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PINES' NONS1 M.ULAR GRAVITATIOFIAL POTENT I AL 
DERIVATInN, DESCRl PTIOrl AND IMPLEMFVTAT I ON 

By Jose* L. Spncer 
HcDonnell Douelas Technicd Ser-rices Co., fnc. 

1.0 SUMMARY 

The possibility that the shuttle orbiter nay be required to go into polar orbits 
*lies the need to derive a representation of the gravitational potential that avoids 
the usual singularity at the pole. Such a representation, including opnerical har- 
monics coefficients up to any order and degree, has been provosed by S. Pines in 
'2laiform Representation of the Gravitational Potential and Derivatives ." 

The present note contains an engineering interpretation of and some minor cor- 
rections to the aforementioned report by Pines. 
used by Pines is explained, the dekivation of results is  separated into smaller 
parts for easier reading, some additional recurrence relations for the "derived" 
Legendre polynomials are included and campared, and a coaputer program ixcplementing 
t h i s  formulation is presented. 

The physical -meaning of the variables 
' 

\ 

Hrmaerical experiments conducted show that the use of this representation, besides 
satisQing the requirement (removing the singularity), substantially increases the 
speed of the computation. 

2.0 Z I p p R o D u ~ i D I I  

The space shuttle is being designed with e view to its perfx-ninr, D. xultiplicity 
of tasks. Some of these may require that it be placed in a polar orbi:. 

The r-iistence of singularities in polar orbits due to the usunl f9mulation 
of the gavi'-ational potential makes it necessiry thnt both ground and onboard 
software developed to support sntittle orbits c:5e 3 rcprescntation of the p o t e n t i a l  
that i s  free from sucn sinylarities. Pines, in reference 1, p r n s e n t s  nn r'Lternative 
formulation thnt sntisfies ?his rcquire3ent. 

The recursive algorithms proposed by Pine.: are stable rt any ordcr ,  ency t o  
program, and numerically efficient. They are therefore excc.lle:it fo r  both qro:irid 
softwru'e (where a high order may be used) and onboard scftwore !uherf2 an ri'iequitel:, 
truncated version ma/ be obtained sizply by stiF,ilatinq a 1:)ver- $>rIf.tr 1. 

The order that aut be used to neet the reqJirenents of the nnboarJ prqgram 
in terms of size, speed, and accuracy is subJect to study, AT. is possihi.. ',hat a i f -  
ferent orders may be needed for short-term and lone-term s'a* 5 propu@:isn. The 
ease with which the order may be chan&ed end the variatiar..il eqriotions obtained 
with Pines' representation of the potential m a k e  it ideal fc: such a study. 
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The formulation by P in -5  may, then, prove to  be very important for both t h e  
*. ground and t h e  f l i g h t  navigat ion software.  For t h i s  reason,  t h e  present  note  has 

been w r i t t e n  t o  provide (a) an engineering i n t e r p r e t a t i o n  o f  reference 1, (b)  e 
preliminary computer program u t i l i z i n g  t h e  algorithms developed by Pines,  and ( e )  a 
brief r e p o r t  on numerical r e s u l t s .  

3.0 DISCUSSION 

I n  t h i s  s ec t ion ,  t h e  conventional r ep resec t a t ion  of the  p o t e n t i a l  is  presented * 

and t h e  nature  of t h e  s i n g u l a r i t y  i n  po la r  o r b i t s  is explained. 

The change of va r i ab le s  proposed i n  reference 1 is then descr ibed,  and a l l  the 
phases of the de r iva t ion  are expanded; t h e  advantages o f  t h e  new rep resen ta t ion  
ere pointed out .  

It is shown how t h e  var ious terms t h a t  comprise t h e  new rep resen ta t ion  can be 
obtained recursively.  For t h e  case of t h e  "derived" Legendre polynomials, where 
there i s  more than one way t o  ob ta in  recurrence r e l a t i o n s ,  var ious methods are ex- 
hibited and compared. One of t hese  methods is recommended: Any e r r o r s  t h a t  may be 
present  i n  those terms Crom which a new term is derived are a t t enua ted  i n  t h e  process.  

F ina l  expressions f o r  t h e  p o t e n t i a l  and t h e  g r a v i t a t i o n a l  f o r c e  are co l l ec t ed  
in t h e  last subsect ion f o r  easier reference.  

3.1 Statement of t h e  Problem 

The g r a v i t a t i o n a l  p o t e n t i a l  of a celestial body is commonly given in s p h e r i c a l  
harmonics. The expression is 

where 

p 

a 

r 

is  the  g r a v i t a t i o n a l  constant  of t h e  c e l e s t i a l  body; 

i s  the roL:iis (usua l ly  t h e  mean r a d i u s )  of t h e  c e l e s t i a l  body; 

is  the  d i s t ance  between the  o r i g i n  of t h e  coordinate  system and t h e  p o i n t  B, 
where t h e  p o t e n t i a l  is being evaluate&; 

is t h e  l a t i t u d e  of point  B; a 

X is t h e  longi tude of point  R; 

2 
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Jn are  the  zo~ial  harmonics c o e f f i c i e n t s ;  

* c  and S are t h e  c o e f f i c i e n t s  of t h e  t e s s e r a l  ( i nc lud ing  t h e  sec to r i81 )  
n rm n rm 

harmonics ; 

are the  Legendre polynomials; and Pn 
P are t h e  associatec! Legendre functions.  

