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SUMMARY

A theoretical investigation has been made of the pressure distributions on and drag
characteristics of the faces of forward-facing steps immersed in turbulent boundary layers at
supersonic speeds. An approximate solution technique proposed by Uebelhack has been
modified and extended to obtain a more consistent’ numerical procedure.

Numerical results obtained indicate that decreases in the assumed separation angle and
increases in the assumed shear-layer spreading parameter result in decreased pressure levels
and drag forces. Increases in the index of the assumed power-law velocity profiles caused
small increases in the dividing streamline pressures at the smaller ratios of step height to
boundary-layer thickness but had no significant effect on the drag. Modifications to the
width of the shear layer and reverse-flow pressure distributions resulted in reasonably good
agreement between theoretical and experimental face pressure distributions for moderate ratios
of step height to boundary-layer thickness (from 2 to 7). By couphng a decrease in assumed
separation angle with an increase in the shear-layer spreading parameter, the modified theory
can be extended empirically to give good agreement between theory and experiment for
ratios of step height to boundary-layer thickness as low as 0.05 at free-stream Mach numbers
of 1.61 and 2.20. There is some disagreement between the results obtamned in this investi-
gation and those of Uebelhack which apparently cannot be ascribed to different methods of

computation.
INTRODUCTION

The study of supersonic turbulent boundary-layer separation due to a forward-facing
step has many useful applications. At low ratios of step height to boundary-layer thickness,
the data and analytical procedures are helpful in assessing the effects of manufacturing
discontinuities on aircraft drag and performance, at larger ratios, the results can be used to
predict the effectiveness of spoilers and deceleration devices. The separation phenomena
have been extensively investigated both theoretically and experimentally, yet in neither case
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has much emphasis been focused on the flow at or near the step face From the standpoint
of theory this lack of emphasis stems primarily from the complexity of the problem. The
lack of expernimental attention results from the very small models that usually must be used
which makes it very difficult to install a sufficient number of static orifices to reasonably
determine the pressure distnibution over the step face. Inasmuch as the flow near the step
face determines the drag characteristics of forward-facing steps, a need exists to investigate
this flow region. A logical first step appeared to be a study of the utility of the theory
proposed by Uebelhack (ref. 1), the results of this study are the subject of the present paper.

Uebelhack’s theory 1s based on a highly simplified phenomenological model but appears
to be in good agreement with experimental results. The theory is stated to be applicable
only for ratios of step height to boundary-layer total thickness of greater than 2 (ref. 1)
Also the theory provides an average pressure for the step face and a peak or reattachment
pressure which 1s the stagnation pressure on the streamline dividing the flow passing over the
step from that being recirculated in the separated-flow region In this study the implications
of the theory as to the pressure distributions on the step face are examined and the require-
ments for extending the usefulness of the theory to lower ratios of step height to boundary-
layer thickness are established. In addition, variations in the basic parameters are investigated
in more detail than by Uebelhack and some errors in procedure and experimental data inter-
pretation are corrected. Calculations were made over a Mach number range from 1.61
to 6.0, over a range of ratios of step height to boundary-layer total thickness from 0.001
to oo, and over a range of boundary-layer velocity profiles from the 1/7 to the 1/11 power

laws.
SYMBOLS

3y 53523 arbitrary constants (eq. (13))
Ca Crocco number, uua = uu2,e

max max
CD drag coefficient
d dividing streamhine
h step height
j inviscid jet boundary streamline
M Mach number
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mass, center of mixing

Prandtl number

power-law exponent for velocity profile

pressure

Reynolds number

total temperature

velocity along x-axis

velocity along y-axis

longitudinal coordmate in original coordinate system (fig. 20)

correction for mixing length (eq. (A25))

length of the mixing region (fig 1)

longitudinal coordinate in modified coordinate system or effective length of

mixing region (fig 20)

lateral or step coordinate

shock-wave angle, degrees

specific-heat ratio

boundary-layer thickness

boundary-layer displacement thickness

dimensionless coordinate,

dimensionless coordinate,

yo/x

yo/x



Subscnipts:

max

ra,rb

boundary-layer momentum thickness

separation angle, degrees

density

shear-spreading parameter (eq. (2))

u

u
velocity ratio, _u_2_ T 2
a 2.e

region of higher velocity in two mixing streams (identical to region above the
shear layer behind the oblique separation shock)

region of lower velocity in two mixing streams, also region of reverse flow
dividing streamline

boundary-layer edge

mviscid jet boundary streamline values

center of mixing

maximum

stagnation conditions

large positive and negative reference (fig. 18)

ahead of oblique separation shock (free stream)

behind oblique separation shock



THEORETICAL APPROACH

The calculation of the pressures on the front of a forward-facing step is based on
Uebelhack’s shear-flow model which is shown schematically in figure 1. As the flow
approaches the step face, the boundary-layer flow separates from the plane wall, inducing an
oblique shock. Behind the shock, the boundary layer is assumed to change to a free shear
flow inclined at a constant separation angle 0 to the surface. The shear flow expands
as it proceeds downstream and reattaches to the step face with part of the flow passing
over the step and part of the flow being reversed in direction in the separated-flow region
near the wall. No physical mechanism is provided for reversing the flow. For analysis, the

basic flow model 1s divided into the following four regions
(1) Separation region
(2) Free-mixing region
(3) Reattachment region
(4) Reverse-flow region

The concepts and most important assumptions used to analyze the individual regions
are described briefly in this section. (For a more detailed description of the method, see
ref. 1.) A concise derivation of the basic equations 1s presented in appendix A and a
description of the calculation procedure is presented in appendix B. Uebelhack’s derivation
of the basic equations 1s repeated in this section since some modifications were made to the
procedure as well as corrections of a number of typographical errors 1n reference 1.

