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PREFACE 

This report presents some results of a continuing research program on 

Approximation Concepts in Structural Synthesis. The development of the ACCESS 
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obtained in November 1973. Operational versions of the ACCESS 1 program were 

delivered to the NASA Langley Research Center in May 1974. During the last 

year this program has been further exercised on a variety of problems. 

The research effort reported herein was carried out in the Department of 

Mechanics and Structures at UCLA. Dr. Hirokazu Miura carried primary respon- 

sibility for the development of ACCESS 1 and Professor Lucien A. Schmit, Jr. 

served as the principal investigator. This manuscript was prepared by the 

Reports Group in the School of Engineering and Applied Science at UCLA. 

The authors want to take this opportunity to express their gratitude to 

Dr. G. N. Vanderplaats of NASA Ames Research Center for his cooperation in 
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SDMMARY 

It is shown that efficient structural synthesis capabilities can be 

created by using approximation concepts to mesh finite element structural 

analysis methods with nonlinear mathematical programming techniques. The 

philosophically attractive generality inherent to the mathematical program- 

ming formulation of structural design optimization problems is retained and 

excellent efficiency is achieved by replacing the design optimization problem 

with a sequence of small explicit approximate problems, that preserve the 

essential features of the primary design problem. At the outset, the short 

but lively history of the application of mathematical programming techniques 

to structural design optimization problems is reviewed. 

In Section 2 several rather general approximation concepts are described. 

Basically these concepts provide mechanisms by which the primary mathematical 

programming statement of a structural design problem, involving large numbers 

of design variables and.many implicit constraint functions, can be replaced by 

a sequence of approximate problems involving relatively small numbers of design 

variables and a substantially reduced number of constraints that are all 

explicit functions of the design variables. 

Section 3 describes the technical foundations of the ACCESS 1 computer 

program. This program implements several of the approximation concepts des- 

cribed in Section 2. The overall efficiency of the ACCESS 1 program is 

achieved through the carefully coordinated use of: (1) design variable link- 

ing; (2) dynamically updated Constraint deletion; (3) high quality explicit 

approximations for retained constraints; (4) a finite element analysis organ- 

ized with the design optimization task in mind; and (5) a selective sensitivity 

scheme in which only those partial derivatives needed, to construct explicit 

approximations of retained constraints, are evaluated. 



Section 4' presents results for a substantial colledtion of truss and 

and idealized wing structures; Since differences due to idealization and 

modelXng details can be virtually el'iminated for truss structures; these 

exampIes-are compared with some previously reported optimum design results; 

On the other hand, in the idealized wing examples emphasis is placed.on,examin- 

ing the influence of finite element modeling and design variable linking on 

.the minimum weight designs attainable. 

Based on the numerical results reported it is concluded that, for struc- 

tural synthesis problems of modest but useful size, approximation concepts 

usually make it possible to obtain a practical near optimum design within 5 to 

10 analyses. When measured by the number of conventional analyses required to 

obtain a candidate optimum design, ACCESS 1 is found to be competitive with 

recursive redesign techniques based on fully stressed design and discretized 

optimality criteria concepts. Finally, it is argued that since the basic ideas 

employed in creating the ACCESS 1 program are rather general, its successful 

development supports the contention that the introduction of approximation 

concepts will lead to the emergence of a new generation of practical and effi- 

cient, large scale, structural synthesis capabilities in which finite element 

analysis methods and mathematical programming algorithms will play a central 

.role. 
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1. HISTORIGAL BAGKGRGDND 

1.1 Early Work .; 

The application of mathematical programming techniques to structural 

design optimization problems has a relatively short but lively history. Prior 

to 1958 research in this area was built on the plastic design philosophy. 

Briefly stated, this approach seeks to minimize the weight while precluding 

plastic collapse of the structure when it is subjected to overload conditions. 

obtained by scaling up service load conditions. Within the context of the 

plastic design philosophy a significant class of structural optimization 

problems can be formulated as linear programs. The early applications of 

linear programming techniques to the minimum weight design of planar frames 

based on the theory of plastic collapse (such as Refs. 1,2 and 3) did not 

consider multiple or alternative loading conditions. Subsequently, the need 

for dealing with alternative loading conditions in the plastic design context 

was recognized and dealt with successfully (see for example Refs. 4,5 and 6). 

The early applications of mathematical programming methods to optimum struc- 

tural design took.the form of linear programs because they were formulated 

within the simplifying context of the plastic collapse design philosophy. 

As early as 1955 (see Ref. 7) it was recognized that a more general 

class of structural design optinrLzation problems could be viewed as nonlinear 

mathematical programming problems. While Ref. 7 did not consider multiple 

loading conditions, the fundamental importance of inequality constraints in 

properly stating structural design optimization problems was clearly recognized. 

The influence of Ref. 7 was probably limited by the fact that the mathematical 

problem was treated in classical form using Lagrange multipliers and slack 

variables. The resulting large number of unknowns~and the apparentneed to 
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find all the solutions of the governing set of nonlinear simultaneous equa- 

tions were discouraging when bigger problems were contemplated. 

What has been characterized as a "period of triumph and tragedy for 

the technology of structural optimization"* was ushered in by Ref. 8, where 

the coupling together of finite element structural analysis and nonlinear 

mathematical programming techniques to generate automated methods for struc- 

tural optimization was first suggested. Working within the elastic design 

philosophy it was shown that the minimum weight design of elastic statically 

indeterminate structures could be cast as a nonlinear mathematical programming 

problem in design variable space. The formulation set forth in Ref. 8 con- 

sidered a multiplicity of distinct loading conditions and a variety of 

inequality constraints, including stress, displacement and member size limita- 

tions. Since the design optimization problem treated in Ref. 8 had the form of 

a nonlinear programming problem, it followed that the optimum design did not 

necessarily lie at a vertex in the design space. Therefore, it was pointed 

out in Ref. 8 that, contrary to the commonly held viewpoint, the minimum weight 

design for a statically indeterminate structure is not necessarily one in 

which each member is fully stressed in at least one load condition. The 

algorithm used to generate solutions for several simple three bar truss 

examples in Ref. 8 was a rather primitive feasible directions type method, 

that was called the method of alternate steps. 

1.2 The Decade from 1960-1970 

During the decade from 1960-1970 the structural synthesis concept (i.e. 

the rational formulation and numerical application of mathematical programming 

methods to the quantifiable portion of the structural design process) developed 

* 
See Ref. 32. 
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along two main lines, namely: (1) special purpose applications to fundamental 

and recurring problems involving a broad range of complex failure modes and 

loading environments; and (2) general purpose applications based on finite 

element structural analyses considering static stress, displacement, and 

member size constraints under a multiplicity of distinct loading conditions. 

.1.2.1 Special Purpose Applications 

Some examples of structural synthesis capabilities reported .during the 

1960's that fall into the firqt category are now cited and briefly discussed. 

In 1963 an automated minimum weight design capability for rectangular simply 

supported waffle plates subject to multiple loading conditions was reported in 

Ref. 9. In this seven design variable problem various buckling and combined 

stress failure modes were guarded against and the existence of relative 

minima associated with distinct design subconcepts was revealed. 

In 1965 the first effort to apply a mathematical programming approach 

to optimum design while taking aeroelastic constraints into account was 

reported in Ref. 10. A highly idealized double wedge wing was studied con- 

sidering a plausible mix of constraints restricting flutter Mach number, static 

aeroelastic displacements, combined stress, and angle of attack. The objective 

function to be minimized was taken as the total energy required to drive the 

wing through a sequence of several flight conditions and the option to impose 

a maximum wing weight constraint was included. 

The minimum weight design of stiffened cylindrical shells represents a 

recurring problem of fundamental importance in aerospace applications. In 

1968 the first application of mathematical programming methods to this 

important problem was reported in Ref 11. Later the same year a structural 

synthesis capability for the minimum weight design of stiffened cylindrical 
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shells, representative of the state-of-the-art (circa 1968), was presented in 

Ref. 12. The problem was formulated using the Fiacco-McCormick interior 

penalty function and numerical results were obtained by executing a sequence 

of unconstrained minimizations using the Davidon-Fletcher-Powell variable 

metric algorithm. The constraint repulsion characteristic of this formulation 

made it possible to employ approximate buckling analyses during major portions 

of the design procedure. In a sense, this feature was a philosophical pre- 

cursor of the currently emerging approximation concepts approach in structural 

synthesis. In 1969 an extension of this capability to the minimum weight 

design of barrel shells was reported in Ref. 13. As an illustration of the 

important role structural synthesis capabilities can play in evaluating design 

concepts, the following quotation from Ref. 13 is cited: "For shells designed 

to support axial compressive loads, the results show that important weight 

savings can be provided by slight meridional curvature. For the particular 

shell examined herein, the maximum weight saving is about 30%. The large 

increases (factors of 5 to 9 in strength) recently attributed to barreling 

cannot be directly translated into weight savings when comparisons are made 

between minimum-weight designs. Yielding becomes an important failure con- 

straint at lower loads for barreled shells than for cylindrical shells." 

A mathematical programming approach has also been applied to the 

minimum weight optimum design of stiffened fiber composite cylindrical shells 

(see Refs. 14 and 15). The design variables include the depth and width of 

the hat stiffeners, the stiffener spacings, the fiber volume content, and the 

ply orientation angles. Multiple load conditions are treated and each load 

condition is described in terms of a combination of axial, radial, and 

torsional load. It is pointed out that the weight objective function is 



independent of the ply angles and it is shown that alternative optima are 

common for this type of structure (i.e. the set of design variable values 

that gives the minimum weight is. not unique). 

In 1968 ax- application of the mathematical programming approach to the 

automated optimum design of an ablating thermostructural panel was reported 

in Ref. 16. Analysis of a trial design involved a one-dimensional nonlinear 

transient thermal analysis, to predict the temperature distribution, followed 

.by a stress analysis that employed temperature dependent material properties. 

The design variables were the initial ablator thickness, the sandwich struc- 

ture thicknesses (skins and core), the insulation thickness. and the panel 

planform dimensions. Two alternative objectives were considered, namely: 

(1) minimization of the weight per unit area of surface protected, subject to 

a constraint on the maximum depth of the shield; and (2) minimization of the 

total shield depth, subject to a constraint on the maximum weight per unit 

surface area protected. The loading environment was described by time depen- 

dent heat flux and dynamic pressure inputs. The optimization problem was 

formulated using an extension of the Fiacco-McCormLck penalty function technique 

which accomodates parametric inequality constraints. 

In 1969 an application of the mathematical programming approach to the 

minimum weight optimum design of planar truss-frame structures subject to 

dynamic loads was reported in Ref. 17. Inequality constraints were placed 

on the maximum dynamic displacements and stresses and the natural frequencies 

of the structure could be excluded from certain bands. The limited class of 

structures and the use of shock spectral analysis notwithstanding, this work 

probably represents the most comprehensive structural optimization investiga- 

tion carried out in the dynamic response regime prior to 1970. 
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Reference 18 (1970) reports on a minimum weight structural optimization 

capability for a rather general class of laminated fiber composite plate type 

structure. The design variables considered include lamina thicknesses as well 

as orientation angles and a tide variety of strength and elastic stability 

failure modes were guarded against. A direct Rayleigh-Ritz analysis for 

anisotropic plates was used as the principal analysis tool. The most exten- 

sive problem formulated in Ref. 18 involved 21 design variables, 45 distinct 

failure modes and 3 independent loading conditions. This work was influenced 

significantly by Ref. 12 in the sense that it: (1) made use of some simple 

approximation concepts in the failure mode analysis and (2) employed a modi- 

field version of optimization program given in Ref. 12. 

1.2.2 General Purpose Applications 

Attention is now focused on some examples of structural synthesis 

capabilities reported during the 1960's that clearly fall into the second 

category, namely they represent general purpose programs based on finite 

element structural analysis methods and mathematical programming techniques. 

The first major efforts to apply mathematical programming techniques to the 

design of complex structural systems represented by finite element models 

were reported in Refs. 19,20, and 21. The optimum design capability reported 

in Ref. 21 considers static stress and displacement limits as well as 

multiple load conditions and minimum member sizes. Structural analyses are 

carried out using the well known finite element displacement method and the 

element repertoire includes bars and shear panels as well as triangular and 

quadrilateral plane stress membrane elements. The initial phase of the design 

optimization procedure employs the stress ratio procedure. This is followed 

by a second phase which applies a special type of feasible direction method 
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called the "optimum vector" method. The partial derivatives of response 

quantities, such as displacements and stresses used by the mathematical 

programming algorithm, are determined from analytic expressions and the use 

of finite difference techniques is avoided. The program does not employ 

design variable linking and hence each finite element in the analysis model 

has one design variable associated with it. The largest example reported in 

Ref. 21 involved 152 finite elements, 135 displacement degrees of .freedom and 

2 distinct load conditions. Guarding against violation of stress and dis- 

placement limitations, a reduction of the idealized structural weight from 119 

lbs. to 73 lbs. was achieved in approximately 2 hours of LBM 7094 run time! 

A second major effort to apply mathematical programming techniques to 

the design of complicated structural systems represented by finite element 

models was reported in Refs. 22 and 23. In this work special emphasis was 

placed on least weight design of stressed-skin structures with holes and 

cut-outs. The minimum weight optimum design capability reported in Ref. 23 

considers stress, displacement and member size constraints and multiple loading 

conditions are taken into account. Structural analyses are executed using an 

efficient finite element displacement method module and the available finite 

element library contains a rod, a plane stress triangle, three variations of 

four node plane stress plates, and two "beam-like" elements. The optimization 

algorithm used is a feasible directions method based on Zoutendijk's algorithm. 

In Ref. 23 partial derivatives of response quantities with respect to design 

variables are computed using analytic expressions obtained by implicit 

differentiation of the governing equilibrium equations, thus avoiding the use 

of a first order finite difference procedure employed in the earlier work 

reported in Ref. 22. It should be noted that a special type of partial design 



variable linking is also provided 'for, and therefore the number of independent 

design variables is significantly smaller than the number of finite elements in 

the structural analysis model. The importance of reducing the number of 

structural analyses and the number of partial derivative calculations was 

recognized in Ref. 23 and several devices aimed at improving overall efficiency 

of the design optimization procedure were introduced. In particular, various 

techniques were employed for improving the efficiency of the one dimensional 

searches, thus reducing the number of structural analyses. Furthermore, 

partial derivatives were only recalculated when the design moved outside of a 

user defined hypersphere. The capability reported in Ref. 23 permits the use 

of up to 100 design variables and 700 displacement degrees of freedoms. The 

largest example reported in Ref. 23 involves 600 finite elements, 300 nodes and 

5 load conditions. These results were obtained with a less efficient ante- 

cedant of the program described in Ref. 23 and while the run time is not 

reported it is thought to be substantial (of the order of 3.5 hours on a CDC 

6600 according to Section 8.3.3 of Ref. 24). 

1.3 Consolidation and Assessment Period 

The rapid development of the structural synthesis concept during the 

1960's stimulated a great deal of interest in structural engineering applica- 

tions of mathematical programming techniques. By around 1970 these develop- 

ments had become extensive and a period of consolidation and assessment, 

characterized by state-of-the-art review papers and educational endeavors, 

ensued. For example Ref. 25 contains an overview of the progress reported 

during the 1960's and Ref. 24 presents a comprehensive and detailed description 

of the state-of-the-art in structural design applications of mathematical 

programming techniques as of 1970. A growing awareness of the potentialities 
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in this field was also enhanced by educational endeavors such as the AIAA 

Professional Studies short course on structural synthesis given in April 1970 

(see Ref. 26) and the publication of an excellent text book in 1971 on 

algorithmic tools for engineering design optimization .(Ref. 27).. 

Nevertheless, by 1970 it had become apparent that, while two first 

generation general purpose structural synthesis capabilities had emerged (,see 

Refs. 21 and 23) practical application of mathematical programming methods to 

structural design optimization was lagging far behind the prevailing level of 

structural analysis capability. It .is only natural to ask, why the apparent 

high promise of these new design tools had not been more fully realized in 

practice by 1970? There are many possible explanations, however, it is 

suggested here that the following are amongst the more important and plausible 

responses: 

(1) Because of the easy availability of fully developed finite 

element structural analysis capabilities there was a tendency 

to treat analysis and optimization modules as two black boxes, 

tie them together, and let the optimization procedure drive 

the analysis routine through an excessively large number of 

complete highly refined analyses; 

(2) It had not yet been widely recognized that structural analysis 

for design optimization is a task with special characteristics 

that are dictated by the objective of generating, with 

minimum effort, estimates of critical and near critical 

behavior adequate to rationally guide design modification; 
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(3) There was some tendency in practice to divert development 

effort toward automation of more traditional and.familiar 

recursive dedesign,procedures based on fully stressed design 

concepts and discretized optimality criteria (see for example 

Refs. 28,29,30, and 31). 

In any event, by 1971 it had become clear that the then available optimization 

capabilities that combined finite elements structural analysis with mathematical 

programming techniques required inordinately long run times to solve optimiza- 

tion problems of only modest proportions (or as a harsher critic put it they 

were hopelessly inefficient). Indeed, in Ref. 32 it was suggested that the 

mathematical programming approach to structural optimization was little more 

than "an interesting research toy." Furthermore, it was stated that "there 

appeared little immediate prospect for the development of more efficient non- 

linear programming algorithms to overcome the economic barriers to widespread 

operational usage on real structures." 

It seemed to some investigators that an insurmountable efficiency 

barrier had been encountered in the application of mathematical programming 

techniques to structural design optimization problems. This led them to 

expend renewed effort on the implementation of redesign procedures based on 

fully stressed design concepts and discretized optimality criteria. For 

example Ref. 33 reports on the ASOP (Automated Structural*timization 

Program) computer program, developed for the minimum weight:design of large 

practical structures. The iterative design procedure employed consists of a 

stress ratio algorithm (alternate stress ratio resizing and scaling to the 

critical constraint) followed by a numerical search phase which provides a 

mechanism for handling displacement constraints. The largest example problem 
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reported in Ref. 33 involves 890 finite elements, 1171 degrees of freedom and 

four distinct loading conditions. Ignoring d.eflection constraints and using 
6 -. 

the stress ratio algorithm a reasonable design of significantly lower weight 

was obtained after 9 resizing cycles. In Ref. 34 a design procedure based on 

the combined use of stress ratio and optimality criteria concepts was reported. 

For stress constrained design problems members were resized in proportion to 

the ratio of actual stress to the allowable stress. For displacement con- 

straints an optimality criteria based resizing procedure was employed. The 

method reported in Ref. 34 was applied to several standard truss type test 

problems as well as an 18 element wing box beam structure. In most instances 

satisfactory results were obtained in less than ten iterations. The design 

optimization procedure presented in Ref. 35 is based on a generalized energy 

.criteria and its theoretical basis is similar to the method presented in 34 

with the exception of some details involved in coping with multiple constraints. 

A resizing formula involving element energies and their "target energies" is 

used for dealing with multiple constraints. Stress critical members are 

resized by the stress ratio technique and these sizes are then treated as 

minimum member sizes during resizing by the energy criteria. Results for 

several practical example problems are also reported in Ref. 35. In Ref. 36 

a unified optimality criteria method, for structural systems discretized into 

finite elements, was described for both stress and stiffness constraints. 

Optimality criteria and recursive redesign rules were presented for stress, 

displacement, buckling and frequency constraints. Results for several large 

example problems are reported in Ref. 36. 

Since around 1970 a major development activity in automated inter- 

disciplinary aerospace vehicle design has been underway (see for example Refs. 

37-43). A thoughtful review and assessment of this activity will be found in 

13 



Ref. 43. The structural optimization modules in these emerging large scale 

capabilities have by and large been based upon the combined use of fully 

stressed design methods and mathematical optimization methods (see Refs. 37 

and 40). The general approach followed is.well characterized by the mixed 

method described in Ref. 40, which reflects the widely held current viewpoint 

that while mathematical programming methods are at present well suited to 

component optimization, they are not computationally competitive for dealing 

with large structural systems of practical importance. Thus in Ref. 40 a 

fully stressed design method was used to obtain a gross overall distribution 

of material while the detailed design of rings and stiffened panels (fuselage 

components) was carried out using mathematical programming techniques. 

The application of design procedures, based on stress ratio and 

optimality criteria methods, to large finite element structural systems has 

been a necessary expedient because of the absence of computationally efficient 

alternatives. It is however widely recognized that design procedures based 

on optimality criteria, and fully stressed design concepts can only be shown 

to yield optimum designs under rather restrictive special conditions. When 

these methods are employed a criterion related to the structural behavior is 

derived on the premise that when a design satisfying the criterion is found 

the objective function automatically takes on an optimum value. On the other 

hand design procedures basis on the application of mathematical programming 

techniques to structural design are quite general and the orderly logic of this 

approach remains philosophically attractive. No assumptions are made at the 

outset as to how many and which design constraints will in fact become critical 

at the optimum design. Indeed, it appears that the principal objection to the 

mathematical programming approach has been the rapid-increase in computational 
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effort with problem size (i.e. computational inefficiency for problems of 

practical importance). 

1.4 Design Oriented Structural Analysis 

The continuing active development of structural design procedures for 

structural systems represented by finite element assemblages has stimulated 

interest in the area of design oriented structural analysis methods (see for 

example, Refa. 44-52).- These papers reflect a growing realization that analysis 

for design optimization is a task with special characteristics. For example, 

aa pointed out in Ref. 44, the structural analpsis task associated with design 

optimization requires behavior prediction for many structures of somewhat similar 

form. Until recently the dominant objective of finite element structural 

analysis procedures has been accurate prediction of structural behavior given 

an arbitrary design. However, in the structural design context, the objective 

of structural analysis should be to generate, with minimum effort, an estimate 

of the critical and potentially critical response quantities adequate to guide 

the design modification sequence. Developments in design oriented structural 

analysis have tended to fall into three categories: 1) sensitivity analysis 

techniques, (2) basis reduction in analysis variable space, and (3) reexamin- 

ation of how finite element methods are organized, focusing on how to improve 

their organization so that they lend themselves better to the design optimi- 

zation task. For example Ref. 45 falls into the first category and it 

presents an effective method for obtaining the rates of change of response 

quantities with respect to design variables when the. governing analysis 

equations form a set‘of linear simultaneous equations. Reference 46 presents 

methods for obtaining the rates of change of response quantities with respect 

to design variables when the governing analysis is an eigenproblem of the 
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formAx= A Bx(where A and B are real symmetric matrices and B is positive 

definite). The methods presented in Ref. 46 are therefore applicable to 

structural design problems involving buckling, frequency, and dynamic response 

constraints. The original motivation for this type of sensitivity analysis, 

which yields partial derivative information (rates of change of response 

quantities with respect to design variables) resided in the fact that the more 

powerful mathematical programming algorithms required constraint gradients. 

However, it has since become apparent that the results of such sensitivity 

analyses can be used in various ways. First, as previously noted, they can 

be used to provide constraint gradient information within optimization algo- 

rithms. Second, they can be used to set up approximate analyses using first 

order Taylor series expansions. Third, they can be used as a guide to the 

designer working in a man-machine interactive mode, where only the structural 

analysis and the associated sensitivity analysis is executed by the computer. 

In the context of automated structural design optimization, it now appears that 

the most important use of these sensitivity analyses is in the construction 

of approximate analyses based on Taylor series expansions. With respect to 

static structural analysis, based on the finite element displacement method, 

the generation of approximate analyses using Taylor series expansions was 

outlined in Section 9 of Ref. 26. The ability of first-order Taylor series 

approximations to predict static stress and displacement response with 

relatively small errors even for large design modifications has been substan- 

tiated by the investigation reported in Ref. 47. 

Turning to the second category of developments in design oriented 

structural analysis, namely basis reduction in analysis variable space, 

attention is focused on Refs. 44 and 48. The basic idea of constructing an 
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approximate analysis solution using a few well chosen basis vectors can be 

applied in a variety of ways. It is common practice in dynamic analysis to 

express displacement response in terms of a reduced set of generalized coordi- 

nates and normal mode vectors. In the case of static structural analysis the 

reduced basis approach can be employed in conjunction with either the force 

(see Ref. 44) or the displacement (see Ref. 48) method of analy,sis. If a set 

of r independent analysis vectors is available (r < n, where n is the number 

of unknown analysis variables arising from the structural idealization and 

discretization) from previously analyzed designs, then the vector of analysis 

variables can be approximated as a linear combination of these r known vectors. 

The undetermined participation coefficients for each of the r known vectors 

become the unknowns of the approximate analysis. Substituting the approxi- 

mate representation into an appropriate energy formulation and taking the 

stationary condition leads to a set of r simultaneous equations that can be 

solved for the participation coefficients. The results reported in Refs. 44 

and 48 demonstrated the potential of reduced basis approximations in static 

structural analysis. In Ref. 49 an improved reduced basis technique is 

reported. The basis employed has (r+l) normalized vectors, where r is taken 

equal to the number of independent design variables. Working within the context 

of the displacement method, the base vectors are taken to be the displacement 

solution vector for the original design and the first derivatives of this 

vector with respect to each of the r independent design variables. However, 

it should be noted that while the reduced basis approach to approximate static 

structural analysis decreases the number of unknowns, the resulting matrices 

are densely populated. Furthermore, this approach does not yield an explicit 

approximation for the response quantities in terms of the design variables. 
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More recently (see Ref. 50) methods of approximate structural analysis, 

using Taylor series expansions and the modified reduced basis method of Ref. 

49, have been studied in the context of the mixed methods of structural 

analysis where forces and displacements are.treated simultaneously as the basic 

response quantities. In Ref. 51 an approximate analysis technique, based on 

first order Taylor series expansions, is presented for truss structures where 

the design variables include joint coordinates prior to deformation. The 

approximate analysis method is developed in the context of the mixed method of 

structural analysis with joint displacements and modified member forces taken 

as the basic unknowns of the structural analysis. 

The third category of design oriented structural analysis development 

reexamines the organization of finite element methods of structural analysis 

seeking improved analysis efficiency in the context of iterative automated 

design procedures. The work reported in Ref. 52 is representative of this 

sort of investigation and it provides a means of determining the natural 

frequencies and mode shapes of a modified design without having to perform a 

complete reanalysis. A set of stiffness parameters and a set of inertia 

parameters are defined so that the system stiffness matrix and the system 

mass matrix can be formed as linear combinations of invariant matrices that 

can be computed once and stored. In general these design parameters can be 

nonlinear (but explicit) functions of the. structural design variables. The 

complete system stiffness and mass matrices are reduced by static condensation 

and an eigensolution is obtained for the reduced system. The dimensions of the 

eigenproblem are then further reduced using the,first r normal modes leading 

to the generalized stiffness and mass matrices. These generalized stiffness 

and mass matrices are expanded.into a first order Taylor series form in terms 
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of the design parameters. The generalized stiffness and mass matrices are then 

generated for any perturbation of the design variables by using these Taylor 

series expansions and the eigenanalysis of the modified structure involves 

small matrices of dimensions r X r. It should be noted that the foregoing 

method, set forth in Ref. 52, assumes that the eigenvectors, obtained from the 

eigensolution executed after static condensation, are invariant with respect 

to design modifications. Also the method does not lead to an explicit 

approximation for frequencies and normal modes, since analysis of a modified 

design requires solution of an eigenproblem involving matrices of dimension 

r x r. It should be noted that in Ref'. 53 special attention is given to 

organizing the assembly of the system stiffness matrix so as to facilitate 

efficient reassembly for modified designs. Attention is limited to structures 

where the elements stiffness matrices are linearly dependent on the design 

variables. Using design variable linking, the system stiffness matrix is 

assembled by summing the invariant part and the contributions to the system 

stiffness matrix from the group of elements linked to each independent design 

variable. Developments in the area of design oriented analysis will continue 

to have a profound effect on improving the efficiency of structural design 

optimization procedures. 

1.5 Recent Special Purpose Applications 

In the time period since 1970 both special and general purpose appli- 

cations of mathematical programming methods to structural optimization have 

continued to appear in the literature. In the special purpose category there 

has been particular interest in dealing with flutter constraints (see Refs. 54 

through 59) and fiber composite structures (see Refs. 60 through 64). 
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In Ref. 54 equations for finding the partial derivatives of the 

flutter velocity of an aircraft structure with respect to sizing type design 

variables,were derived and a numerical design procedure was developed for seek- 

ing a minimum mass design subject to a specified flutter velocity constraint. 

The design procedure employed utilizes two gradient search methods and a 

gradient projection technique. The optimization procedure was applied to the 

design of a wing box beam with twelve independent design variables. 

In Ref. 55 an automated design~optimization program (SWIFT) was 

reported which considers static strength and flutter constraints using a 

mathematical programming formulation. The wing was treated as a sandwich 

plate with preassigned planform and depth distribution. The skins were 

assumed to be isotropic and their thickness distribution was optimized. The 

thickness distribution was represented by a series of assumed polynomials with 

the participation coefficients taken as the design variables. The optimi- 

zation algorithm employed in Ref. 55 is a SUMI interior penalty function 

formulation used in conjunction with a Davidon-Fletcher-Powell unconstrained 

minimization routine. An important point made in Ref. 55 is that optimum 

designs obtained by considering strength and flutter constraints concurrently 

can be significantly lighter than designs obtained by initially considering 

strength constraints only and then scaling up the design to prevent flutter. 

In Ref. 56 an automated procedure for preliminary design optimization 

of lifting surface type structures was reported. In this study an equivalent 

plate representation of the wing structure (including transverse shear 

deformation) was employed and the design variables included planform descriptors 

(leading and trailing edge sweep-angle, root chord, and wing semi-span), wing 

depth distribution and skin thickness distribution. The objective function 
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was taken to be a function of the structural weight and the aerodynamic drag. 