A d e r i v a t i o n  of equation (1) may be found, f o r  instance,  i n  reference 2. 
n rm 

The choice of o r i g i n  and o f  coordinate  axes is very important i n  t h i s  represen- 
If the  o r i g i n  is chosen st t h e  c e l e s t i a l  body's c e n t e r  of mass, the  constants  t a t i o n .  

t h e  n = 1 term con t r ibu te s  nothing; i f  t h e  Z-LK~S is chosen t o  be one of t h e  prin- 
c i p a l  axes of i n e r t i a  of t h e  c e l e s t i a l  body, t h e  cons t an t s  C and S 
zero.  

are all zero ane the sunmation can s t a r t  at n = 2, s i x e  
191 

and S J1' cl,l 

are 
291 2,1 

The angles a and A are def ined as fol lovs:  a is t h e  angle between the  
A i s  t h e  angle p o s i t i o n  vector  of point B and its p ro jec t ion  on the x,y F h ' I e ;  

between the  pos i t i ve  x-axis and t h i s  project ion.  
choice of t h e  x,y plane as a reference plane. 

They are t h e  result of t h e  a r b i c r a r j  

From t h i s  a r b i t r a r y  choice,  t h e r e  results a s i n d a r i t y :  If po in t  B is on t h e  
z-exis, A is not determined and t h e  p c t e n t i a l  is not defined. 

The a t t r a c t i v e  fo rce  is given by 

Here, t h e  problem not  only s u b s i s t s  ( A  

but is even eggravated by the  presence of an indeterminate 
(see appendix A )  are 

is present  in  &#! a x -  
f a c t o r .  "he grad ien t s  

L 

Or = R 

( u n i t  vector  along t h e  pos i t i on  vec to r  of point  B), 

- s i n  o V(sin Q)  = $ k - - R r 

L 

(k is the  un i t  vector  along the p o s i t i v e  z-axis) ,  and 

r r - ,  

AS 0 + 90°, 1 - sin2, 4 0 ,  k x R + 0, and the Cactor V A  is i n d e t e m i n a t e .  

3 
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To o b t a i n  a representa t ion  such t h a t  t h e  p o t e n t i a l  and the force can be unmbig- 
. u0usI.y obtained for poin ts  on t h e  z-axis, a d i f f e r e n t  re ference  p lane  may be used 

( s e e  fig. 1). 

z 

I 

Figure 1. - Coordinates of poin t  B. 

But then, t h e  problem has merely been sh i f ted .  
t h e  reference plane,  t h e  caordicntes  would b e  r ,  8 ,  and (I; f o r  po in ts  cn the 
x-axis, t h e  coordinate  JI would be unircfined. If t h e  z,x plane uere chssen. t h e  
coordinates  of t h e  point  would be r, y, and 6 ;  and again,  t h e  6 coordinate 
would be indeterminate  f o r  points  on t h e  y-oxis. Thus for t h e  p o t e n t i a l  i t s e l f ;  ts 
see vhat  results for t h e  force ,  consider t h e  g r a d i e n t s  of t h e  s p h e r i c a l  roord ins tes  
in t h e  t h r e e  cases  mentioned. 

If t h e  y,z plane uere  chozcn t c  be 

4 
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( 3 )  

1 

1 V r  = R 

1 -  sin Q i V(sin a )  = - k - - r r 

Plane of reference: y, = + vr + & v(sin ti) + 3 v* 
ar au 

1 

Or = R - 1  
1 "  s i n  v V(sin y )  5 ; J - - r 

The problem m b s f s t s :  In 06 and Ve, the  s m e  type of izlleter,inntl form t ha t  
had been found i n  Vh appears again.  

3.2 The Proposed Mcthsd of Solu t ion  

I n  re ference  I, t?.? method chosen t 3  rericdy t h i s  s i t w t i c z  c o n s i s t s  of  reislacin6 
t h e  sphe r i cz l  coor2in?te; r, a ,  A (or r ,  d ,  JI or  r, j ,  0 )  with m o t h h e r  
"distance an:! 5ii.e:ticz" r ep resen ta t ion  of a poin t ' s  positior.. 
made of t h e  i i r e r : i o n  ?:sines, which are always c l e o r l y  de f i r .m  f o r  e7.y l i r e c t i c n  
in space. Tte pos i t ic r .  of each poin t  is then given by four quaztitles: t h e  t h r e e  
d i r e c t i o n  cosines t h a t  l n f i n e  t h e  o r i e n t a t i o n  of t h e  p o s i t i o n  vector and r r  t h e  
magnitude of t h a t  vec tz r .  

Far ttis;, use i: 

5 
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C a l l  the direction cosines s, t, and u: these are the cosines of the angles 
* between the position veztor and the x-axis, the y-axis, and the z-axis, respectively. 
* Therefore, 

and these ere the expressions that must be used for numerical work. 
force w i l l  then be given by 

"he attractive 

By using the expressions for Or, V(sin a), V(sin e), and V(sin y )  fmnd in 
equations (31, ( k ) ,  and ( 5 1 ,  there results 

or by writing s, t, and u for si.? 6 ,  sin y ,  and sir, a, respectively, and 
collecting terms, there results 

which is expression (13) of reference 1. 

The term in VX has thud been removed frGu 2.. l'he task has not been completed ., 
yet, however; it still remains to express cp and F in the new vnriables. 

6 
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3.3 The “Derived“ Lepertdrc Functions 
-* 

Certain terns i n  F (but  not i n  6) h a w  -;::r,ulnrities t h a t  stem frm another  
source: The expression for P (sin a )  is. for genera l  n ond m [IPC~, f o r  

n,m 

in  a )  

dPn l ( s i n  n) 

-.-zka- Bo problem exists for  m > 1; but  for  m = 1, the  f i r s t  d r r iva t ivPs  

are inf inite  at o = $90”. Write u for  sin 3 becaise af equations (6)  a=d 
d i f f e r e n t i a t e .  . 

