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PINES® NONSINCULAR GRAVITATIONAL POTENTIAL
DERIVATION, DESCRIPTION AND IMPLEMENTATION

By Jose' L. Spencer
McDonnell Douglas Technical Services Co., Inc.

1.0 SUMMARY

The possibility that the shuttle orbiter may be required to go into polar orbits
implies the need to derive a representation of the gravitational potential that avoids
the usual singularity at the pole. Such a representation, including sprerical har-
ponics coefficients up to any order and degree, has been promased by S. Pines in
"Uniform Representation of the Gravitational Potential and .cts Derivatives.”

The present note contains an engineering interpretation of and some minor cor-
rections to the aforementioned report by Pines. The physiéal‘peaning of the variables
used by Pines is explained, the detrivation of results is separated into smaller
parts for easier reading, some additiomal recurrence relations for the "derived"
Legendre polynomials are included and compared, and a computer program implementing
this formulation is presented. )

AY

Bumerical experiments conducted show that the use of this representation, besides
satisfying the requirement (removing the singularity), substantially increases the
speed of the computation.

2.0 IRTRODUCTION

The space shuttle is being designed with 2 view to its performing a multiplicity
of tasks. Some of these may require that it be placed in a polar orbi-.

The ersistence of singularities in polar orbits due to the usual fornulation
of the gravi“-ational potential makes it necessary that both ground and onboard
software developed to support shuttle orbits use a represcntation of the potential
that is free from such singularities. Pines, in reference 1, presents an alternative
formulation that satisfies this requirement.

The recursive algorithms proposed by Pines are stable at any order, easy to
program, and numerically efficient. They are therefore excellent for both fround
software (where a high order may be used) and onboard scftware (whern zn adequately
truncated version may be obtained simply by stirulating 8 lower order).

The order that must be used to meet the regquirements of the onboard progranm
in terms of size, speed, and accuracy is subject tc study, .t is5 possiti~ <hat dif-
ferent orders may be needed for short-term and long-term t£‘'a*: propagatizn. The
ease with which the order may be changed and the varietioril equations obtained
with Pines' representation of the potential make it icdeal fc: such a study,

THE
RODUCIBII JTY ‘OF
ggemm, PAGIE I8 POOR
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The formulation by Pin<s may, then, prove to be very important for both the
ground and the flight navigation software. For this reason, the present note has
been written to provide (a) an engineering interpretation of reference 1, (b) a
preliminary computer program utilizing the algorithms developed by Pines, and (c) a
brief report on numericael results.

3.0 DISCUSSION

In tﬂis section, the conventional represertation of the potential is presented -
and the nature of the singularity in polar ortits is explained.

The change of variables proposed in reference 1 is then described, and all the
phases of the derivation are expanded; the advantages of the new representation
are pointed out.

It is shown how the various terms that comprise the new representation can be
obtained recursively. For the case of the "derived" Legendre polynomials, where
there is more than one way to obtain recurrence relations, various methods are ex-
hibited and compared. One of these methods is recommended: Any errors that may be
present in those terms from which a new term is derived are attenuated in the process.

Final expressions for the potential and the gravitational force are collected
in the last subsection for easier reference.

3.1 Statement nf the Problem

The gravitational potential of a celestial body is commonly given in spherical
harmonics. The expression is

@ a
6 = % ;1 -2 (%)n[Jn Pn(sin a) - Z ?

= m(sin a)(cn’ cos m\

Ay

(1)

where
u 1is the gravitational constant of the celestial body;
a 1is the radius (usually the mean radius) of the celestial body;

r 1is the distance between the origin of the coordinate system end the point B,
wvhere the potential is being eveluated;

a 1is the latitude of point B;

A is the longitude of point B;
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Jn are the zouel harmonics coefficients;

Cn o and Sn m Ore the coefficients of the tesseral (including the sectorial)
» b4

harunonics;

Pn are the Legendre polynomials; and

Pn o 2% the associated Legendre functions.
1

A derivation of equation (1) may be found, for instance, in reference 2.

The choice of origin and of coordinate axes is very important in this represen-.
tation. If the origin is chosen at the celestial body's center of mass, the constants

Jl’ C1 1 and sl 1 are 8ll zero and the summation can start at n = 2, since

> b4 .
the n =1 term contributes nothing; if the z-axis is chosen to be one of the prin-
cipal axes of inertia of the celestial body, the cocnstants C2 1 and 52 1 are
zero. : * *

The angles a and A uare defined 25 rollows: @ is the angle between the
position vector of point B and its projection on the x,y plane; A 1is the angle
between the positive x-axis and this projection. They are the result of the arbitrary
choice of the x,y plane as a reference plane.

From this arbitrary choice, there results a singularity: 1If point B is on the
2z~8xis, A 1is not determined and the pctential is not defined.

The attractive force is given by

F=grad ¢ = V¢ = %%-Vr + V{sin a) + %% 7 (2)

3%
3sin a)

' . a 3 3
Here, the problem not only subsists (A is present in 3" 3(sin o)’ and BA)

but is even aggravated by the presence of an indeterminate factor. The gradients
(see appendix A) are :

Vr = R

(unit vector along the position vector of point B),

¥sin a) =

"=

(k 1is the unit vector along the positive z-axis), and

VX=°—"‘_1‘_""k\R
r{l - sin?a)

- -~ ->
As a +90°, 1 - sin?u- 0, k x R+ 0, and the factor ©) is indeterminate.
y *

IRILITY OF T

HULU :
REPRID 4 13 POOR
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To obtain a representation such that the potential and the force can be unambig-
?ously obtained for points on the z-axis, a different reference plane may be used
see fig. 1).

B (x,y,2)

Figure 1, -~ Coordinates of point B.

But then, the problem has merely been shifted. If the y,z plane were chocen tc be
the reference plene, the coordinates would be r, 8, and y; for points cn the
x-axis, the coordinate ¢ would be undefined. If the z,x plane were chosea, the
coordinates of the point would be r, vy, end 6; and again, the & coordirate
would be indeterminate for points on the y-axis. Thus for the potential itself; >
see what results for the force, consider the gradients of the spherical coordinates
in the three cases mentioned.
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i 3Q QQ s 3!
Plane of reference: X, ¥ -+ = vr + P{sin a) + vA
. 3:‘ alsin a ( ) 3

Vr = R 7
-1 sina’
¥ sin a) = = k - = R ? (3)
A = 1 £ x }"(‘
r(l - sin2q) J
£ r : s - = 3¢ —d0 2 39
Plane of reference: vy, F e Ir + 3(sin 8) v(sin 3) + 3 y
Ur = ﬁ )
Usin g) =21 -8B 8¢ P (k)
Vp = 2 { x ﬁ
r(l - sin2g) J
a: QQ- a¢ 1 ﬂ
Plane of reference: z.,x + F = 32 9T * STy v(sin y) + TR
Vr = ﬁ h
Vsin y) =2 ). SR g ()
r r >
Ve = 1 3 x ;I
r{l - sin?y) y

The problem subsists: In V¢ and 78, the same type of indeterzinats form that
had been found in V) z2ppears again.