(1) Separation Region

The flow separates from the wall before reaching the step face at a distance deter-
mined by the separation angle 6, (fig. 1). Ths angle is determined from correlation of
experimental results (ref. 1). At the separation point an oblique shock s induced. Ahead
of the shock, the boundary layer is characterized in terms of 51, B’i‘, and 61. Behind
the shock, the new boundary-layer characteristics are calculated by use of the oblique-shock
theory. The boundary-layer momentum thickness behind the shock 02 is the important
parameter connecting mass and momentum flux. In terms of the imtial boundary-layer

characteristics and flow-separation parameter 62 1s found to be
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where [ 1s the oblique shock angle (fig. 1), Py and p, are the static pressures ahead
of and behind the shock, respectively, and M is the Mach number outside the boundary

layer behund the shock

2,e

(2) Free-Mixing Region

The boundary layer behind the oblique shock 1s assumed to change instantaneously to
a shear layer having the same momentum thickness as the boundary layer immediately behind
the shock. For simplicity, the following assumptions are made.

(1) The shear layer expands linearly.
(2) The mixing occurs at the constant static pressure Py
(3) The shear-layer velocity distribution can be approximated by an error-function profile.

(4) The flow 1s isoenergetic with umit Prandtl number (To = Constant, NPr = 1).

The linearly spreading shear layer requires the use of a spreading or mixing param-
eter ¢ which is based on experimental correlations. For this investigation ¢ was
taken according to Korst and Chow’s suggestion for compressible fluids (ref. 2):

o =12 + 2'76M2,e 2
Reference 3 presents a more recent correlation which yields values of o nearly twice as
large as those indicated by equation (2). The recommended correlation is, however, highly
tentative and intended for fully developed shear layers, whereas for practical ratios of step
height to boundary-layer thickness (h/§ < 35), the experimental shear layer generally cannot
be expected to be fully developed. Equation (2) yields results that appear to be in reason-
able agreement with the still developing shear layers of reference 3. For h/61 > 5, the
shear layer may become more fully developed and higher o values may be appropriate.



The shear layer must be properly located- specification that the momentum thickness
of the shear layer be equal to that of the boundary layer places the shear layer at the
correct longitudinal location; specification of the angle 6, alines the layer at the desired
angle with reference to the wall. Proper location of the center of the shear layer normal
to the wall at the separation point requires two adjustments. The first of these is concerned
with the fact that as the shear layer grows in width in the downstream direction from the
virtual origin, the center of the layer, which 1s specified in terms of the symmetry of the
velocity profile, 1s continuously displaced in a normal direction away from the imitial position
at the virtual origin. The adjustment is calculated by invoking the laws of conservation of
mass and momentum within a control volume enclosing the upper and lower bounds of the
shear layer. (See appendix A.) The second adjustment must account for the thickness of
the boundary layer immediately behind the separation shock. This adjustment is accomplished
by the assumed injection of air into the region below the shear layer to account for the

momentum thickness of the boundary layer (See appendix A.)

(3) Reattachment Region

As the shear flow approaches the step, a part of the flow reattaches to the step face,
while the remainder passes over the step (fig. 1) The streamline that identifies these two
parts of the flow is defined as the dividing or reattachment streamline and the assumption
15 made that this streamline reattaches at the outer corner of the step. The present theory
does not provide any physical mechanmism for reversing the flow. In effect, the assumption
is made that the flow in the reattaching shear layer below the dividing streamline can be
stagnated without any turning of the flow or spreading of the streamlines. This procedure
allows the retarding force on the step face to be calculated at the price of the unaccounted-
for disappearance of the mass flow contained in this part of the shear layer.

(4) Reverse-Flow Region

In the Uebelhack separated-flow model, the flow beneath the shear layer is assumed to
be reversed at constant velocity (fig. 1) with constant static pressure P, behind the sepa-
ration shock. The mass flow 1n this region is equated to the mass flow in the reattaching
shear layer below the dividing streamline at the step face. This procedure allows evaluation
of the force on the step face adjacent to this region required to accelerate the subject mass
flow from zero velocity to the final reverse-flow velocity; again the mass flow must appear
unaccountably at the step face.

Inasmuch as the experimental data do not indicate uniform reverse-flow velocities, the
theory was modified for some calculations with the assumption that the pressure distributions
In the reverse-flow region are mirror images of those in the shear-layer portion of the step



face with the focal or turning point located at half the step height  This approach will he
defined as the *‘vanablc mny4,"~ method.

Final Equations

One of the final results of the dnalysm 15 an antegral over the pressure distribution on
the step face. This integral 1s

1 p-p, o nd(l_('zz_
5 R M o mcos O
0 2 |- 2 ¢
_ 2 2
(- Ao _
P 5 d o al ! (3)
0 - —
1 - Ca b 1 - Cyo =T <’7d - nrh) cos 0
where
X longitudinal length of shear layer
nq dimensionless coordinate for dividing streamline
7_’rb arbitrary dimensionless coordinate at which the error-function velocity 1s very
small
Ca = Uy e/ Umax isoenergetic Crocco number
¢ = u, / Uy o error-function velocity ratio
n = yo/X, dimensionless lateral coordinate
h height of the step face

This pressure integral can be related to the free-stream static pressure existing ahead of the
separation shock by
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From the preceding pressure integral, the drag coefficient on the step face is calculated
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Uebelhack (ref. 1) did not consider the effective pressure distribution on the step face
except for the stagnation pressure on the dividing streamline. To calculate this pressure he
used the equation

-1
Po.d ( vy -1 2)7 )
== =1 + M —= 6
Mg (6)

where Pod is the stagnation pressure at the end of the dividing streamline and Md is
the Mach number on the dividing streamline. The use of this equation, which applies to
subsonic 1sentropic flows, is not compatible with the assumption of constant pressure and
total temperature in the shear layer. Uebelhack does not specify his exact procedure for
the case where the Mach number on the dividing streamline 1s supersonic. Because the
immplied pressure distributions on the step face were of interest in this investigation the
correct equations for the pressures were derived from the pressure integral (eq. (3)) and are
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for the shear-layer portion of the flow and
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for the reverse-flow portion of the step. Equation (4) 1s modified in equations (7) and (8)
to the form
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When the free-stream Mach number and step height are sufficiently large, a part of the
shear layer in the separated-flow region 1s supersonic (for example, for h/61 > 2 at
Ml,e = 5). For all reattachment pressures in this case, but only for a few drag and pressure
distribution calculations, 1t was assumed that this flow was decelerated through a normal
shock. The equations given in reference 3 were utilized to obtain the pressure ratio
po’d/p1 when accounting for the normal shock. In the reverse-flow region, shocks cannot
exist because the flow is accelerating.