(u2 - lJn But - 
zero uiie:, u = u. The’s ingular i ty ,  then,  corns 

is a polynomial of degree dW1 

liU*l 

\ 

n - 1 in u, which 

frm the f a c t o r  (1 

Urite 

dws not becone 

-1 /2 - d) . 

m and note  t h a t  
of t h e  poten t ia l  becomes 

(1 - s in2a)m/2  = co= a. Then the sumnation i n  m i n  thz cxpress.on 

7 
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3.4 The Complex Representat  ion  

m It remains, then, t o  express t he  terms cos a cos mX and cosm, s i n  mA i n  ' 
teras or all or  sane of the  variables r,  s, t, and u. Reference 1 contains  a 
very ingenious r e a l i z a t i o n  of t h i s  demand. 

Bote t h a t  these te rns  appear i n  a cons i s t en t  form: h e  exponent of t he  cos a 
is equal t o  t he  coe f f i c i en t  of A, i n  a l l  cases. 
by t h e  appl ica t ion  of de Moivre's fornula ,  i n  t he  powers of a complex wmber i n  
po la r  form (see re f s .  3 o r  4). 
n, snd c are numbers and i = u-, and ge t ,  successively,  

A s i m i l a r  behavior is to be found, 

Consider t h e  complex number f, = 5 + in, where 5 ,  

iQ c = pe 

i n  polar  form, with p = 4- and Q * arc tan % c 

5 =  COS Q + i s in  01 

by mer's formula; &ad 

by de Moivre's formula. 

This is a new complex number Y = m , with real and imaginary parts 

m Retsm] = p cos mQ 

A complete analogy is found between t h e  complex manber ern and t he  terms 
m m cos a c o s  mA and cos a sin mA. These behatre as the real and imaginary p a r t s  of 

t h e  m-th power of the  complex number 

= COS a ( cos  X + i s i n  A )  . (10) 

Therefore,  exprtss  cxi a c o s  A and cos a s i n  X in terms of t h e  v a r i a b l e s  r ,  
.s, t, and u ( o r  sone of thcci), form t he  complex ntmber 
end raise the  complex number t o  t h e  appropriate  power t o  obta in  t h e  terms neea,.a. 

cos a cos A + i cos I ti? A ,  

6 



floc MOO13 
9 Februar.y 1976 

To find cos a cos A and cos a sin X in the required variables, refer back . to figure 1 end notice the spherical triangle with sides A ,  a, and 90' - 5. The 
angle opposite to the side 
for instance, ref. 4) gives 

90' - 6 is goo; application of the cosine law (see, 

cos(gOo - 6 )  = cos X cos a + sin h sin a cos 90° 

or 

s i n  B = cos a cos. X (11) 

Take, now, the spherical triangle uith sides a, 9Co - h ,  and goo - y. The 
angle opposite to the side 90° - y is 90°; apply the cosine lau and find 

coe(90° - y) = cos a cos(90° - X I  + sin a siniw" - A)COS goo 

or . 
s i n  y = cos a sin X (12) 

\ 

But sin B and sin X are the direction cosines s and t,'respect€wly. 

= s + it. In reference 1, the symbols r (s,t) and i (s,t) are used to repre- 
Then, s = cos a cos A ,  t = cos a sin A ,  and the cunplex number wanted is 

m m 
sent the real and imaginary parts, respectively, of u = gm. 

The representation of 0 becomes, at  this point, 

d%,,( u 1 
An,,(u) = - 

d d  
since, from equation (91 ,  with u written for sis J ,  

becones A (u) = Pn(u) when m = 0. 
n ,o 

(u), which nre the only terms 'n .n 
There are no singularities arising from thr 

in u. There are none from t i i~  +ems in r. (The only one wouli be for r = 0, but 
the expression of thc potential is only valid outside a s?htre of radius a and 
center at the origin.) The terms r (s,t) and i (s,t) and their derivatives 
with respect to s and t can be obtained frog v = Sa. Since  this is an analytic 

m r. 

9 
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k c t i o n  of C for all the values of m considered (integer and nonnegative), the 
. derivatives of all orders exist and are continuous. Differentiate v = cR with 

respect to t. 

But 

from the Cauchy-Riemann conditions (see appendix B), vhich must be satisfied because 
of the fact that v = c" is amly-tic; 
aeperate equalities for red and imsgkary parts, the follouing expressicns are 
obtained. 

Since equality of c A p h x  nunbers inplies 

\ 

These expressions give the ver j  valilsble information that +' 2 derivatives of the m-th 
terms may be obtained vith no need to prforn any differentiation, but only to 
multiply by m the m - 1 s t  terns. 

3.5 The Becmrepce Rocess 

The terms in r, in u, and in (s,t) m y  a l l  be obtained recursively. The 
same is true of their derivatives of all orders. 

Recursive processes are SdeallT suited for use in computers. 

The next subsections are devoted to the derivotior. of the  recursion formulas 
; - ,Y  the various functions involved. 

'?his is one of the most iWFort&nt par t s  of this note; it is upon t h e  recursive 
~,I.G:CFS., that the efficiency of the fordation depends, 

10 
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3.5.1 Complex variable recursion.- The terms required, r and i are the 
m m’ 

m reel and fnoeinary parts of w = 5”. To obtain them recursively, form c from 

F1 . 

= (r + ii ) (s + it) 

= (srW1.- tiel) + i(siWl + tr 

m-1 m-1 

) m-1 

Therefore, 

r = sr - ti m m-1 m-1 

(15) 

These are equations ( 2 5 )  of reference 1. 
uuder the nunber (251, but they are wrong (see appendix C). 

Besides these, there are two others, a l s o  

The derivatives of .rm and im are given by equations (lh) of this note. 

To start the recurrence process, two values are needed. Since = s + it, 

‘1 = 

il = t 

Equations (15) are valid for all integer value: of n. The recursion could 
have been started with any other known value, such as io = 1, which would givc 
to = 1, io = 0. 

The representation of the potential, equation (13), requires Cn,arm + 3n,ni7. 

The process of generation of the powers 
Defice 

Lm can be used for .this and its derivatives. 