3.2 The Proposed Method of Solution

In reference 1, the method chosen to reriedy this situatics consists of replacing
the spherical cooriinrizs r, a, A f(or r, 8, ¥ or r, v, 9) with another
"distance and directicn” representation of a peoint's position. For this, use iz
made of the iirer:ion ccsines, which are always clearly definea for any directicn
in space. Tke positic:n of each point is then given by four gquantities: the three
direction cosines that :iefine the orientation of the position vector and r, the
magnitude of that vector,

w
W =
,

ney OF T

1
T)FB’R‘)‘)‘A' Cd e

-, 1 ’,
TR

o
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Call the direction cosines s, t, and u: these are the cosines of the angles
between the position vector and the x-axis, the y-axis, and the z-axis, respectively.
Therefore,

g = cos(90° - B) = sin B
t = cos(90° - y) = 8in y ~ (6)
u = cos(90° - a) = sin a

On the other hand, r = xi + yJ + 2k = r{si + tJ + uk); so alternative exmess ons
for s, t, and u are ’

)

o
n
ol LB B N P

and these ere the expressions that must be used for numerical work. The attractive
force will then be given by

->
_ 3 3 3 : 3 :
F=3rVr+ 373?3237 9(sin 8) + sxgzﬁﬁ;y V(sin y) + 3?;z§-;7-V(sxn a)

By using the expressions for 9¥r, 9(sin a), 9{(sin 8), and ¥(sin y) found in
equations (3), (4), and (5), there results

or by writing s, t, and u for sian B, sin y, end sin a, respectively, and
collecting terms, there results

Fo(3_s8230 t20 ud)p 19T 12395, 130, 8
¥ '(Br ST Trat rau) Trasctraadtraw® (8)

which i{s expression (13) of reference 1.

The term in VX has thus been removed frc. f. The task has not been completed
-
yet, however; it still remains to express ¢ and F in the new variables.
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3.3 The "Derived" Legendre Functions

-
Certain terms in F (but not in ¢) have .iucularities that stem from another
gsource: The expression for Pn m(sin a) is, ror gemeral 1n and m [cee, for
?

instance, refs. 3 and 4),

n+m
n

yn/2 L d (sinZa - 1)
2'nt d(sin a)

= -~ 8in?
Ph’m(sin a) = (1 = sina pore

a"P " in a)
= (1 - sinZa)V/ 2 o
d(sin a)
dPn 1(sin a)

No problem exists for m > 1; but for m = 1, the first derivatives ‘.E?EEE—;T_“

are infinite at o = }350°. Write u for sin & beca’se of equations {6) azd
differentiate.

n+l 2y1/2 _n+2
__§:£ = —u(l - uz)-l/z-%——'g——;I (u2 = 1) » (1 -nu ) d e (w? - 17
2"n! qu” 2! du
AY
n+l n .
But ey (uz -1) is a polynomial of degree n -1 in u, which does not become
du

zero vher u = ¥, The ‘singularity, then, comes from the factor (1 - w) 12,

Write

n+m n
(sina - 1)

A d
An,m in a) = n

. +m
20t 4a(sin a)"

m
=—2 P (sin a) (9

d(sin a)

and note that (1 - si.n"’cx)m/2 = co-"a. Then the summatior in m in the express.on
of the potential becomes

n

. m . .
E A (sin a)(C cos a cos mh + & cos a ©in rh)
oy e 0, a,m

No sircularities arise from differentiating An .. for wny value of =z, (Tne A

R n,m

are nolynomial:.) This was done at the cost of burden.: tre terms iz with the

m . . , T .
cos'a coefficient. The A are calied by Pines tb. eerived™ Legenire functiono,
’

Fan
)
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3.4 The Complex Representation

It remains, then, to express the terms cos™a cos mA and <os®a sin mA in
terms of all or some of the variables r, s, t, and u. Reference 1l contains a
very ingenious realization of this demand.

Hote that these %terms appear in a consistent form: The exponent of the cos a
is equal to the coefficieat of A, in all cases. A similar behavior is to be found,
by the application of de Moivre's formula, in the powers of a complex number in
poler form (see refs. 3 or 4). Consider the complex number ¢ = £ + in, where &,

n, and ¢ are numbers and i = v -1, and get, successively,
. .
z = pe?

in polar form, with o=q€2+nz and Oaarctang-;

p{cos @ + 1 sin @)

[al
U}

by Euler's formula; and

()]
"

p(cos md + i sin md)

by de Mcivre's formula.
This is a2 new complex number W = I;m, with real and imaginary parts
Re[c™] = o cos md

Imag(Z®] = pPsin mo

A complete analogy is found between the complex number gm and the terms

cos®q cos mA  and cos™ sin mA. These behave as the real and imaginary parts of
the p-th power of the complex number

i
§ = cos ae

= cos a{cos A + § sin A) . (10)

Therefore, express cos a cos A and cos o sin A in terms of the variables r,
&, t, and u (or some of them), form the complex number cos a cos A + 1 cos ' =in ],
and raise the complex number to the appropriate power to obtain the terms neeava.
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To find cos @ cos A and cos © sin A in the required varisbles, refer back
to figure 1 and notice the spherical triangle with sides A, a, and 90° - 8. The
angle opposite to the side 90° - 8 is 90°; epplication of the cosine law (see,
for instance, ref. 4) gives

cos{90° -~ B) = cos A cos a + sin A sin a cos 90°
or
sin B = cos a cos A (11)

Take, now, the spherical triangle with sides a, 9C° - A, and 90° -~ Y. The
angle opposite to the side 90° - v is 90°; apply the cosine law and find

c0s8(90° - y) = cos a cos(90° - 1) + sin « sin{90° - A)cos 90°
or T

sin y = cos a sin A (12)

\

But sin 8 and sin A are the direction cosines s and t, respectively.
Then, s = cos a cos A, t = cos a sin A, and the complex number wanted is
Z =8 + it. In reference 1, the symbols rm(s.t) and im(s,t) are used to repre-

sent the real and imaginary parts, respectively, of w = cm.