A wide variety of behavior constraints (including static stress, static dis- 

placement, natural frequency, flutter, root angle of attack and gross lift) 

and side.constraints (including constraints on planform shape, wing area, tip 

chord dimension, wing depth, and skin gage) under various flight conditions 

(including alternative fuel mass distributions) were considered. Second order 

piston theory, in which the wing depth distribution is taken into.account, was 

used to predict both steady and unsteady pressure distributions on the wing 

surfaces. The optimization algorithm employed in Ref. 56 was Zoutendijk's 

method of feasible directions. The preliminary design optimization study 

reported in Ref. 56 represents one of the most ambitious efforts in this area 

to date. However, it must be noted that relatively large numbers of analyses 

and rather long run times were required to obtain final designs. A companion 

development to that reported in Ref. 56 was reported in Ref. 57. A multi- 

web delta wing was modeled using three types of finite elements (shear panels, 

bars and membrane triangles) and weight minimization was taken to be the 

objective of the optimization procedure. The design variables are thicknesses 

and cross sectional areas and design variable linking was employed. The 

design requirements included restrictions on the strength, stability, fre- 

quency and flutter characteristics of the structure in each of several flight 

conditions. The optimization problem is formulated using an interior penalty 

function formulation and the sequence of unconstrained minimizations is 

carried out using the Davidon-Fletcher-Powell algorithm. Results for several 

example problems were reported in Ref. 57, however the amount of run time 

required to obtain final design was rather long (approximately 100 minutes on 

a UNIVAC 1108). A concise summary of Refs. 56 and 57 will be found in 
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Ref. 58. In Ref. 59 a numerical procedure (based on Zoutendijk's method of 

feasible directions) for minimum weight sizing of aircraft structural components, 

subject to a specified lower bound on flutter speed, was presented. The 

method was devised to utilize the most general and accurate of current analytic 

flutter predictions so that substructures of arbitrary aerodynamic and struc- 

tural complexity can be optimized. Results for two example problems were 

reported in Ref. 59; namely, a two variable subsonic wing example and a 

relatively large supersonic delta wing example. 

While considerable progress has been recently reported in applying 

mathematical programming methods to the design of fiber composite laminates 

(see Refs. 60 and 61) and structural components (see Refs. 62 and 63) less 

attention has been focused on optimum structural design with fiber composite 

materials ,at the Ptructural systems level (see Ref. 64). The structural 

optimization procedure reported in Ref. 64 deals with the design of fiber com- 

posite structures subject to static strength and aeroelastic constraints 

including flutter. The basic structural idealization is an equivalent plate 

representation (neglecting transverse shear deformation) and a direct Rayleigh- 

Ritz assumed displacement approach is employed to carry out the structural 

analyses. The design variables considered include lamina orientation angles, 

lamina thickness distributions, and the magnitude of prelocated balance 

masses. Behavior constraints taken into account include static stress, strain 

and displacement limitations as well as aeroelastic constraints which prevent 

divergence and flutter. Lower limits can be specified for the layer thicknesses 

and the fundamental frequency. While weight is taken as the primary objective 

function, options are provided to treat other objective functions either 

instead of or in combination with weight. The optimization problem dealt with 

in Ref. 64 is formulated using an interior penalty function formulation. 
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1.6 Recent General Purpose.Applications 

Attention is now directed to recently reported applications of mathe- 

matical programming techniques to finite element based structural design 

problems. In Ref. 65 a minimum weight optimum design capability was reported 

which employs a sequence of linear program approach known as the move limit 

method. Static stress, displacement and member size.constraints are included 

and attention is given to organizing the analysis so that the system stiffness 

matrix can be formed from invariant matrices associated with unit values of 

the independent design variables. This capability includes triangular membrane 

elements in which the strains and thickness vary linearly and bar elements in 

which axial strain and cross sectional area vary linearly. A special form of 

design variable linking is optionally available since thicknesses (or cross 

sectional areas) of relevant adjacent elements can be set equal at finite 

element grid points. Results for several hole reinforcement problems, similar 

to those examined in Ref. 22, are presented. While Ref. 65 does not contain 

information on the number of structural analyses required to converge the 

procedure, the run times reported are long (between 5000 and 10,000 seconds 

on an ICI 1907 machine). 

In Ref. 66 a design procedure combining finite element structural 

analysis and mathematical programming techniques is described and applied in 

the context of ship structures. Multiple load conditions are considered and 

stress, simple buckling and minimum size constraints are provided for. Both 

sizing and configuration variables are treated. Bar and quadralateral plane 

stress elements are used in the finite element modeling. Design variable 

linking is used to reduce the number of design variables and a regionalization 

scheme is employed to reduce the number of stress constraints. Selection of 
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the stress constraints to be retained is carried out automatically by examin- 

ing the stress states in all elements within a region, and selecting the 

maximum'of each stress type to form the behavioral constraints for that region, 

The optimization algorithm emp1oyed.i~ a sequence of linear programs approach 

using design variable move limits and selective constraint retention. The 

minimum weight design of an oil tanker transverse frame is presented in Ref. 

66. This example problem involves 4 load conditions, 297 panel and bar elements, 

352 displacement degrees of freedom, and 22 design variables. Starting from 

an infeasible initial design a weight reduction of 17.5% was obtained after 

seven iterations. The required run,time is given as 59.45 CPU minutes on 

an IBM 360167 computer. 

An automated procedure for the design of wing structures to satisfy 

strength and flutter requirements was reported in Ref. 53. The computer 

program WIDOWAC was developed for design of minimum mass wing structures sub- 

ject to flutter, strength and minimum gage constraints. The WIDOWAC program 

is based on finite element structural idealization and mathematical program- 

ming methods are used to carry out the optimization. The flutter constraint 

calculations employ second order piston theory aerodynamics. 
T This program is 

currently the most efficient finite element based mathematical programming 

type optimization capability which includes flutter, strength, and minimum 

gage constraints. The efficiency achieved by the WIDOWAC program is attributed 

to: (1) the use of iterative analysis methods to significantly reduce 

reanalysis effort compared with that required for the original analysis of the 

structure; (2) the use of linking to reduce the number of independent design 

variables; and (3) introduction of a modified Newton's method to carry out the 

unconstrained minimizations for the SUMI type interior penalty function 

t The WIDOWAC program has recently been extended to include kernel function 
aerodynamics for subsonic conditions. 
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formulation. A representative example problem reported in Ref. 53 involved 1 

load condition, 23 design variables, 156 displacement degrees of freedom, and 

187 finite elements. Convergence for this example required 333 analyses and 

approximately 400 seconds of CPU time on a CDC 6600 computer. 

Another finite element based mathematical programming type structural 

optimization capability is currently being developed by Vanderplaats. 

This effort is motivated by the view that traditional preliminary.design 

methods are often inadequate, even at the conceptual design level, when 

investigating new and unusual aircraft configuration concepts. A computer 

program for structural analysis and design (SAD) has been developed which 

currently deals with static stress, displacement and member size constraints. 

The finite element library includes the following elements: truss, constant 

strain triangles, rectangular membrane, and symmetric shear panels. A CDC 

7600 version of the SAD program can accomodate problems with up to: (4 50 

independent design variables, (b) 300 displacement degrees of freedom; (c) 5 

load conditions and (d) 100 elements of each type. The optimization algo- 

rithm employed is a modification of Zoutendijk's method of feasible directions 

with improved numerical stability and the ability to deal efficiently with 

infeasible designs (Ref. 67). A modular optimization program implementing 

this improved feasible directions algorithm is documented in Ref. 68. 

Before closing this review of the historical background it is appro- 

priate to briefly cite four other works, because they are the immediate 

antecedants of the research results to be presented in this report. The 

reduced based concept in design space was set forth and initially explored in 

Refs. 69 and 70. The essential idea presented was to let the vector of design 

variables be expressed as a linear combination of design basis vectors. The 
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initial investigations reported in Refs. 69 and 70 were restricted to stress 

limited truss problems and basis vectors were obtained using stress ratio 

methods considering one load condition at a time. Thus the number of 

generalized design variables in any particular application was equal to the 

number of load conditions. 

In Refs. 71 and 72 it was shown that a collection of approximation 

concepts could be used in concert to significantly improve structural syn- 

thesis efficiency. Truss structures subject to stress and displacement cop 

straints under alternative loading conditions were considered. The optimiza- 

tion algorithm employed was an adaptation of the method of inscribed hyper- 

spheres (see Ref. 73) and high efficiency was achieved by using approximation 

concepts including tempera-ry deletion of noncritical constraints, design 

variable linking, and Taylor series expansions of constraint functions in terms 

of reciprocal design variables. 
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2. APPROXIMATION CONCEPTS - THE KEY TO CONSTRUCTING 

TRACTABLE STRUCTURAL SYNTHESIS FORMULATIONS 

2.1 Introduction 

While it is a time honored practice in structural engineering to employ 

a gradation of approximation levels in both analysis and design procedures 

relatively little attention has been given to the use of approximation concepts 

in the structural synthesis context. 

There are various levels of approximation commonly employed in struc- 

tural analysis. These are generally agreed to include idealization and discre- 

tization. In the context of finite element methods idealization refers to the 

element types (e.g., truss, beam, membrane, p late, etc.) used to model the 

structure and discretization refers to the number of elements employed. Once 

the judgment decisions at the idealization and discretization level have been 

made, the structurai analysis problem has a definite mathematical form, and 

the number of basic analysis variables is fixed (e.g., in the finite element 

displacement method the number of independent displacement degrees of freedom 

is known). 

It is also possible to identify various approximation levels associated 

with the formulation of the structural synthesis problem. It can be argued 

that deciding on the kind, number, and distribution of design variables, the 

load conditions, and the constraints to be considered during the synthesis is 

somewhat analogous to making judgments that lead to an idealized discretized 

analysis model. Selecting an objective function (i.e., the scalar quantity 

that is to be minimized or maximized) essentially completes the mathematical 

formulation of the structural synthesis problem. 
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It is to be understood that the approximation concepts considered herein 

are intended to apply to a structural design problem that has been previously 

given specific mathematical form with respect to analysis and synthesis. 

Most of the previously reported applications of the mathematical pro- 

gramming approach to structural optimization have suffered from one or more of 

the following excesses: (a) too many independent design variables were consi- 

dered; (b) too many behavior constraints were considered throughout the 

synthesis process; and (c) too many detailed structural analyses were carried 

out during the synthesis. It is to be understood that the phrase "too many" 

as used in the foregoing sentence means more than necessary to obtain a practical 

near optimum design. The approximation concepts approach to structural syn- 

thesis achieves high efficiency be alleviating these excesses while retaining 

an adequate representation of the essential features of the structural design 

optimization problem. 

2.2 Statement of Structural Synthesis Problem 

A rather general class of structural synthesis problems can be stated in 

standard form as follows: given the preassigned parameters and the load condi- 

tions find the vector of design variables d such that 

9,(6)20; q = 1,2,...,Q (2.1) 

and 

M(if) + Min. (2.2) 

At this point it is assumed that d contains one scalar component for each 

finite element in an idealized structural representation involving I finite 

elements. The number of inequality constraints Q is also large since the set 

of inequalities gq(z)20; q = 1,2,...Q usually contains one "behavior" 

constraint for each failure mode (e.g., upper limit on delfection) in each 

28 



load condition as well as "side" constraints (e.g., upper and lower limits on the 

components of 6) that reflect fabrication and analysis validity considerations. 

It should also be recognized that most of the behavior constraints gq(if)20; 

4 = 192 ,***, Q are not explicit functions of the design variables 5. Rather, 

these constraints are usually implicit functions of 5, and their precise numer- 

ical evaluation, for a particular design 5, requires a complete structural 

analysis. Finally, it is noted that when the objective function M(s) is taken 

to be the weight of the idealized structure, M(6) is usually an explicit func- 

tion of 5. 

2.3 Reducing the Number of Design Variables 

Usually it is neither necessary nor desirable for each finite element 

in the structural analysis model to have its own independent design variable. 

Two techniques for reducing the number of independent design variables are 

(1) design variable linking, and (2) the reduced basis concept. These tech- 

niques are described in the sequel. 

2.3.1 Design Variable Linking 

Various linking approaches are available; all share the basic stragegy 

that one or, at most, a few independent design variables y, control the size 

of all finite elements in that linking group. For example, a wing planform 

could be divided into segments with a single independent design variable 

specifying the thickness of all the cover panels within a segment. In another 

approach, used in Ref. 53, the independent design variables were taken to be 

the thickness of the cover panels at the vertices of each wing planform seg- 

ment; the thickness of the cover panels within a segment were taken to be a 

linear variation across the segment. 

In the approach used herein, the design variable linking fixes the 

relative sizes of some preselected group of finite elements. Each component 
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Di of the vector 5 is made proportional to only one of the new independent design 

variables Y,. Stated mathematically the linking is given by 

C 
i; = c EC& = bl $ 

c=l 
(2.3) 

or in scalar form. 

C 
Di = c= Licyc ?l 

= LicYl + Ll2Y2 + l ** LlcY,; i=1,2,***1 (2.4) 

where it is understood that C 5 I. Each row of the matrix [L] in Eq. (2.3) 

contains only one nonzero term, and the summation on the right hand side of 

Eq. (2.4) contains only one-nonzero term. In each case, the nonzero term is 

positive. 

The design variable linking idea is illustrated graphically by the 

simple example shown in Fig. 1. The dotted lines define the element linking 

groups and the numbers shown refer to the finite elements. Let design vari- 

able linking groups 1,2,3 and 4 contain elements (1,2), (6,7,9), (3.4,8), and 

(5), respectively. 

Then for this simple example Eq. 

= 

0 0 

0 0 

0 1 

0 1' 

0 0 

1 0 

1 0 

0 0.7 

0.6 0 

(2.3) has the specialized form. 

0- 

0 

0 

0 

1 

0 

0 

0 

0 

y1 

Y2 

Y3 

Y4 

(2.5) 



The nonzero entries in column 2 of the foregoing [L] matrix specify that finite 

elements 6 and 7 (in Fig. 1) have the same thickness (y,) while element 9 has a 

thickness 0.6 y2, where y2 is one of the fo 5. independent design variables in 

the reduced set f. The nonzero entries in the remaining columns of the.special- 

ized [L] matrix in Eq. (2.5) are to be given similar physical interpretation. 

Design variable linking makes it possible to reduce the number of inde- 

pendent design variables while at the same time imposing constraints that can 

make the final designs more realistic. Linking also facilitates the introduc- 

tion of constraints reflecting symmetry considerations, designer' insight based 

on prior experience, as well as fabrication and cost considerations associated 

with the number of parts to be assembled. 

2.3.2 Reduced Basis Concept for Design 

The reduced basis concept in design space provides a means for further 

reducing the number of design variables in the original problem statement. 

This important idea and its initial exploration was first set forth in Refs. 

69 and 70. The vector of design variables after linking, namely 7, can be 

expressed as a linear combination of B independent basis vectors $9 that is, 

f = f,%sb = [R] d = 61%l+62ii2 + 
b=l 

. . . . 6B% 

or in scalar form, 

y, = 2 Rcb6b = Rc161+Rc262 + l . . RcB8B; c=1,2,**4 
b=l 

(2.6) 

(2.7) 

The independent basis vectors % are assumed to be known; the participation 

coefficients gb, which represent a further reduced set of generalized design 

variables, are the unknowns. If the basis vectors are thought of as a set of 

well chosen functions evaluated at specified mesh points, then the reduced 

basis concept in design variable space can be viewed as a designer's Ritz method. 
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Base vectors can be drawn from various sources including optimality criteria 

solutions, stress ratio solutions (see Ref. 74), lower and upper bound-type 

solutions, and designs based on engineering insight. 

The reduced basis concept in design space opens the way to the develop- 

ment of hybrid methods of structural optimization. It is likely to have a 

major unifying influence leading to the coordinated use of stress ratio, optimal- 

ity criteria, lower bound and general mathematical programming methods. 

2.3.3 Two Step Reduction in the Number of Independent Design Variable 

After substituting Eq. (2.6) into Eq. (2.3) the vector of design vari- 

ables 5 is given by 

?i = [L] f = [L](R] 3 = 53 6 = 
b=l b b 

ITI 3 

or, in scalar form, by 

Di = gl TibGb = Ti161+Ti262 + l =* TiB&,; i=1,2,*=*1 (2.9) 
= 

in which 7 denotes the vector of independent design variables after linking 

and 8 represents the vector of independent design variables after also employing 

the reduced basis concept. The matrix [Tl equals [L][R], and the zb may be 

thought of as prelinked basis vectors. 

Equation (2.8) represents a combined transformation that will implement 

a reduction in the number of design variables due to design variable linking 

followed by an application of the reduced basis concept in design space. It 

is emphasized that the basis vectors sb can be formed directly by imposing 

the same prespecified linking on each of the basis vector generator programs, 

regardless of its source. If design variable linking is not employed, then 

[L] is an identity matrix, C = I, and [R] = [T]. On the other hand, if only 
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design variable linking is employed, then [RI is an identity matrix, C - B, 

and [Ll = CT]. 

If the set of basis vectors is well chosen, a good approximation to the 

optimum design will be obtained by solving the mathematical programming prob- 

lem in the reduced (3) space. The solution obtained in the reduced space will 

always be a feasible upper .bound solution (with respect to the objective func- 

tion being minimized) of the original design problem. In the event that the 

subspace spanned by the basis vectors contains the actual optimum design, the 

upper bound solution will coincide with the actual optimum design (assuming 

the absence of relative minima). 

It should be recognized that design variable linking may be viewed as an 

improvement of the original problem statement or as a special type of basis 

reduction, depending upon the underlying motivation. When design variable 

linking is used to impose symmetry requirements or to introduce fabrication and 

cost control considerations, then it sharpens the problem statement. Under 

these circumstances design variable linking restricts the search for an optimum 

design to the subspace in which the desired solution must reside. On the other 

hand, if design variable linking is based on designer insight, prior experi- 

ence, or simply arbitrary decisions aimed primarily at reducing the number of 

independent design variables, then it represents a special type of basis 

reduction, 

When the original mathematical programming problem stated in Eqs. ',2.1) 

and (2.2) is restated in the 8 subspace - that is, find 3 such that 

hq(8) 2 0; q = 1,2,---Q (2.10 

and 

w& -t Min (2.11) 
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then the number of independent design variables is substantially reduced. 

However, the number of constraints Q is still very large and most of the 

hq 6) continue to be implicit functions of the design variables 8, requiring 

lengthy analysis computations. 

2.4 Reducing the Number of Constraints 

The proper statement of structural 

large number of inequality constraints - 

The large number of behavior constraints 

synthesis problems often involves a 

both behavioral and side constraints. 

arises because it is usually necessary 

to guard against a wide variety of failure modes in each of several distinct 

loading conditions. Numerous side constraints are needed to introduce fabrica- 

tion limitations and to restrict the search for an optimum design to the portion 

of the design space where the failure mode analyses adequately predict the 

structural behavior. The techniques suggested in this section for reducing the 

number of constraints are aimed at facilitating the computer implementation of 

traditional design practice. Basically it is recognized that during each stage 

of an iterative design process, only critical and potentially critical constraints 

need to be considered. The central idea is to temporarily ignore redundant 

and noncritical constraints that are not currently influencing the iterative 

design process significantly. 

All the approximation concepts pres.ented here in Chapter 2 are valuable 

in their own right and they can be used separately or in various combinations. 

For example, the constraint deletion techniques, to be described in this sec- 

tion, can be used separately or in conjunction with approximate analysis 

methods. Constraint deletion used by itself can usually reduce the overall 

computational effort, since gradient information need only be computed for the 
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constraints retained. However, reducing the number of constraints is much more 

effective when it is coupled with certain approximate structural analysis 

methods. 

A general strategy for the combined use of constraint deletion techniques 

and approximate analysis methods may be outlined as follows. Carry out a com- 

plete structural analysis, after which a relatively small number of critical or 

potentially critical constraints are identified. These and only these con- 

straints are retained and examined using an approximate analysis technique during 

a stage of the iterative design prokess. Each stage consists of the following 

steps: 

(1) Carry out a complete structural analysis. 

(2) Define the critical and potentially critical constraints. 

(3) Generate the information needed to construct approximate 

analyses. 

(4) Carry out a sequence of design modifications using the 

approximate analyses to examine only those constraints 

identified in (2) above. 

Approximate analysis methods are discussed subsequently in Section 2.5. 

2.4.1 Regionalization 

One approach to reducing the number of behavioral constraints has been 

called regionalization in Ref. 66. The essential idea can be conveniently 

explained in terms of static stress constraints. Let the finite element model 

of a structure be subdivided into several regions. Upon executing a complete 

structural analysis for each of several load conditions let attention be 

directed toward determining the most critical stress constraints within each 

region in each load condition. If the region contains various types of 

finite elements <q:g., bars, shear panels, constant strain triangles) it may 
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be desirable to retain one most critical stress constraint for each load con- 

dition and element type. The reduction of constraints by use of regionalization 

schemes hinges upon the assumption that the design changes made during a stage 

in the synthesis are not so drastic as to result in a shift of the critical 

constraint location within a region. If troublesome shifting does occur, it 

may be necessary to reduce the size of the regions. 

An important specialization of the regionalization approach to reducing 

the number of stress constraints retained, is based on using design variable 

linking to define the regions. The idea is to simply let each group of finite 

elements controlled by a single independent design variable after linking 

constitute a region. If it is further assumed that each group of finite 

elements controlled by a single independent design variable contains elements 

of only one type (all bars or all shear panels or all constant strain tri- 

angles), then the number of stress constraints reduces to the product of the 

number of load conditions times the number of independent design variables 

after linking. This specialized form of the regionalization approach to con- 

straint reduction (which is employed subsequently in Section 3) makes it 

unlikely that there will be a shift in the location of the critical stress 

constraints. This is because changes in the independent design variables 

lead primarily to redistributions of forces between regions rather than within 

regions. It may be noted in passing, that the location of the critical stress 

constraints would be completely invariant for the special.case of a statically 

determinate structure. 

The regionalization approach to reducing the number of response con- 

straints can in principle be applied to other types of constraints. It may, 

for example, be anticipated that for each load condition the transverse 
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displacement 'distribution over a local planform region on a thin wing structure 

will not change shape during a stage of the iterative design process. Then, 

after executing a complete static structural analysis for each of several 

load conditions, it would be possible to identify the most critical transverse- 

displacement constraint in the prespecified planform region for each load con- 

dition. Using this approach the number of transverse displacement constraints 

would reduce to the product of the number of planform regions times the number 

of load conditions. 

2.4.2 "Throw Away" Concept 

Another way of reducing the number of constraints retained during any 

particular stage of an iterative redesign process can be colloquially referred 

to as the "throw away" concept. In this approach unimportant (redundant or 

very inactive) constraints are temporarily ignored. This technique, like 

several others described herein, is used extensively in conventional structural 

design practice. It is described here in terms of a structural synthesis 

problem involving multiple static load conditions with stress and displace- 

ment constraints. For any trial design 6, specified by the numerical values 

of the generalized design variables db after linking and/or basis reduction 

(see Eq., (2.7) and (2.911, it is a straightforward matter to execute a finite 

element structural analysis which yields a complete set of displacement and 

stress results for K load conditions. Let Yq(,x > represent the q th response 

quantity of interest. Limitations on the q th response quantity can often be 

stated as follows 

Y (4 5 Yq(B) ry(+) 
4 4 

(2.12) 

where Y(-) < 0 represents the negative limit and Y (+I 
9 4 

> 0 denotes the positive 

limit (e.g., the allowable compressive stress and the allowable tensile stress 

37 



in a truss member or the negative and positive deflection limits on a nodal 

displacement component). It is then useful to define 

response ratio as follows 

As the response ratio approaches unity the associated behavior constraint 

a quantity called the 

(2.13) 

becomes critical,. Respnnse constraints can be expressed in terms of response 

ratios as follows: 

hq(& = 1 - Rq(b)+ 0 (2.14) 

It is usually advisable to treat the various types of constraints 

(e.g., stress, displacement, etc.) separately because it is often desirable to 

use distinct criteria for deleting different types of constraints. Suppose 

for example that a complete structural analysis provides the following stress 

and displacement results: 

Stress Constraints 1 me-_-yisplacement Constraints 

q Rq 
1 0.23 0.77 

2 0.79 0.21 

3 0.88 0.12 

4 0.74 0.26 

5 0.91 0.09 

6 0.37 0.63 

7 0.42 0.58 

h 
q 

1 0.46 0.54 

2 0.36 0.64 

3 0.54 0.46 

4 0.94 0.06 

5 0.49 0.51 

6 0.72 0.28 

According to the "throw away" concept, only those constraints that are critical 

or potentially critical are retained during a stage of the iterative design 

process. If it is decided to temporarily delete (a) those stress constraints 
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'with response ratios less than 0.5 and (b) those displacement constraints with 

response ratios less than 0.70*, then 

straints are retained: 

Stress Constraints 
-.-.- .~ -~ 

2 0.79 0.21 

3 0.88 0.12 

4 0.74 0.26 

5 0.91 0.09 

the following stress and displacement con- 

Displacement Constraints 

4 R h 
9 9 

4 0.94 0.06 

6 0.72 0.28 

Various techniques can be used to decide upon cut-off values for the response 

ratios. Rather than the fixed values (0.5 and 0.7) used above, one may prefer 

to use a fractional value of the most critical constraint within a type (stress, 

displacement, etc.). It may also be useful to increase the response ratio 

cut-off values after completing each stage (up to some upper limit less than 

l), since the set of critical and near critical constraints tends to stabilize 

as the iterative design process converges. 

It is often desirable to arrange the constraints within each type in 

order of decreasing value of the response ratio. In Ref. 71 such an ordered 

list of response ratios was called a posture table. Posture tables are a 

convenient and useful form of output. Continuing with the example case, 

suppose that only those constraints with response ratios greater than 0.80 

are to be printed out. The final reduced posture tables are 

* 
In many instances the redistribution of material during a stage in an 
iterative design process, has a more marked influence on the location 
of critical stress constraints than on the location of critical deflec- 
tion constraints. Therefore, it is frequently reasonable to employ 
higher cut-off values for displacement constraints than for stress 
constraints. 
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Stress Constraints Displacement Constraints 
______~... _--. --____T 

P R 
4 

5 0.91 0.09 4 0.94 0.06 
3 0.88 0.12 

~ _-...--- 

It should be noted that it is usually more efficient to first reduce 

the number of constraints using deletion criteria, and then prepare an ordered 

list of surviving constraints. Furthermore, since the primary purpose of pos- 

ture tables is to facilitate output interpretation, it may be best to generate 

them after both regionalization and "throw away" have been used to reduce the 

number of constraints to be ordered. 

2.4.3 Two Step Reduction in the Number offConstraints 

It should be recognized that regionalization and "throw away" can be 

used together to reduce the number of behavioral constraints retained during 

any particular stage of an iterative design procedure. When using both of 

these constraint reduction techniques the set of constraints retained is 

independent of the order in which these operations are carried out. 

To illustrate this point consider the set of nine elements shown in 

Fig. 1. Assume that under a single load condition the equivalent stress res- 

ponse ratios Ri, i = 1,2,..., 9 have the following values 0.80, 0.85, 1.00, 

0.75, 0.40, 0.45, 0.80, 0.60 and 0.40, respectively. It is understood that 

the regions coincide with the four design variable linking groups depicted 

by dotted lines in Fig. 1 and specified by the specialized. [L] matrix in 

Eq. 2.5. Reduction of the number of constraints applying "throw away" first 

and then regionalization is shown schematically in Fig. 2, It is seen that 

using a response ratio cut-off value of 0.5 leads to the deletion of three 

constraints and the subsequent application of regionalization eliminates three 
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additional constraints. On the other hand, Fig. 3 illustrates the application 

of regionalization followed by use of the "throw away" concept. Examining 

Fig. 3 it is observed that regionalization deletes five constraints and the 

subsequent application of "throw away" leads to the elimination of one addi- 

tional constraint. After applying regionalization and "throw away," in either 

.order the same three constraints are retained, namely R2 = 0.85, R3 = 1.00 and 

R7 = 0.80. 

The number of displacement constraints to be retained during a stage can 

also be reduced by using a two step process involving both regionalization and 

"throw away," applied in either order. However, in many instances the number 

of displacement constraints is reduced enough by applying only the "throw 

away" concept, using a relatively large response ratio cut-off value (e.g., 

0.7). 

Assuming that only design variable linking has been used to reduce the 

number of independent design variables, side constraints on the original set 

of design variables Di, expressed as 

D(L) 
i 

5 D 
i 

s DiU) ; 

can be reduced to 

y(L) 
C s Y, s Ybu) ; 

i = 1,2,...1 

c = 1,2,...c 

(2.15) 

(2.16) 

in which C < I. For the case of simple design variable linking the minimum 

and maximum member size constraints for all members linked to a single vari- 

able y, are parallel, and, therefore, it is a straightforward matter to perman- 

ently eliminate all the redundant side constraints. This reduces the number of 

side constraints from 21 to 2C. It is also possible to envision a further 

reduction by applying the "throw away" technique to the 2C surviving side con- 

straints. 
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At this point it is clear that approximation concepts are available for 

drastically reducing both the number of design variables (through linking and 

basis reduction) and the number of inequality constraints (through regionaliza- 

tion and "throw away") needed to adequately represent the synthesis problem 

during each stage of an iterative design process. Still, the remaining con- 

straints could require many lengthy analysis computations. Therefore, atten- 

tion is now directed to various methods of approximate structural analysis. 

2.5 g Reducin the Number of Detailed Structural Analyses 

The function of an approximate structural analysis is to rapidly estimate 

the behavioral response of modified designs during a stage in an iterative 

design process. Approximate analyses are generally constructed using (a) 

information obtained during the detailed analysis carried out at the beginning 

of a stage and (b) special information needed to set up the approximate analysis 

(e.g., partial derivatives of response quantities with respect to design vari- 

ables). When an approximate analysis method is used on conjunction with con- 

straint reduction techniques (see Section 2.4) attention can be focused on 

constructing approximations for only those constraints that survive the dele- 

tion process. 

Three basic types of approximate analysis will be discussed; namely, 

iteratjve techniques, reduced basis methods and the construction of explicit 

approximations. The explicit approximation methods lead to algebraic expres- 

sions'for the surviving constraints as functions of the independent design 

variables and therefore they are particularly powerful in the optimization 

context. While the three approaches to approximate structural analysis to be 

discussed are rather general, it will be useful to explain them here using 

illustrations based on static structural analysis in the displacement method 

context. 
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2.5.1 Iterative Methods 

Iterative methods of structural analysis are characterized bythe fact 

that they can make effective use of information available from previously 

,expended analysis effort and the convergence criteria can be varied to control 

the quality of the approximation. For example consider the linear static struc- 

tural analysis problem 

[K] k = Sk (2.17) 

where [K] is the system stiffness matrix, and zk represents the displacement 

response under load condition Sk (for simplicity assume that Sk is independent 

of the design variables). Let it be understood that Eq. (2.17) has been solved 

for "\ and assume the results of the [e?] [gl [ZZIT decomposition of [K] are 

saved. When the design is changed the governing analysis equation becomes 

[K + AK] (< + A<> = Sk (2.18) 

Then rearranging terms Eq. (2.18) can be written as 

[Kl (‘k + at,> = Sk - [AK] 6% + at,) (2.19) 

which suggests the iterative analysis scheme 

[Kl (:k + A<) = Sk - [AK] <zk + Azk> (2.20) 
s+l S 

with (tk + Azk) = zk the solution obtained from Eq. (2.17). It may be noted 
1 

in passing, that the first cycle using Eq. (2.20) corresponds to the so-called 

"dummy load method," which is often used when dealing with arbitrary but small 

changes in the design variables. It is interesting to note that the linear 

displacement method of structural analysis used in the structural synthesis 

capability reported in Ref. 22 employed successive over relaxation. More 

recently, in Ref. 53 iterative methods were used to update vibration modes and 
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solutions of the flutter determinant. ,In sununary then, iterative methods,which 

may not be appropriate for a single analysis, because they must start with a good 

estimate of the solution, become more attractive when several analyses are to 

be executed in the course of a design-optimization procedure. 