Dn,n = ‘n,mrm + ‘n,m i m (16) 

11 
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Differenttate w i t h  respect t o  s and to t. 

arm am 
as = 'n,m as n,m 3s 

1Dn,m - + s  - 

= m(Cn,mrm-l + 'n,a i )  m-1 

arm - aim 
at 'n,m at n,m at %!A= - + a  

A w  define 

Therefore, 

"his is R': that is needed to find 3 from 6- Bit secon3 derivatives are needed 
for thr a-ariational equations. Therefore, continue the process by differrntiating 
again D with respect to s and t and defining new functions G and 

n,m n d= 
then find the relations Eo,** 

A ~ . . u .  there results 

12 
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'Dn,,, are harmonic functions) aad 

as WFIS +o be expected because of the continuity of derivatives (of all orders) of 
c- 

The fluactions G and E are 
n.m sm 

G n,m 'n,m*mG + 'n,xim-2 

3.5-2 "Derived" Legendre functiocs recursion.- The A (u) are derivatives n 
uf the P,(u). 

by definition; so 

a" 
m *n a*m du 

A e-- 

vith An,o = Pn. 

The Leeendre plynomials satisfy various recurrence relations (see, for in- 
stance, ref. 4). 

13 
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If these relations are differentiated with respect to u, an 3 number of 
times, the following are obtained. 

The following information is available: For rn n, A (u) = 0; fo r  c1 = n, 
n *n 

(u) = UA (u). 
An ,n-1 n,n 

A 

These are all straightioruard consequences of the definition of 

is a polynomial of degree n - ID with only odd or only even powers Df 
to vhether n - m is od3 or even. 

(u) = -- (a)!, and for m = n - 1, 
n,n 2"n I 

A, ,; each A * -  n ,n 
u, accorjiry: 

14 
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Form a table of t h e  An,m, wi th  cotisideration g iven  a l l  9 nnd f r 2 m  zero 

on up. L e t  n i n d i c a t e  t h e  row and E the column of t h e  t i a t r ix  thus  formed. A l l  

t h e  elements of t h e  diagonal are founrl by means of t h e  expression 

A ( u )  = 1.3-5.7 . . . . . (2n - 1) = - ('")! , * a l l  elements  of t h e  upper t r i a n g u l a r  
n,n 2"n I 

matrix are zero; nnd t h e  first column has t h e  Legendre polynomials. Each element 
immediately t o  t h e  l e f t  of sn element of t h e  main d i a ; o m l  is t h e  same, n u l t i p l i e d  
by u. 

I t  remains t o  f i l l  t h e  empty spaces. This can be done by any of  t h e  schemes 
t h a t  c o n s t i t u t e  t h e  recursion r e l a t i o n s  a2 through e2. 

Construct t h e  matrix, f i l l  i n  t h e  known spaces,  and t r y  t o  see how t h e  var ious  
A rectangle i n d i c a t e s  t h e  e l e i e n t  der ived;  circles i n d i c a t e  those  it ,.;. TV.:; work. 

~ . stt-:-i'ied f r o m  (see t a b l e  I ) .  

TABLE I .  - RECURSI3ii SCIIEIES FO2 THE A,,,", 
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For m = 0, ob ta in  each element of t h e  f i r s t  column i n  t e n s  of t h e  two above - ind ica ted  by s o l i d  l i n e s  a r o u d  t h e  elements; for m # 0, f ind  each element 
(not of t h e  first c o l m n )  i n  terms of th ree  o the r s :  
and one on t h e  previpus column - iridira:ed by d o t t e d  l i n e s  ( .  . . .). 
Obtain elements (not of  t h e  f i r s t  colllnn) i n  terms of two o t h e r s  of t h e  row 
above - ind ica ted  by dashed l i n e s  ( -  - - -1 .  

G e t  eleEents (not  of t h e  diaEonal ) i n  terms of two o the r s  o f  t he  following 
column - ind ica ted  by two dsts-dash (..-..-..-,. \ 

Find elements (not of t h e  f i r s t  column) i n  terms of t w o  o the r s  (both of previous 
rows), one of t h e  same column and another o f  t h e  previous - ind ica ted  by dash- 
one do t  (-.-.-.-). 

Get elements (not of t h e  n = 2 row) i n  terlns of t h r e e  o t h e r s ,  two of t h e  same 
r o w  and following columns and t h e  o the r  of the  prcvious row and followint; 
c o l ~  - ind ica ted  by one dot-two dashes (-.--.-----). 

In re ference  1 (where only r e l a t i o n s  b 

two i .media te ly  above 

and c2 are used),  r e l a t i o n  b 2 2 is  used 

t o  s impl i fy  t h e  de r iva t ives  of t h e  p o t e n t i a l .  whereas c is  used for  t h e  a c t u a l  re- 

‘cursive determination of t h e  A 

c2 is a more stable formula than  b2. 

2. 
The reasoning b e h i d  t h i s  last tho ice  is t h a t  n,m’ 

Consider t h e  same term ca lcu la t ed  from both formulas: “rom h 2 ,  

w i l l  be mul t ip l ied  by and w i l l  t he re fo re  c a r r y  ‘I larger e r r o r  i n t o  

hn+l,m+l. 
ju s t  t o  t h e  l e f t  of it; so as new terns are ca lcu la ted ,  t h e  values 3f n and m 
ere increas ing  and t h e  e r r o r s  becone progress ive ly  larger. 
by c2, any e r r o r  i s  .’ivide.d bg 

ere not ca lcu la ted  tE;is wsy but  s e rve  as s t z r t i n g  va lues .  The recxrs ion  procresses  
t o  the l e f t ;  and t h e  f a r t h e r  away t h e  term i s  from the  d iagon i l ,  t h e  g r e a t e r  t h e  
d i f f e rence  between 2 and L and t h e  a n a l l e r  t h e  effect  of any i n i t i a l  error. 