The representation of ¢ becomes, at this point,

n
¢ = %,l - L (%)n[']n An,o(u) -2 An,m(u)(cn,mrm(s’t) * sn,mim(s’t))]£

n=1 m=1 (13)
a"p_(u)
since, from equation (9), with u written for sin iz, A (u) = ———
n,m au

becones A (u) = P (u) when m = 0.
n,o n

There are no singularities arising from the A q(u), which are the only terms

"
in u. There are none from th+ *erms in r. (The only one woull be for r = 0, but
the expression of the potential ic only valid outside a svhere of radius a and
center at the origin.) The terms rm(s,t) and ir(s,t) and their derivatives

with respect to s and t can be obtained from w = ;a. Since this is an analytic
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.

function of ¢ for all the values of m considered {integer and nonnegative), the

derivatives of all orders exist and sre continuous. Differentiate w = ;= with
respect to .

dw m--1
ag %

=olr,  (s,t] + 41 (s,t)]

But
dw _ aru ) aim
— e—— ] ——
.14 9s s
-
t ot

from the Cauchy-Riemann conditions (see appendix B), which must be satisfied because
of the fact that w = cm is anailytic: Since equality of complex nunmbers implies

separate equalities for real and imegirary parts, the following expressicns are
obtained. )
T Pn_ ‘
9s ot n-1 *
(1)
.a—rﬂz..hzmi
ot 33 m-1

These expressions give the very valusble information that *' » derivatives of the m-th
terms may be obtained with no need to perform any differentiation, but only to
multiply by m the m-lst terms.

3.5 The Recurrence Process

The terms in r, in u, end in (s,t) may all be obtained recursively. The
same is true of their derivatives of all orders.

Recursive processes are ideally suited for use in computers.

The next subsections are devoted 1o the derivation of the recursion formulas
t~r the various functions involved.

This is one of the most importeant parts of this note; it is upon the recursive
proces. that the efficiency of the formulation depends.

10

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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and i , are the
m

real end imsginary parts of w = ;m. To obtain them recursively, form cm from

&,

g = rm + iim
= ™1,
= (rﬁ-l + 11m_1)(s + it)
= (srm_l.- tim_l) + i(sim_1 + trm_l)
Therefore,
rp =sr - tim—l
) (15)
im = Sim—l + tr -1

These are equation: (25) of reference 1.
under the number (25), but they are wrong
The derivatives of .rm and im are

To start the recurrence process, two

Equations (15) are velid for all inte

have been started with any other known val
r, = 1, io = 0.

The representation of the potential,

The process of generation of the powers
Defire

=

AY

Besides these, there are two others, also
(see eppendix C).

given by equations (14) of this note.

values are needed. Since [ = s + {t,

ger value: of m. The recursion could

ue, such as go = 1, which wouléd give

equation (13), requires C 5nmint

+
n .x:xrm

(16)

can be used for .this and its derivatives.



MDC 0013
9 February 197§

Differentiate with respect to s and to t.

BDn n arm ‘nim
~Da B
as = cn,m s * sn,m s

= ln(cn,mrm—l * sn,mim-l
3Dn 3rm 3im

at cn.m St T °nm 3t

)

= m(sn'ml'm_ - cn,m*m—l

Now define

En,m = cn,mrm—l + sn,mim—l

in,m = sn,mrm-1’° cn,min-l

Therefore,

wn (17)
———
%t - Fpn

This is A% that is needed to find F from ¢. But second derivatives are neeued
for the -ariational equations. Therefore, continue the process by differantiating

again D vith respect to s and t and defining new functions G and
n,m n,o
):§ s then find the relations
n,m
3E aF
T S 1. S
2% - - 3t (m I)Gn,m
alzn m n,m (18)
——ee = a2l = -
at 3s (m 1)Hn,
Al..u, there results
22 %D
n,m o o,
as2 at2
12
OF THE
UCHBILITY
EPROD £ IS POUR

ORIGINAL PAu
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{ are harmonic functions) and

n.m
ap 3
n,m = n ,m
asdt atads

as vas *0 be expected because of the continuity of derivatives (of ell orders) of
.

The functions Gn and H are

fln,m = sn,mrm-2 - Cn,:xim-z

3.5.2 "Derived" Legendre functions recursion.- The An
ot
of the Pn(u). - . .

m(u) are derivatives

n
P (u) =30 (21"

21 au®

by Rodrigues' formule (see refs. 3 or 4) and

() =3-L (2,
A u) = ¢ -1
n,m Pa1 g™

by definition; so

with A =P .
n,0 n

The Legendre olynomials satisfy various recurrence relations (see, for in-
stance, ref. u).

'

a) (n+ l)Pn‘l(u) - (2n + l)uPn(u) + nPn_l(u) =0

v) &(p, ) - ‘;—J [P (a)] = (0 + 1)P_(u) (19)
Y wd P (W] -% (P ()] =P (u)

€ udu n“ Iu n~:|.u nnu y

13
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Q) S(p, (] =S (p (u)] = (2n+ 1)p (a)
(19)
&) (u2-1) & (P (u)] = nuP (u) - np_ (u)
In terms of the An m(u), these relations would be written as
8) (n+ A () - (20 +20uA o(u) voa ) o(u) =0 ) .,
'bl) An+l'l(u) - uAn’l(u) = (n + 1)An’o(u)
ey) wA, (@) - A (u) = nA (u) ) (20)

4G) A1 (W) - Ay h(u) = (20 2 14, o(u)

oA, 1,00 J

el) (u? - 1.)An’1(u) = nuA_ (u) -

»0

If these relations are differentiated with respect to u, an =2 nqumber of
times, the following are obtained.

a2) (n + 1)An+1'm = m(2n + 1)An’m_1 + (2n + 1)qu1,m + nAn_l’m A
b)) Ay = BERA DA R
c2) (o - m)An,m =.UAn,m+1 - An-l,m+1 (1)
d2) An#l,m+1 = (2n+ 1)An,m * An-l,m+1
e2) m(n - m + I)An,m—; = (u? - l)An,m+l + (2m - rx)ul\n’m + nAn—l,m‘

The following information is available: For m > n, An’m(u) = 0; for m=n,
An,n(u) = ;ﬁ::!; end for m=n -1, An,n-l(u) = uAn’n(u).