2.5.2 Reduced Basis Concept for Analysis 

Another approach to improving overall design optimization efficiency 

via the use of approximate analyses will be referred to as the reduced basis 

approach in analysis variable space. The number of analysis unknowns (e.g.,, 

displacement degrees of freedom or redundants) required to adequately predict 

behavior, for the purpose of guiding a stage in an iterative design process, 

is frequently less than the number arising from the idealization and discretiza- 

tion decisions. In dynamic structural analysis it is common practice to use 

static condensation and normal modes to achieve a two step reduction in the 

number of independent displacement degrees of freedom. It should be noted 

that both of these ideas have been employed to facilitate rapid reanalysis in 

Ref. 52. 

The basic idea of constructing an approximate analysis solution using a 

linear combination of a few well chosen vectors can be applied in a variety of 

ways. For example, in the case of static structural analysis, the reduced 

basis approach can be employed in conjunction with either the force or the 

displacement method of analysis. If a set of Jr independent analysis vectors 

is available (Jr < J where J is the number of unknown analysis variables arising 

from the idealization and discretization), then the vector of analysis unknowns 

can be approximated as a linear combination of these 3 r known vectors. The 

undetermined participation coefficients for each of the Jr known vectors become 

the unknowns of the approximate analysis. Substituting the approximate repre- 

sentation into an appropriate energy formulation and taking the stationary 
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condition leads to a set of Jr simultaneous equations that can be solved for 

*the participation coefficients. 

In the context of the finite element displacement method of structural 

analysis, the approximate displacement response can be represented by 5, that 

is - let 

J 
+ -+ 

s 
+ 

u=ll=- = [B] f (2.21) 
,' N Lkl "v"v 

where the'vv are the participation coefficients, the zv denote the base 

vectors and [B] is a transformation matrix with columns corresponding to the 
+ 
uV 

vectors. The total potential energy is given by 

or expressed approximately in terms of f (see Eq. (2.21). 

nsJiT = +GT[~]T[~][~] f - GTIBIT i: 

(2.22) 

(2.23) 

Setting the stationary condition of r with respect to the vv, V = 1,2,...Jr 

equal to zero yields 

6’ii = 6GT ([B]~[K][B] G - 1~1~ $1 = 0 (2.24) 

and. this requires that 

[BI~[KI[BI G = IBIT $ (2.25) 

which represents a set of Jr simultaneous equations that can readily be 

solved for the v u ; v = l,2,...Jr. The potential of the reduced basis approach 

as a method of approximate static structural analysis has been demonstrated 

in Ref. 44 (force method context) and in Ref. 48 (displacement method 

context). More recently (Ref. 49) a modified reduced basis technique has been 

suggested in which the displacement response is approximated using a linear 

combination of (B+l) normalized base vectors as-follows 

45 



B 
+ -f 
UNUU'V r, 

where 

(2.26) 

(2.27) 

represents the normalized form of the displacement solution for the design at 

the beginning of the p th stage (i.e. k) and 

(2.28) 

represents the normalized form of the first partial derivative of the dis- 

placement response z with respect to the independent design variable 6b 

evaluated for the design 
$PW 

Ihis modified reduced basis technique appears 

to be especially well suited to problems where the number of design variables 

has been reduced by design variable linking. 

2.5.3 Explicit Approximations 

The basic objective in this approach to approximate structural analysis 

is to obtain high quality algebraically explicit expressions for the behavioral 

constraints, that have survived the deletion process. These explicit approxi- 

mations of the constraints retained, are used in place of the detailed analysis 

during a stage in the iterative design process. 

Various techniques can be used to construct explicit constraint approxi- 

mations. For example, in the structural synthesis of components, such as stif- 

fened panels, it is often possible to represent various buckling constraints 

explicitly, except for the values of one (or more) coefficients that must be 

determined by using a more sophisticated (and computationally burdensome) 

stability analysis procedures. In this type of bilevel analysis procedure 

the algebraic form of the explicit constraints follow from a simplified 
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(level 1) analysis while certain key coefficients in these epxressions are 

obtained from a more refined stability analysis (level 2) which is carried out 

only at the beginning of each stage in the iterative design process. 

Another way of constructing explicit approximations of retained 

constraints is through the use of Taylor series expansions. For example con- 

sider a simple stress constraint of the following form 

a(8) hq(8) - 1 - (I r,O l 

a 
(2.29) 

Assuming the allowable stress u is a given constant, an.explicit approxima- a 

tion of this constraint can be constructed by expanding o(8) in a first order 

Taylor series about the current trial design 8 
P' 

that is 

a(3) e z(p) (3) = (Xp, + . . . . . . (2.30) 

Substituting the linear approximation for o(x) given by Eq. 2.30 into Eq. 2.29 

yields the following explicit approximation for the corresponding constraint, 

namely 

h 
9 

($).f;;;(p) 
9 ( 

3) E 1 - 1 
u a 

Mp) (2.31) 

The construction of first order Taylor series approximations requires the 

evaluation of first partial derivatives 
C 

e.g. g- (b)] . It is also possible 
b 

to construct more accurate approximations by retaining quadratic and/or higher 

order terms in Taylor series expansions. However, the computational burden of 

evaluating the higher derivatives needed to construct such expressions is 

substantial. 

In order to improve the quality of explicit approximations, while 

maintaining good computational efficiency, it is important to bring available 
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insight regarding structural behavior to bear. This can often be done by 

carefully selecting response quantities (?) and intermediate design variables 

(3. Consider a behavioral constraint 

hq(jr)hO (2.32) 

and assume that it is an explicit function of several response quantities 

(3. For example, the requirement that the displacement at a node point remain 

within a sphere of given radius ua would be epxressed as 

hq(d) = u2 - u2 - u; - u; z o a X 
(2.33) 

where u 
X’ uY 

and u z are in this instance the pertinent response quantities. 

Now let it be understood that each of the response quantities Y is to be 
9 

expanded in a Taylor series as function of some well chosen intermediate vari- 

ables (d) that are explicitly related to the independent design variables 3. 

Expanding Yq as a function of 2 about the point 2 
P 

corresponding to the current 

design xp gives 

Yqh = Yq(2) = Yq(Zp) + (3 - 3p)Tv Yq(lp) 
2 

+ 3 (2 - Zp) [ 1 %a (3,) (-2 - Q +... (2.34) 
ij 

It is important to give careful consideration to the selection of inter- 

mediate variables 5. In many situations of practical importance it should be 

possible to select the Zb($); b = 1,2 ,...B such that a high quality qpproxima- 

tion will be obtained, even when only the linear term in Eq. (2.34) is retained. 

For example, it is easily shown that for statically determinate structures 

idealized by bar, shear panel, and constant strain triangular membrane elements 

both the stress and the displacement response are strictly linear in variables 
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that are the reciprocals of the usual sizing design variables (i.e., bar cross 

sectional areas, shear panel and membrane thicknesses), This s,uggests that for 

moderately indeterminate structures in this class, the quality of linear 

approximations for both stress and displacement response will be enhanced by 

using reciprocal variables, that is by letting 

'b = 1/8b ; b = 1,2,...B (2.35) 

Assume for the purpose of illustration that the spherical displacement 

constraint represented by Eq. (2.33) applies at a node point on a structure 

that can be idealized using bar, shear panel and constant strain membrane 

triangles. Further assume that only sizing type design variables are consi- 

dered. Then retaining only linear terms in Eq. (2.34) and using reciprocal 

design variables the response quantity ux in Eq. (2.33) can be expressed 

approxtiately as 

U,(Z) c qt, 
au 

= u,(%, + c (Zb-Zpb) 2 
b=l b 

or replacing Zb with l/6, (see Eq. (2.35)) 

u,(6 = cx -I- 

where 
B 

cX 
= ux<6) - c z 

b=l 

and 

au 

Kx = < (%I l (2.39) 

(2.36) 

(2.37) 

(2.38) 

It is apparent that explicit approximations corresponding to Eq. (2.37) can 

be obtained for ~~(3) and u,(x). Then upon substituting these explicit 
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approximations for ux(X), ~~(3) and uz(d> into Eq,. (2.33) the.following explicit 

approximation for the spherical displacement constraint is obtained 

hq(& w $(8, =u 

ZO . (2.40) 

The foregoing discussion illustrates the flexibility of the explicit 

approximations approach to constructing algebraic expressions for the surviv- 

ing inequality constraints, at any stage during an iterative design procedure. 

As described herein, the use of selected response quantities and intermediate 

design variables can often enhance the quality of the explicit approximations 

obtained. 

It should be clearly recognized that the direct application of the 

Taylor series expansion technique to the constraint functions hq(x) does not 

necessarily yield high quality explicit approximations. Frequently, it will 

be desirable to try and preserve the explicit nonlinearities that are appar- 

ent when the constraint functions are viewed as functions of the response 

quantities (e.g., see Eq. 2.33). Furthermore, the use of physical insight 

in selecting intermediate design variables (e.g., see Eq. 2.35) is generally 

worthwhile. It should also be noted that in some cases it will be desirable 

to carry.out the optimization in 2 space rather than in 3 For example, if 

many or all of the approximate constraint functions can be expressed as 

linear functions of the 2 variables it may well prove attractive to express 

the objective function in terms of the variables z and then select an algo- 

rithm that takes advantage of the fact that-most or all of the constraints 

considered during a particular stage have been made linear. 
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2.5.4 Combining Approximate Analysis Methoda 

In principle it is possible to use various combinations of the three 

approaches to approximate analysis discussed. It is possible for example to 

envision the use of iterative methods in an analysis problem that has'.been 

simplified by employing reduced basis approximations'in analysis variable space. 

This could then be followed by the generation of Taylor series approximations 

Eor the generalized displacement degrees of freedom that are the unknowns in 

the reduced basis analysis. It may be noted that the reduced basis method in 

analysis space examined in Ref. 49 (see Eqs. (2.26), (2.27) and (2.28)) may be 

viewed as a combined Taylor series-reduced basis method of approximate struc- 

tural analysis. 

2.6 Summary -A Tractable Formulation 

In any event it is evident at this juncture that a wide variety of 

approximation concepts exist and they can be innovatively employed to construct 

a sequence of tractable formulations, that adequately represent the essential 

features, of the class of structural design optimization problems stated by 

Eqs. (2.wand (2.2). 

In summary the basic problem, during each stage of the iterative design 

process, is made tractable by: (a) reducing the number of design variables, 

through linking and/or basis reduction; (b) reducing the number of constraints 

via regionalization and "throw away", and (c) by constructing algebraically 

explicit approximations for the surviving constraints as functions of the 

design variables. The original mathematical programming problem (see Eq. (2.1) 

and (2.2)) has been reduced to a sequence of small and explicit problems 

of the form find 3 such that 

h (&a <F)(d) 2 0; q CC?) 
4 

(2.41) 
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and 

W(3) + Min (2.42) 

where it is understood that W(x) and therCp) 
Q ( 

8) are explicit but not. 

necessarily linear functions of the generalized design variables 8. 
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3. A NEW STRUCTURAL SYNTHESIS CAPABILITY 

3.1 "Introduction 

In this section, the technical foundations of the ACCESS* 1 computer 

program are described. This program combines finite element and mathematical 

programming methods to form an efficient minimum weight optimum design capa- 

hility for a significant class of structural synthesis problems. Attention is 

focused on two and three dimensional structural systems, made from isotropic 

materials that can be idealized,using truss, triangular membrane and shear 

panel elements. Multiple static loading conditions are considered and stress, 

displacement and member size constraints are included. 

Several of the approximation concepts described in Section 2 have been 

used in concert to develop this new capability. Design variable linking 

is employed to reduce the number of independent design variables. At each 

stage during the iterative design process the number of stress constraints 

is reduced by a specialized regionalization scheme, defined by finite 

element groups linked to the independent design variables. The number 

of stress constrains is further reduced using the "throw away" concept. The 

number of displacement constraints considered during each stage is reduced by 

temporarily deleting displacement constraints that are neither critical nor 

potentially critical. Strictly redundant side constraints are permanently 

deleted. The number of side constraints is reduced further by applying the 

"throw away" concept. First order Taylor series expansions of the displace- 

ment and stress response quantities, in terms of linked reciprocal variable, 

are used to construct explicit linear approximations of the surviving inequal- 

ity constraints. The objective function expressed in terms of the linked 

reciprocal variables is nonlinear but explicit. 

* &proximation Concepts Code for Efficient Structural *thesis 
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The finite element structural analysis is organized so as to take 

advantage of design variable linking and element configuration grouping, while 

at the same.time facilitating the implementation of selective sensitivity 

analysis, discussed subsequently. If there are several finite elements of the 

same type (bars or shear panels or constant strain membrane triangles) having 

identical configuration and material properties, which may have different size 

(cross sectional area or thickness) and orientation in space, then these ele- 

ments are said to belong to the same configuration group. The analysis is also 

organized so as to keep storage demands reasonable while at the same time 

facilitating the implementation of selective sensitivity analysis. 

At the beginning of each stage of the synthesis a detailed structural 

analysis is carried out, and a complete set of structural response ratios is 

computed. This information is then used to identify the critical and potenti- 

ally critical stress, displacement and side constraints to be retained during 

the upcoming stage of the design process. Explicit approximate representa- 

tions are only generated for this reduced set of behavior constraints. These 

explicit approximations are constructed by expressing appropriate displacement 

and stress response quantities as linear functions of the linked reciprocal 

design variables using first order Taylor series expansions about the current 

design point. By using a reciprocal variable formulation the high quality of 

the first order Taylor series approximations for stress and displacement res- 

ponses .is assured. Only those partial derivatives needed to set up Taylor 

series approximations are evaluated - a feature called selective sensitivity 

analysis. It is noted that these partial derivatives are calculated directly 

with respect to the reduced set of design variables, which is more efficient 

than evaluating the partial derivatives with respect to the prelinked design 

variables and then applying the appropriate transformation. 

54 



The optimization phase of ACCESS 1 is modular. In current versions of 

ACCESS 1 optimization is carried out by either CONMIN (an optimization program 

package based on a modified feasible directions method, see Ref. 68) or NEWSUMT 

(a sequence of unconstrained minimizations technique based on an extended 

interior penalty function formulation (see Ref. 75) and a modified Newton 

method minimizer (see Ref. 53)). 

3.2 Scope and Limitations 

The structural synthesis capability to be described subsequently in 

Section 3.3 may be viewed as a pilot program aimed at demonstrating the feas- 

ibility of developing general purpose, large-scale, finite element structural 

synthesis capabilities that are practical and efficient. It is assumed that 

the topological form, the geometric configuration, and the structural materials 

to be employed are preassigned parameters. Attention is focused on two and 

three dimensional structural systems that can be idealized using the follow- 

ing three types of finite elements: truss elements of uniform cross sectional 

area (TRUSS), isotropic constant strain triangular membrane elements of uni- 

form thickness (CST), and isotropic symmetric shear panel elements of uniform 

thickness (SSP).* The basic assumptions and the resulting local stiffness 

matrices for these three finite element types are given in Appendix A for 

completeness. The physically significant design variables are understood to be 

the cross section areas of TRUSS elements and the thicknesses of CST and SSP 

elements. The number of independent design variables is reduced using.design 

variable linking only. Design variable linking is limited to prespecified 

groups of finite elements that are all of the same type (e.g., all (TRUSS), 

* 
This type of element differs from the usual shear panel element in that it 
carries bending as well as shear loads. It is particularly useful for 
modeling midsurface symmetric thin wing structures because it permits 
uncoupling the wing inplane displacement response from the wing bending 
and twisting behavior. 
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all (CST), etc.). The given initial sizes are used to establish the fixed 

relative sizes for finite elements in a linked group. Finite element stiffness 

matrices for unit design variable values, expressed in the local coordinate 

system, are computed once and stored. In order to save storage space, ele- 

ment configuration groups are defined at the outset. Finite elements in a 

configuration group are of the same type, and they have (essentially) 
* 

iden- 

tical configuration and material properties. Then for unit values of the 

element sizing variables all elements in a configuration group have the same 

(unit) local stiffness matrix. Therefore it is only necessary to generate 

and store one (unit) local stiffness matrix for each configuration group. 

Multiple distinct static loading conditions are considered. These load-* 

ing conditions are taken to be independent of the design variables. Loadings 

that depend on the design variables (e.g., self-weight, temperature change, 

and static aeroelastic effects) are not treated herein. Each loading condi- 

tion can include specified applied loads (expressed in the reference coordinate 

system) corresponding to each independent displacement degree of freedom. 

Uniform pressure distributions acting normal to the surface of CST elements 

may also be specified. These pressure loading are converted into work equiva- 

lent nodal loading expressed in the reference coordinate system. 

Stress and displacement constraints are considered under each of several 

distinct static loading conditions. Separate upper and lower limits may be 

placed on each independent displacement component (expressed in the reference 

coordinate system). The limits on each displacement component are assumed to 

be the same for all loading conditions. Independent upper and lower axial 

* 
For thin wing applications CST elements having identical projections on the 
wing middle surface are assumed to be in the same configuration group. 
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stress limitations (u> 
% may be specified for TRUSS elements. For CST 

and SSP elements an upper limit (oaf> is placed on the Von Mises equivalent 

stress o eik defined by 

(3 eik a 'fik ' '$k - oxikoyik ' 3 rzyikf'2 ' uai (3.1) 

.where the subscript i refers to the element and the subscript k refers to the 

load condition. The limiting stress values (‘Jai) are assumed to.be.the same 

for each loading condition and they are taken to be the same for all finite 

elements in an element configuration group. It should be noted that the SSP 

elements include a uniform shear stress as well as normal stress distributions 

of the form u = 0 where c is a constant. 
X 

= cy and u In addition to these 
Y 

behavioral constraints, minimum and maximum member sizes (cross sectional 

areas for TRUSS elements and thicknesses for CST and SSP elements) can be 

specified for each finite element. 

The objective function is taken to be the total weight of the finite 

element idealization. For the limited class of finite elements included in 

ACCESS 1, the objective function is a linear in the regular sizing type 

design variables such as thicknesses and cross sectional areas of the finite 

elements, As noted earlier, however, it is found advantageous to formulate 

the optimization problem in terms of linked reciprocal design variables, hence 

the objective function becomes nonlinear but remains explicit. 

There are six operational versions of the ACCESS 1 computer program and 

none of them employ secondary storage. The primary storage capacity required 

depends upon the optimizer chosen (CONMIN or NEWSUMT) and the sizes of the 

declared arrays in the program. The primary storage requirements for the six 

operational versions of ACCESS 1 are summarized in Table 1. The largest 
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problem‘that can currently be accommodated would involve 300 finite elements 

(100 of each type), 300 displacement degrees of freedom, 120 design variables 

and 5 distinct loading conditions. It is noted that the effective overlay of 

programs and arrays as well as the judicious use of auxiliary storage should 

permit future growth of maximum problem size. 

3.3 'Descriptionof‘ACCESS 1 

The ACCESS 1 computer program is a new type of structural synthesis capa- 

bility based on the coordinated use of several approximation concepts drawn 

from those discussed in Section 2. The approximation concepts employed in 

creating the ACCESS 1 computer program are: (1) design variable linking, 

(2) temporary constraint deletion by regionalization and "throw away" and (3) 

construction of explicit approximations for retained constraint functions in 

terms of linked reciprocal design variables. 

The description presented in this Section begins with a detailed 

formulation of the general class of problems treated (see Section 3.3.1). 

The formulation is then restated, casting it in terms of linked reciprocal 

design variables and normalized inequality constraints. The basic organiza- 

tion of the ACCESS 1 computer program is outlined (see Section 3.3.2) using 

the conceptual block diagram shown in Fig. 4. The input data required by 

ACCESS 1 are enumerated in Section 3.3.3. This is followed by descriptions 

of the four main parts of the ACCESS 1 program, they are: (1) the preproces- 

sor (Section 3.3.4), (2) the design process control block, (Section 3.3.5), 

(3) the approximate problem generator, (Section 3.3.6) and (4) the optimiza- 

tion algorithm(s), (Section 3.3.7). 

3.3.1 Formulation 

The basic structural synthesis problem dealt with by ACCESS 1 will now 

be formulated in detail. Let 5 represent the original set of sizing variables. 
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It will be useful to give separate identity to the design variables for: 

TRUSS members b, CST elements z, and SSP elements q, It is to be understood 

that 6 represents all of the original design variables - the cross sectional 

areas 2 and the thicknesses z and T. 
Let ?k 

(5) denote the j th displacement 

degree of freedom under the k th loading condition. The upper and lower limits 

on u,,(b) are represented by u oJ> 
j 

and uF' respectively. Note that these 

limits are assumed to be the same for all K load conditions. Let uik $1 

denote the axial stress in the truss element i under load condition k. The 

OJ) upper and lower stress limits for truss element i are represented by ai and 

CL) 
ui respectively. These stress limits are also assumed to be the same for all 

K load conditions. The Von Mises equivalent stress in either CST or SSP ele- 

ments is represented by ueik (s)(see Eq. (3.1)) and the corresponding allowable 

stress u ai is also taken to be the same for all K load conditions. It is also 

understood that: Ai denotes the cross sectional area of truss member i, ti 

denotes the thickness of CST element i, and ri represents the thickness of 

SSP element i. Furthermore, the superscripts (L) and (U) on Ai, ti, and ri 

denote the minimum and maximum member size limitations. Finally, let IT, Ic 

or Is denote the set of integers identifying respectively all TRUSS, CST or 

SSP elements making up the structural idealization. The basic structural 

synthesis 

Given the 

Find 

such that 

problem dealt with by ACCESS 1 can be stated as follows: 

preassigned parameters and the load conditions; 

-tT D = [;tT, ;T, qT] (3.2) 

0) 
uj 

s ujk(g) s u:" ;- j C Ju; k = 1,2,...K 

k = 1,2,...K 

(3.3) 

(3.4) 

59 



ue& s.uai; i c Ic and IS; k = 1,2,...K 

CL) 
Ai S AiS Ay) ; iC1, 

(L) 
5 s tptp ; iCIc 

-r CL) J Ti 8, -r.@) ; 
i i i c Is 

and the weight or objective function 

c PiRiAi + c 
iCIT iC1, 

PiS& + c 
iC1, 

PiSi =T i 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

is minimized, where it is understood that 

Ju = the set of integers identifying the constrained 
independent displacement degrees of freedom, 

K = the total number of load conditions, 

Pi = the material weight density for the i th finite element, 

R = 
i the length of truss element i, 

si = the surface area of CST element i, and 

S = 
i 

the surface area of SSP element i. 

Before proceeding further, it will be useful to make a change of vari- 

ables to a linked and normalized reciprocal variable formulation. As a point 

of departure, consider the most general change of variable discussed in 

Section 2.3.3 namely that represented by Eq. (2.9) 

B 

Di = c Tib 'b 
b=l 

l (3.10) 

Specializing this expression to the case where only design variable linking is 

employed to reduce the number of independent design variables gives 
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Di = T ib(#b(i) (3.11) 

where the Tib(i) are taken to be the values of Di at the beginning of a 

particular stage in the design procedure and it is understood that the initial 

values of the 6b(i) for the stage are all 1.0. Note that the subscript b(i) 

denotes an integer element of a pointer vector ?: which, given the value of 

i identifies the independent variable b to which the size of the finite 

element i is linked. To introduce the reciprocal variables, it.is.convenient 

to define the following notation: 

fj,=L = 
Di 

reciprocal of the sizing variable for element i; 

reciprocal of the b th independent variable after 
linking; 

and 

Cd 1 
Tib(i) = Tib(i) = 

the reciprocal of D. at the beginning of the 
current stage in thg design procedure. 

With this notation Eq. (3.11) can be rewritten as 

+y= ,A ib(i) ub:i) 

which is equivalent to 

(3.12) 

(3.13) 

Introducing the change of variable represented by Eq. (3.13), at the beginning 

of each stage in the design procedure, reduces the number of variables via 

linking and introduces normalized reciprocal variables g. The term "normal- 

ized" is used here for the following reason. At the beginning of each stage, 

the Tib(i) and ah(i) are redefined in such a way that the a 
b(i) 

are reinitial- 

ized to 1.0. This renormalization insures that all the variables a,(i) are of 
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the same order of magnitude which, in'some cases, helps to reduce numerical 

problems in optimization algorithms. It should be recognized that while 

reciprocal design variables [obCij 1 are renormalized at the beginning of each 

stage, the design variable linking is invariant from stage to stage. 

The basic problem statement embodied in Eq. (3.2) through (3.9) is now 

restated in terms of the linked reciprocal variables with the inequality con- 

straints normalized as shown: 

Find z 

such that 

2[P 
j 

- Ujk($ I /[uy - uj(L) I 2 0 

j c J ; k=1,2,...K U 

2[ujk(;) - uj(L+/ru(u) - uCL) 2 0 
j 1 

j c J 
U 

; k=1,2,...K 

2[uY) - uikG31/[uy - uy 2 0 

iC IT; k=1,2,...K 

2bik(3 - ui q/by - UpI 2 0 

i C IT; k=1,2,...K 

'- ('eik (?i)/o,,> z 0; i c Ic and Is 

b=1,2,...B 

k=1,2,...K (3.18) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.19) 
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where 
CL) 

Min cTi,,(i) /Ai ) i 
NIT 

b C BT 

Min (Tib(i)'ti 
CL)) ; 

i c Ic 
b f: BC (U) I 

ob 

I 
Mb (Tib(@.i CL)) ; 

i c Is b CBS 

- l.L’O;. b=1,2,...B 

where 

CL) = 
4, 

i 

Max (Tib 
i CIT 

i 
Max (Tib 

c Ic 

ax (Tib 
i CI, 

and 

W(G) = c cb+ 
bCBT % +b:B $ 

+ Min. 

s 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Note that BT, BC and BS denote sets of integers identifying the linked recip- 

rocal variables (a,) that, respectively, control TRUSS, CST and SSP element 

sizes. Furthermore, the constants Cb in Eq. (3.23) are given by 

. (3.24) 

Upon examination, it is apparent that the basic problem statement 

embodied in Eqs. (3.14) through (3.24) is of the general form, find gsuch 

that 
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hq(:) >, 0; q - 1,2,-.-Q (3.25) 

and 

WC3 +Min . (3.26) 

This form of the problem statement is similar to that given by Eq. (2.10) and 

Eq. (2.11) except for the use of linked reciprocal variables in Eqs. (3.25) 

and (3.26). The maximum number of constraints (Q) in Eq. (3.25) is given by 

the sum of the maximum number of behavior constraints Qb and the maximum 

number of side constraints Q,. From the detailed problem statement given by 

Eqs. (3.14) through (3.24) it is seen that 

Q, = 2 JuK + 21T K + (Is + IC)K (3.27) 

and it is emphasized that these constraints are implicit functions of the 

linked reciprocal design variables (ct,.). The number of side constraints 

included in the problem statement given by Eqs. (3.14) through (3.24) is 

QS = 2B. (3.28) 

in which B is the number of independent design variables after linking. 

OJ) Note that the function of the definitions for ab and dL) given by Eqs. (3.20) 

and (3.22) respectively, is to permanently eliminate strictly redundant side 

constraints. Design variable linking effectively reduces the number of side 

constraints in the problem statement from 2(IT + Ic + Is) to 2B. 

3.3.2 Organization 

Conventional finite element structural analysis programs can usually 

be viewed as having three main parts as follows: 

(a) input data processing, 

(b) structural analysis, 

(c) post processing and printout of results. 
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A structural analysis program that is to be integrated into a structural syn- 

thesis capability should be organized so as to facilitate efficient analysis of 

a sequence of modified designs. It should also be noted that in the design 

optimization context, structural analysis includes sensitivity analysis (i.e., 

calculation of partial derivatives of response quantities with respect to 

independent design variables). To achieve high overall efficiency it is use- 

ful to divide the structural analysis (part (b)) into two parts; the,first part 

involving computations independent of the numerical values of the design vari- 

ables and the second part containing computations involving the design variable 

values. In ACCESS 1 input data processing (a) and the first part of structural 

analysis (b) are contained in the "preprocessor" block of Fig. 4. The second 

part of the structural analysis (b) (i.e., the portion involving numerical 

values of the design variables) is in the "approximate problem generator" 

block. 

The basic organization of the ACCESS 1 computer program is outlined in 

Fig. 4. The function of the "preprocessor" is to carry out those operations 

that need only be done once at the beginning of a given design problem. For 

example: (1) determining finite element dimensions and orientations relative 

to the reference coordinate system, (2) determining element stiffness matrices 

corresponding to unit values of the element sizing variables, and (3) con- 

structing pointer vectors to control assembly of the system stiffness matrix. 

The "design process control" block in Fig. 4 interfaces with the "approximate 

problem generator" block and the "optimization algorithm" block. 

A typical stage in the design process begins with the control block 

supplying a "trial design" to the "approximate problem generator" block. This 

trial design is subjected to a detailed finite element structural analysis 
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for all K load conditions. The results of this structural analysis are,then 

used to,evaluate all of the behavioral constraints. The number of stress con- 

straints is reduced by using a regionalization scheme followed by application 

of the "throw away" concept (see Section 2.4.2). The number of displacement 

constraints and the 2B side constraints (see Eqs. (3.19) and (3.21)) are 

reduced using only a "throw away" technique. For critical and near critical 

constraints that survive the deletion process, explicit approximations are then 

constructed by employing first order Taylor series expansions of appropriate 

displacement degrees of freedom and stresses in terms of the linked reciprocal 

design variables. 

The approximate but explicit representations for the set of constraints 

retained are passed back to the "design process control" block which appends 

the explicit objective function, normalizes the design variables and then 

gives this approximate, but tractable, mathematical programming problem to the 

"optimization algorithm" block. The design improvement process is now carried 

out by operating on the current approximate problem statement using either the 

CONMIN or the NEWSUMT optimization algorithm. The CONMIN optimizer (see Ref. 