For t h i s  reason, r e l a t i o n  

Now t h a t  t h e  A 

(n  + m + 1) 
These terns are obtained fro.3 tu-, ferns, one d i r e c t l y  s b w e  and t h e  o t h e r  

I f  t he  term i s  ca l cu la t ed  
(n  - m). Tens  i n  t he  diaCoci1, whore n - m = 0, 

1 
is t o  be prefer red  to b, for recursion. 

L 

ffiust be  obtained. % ,m have been found, t h e  d e r i v a t i v e s  
du  n rm 

From t h e  d e f i n i t i o n  of An,m, it f o l l o u s  t t ,nt  

dAn’m du = An,n+l (22) . 
h e  same areument holds  without chnncc i n  conpm-isorls bct.wt,en c or 

In e2, t h e  e f f e c t s  of errors are decrensed es i n  c2; but s i n c e  each term i s  

and d 
2 2 

a2. 
derived from t h r e e  o the r s ,  there  are more sources of e r r o r .  

16 
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The der iva t ive  of A 

no need for an a c t u a l  d i f f e r e n t i a t i o n  t o  bc performed. 

m q  then be obtained by using t h e  recurs ion  r e l a t i o n s ,  with’ n.m 

3.5.3 Recursion f o r  t e r z  i n  t h e  radial diatsnce.- Another quant i ty  t h a t  may 

be obtained recurs ive ly  is t he  term containing r. Actua l ly ,  t h i s  will l ead  t o  a 
more compact represer . ta t ion  of the  po ten t i a l .  

The p o t e n t i a l  was given by 

obtained by using eqdation (16) in equation (13). 

defined is Dl,l. Let  m = 0 i n  D esd  g e t  

0 

* n,m The lowest D n .m 
because, as had been eex, r = 1 arA - D ~ , ~  - ~ ~ , ~ G ~ ( s . t )  + Sn,oi,(s,t) = C*,a 

io = 0. 

so if cn a r e  defined as -J f o r  n = 0 ,  the fol lowing s i n r l e r  expression 
* O  n 

:‘or t h e  p o t e n t i a l  is found. 

A b e t t e r  form lcey be obtsined by allo-Ar?g n = 0 as a possible -.-slue. %is 
e n t a i l s  def ining a D = 1 and A = 1. in f x t ,  A = 1 hat a l ready  5:- 

0 -0  0.0 0 -0  
@red; so only t h e  D rena ins  t o  be defined. 

0,’ 

Since DO,O = Co,o, t h i s  is, i n  t h e  f i n a l  &?alysis ,  t h e  only d e f i n i t i o n  n e 4 e d :  
c = 1. 

0.0 

The expression f o r  t h e  po ten t i a i  becones 

I t  is now a simple matter  t o  f ind  a r f c w s i v e  r ep resen ta t ion  f c r  t hc  t e r n  i n  

and it fo l lous  t h a t  p n  = PP,-~. 

17 
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Note the relation 

2=- Pn+1 
r a (26) 

3.5.4 Collection of fom-zas.-  The potential can then be written as 

\ 

I 

o u c h  is formula ( 2 9 )  of  refe'=&e 1. . . 
The expression for the force was equation (7 ) .  

or, in the  notation of ref'erenx 1, 

-b .. .) 

F = a l i + a  2 J + a - k + a R  3 b  (28) 

The expressions for al, e2, e 3 ,  and a,, c?n now be found from t h e  d i f f e r c n -  

t iat ion recursions found i n  sutsections 3.5.1, 3 . 5 . 2 ,  and 3 . 5 . 3 .  

. 

18 
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Simllerly , 

But 

low 

I 

* 

. 

19 
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SO, by co l l ec t iw  a l l  these, 

+ 
F can thus be written as 

I 

-A n+l,m+l D n,m Rl 

- 1  

Another way to  write 3 ,  taking into account the fact that R = s i  + ti + uk, 
1 

is 

The main formulas are n& presented together. 

Formulas for the variables: 

20 
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For the recursions: 

p e a  

' 0  r 

= 0 0  'n n- 1 

r 
U 

0 -  

( 2n I!- = -  
*n,n pni 

For the potential: 

= u A  An,n-l n,n 

I - 1 
*n,m ( Q A ~ , ~ + ~  *n-1 ,m+l (21 )  

21 
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For the a t t r a c t i v e  force: 

3.6 The Second Derivat ives  

Ia t h i s  sec t ion ,  t h e  second-order p a r t i a l  de r iva t ives  of 4 are found. This 
can be done in several ways. 

Consider the vector  

In refereice 1; t he  following way is chosen. 

+ 1 
4 

F = Pxi + F j + F,k 
Y 

The "gradient of the vector" is defined t o  be the  sum of outer  products. 

+ 
This is a 3 x 3 matrix,  P. The vector  F, in this case, vas given by equation (31) .  

P = (a, + at*); + (a, + a,t)j + (a 3 + a,u)i; 

The matr ix  is found t o  be 

(a, + a 4 s )  $a2 + a,t 

and it mj- be seen that it is symme+.Ac. 

22 
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T various elements of this matrix mag be found by applying to the f'unctions 
in parentheses the same procedure that was applied t o  the function 
sion for V& vas 

4. The expres- 

the components being given by 

3%.  384 + ah as and similarly-for other terms, it. 
ax 

a? sal ay aa,, aa,, a% aa, a% a- 
a az 9 ax 9 ay 3 az ay 9 az * and 2- 

(aecause the natrix is s y m e t r i c ,  no others are needed.) As for - as as as at 
ax* 5 2  ay' 

a t  

since & ("1 + a,,s) = K+ s- 

vtll be necessary to find -* - - - - - - - 
\ 

au 
-aZ. mall that s = $9 t =f ,  and I A = ~  and that s, t, u, r - 

are independent of one another. '&erefore, 

and 

Then 

ar.3. In e similar way for the other derivatives. 