These are all straightforward consegquences of the definiticn of A, .5 each An n
1yl oF

is a polynomial of degree n - m with only odd or only even powers of u, according
to vhether n - m 1is odd or even.

b

REPRODUCIHILITY OF THK

e < . .
GRTOTNAY D PACH T RO
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Form a table of the An o’ with consideration given all n and m from zero
. a a
on up. Let n indicate the row and m the column of the matrix thus formed. All
the elements of the diegonal are founé by means of the expression
_ {(2n)!

2 n!

matrix are zero; and the first column has the Legendre polynomials. Each element
immediately to the left of an element of the main diagonal is the same, multiplied
by u.

A n(u) =1357.....(2n-1) ; 81l elements of the upper triangular
:

It remains to fill the empty spaces. This can be done by any of the schemes
that constitute the recursion relations a2 throusgh €5

Construct the matrix, fill in the known spaces, and try to see how the various
< - work. A rectangle indicates the element derived; circles indicate those it
- derived from (see table I).

TABLE I. - RECURSIJil SCIEfILS FOR THE A

n,m

0 1 |2 |3 |a 5 6 7 8
Q o o [o |o 0 0. 0 0
/ @ v oo ]o 0 0 0 0
%(3 2 !-\‘ LN
u-1) € 3 £0; 0 0 0 0 0
( ’%(5:3;)\\ s | 153 ) o 0 0 0 0
7\ou™-3u /\\ G
—— s
sasutaolen) [ fosu/ | 10s | o 0 0 0
. R e
. 77N - N
F(63u°-70u3+150) 19asu!| [aasy | 0 0 0
N /
~ AN ~ 7
MEREN LR B
123168-3150 41050 -5) /’\ * |Niozsa| 10395 | o 0
— - [SPRORN] AT
SRS PRI PESE —
ata2ou’ -e93us3isu®-3s0) 1 ) [ Fjissiasy fussiss | o
.~—-“"4)-_ - L_‘. - "\_._—../
1 8 6 —
(643565120020 20270254 |2027025
+6930u’-1260u%+35)

15
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32) For m = 0, obtain each element of the first column in terms of the two above
~ indicated by solid lines around the elements; for m # 0, find each element
(not of the first column) in terms of three others: two immediately above
and one on the previous column - indicated by dotted linmes (. . . .).

bz) Obtain elements (not of the first column) in terms of two others of the row
above - indicated by dashed lines (- - - -).

cz) Get elements (not of the diagonal ) in terms of two others of the following
column - indicated by two dots-dash {..-..-..-). '

d2) Find elements (not of the first column) in terms of two others (both of previous
rovws), one of the same column and another of the previous - indicated by dash-
one dot (-.-.-.-).

ee) Get elements (not of the n = 2 row) in terms of three others, two of the same
row and following columns and the other of the previous row and following
column - indicated by one dot-two dashes (==.c-.——.==).

In reference 1 (where only relations b2 and ¢, are used), relation b2 is used

to simplify the derivatives of the potential. whereas 2 is used for the actual re-

cursive dete;mination of the A“ n® The reasoning behind.this last choice is that
k] . N

c2 is a more stable formula than b,.

2
Consider the same term calculated from both formulas: “rom h,,
An*l,m+1 =(n+m+ I)An,m + “An,m+1; from c,,

L

An+1 o+l = P A ). Int,, any error in the calculation of A
£y - —

n+l,n+2 n,n+2 n,no

will be multiplied by (n + m + 1) and will therefore carry 1 larger error into

An+1 o+l® These terms are obtained froa tw~ terms, one directly above and the other
Sl

Just to the left of it; so as new terms are calculated, the values of n and m
are increasing and the errors become progressively larger. If the term is calculated
by C,» 8Ny error is ivided by (n - m). Terms in the diagoril, where n -m = 0,

are not calculated this way but serve as starting values. The recursion progresses
to the left; and the farther away the term is from the diagonzl, the greater the
difference between n and m and the smaller the effect of any initial error.

. . . 1
For this reason, relaticn is to be preferred to b, for recursion.
’ P 2

2

Now that the An o have been found, the derivatives .E§4E. must be obtained.
:d

From the definition of An n® it follows that

’

dAn n
du = n,n+l (22) *

lThe same argument holds without change in comparisons between <, and d2 or

a In e2, the effects of errors are decreased eas in c2; but since each term is

>
derived from three others, there are more sources of error.

16



MDC w0013
9 February 1976

The derivative of An m B then be obtained by using the recursion relations, with’
: ]

no need for an actual differentiation to be performed.

3.5.3 Recursion for ter—s in the radial distance.- Another quantity that may

be obtained recursively is the term containing r. Actually, this will lead to a
more compact representation of the potentiel.

The potential was given by

©
"
"

" - a n n
= 31 - }:(;) [JnAn’o(u) - mgl An,m(“)nn,m(s")]s

n=l

L]

r 0 n,o

L o . n -V
-3 ) Ut o) - I A g0, i)

obtained by using equation (16) in equation {13).

The lowest D defined is D « Let m=0 in D end get
* - n9m 191 - n,m
= 3 - - = r 3
Dn,o Cn’oro(s,t) + Sn’olo(s,t) Cn,o because, as had been eea, =1 ard
i° = 0.

So if cn are defined as —Jn for n = 0, the following simrler expression
”

for the potential is found.

=L, s ufa)?
Prrt n=1 r(r) =0 An.m(U)Dn,ﬁ(s’t) (23)

A better form may be obtained by allowing n = 0O as a possible —walue. This

entails defining a Do o = 1l and Ao,o = 1. In fact, "6,0 = 1 hai already a--

2 ]
péared; so only the Dj , remains to be defined.
k]
Since Do = C° o’ this is, in the final analysis, the only definition needed:
C = 1. * ’
0,0

The expression for the potential becomes

- = AL
$ = nz;O %(;) mgo “n,m(u)Dn,m(s’t) (24)

It is now a simple matter to find a recursive representation for the term in

n
Bl = - b, a 8.
r. Let Dn‘r(r). When n = 0, P " o wvhen n > Q, ongrpn_l. Let 58,
and it follows that on = PO _1*
17
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As for the derivatives,

'] - TR |
P*T* a1 T 2 a f1
do
=, 1. _2w__2
pl 2 = a 02 i dr 3 a 02
r r
2 r do, 3ua? 3
02 - -&- = e 03 - D - = L3 = - )
r3 a dr r* &3
0000000 RSCTORBCIOSPNSCORIGIOGOIOIOGIOITOILS
dp
r n_ n+1
°n = Don—l = a Pn+l ¥ ar a °n+l (25)
Note the relation
%a_ Pnna (26)
r a

3.5.4 Collection of form:_as.- The potential can then be written as

¢ = fb Pn ’io An,m Dn,m \ (21)
o= n=

which is formula (29) of reference 1.
The expression for the forze was equation (7).