68) is based on a modified method of feasible directions (see Ref. 67) while 

the NEWSUMT optimizer is based on an extended interior penalty function (see 

Ref. 75) formulation used in conjunction with a modified Newton method mini- 

mizer (see Ref. 53). Either optimization algorithm can be used to generate an 

improved design or a near optimum solution of the approximate problem supplied 

by "design--process control" for the current stage. After certain criteria are 

satisfied, the last design obtained by the optimization algorithm is passed 

back to the "design process control" block where it becomes the initial trial 

design for the next stage. This then completes a typical stage in the design 

66 



process. The overall, iterative,,multistage design process is terminated by 

either a diminishing returns criterion with respect to weight reduction or an 

overriding termination criterion limiting the total number of stages. 

Before turning to a unore detailed discussion of the major parts of 

ACCESS 1 it is appropriate to point out a few key features of the program. 

First, it is emphasized that only one finite element structural analysis is 

executed'per stage. In practice, the number of detailed finite element struc- 

tural analyses carried out is always equal to one plus the total-number of 

stages executed, since it is desirable to have a complete analysis of the 

final design obtained upon termination of the entire procedure. It should 

also be noted that only those partial derivatives required to construct explicit 

approximations of retained constraints need be computed. This is because con- 

straint deletion is carried out prior to the construction of explicit approxi- 

mations for the constraint functions. It is also important to recognize that 

none of the constraints included in the original problem statement (see Eqs. 

(3.14) through (3.24)). are permanently deleted (except for the strictly 

redundant side constraints, see Eqs. (3.20) and (3.22)). That is, in each 

stage, after completing the detailed finite element structural analysis, the 

constraints to be deleted are reestablished. This permits previously deleted 

constraints to reappear when appropriate, and it permits the dropping out of 

previously retained constraints. It should also be noted that both of the 

available optimization algorithm options can accommodate moderately infeasible 

starting points. Finally, it is observed that in practice the CONMIN option 

reduces the weight rapidly while tending to produce a sequence of near 

critical designs. On the other hand, the NEWSUMI option reduces the weight 

more gradually while tending to produce a sequence of noncritical designs that 
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"funnel down the middle" of the feasible region. More detailed descriptions 

of the various component parts of the ACCESS 1 program are offered in the 

sequel. 

3.3.3 Input Data Required 

In order to apply the ACCESS 1 computer program to a particular design 

optimization task it is necessary to prepare a set of data cards describing 

the problem at hand. While detailed data format instructions are not given 

here they will be found in Ref. 76. Nevertheless it will be useful to 

elaborate on the input data required. 

Consider the 18 element wing box beam example drawn from Ref. 34, and 

shown in Fig. 5. The structure is symmetric with respect to the x-y plane. 

Note that there are no node numbers assigned in the middle surface of the box 

beam. This is due to the idealization employed which neglects inplane mid- 

surface displacements and assumes that the z displacements of the midsurface 

are the same as those of corresponding (x-y) locations on the upper surface. 

The ACCESS 1 program accommodates three kinds of finite elements, namely TRUSS 

elements (type l), CST elements (type 2) and SSP elements (type 3). The 

idealization of the wing box shown in Fig. 5 involves 5 type 1 elements, 5 

type 2 elements and 8 type 3 elements. Before proceeding any further it will 

be important to fix in mind the notions of design variable groups and config- 

uration groups. If the design variables (Di) for each of several finite 

elements of the same type are linked to a single independent design variable 

(6b) (see Eq. (3.11)) then these elements belong to the bth design variable 

group. If there are several finite elements of the same type having identical 

configuration and material properties, which may have different size (,cross 

sectional area or thickness) and orientation in space, then these elements 

belong to the same configuration group (a). 
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With the foregoing definitions in mind it is now a straightforward 

matter to set forth the data describing the example problem depicted in Fig. 5. 

(a) Job Description - provides for a two card identtfication of 

any particular problem (e.g. EIGHTEEN ELEMENT WING BOX DESIGN 

PROBLEM REF. AFFDL-TR-70-165). 

(b) Job Control Parameters - permits options from (0) minimum to 

(8) maximum controlling the amount of analysis information to 

be printed out after each intermediate design stage (e.g.;0 2 O)* 

where the 2 in the middle is the print option indicator. 

(c) Basic Structural Descriptors - various integers describing 

the structural idealization and the number of loading conditions: 

(1) number of nodes, number of spatial dimensions, number of 

boundary nodes, number of load conditions (e.g. 7 3 2 1). 

(2) number of design variable linking groups for each element 

type (e.g. 5 3 8), indicating (5) independent design 

variables for the type 1 (TRUSS) elements, (3) independent 

design variables for the type 2 (CST) elements and (8) 

independent design variables for the type 3 (SSP) elements. 

(3) number of configuration groups for each element type (e.g. 

2 2 5), indicating (2) different configuration groups for 

the type 1 (TRUSS) elements, (2) different configuration 

groups for the type 2 (CST) elements, and (5) distinct con- 

figuration groups for the type 3 (SSP) elements. 

(4) number of finite elements of each type (e.g. 5 5 8), 

indicating that the structure is represented by 5 truss 

elements (type l), (5) CST el ements (type 2) and (8) SSP 

elements (type 3). 

* 
The example numbers given conform with the detailed input format 
described in Ref. 76. 
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(d) Node Numbers and their location with respect to a reference 

coordinate system (e.g. see Table 2). 

(e) Element Descriptions for all elements of all types: 

(1) ‘TRUSS elements - member number, design variable linking 

group number, initial cross sectional area, upper limit 

on cross sectional area, lower limit on cross sectional area, 

configuration group number, P th node number, Q th node 
* 

number, side constraint code for the element (e.g. see 

Table 3). 

(2) CST elements - member number, design variable linking 

group number, initial thickness, upper limit on thickness, 

lower limit on thickness, configuration group number, P th 

node number, Q 
th 

node number, R th node number, and side 

constraint code for the element * (e.g. see Table 4). 

(3) SSP elements - member number, design variable linking group 

number, initial thickness, upper limit on thickness, lower 

limit on thickness, configuration group number, P th node 

number, Q th node number, and side constraint code for the 

element * (e.g. see Table 5). 

(f) Material Properties for each configuration group for each element 

(1) TRUSS elements - upper limit on axial stress, lower limit 

on axial stress, specific weight, modulus of elasticity 

(e.g. see Table 6). 

(2) CST elements - upper limit on Von Mises equivalent stress, 

specific weight, modulus of elasticity, and Poissons ratio 

(e.g. see Table 7). 

* 
Side constraint code: -1 lower limit only; 0 nonnegativity only; +l upper 
limit and nonnegativity; +2 upper and lower limits. 
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04 

(0 

(3) SSP elements - upper limit on Von Mises equivalent stress, 

specific weight, modulus of elasticity, and Poisson's ratio 

(e.g. see Table 8). 

Displacement Boundary Conditions - boundary node number, boundary 

condition code for x, y and z displacement components, prescribed 

displacements if the corresponding boundary condition code is -1. 

Note that the boundary condition code is as follows: -1 denotes 

prescribed displacement; 0 denotes free, and +l indicates a 

fixed condition. For the 18 element wing box example the dis- 

placement boundary conditions are given in Table 9. 

Load Condition Data - for each load condition it is necessary to 

specify the number of nodes where loads are applied, as well as 

the node numbers and the applied force components in the x, y and 

z directions (e.g. see Table 10). 

Displacement Constraints - number of displacements components 

constrained, node number, direction, constraint code, upper 

limit and lower limit. Let the x, y and z directions correspond 

to 1, 2 and 3, respectively. The displacement constraint code is 

as follows: -1 lower limit constraint only, 0 no constraint, 

1 upper limit constraint only, 2 both upper and lower limit 

constraints. For the 18 element wing box example the displace- 

ment constraints are given in Table 11. 

3.3.4 Function of Preprocessor 

Basically the "preprocessor" block (see Pig. 4) carries out calculations 

that need only be done once since they are independent of the numerical values 

of the design variables. The preprocessor performs the following computations 
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and stores the generated results as arrays in labeled COMMON BLOCKS that 

can be drawn on by the "approximate problem generator" block (see Fig. 4): 

(4 

W 

(4 

I 

Cd) 

(4 

(0 

Read input data and print out input data. 

Compute element data for: 

(1) TRUSS elements - length, direction cosines of local coordi- 

nate 'axes relative to reference coordinates; 

(2) CST elements - planform dimensions and direction cosines 

of local coordinate axes relative to reference coordinates; 

(3) SSP elements - planform dimensions and direction cosines 

of local coordinate axes relative to reference coordinates. 

Compute and store the local element stiffness matrix corresponding 

to a unit value of the element sizing variable for each con- 

figuration group associated with the TRUSS, CST and SSP element 

types. 

Construct pointer vectors for (1) arranging the system stiffness 

matrix in compact vector form and (2) indicating boundary con- 

ditions corresponding to all displacement degrees of freedom. 

Compute and store load vectors in the reference coordinate sys- 

tem for each independent load condition. Note that load vectors 

are independent of the design variables since body forces and 

thermal effects are not treated in ACCESS 1. 

Identify and enumerate all possible constraints: 

(1) side constraints - compute total number.of side constraints 

and for each side constraint identify the associated element 

type and linking group, 
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(2) stress constraints - compute total number of stress con- 

straints per load condition and for each stress constraint 

identify the associated element type and element number. 

(3) displacement constraints - compute total number of dis- 

placement constraints per load condition and for each dis- 

placement constraint identify the associated node number 

and direction. 

It should be noted that the associated element numbers (for side and stress 

constraints) and the associated node numbers (for displacement constraints) 

are assigned a negative sign for lower limit constraints and a positive sign 

for upper limit constraints. 

After the preprocessing phase has been completed the program and local 

variables may be deleted from the main memory, if desired. 

3.3.5 Design Process Control 

The DPC (Design Process Control block) interfaces with the APG - - 

(Approximate Problemgenerator block) and the OA (gptimization Algorithm block) 

as shown in Fig. 4. After the preprocessing phase has been completed the DPC 

is immediately activated. The primary functions carried out by the DPC can 

be outlined as follows: 

(1) Read optimizer control parameters; 

(2) Analyze the initial trial design (activate APG)+; 

(3) Set the initial values of the reduced set of design variables to 

(0) unity (i.e., let wb 1 for b = 1,2,...B, see Eq. 

(3.11)); 

t It is emphasized that APG includes structural analysis, constraint deletion 
and construction of explicit approximations for surviving constraints. 
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(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(lo? 

(11) 

If the initial design is infeasible, scale the reduced set of 

reciprocal design variables uniformly so that the most critical 

approximate constraint is satisfied by a prespecified margin; 

Using the approximate problem statement generated by APG (see 

step 2 or step 10) activate the OA which modifies the reduced 

set of reciprocal design variables (ctb> moving toward an opti- 

mum solution of the current approximate problem statement; 

Update the element size design variables (Di) using the current 

scale factors (T ib(i) ) and the values of the reduced set of 

reciprocal design, variables obtained in step 5 (i.e. substitute 

6 
b (3 

= l/o,(.) into Eq. (3.11)); 

Update the weight coefficients, Cb, appearing in Eq. (3.23) to 

reflect normalization of the reduced set of reciprocal design 

variables for the upcoming stage in the design process [i.e. 

Check convergence criteria and limit on maximum number of 

stages for the design procedure, if satisfied jump to step 13, 

otherwise continue to step 9; 

Update linking table entries (T ib(i) > so that unit values of 

the reduced set of design variables (6b = l/ctb = 1) correspond 

to the current sizing design variables (see Eq. (3.11); 

Analyze the current trial design (activate APG); 

.If the current design is infeasible scale the reduced set of 

reciprocal design variables uniformly so that the most critical 

approximate constraint is just satisfied; 
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(12) Modify the truncation factor controlling the constraint 

deletion process and jump to step 5 (the dynamic truncation 

factor is discussed in Section 3.3.6.2); 

(13) Analyze the final design (activate APG); 

(14) If the final design is infeasible, scale. the reduced set of 

reciprocal design variables uniformly so that the most critical 

approximate constraint is just satisfied; 

(15) Terminate the design procedure. 

In the foregoing steps 1 through 4 may be viewed as an initialization 

phase, while steps 5 through 12 represent a stage in the iterative design 

procedure, and steps 13 through 15 constitute the termination phase. Note 

that in the design process outlined here, the AF'G and the OA are activated 

only once per design stage. 

Although both optimizers (CONMIN and NEWSUMT) can accommodate infeas- 

ible starting points, the scaling steps (4 and 11) are inserted to reduce the 

burden on the optimizer by assuring that the initial design for each stage 

in the design process is at least feasible with respect to the approximate 

constraints. The improved design generated by the optimizer at each stage 

(see Fig. 4) is always feasible with respect to the approximate constraints, 

however, it may be in violation of the actual constraints. In the latter 

case, the infeasible design is scaled up to provide a feasible starting point 

for the upcoming stage. In most cases the improved designs generated by the 

optimizer are found to be feasible with respect to the actual constraints 

(particularly when the NEWSUMT algorithm is being used). Regardless of whether 

or not scale up occurs, the approximate problem statement for each upcoming 

stage is always generated using complete analysis results for the design 

available at the end of the previous stage. As a consequence, when scale up 
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occurs, the feasible starting point differs from the slightly infeasible 

design at which the approximate problem statement has been generated. 

A final note of caution regarding scaling steps is appropriate. Rather 

unusual constraints such as upper limits on element sizes or positive lower 

limits on stresses or displacements may be imposed in ACCESS-l, but scaling 

will not work for constraints of this type. Therefore if constraints of this 

type (or thermal effects) are to be handled, the DPC must be modified to omft 

the scaling steps. In this event the built in capability of each optimizer 

to start from an infeasible initial design would be relied upon to brfng the 

design into the feasible region with respect to the approximate constraints. 

3.3.6 Approximate Problem Generator (APG) 

Whenever the AFG block (see Fig. 4) is activated by the DPC block, the 

sizing design variables for the current design are stored in the arrays where 

the initial element sizes were stored. Furthermore, all data generated by 

the preprocessor are available through labeled COMMON BLOCKS. 

3.3.6.1 Displacement evaluation 

A finite element displacement method of structural analysis is built 

into ACCESS 1. To obtain the static displacement response of the structure 

under each of K load conditions it is necessary to set up.and solve the 

following system of simultaneous equations 

[K] $ = Sk; k = 1,2,...K . (3.29) 

The system stiffness matrix [K] is assembled in compact vector form as illus- 

trated in Fig. 6. The vector form of the system stiffness matrix is made up 

of elements from the first nonzero element through the diagonal element from 

each column of [Kl. 
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The assembly procedure for forming the system stiffness matrix [K] in 

compact vector form can be outlined as follows: 

(a) the configuration group number associated with the i th finite 

element is identified as a(i). 

(b) the local stiffness matrix [zg(i) ] (associated with unit value 

of the element sizing variable) is copied out and multiplied 

by the current size to form a local element stiffness,matrix 

($1 = Ding. Since [cl] is symmetric, only the upper 

triangle of [zi] is stored in vector form. 

(c) The coordinate transformation matrix for the i th finite element 

[A,] is used to obtain the element stiffness matrix in the 

reference coordinate system. Since [hi] is a relatively sparse 

matrix and its nonzero elements are easily computed the 

transformation 

(3.30) 

is not carried out as a matrix multiplication, and the elements 

of [ki] are computed from explicit algebraic formulas. 

(d) The assembly subroutine identifies the position in the system 

stiffness matrix (expressed in compact vector form) where each 

element of [ki] must be added in and then performs this 

addition. 

The load vectors Sk; k = 1,2 ,...K previously generated by the 

preprocessor are copied into the locations where the displace- 

ment response vectors are to be stored. 

The linear equation solver built into ACCESS 1 is based on the algorithm 

given in Ref. 77. The system stiffness matrix is decomposed into the product 
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of three matrices, namely 

[Kl = [AZ'1 [gal [8>IT (3.31) 

where [.9] is a lower half triangular matrix and [sl] is a diagonal matrix. 

After decomposition a sequence of back and forward substitutions for each Sk 

leads to the corresponding displacement response vector 
% In ACCESS 1 the 

entire system stiffness matrix [K] (stored in compact vector form) and the 

complete set of load vectors Sk; k = 1,2 ,...K reside in the primary core 

storage simultaneously, and this characteristic constitutes an important 

restriction on the size of problem that can be handled by ACCESS 1. 

3.3.6.2 Constraint evaluation and deletion 

At the outset it should be recalled that during the preprocessing 

phase (see Section 3.3.4) all constraints that are to be evaluated have been 

identified, enumerated and subdivided into side, stress, and displacement con- 

straints. Within the ACCESS 1 computer program the feasible region is defined 

as a set of points corresponding to nonpositive constraint function values. 

This is because the first version of ACCESS 1 was written with the CONMIN 

optimization package in mind. In CONMIN, constraints have nonpositive values 

in the feasible region. Therefore, in order to faithfully describe the con- 

straint deletion procedures built into ACCESS 1 it will be convenient to 

rewrite the problem statement (summarized by Eq. (3.25) and Eq. (3.26)) as 

find g such that 

h--(z) s 0; q = 1,2,...Q (3.32) 

and 

W(Z) -f Min (3.33) 

where it is understood that 

h,(G) = -hq(& . (3.34) 
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For each constraint type (i.e., stress, displacement, and side) the 

most critical constraint value is identified and the truncation boundary 

value (TBV) for deletion of unnecessary constraints is computed as follows 

TBV - iMax [h;; (2) + c]] TRF - c 
4 

(3.35) 

where c is a preassigned constant taken as 1.2 for side constraints and 1.0 

for stress and,displacement constraints. It is to be understood that TEF is 

a truncation factor, with an initial value given as input data [typically 

CT=9 1 = 0.11, that is increased automatically in step 12 of the DPC 

[typically (Tw) p+l = 1.2 (TEF)p] up to some maximum value denoted by TEFMAX 

(typically TEFMAX = 0.6). Since displacement constraints are found to be 

more stable than others (less sensitive to changes in the design variables) 

the TN? for displacement constraints is increased by 0.2 at each stage of the 

design process, that is TEF displacement = TRF + 0.2. Table 12 gives a set of 

typical values for TRJ? and TEF displacement for the first 8 stages of the 

design procedure followed in the delta wing example to be discussed in ' 

Section 4.3.3. The relationship between TBV and TBF given by Eq. (3.35) is 

illustrated in Fig, 7. For each type of constraint, all constraints whose 

values h-(s) are less than the current TBV are deleted from consideration 
4 

during that design stage. The relationship between the detailed implementa- 

tion of constraint deletion and the general "throw away" concept described in 

Section 2.4.2‘1s elucidated in Appendix B. 

It should also be noted that essentially redundant stress constraints 

are deleted in ACCESS by implementing the regionalfzation concept in the 

following way. For each design variable linking group (b) for each loading 

condition (k) only the most critical stress constraint is considered by 
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ACCESS 1 at each stage during the design process.. This immediately reduces 

the number of stress constraints from IXK to BxK constraints. From this 

reduced set of stress constraints only those for which 

h--(G) L'TBV (3.36) 

are retained for the current design stage. The use of design variable linking 

groups to define regions makes shifting of the critical constraints-.during a 

design stage rather unlikely. This is because changes in the independent design 

variables will primarily cause force redistribution8 between regions rather 

than within design variable linking group regions. In this connection it 

may be helpful to recall that, for statically determinate structures, the 

location of the most critical constraint in each region for each load con- 

dition is independent of the set of values assigned to the design variables. 

Constraints that survive the deletion process are treated as critical 

or potentially critical constraints and they are logged into a posture table 

that is a vector of pointers containing the label numbers of these constraints. 

3.3.6.3 Explicit approximation of retained constraints 

Since the objective function is simple and explicit in the exact 

form given by Eq. (3.23), no approximation is required. Furthermore the first 

and second partial derivatives of the objective function with respect to the 

linked reciprocal design variables ob are also easily obtained as 

Mb, 'b - =-- 
a% 

; b = 1,2,...B 

and 

b = 1,2,...B . 

(3.37) 

(3.38) 
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On the other hand, the stress and displacement behavior constraints are com- 

plicated implicit functions of the independent design variables. 

It is easily shown that for statically determinate structures idealized 

by TRUSS, CST and SSP finite elements, both the static stress and displacement 

response are strictly linear in reciprocal sizing design variables (g). 

This suggests that for moderately indeterminate structures in this class the 

quality of both stress and displacement approximations will be enhanced by 

using reciprocal sizing variables (2). Specifically, in ACCESS 1 first order 

Taylor series expansions are used to construct approximate representations for 

stress and displacement response quantities such as o ik(z), aelk(z> and 

u,,(z) (see Eqs. (3.14) through (3.18)). 

The first order Taylor series approximation of the j th displacement 

degree of freedom under the kth load condition, based upon analysis of the 

current trial design g 
P 

can be expressed as follows 

uj,$+) a (3.39) 

where Zjk (2) represents the explicit approximation for the j th displacement 

under the kth load condition; ujk(zp) d enotes the values of the j th displace- 
*+ 

ment under load condition k for the base point ct 
P 

of the current stage, and 

Vujk(zp) stands for the gradient of the j th displacement under load condition 

k evaluated at the same base point* design g 
P' 

Note that the components of the 

* 
Designs for which complete structural analysis (and selective sensitivity 
analyses) are executed, in order to construct explicit approximations for 
an upcoming stage of the iterative design przcess, are c&led base point 
designs. In ACCESS 1 the base point design a for the p stage is always 
taken to be the last design obtained during tRe previous stage. When a 
base point design ap is found to be infeasible with respect to the complete 

it is scaled up to give a feasible initial design for the upcoming 
. Therefore, when scale up occurs the feasible initial design for 

the pth stage differs from the slightly infeasible base point design a 
P' 
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vector Vujk(Zp) are the partial derivatives 2 (6) for b = 1,2,...B, in 
b 

which B is the total number of independent design variables after linking. An 

important new feature of the ACCESS 1 computer program is that only those 

partial derivatives needed to construct explicit approximations for con- 

straints surviving the deletion process are evaluated. This feature is called 

selective sensit-lvity analysis. It should be noted that the necessary partial 

derivatives are obtained directly, i.e., without recourse to finite difference 

techniques. 

For any particular trial design it is known that the stresses in a 

finite element can be readily determined if the displacement degrees of free- 

dom are known. In ACCESS 1 subroutine SELDIS scans the set of stress and 

displacement constraints retained in a particular stage and identifies the 

subset of displacement degrees of freedom (j c J') defining the values of the 

retained constraints. This scanning also determines which, if any, load con- 

ditions do not contribute any stress or displacement constraints to the 

retained set of constraints. Let K' denote the set of load conditions that 

contribute at least one stress or displacement constraint to the set of con- 

straints retained after completing the deletion process described in Section 

3.3.6.2. 

In general, for linear static structural analysis problems governed by 

equilibrium equations of the form given in Eq. (3.29), implicit differentia- 

tion with respect to independent reciprocal design variables yields 

b = 1,2,...B 
k = 1,2,...K (3.40) 

and 
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when thermal effects and body forces (e.g. self-weight) are neglected as in 

ACCESS 1. Then Eq. (3.40) can be written as 

* *bk; 
b - 1,2,...,B 
k - 1,2,...,K 

where the vectors 

.+ 
'bk - - 

(3.41) 

(3.42) 

are sometimes called pseudo load vectors. The selective sensitivity analysLs 

concept implemented by the ACCESS 1 program involves the computation and 

storage .of a set of vectors sbk for b - 1,2 ,...,B and k CK'. Note that 

[aK/a%l in Eq8. (3.40) and (3.42) represents the partial derivative of the 

system stiffness matrix [K] with respect to the b th independent reciprocal 

design variable after linking. In the ACCESS 1 program the matrices [aK/acQ 

are neither computed nor stored. Instead of computing the $bk vectors from 

Eq. (3.42), they are determined directly from the local element stiffness 

matrices [Zg(i) ] (associated with unit values of the element design variables) 

using the formula (see Appendix C for derivation) 

-t 
[A,lT [& 3 [A,1 uik b = 1,2,...,B; 

k c K' (3.43) 

where it is understood that G ik represents the displacement degrees of freedom 

(in the reference coordinate system) associated with the ith finite element 

in the k th load condition. 

Using Eq. (3.41) a set of BxK' vectors Gbk is computed and stored. In 

general some of these pseudo load vectors will be null or trivially small. In 

ACCESS 1 the following scheme is employed to delete pseudo load vectors Gbk 
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of negligible importance. For load condition k, compute the absolute magnitude 

l'bk t for b - 1,2,...,B and delete Sk from further consideration if 

This deletion process is carried out separately for each load condition kc K'. 

The result of the deletion process is to reduce the number of sbk Vector8 from 

BXK' to TVbk. 

It is apparent that Eq. (3.41) provides a convenient means of corn-- 

puting the partial derivatives 5 (zp) needed to construct explicit approxi- 
a% 

mate representations for stress and displacement response quantities involved 

in the set of constraints surviving the deletion process described in Section 

3.3.6.2. Since the decomposed form of the stiffness matrix (see Eq. (3.31)) 

is available (it was previously computed and stored in order to solve for the 

displacement vectors <) Eq. (3.41) may be rewritten as follows 

+ 

[Liz1 [gl LaT 2% = 5bk 
a% 

. (3.44) 

Now, if the reduced number of -tbk vectors, namely TVbk is less than the 

number of displacement degrees of freedom in the subset defining the values of 

the retained constraints (J'), then the partial derivatives desired are obtained 

by carrying out a sequence of back and forward substitutions for each $bk 

vector in the reduced set, 

On the other hand if J' < TVbk generation of a matrix [El, called 
1 b 

the partial inverse of [K] will require fewer back and .forward substitutions 

than the foregoing procedure. Therefore, when J' < TVbk the ACCESS 1 

program branches and uses the following scheme to compute the desired partial 

derivatives. The matrix [r] is constructed in the following straightforward 

manner. Obtain a set of vectors E 
j 

by carrying out a sequence of back and 
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forward substitutions, for each of several right hand sides d 
ii' 

operating on 

the following set of equations 

j CJ' (3.45) 

where 2 
iI 

is a vector with all zero elements except for a single element equal 

to unity corresponding to the j th degree of freedom in the subset J'. 

Now let the partial inverse matrix [CT be made up with the zT 
j 

as its 

rows. Then it follows from Eq. (3.41) that 

ax 
aa, = [K]+qbk 

and the reduced set of partial derivatives required can be computed from 

which can be written in the scalar form 

8 CJ', (b,k) c TVbk. 

(3.47) 

(3.48) 

The scalar form given by Eq. (3.48) is particularly revealing, because it 

clearly shows that when the partial inverse branch of the ACCESS 1 program is 

followea [i.e., when J' < TVbkl only those partial derivatives needed are 

computed and stored. 

With the necessary partial derivatives 
[ 

aujk -t 

1 
3% Cap); j C J', kcK' and 

bc:B'i available in storage it is a straightforward matter.to construct 

explicit approximations for the displacement and stress constraints retained 

after completing the deletion process described in Section 3.3.6.2. Examin- 

ation of the stress and displacement constraints (Eqs. (3.14) through (3.18)) 

reveals that they are explicit functions of response quantities [u j&j 9 
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.I.,. 
. . -- ~..__ .__..__.,_ .- -- 

u& and ueik(z) I. Explicit approximations of the displacement response 

quantities [i.e., iY jk& 1 are available from Eq. (3.39). 

For TRUSS elements the explicit approximations of the stresses oik(g) 

are given by 

Uik(;E, x ;?ik(& = UikGp) + (~-~p~T VUik(Zp) (3.49) 

where 

~ik(‘~) = [DiI [BiI [‘iI ‘ik Cq, 

1x1 1x2 2x6 6x1 
(3.50) 

and for TRUSS elements [Di], [Bil and [Ai] are defined implicitly by Eqs. (A5), 

(A3) and (A4) of Appendix A. Furthermore, for TRUSS elements it is to be 

understood that 

ilT = ik 1 
"p' VP' wp9 UQ' VQ9 WQ (3.51) 

where ups "P' wP and uQs vQs wQs respectively denote the x,y,z displacement 

components of nodes P and Q with respect to the reference coordinate system 

(see Fig. Al Appendix A). Since the matrices [Di], [Bi] and [Ai] in Eq. 

(3.50) are independent of the reciprocal design variables after linking (G), 

the components of V1sik(Gp) are given by 

aaik 

a% 
(;;p, = ID,1 [Bil &I (3.52) 

For CST and SSP elements explicit approximations for the Von Mises 

equivalent stresses rJ eik($ are given by 

u eik(3 = ii,ikG) = cJeikGp) + mp, Tvueik(zp) (3.53) 

where the equivalent stress U eik 
is defined in terms of the stress components 

U xik' 'yik and T xyik by Eq. (3.1). 
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and the components of Vueik($) atie given by 

(3.54) 

For CST elements the appropriate stress-displacement relations are given 

bik(zp) 1 = [Dil Di.] [$I ‘-ek 

3x3 3x6 6x9 9x1 

(3.55) 

where 

cu&‘p) IT = uxik’ uyik, uxyik I 
and 

-WT 
Uik = 1 

~~V~~W~~UQ~VQ~WQ~URYVR~WR 

(3.56) 

(3.57) 

and it is understood that uP,vp,~p,~Q,~Q,~Q,uR,~R,~R respectively denote the 

x,y,z displacement components of nodes P, Q and R with respect to the 

reference coordinate system (see Fig. A2 Appendix A). Furthermore, the 

matrices [Di], [Bi] and [hi] that appear in Eq. (3.55) are defined implicitly 

by Eqs. (A13), (A9) and (AlO) of Appendix A. 

For SSP elements the appropriate stress-displacement relations are 

given by 

i”&p)> = [Dil $1 [Ai1 :ik 
3x3 3x4 4x6 6x1 

(3.58) 

where {uik(Gp)] is defined by Eq. (3.56) and I?'~ is defined by Eq. (3.51) with 

the understanding that the nodes P and Q are those shown in Fig. A3 of 

Appendix A. The matrices [Di], [Bi] and [Ai] that appear in Eq. (3.58) are 

defined in Eqs. (A43), (A42) and (A48) of Appendix A. 
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For CST and SSP elements partial derivatives of the stress components, 

needed in Eq. 3.54, are given by expressions similar to Eq. 3.52 obtained by 

operating on Eq. 3.55 and 3.58 respectively. 