RESULTS AND DISCUSSION

Constant 7

Comparison with Uebelhack’s results.- A comparison of the results computed in this

mvestigation with those of Uebelhack 1s presented in figure 2. Here, the dividing-streamline
stagnation or reattachment pressure p, d/P1 and drag coefficient Cpy are plotted as a

function of free-stream Mach number M and the ratio of step height to free-stream total

boundary-layer thickness (step-height ratw;’e h/61. For a direct comparison with Uebelhack’s
results, the same basic approach with constant n,, was utilized and the dividing-streamline
pressure ratio was computed by the same isentropic flow procedure used by Uebelhack in
his calculations. If the dividing-streamline Mach number is higher than 1, a normal shock
is taken into account for the Po,d/Py calculation. The calculations were made for a range

of M1 o from 2 to 6 and for a range of h/(‘i1 from 0.1 to 100 (essentially o).

The curves show that the present results are m only fair agreement with Uebelhack’s
results. The Po,d/P; curves of the present investigation are more linear and more
uniformly spaced in both the Mach number and h/6l plots. In the case of Cp,
Uebelhack’s results show more variation with h/61 than the present calculations and, in
fact, show an increase in Cp with a decrease in h/B1 which 1s contrary to expectation.
The reasons for the major part of these discrepancies, which are unexpected because the
same basic equations are used for the calculations, are not known.

Note that the curves indicate that Cp and Po,d/Py asymptotically approach limiting
values as h/61 - oo, The reason for this is that for very large step-height ratios, the
boundary-layer thickness is only a minute part of the step height. The boundary layer
provides for the separation of the flow but the detail characteristics of the initial boundary
layer fade into insignificance. Thus, Reynolds number effects may be expected to exist for
low values of h/ES1 but lLittle or no effects are to be expected for higher values of h/61.

The static pressures and the drag coefficients corresponding to these static pressures
which result from turning the free-stream flow through the separation angle 6; are also
shown in figure 2. This makes it possible to determine the relative contribution of the
static and dynamic pressures to the drag coefficient and dividing-streamline stagnation pressure.
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The results indicate that the contnbution of the dynamic pressure 1s low for low Mach

numbers and low values of h/6 and high for high Mach numbers and high values of h/él.

1)

Effects of changes in 95 and o¢.- In order to apply the theory, two empairical

factors, the separation angle 8y and the spreading factor o, are used. These are based on

correlations of questionable accuracy; consequently, figures 3 and 4 have been prepared to

indicate the sensitivity of the present method to changes in these two parameters. Calcula-
tions are presented in figure 3 for Bs + 1° and Bs - 1° and in figure 4 for 09¢ and
l.1o, where the values of 6, and ¢ are adopted from reference 1.

A decrease of 2° in 65 (fig. 3) results 1n a significant decrease in the dividing-
streamline stagnation pressure and in the drag coefficient. The effect 1s largest for the
highest step-height ratios and free-stream Mach numbers

An increase of approximately 20 percent in the value of ¢ (fig. 4) decreases appre-
clably the values of the dividing-streamline stagnation pressure and drag coefficient. The
strongest effect occurs at the lowest step-height ratios and highest free-stream Mach numbers.
A study of more recent correlations for o (ref. 3) indicates that ¢ probably should be
a function of h/81, R61’ and Mach number and this could have some influence on the
shape of the drag curves for h/Bl > S.

Effects of changes in velocity profile.- The effects of the changes in the power of the
velocity profile from 1/7 to 1/9 to 1/11 are illustrated in figure 5. As expected there is

only a small effect of the change of the velocity profile at the higher values of h/81, but
the effect becomes stronger as h/61 decreases For po,d/pl, the greatest change, an
Increase with increase in power index, occurs at the highest Mach number, for CD, the
largest change, a decrease with increase in power index, occurs at the lowest Mach number
The maximum varation n po’d/p1 and Cp is less than 8 percent

Pressure distributions.- The pressure integral used to calculate the step-drag coefficient

implies a certain pressure distribution on the step face. This pressure distribution 1s made

up of two components, the static pressure due to turning the stream flow through the
separation angle 95 and the pressure derived by stagnating the flow in the shear layer as
well as reverse-flow region. Some typical implied pressure distributions are shown in figure 6
for a range of ratios of step height to boundary-layer thickness for Mach numbers of 3 and 6.
For reasons that will be discussed later, the assumption was made that there were no normal
shocks 1in the flow even if the flow was somewhere supersonic. For a particular step-height
ratio the pressure distribution region 1s divided into two parts. One 1s in the shear-layer
region and another is in the reverse-flow region. In the shear-layer region, the step-face
pressure decreases from the dividing-streamline stagnation or peak pressure nearly exponentially
toward the static pressure of separation. In the reverse-flow region, the step-face pressure i1s

uniform everywhere because of the assumption of uniform velocity and uniform static
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pressure behind the separation shock. There is a discontinuity in the flow at the junction
of the shear layer and reverse-flow region. The results also indicate that the step-face pres-
sures are of higher magnitude for higher Mach numbers with the dynamic pressure component
increasing i1n importance.

As h/61 decreases, the dividing-streamline stagnation pressure decreases, but the shear-
layer height on the step face increases. Thus the reverse-flow height on the step face also
decreases and results in higher dynamic pressures in this region. For very small values
of h/61, the pressures in the reverse-flow portion exceed the peak pressure at the outer
corner. (See fig. 6.) This 1s physically impossible and explains the rapid rise of the curve
of drag coefficient with decreasing h/61. (See fig. 2(b).) Use of energy conservation
would probably yield an improved estimate of the pressure in the reverse-flow region but
with an increase in complexity.

Variable n,

Pressure distribution.- The previous problem is bypassed by fixing the junction of the

shear layer and the reverse-flow region at the center of the step face. For this condition,
the mn 18 not kept constant, but is allowed to vary so as to satisfy the previous condi-
tion. The resulting pressure distributions calculated by this method are shown in figure 7
for Mach numbers of 3 and 6 for the same range of h/81 as in figure 6. In the shear-
layer region, the pressure distributions are almost the same as those in figure 6, but in the
reverse-flow region, the pressure distributions are ess'entially independent of h/61. This
characteristic tends strongly to delay the breakdown of the numerical calculations for low
step-height ratios, but the theory must still ultimately deteriorate as h/éi1 decreases

/

because the pressure integral (eq. (3)) 1s singular for h/(S1 = 0.

