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Abstract

Flight flutter testing is considered as a method

for finding generalized aerodynamic forces. The co-
efficients determined from flight flutter tests are
used in flutter calculations, using a simple expansion
in frequency and Mach number. The errors in the
procedure are discussed, and expressions for the

error in flutter prediction are given. Methods of
L_[h*_ procedure _tre discussed.

INTRODUCTION

This paper considers flutter testing and flight

flutter testing a part of flutter analysis. Very often
nowadays, tests which were originally intended as
proof tests or acceptance tests inadvertently became

exploration of the unknown. This situation will per-
sist until flutter analysis can be used with confidence,

to the extent that the accuracy of a flutter prediction

can be computed as part of the analysis.

Since this situation exists, one might as well

consider such tests as links in the flutter analysis,
and squeeze out as much information as possible

from the test results, rather than rest content with

say, flutter frequency, speed and Mach number as the

only result of a wind tunnel flutter test, which usually

cannot be repeated using the same model.

We shall, therefore, consider the equations of
motion on a wing vibrating in an airstream, examine

which quantities can be measured, which quantities

can be found from a simpler test, and attempt to as-

say the accuracy of data obtained from static, ground

vibration, flight vibration and flutter tests.

Finally, we shall look at the accuracy of a

flutter prediction, in terms of the precision of the

data used in the computation.

The Equations of Motion

We assume the wing to be perfectly elastic, and

assume the motion of the wing to be small, such that

the aerodynamic loads are proportional to some

linear integral-differential transform of the deflec-

tions.

This integro-differential dependence ofairloads
on deflection is proportiohal to dynamic pressure, but

may depend upon flight altitude, and depends upon
Mach number and frequency of oscillation.

The equation of motion can then be written:

z(x, y) = jfW, ngC(X, YlA, _)(Jm(_f. 77)z{_, 72 ÷
Area

F((, 7) + _PU2D,(4, "9," k, M)ffWzngq(:, 77; r, s. _, M)
Area

D2(r. s[ _, M)z(r, s)drds}d_d?7

where:

R e [z(x, y)e z°_t]

is the deflection of the wing at (x, y) at time t.

27r_o

is the frequency of vibration.

rn(x, y)

is the mass per unit wing area at (x, y).

c(x, y]4, 7)

is the deflection at (x, y) due to a unit load applied
at(e, 7).



RelF(z, y)e 2c°t]

is the force applied to the wing by shakers, or ground

supports.

D (J::,_; k, M)j_IW_ngq(C,77; r, s, _, M)I)2(F, s, k, g)z(r, s)drds

is the operator which yields the lift per unit area at

( ,:, _) ) divided by the dynamic pressure for a deflec-

tion amplitude distribution z(x, y) at Mach number M

and reduced frequency U

At zero airspeed and frequency, this is the equa-

tion for a ground static test, for zero airspeed only

it is the equation of a ground vibration test, and for

zero impressed force, it is the equation for flutter,

while the whole equation describes a flight vibration

test.

To be able to use the equation, one must rewrite

it using some kind of approximation. One can use an

approximation in natural modes, but that seemspoint-

less unless they are known precisely. The alternative

is to use an approximation in discrete ordinates, or if

one is in a fancy mood, to use station functions, or an

approximation in terms of surface stresses.

We shall use an approximation in discrete or-

dinates, namely the deflections Zv at the points (x.,

y_) where _ refers to the number of the point in some
kind of ordered sequence.

Equation 1 then becomes:

(_) = [c_.] {m.J<J [n] (_u) + [%.] [H] (F.) +

!zJ[%_][q.j_, M)]{z a} 2)
2

where [qua] is the matrix corresponding to the

linear integro-differential operator which yields the

lift distribution. [JJ] is a diagonal matrixof integra-

tion weights, it has been lumped with the {q.afk, ,v)]
in the last term on the right hand side.

The equation for flutter states that the determin-
ant of (2) must vanish for (F.) = 0 in order to ob-
tain a non-trivial solution:

D _ I [-1] + a_2 [c] [m] [N] +--_pU2[c][q(k, M)]l = O (3)

We shall now proceed to write down the equa-

tions for a set of tests, and to examine the rate of
change of flutter speed with changes in the elements
of the flutter determinant. The latter will enable us

to assess the first order error in the flutter predic-

tion due to errors in wing parameters and aerody-

namic coefficients.