At this juncture, all the information necessary to convert the basic 

problem statement, embodied in Eqs. (3.14) through (3.24), into an explicit 

approximate problem statement of the following form is available: 

Find 2 such that 

B. c 
W(G) = C b+Min 

b=l ob 
(3.59) 

and 

h--(z) &ii 
(P) 

(;) = h;(zp) + (&:p)TPh--(;p) s 0; q CQp) (3.60) 

where QF) denotes the set of inequality constraints to be retained dur'ing 

the p 
th stage of the iterative design procedure. This completes the dis- 

cussion of the approximate problem generator block (see Fig. 4). It is 

emphasized in closing that the approximate problem statement which is passed 

through the design process control block to the optimization algorithm block, 

at each stage p in the design process (see Fig. 4), is relatively small and 

algebraically explicit. 

3.3.7 Optimization Algorithms 

Through the insightful use of approximation concepts the mathematical 

programming problem faced at each stage of the design procedure has been 

rendered small and explicit, yet still representative of the essential fea- 

tures of the structural design problem posed. As a result it is possible to 

employ any one of several well established nonlinear programming algorithms. 

The optimization algorithm block of ACCESS 1 (see Fig. 4) contains two options: 
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(1) COm4IN - a modified feasible directions method due to Vander- 

plaats (see Ref. 68); 

(2) NBWSUMT - a sequence of unconstrained minimizations technique 

based on the Ravlie-Moe extended interior penalty function 

formulation (see Ref. 75) and a modified Newton method mini- 

mizer due to Haftka (see Ref. 53). 

Before turning to a discussion of the CONMIN and NEWSTJMT optimization 

algorithms it is appropriate, at this point, to say a word about two other 

optimization algorithms that could be added to the two options currently 

available. At each stage in the design procedure the approximate problem 

represented by Eqs. (3.59) and (3.60) involves only linear inequality con- 

straints and a nonlinear but explicit objective function. In view of this, 

it would appear reasonable to consider using the well known gradient projec- 

tion method of Rosen (see Ref. 78). A gradient projection option has not 

been implemented in the ACCESS 1 context because: 

(a> it was judged to be too specialized when looking ahead to 

including explicit but nonlinear constraint approximations 

(b) gradient projection does not tend to generate a sequence of 

noncritical designs "funneling down the middle" of the feasible 

region. 

Another candidate optimization algorithm that was considered but not implemented 

as an option in ACCESS 1 is the method of inscribed hyperspheres (see Ref. 73). 

This method is a sequence of linear programs approach that tends to generate 

a set of noncritical feasible designs along an optimum trajectory. This 

characteristic facilitates the use of approximation concepts and the sequence 
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of LP's can be solved using existing computer programs. It should be noted 

that the method of inscribed hyperspheres was applied with considerable success 

in Ref. 72. A method of inscribed hyperspheres option has not been imple- 

mented in ACCESS 1 because: 

(a) the method requires linearization (not just explicit approxima- 

tion) of both the inequality constraints [hi(z) S 0] and the 

objective function [W(z)]; 

(b) in order to make the method work on truss problems it was 

found in Ref. 72 that tangent plane move limits, which could 

at least theoretically cut off the domain containing the 

optimum design, had to be used. 

In the next section a brief discussion of the CONMIN optimization 

package is given. It may be noted that the CONMIN option was developed first 

because of the ready availability of this package. The NRWSUMT option was 

developed second and it tends to generate a sequence of designs that "funnels 

down the middle" of the feasible region. This represents a feature that is 

thought to be attractive in the context of approximation concepts and from an 

engineering point of view. It should be noted that most of the results 

presented in Section 4 of this report were obtained using the NRWSUMI option. 

3.3.7.1 CONMIN 

CONMIN (a program for Constrained Function Minimization) is a general 

purpose program that has been widely used as a black box optimizer. It was 

written by G.N. Vanderplaats of NASA Ames and distributed through COSMIC. 

Relevant literature about the modified feasible directions method implemented 

by CONMIN will be found in Ref. 67 and further user oriented details are 

given in Ref. 68. The algorithm used is the method of feasible directions 

with the following modifications: 
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(a) In the direction finding subproblem the push-off factors flj 

are treated as functions of the constraint values (Ref. 67). 

(b) A special algorithm to search for a design in the feasible 

region, starting from an infeasible initial design is included 

(Ref. 67). 

(c) In the direction finding subproblem the Euclidian norm of the 

direction vector is constrained and the subproblem is reduced 

to a special form of quadratic program that is readily solved 

(Ref. 67). 

(d) For unconstrained minimization the conjugate gradient algorithm 

is employed (Ref. 68). 

(e) One dimensional minimization is carried out using a sequence 

of linear and quadratic approximations for the objective and 

constraint functio'n variations, thus avoiding unnecessary 

function evaluations. 

(f) To alleviate the so called zig-zag behavior that feasible 

direction methods sometime exhibit (Ref. 27) constraint 

tolerances" are initially taken to be relatively large and 

then they are gradually decreased as the optimization 

algorithm converges. 

CONMIN calls for the evaluation of objective and constraint functions 

as well as their gradient vectors (critical constraints only) at various points 

in the (& design space. In ACCESS 1 evaluation of these quantities is per- 

formed by subroutine TAYLOR which keeps all the information describing the 

current approximate problem statement available for calls from CONMIN. It 

In the feasible direction method a constraint is said to be critical if 
-6q S hq(o) S 0 where 6q is called the constraint tolerance. 
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should be noted that the gradients of the explicit approximate constraints 

(P) (s:(z); q CQ, ) retained at any stage in the design process are invariant 

over the design space. This is a consequence of the fact that in ACCESS 1 the 

explicit approximate constraint functions are constructed to be linear in 

the ab. 

Qualitatively speaking, feasible direction methods tend to generate a 

sequence of designs on the constraint boundaries. For most structural design 

problems the optimum is found to reside on one or more constraint boundaries, 

hence it is reasonable to expect that a search along the constraint boundaries 

will often turn out to be efficient. It should also be noted that the special 

quadratic programming problems, used to solve for the useable-feasible direc- 

tions are usually small. This 

is generally much smaller than 

approximate problem statement. 

In the ACCESS 1 context 

is because the number of critical constraints 

the number of constraints included in the 

it should be kept in mind that at each stage 

during the iterative design procedure the optimization algorithm is being 

applied to a gradually improving approximate problem statement. Therefore it 

will probably be advisable to initially employ rather loose stage convergence 

criteria that are gradually tightened up as the multistage iterative design 

procedure outlined in Fig. 4 progresses. 

Since the CONMIN package is-well documented elsewhere (see Refs. 67 

and 68) and in view of the fact that most of the results reported in Section 

4 have been obtained using the NEWSUHI optimization algorithm, it seems 

appropriate to forego a more detailed description of CONMIN. 
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3.3.7.2 NEWSUMT 

The NEWSUMT algorithm is a sequence of unconstrained minimization 

technique based on the extended interior penalty function formulation (see 

Ref. 75 and a modified Newton method (see Ref. 53) for carrying out the 

unconstrained minimizations. The explicit mathematical programming problem 

'constructed by the approximate problem generator (see Fig 4), at each stage 

in the iterative design procedure, has the following form: 

Find g such that 

hq(:) +p)(;;) 2 0; 4 CQF) (3.61) 

and 

W(ja)+Min . (3;62) 

Using the Fiacco-McCormick (see Ref. 79) interior penalty function formulation 

this problem is transformed into a sequence of unconstrained minimizations of 

the following form: 

Let 

@(P)(z,r ) a = W(z) + r F(')(z) a (3.63) 

where 

F(')(z) = c [l 

qCQ$) 

6) 1 (3.64) 

and $(p) is minimized with respect to z for a decreasing sequence of values 

r a+1 =cr ; aa O<Ca<l (3.65) 

This well known'S.UMT type formulation is a stable and reliable algorithm and 

it has been extensively applied in the structural optimization context. This 

approach does however exhibit two shortcomings: 
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(1) the method cannot use unconstrained minimization packages 

without special modification because the constraint repulsion 

type of penalty term (see F (')(-),> definition in Eq. (3.64)) is, 

strictly speaking, undefined in the infeasible (see Fig. 8) 

part of the positive design space; 

(2) the method usually requires more function evaluations than 

the method of feasible directions when using conventional 

unconstrained minimization algorithms such as the method of 

conjugate directions (see Ref. 80) or the variable metric 

method (see Ref; 81) of unconstrained minimization (with 

appropriate modifications in view of item (1) above). 

The first of the foregoing shortcomings can be effectively eliminated 

by using the extended interior penalty function idea (see Ref. 75). In order 

to avoid the infinite discontinuity in 1K f) (;fa> as X:)(Z) p asses through zero, 

define the following modified penalty function: 

I 
l/i;~)($; 

I 

(3.66) 

[2E - xy(;)]/E2; i;p, < & . 
The nature of the extended interior penalty function is illustrated in Fig. 9. 

It should be noted that Eq($ is continuous and has continuous first deriva- 

tives at the transition point defined by h -p=E . 

In ACCESS 1 the initial value of transition parameter E is given as 

an input .parameter (typically E will have an initial value of 0.002) and it 

is then reduced at a rate which is a function of ca. 

Using the extended interior penalty function defined by Eq. (3.66), the 

SUMI formulation contained in Eqs. (3.63) through (3.65), can be cast in the 

alternative form: 
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Let 

$2’ <“a, ra) = W(z) + raFF)(@ (3.67) 

where 

. F?‘(& = c (3.68) 

X42) 

and $2) is minimized with respect to ;f; for a decreasing sequence of ra values 

(see Eq. (3.65)). The functions $2) (&ra) are defined over the entire positive 

domain in 2 space, that is for all points such that ab > 0; b = 1,2,.,.,B. 

Negative values of the design variables (a& are avoided by drastically 

increasing the objective function values if one or more components of 2 

become negative. The NEWSUMT algorithm has a built in move limit capability 

which restricts the design change relative to the design point at which the 

current approximate problem statement was generated. Whenever any component 

of the design vector 2 violates a move limit a new approximate problem is 

generated using a design point on the move limit boundary. In practice, this 

move limit capability has never actually been used because of the high 

accuracy of the explicit approximate analyses. 

The second shortcoming of conventional SUMI type formulations is allevi- 

ated by reducing the number of function evaluations through the use of a 

modified Newton's method (Ref. 53) for unconstrained minimization. To minimize 

(P) + I$~ (o,r,) for a fixed value of ra, it is necessary to perform a series of 

one dimensional minimizations each of which seeks the minimum value of 

(P) + I$, (OL,ra) along a line 

-f 
.=;;m+ds m (3.69) 

where Grn is the current design, zrn is a normalized direction vector and d is 

a scalar move distance variable. In the well known Newton procedure the 
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function to be minimized is replaced by a quadratic approximetion based on a 

second order Taylor series expansion about the design point Gti, that is 

~$(~)(iG,r ) e a 522 gp)(&r ) 
e a 

- $(p)(Z + 
e 

r ) 
m' a 

+ (Z-Z )TVf$(p) 
m e (amsral . 

+ 3 (Em) T AL (; [ ace, aac m'ra) 1 (;f;-g ) 
m .' (3.70) 

where b and c are running indices for components of g 

Then the minimum of the quadratic approximation is obtained by taking the 

gradient of e # P) * (a,ra) ,, setting it to zero 

Q(P) -+ e @bra) = We ms a lp)(Z r ) 

+[$L (Gm,ra)] (Z - ;;m) = 6 

and solving for G, that is 

(3.71) 

(3.72) 

The Newton method with line minimization (see Ref. 27) is obtained by compar- 

ing Eqs. (3.69) and (3.72) and letting the normalized direction vector zrn be 

given by 

zrn = - (3.73) 

In Ref. 53 Haftka points out that when the Newton method with line 

minimization is applied to the unconstrained minimization of interior penalty 

function fo_rmulations, a good approximation of the matrix of second partial 
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derivatives ,ra) can often be obtained using only first deriv- 

atives. Referring to Eqt. (3.67), (3.68) and (3.66) it is easily shown that 

a2+(P) a% 

a%iac 
C&r,> = 

a2w 

aCrbaac 
(3 + ra C --(Z) 

qCQ(P) aobaac 
R 

(3.74) 

and 
k 

a2F !P) 
.Q 

a2g(P) 

i 

asaac - (Z) = a%aac (3.75) 

a2$P) 

- (;, : FCP) (Z) < E 
a% sac q 

In Ref. 53 it is argued that for critical constraints h s small and 

therefore 

ax(P) 
2 4 (ii) 

a% 
(3.76) 

assuming aVp) q /a%aac is SU.B~~, Furthermore, Ref. 53 points out that 

for noncritical constraints h -(qp)(&- is larg e and the entire righthsnd side of 

Eq. (3.75) is small since 6 :)(g) I3 appears in the denominator. Therefore, 

the contributions of noncritical constraints to the summation in Eq. 3.74 c.an 

be neglected, since they are small compared with the contributions from the 

critical and near critical constraints. 
, 
In 'the context of ACCESS 1 it is known that the h -(p)(g) are all linear 

hence the a2tip) q /aabaac vanish and the a$P)/kb as well'as the a%F)/aa 
C 

are invariant for the p th approximate problem statement. It may also be 
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observed that [a2W/aabaac] is a diagonal matrix the elements of which are 

given explicitly by Eq. (3.38). 

The optimization program NEWSUMT was written to implement the modified " 

Newton method as an ACCESS 1 program option. Initially the scalar factor ra 

is given a value such that 'pe is equal to twice the value of the weight W 

(see Eq. (3.67)). The scalar ra is decreased by a prespecified ratio (c,) 

every time minimization for the current value r a is completed. The approximate 

problem statement is updated after a prespecified number of unconstrained 

minimizations (a'). It is important to emphasize that ACCESS 1 permits the 

user to specify the cut factor (c,) and the number of unconstrained minimi- 

zations (a') to be executed prior to updating the approximate problem state- 

ment. Representative numbers for these control parameters are c = 0.3 and a 

a' = 2. 

The one dimensional minimizations in NEWSY are carried out using 

the well known golden section method (see for example Ref. 82). This algorithm 

was adopted because of its inherently stable performance characteristics. 

One dimensional minimization convergence criteria are imposed on the sum of 

relative differences between the four function values involved at any step of 

the golden section search and on the interval size of the current search region. 

A maximum number of golden section iterations is also specified as input data. 
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4. EXAMPLE APPLICATIONS OF ACCESS 1 

4.1 Introduction 

In this chapter detailed results are presented for a substantial 

collection of sample problems. Unless otherwise noted, these designs have 

been generated by using a single precision NEWUMT version of ACCESS 1 on the 

IBM 360/91 at UCLA. The truss examples presented in Section 4.2 are followed 

by results for several applications of ACCESS 1 to idealized wing structural 

configurations given in Section 4.3. The truss examples are separated out 

because they can be readily compared with previously reported results. In this 

regard truss structures offer an important advantage, since differences due to 

idealization and modeling details can be virtually eliminated. On the other 

hand, results for idealized wing structures, such as those given in Section 4.3, 

are easily influenced by differences in the finite element modeling. The wing 

box beam results presented in Section 4.3.1 are influenced by the shear web 

modeling employed. The swept-wing examples in Section 4.3.2 offer a comparison 

between optimum designs obtained by omitting and including spar cap bars in the 

idealization. The delta-wing examples in Section 4.3.3 illustrate the influence, 

on the minimum weight design attainable, of refining the design variable 

modeling (i.e., reducing the amount of design variable linking, hence increas- 

ing the number of independent design variables). 

4.2 Truss Structures 

There exists today a more or less standard set of truss problems for 

which solutions are available in the literature. In particular the planar 

ten bar truss problem, the 25 bar space truss problem, and the 72-bar 

space truss problems were set forth in Ref. 31. Solutions for these three 
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problems have also been given in Refs. 32, 34 and 72. In Ref. .83 the ten-bar; 

truss problem is used to illustrate how the stress-ratio method, which seeks 

a fully-stressed design, can produce poor solutions for structures made up of 

members with markedly different allowable stresses. A truss idealization for 

the wing-carry-through-box of a heavy, swing-wing aircraft is also given in 

Ref. 83. This 63-bar truss problem is stated in detail in Ref. 83 and 

"competitive solutions by other methods" are invited. In Section 4.2.4 

solutions obtained by ACCESS 1 are offered and compared with those given in 

Ref. 83. 

4.2.1 Planar Ten-Bar Truss (Problems 1-4) 

In this section attention is focused on the planar ten bar cantilever 

truss shown in Fig. 10. The nodal coordinates describing the configuration 

are listed in Table 13. The truss element descriptions including initial 

cross sectional area, minimum member size, configuration group number, and 

nodal connectivity are listed in Table 14. Note that only lower limit side 

constraints (A:) = 0.100 in2) are imposed on the member sizes and no design 

variable linking is specified. Therefore this design problem has ten inde- 

pendent design variables. The displacements at nodes 5 and 6 are set to 

zerqand it is then apparent that this planar problem involves eight independ- 

ent displacement degrees of freedom. The displacement boundary conditions are 

specified in Table 15. 

4.2.1.1 Stress limits only, single load conditions (Problems 1 and 2) 

In this subsection five example problems are discussed. The first 

four problems involve the previously described ten-bar truss subject to a 

single load condition consisting of 100 kip downward loads applied at nodes 

4 and 2 (see Table 16). The truss element material properties for the first 
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of these four problems (Problem 1A) are given in Table 17. The subsequent 

set of three problems (Problems lB, 1C and 1D) are the same as Problem 1A in 

all respects except that the allowable stresses in member 9 are modified to 

be +30 ksi, f50 ksi and 570 ksi, respectively. Results obtained using ACCESS 

1 for Problem lA, lB, 1C and 1D are shown in Table 18 and they are essentially 

the same as the results obtained for this set of problems using the program 

reported in Ref. .72. As noted in Ref. 83 the results for Problems IA and lB 

can be duplicated using a fully-stressed design approach, while those. for 

Problems 1C and 1D cannot. In Table 19 a comparison of the minimum weights 

achieved and the number of analyses required by three different optimum design 

.methods is offered. 

Examination of Table 19 indicates that the fully stressed design method 

fails on Problems 1C and 1D. It is also apparent that the ACCESS 1 results 

agree with those obtained using the method of inscribed.hyperspheres (MIB) 

program reported in Ref. 72. The ACCESS 1 program is seen to be competitive. 

and effective in obtaining correct solutions for this interesting set of 

stress limited single-load-condition problems. The set of active constraints 

for the final design given here for Problem 1A (see Table 18) includes 

minimum size constraints on members 2, 5, 6 and 10 as well as stress con- 

straints in members 1, 3, 4, 7, 8 and 9. Note that the total number of 

critical constraints is equal to the number of independent design variables 

and each member is either stress critical or minimum size critical. For 

Problem IB the set of active constraints is the same as that given above for 

.Problem 1A except that the stress in member 10 is almost critical (i.e. 

%o = -29,870). Examining the results in Table 18 reveals that the final 

designs obtained by ACCESS 1 for Problem 1C and 1D are identical. Furthermore, 

the set of active constraints does not involve either stress or minimum size 
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criticality of member 9. Indeed, since the stress constraint in-member 9 is 

not critical at the final design obtained for Problem lC, it follows that 

increasing the allowable stress for member 9 (e.g., from +50,000 to +70,000 

lb/in2) should‘ not influence the optimum design. The set of active con- 

straints for the final design given for Problems 1C and 1D includes minimum 

size constraints on members 2, 5 and 6 as well as critical stress constraints 

in members 1,2,3,4,6,7,8 and 10. Note that the number of critical constraints 

is eleven, exceeding the number of independent design variables by one. It 

may be observed that in the final design for Problems 1C and 1D members 2 

and 6 are fully stressed minimum size members while member 10 is fully 

stressed and as small as it can be consistent with equilibrium at node 1 

(see Fig. 7). The results obtained by ACCESS 1 for Problems 1C and 1D 

recognize that members 6, 2 and 10 represent a less efficient load path than 

members 4 and 9 for transmitting the load applied at node 2 toward the 

supports. However, since the minimum size constraints prevent the elimination 

of members 2, 6 and 10 they are made as small as possible and fully stressed. 

It is interesting to note that solutions for this set of problems with 

the minimum size constraints removed (i.e., Ai 2 0.1 changed to Ai? 0) can 

be readily obtained using the lower bound formulation given in Ref. 84. The 

method reported in Ref. 84 was used to obtain results from Problems lA', lB', 

1C' and 1D' (i.e., Problems lA, lB, 1C and 1D with the minimum member size 

constraints removed). These results are given in Table 20 and they represent a 

set of four stable, statically determinant, fully-stressed designs with members 

2, 5, 6 and 10 deleted. Comparing the results in Tables 18 and 20, it may be 

observed that as the allowable stress in member 9 is increased, the weight 

penalty associated with not being allowed to delete members increases. 
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A second stress-limited, single-load-condftion example is now considered. 

This example, denoted Problem 2, .is the same as Problem 1A except for the fact 

that a different loading condition is specified. Problem 2 is the ten bar planar 

truss depicted in Fig.10 subject to the loading condition specified in Table 

21with allowable stress limits for all members given as +25,000 lb/in2 and 

0.4 minimum size limits set at Ai = 0.100 in2. Results obtained using both the 

CONMIN and the NEWSIJMT versions of ACCESS 1 are shown in Table 22 along with 

the results reported for this problem in Refs. 31 and 72. The active con- 

straints at the minimum-weight design are minimum member size for members 

2, 5 and 10 while stress constraints are critical in members 1,3,4,6,7,8, and 

9. Examination of Table 22 confirms that all four results. are essentially the 

same for Problem 2. Note that while the CONMIN version of ACCESS 1 converges 

after only nine analyses, the final weight is 0.2% above the minimum weight, 

due to the fact that minimum size has not been achieved in members 2 and 10. 

It may also be observed that the number of analyses required to obtain the 

minimum weight using the NRWSUMT version of ACCESS 1 is the same as the number 

of analyses required to achieve this using the energy ratio recursive redesign 

procedure of Ref. 31. This may be viewed as particularly significant, since 

the energy ratio method is ideally suited to single load condition stress 

limited problems (with all members having the same allowable stress), while 

ACCESS 1 represents the .implementation of a fundamentally more general 

approach. 

4.2.1.2 Stress and displacement limits, single load condition (Problems 3 and 4) ~_ ~~ _ 

In this subsection two example problems involving the ten bar planar 

truss (see Fig. 10) under single loading conditions, but subject to stress, 

displacement and minimum member size constraints, are discussed. The first of 
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these two examples will be designated herein as Problem 3 and it is in fact 
:, 

the same as Problem 1A (see Section 4.2.1.1) except for the addition of 

vertical displacement limits equal to +2.0 inches at nodes 1 through 4 (see 

Fig. 10 and Table 23).. In summary, Problem 3 involves the ten bar planar 

truss of Fig. 10 under the single loading condition given in Table 16, sub- 

ject to the stress, displacement and minimum member limitations specified 

in Tables 17, 23 and 14, respectively (i.e., +25,000 lbs/in2, k2.0 inches, 

and 0.100 in2). Results obtained using the NEWSlJMI and CONMIN versions of 

ACCESS 1 are shown in Table 24 along with results reported in Refs. 72, 31, 

and 34. 

For the designs obtained with ACCESS 1 and the design given in Ref. 72 

the active constraints are the downward vertical deflections at nodes 1 and 

2 as well as minimum member size constraints for members with cross sectional 

areas approaching 0.100 in2 (i.e., members 2, 5 and 6 and 10). Examination 

of Table 24 reveals that while there are some small differences in material 

distribution all six results yield final weights that differ by less than 

0.72%. It may also be observed that the number of analyses required to 

obtain a near optimum final design, using the NEWSUMT and CONMIN versions of 

ACCESS 1, is smaller than.the number of analyses required to achieve comparable 

weights using the methods reported in Refs. 72, 31, and 34. 

Iteration histories for the solutions given in Table 24 are presented 

in Table 25, and several histories are plotted in Fig. 11. Of the six iteration 

histories given in Table 25 the ACCESS 1 CONMIN history exhibits the strongest 

convergence and the ACCESS 1 NEWSUMI (Double Precision) history achieves the 

lowest weight. It should be noted that this problem has recently been 

studied further using various recursive redesign procedures based on stress 
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ratio and optimality criteria concepts (see Ref. 83). Since complete results 

including iteration histories are given in Ref. 83, it will suffice here to 

simply enumerate the final weights achieved and the number of analyses needed. 

Applying various recursive redesign procedures the following results for Problem 

3 are reported in Ref. 83: namely 5112.13 lbs. in 18 analyses; 5192.57 lbs. in 

24 analyses; 5092.19 in 40 analyses; 5409.52 lbs. in 23 analyses; 5064.27 lbs. in 

37 analyses; 5063.99 lbs. in 46 analyses; 5077.40 lbs. in 21 analyses; and 

5061.86 lbs. in 28 analyses. It is significant that the single precision NEWSUMI 

version of ACCESS 1 obtains a design that is within 1% of the lowest weight 

reported for this problem in only nine analyses. Furthermore, after twelve analyses 

the double precision NEWSUMI version of ACCESS 1 obtains a design that is within 

0.3% of the lowest weight reported in Ref. 83. 

The second example problem presented in this subsection will be 

designated as Problem 4 and it is the same as Problem 2 (see Section 4.2.1.1) 

except for the addition of vertical displacement limits equal to f2.0 inches 

at nodes 1 through 4 (see Fig. 10 and Table 23). In summary, Problem 4 deals 

with the ten bar planar truss shown in Fig. 10, subject to the single loading 

condition specified in Table 21, with the stress, displacement and minimum 

member limitations stipulated in Tables 17, 23 and 14, respectively (i.e., 

f25,OOO lbs/in2; 22.0 inches, and 0.100 in2). Design optimization results 

obtained for Problem 4 using the NEWSTJMI and CONMLN versions of ACCESS 1 are 

presented in Table 26 along with results reported in Refs. 72 and 31. This 

problem is not dealt with in either Ref. 34 or Ref. 83. 

For the designs obtained with ACCESS 1 and the design given in Ref. 72 

the active constraints are the downward vertical deflection at node 2, 

tension stress constraints in members 5 and 6, as well as minimum member size 

constraints for members 2, 5 and 10. Examination of Table 26 reveals that all 
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three results obtained using various versions of ACCESS 1 are essentially the 

same. The material distributions found in Refs. 72 and 31 differ somewhat 

from that obtained using ACCESS 1. Note that the NEWSlJMT~version of ACCESS 1 

obtains a final design weighing 4677 lbs in eleven analyses while the final 

result given in Ref. 31has.a weight of 4895.6 lbs after thirteen analyses. 

This result is 4.6% heavier than the lowest weight achieved-using the NEWSUMT 

version of ACCESS 1. The CONMIN version of ACCESS 1 converges in nine analyses 

to a design that is 0.15% heavier than the lowest weight NEWSUMT design reported. 

The method of inscribed hyperspheres algorithm, used in Ref. 72, converges in 23 

analyses to a design that is 0.32% heavier than the best, weight obtained. It 

should be noted that the method reported in Ref.' 72 represented a significant 

advance in efficiency over previously reported optimum design capabilities, 

based on combining finite element structural analysis and mathematical 

programming techniques. Nevertheless, it is apparent from the iteration his- 

tory data presented herein (see Tables 25 and 27 as well-as Figs. 11 and 12) 

that significant further efficiency improvement has been achieved during the 

development of ACCESS 1. 

Iteration histories for the solutions given in Table 26 are presented 

in Table 27 and four of these histories are plotted in Fig. 12. Of the five 

histories given in Table 27 the ACCESS 1 CONMIN history exhibits the most rapid 

weight reduction while the ACCESS 1 NEWSUMI history achieves the lowest weight 

design. It is significant that all three ACCESS 1 solutions achieve a weight 

within 1% of the lowest weight reported for Problem 4 after only seven 

analyses. 

Before closing this subsection it may be useful to explain why in Tables 

24 and 26 the number of analyses needed is always one greater than the final 
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number of analyses indicated in the iteration histories (see Tables 25 and 27 

or Figs. 11 and 12). The reason for this is that for all of the methods shown 

an extra analysis is always executed to insure that the final design given 

is acceptable. Whenever the extra analysis indicates any slight constraint 

violation, the final design is scaled up so that the results presented are 

always feasible. Finally, it may be noted that the slight weight increase on 

the CONMIN iteration history in Fig. 9 is due to a design scale up, which 

occured when it was discovered that the design obtained using the 5th approxi- 

mate problem statement was infeasible.with respect to the actual constraints. 

4.2.2 Twenty-Five-Rar Space Truss (Problem 5) 

Attention is now directed to the 25-bar space truss shown in Fig. 13. 

Special attention is called to the fact that member 1 joining nodes 1 and 2 

is parallel to the x axis, since the drawings in Refs. 72, 31 and 34 are 

ambiguous. The nodal coordinates describing the layout of this much studied 

example problem are listed in Table 28. Herein, it will be assumed that this 

structure is to be symmetric with respect to both the x-z and the y-z planes 

in Fig. 13. This same assumption is made in Refs. 72 and 34. In Ref. 31 

these symmetry conditions are not imposed, but the structure is subject to 

a set of six loading conditions that are reflections and rotations of the 

two load conditions used here (and in Refs. 72 and 34), such that the problems 

are equivalent. It may be noted in passing, that when all members are assumed 

to have the same initial size the designs generated at each iteration in Ref. 

31, considering six load conditions, will be symmetric with respect to the 

x-z and the y-z planes in Fig. 13. The truss element descriptors including 

design variable linking group number, initial cross sectional area (Ai (0) = 2.0 

CL) in2), minimum member size (Ai = 0.01 in2), configuration group number, and 
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and nodal connectivity are listed in Table 29. The side constraint code -1 

in Table 29'indicates that only lover limit side constraints are imposed on 

OJ) member. sizes and therefore no upper. limit areas (Ai ) are given. It is 

observed that this example, which will be designated as Problem 5,.has eight 

independent design variables after linking in order to impose symmetry. The 

displacements at nodes 7,8,9 and 10 are set to zero and it then becomes 

apparent that the displacement method analysis of this space truss involves 

eighteen independent displacement degrees of freedom. The displacement 

boundary conditions are specified in Table 30, where +l denotes a fixed 

boundary condition. The two distinct loading conditions applied in Problem 5 

are stipulated in Table 31. The material properties for each configuration 

group are given in Table 32. These include allowable stresses in tension 

2 (+40,000 lb/in ) and compression (see Table 32) as well as the specific 

weight (0.1 lb/in3) and the modulus of elasticity (10 x lo6 lb/in2). In 

addition to the stress and minimum size constraints, displacement limits of 

kO.35 inches are imposed on nodes 1 through 6 in the x, y and z directions. In 

any event, Problem 5 has been stated here so that it is identical with the 

problem treated in Refs. 34 and 72. In summary, Problem 5 deals with the 25-bar 

space truss of Fig. 13 under the two distinct load conditions given in Table 31, 

subject to the stress and minimum member size limitations specified in Tables 

32 and 29, respectively, as well as displacement limits of +0.35 inches on nodes 

1 through 6 in the x, y and z directions. 

