions of high-aspect-ratio wings that are outside the influence of root--.-•
and tip effects. In the absence of spanwise pressure gradients, this approximation is ,
almost exact. Thus, for weak spanwise pressure gradients, we can obtain the velocity, •
components on'the midportion of a swept wing with reasonable accuracy by using the- ;,..,
sweep theory. In regions of root and tip influence, the simple sweep theory with a cor-
rection to the sweep angle is applied. The procedure is explained below.

Consider the velocity vector in the tangent plane at a point P on the wing. (See
fig.. 1.)- The basic assumption for the simple sweep theory is that the velocity component
tip in the z -direction is given by:

Up = UOQ sin X (21)

The sweep angle \ represents the angle between the spanwise direction and the z-
coordinate line through the point P. The parallelogram addition of vector components
yields

Uo7 ~ u^ sin 9

< Wg _ Us_ sin ft sin 9 - cos 9 cos ft .

where sin/3 = u°° *iri \
' ' ' ' ' " ' • . ' S : ' ' - ' • ' • • • ' •

Elimination of /3 from equations (22) and (23) yields

- sin2 \ .
• • - - }sine _ . : . . . „ : . . . . . , . . . . e- - - - - - - ' - • • - - ..... .-•••

= s inX -^g-cose . (25)
'Uoo

The total velocity ratio US/UOQ is calculated from

(y-D/y
HA 1 / .. «,\

1 -
(26)

with pt j and p^ g denoting the values of total pressure before and after the shock,
respectively, and 'cp is the pressure coefficient, Cp = (p - p00)/(l/2pu002). Equa-
tion (26) is valid for an adiabatic flow through a shock wave, but since the total pressure
ratio across the shock is seldom known, its effect will be neglected. This approximation
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introduces only an error of a few percent into the velocity calculations because the total
pressure jump across a swept shock is small even for free-stream Mach numbers
approaching unity. The total pressure ratio must also remain close to one for the first -
order boundary-layer theory to be valid in'front of arid behind the shock wave. •: ' , ' " • •

Equations (24) to (26) are approximately valid for the root and tip regions if the
local sweep angle X is replaced by an effective sweep angle \eff

(27)

where Xr and \t denote the root and tip sweep angle for the given z -coordinate line
and Fr and F^ are the spanwise interpolation factors for the root and tip, respectively.
These parameters are shown schematically in reference 9 as a function of nondimenslonal
spanwise distance in terms of root or tip chord.

COORDINATE SYSTEM

The wing is defined in the x,y,z coordinate system. Here, the x-axis is in the
direction of the airplane's longitudinal axis and the y-axis is in the spanwise direction.
It is assumed that the wing is defined by a number of airfoil sections in the planes
y = Constant, which involve the specification of z^ and Xj for constant values of J{.
It is also assumed that the pivotal points along the chordwise direction (x/c)p where c
denotes local chord are given, as are the spanwise stations y_ where the boundary-
layer calculations are to be made. These parameters are shown schematically in
figure 2.

The defining airfoils are usually given by n pairs of values of xj and z\. But
because all aerodynamic data related to airfoils are customarily given in terms of frac-
tion of the total chord c, the input data are converted to an xz-coordinate system (see
fig. 3) based on the local chord (maximum length line). The relationships between x,
x, z, and z" are .

| = lf(x - xle) cos a - (z - zle) sin al (28)

I = Ij(x - xle) sin a + (z - zle) cos aj (29)

where

172 - ' (30)
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le
(31)

The subscripts le and te refer to the points at the leading and trailing edges. They
must be specified.

The curves y* = Constant and the curves connecting the points x/c = Constant
on all the defining airfoils form a convenient coordinate system. However, the movement
of the stagnation point S with .angle of attack gives, rise to- ambiguity. — For -example;
the same x/c value may correspond to two z/c values on a given section. To avoid
this problem, another variable 0 defined by

f = i(l -cos0) (32)
. . " ' • - • ' ~ • • ' •. : ' " ' • • -, • ;.

is 'introduced. Here, 0 = 0 corresponds to the leading edge, 0 = n corresponds to the
trailing edge. The value of 0 is positive for the upper surface. On the lower surface
0 is negative.