Reattachment pressures and drag coefficients.- Figures 8(a) and 8(b) show comparisons

of the dividing-streamline pressures and drag coefficients calculated by both the variable and
constant 7ny methods. For both methods, the pressure ratio p(),d/l)l was computed

by means of the isentropic equation (6). For the case of po’d/pl, there is no signif-
icant difference between the results of the two methods for h/61 > 1.0. However,

for h/<31 < 1.0, the vanable Np Mmethod generates po’d/p1 values that are higher than
those calculated by the constant N;p Mmethod. The variable 74 method results in some-
what higher Cp values at the higher values of h/c‘il and lower values at lower h/ZSl
values, cumulating in a curve that shows a decreasing drag with decreasing h/61 and 1s
more in agreement with experimental trends Also, the tendency of the theory to break
down (as evidenced by the upturming of the drag curves at the lower values of h/81) is
delayed to at least an order of magnitude decrease in step-height ratio and suggests the
possibility of extending the usefulness of the theory to these lower values of h/61.
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Reattachment pressure derived from pressure integral.- The use of Crocco’s integral or
relationship between velocities and densities with the static pressure and stagnation tempera-

ture held constant yields the relationship

2
p 1 -C
2 ____2a2 (10)
Pa ) _cle

The use of the isentropic relationship in equation (6) (for shockless flow)

p - ~-1P
_g,lg=(l+721 2)'71 2

cannot satisfy both these requirements simultaneously. For a constant-stagnation-temperature
adiabatic process, the density relationship can be shown to be (ref. 4)

1
Py 1 - Ci -1 -
T\ g

In equations (10) and (11), °2/pa increases as ¢ increases as required in the shear
layer, but the rates of increase are completely different due to the different power index.
Thus, po,d/p1 calculated by equation (6) i1s not compatible with the problem. For
this reason the reattachment pressures were also calculated directly from equation (7)

(with ¢ = ¢d) which was denived from Uebelhack’s pressure integral. The results are
presented 1n figure 9 and are compared with present calculations made by Uebelhack’s
method (eq. (6)).

The dividing-streamline stagnation pressure calculated by Uebelhack’s method is not in
agreement with that calculated by the integral equation. There 1s considerable difference
in values at low Mach numbers and low values of h/61. The integral method gives pres-
sure ratios Po,d/Py that are higher than those calculated by the Uebelhack’s method for
the lower Mach numbers and the ratios increase more slowly with the increase in Mach
number. With the exception of Ml = 6, the integral method gives higher values of pres-
sure than Uebethack’s method for the range of h/ZS1 considered.

Mach number on dividing streamline.- The Mach number on the dividing streamline
is of interest since 1t indicates the type of equations required to determine the conditions
within the separated-flow region for more exact methods Consequently, figure 10 shows
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the dividing-streamline Mach number My at the outer corner of the step, both as a func-
tion of M1 . le and h/61

and of h/61. The figures indicate that My increases as M
Increase. For Mle > 3, Md 1s supersonic for h/(S1 > 4, For M = 5, Md 1S

) l,e
supersonic for h/(Sl > 1. These plots indicate that for many supersonic free-stream Mach
numbers and step-height ratios, one should consider the possibility of a normal shock near

the step face if accurate pressure distributions are required.

Effect of normal shock.- The effect of a normal shock on the flow 1s illustrated in

figure 11. The most severe practical case for the present range of calculations 1s considered
(Ml,e =6 and hfs = 10).

The effect of the normal shock 1s significant on the pressures near the dividing
streamline when the flow 1s supersonic, but the effect on the integrated drag coefficient Cp
1s only about 3 percent 1f the same total pressure loss 1s assumed 1n the reverse-flow region
as mn the shear layer. This error in the drag coefficient 1s so small that it was not con-
sidered necessary to include the normal shock effect in the drag calculations in this report.
Due to the normal shock, the static pressure at the step face 1s drastically changed and is
no longer constant. Consequently, the assumption of constant static pressure everywhere
behind the oblique shock 1s not valid with the normal shock present and any attempt to
minclude this variable static pressure in the theory greatly increases the complexity of the
calculations.

The largest error ACD/CD resulting from negligence of the normal shock effect
on Cp occurs at the higher Mach number nvestigated (Ml,e = 6) and is shown as a
function of h/(S1 in figure 12. The ratio ACD/ Cp s the difference in the integrated
drag coefficient with and without a normal shock existing whenever the flow 1s supersonic.
The curve indicates that ACD/CD increases rapidly from 0.001 at h/61 =1 to an
asymptotic value of about 0.04 for h/(?i1 > 100 Thus, the effect of the normal shock

on Cp can be neglected, for the range of conditions covered 1n this report.

Comparison With Experiment

Pressure distributions.- Because of the great number of simplifications and assumptions

involved in the present analysis, the accuracy and usefulness of the theory can only be
established by comparison with experiment Confidence in the theory can be enhanced

only if it can be shown that the pressure distributions obtained by the theory are in
reasonable agreement with experimental ones. Comparisons are presented in figure 13. Inas-
much as the experimental data are known not to have a constant pressure distribution on
the step face in the reverse-flow region, the theory is modified at this point with the
assumption that the pressures in the reverse-flow region are a mirror image of those in the
shear-layer portion of the step face with the focal or turning point located at half the step
height. For this special case, the requirements of conservation of mass and energy are

14



automatically satisfied and the momentums in the two regions are equal although in opposite
directions. Consequently, this special case meets much more stringent requirements than the
general theory where only conservation of mass is involved.

In general, the theoretical pressure distributions have a reasonable similarity to the
experimental ones and are of the correct order of magnitude. The comparison suggests,
however, that the assumed separation angles 6, are too small at all Mach numbers. An
increase in 6, will also tend slightly to improve the agreement in the shapes of the
theoretical and experimental curves in the shear-flow region. The experimental data indicate
that the pressures in the reverse-flow region are not as high as those in the shear-flow area.