-> - - - . A\~
Fal.a_ii+l_all+.l.-a—¢-k+ Eﬁ-iﬂ_ﬁg_'._iiig
r as r st~ r 3u ar r 3s roit r 3u
or, in the notation of reference 1,
- n . - .
F = ali + aQJ +‘a3k + 3R (28)
The expressions for 815 B5 33, and 8, can nov be found from the differen-

tietion recursions found in sutsections 3.5.1, 3.5.2, and 3.5.3.
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8imilarly,
=13
82 T3t
® P n
=V 2Ly o oF (30)
i e o nmn,m
=13
8‘3 r u
o P n
- Z n+lz n,!.'l D
oper a =0 u n,n
o 0 n
n+l
2-':‘0 = m);b Ay n+10n,m (31)
.3 .
ah = -3-3-- sal - ta2 - ua3
But
. AY
1]
dpo =n © P
.3_2-.:2_._“. A -3 n+l{;(n+1)A D
= mz=:0 Bl B pgsp ® e el
Now
® p n
_ n+l
-uag = -n);o a n:{“o lxAn,r:ﬁlnn‘.m
and
- P n
~ n+l -
- - - +
sa; t32 = !1}?0 ) mﬁn’_,l(sin,m tFn,m)
n+l
= -n}::o ~ 3;0 Ay o [0 pleryy -t y)
+3 m(Sim-l trm-l)]

19



So, by collecting all these,

3 On+1 n
ah=-z-—aZ[(n+m+l)A + uA
n=0 m=0

And witih the helpr of relation b, from equations (21),
[~

P n
n+l
8 =-% 2§, D
(1 :Z:o a m§o n+l,n+1 n,m

-
F can thus be written as

MDC w0013

9 February 1976

n,n n,n+l ]Dn .

-> ] pn#l n a PS ~
F= 2;0 a th=0 [Mn,m(zn,mi * l=‘n,ln‘” * An,x:xn—].l.)l:l,mk
.An+l ,m+an ,lnR ]

(32)

(33)

Another way to write 'l-!, taking into account the fact that R = si + tJ + uk, is

;' = (g,l + a'los); + (32 + aht)j + (33 + ahu)lz

The main formulas are now presented together.

Formulas for the variables:

r=(x2 +y2+ g2)1/2

-

"%

c*
f
s 1l o
"

=
L]
o o

20
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For the recursions:

For the potential:

a
B e
e r
Y]
B -
po r
=0
pn pn-l
A . L{en)y
n,n ni
An,n-l = uAn,n
A =—1_(ua -4 )
N, ne-m n,m+l n-l,m+1
r =1
o
io s 0
rm = srm—l - tim-l
= +
1m sim_1 trm_l
[ = r + S
n,m n,mm-l  “n,mm-l
T = -
n,m n,mrm-l Cn,min-l
D r i
n.,n = Cn,l'! m * sn,mlx"

n
= A D
¢ =0 ’n mgo n,m n,n

21
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(25)

(21)

(15)

(16)

(271)
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For the attractive force:

- P n
n+l
a1 = nz::o a 2=0 mAn,ml‘:n,m (29)
_ = Op+l n mA F ( 0)
8 = Z__ a Z n,m n,m 3
n= mn=0
= Ope)
a,= ) fb A D (31)
3 450 @ g pemtlanm
_ & Pon
8 = -2 a io enﬂ,nﬂlnn,m (32)
n=0 o= .
F= (al + ahs){ + (a2 + aht)s + (a3 + ahu)i (34)

3.6 The Second Derivatives

Ia this section, the second-order partial derivatives of ¢ are found, This
can be done in several ways. In reference 1, the following way is chosen.

Consider the vector

2 F : -
-3—1=3§-= v(F )ET + %(F )ET + 9(F )kT
y 2
aR
This is a 3 x 3 matrix, P. The vector F, in this case, was given by equation (3L).
F = (al + ahs)i + (32 + aht)J + (a3 + apulk

The matrix is found to be

- - -
(2 2 2 .,
ox (@t as) xla, +ar) T{ag 4 eu) P11 T2 713
P=-a—29-= i (a +a,5) a—-(a. +at) a—(a + a,u)| =lP..P_P (35)
3?12 3y 1 b Iy 2 I 3y 3 b 21 22 23
a—-(a *as)g—-(a +at)3-—(a + g u) P.. P, P
3z ‘"1 4 3z ~ 2 L*' 3z "3 L 31 732 "33

and it muy be seen that it is symmet._ .c.

22
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T = various elements of this matrix may be found by epplying to the functioms
- 1in parentheses the same procedure that was applied to the function ¢. The expres-
sion for V¢ was

07,307, 3,
2ax:""ay']‘razk

the components being given by

. Sl 2 22 tae uds,

-+
i | 8,8 ri¥s r ot rau

) 129 3% s t ul
-a—;-=82+ah =——24~t(;3- -3-9‘ 13 _ud,

r at T rot r du

2’-:3 4+ 2u =l—£ '-—9- Si?_ t—?— U_Q)
3 A

oz Ju ‘ar T r s rit T du
F] sa -
\ 2 1, L 3s .
—— = — ——— » t s it-
Since ™ (&l + ahs) Fv S 3x + 2) 3 ax’ and similarly ‘for other terms, i
anl a 381 aa,‘ oa ] Ja 9 da_
X _1 b % %% % hac
will be necessary to find ™ * 3 3z° x° 3y 3z 3y 3z° and 3z "

AY
3 3 35 3t

(Because the matrix is symmetric, no others are needed.) As for x’ 3y’ 3z’ Ty-’

at Ju x 2
,and az,rea:allthat: s=;, t=%,and *r and that s, t, u, aasd r
are independent of one another. Therefore,
38 _ 3t _3u _1
X 3y 9z r
and
9s _ 3s _ 3t _
— = — =0
3y 9z 9z
Then
ﬁ=lﬁ+s(ﬁ zﬁ-&.ﬁ_zfa_l)
3 T 3s 3r r 3s T 3t r 3u

acd in & similar way for the other derivatives.

23



Now use the notation, for any function L,

and there results that

&1 "

Note, now, that a

-8 .