. Other Possible Coordinate Systems

In this section, other possible coordinate systems are discussed. Because of -
impracticalities with these systems, the nonorthogonal coordinate system is the most
convenient to perform the boundary -layer calculations for wing surfaces.

As pointed out in the Introduction, one surface coordinate must be chosen in planes
parallel to the defining sections. Consider an orthogonal system in which the orthogonals
are constructed between the intersections of planes parallel to the defining sections and
the wing surface. Trial calculations showed that orthogonals started from the wing -root
.congregate. at the leading edge, leaving large portions of the wing uncovered. (See' fig. 4.)
This is especially true for a wing with a sharp trailing edge. A rounded trailing edge -•
rectifies the situation somewhat but there is still a large area of the wing where the
orthogonals are sparse. . , :

The orthogonal coordinate system in figure 4 was constructed with the polar angle
0 = X2 at the root section as the other surface coordinate. As is seen from this figure,
there are' computational difficulties at the trailing edge. To show this, consider figure 5,
in which the surface coordinates xj and X2 are obtained by extending the surface cov-
erage with the dashed lines. Here, AA" is the stagnation line, AB is the root section,
and D is a point on the trailing edge. Starting from the initial lines, the boundary layer
can be calculated along the line BC" including the root chord. However, the point D
cannot be obtained in a straightforward manner. This is also true for the rest of the
trailing -edge points D', 0', and D'". Because of the difficulty in calculating these
trailing-edge points, the orthogonal coordinate system is not practical.
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Another possible coordinate system can be obtained by representing the wing by one
. • ' * • u '

or more separate conical surfaces. Figure 6 shows such a representation. Here, the
wing panels ABDC and CDFE form two conical surfaces with apexes at P and Q,
respectively. The shape of the panel ABDC and the coordinate system in the developed
plane are shown in figure 7. The initial lines are AC and AB. Line AC is the stag-
nation line and AB is the wing -fuselage junction. Calculations can be started at corner
A. A linear coordinate transformation can be used to avoid marching into the negative r
direction. Such a coordinate system without taking the thickness into account (this
amounts to representing wing sections by flat plates) was used by Nash and Scruggs
(ref. 10). The disadvantage of this coordinate system is the difficulty of doing calcula-
tions in the overlap- region.

" . . • . • < - . , . '

Present Coordinate System

The most convenient coordinate system on the wing surface and the one used in this
study is a nonorthogonal coordinate system given by the lines y = Constant and
<(> = Constant. The new independent variables 0 and y are selected to correspond to .
the independent boundary -layer parameters x and z, respectively, in equations (1) to
(4). Before the boundary -layer calculations are performed, it is necessary to decide on
the surface locations for which the boundary -layer solutions will be output. The best
method is a chordwise point distribution in terms of percent chord. The information can
then be converted to give the 0n -values for the pivotal points. As is likely to happen, thev • . * , •
points on the wing defining sections will not correspond to the pivotal points for the '
boundary -layer calculations. Thus interpolation is necessary. At each spanwise defining
station, the <£j corresponding to the input data can be found by using equations (28) to
(32). Next, Xj versus 0j and Zj versus 0j are curve fitted with cubic spline func-
tions and Xpj and zpj are interpolated for at each spanwise station. Then the vxpj -
and Zpj are spline fitted versus yi for each 0p and are interpolated for xp and
Zp at yp.

Calculation of the Geometric Parameters of the Coordinate System

Once the coordinate system is selected, it is necessary to calculate its geometric
parameters, namely, the metric coefficients hj and h2 and Kj and K2 which
appear in the governing boundary -layer equations. These are calculated by the procedure
described below. • ..

