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Abstract

The type of solution presented in this paper has

extreme significance for the problem of flight flutter

testing since the flutter characteristics of a flight

vehicle could be checked analytically without actually

penetrating the flutter region. For such a study in-

dicial aerodynamic influence coefficients have several

advantages. The indicial nature of the coefficients

(responses to step function) makes them more readily

appiicabie to decaying or growing motion than sinu-

soidal coefficients. In addition, aerodynamic influence

coefficients can be applied to any plan form (within

the limitations of the aerodynamic theory) and to any

mode shape.

For the reasons stated above, indicial aerody-
namic influence coefficients have been evaluated from

potential theory for a thin, flexible wing with super-

sonic leading and trailing edges only. The analysis
is based on the use of small surface areas in which

the downwash is assumed uniform. Within this lim-

itation, the results are exact except for the restric-

tion of linearized theory. The areas are not restricted

either to square boxes or Mach boxes. A given area

may be any rectangle or square which may or may

not be cut by the Mach forecone, and any area can
be used anywhere in the forecone without loss of

accuracy.

INTRODUCTION

The purpose of this paper is to describe a

feasible method for calculation of the aerodynamic

forces due to arbitrary time-dependent downwash on
flexible wings, Such aerodynamic forces have several

important applications. They can provde the aero-

dynamic forcing terms in gust problems. They can
also give the aerodynamic terms due to decaying or
growing vibrations that occur in the equations of mo-

tion for problems of gust response, airplane dynamic

stability, and the approach to a flutter boundary. The

latter application has significance for flight flutter

testing since the flutter characteristics of a flight

vehicle could be compared with analysis without ac-

tual penetration of the flutter region.

As with Pines and other authors (Relerences 1

through 4), the present method is based on dividing

the wing plan form into a number of discrete areas or
boxes. In each of these areas the downwash is as-

sumed to be uniform. In this paper a simplified

approach is used to find the pressure at any point on

the wing due to the downwash oneacharea in its Mach

forecone. A variety of area shapes is permitted. By
means of these so-called "aerodynamic influence co-

efficients," arbitrary downwash distributions can be

achieved for various plan forms. The present ap-

proach differs from the earlier methods primarily

in its use of indicial aerodynamic influence coeffi-

cients. The adjective "indicial" means that the uni-

form downwash is applied suddenly to the area and

maintained constant thereafter. The principal ad-

vantage of the indicial function is that it is a single

function of time which can be superposed to give

pressure for arbitrary time-dependent downwash. If

sinusoidal functions were used to produce such down-

wash, both their real and imaginary pa,'ts would have

to be superposed.

The Indicial Aerodynamic Influence Coefficient for
the Fundamental Area

In Figure 1, a general plan form with super-.
sonic edges is outlined in dotted lines, with the flow

passing over it at velocity V. A grid of small areas
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GENERAL SUPERSONIC-EDGED PLAN FORM WITH
SUPERIMPOSED GRID

\.

Figure 1. General Supersonic-Edged Plan Form with

Superimposed Grid

of uniform downwash is shown with solid lines and

gives rise to a serrated leading edge in the approx-

imation. The portions of those areas which can affect

the pressure at a typical point (x, y) lie within the

Mach forecone from that point and are shown shaded

in Figure 1. Examples of these so-called "Mach

forecone" areas are the polygons with three, four, five,

and six sides, as numbered in Figure 1.

It has been found that aerodynamic influence

coefficients for all the various polygons can be de-

rived from the coefficient formula for a so-called

"fundamental area" of uniform downwash. The fun-

damental area used herein consists of that portion

of a representative quadrant in the plane of the wing

(see Figure 2) which lies between the origin of the

quadrant and one forward Mach line from (x, y). Thus

the fundamental area is the shaded triangle in Figure

2. The point (x, y), where pressure is found, is taken

to be in the plane of the wing and the triangle. The

x', y' coordinates shown in Figure 2 are used only to

locate the right-angle corner of the fundamental area

FUNDAMENTAL AREA
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Figure 2. Fundamental Area

relative to the point (x, y), and these coordinates are

prominent in the results which follow.

The exact indicial aerodynamic influence coef-

ficients for such a fundamental area have been found

by linearized theory. The result for _ _-, where

M is the free-stream Math number, is presented in

\l'(t)

Figure 3 as the quantity ( --7- } in the right-hand

column, with corresponding time zones indicated in the

left-hand column. In Figure 3, ,_ P(t) is the indicial

pressure difference between the upper and lower sur-

faces of the wing at point (x, y), considered positive

when it acts upward; W is the amount of uniform in-

dicial downwash due to wing motion or gust velocity,

positive downward; c is the speed of sound in the un-

disturbed medium; t is time; ' is the density of the

undisturbed fluid; and is _'_]i'. One point to be

noted in Figure 3 is the elementary nature of the

y'> 1
functions. It should also be stated that if --_, = _,

then the first two time zones are replaced by a single

time zone for which {----------_--_-_'"L)is zero; and the other

two zones are unaffected.