22

= a

- =a,, + ta

32 " 83t usy,,

Ja
— =
a33 + ua3h

3 cuy T STy
il PR Y

z - B3t ey
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for all i and J from 1 throusgh L and that

2b

RY;PRUDUCU%H:‘. l
ORILINA

l' ()\“ l ‘VA_A
POOR

(36)



331 da 3s
To tind Pll' add = %> and 8, 3% and get
P.=a . +sa, +s(a *sa)#a-l-
11 11 1h L1 Lh LT
)
= an + 238'114 + szam‘ + e
Similarly,

P,.=P _=a

12 = o1 = 30 ¥ 8y, oS8y, TSty

P._=P_ . = a13 + “alh_ + sth + sua, ),
2

2 - 2 A—
Pop = -8y * 2ta,), + Ty, * 7

P_ =P =28 +uak+ta

23 = T32 = %23 2 *utey,

3k

2, .
P =a33+,2°°‘3h+n3hh+r

25
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The derivatives &, through a,, may be found by the use of formulas (17),
(18), (22), and (25).
a b

o P
2
a,., =-8, =T m{m -~ 1)A_ G
11 22 :l';o a2 mz=:0 N, n,m

@ P n
., =8, =3 n*zzm(m-l)l\n

H
12 2l S0 a2 A0 o1 1,0

E
13 3 n=0 =22 -0 nomtl n,m

n=0 a° m=0
® p n
n+2
8,, =8, = E —_ mA F ? (38)
23 32 =0 a? mz=:0 n,m+l n,m i
o n
n+2
8, =8, = -E 2 mA F
24 b2 a0 8 = n+l,m+l n,m
AY
) n \
oy - n+2 An,m-rzD n,m
n=0 a% m=0 4
- B
n+2
e, =8,. = -z' —_— D
3k 43 & 2 5o =1,2n.m
E Ppe~ N0
nN+e
a = Z A D
11 0 a2 xg-—-:d n+2,0+2 p,m )

3.7 The Variational Egquations

A decision on what order terms to include in the potential must be rade after
studying the effects on the attractive force of changes in the coefficients of the
spherical harmonics. For th.s purpose, the partial derivatives of the force with
respect to those coefficients must be found.

OF THE
REPRODUCBILATY 00 3
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For a particular coefficient CN e the derivative is

+ e, . da,. . 2a da, .
acw"acli*scz‘“acl'.”at‘hR
N.M LM N M N,M TN M
Ja da, 38 J Ja. Ja,
1 L " 2 L - L -
= + s i+ +t )+ +u k
3Cy Cy M Cy .M Cy M Cy.m Cy M
= £, i+1, LR k (39)
N,M,1 N,M,2 N,M,3

The expressions of al, a

o» 83> and & are given by equations (29), (30),
(31), and (32).

The derivatives, then, are

(]
_ PRy W
fe My Ty - s“uu,ml"u)
§M,1
(]
N+l
fe = - (MA ) * Ao e
B,M,2
[+]
Nel
fe =2 Ay w1 ™ gar e
N,M,3
(k0)
[+]
el
fs = o Myl = SAyeg ety
N,M,1
[}
N+l
fs Y (M“N.Mrn-l - mnu,u-»liu)
N,M,2
[+]
_ PRe1
IS = Ay uealy = Wyeg werin)
N,M,3

There are several mistakes in the expressicns for these derivatives in ref-
erence 1. For a more complete derivation of these results, see appendix C.

Variational equations will be required for several paramcters, particularly for
the initial conditions.

The equations of motion in an inertial system are obtained by means of a rota-
tion matrix, from the equations relative to a rotating coordinate system.
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Let the posinon vector of the point where the potential is being evaluat.ed
be represented by RB in a system of axes fixed to the celestial body and by RI
in an inertial system. If the rotation matrix is N, the two representations are
connected by the equation

..

ﬁB = (k1)

The force, which was given by PB = VB¢ (w_:here VB means gradient with respect

1o the body-fixed exes), is given in the inertial system by

- o . )
Fm-N FB 2

Therefore, the equatioixs of wotion of the point in the inertial system are
->
R, =N§F (3)

Consider a parameter [.,. le: it be such that second-order differentiation

i
with respect to I, and to t ce= be performed in any order with the same results;
that is,

i

3R >
a [ "IN 3
at \ ar, J  or, (Rm) (kb)
i i
shhere & dot above the functicn stends for differentiation with respect to time.

Then differentiate equation (43) with respect to T and rind

1 i
- -
R 5 - T » aF
a{Pm)_ 5 2 . T, 3N r ¥Fp
at\3r, |~ (Rp-) = T, (" Fg) =3rg Fg * M T, (55)

The matrix NT depends only on the time (duration of the rotation); T § Trep-

resents a parameter such as the initial conditions or the coefficients of the spher-
ical harmonics, but not the time. Therefore,

]

aN" _
-BT'- 0 (L6)

Y Tl Y".'v' ‘f\: "‘j‘
RE 2ONTICHTTT AF

OKIATNAT 1
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Then
N .
a [Rm)_ g aFy
dt ol, T.
i i

-
Carry out this last differentiation through RB.

a [ P p 9Fg Wy o AERL) o 3Rp
—l—J)=2n — — =z NP ——=~ = N'PN —— (47)
at\ af S T, aT. 3T,

i BRB i i i

This differentiation was carried cut on the assumption that the force contains
- - .

-

->
ri indirectly; that is, F conteins RB’ vhich in turn contains ri. If F

B B
-
- T 3
should contain Pi explicitly, a term {N 35 must be added.
i/ explicit

This is- not clear in reference 1, and care nust be exercised in its use.

The system of variational equations is, then, composed of equations (bk) and

aF.
(47) with, possibly, the term N ﬁ added to equation (4T).
i/ explicit
The initial conditio.s for this system of equatioms identify the values of
- * .
3Ry R, ,
=~ and at the initial tize t .
aT, ol o
i i -
. 3R
Solving this system of equati~sns will give 35 as a function of time.
i

L.,0 RESULTS

Pines's representation of the potential sstisfies the requirement that the
singularities in polar orbits be removed.

Attention is called, among the main forzulas collected at ¢he ernd of section
3.5.4, to equation (21}, which was shown to be the most stable of the recurrence
relations for the "derived" Legendre funetioans.

A preliminary computer subroutine wias written, making full us< of the recursion

relations derived by Pines. It is centzined in appendix I >f this note.

James Kirkpatrick, of NASA, included this subroutine in place of the usual
formulation of the potential in his progrer (which integrates the equations of
motion with an Adams method). He noted a substantial improvement in the time of
execution,
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The subroutine, as shown in appendix D, makes liberal use of storage locations.
After all the terms up to the desired order and degree have been generated and stored,
several algebraic operations zre performed upon them to obtain the components of
the force. The terms remain in the same storage locations even after they have been
used.