The metric coefficient along one curve in space is given by ; •2 2 ' '
>2-(§Nl)+(i)



with P denoting a parameter. For P = 0 along the curves y = Constant, equation (33)
can be written for hj as

(34)

Similarly, for P = y along the curves 0 = Constant

- (35)

The derivatives in equations (34) and (35), namely (ax/80)^, (az/80)=, (dx/dy)^, and
(9sJ/9y)0, can be obtained as byproducts of spline-fitting the points along the chordwise
and spanwise directions at the pivotal points.

The unit tangent vector t along a curve is given by

r _ dr _ dF 1 _ 1 dr
ds dP ds/dP h dP

The unit tangent vector t j along the curve y = Constant is

fc£A T + (&L\ k

(36)

(37)

where T, J, and k are unit vectors in the coordinate directions x, y, and z,
respectively. The unit tangent vector. T2 along the curve 0 = Constant is

(38)

The angle between the coordinate lines is then

/8X_\/9X\+ /9z\/8z

cos 6 = Tj • ~^2 =
(39)

h hl 2

The curvature of a curve in space is given by

g _ d7 _ dt 1 _ 1 dt
ds dP ds/dP h dP (40)

The geodesic or tangential curvature Kg of a curve on the surface can be obtained from

K g = ( T x n ) - K (41)
I • • . • • -

Here, n is the vector normal to the surface which by definition is

if sin 6 - Tj x ?2 (42)
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or

n =
h]h2 sin 0 d(f)J \d(f> 3y

(43)

With the use of equation (36), equation (40) can be written as

d2! _ J _ d f d h =J_/d%T+^lT+^l.kl -L/k 1 + ** T + dz k9 . o JT> ^T> .0 9 * T _ 9 J ̂  9 *H ~ /i UT> l * ^rT •> ^ ^ri *h2 dP2

d2y dy

2 dP dP2 dP dP

The geodesic curvature Kg. for a curve y = Constant is
1 • ' .

Kg = -ft! X n) • KI . (45)

The minus sign on the right-hand side of equation (45) is introduced to obtain
Kg = - (l/hjh2) (3hj/3z) in the case of an orthogonal coordinate system. With 0 as
the parameter, the expression for Kj is

(
•

(46)
.

Substituting equations (37), (43), and (46) into equation (45) gives, after simplifications

i — — — —\ I 9— _ ?_ _\.'v ' 1 /3x 3Z 3X 3z\/3TC 3z 3TC 3x\ (47)
sin

The geodesic curvature Kg. for a curve 4> = Constant is given by
2

Kg2 = (T2 X n) • K2

With y as the parameter, the expression for K2 is

(48)

9 =2 T + 7 + 91] (49)

The expression for the geodesic curvature Kg_ is obtained by substitution of equa-
tions (38), (43), and (49) into equation (48):

^2 = sin 9
f&K 3Z. _ 9X 3Z_\/2~X 3Z _ 3% 3z\ + fd^X 3X_ + 8 Z 3z| (50)
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The second-order partial derivatives appearing in equations (47) and (50) are also
obtained as a byproduct of the spline-fitting technique. In terms of parameters appear-
ing in boundary-layer equations, we set Kj = :Kg and K2 = .Kg . In addition to 6,
hi, h2» KI} and K%, the boundary-layer equations contain K^ and K2j which are
functions of the previously mentioned parameters. Also, the partial derivatives, 30/90
and 90/3y, are contained in the boundary-layer equations and obtained by spline-fitting
8 versus <f> and y.

TURBULENCE MODEL

The solution of the system of equations (1) to (4) requires closure assumptions for
the Reynolds stresses, ' -puV, -pwV, and -pv'H1. This can be done by a number of
approaches. One approach is to use simple eddy-viscosity and mixing-length formulas
for the Reynolds stresses. This method, also called the mean-field method, has been
used by Cebeci and Smith (ref. 11), Bushnell and Beckwith (ref. 1), and Harris (ref. 2) as
well as several others. Another approach is to use expressions that consider the rate of
change of the Reynolds stresses in the governing equations. This method, called
transport-equation method, has been used by Bradshaw (ref. 12), Donaldson and Sullivan
(ref. 13), Hanjalic and Launder (ref. 14), and several others. In reference 15, Bradshaw
presents an excellent discussion of both these methods.