This trend suggests that the effective static pressure, due to 0, 1s not constant but decreases

with distance from the upper corner of the step. The mmimu:n value in the experimental
pressures appears to occur in the general area of y/h = 0.4 rather than the value of 0.5
assumed in the theory. Note, finally, that many of the experimental pressure distributions
are not truly adequate to determine reliable values of either the dividing-streamline stagnation

pressure or step-face drag coefficient.

Reattachment pressures and drag.- A comparison of the theoretical and experimental

values of Pod/P and Cp corresponding to the pressure distributions of figure 13 and
additional available experimental data are presented in figure 14. Experimental data are
taken from references 1 and 5 to 10. Table I presents the relationship between the symbols
and basic parameters for the experimental data along with the sources from which the data
were obtained. In some cases the extrapolations of some of the experimental data were so
large that the Pod/Py and Cp values that were determined were considered to be too
unreliable to justify plotting. In some instances the experimental Cp values determined
from experimental pressures do not match those determined by Uebelhack. In particular,

the data of Sterrett and Barber (ref. 5) as presented by Uebelhack appear to be in error.
Furthermore, some of Uebelhack’s data could not be plotted as a function of h/6 i because
insufficient information was given for identification.

The comparison indicates that in general the theoretical reattachment pressures are in
good agreement with experiment as far as magnitudes of values and trends with Mach
number and step-height ratio are concerned. There is some scatter in the expermental data
with the data of Uebelhack appearing to be consistently lower than the data from the other
sources. The data of Sterrett and Barber also appear to indicate a much more rapid rise
in po’d/pl with h/51 than predicted by the theory for the higher experimental step-
height ratio. More data are required to establish whether this is a true trend or merely
an experimental aberration.

The drag results, on the other hand, indicate that the theory tends to generally under-
predict the experimental values but predicts the correct variation with Mach number. The
theory also probably predicts the correct variation with h/61; however, the experimental
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data are too meager and the scatter too large to verify this fact satisfactorlly. The inability
of the theory to predict the correct magnitude of the drag coefficient is ascribed to the use

of too low values of the assumed separation angle 60y over most of the Mach number range.

In view of the erroneous density relations used to determine Po,dfP ;> the improper
interpretation of Sterrett and Barber’s results, and the incorrect calculated trend with h/&l,
the agreement between theory and experiment presented by Uebelhack appears to be some-
what fortuitous.

Empirical Extension of Theory to Small Step-Height Ratios

The theory was developed for cases where h/61 2> 2, however, there is a great need
to develop drag-prediction methods for h/61 < 2. Consequently, an nvestigation was made
to determine the requirements for developing such an extension using some unpublished
experimental data together with data from reference 6 as a gwde.

The unpublished data (see ref. 11 for some limited results) indicated that the step-face
pressures and drags decreased to O as h/61 approached 0. Furthermore, the data indicated

that both the static pressures due to the separation angle 6. and the dynamic pressure in

the shear layer had to decrease with decreasing h/61. In osrder to achieve this trend, a
decrease 1n GS had to be coupled with an increase in the shear-spreading parameter o.
Obviously, a large number of combinations of 6 and o could provide the desired
results. In order to keep the calculations orderly, the assumption was made that there was
a functional relationship between 6, and o and that this relationship could be expressed

as
abg = f(Mz,e> (12)

The relationship between 6 and h/61 was assumed to be given by

2 3
— h h h
0 = ay + al(lng> + 32<1n5—1—> + a3énq> (13)

This expression provided the best fit to the experimental data of the 8 types of expressions
mvestigated. Equation (13) allows 6y to decrease very slowly at first from the reference
1’ then decrease much more rapidly at the lower step-
height ratios, and end with a slow decrease in 6¢ toward 0 as h/81 tends toward O.

Calculations were then made at M1 e = 1.61 to determine the boundary conditions that

value at some chosen value of h/6

would fit the empirical curve to the’expenmental data. These boundary conditions are

16



Upper boundary conditions.

=7 6, = 12.25° =0 (14)

Lower boundary conditions:

h 8BS
— = 0.004 GS = 0.004° —— - = 0.004 or 0.0 (15

5 a(h/s 1)

The same boundary conditions except for upper 6 (for which 13.25° was used) were
then used to calculate the theorefical curve at Ml,e = 2.2. The results of all these calcu-
lations are shown in figure 15 where both po’d/p1 and CD are plotted as functions
of h/61. The experimental data are shown in the form of shaded bands. The widths of

these bands are primanly due to Reynolds number effects and not scatter. These Reynolds

[am—

number effects can be readily incorporated into the theory; however, no attempt was made
to do so in the present investigation. These experimental Reynolds number effects are
considerably larger than the theoretical effects calculated for changes in the index of the
power-law velocity profile, and hence suggest then an additional parameter not considered
herein may be involved.

Figure 15 shows that, in general, theory 1s in good agreement with experiment at
both Mach numbers. Note that this agreement extends down to h/<‘31 in the order
of 0.001 for the drag coefficients despite the fact that the pressure integral (eq. (3)) 1s
singular for h/61 = 0. The experimental data for po’d/p1 were not plotted to such
low values of h/51 because the models had become so small in height that, in the
extreme case, only one or two ornfices were available to represent the pressure distributions,
and pressure peaks could not be isolated. Note also that the experimental data never fall
below the static pressure curves and thus appear to confirm a reasonable division between
static (OS) and dynamic pressure (0) effects in the extended theory

The value of h/61 = 7 required for the upper boundary condition in matching the
theory with experiment may appear to be too high and the possibility exists that the
function chosen to relate BS to h/61 may be too elementary and the approach of the
extended theory to the basic theoretical curves may occur more sharply. Attempts to resolve
the problem, however, uncovered just as many reasons why the value may be valid as why

the value 1s too high.

Although the theory appears to be in good agreement with experimental data for h/61
ratios as low as 0.001, recommendations are made that this theory not be apphed to h/61
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values less than about 0.05 because of the increasing Reynolds number effects, which are not
mcorporated into the empirical extension of Uebelhack’s basic theory.