The allowable compressive stresses given in Table 32 are identical 

with those given in Ref. 34 (Table III p. 62) and subsequently used in Ref. 

721for comparison purposes. It should be noted that the allowable compression 
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stresses used in Ref. 31 are the same as those given in Table 32 except that 

OJ for configuration groups four and five oR = -2200 lb/in2 while in configur- 

02 ation groups six and seven oR = -6016 lb/in2. It turns out that these 

discrepencies in the allowable compressive stresses-used have only a small 

effect on the final designs obtained. This is due to the fact that the members 

(10, 11, 12 and 13) in configuration groups 4 and 5 are lightly loaded while 

the differences in the allowable compressive stresses used for the members in 

configuration groups 6 and 7 are not very large. It may be noted that a 

consistent set of compressive stress allowables can be calculated by adopting 

the procedure suggested on p. 73 of Ref. 21. Using the Euler buckling formula 

and assuming thin walled tubular members, with a maximum mean radius of two 

inches, leads to the following formula for the allowable compressive stress 

n2ER2 7r2 x lo7 x 22 (J =-- =- 
cr 2R2 2R2 

. (4.1) 

Substituting the appropriate member lengths into Eq. (4.1) yields the allow- 

able compressive stresses given in Table 32, except that the entries for con- 

figuration groups 6 and 7 would be changed to -6016 lb/in2. If this change 

were made, configuration groups 6 and 7 would coalesce. Examination of Table 

32 also reveals that configuration groups 1, 4 and 5 could be combined into 

a single configuration group. 

Results obtained for Problem 5 using the NWJSUMT and CONMIN versions of 

ACCESS 1 are shown in Table 33 along with results reported in Refs. 72, 31 and 

34. For the designs obtained with ACCESS 1 and the design given in Ref. 72 the 

active constraints are the y components of displacement at nodes 1 and 2 under 

both load conditions as well as the compressive stress in member 20 under load 

condition 2. All five final designs shown in Table 33 are nearly the same. 

The CONMIN result has a weight that is 0.61% higher than the lowest weight 

achieved, due primarily to the fact that the membersein configuration groups 

1, 4 and 5 have not fully converged to minimum size. 
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Iteration histories for the final designs given in Table 33 are listed 

in Table 34 and shown graphically in Fig. 14. In this instance the iteration 

history of Ref. 34 exhibits the most rapid weight reduction while ACCESS 

l-NRWSUMI finds a design that is within 0.5% of the minimum weight design 

after only five analyses. Figure 14 reveals that the ACCESS 1 iteration 

histories are competitive with those obtained using recursive redesign pro- 

cedures based on stress ratio and optimality criteria concepts (see Refs. 31 

and 34). If attention is restricted to previously reported results based on. 

combining finite element structural analysis with mathematical programming 

techniques, the efficiency gains that have been achieved with the introduction 

of approximation concepts, are seen to be dramatic. Specifically, for 

Problem 5 a weight of 552.9 pounds after 85 analyses was achieved using the 

program discussed in Ref. 23 (1971), a weight of 545.22 pounds after 14 

analyses was reported in Ref. 72 (1974), while with ACCESS l-NETJSlJMl it has 

been possible to obtain a weight of 545.39 pounds after 7 analyses. 

4.2.3 Seventy-Two-Bar Space Truss (Problem 6) 

In this section consideration is given to the 72-bar space truss ' 

shown in Fig. 15. The nodal coordinates describing the layout of this 

well studied example problem are specified in Table '35. The truss element 

descriptors including design variable linking group number, initial cross 

sectional area (A(') CL) 
i 

= 1.0 in2), minimum member size (Ai = 0.1 in2), 

configuration group number, and nodal connectivity are listed in Table 36. 

It is observed that this example, which will be designated as Problem 6, has 

sixteen independent design variables after linking. It is also interesting 

to note that this structure involves only four independent configuration group 

numbers, since all members are to have the same material properties and there 
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are only four distinct bar lengths. Therefore, Problem 6 as stated in Table 

36, will require storage of only four local stiffness matrices (see Section 

3.3.4). It should be noted that truss members can only be treated as bslonging 

to the same configuration group when both their lnngth and material properties 

are identical. The displacements at nodes 17,18,19 and 20 are set to zero and 

it is then apparent that the displacement method analysis of the truss depicted 

in Fig. 12 involves 64 indpendent displacement degrees of freedom. The dis- 

placement boundary conditions are specified in Table 37, where +1 denotes 

a fixed boundary condition. The two distinct loading conditions applied in 

Problem 6 are specified in Table 38. The material properties for each 

configuration group (a) are given in Table 39. These include the allowable 

stresses in tension and compression (+- 25,000 lb/in2) , the specific weight 

(0.1 lb/in3), and the modulus of elasticity (10 X lo6 lb/in2). In addition to 

the stress and minimum size constraints, displacement limits of kO.25 inches 

are imposed on nodes 1 through 16 in the x,y and z directions. 

Results for Problem 6, obtained using the NEWSUMI and CONKILN versions 

of ACCESS 1 are presented in Table 40 along with results reported in Refs. 

72, 31, 34 and 83. For the designs obtained with ACCESS 1 the critical con- 

straints are the compressive stress in members 1 through 4 under load condition 

two, the x and y displacements of node 1 under load condition 1 and the 

minimum member size requirements for the members of linking groups 7, 8, 11, 

12, 15 and 16. Note that the members in planes parallel to the x-y base 

plane (see Fig. 15) become minimum size members, except for those in the top 

level plane. The final designs .obtained using the NEWSUMI and CONMIN versions 

of ACCESS 1 are nearly the same while the previously reported material 

i distributions differ somewhat from one another. The final designs reported in 

, Refs. 72 and 34 exceed the lowest weight obtained with ACCESS 1 by 2.37% and 
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4.31%, respectively. It is also apparent that the weight and material distri- 

bution reported in Ref. 83 are almost the same as those obtained with ACCJZSS 1. 

Iteration histories for the final designs aven in Table 4Q are listed 

in Table 41 and shown graphically in Fig. 16. The ACCESS l- CoNMIX history 

and that reported in Ref. 83 exhibit rapid weLght reduction in the first 

three iterations. It should be noted that the short iteration history reported 

in Ref. 83 was obtained by imposing small tolerances on the.permfssible 

weight increase. This type of convergence criteria would appear to implicitly 

assume that as soon as the method of Ref. 83 produces a weight increase 

further net weight reduction can not be achieved by continued iteration. On 

balance, it is clear from Table 41 and Fig. 16 that both the NEWSIJMI and 

CONMIN versions of ACCESS 1 are competFtive (measured in terms of the number of 

analyses needed to converge) with the automated redesign methods reported in 

Refs. 31, 34 and 83. 

4.2.4 Truss Idealization of Wing-Carry-Through Structure (Problem 7) 

The example problem treated in this section, designated Problem 7 

herein, was set forth in Ref. 83. The system considered represents a highly 

idealized truss element modeling (see Fig. 17) of the wing-carry-through box 

for a heavy, swing-wing aircraft. According to Ref. 83, "the loads are derived 

from a 2g condition of a half million pounds aircraft and from two assumed 

wing positions." Quoting further from Ref. 83, "The idealization is kept over- 

simplified to reduce the number of variables to a level that invites competitive 

solutions by other methods. Only bars are used in the modeling for the same 

reason. In any other candidate modeling there would be elements, e.g. shear 

panels, that are not unique in every program and the differences in the force 

displacement behavior would be aggravated during sizing iterations clouding 
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comparisons." In what follows the problem statement given in Ref. 83 is 

repeated for completeness, the invitation extended in Ref. 83 is accepted, 

and competitive solutions obtained with the ACCESS 1 program are presented 

and compared with those given in Ref. 83. 

The truss idealization of the wing-carry-through structure shown sche- 

matically in Fig. 14 employs 63 truss elements and since design variable link- 

ing was not used in Ref. 83, the problem involves 63 independent design vari- 

ables. The nodal coordinates describing the layout of this truss structure 

are specified in Table 42. The truss element descriptors including design 

variable linking group number (same as member number in this instance), 

(0) initial cross sectional area (Ai = 20.0 in2), minimum member size (Ai CL)= 0.01 

in2), configuration group number, and nodal connectivity are listed in Table 

43. The displacement at nodes 15, 16, 17, and 18 are set to zero and it is 

then apparent that the displacement method analysis of this 63 bar truss 

involves 42 independent displacement degrees of freedom. The displacement 

boundary conditions are specified in Table 44, where +1 denotes a fixed boundary 

condition. The two independent loading conditions applied in Problem 7 are 

specified in Table 45. The material properties (titanium alloy) are the same 

for all members. They include the allowable stresses in tension and compression 

(+lOO,OOO lb/in2), the specific weight (0.16 lb/in3), and the modulus of 

elasticity (16 X lo6 lb/in2). The problem as stated was solved first without 

displacement constraints of any kind (i.e., Problem 7A Stress Constraints Only). 

Then the same problem was posed, except that the relative displacement of nodes 

1 and 2 in the x direction (a measure of the rotation of the line l-2 about a 

y axis in Fig. 14) was limited to 1.0 inch. Problem 7A with the addition of the 

foregoing relative displacement constraint is designated as Problem 7B. It 

should be noted that minor special modification of the standard ACCESS 1 pro- 

gram was required in order to handle the relative displacement constraint. 
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Results for Problems 7A and 7B obtained using the NEWSUMT version of . 

I ACCESS 1 are presented in Table 46 along with those reported in Ref. 83, Note 
/ 

that Problems 7A and 7B have been run twice using different control parameter 

values in the NEWSTJMT version of ACCESS 1. In Table 46 the notation 0.5 x 2 

indicates that the cut factor ca (see Eq.. (3.65), Section 3.3.7.2) between 

unconstrained minimizations is set equal to 0.5 while 2 unconstrained minimiza- 

tions are to be executed before updating the approximate problem statement. It 

is apparent from the results in Table 46 and the iteration history data given in 

Table 47 that the NEWSUMT version of ACCESS 1 converges more rapidly but to 

slightly higher weights when the control parameters are 0.05 X 1 rather than 

0.5 x 2. At the final design obtained for Problem 7A, using ACCESS 1 NEWSIJMT 

(0.5 x 2), there are fifty six critical constraints, namely: minimum member 

size for 19, 20, 60, 61 and 62; tension stress load condition 1 for members 2, 

4, 6, 8, 10, 12, 14, 16, 17, 23, 28, 29, 52, and 56; tension stress load condi- 

tion 2 for members 27, 31, 32, 35, 36, 39, 40, 43, 44, 47, 48, and 55; compres- 

sion stress load condition 1 for members 1, 3, 5, 7, 9, 11, 13, 15, 18, 24, 25, 

50, and 51; and compression stress load condition 2 for members 26, 30, 33, 34, 

37, 38, 41, 42, 45, 46, 49, and 54. The members that are not critical with 

respect to either minimum size or stress constraints are 22, 29, 53, 57, 58, 59 

and 63. At the final design obtained for Problem 7A using ACCESS 1 NEWSUMI 

(0.05) x l), the critical constraints follow substantially the same trend except 

for the following. Minimum member sizes for 20, 60, 61, 62 and stress con- 

straints on 21, 25, 27, 31, 37, 38 and 39 are no longer critical and the member 

29 becomes critical in tension for load condition 1. At the final design 

obtained for Problem 7B, using ACCESS 1 NEWSUMT (0.5 X 2), there are thirty 

three critical constraints, namely: relative displacement of nodes 1 and 2 in 

the x direction under load condition 2; minimum member size for 19, 20, 23, 24, 
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25, 29, 60, 61 and 62; tension stress load condition 1 for members 2, 4, 6, 8, 

10, 12, 14, 16, 17, 21, 28 and 29; and compression stress load condition 1 for 

members 1, 3, 5, 7, 9, 11, 13, 15, 18, 50 and 51. At the final design obtained 

for Problem 7B using ACCESS 1 NEWSUMI (.05 X l), the critical constraints. 

follow essentially the same trend, except minimum size constraints on members 

24, 25, 29, 60, 61 and 62, tensile stress constraints on members 21, 29, and 

compressive stress constraints on members 9 and 50 are no longer critical. It 

is interesting to note that for Problem 7B none of the members are found to be 

stress critical under load condition 2. 

Iteration histories for the ACCESS 1 solutions of Problems 7A and 7B, 

and those reported in Ref. 83 are given numerically in Table 47 and presented 

graphically in Fig. 18. For Problems 7A and 7B it is seen that the ACCESS 1 

NEWSUMI (.05 X 1) runs first achieve a lower weight than the method of Ref. 83 

after 3 analyses. After eight analyses these two ACCESS 1 runs converge to 

weights that are 5.2% and 3.7% lighter than the weights reported in Ref. 83 

after eight analyses. The final weights for Problems 7A and 7B reported in 

Ref. 83 after 50 analyses are still slightly higher than the best result 

obtained using ACCESS 1. It is also observed that the iteration histories 

obtained for Problems 7A and 7B using ACCESS 1 NEWSUMT (.5 X 2) exhibit some- 

what slower convergence than those generated using the (.05 X 1) control 

parameter setting. Using the (.5 X 2) control parameter setting, the ACCESS 

1 NEWSUMT runs for Problems 7A and 7B converge after 14 analyses to designs 

that are only slightly lighter than those obtained with the (0.05 X 1) para- 

meter setting. The iteration history data given in Table 47 and plotted in 

Fig. 18 demonstrates that for this 63 design variable problem ACCESS 1 is 

competitive (measured in terms of the number of analyses needed to converge) 

with the automated redesign methods applied to this problem'in Ref. 83. It is 
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perhaps noteworthy that imposing small tolerances on the permissable weight 

increase (the convergence criteria used in Ref. 83 on the 72 bar truss problem) 

would lead to premature termination in Problems 7A (i.e., after 8 analyses 

with W7 - 5255 lbs) and in Problbm 7B (i.e., after 4 analyses with W3 = 6884 lbs). 
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4.3 Idealized Wing Structures 

In the previous section of this chapter it has been shown that ACCESS 

1 offers a reliable and efficient means of obtaining minimum-weight designs 

for truss structures subject to static loadings with stress, displacement, and 

minimum size constraints. Attention is now focused on some idealized wing 

structures where the finite element model includes constant strain triangular 

(CST) elements and symmetric shear panel (SSP) elements. The first example 

problem to be discussed herein is a simple, 18 element wing box problem for 

which results have been previously reported in Refs. 34 and 21. The second 

example treated is an idealized representation of a swept wing subject to two 

distinct load conditions. This example is treated using CST elements to 

represent the wing skins, SSP elements for the shear webs, and TRUSS elements 

for the spar caps. The swept wing problem is initially studied omitting the 

spar caps. Subsequently leading and trailing edge spar caps are included. The 

third and final example problem involves an idealized thin delta wing, similar 

to the titanium alloy wing considered in Refs. 53 and 55. The upper half of 

this midsurface-symmetric wing is modeled using CST elements to represent the 

skin and SSP elements for the shear webs. The wing is subject to a single 

load condition and stress, displacement and minimum gage constraints are 

included. Using the delta-wing example, the influence of changing.the number 

of independent design variables on the minimum weight achieved is explored. 

4.3.1 Eighteen Element Wing Box Beam (Problem 8) 

Consider the idealized wing box beam shown in Fig. 2 that has been 

previously studied in Refs. 21 and 34. This example was also used to illustrate 

the data input requirements of of ACCESS-l in Section 3.3.3 of this report. 

The structure is symmetric with respect to the x-y plane which corresponds to 
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its middle surface. The upper half of the box beam is idealized using TRUSS, 

CST, and SSP elements. 

4.3.1.1. Detailed Problem Statement 

The nodal coordinates describing the layout of the box beam were given 

previously in Table 2. 

The truss element descriptors including design variable linking group 

number‘ (same as truss member number because truss members are not linked in 

this example), (0) initial cross sectional area (Ai = 0.98 in2) , configuration 

group number, and nodal connectivity were given previously in Table 3. The 

side constraint code -1 in the last column of Table 3 indicates that only 

CL) lower limit side constraints (Ai = 0.10 in2) are imposed on truss member 

w sizes, even though upper limit values (Ai = 2.00 in2) are included in Table 

3 for the illustrative purposes of Section 3.3.3. 

The box beam skin is modeled using five CST elements with appropriate 

linking so that the skin thickness is uniform in each of the two rectangular 

regions (1,2,4,3) and (3,4,6,5) (see Fig. 5). Table 4 specifies the design 

variable linking, the initial thickness (ti ('I = 0.1960 in) , the minimum thick- 

ness (t(L) = 0.020 in), i the configuration number and the nodal connectivity of 

the CST elements for the first of two CST models. An alternative modeling of 

the box beam skin which also employs five CST elements is shown in Fig. 19, 

and the corresponding element descriptors are given in Table 48. The example 

with the CST modeling of Fig. 5 is designated Problem 8A; the example with the 

alternate modeling shown in Fig. 19 is designated Problem 8B. It should be 

noted that in Ref. 21 the box beam skin was modeled using two quadralateral 

(1,2,4,3) and (3,4,6,5) and one triangular element (5,6,7). 
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The SSP element descriptors were previously specified and they are 

given in Table 5. The 18 element wing box example is seen to involve sixteen 

independent design variables; namely 5 for the bars, 3 for the skin and 8 

for the shear webs. Referring to either Fig. 5 or Fig, 19, the displacements 

at nodes 1 and 2 are set to zero and it is apparent that the displacement 

method formulation involves fifteen independent displacement degrees of free- 

dom. The TRUSS, CST and SSP element material properties were given previously 

in Tables 6, 7 and 8, respectively. The displacement boundary conditions 

were specified in Table 9 (nodes 1 and 2 are fixed). The two independent load 

conditions were given in Table 10, namely Pz = +5000 lb at node 7 for load 

condition 1 and Pz = 10,000 lb at node 5 for load condition 2. The displace- 

ment constraints previously given in Table 11 require the z deflection at the 

unsupported nodes to fall between -2 inches and +2 inches. 

4.3.1.2 Results and Discussion 

Results for Problem 8 have been obtained using the NEWSUMI version of 

ACCESS 1 and they are presented in Table 49 along with the results reported 

in Refs. 34 and 21. In Table 49 the first column of ACCESS 1 results (Problem 

8A) is based on the finite element model shown in Fig. 5 (Model 1) while the 

second coluw (Problem 8B) was obtained with the finite element model shown in 

Fig. 19 (Model 2). It is interesting to note that changing the idealization 

of the skin panel produces some moderate changes the final material distribu- 

tion. Nevertheless, comparing the final weights obtained using models 1 and 

2 (see Table 49), it is clear that they differ by less than 0.10%. It should 

be noted that all the weights shown in Tables 49 and 50 include the material 

above and below the x-y plane of symmetry (see Fig. 5 and/or Fig. 19). 

The first two columns of ACCESS 1 results given in Table 49 exhibit 

final design weights that are approximately 3.7% heavier than those reported 
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in Refs. 34 and 21 (see the last two col~rrms of results in Table 49). Examin- 

ing Table 49 it is observed that the thicknesses of the SSP elements 1,2,3 

and 4 (first two columns of ACCESS 1 results) are substantially higher than 

those reported in Refs. 34 and Ref. 21. This difference is attributed to 

the fact that.in Refs. 34 and 21 pure shear webs are used (normal stresses 

ux and ay are assumed zero). Analyses of the final designs reported in Refs. 

34 and 21 using SSP elements for the webs indicates violation of the combined 

stress constraints in SSP elements (i.e. in SSP elements 3,4. and 5 under load 

condition 1 and in SSP elements 1 and 2 under load contion 2). In an effort 

to obtain better agreement with the results reported in Refs.. 34 and 21 a 

special modification of the NEWSUMI version of ACCESS 1 was made, adding a 

midplane-symmetric pure shear element. The third column of ACCESS 1 results 

(Problem 8C) shown in Table 49 (CST Model 1, pure shear webs) was obtained 

using this modified version of the program. It is noted that the weight of 

the final design achieved is approximately 7.7% lighter than the results 

previously reported in Refs. 34 and 21. The material distribution obtained 

using the modified version of ACCESS 1, while different from those reported 

in Refs. 34 and 21, exhibits a similar trend particularly in the shear webs. 

The results for Problem 8 summarized in Table 49 point up the fact 

that optimum designs can be rather sensitive to changes in finite element 

idealization. If attention is focused on the three results obtained using 

ACCESS 1 it is seen that changing from CST Model 1 with SSP web elements 

(Problem 8A) to CST Model 1 with pure shear web elements (Problem 8C) produces 

an 11% difference in the minimum weight achieved. On the other hand, changing 

the CST skin modeling from Model 1 (Fig. 5) to Model 2 (Fig. 19), while using 

SSP elements for the webs in both cases, has almost no effect on the minimum 

weight achieved. 
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For the final designs obtained by applying the NEWSUKI version of 

ACCESS 1 to Problem 8 (see Table 49) the critical constraints are now identi- 

fied. The final design obtained using CST Model 1 (see Fig. 5) with SSP 

web elements (Problem 8A) has the following critical constraints: minimum 

member size for TRUSS elements 2,3,5 and SSP elements 6,7; vertical (plus z 

direction in Fig. 5) displacement at node 7 under load condition 1; combined 

stress criteria in CST element number 5 under load condition 1; combined 

stress criteria in SSP elements 3,4,5,8 under load condition 1 and in SSP 

elements 1,2 under load condition 2. The final design obtained using CST 

Model 2 (see Fig. 19) with SSP web elements exhibits a collection of critical 

constraints which is the same as the foregoing set (for the CST Model 1 with 

SSP web elements) except for the addition of one constraint, namely combined 

stress criteria in CST element 4 under load condition 1. The final design 

obtained using CST Model 1 with pure shear web elements has the same minimum 

member size and dispiacement constraints as the two foregoing cases, however 

there are, strictly speaking, only two stress critical elements - namely com- 

bined stress criteria in CST element 2 under load condition 2 and compressive 

stress in TRUSS element 1 under load condition 2. When these three sets of 

critical constraints are qualitatively assessed it is gratifying to find that 

they are physically and intuitively reasonable. 

Iteration histories for the ACCESS 1 (NEWSUMT version} solutions of 

problem 8 and the history reported in Ref. 34 are given numerically in Table 

50 and illustrated graphically in Fig. 20. Iteration history data is not 

given in Ref. 21. However, the total number of analyses required to achieve 

convergence using the program reported in Ref. 21 has been reported in Ref. 

34. The iteration histories for Problems 8A and 8B are rather similar and 

they converge (after 8 and 10 analyses, respectively) to final weights that 

differ by only 0.10%. Although the minimum weight achievable is apparently 
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insensitive to the change made in the cover skin modeling (see Figs. 5 and 

19), it should be noted that the final material distributions found in 

Problems 8A and 8B are somewhat different. 

Turning attention to the iteration history given for Problem 8C (see 

Table 50 and Fig, 20), it is seen that after only three analyses ACCESS 1 has 

achieved a weight that is lower than the best weight found in Ref. 34 after 

fifteen analyses. Since the finite element modeling used for Problem 8C is 

thought to be the same as that used in Ref. 34, the 7.8% difference in the 

minimum weights achieved must be attributed to some other cause. Comparison- 

of the iteration history for Problem 8C with that reported in Ref. 34 indi- 

cates that ACCESS 1 is definitely competitive with the recursive redesign 

methods (based on stress ratio and optimality criteria concepts) used in Ref. 34. 

4.3.2 Swept Wing Example (Problem 9) 

Consider the idealized swept wing structure shown in Fig. 21. The 

structure is taken to be symmetric with respect to the x-y plane which cor- 

responds to the wing middle surface. The upper half of,the swept wing is 

initially modeled using sixty CST elements to represent the skin and seventy 

SSP elements for the vertical webs. This problem, with no spar caps, is run 

starting from two different initial designs. Subsequently twenty TRUSS elements 

are added to represent forward and aft spar caps (see cross sectional view in 

Fig. 21). The swept wing problem, including spar caps, is also run starting 

from two distinct initial designs. Extensive, but plausible, design variable 

linking is employed. The number of independent design variables describing the 

skin, web and spar cap material distributions are 7, 11, and 14, respectively. 

Therefore when the wing is modeled using only CST and SSP elements the problem 
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involves a total of 18 design variables and when the spar caps are added the 

total number of independent design variables increases to 32. The wing is 

subject to two distinct static load conditions. In this example material 

properties-representative of a typical aluminum alloy are used. 

4.3.2.1 Detailed Problem Statement 

The nodal coordinates defining the layout of the idealized structure 

depicted in Fig. 21 are given in Table 51. The truss element descriptors 

including the design variable linking group number, the configuration group 

number, and the nodal connectivity are specified in Table 52. Truss elements 

appear only when spar caps are used. The side constraint code +2 in the last 

a) column of Table 52 indicates that both lower (Al = 0.01 in2) and upper 

(A(') 1 = 1.50 in') limits are to be imposed on the TRUSS member sizes. The 

TRUSS member initial cross-sectional area is taken to be Ai (O) = 0.02 in2. 

The CST element descriptors are listed in Table 53. Note that for 

CL)= the CST elements only minimum thickness limits are specified (i.e., ti 

0.02 in.), which is why the side constraint code is -1 in the last column of 

Table 53. Initial thickness data is also given in Table 53 for two distinct 

starting points in the design space. For initial design I the 24 CST elements 

nearest the wing root are given a thickness of 0.20 inches (i.e., t (0) 
i = 0.20 

inches for 1 = 1,2 ,...,24) while the remaining 36 CST elements are assigned 

a thickness of 0.10 inches (i.e., t (0) 
i = 0.10 inches for i = 25,26,...,60). 

For initial design II all of the CST elements are set equal to 0.30 inches 

(i.e., t (0) 
i = 0.30 inches for i = 1,2,...,60). 

The SSP element descriptors are enumerated in Table 54. Here again 

CL) only minimum thickness limits are stipulated, namely ~~ = 0.02 inches. 
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Initial thicknesses for two distinct starting point designs are specified In 

Table 54. For initial design I all SSP elements are taken to have a thick- 

(0) ness 0.20 inches (i.e., Ti = 0.20 inches for i = 1,2,...,70) while for 

initial design Ii: all SSP element thicknesses are set equal to 0.15 inches 

(1 .e. , Tie) = 0.15 inches 1 = 1,2,...,70). 

The idealized swept wing depicted in Fig. 211s supported at the root 

by setting all displacement components at nod,es 1,2,3 and 4 to zero. These 

displacement boundary conditions are specified in Table 55 using the boundary 

condition code described in Section 3.3.3. When the spar caps are neglected, 

the swept wing is represented by a total of 130 finite elements (60 CST's 

and 70 SSP's). With the addition of 20 TRUSS elements to represent forward 

and aft spar caps, the total number of finite elements involved in the model 

become 150. That is the basis for the 150(130) notation in the tables. Refer- 

ring to Fig. 21 it is apparent that, independent of whether or not spar caps 

are included, the number of displacement degrees of freedom involved in the 

structural analysis is 120. 

The material properties used for all finite elements of all types are 

given in Table 56. The nodal load force components specifying the two 

independent load conditions are listed in Table 57. Note that only the Pz 

components are given since all of the x and y components are taken to be zero 

in both of the two independent loading conditions. Displacement constraints 

are imposed at nodes 41 and 44 only and they require that these two z displace- 

ment components fall between -60 and +60 inches. 

4.3.2.2 Results and Discussion 

Results for Problem 9 have been obtained using the NEWSUMT version of 

ACCESS 1 and they are presented in Table 58. In Table 58 the first two columns 

of results are for the 130 element idealization (without spar caps) starting 
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from initial design I and II, respectively. These first two problems are denoted 

Problems 9A and 9B, respectively. Comparing these two results it is observed 

that the final skin material distributions (see CST elements Table 58) are quite 

similar and they are both represented by a single line in the skin thickness 

plot shown in Fig. 22. On the other hand it is seen (see SSP elements Table 58) 

that the final vertical web thickness distributions locally exhibit some sub- 

stantial differences, particularly in the outboard portion of the wing (see Fig. 

23.which schematically depicts the two web thickness distributions). It is 

noted that the web material accounts for less than 12% of the final wing weight 

in both cases. The differences in the web thickness distributions notwith- 

standing, it is gratifying to see that the final weights achieved (with no 

spar caps starting from initial designs I and II) are essentially the same 

(i.e., they differ by only 0.34%). 

In Table 58 the third and fourth columns of results are for the 150 

element idealization of the swept wing (with spar caps) starting from initial 

designs I and II, respectively. The third and fourth problems are denoted 

Problems 9C and 9D, respectively. Comparing these two results it is observed 

that the final skin material distributions (see CST elements Table 58) are 

quite similar and they are represented by a single line in the skin thickness 

plot shown in Fig. 22. It is seen (see TRUSS and SSP elements Table 58) that 

the spar cap and vertical web material distributions locally exhibit some 

substantial difference. The two vertical web material distributions are shown 

schematically in Fig. 24 and it is again observed that local differences in 

web thickness are more pronounced in the outboard portion of the wing. It is 

observed that the forward spar cap members (TRUSS elements l-10 in Table 58) 

(L) _ are near their minimum size (Ai - 0.01 in2) while the aft spar cap members 

(TRUSS elements 11-20 in Table 58) are larger with the member at the root 

reaching the maximum size A (u) 
i = 1.50 in'. It is noted that the spar cap 
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material accounts for less than 0.5% of the final wing weight while the web 

material accounts for approximately 12.5% of the final wing weight in both 

cases. The local differences in spar cap and web material distributions aside, 

it is satisfying to see that the final weights achieved (with spar caps starting 

from initial designs I and II) are essentially the same (i.e., they differ by 

only 0.40%). 

The results given in Table 58 and in Fig. 22 indicate that the addition 

of the twenty TRUSS elements to represent forward and aft spar caps does not 

have a significant influence on the minimum weight achieved. The skin thickness 

distribution (except for the panel nearest the root, i.e. CST elements 1 through 

6) is not substantially changed by the addition of spar caps. 