For low-speed flows, both approaches work equally well. For high-speed flows,
however, the mean-field method seems to be slightly better than the transport-equation
method, chiefly because of the inadequate closure assumption accounting for the mean
compression or dilatation effect. However, a recent report by Bradshaw (ref. 16) seems
to improve substantially the predictions of his method for compressible flows. In either
case, equations (1) to (4) are already quite difficult to solve, and there is no need to
increase the computation time by using higher order turbulence models. For this reason,
an eddy-viscosity formulation developed by Cebeci (refs. 3 and 4) is used in this study.
According to this formulation, the boundary layer is divided into two regions, called inner
and outer regions, and eddy-viscosity formulas are defined separately in each region.

For a nonorthogonal system (assuming no mass transfer), the inner eddy viscosity
is defined by

of s2 2 wo 1V2
em,in = L (f1) + (f2) +2 cos ^(pXI2) <51)

where

L = 0.4y[l - exp (-y/A)] (52)
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The total shear stress evaluated at the wall is

Tt,w = V- au + (fw\ +

w Ww

1/2

The outer eddy viscosity is defined by the formula

em,out = « £ («t,e -
 u

where

ut,e = (ue2 + we2 + 2uewe cos 0)

ut = (u2 + w2 + 2uw cos 0)

and a = 0.0168.

TRANSFORMATION OF THE GOVERNING EQUATIONS

Boundary-Layer Equations

Two-component vector potentials i// and 0 are defined such that

puho sin 9 = —£ 3y

pwhj sin 0 = |2 >

The following transformations are also defined

x = x

z = z

u. \V2 ,

f(x,z,?/) sin 0

—- hj g(x,z,77) sin 0

(53)

(54)

(55a)

(55b)

(56)

(57a)

(57b)

(57c)

(57d).

(57e)
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where

s1 = J hj dx (58)

Substituting equations (56) and (57) into equations (2) to (4), after considerable algebra,
gives the following:

x-momentum equation:
r --^i- I _. _.- ._|- - ---

(bf)' + P^f" + P2[c - (f')2| + P5(c - f'g') + P6f"g + P8[c - (g')2J = xP10 f ^- f |i

(bg")' + Pifg" + P4(c -. f'g') + P3[c - (g')2] + P6gg" + P9[c _ (f

9x

58

. (59)

z -momentum equation:

» . (60)

Energy equation:

' - E ' (61)

Here, primes denote differentiation with respect to rj and

cot 9 (62b)



and

-srfa*1! 3Z

weh2 3z

f
K2cot

8(p ,, ) , J^ asl
9z e

cos

sin20

PQ = S. Kl Si CSC 0a we
 L L

NiPr
NprJNpr

f' + ̂ % g'g" + cos 6. Sfe'f" +.f'g»)

E = --

(62e)

(62f)

(62g)

(62h)

(621)

(62j)

(63a)

(63b)

(63c)

(63d)

(63e)

(63f)

(63g)
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In the preceding equations, eddy-viscosity and eddy-conductivity concepts have been used
in order to satisfy the closure conditions for the Reynolds stresses. .They are defined by

-puV = pem JH -pwV = pem |2 (64)

The turbulent Prandtl number Npr j and the dimensionless transport coefficients are
defined by

eH
e|~ -(65) —

Equations (59) to (61) are subject to the following boundary conditions:

.. . rj = 0 f = g = 0 f' = g' = 0 E' - 0 (adiabatic wall))

, ) ? -»«• f ' - l g ' - l E- l .
>(66)

Eddy-Viscosity Equations

The eddy-viscosity formulas given by equations (51) to (55) can also be transformed
and expressed as

1/2

(67)e+ . -fifiem,m ^r
L

where

1/2

ue

J'(2fg'2f cos 9 + § g'

^r>

1/2.

g ' a f cos e +
1/4

(68)

(69)

NUMERICAL METHOD

The Cebeci-Keller Box method is used to solve the governing boundary-layer equa-
tions given by equations (59) to (61). This is a two-point finite-difference method devel-
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oped by H. B. Keller (ref. 17) and applied to the boundary-layer equations by Keller and
Cebeci (re'fs. 5 and 6). The method is discussed in detail in references 6 and 11. For
this reason only a brief description will be given here.