Finally, a comparison is made of some pressure distributions predicted by the extended
theory with some unpublished experimental results obtamned at Mach numbers of 1.61
and 2.20 (fig. 16). An effort was made to pick experimental data that was representative
of the central regions of the shaded areas in figure 15 and also reasonably close to the rela-
tive location of the theoretical lines in the shaded areas. For the results at a Mach number
of 2.20, the Rgp = 0.742 x 106 data correspond more closely to the center regions of
the shaded areas and the Rg; = 0.524 X 106 data relate more closely to the areas next
to the theoretical curve 1n the h/<5l range of interest. As before, the theoretical reverse-
flow pressures are assumed to be mirror images of those in the shear-layer region. Note that
the theoretical and experimental step-height ratios do not coincide exactly.

In general, the agreement between theory and experiment is good. A significant feature
indicated by the experimental results 1s that the reattachment poimnt (or the dividing stream-
line) does not occur at the upper corner of the step but at some distance below it and that
this distance increases as h/(S1 decreases. Behrens (ref. 7) also notes this effect. What
this means 1s that the shear-layer flow above the reattachment point passes over the top of
the step and does not enter the separated-flow region. Consequently, for a more correct
comparison with experiment the theoretical region should be foreshortened to include only
the distance from the wall to this peak in pressure. Such a foreshortening will substantially
improve the agreement between the theoretical and experimental pressure distributions and
move the theoretical point of minimum pressure closer to the y/h region of 0.40 to 0.45
where the experimental minimums generally occur. Of importance 1s the fact that most
experimental results do not contain sufficient detaill of the pressure distributions near the
upper corner, making it difficult to accurately estimate reattachment pressures or face-drag
coefficients. Finally, the agreement between theory and experiment would not have been
quite as good if no effort had been made to match the data approximately for Reynolds
number effects.

Another point of interest revealed by this analysis 1s that as h/<‘5l decreases the com-
ponent of pressure contributed by the dynamic pressure decreases much more rapidly than
the component contributed by the static pressure rise across the separation shock. Finally,
mention should be made of the fact that the static-pressure measurements of Behrens (ref. 7)
on the wall ahead of the step and also outside the shear layer indicate that the linear shear
layer probably does not exist for h/<51 < 3. Thus, it is quite surprising that the extended
theory appears to perform so well.
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SUMMARY OF RESULTS

A theoretical investigation has been made of the pressure distributions on and drag
charactenstics of the faces of forward-facing steps immersed 1n turbulent boundary layers
at supersonic speeds Uebelhack’s theory was used as a basis for the calculations but the
theory was modified and extended, and a different method was used to obtain the solutions.
The results of thus investigation are summarized as follows

(1) Decreases in the assumed separation angle and increases in the assumed shear-layer
spreading parameter result in decreased pressure levels and drag forces, with the separation
angle affecting the effective static pressure and the spreading parameter the dynamic pressure
in the separated-flow region.

(2) Increases in the index of the assumed power-law velocity profiles caused small
increases 1n the dividing streamline or reattachment pressures at the smaller ratios of step
height to boundary-layer thickness but had no significant effect on the drag.

(3) Modification of the theory so that the shear layer always terminates at the center
height of the step face and replacement of the rectangular pressure distribution of the reverse
flow with the mirror image of the shear flow resulted in increased accuracy in the calcula-
tions and 1n reasonably good agreement between theoretical and experimental face pressure
distnibutions for moderate ratios of step height to boundary-layer thickness (from 2 to 7).

(4) By coupling a decrease in assumed separation angle with an increase in the shear-
layer spreading parameter, the modified theory can be extended to give good agreement
between theory and experiment to ratios of step height to boundary-layer thickness decreas-
ing to values as low as 0.05 at free-stream Mach numbers of 1.61 and 2.20.

(5) There 1s some disagreement between the results obtained in this investigation and
those of Uebelhack which apparently cannot be ascribed to different methods of computation.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va. 23665

August 26, 1975

19



APPENDIX A

THEORY

The primary assumptions in Uebelhack’s shear-flow model for boundary-layer separation

ahead of a forward-facing step have been mentioned in the section entitled “Theoretical

Approach.” For details on the secondary assumptions and general development, see refer-

ence 1. - The main objective herein is to point out some deviations from Uebelhack’s
approach that were utilized in the present paper and to correct the typographical errors

in some equations in reference 1.

Separation Region

The boundary-layer momentum thickness 02 behind the oblique shock at the separa-
tion point is an important parameter combining mass and momentum flux for the free-mixing

region and 1s calculated as follows (see fig. 17):

The conservation of mass in the boundary layer across the oblique shock is given by

fal ay = [ %2
0 plul y = 0 P2u2 dy

The momentum flux across the oblique shock in the x-direction 1s given by

8 2 _ P 2
p151 +./0‘ 10 dy = p251 + -/0. PyUsy dy cos 6

The oblique-shock theory is then applied to calculate

Ple e _sm (5 - Bs)
Pre"2,e sin
and
2
Pl,eul,e _ lel,e ) sin (B - Gs)cos (B - GS)
P 2,eu%,e p2M%,e sn p cos
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APPENDIX A

Introduce the boundary-layer displacement and momentum thicknesses defined by:

a*=f5(1_ P“)dy (AS5)
0 Pele

o=f5 2L (1 - &)ay (A6)
0 Pele Ue

Use of equations (A3) to (A6) m equations (Al) and (A2) allows the calculation of the
boundary-layer momentum thickness as follows-

- 1 . sin (B - 6 cos (B - By
<51 - 8% - 01)

s cos B

Py - Py

sin (8 - 6)
—(5 —6*)————8— cos 8. + & (A7)
1 1 sin B S 1 2
1M
Free-Shear Layer
The shear-layer velocity profile in the mixing region is approximated by the error

function profile of the form

u u

_22__—2=¢=l[1 + erf (n):] (A8)

u, Uy e 2
where

2
erf (p) = ——zfn ¢ d¢ (A9)
VT Jp
=9y

n= 3 (A10)

where ¢ 1s a dummy variable.
The spreading factor ¢ is not known exactly for compressible fluids; Korst and

Chow (ref. 2) suggest the following correlation

=12 + 276M (A11)

2,e
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For the constant stagnation temperature and constant static-pressure flow with unit
Prandtl number, Crocco’s integral relationship is applicable. In this case, the density ratio 1s

given by

2
by b, 1-C

2. 2. - (A12)
Pa Poe 1 -Cy

As the shear layer grows in the downstream direction from the virtual origin, the
origin of the coordinate system, which is anchored to the center of the velocity profile, is
displaced toward the lower velocity. The coordinate shift y, 1s determined from the
continuity and momentum equations using the control volume indicated in figure 18. The
continuity equation is