The Equation for a Set of Tests

If one repeats a flight vibration test N times,

one obtains N equations like equation (1), which can

be written as a single equation. If all these tests

are performed at the same reduced frequency k and

Mach number M, the combined equation becomes es-

pecially simple, and takes on the form:

[_/_] = [c_ u] [_@] Is1.] [_,,] b-,_ +
(4)

{%u] Cd_] [_s.] Cz.n] ['o_n] +

{%.]{Fu.] + [%.][%._,. M)][z.n][_ pJ;_]

where we have included a structural damping term

with [d] asthe matrix of damping coefficients, n is

the test number, so Zun is the deflection amplitude at

(x , yu) in the n'th test, _n is the frequency, and

¢ P J)n is the dynamic pressure in the n'th test.

After having performed a set of N tests, where

all but N columns of one of the matrices in Equation

(4) are either measured in the tests or known from

previous tests or analysis, it is possible to compute

the unknown columns. As examples, we shall con-

sider a set of static tests, a set of ground vibration

tests, a set of flutter tests and a set of flight vibra-
tion tests.

A set of static tests should obey the equation:

[_] : [%_] {_._]

which can be inverted to yield:

[%_] = [_]{F_] -z

-z
where [F_] is

T'_ is the cofactor of the element f;n in the

transpose of [F_] The first order error in

[%u} due to error in the measurement of z_ and

[Fun] can be evaluated as f_llows:

-1
ACc,_u] : [A%u] : [Az_] [Fu.] +

o Z _ [Sr_s] Az,.s + _: r [K_.s] AFrs
r s 1" $

If the errors are given in terms of standard

deviations, c_Frs and %_, the standard deviation
in the element %u is:

2 2 2 H 2

= O'ZF S

The coefficients /(_'s can be seen to be large

when the determinant IFI is small, i.e. when one of

the columns or rows in the loading matrix is nearly

a linear combination of the other columns or rows.

The Equation for a Set of Ground Vibration Tests

For a set of ground vibration tests, one ob-

tains:

[%_] : [%u] [_u]Era][_u_][<o_,]+ [%_] [¢u_] +

[%u] [d] [z_n] [_.]
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Equating real parts:

or ['_] " [_v]-l[c_v] -1(Re [z_] -

2 -1

[c_y]Re [Fvn]) [w n] [Reavn ]-1

and we see that if the determinants of [c_.] and

[zy n] are small, the first order errors may become

large. However, in the flutter equation, [m] only
occurs in the combination:

[c:_y] fay] [_,]

and therefore only this combination is of interest:

[cp_] [b_y] [my] = (Re[z_] - [cpv][ReF_n]) [Wn]-l[Re_pn] -1

which shows that these errors tn [z_] and iF, n]
are really important. The matrix of first order er-

rors of the left hand side is [A] , where:

-i -I
[A] : ([_ez_,] - [%_y] [_ePwn]) [%] [Rez_]

+ ( freaky] - [c_y] iReFul) ((A[_,_] -1 [Rez_]-l)

2 -1 -1

+ [%] A([Rez_n] ))

The error will therefore be proportional to the in-

verse square of the determinant of [Zez_] ; this

determinant should be maximized by arranging the
test such that the columns of the determinant are

orthogonal if possible. This means that each test

should be performed at a natural frequency.

Equation [or a Set of Kitgnt Vtoratton Tests or Ftutter
Tests

The information obtainable from a set of flight

vibration tests or flutter tests which cannot be obtained

from tests where there are no aerodynamic forces

are, of course, the aerodynamic forces.

Since the aerodynamic coefficients depend upon

Mach number, M, and reduced frequency, k, the tests
must either be performed at constant M and k, or

one must somehow approximate this dependence.

One can for example use a Taylor series ex-

pansion of [q_.(_. M) ] in k and M about some value

of M, Mref. and zero reduced frequency. One obtains:

[q:_y(_, /4)] =

Z qlzy(/_, g
r=o s:o -aM r _k s k = o r! s!