23 
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I w  use the notation, for any function L, 

1 aL - - =  Ll r as 

1 aL 
T a t '  L2 

and there results that 

-E . au + sa -.ax, 

- = a  * t a  ay 12 11, 

- =  + t a  
ay '22 2~ 

aa2 
. az a + ua 23 21 
- =  

for a l l  i and j from 1 throwh L and that  iJ = aJi Note, non, that a 

"11 = -a22' 

24 
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as To f ind Pll, add - aal s 7 and a,, and get ax ax 

Similarly, 

P~ = -5 + + t2abb + (37) 

'23 = '32 

P33 = a33 + ,2u8% + u aLL + - r 

+ m2,, + ta31r + utabb a23 
2 8t 
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The derivatives a through aa msy be found by the use of formulas (17), 
11 

(18), (221, and (25) .  

3.7 The Variational Equations 

A decision on what order teim to include in the potential must be Eade after 
studying the effects on the ettractiPe,force of changes in the coefficients cf the 
spherical harmonics. 
respect to those coefficients must be found. 

For t t L s  purpose, the partia derivatives of the force w i t h  

26 
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For a particular coefficient CN,#, the derivative Is 

aa2 aa aa, 
-I- aF ; + - . J + - i + -  
aC19,M ac:, ,M ,M a c ~  ,M 

., 
R 

1 .N ac 

1 

The expressions of 5, a2¶ 5. end ab are given by equations (291, (301, 

(W), end (32). 

The derivatives. then, are 

There arc several mistakes in the expressions for these derivatives in ref- 
erence 1. For a nore complete derivation of these results, see appcndix c.  

Varintinnul equnt ions will be required for several pararrxters, partic.:lnrly for 
the initial conditions. 

The equations of motion in an inertial system are obtained by menns of a rota- 
tion matrix, from the equations relative to a rotating coordinate system. 

27 
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Let the position vector of the point where the potential is being evaluated 
+ + 

be represented by 
in an inertial system. 
connected by the equation 

5 in a system of axes fixed to the celestial body and by RIN 
If the rotation matrix is ti, the two representations are 

+ 
The force, uhich uas given by FB = 

to tbe body-fixed axes), is given in the 
VB6 (where OB means gradient with respect 
inertial system by 

Therefore, the equations of &ion of the point In the inertial system axe 
" 
+ 
Rm = HT$B (43) 

Consider a parameter ri. Let it be such that second-order differentiation 
w i t h  respect to ri and to t cgs be perfo-wed in aqy order with the same results; 
*t is, 

&ere a dot above the function stmds for differentiation with respect to time. 

Then differentiate equation (k3) with respect to Ti and find 
/I \ + 

T + aHT + T a F ~  

I ari B ari 
:fil;l = - 

ari 
a iir F ~ )  = - F + N  - ar, 

The matrix NT depends only 33 the time (duration of the rotation); ri rep- 

resents a parameter such as the initial conditions or the coefficients of the spber- 
fral harmonics, but not the tine. Therefore, 

m 

28 
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Then 

-b 

Carry out t h i s  last differentiation through 
I$. 

This differentiation vas carried out on the assumption that the force contains 
-b + + -  

ri indirectly; that is, FB cont'ains in turn contaics ri. If FB 

must be added. 
-. 

should contain ri explicitly, a term 

This is- not clear in reference 1, and care must be exercise& in its use. 

The system of variational equations is, then, axposed of equations (Irk)  and 

(47) with, possibly, the tern ($5) added to equation (47). 
ari explicit 

The initial condit5o.s for this system of equstions identify the values of 
A - 

at the initial tine to. and - a%, 
ari -b 

7 

a ri 

as a function of time. Solving this system of equati-7s will give - aRIB 
ari 

4.0 RESULTS 

Pines's representation of the potentid satisfies the requirerent that the 
singularities in po l s r  orbits be reToved. 

Attention is called, aaong the nsin forzulas collected at *.he erd of section 
3.5.k,  to equation (?l), vhich w 3 s  show. to be t ho  cost s t s h l e  cf th?  re?uri'er:ce 
relatims f o r  the "derived" LegenCrc functi 3"s. 

A preliminary computer subro';l',ine YZS vritten, m4cir.s f u l l  US" of thr recursion 
relations derived by Pines.  It is contnined in appendix D ~ f '  this note. 

James Kirkpatrick, of IIASA, included this subrmtine in place of the usua l  
formulation of the potential in his procrar. (Which integrates the equaticns of  
motion with an Adnms method). He noted a substantial irnprovment in the time of 
execution. 

29 
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The eubroutine,  a s  shown i n  appendix D, makes liberal use of s to rage  loca t ions .  
After a l l  t h e  terms up t o  t h e  desired order  and degree have been generated and s t o r e d ,  
s eve ra l  a lgebraic  operat ions sre performed upon them to  ob ta in  t h e  components of 
t h e  force.  The terms remain i n  t h e  same s t o r w e  l o c a t i o n s  even a f t e r  they have been 
used. 

The subrout ine has s i n c e  been improved with a view t o  sovinc storage loca t ions .  
The a l ceb ra i c  operat ions are performed as soon as t h e  n e c e s s x y  terms are generated,  
and only those terms t h a t  w i l l  be o f  some f o t u r e  use are re tained.  T h i s  has been 
t h e  work mostly of J. Kirkpatr ick.  