One of the basic ideas of this method is to write the governing system of equations
in the form of a first-order system. Thus, derivatives of some quantities with respect
to the "normal" variable must be introduced as new unknown functions. Derivatives with
respect to all other variables occur only to first order as a consequence of the boundary-
layer approximations. With the resulting first-order system and an arbitrary rectangular
net, centered difference quotients and averages at the midpoints;of net rectangles and net
segments are used, as required, to get O(h2) accurate finite-difference equations.

This method is unconditionally stable; however, the equations are highly implicit
and nonlinear. Newton's method is employed to solve them. In order to do this with an
efficient and stable computational scheme, a block-tridiagonal factorization scheme is
used.

Numerical Formulation of the Momentum Equations

New dependent variables u(x,z,?7), V(X,Z,T/), w(x,z,7/), and t(x,z,7j) are intro-
duced, so that equations (59) and (60) can be written as

(bv)' + Pxfv + P2(c - u2) + P5(c - uw) + P6gv + P8(c - w2) = xP10[u g - v |1

(70a)

(bt)' + Pjft + P4(c - uw) + P3(c - w2) + P6gt + P9(c - u2) = xP10 u |f - t •

9Z -.„, (70b)

f' = u . . (70c)

u1 = v (70d)

g' = w . (70e)

w' = t (70f)

For the net cube shown in figure 8, the net points are

x0 = 0 xn = xn_i + kn (n = 1, 2, . . ., N) (71a)
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z0 = 0 Zi = zul + TI , (i = 1, 2, . . ., I)

7 7 = 7 7 _ 1 + h (j = 1, 2, . . ., J)

(71b)

(71c)

where kn, r^, and hj are defined in figure 8. . .

The difference equations which are to approximate equations (70c) to (70f) are
obtained by averaging about the midpoint/x j,z. 1,77. j\

\ n"2 l~2 ]"2~J • , •.

(72a)

LI! -.vM: (72b)

_n, ,,n.
i g1 -1 „ iL_—LJ: = wn,i

J-;
(72c)

^
where, for example,

(72d)

The difference equations used to approximate equations (70a) and (7Ob) are rather
lengthy. To illustrate the difference equations, an example equation similar to equa-
tions (70a) and (70b) is chosen as follows:

(73)Vf + PifV = X/U ̂  + P7W-^
;. \ 9X ' az/

The difference equations for this equation are

i n-i rVi -

.i-rvj2 >•

/u - u^ -\ . n--~ u. - u
u. J-0 !LdLJ + (P7) 2^ JJL-.. i-ll (74)

where, for example,

v. = Ifv?'1 + vn>ul + vP-1'1'1 + v?'1'
J 4\J J J J
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un * u' + u'- + u +

. 1 , 1 + B . 1 . 1 + l +

The boundary conditions for equations (70) evaluated at x = xn and at z = z^ are

- (75)

K

ri,i-l n,i-l)tn,i-l\ and /{n-l,i)Un-l,i)Vn-l,i)gn-l,L wn-l,i>tn-l,iyare assumed to be

known for 0 ^ j ^ J, then the difference equations (70a), (70b), (72), and (75) yield an
implicit nonlinear algebraic system of 6 J + 6 equations in as many unknowns
(fP.uPjVJj^gjj^wl^tPV This nonlinear system is solved by means of Newton's method. The

resulting linearized system is then solved very efficiently by using the block elimination
method discussed by Isaacson and Keller (ref. 18).