X Yraty
~PpUp¥rb * Palla¥ra * /(; PpVp % = ,/; r+y ™ pu dy (A13)
b’ 'm

The momentum equation is

2 2 X — [ Yrat¥m 2
~PLUY + P MY +f PV dx [ pu” dy (A14)
0 rbtYm

In these equations y,, and Yy are arbitrary large negative and positive values,
respectively, such that

u(yra) - u, = u2,e
and
u<yrb) = U
and the integral value does not change significantly for further increases in the limits. After

combination of equations (A13) and (A14), normalization with pauy,, and with the setting
of up = 0, the result becomes

y 2
Y = Vra —f fapiqs dy (A15)
Yib a
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By use of the definition of the equations (A10) and (A12), equation (A15) becomes in
nondimensional form

2\.2
n.=mn., - [ (l;&)(b_ dn
Nrb I - Ca¢

The jet boundary streamline n which separates the onginal jet from the entramned
part of the flow, for this case of rectangular initial velocity distrnibution can be calculated
from the continuity equation (see fig. 18)

Yooty
Pala¥ra = f M oy dy
v (A17)

After partial integration and conversion of the above equation to dimensionless form, it
becomes

- / Mra ,(1 — C%_)d’_ dn (A18)

Mra =~ Mm 3
m; I - Ca¢2

With the use of equation (Al6), equation (A18) 1s further rearranged to calculate the jet
boundary streamline

_ 2 _ 2 _2\42
fn.] (1 Cza)g dn =f"7ra (1 Cza);b dq - fnra (1 C;)z dn (A19)
mp - Caf My 1 - Cgo Ty 1 - Cao

In the absence of a boundary layer, the 7 streamline is i1dentical to the dividing
streamline ng. When an initial boundary layer exists, the dividing streamline must be
displaced to lower velocities 1n the shear layer to allow for the momentum losses in the
boundary layer. This effect can be created by injecting a mass flow of zero x-momentum
into the shear flow. (See fig. 19.) From the continuity equation, the mass mg; between
the jet boundary streamline m, and the dwviding streamline 74 is given in dimensionless
form by
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omg: 1 - c2)e 1 - C2)g
—4 - f 7 ____( ;‘)—2 dn - f d ———( 2“‘)2 dn (A20)
Palla® Ty 1 - Cad My 1 - Ca9

Note that the location of the dividing streamline relative to the boundary streamline is
defined only by the continuity equation; the momentum equation 1s not taken into account.
This approximation 1s reasonable for the small mass bleeds involved. The dividing streamline
1s obtained from the conservation of mass and momentum in the control volume of

figure 19. It 1s found to be

/"ﬂd (1 - C%)‘p dn = - ‘Z?_z_ +f"?ra (1 " C%)d’ (1 " ¢) dn (A21)

2,2 * 2,2
ey |- Caé X b 1 - C

where 65 1s the boundary-layer momentum thickness.

Due to the injection of the air in the shear layer, the shear layer is thickened. Hence
the virtual ornigin 1s moved ahead of the actual separation point along the center line of the
shear layer (fig. 20). Thus the length of the shear layer is increased in the system by the

amount x, (from that without boundary layer), and the new length of the shear layer

< o]
x is given by

!

The analysis for calculation of the length x. is shown below.

o

The term 002/ x* determines 7y in momentum equation (A21) and the term
omdj/pauax* determines ng I continuity equation (A20), so that simultaneous solution
of the two equations gives

m(i_] = pauyfy (A23)

The mass mg, can be considered to be injected and entrained between x = 0 and

X = Xy Hence

X
mg, = f 0 PbVh dx = ppvpX, (A24)
0]
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From equations (A23) and (A24), Xy can be related to 6,

Xo_Paa _ 1 Y (A25)
92 P 1-CZ %

Also, for the control volume of figure 19, the continuity equation is used to determine
the injected mass below the jet boundary streamline n; Thus, another expression for xg

is obtamed

¢ g

6 2
2 L (1-c
f"} ( a)? dn (A26)
1 - C%p?

b

For the new arrangement, a new dimensionless lateral distance 7 1s defined as yo/x
and the same theory as for the shear layer without injection is utilized. The dividing-
streamline location in the barred % coordinate system is obtained from equation (A21) as

f;’d ‘(l—_(ia)?_ a7 = - Lp) +f;7ra (1 - C%l)d)(l — ) dn (A27)

= 2 2,2
M I‘C%‘P X b 1 - Cy¢

where the integral limits 7—7ra and ﬁrb are arbitrary numbers sufficiently large so as not
to affect the value of the integral significantly. The integral value, hence, will not change
by changing the limits n., and 74 to Ny, and ﬁrb For actual calculations, the
integral on the right side of equation (A27) is replaced by the term 002 X, Which can
be calculated in the original unbarred coordinate system from the following equation derived
from equations (A26) and (A19)

f7_?ra (1 - C%l)d)(l B ¢) dn = ./'ﬁJ (_l;.ﬁ)f_dﬁ =fnj (_1___—_C%_1)_¢dn = iZ (A28)

b 1 - C§¢2 My 1 - C%d’z iy 1 - Cza‘l’2 %o
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Reattachment Region

The point of reattachment of the dividing streamline is assumed fixed at the outer
corner of the step. Because of the adjustment of the shear layer for the initial boundary-
layer thickness, the dividing streamline no longer hits the corner of the step as origimally
assumed. Consequently, the new location of 7_7d has to be found by iteration until the
dividing streamline meets the corner of the step within the desired accuracy.

The impingement point of the dividing streamline on the step face is usually initially
located below the corner by the distance An (see fig. 21). This distance can be reduced
to zero by the equation (derived from the geometry of fig. 20)

Ax (A29)

i
>
3|
Q|><l
s
o
g
o

where

An

for the first iteration and

AN = Ng(old) = Md(new)

for subsequent iterations. Similarly, the longitudinal distance X 1s computed for each
iteration from

Xpew = Xoud * AX (A30)

new

A new value of 4 that 1s closer to but still not at the step corner 1s, of course, calculated
from equation (A28) each time a new value of x becomes available. The 1teration process
is continued until An becomes msigmficantly small in relation to the step height.