Although a complete evaluat ion of t h e  gain i n  t ime and storwe has not  been 
made as y e t ,  it is  poss ib l e  t o  say at t h i s  point  t h a t  a n x i e l  of the  p o t e n t i a l  
including terms up t o  
more i n t e g r a t i o n  s t e p s  i n  less t i m e  than a model v i t h  t e r n s  up t o  
t h e  usual  formulation. 
course,  the  same. 

n = m = 18 has been used v i t h  Pines's f o r m l a t i o n  and produced 
n = m = 6 with 

"he i n t e g r a t o r  i n  vhfch t h e s e  nodeis  were included ras, of 

5.0 COBCLUSIOnS 

The formulation proposed bs Pjnes is such t h a t  no s i n g u l a r i t i e s  are present  
f o r  any pos i t i ons  of t h e  point .  

The recursion r e l a t i o n s  are easy t o  proeram, and t h e  program can be made i n  a 
way t h a t  v i11  result i n  savings i n  s to rage  and t i m e  of conputatian; t h e  r e l a t i o n s  
are s t a b l e  and nunericol ly  e f f i c i e n t  a t  ell orders.  \ 

Generation of ekuat ions t o  study t h e  e f f e c t s  on t h e  a t t r a c t i v e  fo rce  of changes 
i n  t h e  c o e f f i c i e c t s  of t h e  sphe r i ca l  harmonics or t h e  e f f e c t s  on t h e  p o s i t i o n  vector  
of changes i n  paraneters  such as those c o e f f i c i e n t s  (end t he re fo re  t h e  order of  t h e  
p o t e n t i a l  model), i n i t i a l  pos i t i on ,  or i n i t i a l  v e l o c i t y  i s  a simple procedure t h a t  
mal:es use o f  t h e  same recurrence r e l a t i o n s .  

30 
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' .  
APPENDIX A - GRADIENTS OF 1, sin 0 ,  Ai¶D X 

\ 
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APPENDIX A 

GRADIENTS OF r, s i n  a, AND A 

Consider the transformation betveen Cartesian and spherical coordinates. 

r = i x 2  + y2 + 22)1 /2  

s i n  o = - = z 2 

(x2 + y2 + ,2 )1 /2  r 

A = arc tan Jl I X 

x = r cos a cos A 

y .S r cos a s in  A and 

z = r sin a 

The gradients of r, sin a, and A are, then, 

1 
. 

ar a t  A ar 
ax + J + d~ Or = - 

=-i+:j+=I; x -  
r r 

1 s in  a 6 
r r 

= - k - -  

33 
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'1 ' (-yj + d, t - sin2,) 

X 

r 
x 
r 

so 

\ 
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N'PmIX B - 'EE CA(ICHY-RIEX!-T CONDITIONS 
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APPENDIX B 

THE CAUCHY-RIEMATIN CC'OITIONS 

This derivatLon nay be found, for i n s t m c e ,  i n  r e fe rence  3. Let i = s + i: 
be a complex va ' a b l e  and l e t  w = u ( s , t )  + i v ( 5 , t )  be a complex function of 
s,w = 4 s ) .  

The func t ion  w ( 5 )  is sa id  t o  be a n a l y t i c  at a point. C i T  t h e  d e r i v a t i v e .  
- dw exists and is f i n i t e  a t  5 Ad at a l l  po in t s  of a neighborhood cf i. Tne .'e- 
dS 
r i v a t i v e  is defined as 

- =  dw l l m  v(c + A < )  - u.,;) 
dS 

where As = As + i A t .  

If the limit is t o  e x i s t ,  it must be independent of t h e  way !n which A 6  

Now l e t  A t  0. Then 

!.e+.,, now, A s  Z 0. Then 

37 
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Since equality of campler nlrmbers requires equality of their real parts BS w e l l  
as of their imaginary parks, the result is 

I I - the Cauchy-Riemann condftions. 
- = - -  I: :I 
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A P P r n I X  c - moRs IH TIfE PAPER 
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APPENDIX C 

ERROAS 1% THE PAPER 

Although r e fe rence  1 is, i.? general ,  c o r r e c t  an3 accurate, a feu minor errors 
and mispr in t s  may l ead  t h e  reader  i n t o  d i f f i c u l t i e s .  

These errors and misprints  are t o  be found i n  equat ions (lo), t h e  last tus c;' 
equat ions (25:. e,iation (30a), and equations (39). 
is not very clear. 

The second of e q u a t i m s  ( h g )  
These numbers refer t o  t h e  equations ii reference 1. 

Equations (10) of r e fe rence  1 read 

cos d cos ma = r m ( s , t )  

sin d cos m a  = i,(s,t) 

vhen they should be 

cos m~ cosEh = r m ( s , t )  

sin ma cos m a = i,(s.,i) 

There are four e q u a t i m s  ( 2 5 ) .  of which only the last two are srow. Since they 
are not  used afteriards i n  t h e  paper, t h e  error has  no consequences. 

The f u n c t i o i s  r and i a r e  homogeneous of degree m i n  s ard t. Then m m 
EUler's theorem on homogeneous functions r e s u l t s  i n  

These could be w r i t t e n ,  w i t h  the  he lp  of the  Cauchy-Erensnn cordi t ions,  es 

b l  
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These may be the equations that were to be presented. Insttad, the last tV0 
of  equations (25) of the reference reed 

I t  is easy to verify that these are -0%; an W p l e  vi11 suffice. Let 

ai ar2 
as z s ,  - a= = 2s, r =  -2, and 
ar2 m = 2, for uhich r2 = s2 - t2, i2 = a s ,  - =  

Equetion (30a) of reference 1 Just lacks a minus sign; a i s  is carrectrtd In 
equation (30b). 

.of this note', the derivatives sre 
Equations (39) of reference 1 have several siinakes, h s b o M  in section 3.7 - 

+s- 0- 
a% 

P- +s- - 
ac ac I as.. -. ,I =l!i,kl 

2. 
" a . M , l  I , M  

aab 

as,,, 
*u- 

3 aa 
t-++- aa3 a% ; f =- f 

Cu,n,3 %,M 3% 3 'ti,.,i as,; ,:4 

These derivatives %re to be obtained from the erptessions of 5, a2, a3, 

sr.3 ah;  namely, 

42 
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They appem- only and 19 .M 
Consider a s p e c i f i c  p a i r  OP c o e f f i c i e n t s  C 

once i n  the expressions of a a2. a3, and ab. The term 5 may be uri*ten 
ao as t o  show sepa ra t e ly  t h e  par t  conta in ine  these  m e f f i c i e n t s .  