Numerical Formulation of the Energy Equation

A new dependent variable G(X,Z,T?) is defined as

G = E'

and equation (61) is written as

f + P7(w|f-G||)] (76b)

The difference equation for (76a) is written again by averaging about the midpoint
/xn,Zi,7; A and is similar to those given by equation (72). The difference equation
I J'2J • . " ' • • • . . ' • .
for equation (76b) is written similar to equation (74). The boundary conditions for an
adiabatic wall are

G'1 = 0 E'1 =1 (77)
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The resulting algebraic system of 2J + 2 equations in as many unknowns

which is linear, is directly solved by the block elimination method.

RESULTS AND DISCUSSION

One obvious difficulty in evaluating the accuracy of the three-dimensional turbulent
boundary-layer calculations on wings is the lack of complete, reliable data. Fortunately,

.however, there are_a_few good data available for flows.with simple geometries. Calcula-
tions for these flows serve the useful purpose of evaluating the turbulence models used
for the Reynolds stresses. .References 3 and 4 present several comparisons of calcula-
tions with experimental data. Although these comparisons are for flows over simple
geometries and the calculations are for a coordinate system different than the one consi-
dered here, the generally good agreement observed in those calculations gives some con-
fidence in the accuracy of the turbulence model used in this study. Figure 9, taken from
reference 19, shows the flow geometry and comparisons of calculated and experimental
results for a planar turbulent boundary-layer flow approaching a three-dimensional
obstacle. The results shown are for velocity profiles in a gradually steepening adverse
pressure gradient flow off the plane of symmetry. The calculations were made for a
Cartesian coordinate system which can be obtained from the present equations by setting
h! = h2 = 1, K! = K2 = K12 = K2i = 0, and 0 = ir/2.

Skin-friction coefficients are presented in figure 10 for the upper surface of a swept
wing whose planform is given in reference 10. The calculations were made by obtaining
the velocity components from the experimental pressure distribution by the procedure
discussed earlier. To simulate the actual geometry, a reasonable thickness distribution
was added to the planar wing considered in reference 10. As in reference 10, the calcu-
lations were made for a unit Reynolds number of 4.92 x 10^ per meter and for a free-
stream Mach number Moo of 0.5. In the figure z = 1.778 m represents an inboard
station on the wing and z = 4.572 m represents a station in the middle of the outboard
panel of the wing. The skin-friction coefficients are defined as surface shear-stress
components normalized with free-stream dynamic pressure. Here, Cf x represents
the shear-stress component in the x-coordinate direction and Cf z represents the shear-
stress component normal to the x-coordinate in the tangent plane. In physical and trans-
formed coordinates, they are defined by the following formulas:

Tx + Tz cos ^ 2CW

O l~oo~00 . » -~c • • Uoo*>X = 1 Poo"*'

_ 2Cw/Pe\uewe

-1WJ \u_/

2 cose (78)

((79)
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Although the present results and those of reference 10 are qualitatively similar,
there are several quantitative differences between the two predictions. One possible
reason for the differences could be the starting procedure used to compute the initial
conditions along the spanwise direction. Our calculations were made for a turbulent flow
starting at approximately 3-percent chord whereas the calculations of reference 10 were
made with transition to turbulent flow occurring at 10-percent chord.' Another possible
reason for the differences could be the procedure used to get the velocity components
from the experimental pressure distribution.

The method described in the previous section resulted in the three computer pro-
grams which are used separately from each other. One computer program deals with
the calculation of the velocity components from the experimental pressure distribution by
using the sweep theory. Obviously if the velocity components are known from the invis-
cid flow theory, then this program is not needed. The second computer program deals
with the calculation of the nonorthogonal coordinate system and its geometric parameters,

1 namely, the metric coefficients hj, h2, Kj, and K2 appearing in the governing-
boundary-layer equations. Through the use of this program, the coordinate system and
its geometric parameters are calculated once and for. all for a given wing. The data is
punched out on cards to be stored. If no changes are made in the airfoil cross sections,
then this data can be used for any number of boundary-layer calculations without using
the second computer program again. The third computer program deals with the solu-
tion of the governing boundary-layer equations for a nonorthogonal system using the very
efficient and accurate Cebeci-Keller Box method. This program assumes that initial
conditions on two intersecting lines are given. In the present program, the two intersect-
ing lines correspond to the wing-fuselage junction and to a line along the span a small
fraction of the chord length away from the leading edge. This computer program solves
the boundary-layer equations in a surprisingly small amount of time for a given external
velocity distribution (either experimental or theoretical) and for a given wing coordinate
system for both incompressible and compressible flows. The results in figure 10, for
example, were obtained for a wing consisting of 29 z-stations and 19 x-stations with
30 Tj-points across the boundary layer. The.total central-processing-unit (CPU) time for
all stations is approximately 30 sec oh an IBM 370/165 computer.