For the four final designs obtained by applying the NEWSUMT version of 

ACCESS 1 to Problem 9 (swept wing example) it is found that the set of critical 

constraints is the same. Thus while the material distributions for the four 

final designs (see Table 58) exhibit some local differences, the final weight 

and the critical constraint set are essentially unchanged. The critical con- 

straints are depicted schematically in Fig. 25. The two final designs without 

spar caps have the following critical constraints: minimum member size for 

CST elements 49-60 and SSP elements 5-10, combined stress criteria in CST ele- 

ments 8,14 and 20 under load condition 1; combined stress criteria in SSP 

elements 20,21,30,58 and 61 under load condition 1 and SSP elements 3,42 under 

load condition 2. In Fig. 25 both the critical finite elements and the linked 

design variable regions to which they belong are shown. The two final designs 

with spar caps exhibit the same set of critical constraints with the following 

additions: minimum area for TRUSS members 1,2,5,6,9,10,19 and 20. It is 

noted that none of the tip deflection constraints are found to be critical. 

The maximum tip deflection (approximately 45 inches) occurs at node 44 under 

load condition 1. 
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Since the tip deflection constraints are not critical it is reasonable 

to expect some stress critical elements at the wing root. In this connection 

it is noted that SSP element 21 (rear spar web element adjacent to the root) 

is strictly critical with respect to the combined stress criterion under load 

condition 1 while CST element 4 is nearly critical (~,/a, :: 0.95) under load 

condition 1. Since the SSP elements modeling the web includes bending as well 

as shear stress, it is reasonable to suppose that decreadng the root skin 

panel thickness will cause violation of the combined stress constraint by 

increasing the bending stress in SSP element 21. Furthermore, while increasing 

the thickness of the rear spar web would reduce the shear stress in SSP 

element 21, this would not be effective as a means of reducing the bending 

stress in SSP element 21. Thus it appears that the critical constraints are, 

on balance, physically and intuitively plausible when assessed qualitatively. 

Iteration histories for the ACCESS 1 (NENSIJMI version) solutions of 

Problem 9 (swept wing example) are given numerically in Table 59 and illustrated 

graphically in Fig. 26. For Problem 9A (no spar caps initial design I) 

convergence occurs after 7 analyses and a design weight that is within 0.5% 

of the minimum weight achieved is obtained after only 4 analyses. In Problem 9B 

(no spar caps initial design II) convergence occurs after 7 analyses and a 

design weight within 0.5% of the minimum weight is obtained after 5 analyses. 

In Problem 9C (initial design I with spar caps) the design procedure is 

terminated after 8 analyses. After 4 analyses the design weight is within 0.5% 

of the minimum weight obtained. Finally, for Problem 9D (initial derign II with 

spar caps) convergence occurs after 8 analyses and a design weight within 0.5% 

of the minimum weight achieved is obtained is obtained after 4 analyses. 
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It is emphasized that every wbight, for all the iteration histories 

given in this report, is that of a feasible design. It should also be men- 

tioned that all four swept wing runs (Problems 9A, 9B, 9C, and 9D) terminated 

automatically because the percentage change in the objective function value 

(prior to any scaling up) for two successive stages was less than O.l%, as 

given by the input data. Note that since a' - 2 for this example, each stage 

involves two unconstrained minimizations (in B dimensional space). 

4.3.3 Delta Wing Example (Problem 10) 

Consider the idealized, thin, delta wing structure shown in Fig, 27. 

The structure is assumed to be symmetric with respect to its middle surface 

which corresponds to the x-y plane. The upper half of the wing is modeled 

using 63 CST elements to represent the skin and 70 SSP elements for the verti- 

cal webs. No TRUSS elements are used in the modeling, The wing is subject to 

a single static loading condition, the material properties used are representa- 

tive of those for a typical titanium alloy and deflection constraints are 

specified at all free nodes. Five distinct runs are presented. They are 

denoted Problems lOA-1OE. The runs differ in the design variable linking models 

and in the initial designs. 

4.3.3.1 Detailed Problem Statement 

Various design variable linking models are employed. In the skin, 

three distinct linking arrangements designated I, II, and III leading to 10, 

16, and 28 independent design variables, respectively, are employed (see Fig. 

28). For the webs two alternative linking arrangements designated I and II 

involving 12 and 28 independent design variables, respectively, are employed 

(see Fig. 29). Results for five distinct runs will be presented (see Table 

67). In Problems 10A and 1OC skin linking arrangement II (i.e., 16 variables) 
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and web linking model I (i.e., 12 variables) are adopted. Problem 10A and 1OC 

both involve a total of 28 independent design variables but Problem 10A starts ; 

from initial design II while Problem 1OC starts with initial design I (see 

Tables 61 and 62). In Problem 10B skin linking arrangement I (i.e., 10 vari- 

ables) and web linking model I (i.e., 12 variables) are employed. This 22 

design variable problem is started from initial design I. In Problem 10D skin 

linking arrangement III (i.e., 28 variables) and web linking model I (i.e., 

12 variables) are used. Thus Problem .lOD involves 40 independent design vari- 

ables and it is started from initial design I. Finally, Problem 10E employs 

skin linking model III (i.e., 28 variables) with web linking arrangement II 

(i.e., 28 variables). Thus Problem lOE, which starts from initial design I, 

involves a total of 56 independent design variables. 

The nodal coordinates defining the layout of the idealized structure 

shown in Fig. 27 are specified in Table 60. The CST element descriptors are 

listed in Table 61. The three distinct skin design variable linking arrange- 

ments shown in Fig. 28 are specified in separate columns of Table 61. Note that 

(L) only minimum thickness limits are specified (i.e., ti = 0.02 in) for the 

CST elements. Furthermore, for initial design I all the CST elements are 

assigned a thickness of 0.10 inches and for initial design II they are set 

equal to 0.15 inches. It is interesting to observe that in this example the 

entire 63 element skin idealization involves only 5 configuration groups. The 

SSP element descriptors are enumerated in Table 62. The two alternative web 

design variable linking arrangements depicted schematically in Fig. 29 are 

stipulated in separate columns of Table 62. Here again only minimum thickness 

(L) limits are specified, namely 'ci = 0.02 inches. Furthermore, for initial 

design I all the SSP element thicknesses are taken equal to 0.15 inches and 

for initial design II they are set equal to 0.12 inches. 
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The idealized delta wing shown in Fig. 27 is supported at the root 

by setting all displacement components at nodes 1 through 9 equal to zero. 

These displacement boundary conditions are specified in Table 63 using the 

boundary condition code described in Section 3.3.3. The remaining 35 nodes 

shown in Fig. 24 produce 105 degrees of freedom. Furthermore, the idealization 

employed involves a total of 133 finite elements (63 CST's and 70 SSP's). The 

material properties used for all finite elements of all types are given in 

Table 65. The nodal load force components specifying the single load condition 

are given in Table 64. Only Ps components are nonzero and the 

given is roughly equivalent to a uniformly distributed load of 

this connection it is noted that the delta wing examples dealt 

roughly similar to those treated in Refs. 53 and 55. 

nodal loading 

144 lbs/ft2. In 

with here are 

Constraints are imposed on the vertical displacement components at 

all free nodes (i.e., 10 through 44). These displacement constraints are 

specified in Table 66 and it should be noted that they form a linear deflec- 

tion constraint envelope varying from 100.8 inches at the wing tip to zero at 

the root. It is important to note that if only tip displacement constraints 

are specified, it is possible that the local displacements of nodes near the 

leading and trailing edges could become excessive (equal or exceed the tip 

deflection). Qualitatively this is attributed to the multiple load paths 

available in a delta wing. They offer the.possibility of keeping the tip 

deflection within limits, while the structure in the neighborhood of the 

leading.and trailing edges becomes rather flimsy, leading to excessive local 

deflections, 

4.3.3.2 Results and Discussion 

Results for Problem 10 have been obtained using the NEWSUMT version of 

ACCESS 1 and they are presented in Table 67. The first and third columns of 



results in Table 67 (Problems 10A and 1OC) are based on skin linking arrangement 

II (16 design variables) and web linking arrangement I (12 design variables). 

!i'hus Problem 10A and 1OC are the same except for the fact that 10A starts 

from initial design I (see Tables 61 and 62). Comparing these two results it 

is seen that both the skin and the web material distributions are almost 

identical to three decimal places. Furthermore, the final design weights 

achieved are identical to four significant figures. 

The second column of results in Tabie 67 (Problem 10B) is based on 

skin linking arrangement I (10 design variables) and web linking arrangement 

I (12 design variables). In Problem 10B starting design I is employed. It 

is observed that reducing the number of independent design variables in the 

skin from 16 to 10 leads to a final design weight increase of less than 0.8%. 

The fourth and fifth columns of results in Table 67 (Problems 10D and 10E 

are based on skin linking arrangement III (28 design variables) with web 

linking arrangement I (12 design variables) used in Problem 10D and web link- 

ing arrangement II (28 design variables) used in Problem 10E. In Problems 10D 

and 10E starting point I is employed. Comparing the final design weight 

achieved in Problem 10D with that obtained in Problems 10A and 1OC it is seen 

the increasing the number of skin design variables from 16 to 28 produces a 

final design weight decrease of approximately 10%. Comparing the final design 

weight achieved in Problem 10E with that obtained in Problem lOD, shows that 

increasing the number of independent design variables in the web model from 

12 to 28 while holding the number of skin design variables constant at 28, 

leads to a further reduction in the final design weight of 1.4%. As antici- 

pated, increasing the number of skin design variables can lead to substantial 

final design weight reductions, while refining the web design variable model 

produces relatively small weight reductions. This was to be expected since 
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for each of the five final designs given in Table 67 the weight of the web 

material is less than 8% of the total weight. 

The influence on skin thickness distribution of gradually refining the 

skin design variable model (from 10 to 16 to 28 variables), while holding the 

web linking arrangement fixed (at 12 design variables), is shown schematically 

in Fig. 30. It is apparent that changing the skin design variable linking 

arrangement can have significant influence on the final skin material distri- 

bution obtained. The influence on the web material distribution of increas- 

ing the number of web design variables from 12 to 28, while holding the skin 

linking arrangement fixed (at 28 variables) is depicted graphically in Fig. 

31. Since much of the web material is minimum gage, it is observed that 

changing the web des%gn variable linking arrangement has a relatively minor 

influence on the final web material distribution obtained. 

It is found that the set of critical constraints at the final designs 

obtained in Problems lOA, B and C is essentially invariant. These critical 

constraints, shown schematically in Fig. 32, are: minimum member size for 

CST elements l-8, 17-20 and 29-32; minimum member size for SSP elements l-22, 

29-38 and 64-70; combined stress criteria in SSP element 39 56, and vertical 

(z) deflection at node 44. These final designs are seen to be stress critical 

at the root, and deflection critical at the wing tip. They also exhibit 

substantial regions of skin and web where the material is minimum gage. 

For Problems 1OD and lOE, where the skin design variable linking 

arrangement involves 28 independent variables, the critical constraints at 

the final design are essentially the same, although they differ slightly from 

the critical set for Problems lOA, 10B and 1OC. The following constraints 

are critical for the designs obtained in both Problem 1OD and 10E: minimum 

member size for CST elements l-8, 17-20, 29-32, 41-42, 49-52; minimum member 
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size for SSP elements l-22, 29-38, and 64-70; combined stress criteria in 

SSP elements 39 and 44; and transverse (z) deflection at node 44. Further-' 

more, in Problem 1OD CST elements 15, 16, 33, 34, 39, 40 become minimum 

member size critical while in Problem 10E combined stress criteria in SSP 

elements 41 and 46 are critical and SSP elements 23-25, 43, 48, 49 and 57-62 

become minimum member size critical. It is observed that the mix of critical 

constraints at the final designs obtained in Problems 1OD and 10E (see Fig. 

33) is only slightly different than that obtained in Problems lOA, B, C; the 

main difference being that a larger portion of the skin reaches minimum gage. 

It is gratifying to note that qualitative assessment of the final material 

distributions (see Figs. 30 and 31), as well as the critical constraint sets 

(see Figs. 32 and 33), indicates that the results are physically plausible 

and intuitively reasonable. 

Iteration histories for the ACCESS 1 (NEWSUMT version) solutions of 

Problem 10 (delta wing example) are given numerically in Table 68 and pre- 

sented graphically in Fig. 34. For Problems lOA, B and C convergence occurs 

after 8 analyses and design weights that are within 1% of the minimum weight 

achieved are obtained after only 4 analyses. Note that the iteration 

histories for Problems 10A and 1OC are very much alike and they appear as a 

single line in Fig. 34. Turning to Problem 10D (which involves a total of 

40 independent design variables) it is seen that convergence occurs after 10 

analyses to a weight that is approximately 10% lighter than that achieved in 

Problems 10A and C. In Problem 1OD a design weight that is within 1% of the 

minimum weight achieved is obtained after 6 analyses and it is seen that 

increasing the number of skin design variables from 16 to 28 produces a 

significant decrease in the final design weight. Finally, in Problem 10E 
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(which involves a total of 56 design variables) convergence occurs after 11 

analyses while a design weight within 0.6% of the minimum weight achieved is 

obtained after 7 analyses. Here it is seen that increasing the number of web 

design variables from 12 to 28 leads to a relatively small weight decrease, 

beyond that already achieved in Problem 10D. 

4.3.4 Additional Data on Example Problems 

In this section additional data on the various examples treated in 

this report are presented. Tabular data pertinent to the swept and delta wing 

examples, previously presented in U.S. customary units, are also given in SI 

units. Furthermore, initial weight and CPU time data are given for all 

examples. 

Results for example Problems 1 through 10 have been presented in U.S. 

customary units. Since example Problems 1 through 8 have been previously 

treated in the literature using U.S. customary units, comparison of the ACCESS 

1 results with these available solutions is facilitated by using the same 

units system. On the other hand, the swept and delta wing examples (Problems 

9 and 10) are new problems for which the results presented herein may become 

a base of comparison. Therefore it is appropriate to include, for the con- 

venience of future investiators , problem statement data and results for the 

swept and delta wing examples in SI units as well as U.S. customary units. 

The swept wing example (Problem 9) was previously discussed in Section 

4.3.2. The detailed problem statement will be found in Tables 51 through 57 

and the results are given in Tables 58 and 59. In Tables 52 through 56 infor- 

mation involving units is given in both U.S. customary and SI units. The nodal 

coordinate and load condition data previously presented in Tables 51 and 57 

respectively (U.S. customary units) are also given in Tables 69 and 70 using 
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SI units. Final designs and iteration history data originally set forth in, 

Tables 58 and 59 respectively (U.S. customary units) are also given in Tables 

71 and 72 using SI units. 

The delta wing example (Problem 10) was previously discussed- in Section 

4.3.3. The detailed problem statement is contained in,Tables 60‘through 66 

and the results are presented in Tables 67 and 68. In Tables. 61 through 65 

information involving unitsis given in both U.S; customary and SI units., ; 

The nodal coordinate and displacement constraint data previously presented in 

Tables 60 and 66 respectively (U.S. customary-units) ,are also given in Tables 

73 and 74 using SI units. Furthermore, the final designs and iteration his- 

tory data originally presented in Tables 67 and 68 respectively (U.S. customary 

units) are also given in Tables 75 and 76 using SI units. 

It should be noted that all of the information presented in Tables 

69 through 76 using SI units was obtained by converting the corresponding data 

expressed in U.S. customary units. While the ACCESS 1 program is in principle, 

independent of the units employed, the entire body of computational experience 

reported herein has been obtained using problem statements given in U.S. 

customary units. 

Initial weight data (for each element type) for all example problems 

is given in Table 77. The information given in Table 77 provides sn input 

data check for other investigators, who may wish to independently undertake 

solution of the example problems used in this report. It should be noted that 

the iteration history tables do not contain total initial weight data because 

they give the weight at the end of each iteration stage. 

All the exsmple problems reported here were executed on the IBM 360/91 

at the UCLA Campus Computing Network using-an object program compiled by the 

FORTRAN H compiler. Total CPU times as well as the CPU times spent in vari- 

ous major segments of the design process are, given in Table 78 (for truss 
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problems discussed in Section 4.2) and Table 79 (for wing problems discussed 

in Section 4.3). This information is presented for completeness. Comparisons 

based on CPU time and run costs are avoided since they are only valid when 

the alternative programs are run on the same installation at nearly the same 

time (assuming a time shared operating environment). 

Examining Tables 78 and 79 it is first observed that the total 

run times are modest. Secondly the distribution of effort between the 

approximate problem generator (APG) and the optimizer portions of the program 

is reasonably well balanced. It should be emphasized that the APG block in 

Fig. 1 includes structural analysis, constraint deletion, and generation of 

explicit approximations. The amount of time spent on gradient computation is 

almost always larger than that spent decomposing the system stiffness matrix, 

however it is certainly not prohibitively large in any of the examples. This 

can be attributed to the use of implicit differentiation, efficient computa- 

tion of the pseudo load vectors Gbk using Eq. (3.43) and the implementation 

of the selective sensitivity concept. It is interesting to note that in the 

optimizer portion of the program approximately l/4 to l/3 of the time is 

consumed by evaluation of the function Qe (p) (cc , ra) [see Eqs. (3.67) and (3.68)]. 

This is attributed to the constraint deletion feature and the fact that both 5 

the objective function W(G) and the contributions to the penalty function 

F:)(z) fsee Eq. (3.68)] are explicit functions of the linked reciprocal design 

variables G . 

In Problem 7 (the 63 bar wing carry through truss) the amount of CPU 

time spent on gradient computations is an order of magnitude higher than the 

amount of CPU times spent on decomposing the system stiffness matrix. This is 

due to the fact that this problem involves a small number of displacement 

degrees of freedom (42) and a relatively large number of independent design 

variables (63). Furthermore'Problem 7 involves a large number of critical 
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stress constraints and therefore the selective sensitivity feature is not 

particularly effective in reducing the number of partial derivatives needed 

to construct explicit approximations. 

In Problems 9 and 10 (the swept and delta wing examples), the amount 

of CPU time spent on gradient computations is of the same order of magnitude 

as the CPU time spent on decomposing the system stiffness matrix. This is attri- 

buted to the.fact that these problems involve more displacement degrees of 

freedom (120 and 105) and relatively small numbers of design variables (ranging 

from 18 to 56). Also, Problems 9 and 10 involve a relatively small number of 

critical stress constraints and therefore the selective sensitivity feature is 

somewhat mOre effective. 

Finally, it should be kept in mind that elapsed CPU time data tends to 

be rather sensitive to the convergence criteria control parameters employed. 

This is illustrated in Fig. 35 by plotting total weight versus elapsed CPU time 

for problem 1OC (the delta wing example with 28 design variables from initial 

design I). The preassigned criterion that automatically terminated example 

1OC was that the percentage change in the objective function value (prior to 

any scaling up) for two successive stages was less than O.l%, leading to the 

reported CPU time of 17.79 seconds. However, if this same diminishing returns 

criterion had been set at 0.5% termination would have occurred after 6 analyses 

giving a elapsed CPU tips of 14.17 seconds and a final design weight that is 

only 0.070% heavier, 
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5. CONCLUSIONS AND RECOMMENDATIONS 

It has been demonstrated that efficient structural synthesis capabilities 

based on combining finite element structural analysis methods and nonlinear 

mathematical prograznning techniques can be generated. The coordinated imple- 

mentation of various approximation concepts has made it possible to achieve 

excellent efficiency while retaindng the philosophically attractive 'generality 

inherent to the mathematical programming formulation of structural design 

optimization problems. 

The ACCESS 1 computer program represents a new type of structural 

analysis/synthesis capability which may be viewed as a pilot program for a 

second generation of general purpose programs based on finite element analysis 

and mathematical programming algorithms. The scope of ACCESS 1 is such that 

it embraces a significant class of structural design optimization problems. 

For structural systems with fixed topology, material and layout - that can be 

idealized using TRUSS, CST and SSP type elements - subject to stress, displace- 

ment and member size constraints in each of several distinct loading conditions, 

the ACCESS 1 program automatically seeks a minimum weight design. 

Based on the ACCESS 1 numerical results presented in this report two 

major conclusions are drawn: 

(1) The innovative use of approximation concepts has produced a 

dramatic reduction in the number of conventional structural 

analyses needed to obtain candidate .optimum designs via the 

combined use of finite element and mathematical programming 

methods. Indeed, the numerical results reported herein 

indicate that ACCESS 1 is usually able to obtain a practical 

near optimum design within 5 to 10 analyses. 
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(2) For structural synthesis problems of modest but useful size, 

approximation concepts have made possible the generation of an 

automated structural design capability, based on finite element 

analysis and mathematical programming algorithms, that is com- 

petitive with recursive redesign techniques based on fully stressed 

design and discretized optimality criteria concepts. 

The basic ideas used in creating the ACCESS 1 program are rather general 

and therefore it may be argued that its successful development supports the 

contention that the introduction of approximation concepts will lead to the 

emergence of a new generation of practical and efficient large scale structural 

synthesis capabilities based on finite element analysis and mathematical 

programming algorithms. While the scope of ACCESS 1 is clearly limited, 

ideas such as: 

(1) design variable linking 

(2) dynamically updated constraint deletion via the regionalization 

and "throw away" concepts; 

(3) construction of high quality explicit approximations for 

constraints retained; 

(4) organization of the finite element structural analysis with 

the design optimization task in mind; 

and 

(5) selective sensitive analysis, where in only those partial'deriva- 

tives needed (to construct explicit approximations pf retained 

constraints) are evaluated; 

have marked promise for application to a much wider range‘of structural 

synthesis problems. Furthermore, the central notion of replacing the mathe- 

matical programming statement of the design optimization problem 'with a 
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sequence of small explicit approximate problems (see Fig. 4), that retain 

the essential features of the primary problem, should be widely applicable 

in structural synthesis. 

Although a substantial body of computational experience is presented 

in this report, it is recommended that the ACCESS 1 computer program be 

further exercised. For example, it is suggested that: 

(1) the possibility of achieving additional gains in efficiency via 

systematic gradual refinement of design variable linking be 

explored; 

(2) a further assessment of the sensitivity of automated optimum 

design results to changes in modeling, loading conditions, 

allowable stresses and deflections be carried out; 

(3) parametric studies be conducted to evaluate the potential 

benefits expected to ensue from ultimately being able to treat 

configuration, material, and topological descriptors as design 

variables rather than as preassigned parameters. 

It is also recommended that the efficiency gains obtained by implement- 

ing approximation concepts to create the ACCESS 1 program be extended to 

problems of significantly larger scale while at the same time introducing 

thermal effects and fiber composite materials. While these extensions 

are relatively straight forward in principle, their implementation will 

require substantial effort. It is anticipated that.maximum problem size can 

be significantly increased by permitting some use of auxiliary storage (n.b. 

ACCESS 1 is an all core storage program). Thermal effects could be included 

by providing for uniform temperature change inputs (independent of the design 

variables) in each type of finite element. Limiting. attention to balanced and 

-symmetric laminates it should be possible to represent fiber composite skins 
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by stacking planform congruent orthotropic CST elements. I.t,would also be .~ 

useful to extend the finite element repetoire of ACCESS 1 (e.g., add pure.shear, .I 
quadraiateral plane stress elements., etc.). 

.; 
In the future, effort should also be directed toward applying approximation 

concepts to develop efficient structural synthesis capabilities that include 

consideration of more complex failure modes. Such capabilities could; for 

example, include consideration of buckling, natural frequency and dynamic 

stability constraints. 

The regionalization and "throwaway" concepts (see Sections 2.4.1 and 

2.4.2 respectively) used in ACCESS 1 are effective but relatively primitive 

methods for identifying and deleting redundant constraints. It is suggested 

that further study may lead'to more refined methods for determining which of 

the many (Q) constraints in the basic problem statement (see Eqs. 2.1 and 2.2) 

are at least temporarily redundant and subject to deletion. Furthermore, the 

insightful selection of response quantities (?) and intermediate variables 

(2) can be expected to generally enhance the quality of explicit approximations 

obtainable (see Section 2.5.3) for a wide variety of constraint functions. 

Efficient solution of large scale practical problems is likely to 

require the use of both design variable linking and basis reduction in design 

space (see Section 2.3.3). Therefore, it is recommended that effort be directed 

toward implementation of the generalized reduced basis concept. It is suggested 

that the reduced basis concept in design space (see Section 2.3.2) opens the 

way to development of hybrid methods of structuraloptimization. These hybrid 

methods are expected to have a major unifying influence leading to the coordi- 

nated use of stress ratio, optimality criteria, lower bound and mathematical 

programming methods in structural optimization. It is the earnest conviction 
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of the l uthore' that approrfution concepts make it possible to create philoeoihi- 

tally mound, practical tid efficient structural synthesis capabilitiee that 

could, by the end of this decade, corn to enjoy a level of professional accepl . . 

tmce comparable to that currently c onmmded by finite element structural 

malymia m&hods. 
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Appendix A 

Finite Elements Employed 

Notation: 

xBY,= : reference coordinate system 
'ii,y;Z? : local coordinate system 

+yl : direction cosines of the local z axis in the reference 
coordinate system 

fi2,m2,n2 : direction cosines of the local7 axis in the reference 
coordinate system 

P,Q,R,S : local node name 
NNN 
u*v,w : displacements in local coordinates 

u,v,w : displacements in reference coordinates 

EX'E *E: YxyZ 
0 dJ ,T x Y 

: 
xy 

A : 

t : 

f : 
a 

E : 

V : 

P : 

L : 

S : 

e-- b" : 

strain components in local coordinate system 

stress components in local coordinate system 

cross sectional area of truss elements 

thickness of CST elements 

thickness of SSP elements 

modulus of elasticity 

Poisson's ratio 

specific weight 

length of truss elements 

surface area of CST or SSP elements 

aspect ratio of SSP.elements 

a : length of SSP elements (see Fig. A3) 

b : base edge length of CST elements (see Fig. A2) 
height of SSP elements (see Fig. A3) 

h : height of CST elements (see Fig. A2) 

8 : location of the point T of CST elements (see Fig A2) 



EC1 
bl 

[Bl 

IDI 

[Al 

: element stiffness matrix in local coord$nates 

: element stiffness matrix in reference coordinates 

: strain-displacement relation matrix 

: stress-strain relation matrix 

: local to reference coordinate transformation matrix 

146 



A.1 Truss Element with Uniform Cross Sectional Area. 

Let the node P be the origin of the local coordinate system. 

Assume displacement state I 

Strain distribution 

Strain displacement relation 

T? E = -- 
X [ ;,+I I I PC 

Q 
LB1 

Displacement transformation law 

I= [:m:n:rl:l:j 

Stress-strain relation 

ox(T) = 

IDI 

Stiffness matrix in the local coordinate system. 

$1 -1 = A 1 BTD B & = A 

E [-l,l]d; 
= 0 % [ 1 -1 1 1 

. 

CA. 1) 

(A. 2) 

(A.31 

(A.41 

CA.51 

(A. 61 
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Stiffness matrix in the reference coordinate system 

[kl = [AIT Gl WI 

AE P- 
L 
I !t2, film1 Rlnl -al %"l -Rlnl 

I 2 ml mlnl --RImI -mZ, - mlnl 

i 

Spill. 

ni -Rlnl 
2 

-mini -5 

c 9% 91 

2 
ml Y"l 

2 
"1 

(A.71 
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AREA 

X 

Figure Al. Truss Element. 



A.2 Constant Strain Triangular Element (CST) 

Assumptions: 

Isotropic materials 

Uniform thickness 

Plane stress state 

Constant strain in the field' 

Displacement state 

~ G,3 

I I 7 <;r,+j+> 

0 ; (b-s)(b-';i)-hy ; 0 1 -s(?-s)-h(h+O ; b'j; 

(A. 8) 

Strain-displacement relation 

0 h 0 0 h 0 

[Bl 

Displacem&t transformation law 

(A.91 

(A.lO) 



% "1 nl 
PI * [ ,I R2 5 n2 0 0:o wj = L 1 0 o:o 

Stress-strain relation-Plane stress state Stress-strain relation-Plane stress state 

/g-f7 [I ; ;] ii\ 

[Dl 

Element stiffness matrix in local coordinate system 

cl = / 
[B]~[D][B] cw = t 

/ 
[BITDl LB1 do 

V S 

El - Gnl + rq1 

r'i;,] = &1+v) h2 (b-s)h -h2 hs 0 

[CJ = Et 
4S(l-v2) 

(b-s)2 v(b-s)h (b-8)s -v(b-s)h 

h2 vhs -h2 

S2 -vhs 

h2 

SF. 

(b-s)2 -(b-s)h (b-s)s 0 

h2 -hs 0 

S2 0 

Sylm'. 0 
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(A.ll) 

(At 12) 

-(b-s)b 0 

-vbh 0 

-bs 0 

vhb 0 

b2 0 

Q 
. 

-bh 

0-1 h 

bh 

-be 

0 

b2 

(A.13j . 

(A.14) 

(A.15) 

I U.16) 

(A.17) 



b = 
x9 - xP 

s = xr - xp 
h = Yr - Yp 
A= ll2bh 

Figure A2. Constant Strain Triangular Element. 
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A.3 Symmetr& Shear Panel Element (SSP) 

When carrying out the finite element analysis of thin wing structures 

that are symmetric with respect to their middle surface, it can often be 

important to separate the inplane deformation from the bending deformation. 

This approach circumvents possible numerical difficulties due to large differ- 

'ences in bending and inplane type stiffnesses. Referring to Fig. A3, the 

basic assumptions used in developing this element are summarized as follows: 

(1) isotropic materfals; 

(2) uniform thickness; 

(3) rectangular configuration 

If not rectangular, an equivalent rectangular plate of the 
same area is considered; 

(4) symmetric with respect to the middle surface; 

(5) plane stress state; 

(6) stress distribution in the field is assumed to have the form 

ux(%,~) = Dl 7 + D2 

a,(z,y) = 0.0 

+%7) = D3 

where D 1' D2' D3 are constants; 

(7) Displacement boundary conditi'on 

u(Iz,O) = 0. 
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Figure A3. Symmetric Shear Panel. 
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The displacement state* implied by the foregoing assumptions is now 

sought. 

.v - E 
X -E x ' zf - + (Dly + D2) 

F a .E I - f 0 E - $ (D1y + D2) 
Y X 

q.aYl +aga.YLy _ 2(l+v) D 
w E 3 

By integrating Eqs. (A.18). and (A.19), 

U(X,Y> = + (Dlxy + D2x) + ,f(y) 

V(X,Y> =- ; (+ Dly2 + D2y) + g(x) 

and substitution of (A.21) and (A.22) into (A.20), yields 

+ Dlx + f'(y) + g'(x) = 2(l+v) 
E D3 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

where f(y), g(x) are arbitrary differentiable functions and f'(y), g'(x) are 

their first derivatives. 

Since Eq. (A.23) must be satisfied for arbitrary x and y, it is neces- 

sary that 

+ D1x + g'(x) = -*f'(y) + 
2(1+v) E D3 = D4 

where D 4 is a constant. 