INDICIAL AERODYNAMIC INFLUENCE COEFFICIENT

FOR FUNDAMENTAL AREA IF y'/x '< I/M
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Figure 3. Indicial Aerodynamic Influence Coefficient

for Fundamental Area If y'/x' = 1/M

Application of the Indicial Aerodynamic Influence

Coefficient for the Fundamental Area

The present calculations are based on applica-

tion of the indicial aerodynamic influence coefficient

for the fundamental area. The Mach box grid, such

as that shown in Figure 4 for M = 1.6, is used. For

this grid, introduced by Ta Li (References 2 and 3),

the dimensions are _ normal to the stream and _z,

parallel to the stream. The pressure is evaluated

at the centroid of each box as, for example, at the

apex of the Mach forecone shown in Figure 4. Hence,

all Mach forecone areas of uniform downwash are

triangles, like 10 and 47, or rectangles, like 14 and

39. As can be seen, the portion of the plan form
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Figure 4. Typical Mach Box Grid for General Super-

sonic-Edged Plan Form

shown in Figure 4 has a rather general shape. The

x' and y' axes, which define the right-angle corners

of fundamental areas, o_iginate at the point where

pressure is sought.

Although the fundamental area shown in Figure
2 can be applied to more complicated Mach forecone

areas than are shown in Figure 4, its application to

areas such as 10, 47, 14, and 39 is representative.

The pressure difference at the Mach forecone apex
due to uniform indicial downwash on Mach forecone

:Tk
area 10 is found by substitutin_ x' = -- . v' = n into

the coefficient formula of Figure 3 to account for the

lower half of 10 in Figure 4 and doubling the result

to account for the upper half. For the triangular

(or fundamental) area 47, it is only necessary to sub-

stitute the values x' - 9Pk , y, = ,k fo r the single
2 2

right-angle corner. For Mach forecone areal 14 (see

Figures 4 and 5) one starts with the coefficient for

DEVELOPMENT OF THE COEFFICIENT FOR AREA 14

+

STEP I

the black triangle in step I of Figure 5. In a process

of superposition, one then subtracts the coefficients

for the shaded triangle in step II and the shaded tri-

angle in step III as indicated by the minus signs and
the braces in Figure 5. One then adds the shaded tri-

angle in step IV because this coefficient was sub-
tracted twice, once each in steps II and III. These

steps leave only the coefficient for the black rectangle

of step IV, which is the lower halfof area 14; and this

result is doubled to account for the upper half. Since

all the fundamental areas used in these examples have

y' 1
x_ < _, the coefficient formula of Figure 3 is used

• without modification. It is essential, however, to

modify the coefficient in the manner previously de-

y' 1
scribed when -_, > _---.

The indictal influence coefficients for the four

Mach forecone areas shown shaded in Figure 4 are

plotted in Figure 6 against a dimensionless time,
ct

The upper curve gives the pressure difference;t"

at the apex of the Mach forecone in Figure 4 due to
uniform indicial downwash on Mach forecone area

10. This is the only curve having a non-zero initial

time zone since 10 is the only area containing the

point at which pressure is found. The other three

curves define the pressure differences at that point

due to Mach forecone areas 47, 14, and 39 as indicated

in Figure 6. The principal point to be noted is the

segmented nature of the curves.

If the transverse mAriAn nf the qeEt_.-ol, a_ of e'_c_

basic-grid box were considered to be a degree of

freedom in the equations of motion, results such as
those shown here would have to be used in the Duhamel

superposition integral for the analysis of decaying or

growing oscillations. The form of this integral, the

large number of degrees of freedom required, and

the irregular time histories of the indicial coefficients

would cause extreme difficulties in high-speed ma-
chine computation. If an analog machine were used,

TYPICAL INDICIAL AERODYNAMIC
INFLUENCE COEFFICIENTS
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it would be essential to approximate these coefficients

by a different set of exponentials for each of their

segments. Although the exponential approximation
would also facilitate digital computation, the use of

a digital machine for such calculations would still

require an extremely large memory. However, these
indicial aerodynamic influence coefficients can be

used relatively easily to evaluate generalized indicial
forces. With these forces, relatively few degrees

of freedom are required. In addition, a generalized

indicial force is likely to be sufficiently smooth to

be subject to approximation by one set of exponentials

over its entire time history.

To determine the feasibility of applying indicial

coefficients to the calculation of generalized indicial

forces, a simple rigid-body example, for which exact

theoretical results are known, will be presented.