FUTURE WORK

The method described here has been tested for only one flow condition. It lacks
certain important features and capabilities that may become very useful at different flow
conditions, particularly for the third computer program which solves the boundary-layer
equations. These features and capabilities conveniently can be divided into three separate
tasks.
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1. It is desirable and useful to include the cana.hility of starting the calculations at
the stagnation line rather than some small distance aft of the stagnation line as in the
present procedure. This task involves the solution of a special set of equations, called
attachment-line equations. With this capability, the solution of one of the initial lines
(stagnation line) becomes exact but remains approximate (though a'good approximation)
on the other initial line (wing-fuselage juncture) as before.

2. In the present method, the dimensionless cross-flow velocity is defined by
g' = w/we. However, this definition is not very convenient. In some problems where
the outer velocity component we changes sign," certain ambiguities arise. For exam- """
pie, if the cross flow at the outer edge of the boundary layer becomes slightly negative
but remains positive in the rest of the boundary layer, the value of g' will suddenly
change sign from one station to the next. This introduces some discontinuity in the flow
field since as we goes through zero, the value of g' becomes infinite at some net
point between the two calculation stations. To avoid this problem, the transformation
needs to be changed slightly and the cross-flow velocity w normalized by some refer-
ence-velocity which does not change sign.

3. A very important study that needs to be conducted involves the procedure with
which the calculations are advanced in the spanwise direction. In the present program,
a special solution at the root station is obtained prior to calculating the boundary layers
on consecutive spanwise stations. At each spanwise station the solution starts with an
initial profile and proceeds along the chord until we becomes negative. At that point, •
the program proceeds to the next spanwise station and initiates the calculation at the
leading edge and so on. With this procedure the wing is covered from the root to the tip.
It should be noted that region I is defined to be the region where we is positive. The
calculations in region II (this corresponds to the region where We is negative) start
from the-wing tip.. .The same approximate boundary-layer equations are solved as for
the wing-root section to generate the initial conditions along the chord at the wing tip.
The rest of the calculation procedure is identical to region I except that now marching is
in the inboard direction as the boundary layer is calculated in consecutive spanwise sta-
tions all the way to the wing root.

This procedure of marching back and forth requires further study. If there is
another region where the cross-flow velocity we changes sign, proper logic must be
incorporated in the computer program.

An alternative procedure to define separate regions can be utilized by the appear-
ance of negative cross-flow velocity. In such cases, a procedure similar to the present
marching procedure can be used. The proper marching procedure requires an extensive
and careful study since the locus of streamlines is unknown a priori on complex geome-
tries. An efficient method can only be found by making the actual calculations, and chang-
ing and testing the logic as required. . ,. . \

\
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Figure 1.- Velocity vector in the tangent plane
at a point P on the wing.
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Figure 2.- Schematic of typical wing.
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Figure 3.- Notation for the airfoil section for a given y..

Figure 4.- An orthogonal system for the wing.
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Figure 5.- Wing in the xj_ and x2 plane.

Figure 6.- Representation of the wing by conical sections.
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Figure 7.- Notation for conical section ABDC and
the coordinate system in the developed plane.

V
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Figure 8.-'Net cube for the difference equations
for three-dimensional flows.
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(a) Schematic drawing of test setup.

Figure 9.- Comparisons of numerical results with experimental data.
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Figure 10.- Calculated skin-friction coefficients for upper surface
of a swept wing. Schematic of planform illustrates notation and
does not represent calculated wing. '
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