The Mach number My on the dwviding streamline is given by

2,2
C
S 2% (A31)

M
-1 242
v l—Caqbd

2
d

Uebelhack calculated the reattachment stagnation pressure p, 4 for this streamline by the
isentropic one-dimensional flow equation, where My < 1
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p _ -1 P
Pod _ Pod Py _ (1+7_.1M2)71_2. (A32)

and by Rayleigh’s formula when Mg > L. The method of calculation of po’d/p1 for
subsonic My is not correct, because the flow is stagnated by the isentropic process at the
step face whereas the assumption has already been made that the flow in the shear layer
has constant static pressure and constant total temperature. For My > 1 there is insuf-
ficient information given to make a comment at this point. For the correct method of
calculating the desired pressure ratio some additional derivations are required, hence the
method will be discussed later.

Reverse-Flow Region

The shear-layer flow and the reverse-flow regions are shown in figure 22. The height
of the shear layer below the dividing streamline s AB and AE 1s the vertical total
distance for the reverse-flow region. The distance AB 1s given by

AB = (7y - N (A33)
and the distance AE is given by

AE = h - AB cos 6 = h - (7g - )~ cos (A34)

The mass flows through AB and AE are assumed equal. With this assumption, the
reverse-flow velocity can be found from (with the reverse-flow velocity assumed uniform)

u nq (1 - C2
b1 f a 1-Ci)e dn 1 (A35)

u 2 2,2 ch o =
a 1-C3 75 1-C _i—-(nd-nrb)coses

With the velocities and densities now known in the region near the step face, the .
momentum equation can be appled to the control volume shown i figure 19. Lines AB
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and AE are assumed close to the step face so that the shear term can be neglected.
After some manipulation and simplfication, the stagnation pressure integral becomes

Cp- P, B pzug A pbug
— dy = f dy cos 6 + f dy (A36)

D M p A pou? E p,u

2,.e°2 a“a a“a

The expressions for the density ratios Py /pa and pb/pa are substituted from equa-
tion (A12) and Uy /ua is substituted from equation (A35) into the equation (A36) to

yield

- 2\ .2
1P =Py gy 2 X n4 (I'Ca)d’ -
./(; Y= ym5, 2 [ —l——dn cos 0

p h 2.2
2 nrb - Ca¢

2

= 2
nqg il - Cjl¢ _
o] - f a (t-c)e 23)2 dr| — L (A37)
_ o — _
1 - Cy My 1 - Cyé < - (nd - nrb) cos O

The pressure integral 1s related to the free-stream static pressure Py existing ahead of the

separation shock by

p-p p
f1£ﬂ=f1___2ﬂ+1_2 (A38)
o P1 B g Pp b Py

The drag coefficient on the step face is calculated from

(A39)

28



APPENDIX A

The correct dividing-streamline pressure is calculated by the use of nght first term
of equation (A37) after the removal of the integral sign which yields

2) .2
2 (1 B Ca)q)d

Pod — P
p2 ,€ 1 _ C2¢2
a"d
and
P -p p
8919 = _019__2 + 1 22 (A4])
pl p2 pl

Moreover, the stagnation pressure distribution anywhere through the shear layer below divid-
ing streamline (i.e., along AB) can be calculated from equations (A40) and (A41) by
changing ¢4 to ¢ and Po.d to p. The Mach number along the shear-layer line AB
1s calculated by

242
a
My =77 53 (A42)
YT 1-c

When the free-stream Mach number and h/51 are sufficiently large, a part of the shear
layer in  AB is supersonic. For this case the flow was decelerated through a normal
shock with the stagnation pressure behind the shock being found by using the well-known
Rankine-Hugoniot relationships (ref. 4).
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APPENDIX B
CALCULATION PROCEDURES

The calculation begins with the specification of 61, h, M1 o’ and n. With M

as the entering variable, the separation angle 6¢ 1s found from flg,ure 1 in reference 1.

From Hs, the shock angle S, the Mach number behind the shock, and the static pressure

1

rise 1) /p1 can be found from tables such as those in reference 4. Two other required
quantities 5"1‘ and 01 can be found in terms of the ratios 5"1‘/61 and 01/81 from
tables in reference 12 as functions of Ml,e and the power of the velocity profile.
Finally, the spreading factor o 1s calculated from equation (All) in appendix A and the
Crocco number C, is determined with the aid of equation (51) of reference 4 utilizing
the Mach number behind the separation shock as the reference condition.

With all the required basic quantities now known, the next step 1s to calculate 6

by equation (A7), by equation (A16), and 'nj by equation (A19) In equa-

Tm
tion (A19), m 1s a variable upper limit in the integral in the left-hand side of the equa-
tion whose value must be found to satisfy the values of the two integrals on the right-

hand side. For the present calculations, the limits and n.4, Wwere chosen as 3.5

Mra
and -1.5, respectively, and calculations indicated that the values of integrals involving
these limits were not affected significantly by changes in these limits provided that the
changes were in the range |n.,| or |ny| > 1.5. With the use of nj, the value

of x, 1s calculated from equation (A26) and thence the value of x from equation (A22)

This x?alue of X 1s then introduced into equation (A27) to determine the imtial value

of ﬁd' The final value of ﬁd 1s found by iteration with the use of equations (A29)
and (A30) to find a new value of X which 1s remtroduced into equation (A27) to find
a new value of FId- The 1iteration 1s continued until "—7d 1s established within the limit
of desired accuracy. Finally, with 7_7d known, the pressure integral 1s computed with

the aid of equations (A37) and (A38) and the drag coefficient from equation (A39). Note
that this procedure does not allow for the existence of any normal shock within the

separated-flow region.

The procedures for calculating additional items of interest such as Md, po,d/pl,
and pressure distribution are quite straightforward and are not detailed here.

The calculation time for a typical run which might include 8 step-height ratios at
5 Mach numbers for a total of 40 points at moderate step-ratios (0.5 to 10) was on the
order of 200 sec CPU on the Control Data 6400 computer system.
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Figure 2.- Concluded.
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(b) po,d/p1 and Cp as a function of h/él.
Figure 5.- Concluded.
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Figure 17.- Boundary-layer thicknesses along oblique separation shock.
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