Consider a rigid, supersonic-edged delta wing at a
Mach number of 1.2. The wing is shown in Figure 7

with dashed lines and has a leading-edge sweep of 24°.

The sweep has no bearing on the exact result for the

delta wing but does influence the selection of boxes

in the approximation. The wing is covered with 96
Mach boxes for M = 1.2, the box length normal to the

stream being \ and that parallel to the stream being

/_ for the trailing-edge boxes and :_ for the rest,
2

as indicated in Figure 7. The uniform pressure as-

sumed over the trailing-edge boxes is evaluated at

the trailing edge. For any pair of supersonic lead-

ing edges, the placing of the apex on the leading edge
of the foremost box in the Mach box system has the

principal advantage of minimizing the extent to which

the boxes carry assumed constant pressure across

the apex Mach lines, where the pressure distribution

changes rapidly. Such an arrangement also alternates

the carry-over of high pressure difference and low

pressure difference, as with boxes 71 and 70, re-

spectively, in Figure 7. The rule of thumb for dis-

carding boxes along the leading edges is simply that

boxes conforming to the pattern of the basic grid are

included only if their centroids lie on the plan form

of the delta wing.

SUPERSONIC-EDGED DELTA WING
WITH MACH BOX GRID FOR M=I.2
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Figure 7. Supersonic-Edged Delta Wing with Mach
Box Grid for M = 1.2
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It should be noted that the number of chordwise

boxes at the maximum chord, namely eight, coin-
cides with the minimum number recommended by

Zartarian (Reference 5) for oscillatory functions. As

he states, more boxes would be required if the chord-
wise deformation shape had more than one half-wave.

The generalized indicial force found for the

delta wing just described is C ' that is, lift due to
Lq ,

indicial pitching velocity, q, about the apex. In Figure
8 the lift is nondimensionalized in the usual fashion,

and q is nondimensionalized with respect to the flow

speed V, and the maximum chord c o. In the present

approximation, the uniform downwash on each boxdue

to q is evaluated at the centroid of each box except

for the trailing-edge boxes, where the trailing edge
is the reference for downwash as well as pressure.

The time is made dimensionless in this case by the

flow speed V and the maximum chord c o.

LIFT DUE TO INDICIAL PITCHING OF A
SUPERSONIC-EDGED DELTA WING ABOUT ITS APEX
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Figure 8. Lift Due to ]ndicial Pitching of a Supersonic-
Edged Delta Wing About Its Apex

Figure 8 contains three curves: the exact the-
oretical result taken from Reference 6, the curve

derived from the indicial aerodynamic influence co-

efficients, and an exponential approximation based on

points taken from the curve determined by the influ-
ence coefficients. The irregularities in the curve

derived from the coefficients are the result of using

a finite number of boxes. The exponential approxi-

mation is in error relative to the exact result by a

maximum of nearly 2 percent.

The question arises as to whether such a good

exponential curve fitting could have been accom-

plished if the exact result had not been known in ad-

vance. Fortunately, a large part of the curve-fitting

procedure is quite general and does not require spe-

cific knowledge of the exact result. The first step
is to select from the function determined by the

indicial coefficients a set of points upon which the

exponential approximation is to be based. In the

present case, the p()ints chosen were those whose

abscissas lie halfway between the peaks of the ser-



ratedcurveinFigure8,withthevalleynearesttime
zero excluded.(Theinitial timezonewill bedis-

cussedlater.) Inaddition,theinitial _ = 0 and

.(-_o=Vt 61_ points of the serratedsteady-state curve

were used. The valley points were chosen, rather

than peak or mean values, because one would expect
the exact function to be smaller than the function based

on the coefficients even if the exact function were not

known. This results from the fact that the total area

of the boxes is approximately 1 percent greater than

the actual delta-wing area. Furthermore, the evalua-

tion of the downwash right at the trailing edge gives

somewhat too high a uniform downwash over the half

boxes on the trailing edge. Such a procedure for the

selection of points upon which to base the exponential

approximation in all but the earliest time region would

be expected to apply to more complicated plan forms

and mode shapes.

The second step in the exponential curve fitting

is the application of judgment as to the nature of the

indicial function in the earliest time region. This

step is aided by the general knowledge that all the

various supersonic indic ial functions calculated for

specific plan forms and mode shapes in References 6

and 7 have one or more inflection points near time

zero. However, some of the functions have one point

of inflection without a dip, and some have two points

of inflection with a dip. Thus the rejection of the

first valley in the serrated curve of Figure 8 and the

subsequent selection of the exponential approximation

with only an indistinguishable dip, essentially at time
__e,'o, re2-!red k_-___w!e_dge of the e_._.ct resu!t for the

present case. For more general indicial functions,

then, the decision as to whether to ignore the dip may

give rise to an error as large as 10 percent in the

earliest time region. This potential error can be

reduced, of course, by developing usable points closer

to time zero. The principal means of doing this is

the use of a larger number of boxes, which would

improve accuracy over the entire time span.