The subroutine has since been improved with a view to saving storage locations,
The algebraic operations are performed as soon as the necessary terms are generated,
and only those terms that will be of some future use are retained. This has been
the work mostly of J. Kirkpatrick.

Although a complete evaluation of the gain in time and storage has not been
made as yet, it is possible to say at this point that & model of the potential
including terms up to n =m = 18 has been used with Pines's formulation and produced
more integration steps in less time than a model with terms up to n=m = 8§ with
the usual formulation. The integrator in which these models were included was, of
course, the same.

5.0 CONCLUSIOUS

The formulation proposed by Pines is such that no singularities are present
for any positions of the point.

The recursion reletions are easy to program, and the program can be made in a
way that will result in savings in storage and time of computation; the relations
are stable and numerically efficient at &ll orders. ¥

A

Generation of equations to study the effects on the atiractive force of changes
in the coefficients of the spherical harmonics or the effects on the position vector
of changes in parameters such as those coefficients {end therefore the order of the
potential model), initial position, or initial velocity is a simple procedure that
mal.es use of the same recurrence relations.
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APPENDIX A - GRADIENTS OF r, sina, AND A
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APPENDIX A
GRADIENTS OF r, sin a, AND A

Consid~r the transformation between Cartesian and spherical coordinates.

X=rcos acos A r= (x2 4+ y2 4 22)1/2

2
(xz + yz + 22)1/2

R z
¥ =rcos asin A and sina=% =
z=rsina A = arc tan i

The gradients of r, sin a, and X are, then,

ar‘ Ir or °
vr=3x1+3y"+azk
sXielye2y .
r r r '
L.t
=< (xi + yJ + 2zk)
- -~
:lRaR
r
. . . e A
V(sin o) = 3({sin a) * . 3(sin a) . (sin ¢) "

x 3y J 3z

!‘3 r r
l‘ z -~ -
==k - = (xi +y) + zk)
r r3
15 _1zR

r rrr
gl_i_sinaﬁ

r r

33
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aX T . 3A % a l
3x L Ay I 9z k

2
2 X I_
l*L 1*2
x2 x
X fax ]
x2 + y2 x2 + y2
_—X i+ X 3
22 - g2 2 o 22
I DU
r? - r2sinla r? - r2sin?a
_ y Te x y
r?(1 - sinZa) r2{1 - sin?a)
1. (-y3 + xi)
r2(1 - sinZa)
AY
i hi k
xa=001=-§-1+§3
x Y Z
r r r
W = 1 k « R

r{1 - sin2a)
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APPEXDIX B - THE CAUCHY-RIEMANY CONDITIONS
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APPENDIX B
THE CAUCHY-RIEMANN CONDITIONS

This derivation may be found, for instince, in reference 3. Let & = s + it
be a complex va ‘able and let w = u(s,t) + iv(:,t) be a complex function of
c,w = w(z). )

The function w(i) is said to be analytic at a point § if the derivative.
%% exists and is finite at ¢ and at all points of a neighborhood ¢f . Tne Ze-

rivative is defined as

dw _ lm w(g + ag) - w.z)
—
(14 ag+0 Az

. -

where Az = As + iAt.

If the limit is to exist, it must be independent of the way in which A4g

aw _ i:fo {uls+as, 1+it) + iv(s+Ac, trat)] - fuls,e) + ivis,e")
az At+0 ) ds + iat
. i:fﬂ {{u(s+ds, t+ot) - uls t)] + i[visehs, t+st) = vis,5 ]jte
At+0 as? + at?

1{{uls+ds, t+at) = u{s,t)] + i[v(s+as, t+2t) = v{s, * 12t
882 + at?

Now let At = 0. Then

dv _ lim [h(s+55,t) - uls,t) . v(s+As,t) - v(u,t‘]= Ju v
ag As~0L as As

Tet, now, A4s = 0, Then

dv _ lim [ juls,tear) - als,t) | vis,test) - ~.~(:,z)] I kg
T - + = 2L 22
at~0 At at ot b
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Since equality of complex numbers requires equality of their real parts as well
as of their imaginery parts, the result is

u av
as ot
e—s the Cauchy-Riemann conditions.
Su_ _3v
3t as
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APPENDIX C - ERRORS IN THE PAPER
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- . - \
. e AR AT nYy
R I JC L VY IS I R R A Y e R
BOPOEE
.-~ N
N AT N '_»;.A,A‘ - Ql"'
oy " s

Lth

APPENDIX C
ERRORS IN THE PAPER
Although reference 1 is, in general, correct and accurate, a few minor errors
and misprints may lead the reeder into difficulties.
These errors and misprints are to be found in equaticas (10), the last two c?
equations (25}, ejiation (30a), and equetions (39). The second of equatioms (45)

is not very clear. These numbers refer to the equatioms in reference 1.

Equations (10) of reference 1 read

cos mA cos ma = rm(s,t)

sin mA cos ma = im(s,t)

when they should be

cos mA cosTa rm(s,t)

sin mA cos™x im(s,i)

There are four eguations (25), of which only the las: two are wrorg. Since they
are not used afterwards in the psper, the error has no consequences.

The functions r. and im are homogeneous of degree m in s acd t. Then

Euler's theorem on homogeneous functions results ir

s, o
s 3t n
3im aim )

A T

Thege could be written, with the help of the Cauchy-Fiemann conditions, es

arm aim
53 " '3 - g
aim arm
— —
-] ™ t 3s mim
b
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These may be the equations that were to be presented. Insitead, the last two
of equations (25) of the reference read

3rm
83 T t

i
at
Sl
as at

It is easy to verify that these are vrong; an example will suffice. Let

. ) ) ar, 3, ar,
m = 2, for which r, = s% - t5, 12=2ts, 35 - &8, 3= = 2, E:“a’a”d
o .

fa-s-g = 2t, and obtain the results 252 - 25t = s2 - £Z ard "2st + 2t2 = 2st,

which are obviously false.

Equation (30a) of reference 1 just lacks a minus sign; this is corrected in
equation (30b).