1' 

Simi la r ly  for a2, a .3, and % (but shoving only t h e  p e r t i n e n t  parts), 

with t h e  result t h a t  

Knouing these ,  it is  an easy matter  to arrive a'. t h e  correct equat ions,  vnich . 
may be found i n  sec t ion  3.7 of t h i s  no te  as equat ions ( L O ) .  

The lack of c l a r i t y  of the second of equations (L5) of reference 1 has been 
discussed at the end of section 3.7 of t h e  present note .  
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APPENDIX D 

SUBROUT I I E  GRAVPOT (NAXO .X ,Y .2 ,FX ,FV ,FZ) 
I M P L I C I T  DOUBLE PRECISIOfl (A-H.0-2) 
D1)SENSION CREAL(fIAX0). CIMAG(NAX0). RHO(flAX0) 

1 A(NAX0,NAXO) ,D( 1IAXO ,NAXO) ,E (NAXO ,tlAXO) ,F( NAXO ,rOAXO) 

1 TERRAD, TMU 
COK~ON/COIIST/C( :IAXO,NAXO) 5 (NAxo,riN(o) ,ZO:~AL ( NAXO) , . 

NAXO I S  HAXO+l. WHERE MAX0 I S  THE OROER TO WHICH THE 
C 
C 
C POTEMTIAL I S  DESIRED. 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
- c  

C 

TERRAD IS THE EARTH'S RADIUS, Mu THE GPAVITATIONAL CONSTANT, 
C(N,Mj, S(N,#) AiiD ZO:iAL(N)'THE COEFFICIENTS OF THE 
SPHERICAL HAG-lO:iICS, A(II.M) THE DERIVED L E G E N E  
fllflCTIONS, X, Y AIlD Z THE COORDINATES OF THE POINT. 
D(14.H). E(N,PI) AND F(ll,f4) THE FUNCTIOtlS OF % 
COMPLEX VARIABLE ZETA=CREAL+I*CIMAG Ai40 
RHO IS THE FUNCTION OF THE RAOiAL OISTANCE. 
N AND FZ ARE THE COMPONENTS OF THE FORCE. 

GET THE DIRECTION COSINES. ESS, T AND U. 

FX. 

MAXO=NAXO-l 
R I  HV = 1 . OM)/ SQRT ( X*X+Y*Y +Z*Z ) 
ESS=X*RIIIV 
T=Y*RINV 
U= 2*R I N  V 

GENERATE THE m!umords CREAL, CIMAC, A, D, E, F AND b o .  
RO=TERRAD*RIfIW 
RHOZERO=Tll~~+RHOZERO 
RHO ( 1 )=RO*RHOZERO 
CREAL(1 )=ESS 
CIt.rr\G( 1 ) = T  
D(1 ,l)=O.ODO 
E(1 ,l)=O.ODO 
F( 1.1 )=O. OD0 
A( 1.1 )=1 .OD0 
W 1 I=Z,NAXO 
RHO(I)=RO+RHO( 1-1) 
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CREAL( I )=ESS*CREAL ( 1-1 )-T*CIMAG( I -1 1 
CIMAG( I)=ESS*CIMAG( I-:)+T*CREAL( 1-1) 
D( I .1 )=ESS*C( I ,  1 )+T*S( I .1) 
E(I ,1 ) = C ( I  ,1) 
F( I , l ) = S ( I  ,1) 

DO 1 K.2.I 
IF (1.EQ.NAXO) GO TO 9 

A(I,I)=(2*I-l)*A(I-F,I-l) 
A( I I 1-1 )=U*A( I , I  ) 

D( I ,K)=c( I .K)*CREAL( K)+s( I , V , ) ~ I M A G ( K )  

F( I,K)=S(I,K)*CREAL(K-I )-C(I,K)*CIFIAG(K-~) 
9 COtlTI#UE 

I F  (1.E9.2) GO TO 10 
L=I-2 
DO 1 J=l,L 
A( I , I -J- l  )=(U*A( I , I -J)-A[ 1-1 , I - J ) ) / (  J+1) 

E( I ,K)=C( I ,K)*CREAL(K- 1 )+S( i ,K)*CINAG( K-1) 

1 C O V I N U E  
10 COHTIWE 

C 
C 

N@l COKPUTE THE AUXILIARY @XNTITIES A l ,  AZ, A3 AND 
AB, rlEEDED TO FIND THE COMPONENTS OF Ti iE FORCE. 
A1 =O. OD0 
A2-0.000 
A3=0.ODO 
A4= RHOZERO*R IN V 
W 2 N=2,MAXO 
FACI=O. OD0 
FAC2=O. OD0 
FAC3=A(N,I )*ZOIIAL(Il) 
FACGA(tI+I  ,1 )*ZQtlrlALtN) 

FACl=FACl+M*A(N ,M)+E(i l  ,M) 
FACZ=FACZ+M+A(N,M)+F( N , M )  
FAC3=FAC3+A( PI ,M+l) *D ( : I  ,M) 

3 FAC4=FAC4+A(fi+l ,M+1 )*O(N,M) 
A1 =A1 +RI!tb’*RHO( N)*FACl 
M=A2+RINV*RHO( N)*FAC2 

00 3 rj=i ,rt 

APA3+RINV*RHO(N 
A4=A4+RINV* RHO(N 

FX=Al-ESS*M 
FV=A2-T*A4 
FZ=A3-U*A4 
mRN 
END 

2 CONTINUE 
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