Once the points to approximate have been se-
lected and the behavior near time zero has been es-

timated, the third step is the actual exponential ap-

proximation. Two exponentials and a constant term
are used for the example in Figure 8. The constant

term is the steady-state value derived from the in-

dicial coefficients. It can be adjusted according to

the relative areas of the boxes and the actual wing if

desired. One of the exponentials is adjusted to fit

the points to be approximated at the higher values of

time. The other exponential, having a larger ex-

ponent, is used to match the desired properties near

time zero and damp out at larger times. Such a pro-

cedure will probably suffice for more generalindicial
functions than that of Figure 8.

As a check on the adequacy of the particular
exponential approximation in Figure 8, a frequency

response is computed over the limited range of re-

tOC o

duced frequency, --, for which the necessary tabu-
2v

lated functions are generally available. The exact
t i

results for C L q(real) and C L q(imag)' based on an

integral evaluated in reference 8 in terms of functions

tabulated in Reference 9, are plotted against _ m
2v

Figure 9. The results of introducing the exponential

approximation of Figure 8 in the Duhamel integraland
specializing for sinusoidal motion are also shown in

Figure 9. The maximum percentage discrepancy be-
tween the approximate and the exact results occurs

at the very small values of C L * _c°
q(imag) near _ =2V

2.0. Elsewhere, the largest errors are around 3 per-
cent, which is considered quite good.
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SINUSOIDAL RESULTS
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Figure 9. Comparison of Exact and Approximate
Sinusoidal Results

CONCLUSION

In view of the foregoing results and discussion,
it appears that the application of generalized indicial

forces, derived from indicial aerodynamic influence

coefficients, to the problem of predicting decay rates
in flight flutter testing will be feasible.

REFERENCES

1. Pines, Samuel, Dugundji, John, and Neuringer,
Joseph: Aerodynamic Flutter Derivatives for a

Flexible Wing with Supersonic and Subsonic Edges.

Jour. Aero. Sci., vol. 22, no. 10, Oct. 1955, pp.

693-700. (See also Pines, S., and Dugundji, J.:
Aerodynamic Flutter Derivatives of a Flexible

Wing with Supersonic Edges. Aircraft Ind. Assoc.

ATC Rep. No. ARTC-7, Feb. 15, 1954. Pines, S.,
and Dugundji, J.: Application of Aerodynamic

Flutter Derivatives to Flexible Wings with Super-

sonic and Subsonic Edges. Republic Aviation Corp.
Rep. E-SAF-2, Apr. 1954)

11



2. Li, Ta C.H.: Aerodynamic Influence Coefficients
for an Oscillating Finite Thin Wing. Chance Vought

Aircraft, Inc., CVA Rep. No. 9513, Aug. 23, 1954.

3. Li, TA: Aerodynamic Influence Coefficients for

an Oscillating Finite Thin Wing in Supersonic

Flow. Jour. Aero. Sci., vol. 23, no. 7, July 1956,

pp. 613-622.

4. Voss, H. M., Zartarian, G., and Hsu, P. T.: Ap-

plication of Numerical Integration Techniques to

the Low-Aspect-Ratio Flutter Problem in Sub-

sonic and Supersonic Flows. M.I.T. Aeroelastic

and Structures Research Laboratory T_chnicalRe-

port 52-3, Contract NOa(s) 53-564-c for Bureau
of Aeronautics, USN, Oct. 1954.

5. Zartarian, Garabed: Theoretical Studies on the

Prediction of Unsteady Supersonic Airloads on

Elastic Wings. Part 2. Rules for Application of

Oscillatory Supersonic Aerodynamic Influence Co-

61

7.

8°

9.

efficients. WADC Tech. Rep. 56-97, Part II,
ASTIA Doc. No. AD 110592, Feb. 1956.

Lomax, Harvard, Heaslet, Max. A., Fuller, Frank-

lyn B., and Sluder, Loma: Two- and Three-

Dimensional Unsteady Lift Problems in High-Speed
Flight. NACA Rep. 1077, 1952. (SupersedesNACA

TN's 2256, 2387, and 2403)

Lomax, Harvard, Fuller, Franklyn, B., and Sluder,

Loma: Generalized Indicial Forces on Deform-

ing Rectangular Wings in Supersonic Flight. NACA

Rep. 1230, 1955. (Supersedes NACA TN 3286)

Tobak, Murray: On the Minimization of Airplane

Responses to Random Gusts. NACA TN 3290, 1957.

Huckel, Vera: Tabulation of the f_, Functions
Which Occur in the Aerodynamic Theory of Oscil-

lating Wings in Supersonic Flow. NACA TN 3606,
1956.

12