. Equations (39) of reference 1 have several mistakes. As sbown in section 3.7
of this note, the derivatives are -

. . aal . da, o, . aal .. 3ah
wm1 Xxm Fym SgM: Buwm  Bgy
~ aaa e aah o, . aa.2 .. 3.;,‘
= . 3;\ » -
“§, .2 xm Sgmz Bu By
3
. . 3a3 - Bah . _ 333 .y a,
Cym,3 nm Fnm Sxy,3 i 3y

These derivatives are to be obtained from the expressions of al, 2, 33,

and &3 namely,

(Y

8'1 = z—;o %ﬂ = n,m(cn,mrn-l * sn,:i::hl)
2, = =0 r:l mio n,m(sn,mrm-l - Cn,!.‘.i:!—l)
i 1;20 o:‘l mz::O An,m+1(cn,mrn * Sn'mi:)

8, = -ni;o °n:1 mzz:o An*l,ml(cn,nrm * sn,mim)
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Consider a specific pair of coefficients Cm M and SN M They appesar only

once in the expressions of &) 8y, 53, and a, - The term a), Day be wri*tten
80 as to show separately the part containing these coefficients.

= el Dn+1 zn: zA e N*l Hil
a1 an & o v n,m .i,m “N,m

e 51 A C u+1 X
a W MR MMl g 20N i1
[\ ) -
N+) . Ml

& —— . E *
a }:Ihl N,n N,m r'1=2ﬂ:*1 a am n.m

Similarly for a,, 2,, and 8, (but showing only the pertinent parts),

°n+l
2 Mg a© u My et

°l+1

[}
83 = .- Ay 1l in ? N -2 o AwmaSgadu t e

[+ [+]
N+L n+1
8, = eee = o Agay e Cum Anu per Sy * oo
with the result that
9 [+] Ja [+
:sc‘ll = Zﬂ MAx M1 ° 38 - - 2*1 MAg vl
N,M » N, >
3a,
T p 2 P8+l
2 N+l . . = 2L
. .- " a Mamur® ¥y ® W
N,M ,
P
R U T S
Ty Ay, Me1" 35, n R
Y
3a [ 13 .l+1
L N+l . = -
™ Al o™’ Supm Ta fwaen

Knowing these, it is an easy matter to arrive at the correct equations, which .
may be found in section 3.7 of this note as eguations (40).

The lack of clarity of the second of equations (L5) of reference 1 has been
discussed at the end of section 3.7 of the present note.

L3
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%ﬁ?ﬁm POOR APPENDIX D

A COMPUTER PROGRAIT IMPLEMTITATION

SUBROUTINE GRAVPOT (NAXO,X,Y,Z,FX,FY,FZ)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION CREAL(NAXO), CIMAG(NAXO), RHO(MAXO),
1 A(HAXQ,NAXO) ,D(HNAXO ,NAXQ) ,E (NAXO ,HAXO) ,F (KAXO ,NAXO)
COMAON/ CONST/C(HAXO ,NAXO) .S (NAXO,NAXD )} , ZCHAL (NAXO) , -
1 TERRAD, TMYU

NAXO IS MAXO+1, WHERE MAXQ IS THE ORDER TO WHICH THE
POTEMTIAL IS DESIRED.

TERRAD IS THE EARTR'S RADIUS, MU THE GRAVITATIONAL CONSTANT,
C{N,M), S(M,M) AND ZONAL(M) THE COEFFICIENTS OF THE
SPHERICAL HARMONICS, A{M,M) THE DERIVED LEGENDRE

FUNCTIONS, X, Y AND Z THE COORDINATES OF THE POINT,

D(N,M), E(N,M) AND F(M,M) THE FUNCTIONS OF THE

COMPLEX VARIABLE ZETA=CREAL+I-CIMAG AND

RHO IS THE FUNCTION OF THE RADAL DISTANCE. FX,

FY AND FZ ARE THE COMPONENTS OF THE FORCE.

GET THE DIRECTION COSINES ESS, T AND U.

A0

MAXO=NAXD-1
RINV=1.0D0/SQRT{XaX+Y2Y+Z=Z)
ESS=X+RINV

T=Y«RINV

U=Z+RINV

GENERATE THE FUNCTIONS CREAL, CIMAG, A, D, E, F AND RhO.

.
A0

RO=TERRAD+RINV
RHOZEROQ=Tr1"*RHEOZERO
RHO(1)=PO*RHOZERO
CREAL(1)=ESS
CIMAG(1)=T
D(1,1)=0.000
£(1,1)=0.000
F(1,1)=0.000
A(1,1)=1.000

D0 1 1=2,NAXO
RHO(I)=RO+RHO{1I-1)

W7
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CREAL(1)=ESS+CREAL(I-1)-T+CIMAG(I-1)
CIMAG(1)=ESS#CIMAG{1-1)+T#CREAL(1-1)
D(I,1)=ESS*C(1,1)+T+S(I,1)

£(1,1)=C(1,1)

F(1,1)=5(1,1)

A(I,T)=(2#1-1)*A(1-1,1-1)
A(1,1-1)=U*A(1,1)

D0 1 Ke2,I

IF (I1.EQ.NAXD) GO TO 9
D(I,K)=C{1.K)*CREAL(K)+S(I,%)+CIMAG(K)
E(1,k)=C(I,K)*CREAL{K-1)+S{I K)*CIMAG(K-1)
F(1,K)=S{I,K)*CREAL(K-1)-C(I,K)*CIMAG(K-1)
CONTINUE

IF {1.£Q.2) GO TO 10

L=1-2

D01 J=1,L
A(1,1-0-1)=(U*A(1,1-3)-A(1-1,1-J))/(J+1)

1 CONTINUE
10 CONTINUE

MDC W0013
- 9 February 1976

NO: COMPUTE THE AUXILIARY QUANTITIES Al, A2, A3 AND

A4, NEEDED TO FIND THE COMPONENTS OF THE FORCE.
A1=0.0D0 .
A2=0.0D0

A3=0.0D0

A3=RHOZERO«RINV

DO 2 N=2,MAXO

FAC1=0.0D0

FAC2=0.0D0
FAC3=A(N,1)=ZONAL(1!)
FACA=A(N4+1,1 ) =ZOUALEN)

00 3 M=1,M
FAC1=FACT+MeA (N M)E (!, M)
FAC2=FAC2+M+A(N M) +F (1 M)
FAC3=FAC3+A(N ,14+1)2D(%,M)
FACA=FACA+A(N+1 ,M+1)+D(N,M)
A1=AT+RINV*RHO(N)«FAC]
A2=A2+RINV*RHO( N )»FAC2
A3=A3+RINV+RHO(N)+FAC3
AS=AG+RINVRHO(N J*FACE

2 CONTINUE

FX=A1-ESS+A4
FY=A2-T*A4
FZ=A3-U*Ad4
RETURN

END

REFROD O TLITY OF THE

ORIGIHVATL
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