M = Mre f

Instead of expanding in power of (M-Mref), one can
expand in powers of (M2-1) for transonic Mach num-

bers and (M2-1)-h for supersonic Mach numbers.

As an engineering approximation one would only
use the first and zero order terms.

The equation for a set of tests is then Eq. (4),

solving for the aerodynamic terms, one obtains:

{[_] - [%_] ( C_]CH]C_y_]['_] ÷ , [d] [_] [_y_] [%] +

[Fuu]) }[(_- pU=)u]-l[Zyu] -1

This set of equations may be insufficient to de-

termine [quy(_, g) ] However, some of the
q_y(_, _; are not very important as far as the

flutter speed is concerned, the zero order terms in k

can he determined by wind tunnel tests on stationary

but deformed wings (tied down), others can again be

guessed at, at least, from linearized aerodynamic

theory. The purpose of a flight vibration test or a

flutter test is then to determine the remaining aero-

dynamic coefficients. Without going into a discussion
of which aerodynamic coefficients are to be chosen as

those which neither theory nor wind tunnel static tests

can yield, we shall consider the precision obtainable

in q_,(_, _) when it is determined from tests.

The term which is most liable to magnify the

errors is the errors in the inverse of [z_u] . The

value of [z_] is

When differentiating to evaluate the error, one obtains

an expression with Izl = in the denominator. To

minimize errors, one must try to make lal as large

as possible, i.e., the columns in [z_] should be as
different as possible. Vibration is natural modes

only will go far towards the accomplishment of pre-
cision.

Errors in Flutter Prediction due to Errors in Struc-

tural, Mass and Aerodynamic Parameters

Before the obtainable precision in experimental

determination of structural, mass and aerodynamic

information can be meaningful in terms of resulting

accuracy in flutter prediction, we have to analyze

the sensitivity of a flutter point to such errors.

Flutter occurs whenever the determinant (Eq.
(3)) vanishes:

D(_, g,_-}.-pU_, m ...... mf¢, d ...... d w
2

q,_ ...... qNN' c ..... , CNN) = O

Vary one of the parameters, which we shall call P.

Both the real and imaginary parts of the flutter de-

terminant will then change, and k and _-pj must



then be changed to compensate, such as to maintain

the value of the flutter determinant at zeroat constant

M. Instead of changing kland -_-Q]7I , k and M can

be changed, at constant -_-Qf , or i_ and k can be

changed only, at constant M and U.

i

We shall only consider changes in k and -2P Lf

at constant M.

To maintain flutter for a change in P, one must

have:

Ref:hUJ) = Re('f'_p ZU') + 2e('_JiK&(-pL )+ Re(--J._k = 0

_O _i) l 2 5D

Im/a_)}= Im(--.A£ I + Im{--J _.(_pL' ) + ]m(_kJ _Z_ = 0

Solving for A -_pL,'_} and _k, one obtains:

M = const.

, a '_ D/} }

,_J' _ 1 ,>

( XA"; )/ = ,? _
bU _1)

:,,,t,_ ) --Sy _
_: it){'' )

2_

where the bars denote the complex conjugate and the

derivative with respect to k is taken at constant M

and and the derivative with respect to 1
' _pl,:

2

is taken at constant k and M.

It is, of course, complicated to evaluate these

derivatives, but it seems to be necessary for finding

the sensitivity of a flutter point to parameter changes.

With modern computers it may, however, be possible.

A rough knowledge of the precision of a flutter

prediction will always be useful; one must keep firmly

in mind, however, that the estimate of precision is in

terms of a given numerical approximation, and can

give no information about the remainder term of the

numerical approximation.

In practice, when a flutter point proves very in-

sensitive to parameter changes, it should not be al-

lowed to cause unalleviated elation, since then it will

take a major design change to move the flutter point

out of the flight envelope of the airplane, for example.

Conclusion

A viewpoint and a method of approach to flight

flutter testing and to flutter in general has been out-

lined. It is realized that only the practising flutter

analyst can choose the method of analysis and the

tests to be performed, knowing the limitations of his

facilities and his personnel.

The method which has been outlined is clearly

impractical; however, if some of its elements are used,

or if nothing else, its viewpoint is adopted, the paper

will have accomplished its purpose.
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