(A.24) 

* 
Since the development in this subsection is carried out exclusively in the 
local coordinate systems, tildas over u,v,x,y etc. are omitted except for 
the final result (see Eq. (A.41)) as a matter of convenience. 
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Upon integration Eq. (A.24) yields 

f(y) = - D4 -[-ID3 y+D5 

g(x) = - 2 Dlx2 + D4x + D6 

(A.25) 

(A. 26) 

where D5, D6 are constants. 

Equations (A.25) and (A.26) are introduced into Rqs. (A.21) and (A.22) 

giving 

U(X,Y> = + (Dlxy + D2x) - 
[ 

2( 1+v> D4 - 7 D3 y+D5 1 (A.27) 

Dlx2 + D4x + D6 (A.28) 

Recalling the displacement boundary condition, 

u(x,O) = * D2x + D5 q 0 

and therefore 

D2 = 0 , D5 = 0 . 

(A.29) 

(A.30) 

Now it follows that Eqs. (A.27) and (A.28) may be rewritten as 

U(X,Y) = 2 Cl xy + cc2 - c3> y CA. 31) 

v(x,y) = -c1(x2 + vy2) + c3x1 + c 4 (A.32) 

These four constants may be expressed in terms of the node displacement com- 

pontns, uR,vR,uQ and vQ . 

I+ = ~(0, $ b) = + (c2 - c3)b (A.33) 

"Q 
= u(a, + b) = clab + i (c2 - c3)b 

2 

"P = v(0, + b) =-cl +- + c4 

"Q 
= v(a, + c3a + c4 

(A.34) 

(A.35) 

(A.36) 
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then solving for cl, c2, c3 and c4, gives 

"Q - % 
'l= ab 

(A.371 

"Q + % + "Q - vP 
‘2= b 

(A. 38) 
a 

"Q - "p + "Q - "P 
‘3= b a 

vb "V +-(u - ‘4 P 4a Q "p) 

(A.39) 

(A.40) 

Finally.the displacement state in the field may be expressed in matrix form as 

(A.41) 
The strain displacement relations are obtained by differentiating 

Eq. (A.411 

3 
ab 

0 

_ 25 * 0 
ab aD 

1 - 1 1: -- 1 

i 

(J 
X 

OY 

T 
XY 

IBI 

Stress-strain relati.on -plane sEress state 

E 
X 

EY 

E 
xy 

(A.421 

CA. 431 
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.-__---~..- ..__ _ 

Stress displacement relation 

Substitution of (A.421 into (A.433 yields 

0 0 0‘ 

7 1 1 1 
2(l+v)a 2(l+v)b 2(l+v>a 

Element stiffness matrix in the local coordinate sys em 

(A.44) 

[‘i;] = / [B]~[D][BI~V = f I- 
'[B]~[D][B] dA (A.451 

V S 

-w+3e 

['i;] a AL- -3 
12(1+v) 

2(l+v) + 30 (A.461 
Cl 

where 8 = a 
b l 

Displacement transformation law 

5 ml O 0 
0 0 1. 

=P : I 0 
% ml O 

0 0 1 

-- 

Ml 

3 

Element stiffness matrix in the reference coordinate system 

[kl = [AIT [El IAl (A.491 

(A.471 

(A.481 
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AppendixB 

Relatiouship Between "Throw Away” Concept (Section 2.4.2) and, : 

Detailed Implementation (Section 3.3.6.2) 

Deletion of constraints that are neither critical nor potentially 

critical can be achieved by ignoring all constraints for which the response 

ratio (Rq) is less than a specified value suoh as 0.5. Alternatively con- 

straint deletion can be accomplished by dropping all constraints for which 

'q" R1 ftr 

where ftr is called the truncation factor and Rl is the largest response ratio, 

that is 

Rl - Max[Rq] - Max[l-hql (B.2) 
Q 9 

Substituting Bq. (B.2) into Eq. (B .l) and replacing Rq by 1-hq it follows that 

(1 - hql < ft; Max [1 - hq] 
I Q 

or equivalently 

-1 

1 (B-3) 

Ncm recalling that -h - hi (see Eq. 
9 

3.34) it follows that Eq. (B.4) can be 

written as 

hi < ftr Max [l + hi] - 1 
P 

Comparing the right hand side of Eq. (B.5) to Eq. (3.35) with c set equal to 

1 it follows that Eq. (B.5) reduces to 

h; c TBV ma 
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Hence it is seer! that the simple conetraint deletion procedure described in 

Section 2.4.2 is essentially a special case of the dynamic constraint deletion 

process IPplemcnted by ACCgSS 1. Specifically, all constraints with values 

hi (& less than the current TBV are deleted from cous'ideration during the 

upcoming design stage. 
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Appendixc 

Derivation of Pseudo 'Load Vector Fonmla (see EQ. 3.43) 

Referring to Eq. (3.42)) the pseudo load vectors Gbk are defined as 

cc. 1) 

The system stiffness matrix is given by the expression 

I I 

[KI -. C hii F X [AliT Eli [Ali G.2) 
i-i .1-i 

but 

[zi] = D I a(l)1 ['i; cc. 31 

Substituting Eq. (C.3) into Eq. (C-2) gives 

I 

[Kl - iFl DiMlIT [&I [$I 

and noting that Di - Tib(i)'%(i) yie1ds 

IT 
[K] - c ib [AlIT i&l [$I 

I=1 %(I) 

Taking the partial derivative with respect to ab leads to the,follaving 

expression 

aK [ 1 aa, -- 
c Tib(i) 

icb <(I) 
[hiIT ii;,~,~l [Ail 

and substituting Eq. (c.6) into Eq. ((2.1) gives 

'blc - 
Tib I 

c + [AlIT Ikfici+ Ml1 ;a 
i c b %(I) 

cc. 4) 

cc. 5) 

Cc. 6) 

cc. 7) 

I.61 



where Gik denotes the displacement degrees of freedom (in the reference coor- 

dinate system) associated with the ith finite element in the kth load 

condition. 
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Figure 1. Design Variable Linking. Simple Example. 
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Figure 8. Interior Penalty Function (Fiacco and McCormick, Ref. 79). 
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Figure 9. Extended Interior Penalty Function (Kavlie and Moe, Ref. 75). 
(SEE Es. 3.66) 
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Figure 10. Planar Ten Bar Cantilever Truss. 
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Figure 18. Iteration Histories for Problem 7 Wing Carry-Through Structure Truss Model 
(From Ref. 83) (See Section 4.2.4 and Table 47). 
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Z 

Fig. 19 Eighteen Element Wing Box (Model 2) 
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550 

350 

8A -O-‘- CST MODEL I- SSP 

BB -O- CST MODEL 2 - SSP ACCESS 1 

8C -A- CST MODEL I- SHEAR 

-o- REF. 34 GALLATLY AND BERKE 

12345 10 15 

NUMBER OF ITERATIONS 

Figure 20. Iteration History for Problem 8 
18 Element Wing Box 
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Figure 21. Finite Element Model for Swept Wing Example (Problem 9). 
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WITHOUT SPAR CAPS 

WITH SPAR CAPS 

t 
0.02 IN. 
(0.508 mm) 

NOTE: SKIN PANEL THICKNESSES ARE UNIFORM CHORD WISE 

Figure 22. Final Skin Panel Thickness Distribution. 150 (130) Element Swept Wing. 
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Figure 26, Iteration Histories for Problem 9 15q, (130) Element Swept Wing. 
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Figure 27. Delta Wing Example (Problem 10). 
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10 LINKED DESIGN VARIABLES 16 LINKED DESIGN VARIABLES 28 LINKED DESIGN VARIABLES 

INDICATES THAT THE THICKNESSES OF THESE 8 TRIANGULAR MEMBRANE 
ELEMENTS ARE “LINKED” AND CONTROLLED BY A SINGLE DESIGN VARIABLE 

Figure 28. Alternate Linking Arrangements for the Skin (CST Elements) 6f Delta Wing Examples (Problem 10). 



12 LINKED DESIGN VARIABLES 28 LINKED DESIGN VARIABLES 

INDICATES THAT THE THICKNESSES OF THESE 5 SHEAR PANELS 
ARE LINKED AND CONTROLLED BY A SINGLE DESIGN VARIABLE 

Figure 29. Alternate Linking Arrangements for the Webs (SSP Elements) of Delta Wing Examples (Problem 10). 



- 28 SKIN THICKNESS DESIGN VARIABLES, PROBLEM 1OD 
SKIN THICKNESS DESIGN VARIABLES, PROBLEMS 10A AND 1OC 
SKIN THICKNESS DESIGN VARIABLES, PROBLEM 10B 

12 WEB THICKNESS DESIGN VARIABLES 
PROBLEMS lOA, lOB, 1OC AND 10 D 

Figure 30. Final Skin Panel Thickness Distributions for Four Delta Wing Examples (Problem 10). 
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- 28 WEB THICKNESS DESIGN VARIABLES, PROBLEM 10E 
-- - - 12 WEB THICKNESS DESIGN VARIABLES, PROBLEM 10D 

28 SKIN THICKNESS DESIGN VARIABLES 

b.02 IN (0.508 mm) 

Figure 31. Final Web Thickness Distribution for Two Delta Wing Examples (Problem 10). 
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MINIMUM SIZE WEBS 

STRESS CRITICAL WEBS 
MINIMUM SIZE SKIN PANELS MINIMUM SIZE SKIN PANELS 

LOCATION OF CRITICAL LOCATION OF CRITICAL 
TRANSVERSE DISPLACEMENT TRANSVERSE DISPLACEMENT 

NOTE: NO CST ELEMENT IS NOTE: NO CST ELEMENT IS 
STRESS CRITICAL STRESS CRITICAL 

(a) CRITICAL CONSTRAINTS FOR WEBS (b) CRITICAL CONSTRAINTS FOR SKIN PANELS 
(SSP ELEMENTS) (CST ELEMENTS) 

Figure 32. Critical Constraints for Final Designs of Delta Wing Examples; Problems lOA, 106 and 1OC. 



MINIMUM SIZE WEBS FOR BOTH 
PROBS. 10D AND 10E 
MINIMUM SIZE WEBS FOR PROB. 
10E ONLY 
STRESS CRITICAL WEBS FOR BOTH 
PROBS. 10D AND 10E 
STRESS CRITICAL WEBS FOR PROB. 
10E ONLY 

MINIMUM SIZE SKIN PANELS FOR 
BOTH PROBS. 10D AND IOE 
MINIMUM SIZE SKIN PANELS FOR 
PROB. 10D ONLY 
LOCATION OF CRITICAL TRANS- 
VERSE DISPLACEMENT 

NOTE: NO CST ELEMENT. IS 
STRESS CRITICAL 

(a) CRITICAL CONSTRAINTS FOR WEBS 01) CRITICAL CONSTRAINTS FOR SKIN PANELS 
ISSP ELEMENTS) ‘(CST ELEMENTS) 

Figura 33. Critical Constraints for Final Designs of Delta Wing Examples; Problems 10D and 10E. 
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Figure 34. Iteration History for Delta Wing Exampl’es; Problems 10A - 10E. 
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figure 36. Weight versus Elapsed CPU Time for Delta Wing Example Probiem lOC, 16 CST Design Variables, 
12 SSP Design Variables. 
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Table 1 

ACCESS l- Main Storage Requirements 

I. IBM 360/91 at UCLA FORTRAN-h 

NEWSUMP-version CONMIN-version 

70-70-40-2+ 364K* (91K) 434K* (lOSK) 

100-100-120-5 778K (19SK) 904K (226K) 

II. CDC 6600 Lawrance, Berkeley Laboratory 

NEWSY-version CONMIN-version 

70-70-40-2+ 

Load 

Execution 228K WK) 270K (955 

+ Four numbers stand for the following in order 

Maximum number of elements in one type 
Maximum number of nodes 
Maximum number of independent design variables 
Maximum number of 'load conditions 

* 
Decimal bytes 

** 
Octal words 

( )EquivalBnt decimal words 
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Table 2 

Nodal Coordinates for 

18 Element Wing Box Example 

(see Fig. 5) 

Node X Y 2 

No. inches inches inches 

1 0 0 10 

2 100 0 8 

3 '0 70 10 

4 100 70 8 

5 0 140 10 

6 100 140 8 

7 100 190 8 
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Table 3 

TRUSS Element Descriptions for 
18 Element Wing Box Example 

TRUSS DV 
Member Linking 

No. Group 
1 b(i) 

Initial 
Area 

(0) 
Ai 

in* 

Area Area Config./Mat. Pth Q 
th Side 

Upper Lower Group mode mode Constraint 
limit limit No. No. No. Code 

,oJ> (L) Q4i) * 
i Ai 

in 
2 

in 
2 

1 1 0.9800 2.00 0.10 1 1 3 -1 

2 2 0.9800 2.00 0.10 1 3 5 -1 

3 3 0.9800 2.00 0.10 1 2 4 -1 

4 4 0.9800 2.00 0.10 1 4 6 -1 

5 5 0.98.00 2.00 0.10 2 6 7 -1 

* 
-1 : Area lower limit only 

0 : Area nonnegativity only 

+1 : Area upper limit and nonnegativity 

+2 : Area upper and lower limits 

Note: Because there is no design variable linking of truss elements in this example, 
the DV Linking Group "b(i)" and the TRUSS Member No. "i" are the same. 



Table 4 

CST Element Descriptfons for 
18 Element King Box Example 

CST DV 
Member Linking 

No. Group 
1 b(i) 

Initial 
Thickness 

$0 
1 

in. 

1 1 0.1960 

2 1 0.1960 

3 2 0.1960 

4 2 0.1960 

5 3 0.1960 

Thickness Thickness Config. 
Upper Lower Group 
Limit Limit 

,CU) 
i in. 

$J a(:;* 
i in. 

1.00 

1.00 

1.00 

1.00 

1.00 

0.020 1 

0.020 1 

0.020 1 

0.020 1 

0.020 I 2 I 

Q th 

Node 
No. 

* -1 : Area lower limit only 

0 : Area nonnegativity only 

+1 : Area upper limit and nonnegativity 

+2 : Area upper and lower limits 



I 
DV I Initial 

Linking Thickness 
Group 
b(i) i 

(0) 
5 

in. 

Table 5 

SSP Element Descriptions for 
18 Element Wing Box Example 

I 
Thickness Thickness Config. Side 

Upper Lower i Group Constraint 
Limit Limit 

.(a 
Code * 

Tii*. 
p' 

I*. 

1 1 0.1960 1.00 0.020 1 1 3 -1 

2 2 0.1960 1.00 0.020 1:3!5 -1 

3 3 0.1960 1.00 0.020 2 2 .4 -1 

4 4 0.1960 1.00 0.020 2 4 6 -1 

5 5 0.1960 1.00 0.020 3 6 7 -1 

6 6 0.1960 1.00 0.020 4 3 4 -1 

7 7 0.1960 1.00 0.020 4 5 6 -1 

8 8 0.1960 1.00 0.020 5 5 7 -1 

* 
-1 : Area lower limit only 

0 : Area nonnegativity only 

+1 : Area upper limit and nonnegativity 

+2 :' Area upper and lower limits 



Table 6 

TRUSS Element Material Properties for 
18 Element Wing Box Example 

. _ _.-. .., .,_ -...-.. ._ 

Config. Stress Stress Specific Modulus 
Group Upper Lower Weight of 

No. Limit Limit Elasticity 

R oJ> 
(3 

(L) 
53 % ER ' 

lb/in2 lb/in2 lb/in3 lb/in2 

1 +10,000 -10,000 0.100 10 x lo6 

2 +10,000 -10,000 0.100 10 x lo6 
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Config. 
Group 

No. 

R 

Table 7 

CST Element Material Properties for 
18 Element Wing Box Example 

Equivalent 
Stress' 
Upper 
Limit 

(T 
aR 

lb/in2 

+10,000 

+10,000 

Specific 
Weight 

PI1 
lb/in3 

0.100 

0.100 

Modulus 
of 

Elasticity 

lb/in2 

10 x lo6 

10 x lo6 

Poisson's 
Ratio 

3 

0.300 

0.300 



Config. 
Group 

No. 

R 

Table 8 

SSP Element Material Properties for 
18 Element Wing Box Example 

Equivalent 
Stress 
Upper 
Limit 

ad 

lb/in2 

+10,000 

+10,000 

+10,000 

+10,000 

+10,000 

Specific 
Weight 

% 

lb/in3 

0.100 

0.100 

0.100 

0.100 

0.100 

Modulus 
of 

Elasticity 

ER 

lb/in2 

10 x lo6 

10 x lo6 

10 x lo6 

10 x lo6 

10 x lo6 

Poisson's 
Ratio 

3 

0.300 

0.300 

0.300 

0.300 

0.300 

--_-._. . 



Table 9 

Displacement Boundary Conditions for 
18 Element Wing Box Example 

Boundary 
Node 
No. 

~ ..-- 

b.c. Code b.c. Code b.c. Code 

for for for 
U 

X uY Yiz 

1 +1 +1 +1 

2 +1 +1 +1 



I. 

Load No. of 
Condition Loaded 

No. Nodes 

k 

1 

2 

1 

1 

Table 10 

Load Condition.Data for 
18 Element Wing Box Example 

Node Load Load 
No. Component Component 

pX 

lbs. 

P 

lb:. 

7 0 0 

Load 
Componer 

+ 5,000 

+10,000 
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No. of 
d.orf.'s 

Constrained 

5 

Table 11 

Displacement Constraints for 
18 Element Wing Box Example 

Node 
No. 

Direction 
X,Y,Z 

* 
-1 : Lower limit only 

Displ. 
Constr. 

Code * 

Displ. Displ. 
Upper Lower 
Limit Limit 

in. in. 

2.00 -2.00 

2.00 -2.00 

2.00 -2.00 

2.00 -2.00 

2.00 -2.00 

0 : Neglect this constraint 

+1 : Upper limit only 

+2 : Both lower and upper limits 



Table 12 

Truncation Factors for Delta Wing Example 

(see Section 3.3.6,2) 

Stage TRF TRF displacement 

0.1 0.3 

0.12 0.32 

0.144 0.344 

0.1728 0.3728 

0.20736 0.40736 

0.248832 0.448832 

0.2985984 0.4985984 

0.35831808 0.55831808 
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Table 13 

Nodal Coordinates for 

Planar Ten Bar Cantilever Truss 
(see Fig. 10) 

Node X Y z 
No. inches inches inches 

1 720 360 0 

2 720 0 0 

3 360 360 0 

4 360 0 0 

5 0 360 0 

6 0 0 0 
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Table 14 

TRUSS Element Descriptions for 
Planar Ten-Bar Cantilever Truss 

(see Fig. 10) 

TRUSS DV Initial Area Area Config. Pth Q 
th Side 

Member Linking Area Upper Lower Group Node Node Constraint 
No. Group Limit Limit No. No. No. Code 

i b(i) A(o) 
i 

,oJ) 
i 

A(L) 
i a(i) 

in 
2 

in 
2 

in 
2 

1 1 * N/A 0.100 1 5 3 -1 

2 2 * I I 

I 

1 3 1 I 

1 
3 3 * I 

4 4 * I 

i 1 6 4 
I 

I 
1 4 2 I 

I 
5 5 * I I 1 3 4 

I I 
6 6 * 

I 
I 1 1 2 I 

I 
I I 

7 7 * I 2 5 4 I 
8 8 * I 2 I 

9 9 * I 

1 6 3 

I I 
I 2 3 2 t t 

10 10 * N/A 0.100 2 4 1 -1 

, * 
Initial Areas for All Members 

10.0 for Problems lA, lB, lC, 1D and 2 

30.0 for Problems 3 and 4 



Table 15 

Displacement Boundary Conditions for 
Planar Ten Bar CantileQer Truss 

(see Fig. 10) 

Boundary 
Node 

No. 

b.c. Code 
for 

* u 
X 

b.c. Code 
for 

"Y 

b.c. Code 
for 
u z 

5 +1 +1 +1 

6 +1 +1 +1 

Table 16 

Load Condition Data (Problems lA,lB,lC,lD,3) 
'for Planar Ten Bar Cantilever Truss 

Load No. of Node 
Condition Loaded No. 

No. Nodes 

1 2 
2 

4 

Load Load Load 
Component Component Component 

P 
X 

lbs. 

P 
Y 

lbs. 

pz 

lbs. 

0 

0 

-100,000 

-100,000 

0 

0 
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Table 17 

TRUSS Element Material Properties for 
Planar Ten Bar Cantilever Truss 

(Problems lA,2,3 and 4) 

Config. 
Group 
No. 

Stress 
Upper 
Limit 

R oJ> 
% 

lb/in2 

1 +25,000 -25,000 

2 +25,000 -25,000 

Stress 
Lower 
Limit 

Specific 
Weight 

PI1 ER 
lb/in3 lb/in2 

0.100 

0.100 

Modulus 
of 

Elasticity 
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Table 18 

Final Designs* for Problems lA,lB,lC,lD for 
Planar Ten Bar Cantilever Truss 

TRUSS 
Member 

No. 
i 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Final 
Weight (lb) 

Analyses 
Needed 

I; ial Cross Sect1 la1 Areas (in') 
3.A 1B 1c 

+25,000 f30,OOO 

7.938 7.930 

0.1000 0.1000 

8.062 8.071 

3.938 3.930 

0.1000 0.1000 

0.1000 0.1000 

5.745 5.757 

5.569 5.557 

5.569 4.631 

0.1000 0.1000 

1593.23 1545.17 1497.65 1497.65 

16 16 16 16 

0.1000 

8.100 

3.900 

0.1000 

0.1000 

5.798 

5.516 

3.677 

0.1415 

1D 

-+70,000 

7.900 

0.1000 

8.100 

3.900 

0.1000 

0.1000 

5.798,‘ 

5.516 

3.677 

0.1415 

These results were obtained using c = 0.5 and 2 unconstrained minimizations, 
per analysis. P 
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Table 19 

Comparison of Minimum Weights Achieved and 
Number of Analysis Required 

for Planar Ten-Bar Cantilever Truss 1 

Weight (lbs) Weight (lbs) Weight (lbs) Weight (lbs) 

No. of Anal. No. of Anal. No. of Anal. No. of Anal. 

PSD 1593.18 1545.13 1725.24 1725.24 

Ref. 83 16 23 14 29 

MIH 1593.18 1545.21 1497.61 1497.61 

Ref. 72 21 19 21 21 

ACCESS 1 1593.23 1545.17 1497.65 1497.65 

NEWSUMT 16 16 16 16 
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Table 20 

Final Designs for Problems lA',lB',lC'.lD' for 
Planar Ten-Bar Cantilever Truss 

(using method of Ref. 84) 

TRUSS L Fiqal Cross Sectional Areas (in') 
Member IA' lB' 1C' 1D' 

No. 
i +25,000 k30,OOO ~5d,OOO *70,000 

.~ 

1 8.000 8.000 8.000 8.000 

2 0 0 0 0 

3 8.000 8.000 8.000 8.000 

4 4.000 4.000 4.000 4.000, 

5 0 0 0 0 

6 0 0 0 0 

7 5.657 5.657 5.657 5.657 

8 5.657 5.657 5.657 5.657 

9 5.657 4.714 2.828 2.020 

10 0 0 0 0 

Final 

Weight (lbs) 1584.0 1536.0 1440.0 1398.86 

Analysed 
I 

Needed 2 2 2 2 
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Table 21 

Load Condition Data,(Problems 2 and 4) for 
Planar Ten-Bar Cantileve'r Truss 

Load No. of Node Load Load Load 
Condition Loaded No. Component Component Component 

No. Nodes 

k 
pX 

P 
Y pz 

lbs lbs lbs 

1 4 1 0 +50,000 0 

2 0 -150,000 0 

3 0 +50,000 0 

4 0 -150,000 0 
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Table 22 

Final Designs for Problem 2 for 
Planar Ten-Bar Cantilever Truss 

(see Section.4.2.1.1) 

TRUSS 
Member 

No. 
i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Final 

Weight (lb) 

Analyses 

Needed 

I Final Cross Sectional Areas.(in') 

~ ACCES; $1 
NEWSUMl! CONMIN 

5.948 

0.100 

10.05 

3.948 

0.100 

2.052 

8.559 

2.755 

5.583 

0.100 

5.953 

0.105 

10.07 

3.952 

0.100 

2.059 

8.597 

2.752 

5.588 

0.114 

Ref. 31 
Vankayya 

5.948 5.948 

0.100 0.100 

10.053 10.052 

3.948 3.948 

0.100 

2.052 

8.559 

2.755 

5.583 

0.100 

Ref. 72 
Schmit 6 

Farshi 

0.100 

2.052 

8.559 

2.754 

5.583 

0.100 

1664.55 1667.92 1664.6 1664.5 

11 9 11 20 
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Displacements 
Constrained 

4 

L 

Table 23 

Displacement Constraints for 
Planar Ten-Bar Cantilever Truss 

(Problems 3 and 4, Section 4.2.1.2) 

Node Direction 
No. ' XsY,Z 

Displ. 
Con&r. 

Code 

Displ. Displ. 
Upper Lower 
Limit Limit 

in. in. 

2.00 

2..00 

2.00 

2.00 

-2.00 

-2.00 

-2.00 

-2.00 
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Table 24 

Final Designs for Problem 3 
Planar Ten-Bar Cantilever Truss 

(see Section 4.2.1.2) 

TRUSS Final Cross Sectional Areas (in') 
Member &xEss 1 Ref. Ref. Ref. 

No. NEWSTJ'MI CON-Mm 72 31 34 
Single Double Single Schmit, Venkay$a Gellatly 

i Precision Precision Precision Far&i 

1 30.23 30.67 30.57 33.432 30.416 31.35 

2 0.179 0.100 0.369 0.100 0.128 0.100 

3 23.94 23.76 23.97 24.260 23.408 20.03 

4 13.48 14.59 14.73 14.26 14.904 15.60 

5 0.100 0.100 0.100 0.100 0.101 0.140 

6 0.180 0.100 0.364 0.100 0.101 0.240 

7 8.5.65 8.578 8..547 8.338 8.696 8.350 

8 21.95 21.07 21.11 20.740 21.084 22.21 

9 21.19 20.96 20.77 19.690 21.077 22.06 

10 0.241 0.100 0.320 0.100 0.186 0.100 

Final 5096.7 5076.85 5107.3 5089 .O 5084.9 5112 
Weight (lb) 

Analyses 

Needed 
13 13 14. 24 26 19 
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Table 25 

Iteration History Data for Problem 3 
Planar Ten-@ar Cantilever Truss 

(see Section 4.2.1.2) 

No. of 
Analyses 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

NEwi! 
Single 

Precision 

7853.1 7852.9 

6650.7 6650.8 

6161.4 6161.4 

5892.6 5892.6 

5656.4 5656.3 

5427.4 5426.8 

5291.3 5790.8 

5154.2 5153.8 

5107.6 5110.3 

5096.7 5087.2 

5096.7 5081.1 

5096.7 5076.9 

ACCESS 1 
ma 

Double 
Precision 

Wei t (lbs) 
Ref. 

CONMIN 72 
Single schmit I+ 

Precision Far&i 

6234.1 

5835.1 

5771.9 

5657.0 

5541.4 

5416.3 

5281.1 

5158.4 

5133.9 

5124.8 

5116.7 

5111.7 

5107.3 

12846.7 

8733.4 

9144.6 

8332.5 

7243.0 

6749.6 

6507.9 

6384.3 

6339.8 

6314.9 

5998.7 

5750.1 

5734.6 

5705.6 

5468.8 

5315.8 

5306.2 

5215.8 

5162.9 

5135.8 

5107.0 

'5094.1 

5089.0 

Ref. 
31 1 Venkayya 

I 
8266.1 

6281.7 

6065.7 

5984.5 

5963.1 

5920.1 

5881.6 

5848.1 

5819.7 

5795.9 

5776.4 

5760.7 

5748.2 

5738.3 

5730.7 

5724.7 

5720.2 

5716.7 

5713.7 

5712.2 

5502.9 

5343.8 

5221.5 

5127.0 

5084.9 

Ref. 
34 

Gellatly & 
Berke 

8266 

6356 

5980 

5779 

5625 

5547 

5470 

5392 

5323 

5266 

5225 

5200 

5195 

5206 

5191 

5169 

5147 

5112 
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TRUSS 
Member 

No. 

1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Final 

Weight (lb) 

Analyses 

Needed 

Table 26 

Final Designs for Problem 4 
Planar TenXar Cantilever Truss 

(see Section 4.2.1.2) 

Final Cross Sectional Area 
ACCESS 1 

I a! 
Double 

Precision 

CONMIN 
Single 

Precision 

NEWS 
Single 

Precision 

Ref. 72 
Schmit & 

Farshi 

Ref. 31 
Venkayya 

23.52 23.55 23.55 24.289 25.190 

0.100 0.100 0.176 0.100 .363 

25.28 25.29 25.20 23.346 25.419 

14.38 14.36 14.39 13.654 14.327 

0.100 0.100 0.1oq 0.100 .417 

1.97 1.97 1.967 1.969 3.144 

12.39 12.39 12.40 12.670 12.083 

12.83 12.81 12.86 12.544 14.612 

20.32 20.34 20.41 21.971 20.261 

0.100 0.100 0.100 0.100 .513 

4676.93 4676.96 4684.11 4691.84 4895.6 

11 11 10 23 13 

[in') 1 
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Table 27 

Iteration History Data for Problem 4 
Planar Ten-Bar Cantilever Truss 

(see Section 4.2.1.2) 

No. of 
Analyses 

1 7988.5 7988.3 

2 6782.7 6782.8 

3 6061.7 6061.7 

4 5427.1 5427.2 

5 5055.3 5054.8 

6 5031.6 5034.7 

7 4700.5 4700.1 

8 4680.8 4680.8 

9 4677.1 4677.1 

10 4676.9 4677.0 

11 5377.8 

12 5269.7 

13 5096.7 

14 4986.3 

15 4964.1 

16 4882.1 

17 4826.8 

18 4786.6 

19 4722.8 

20 4706.1 

21 4686.5 

22 4691.8 

ACCESS 1 
'NEWSUMII 

Single Double 
Precision Precision 

Weight (3 

CONMIN 
Single 

Precision 

6355.6 

5666.0 

5376.8 

5159.8 

5193.9 

4736.2 

4684.6 

4684.1 

4684.1 

Ref. 72 
Schmit h 

Farshi 

13315.7 8417.7 

9204.9 6565.2 

9455.0 6242.8 

8009.2 6031.6 

7665.2 5935.4 

7240.9 5686.3 

6755.6 5505.2 

6694.1 5354.9 

6143.7 5220.2 

5915.3 5099.0 

Ref. 31 
Venkayya 

4991.4 

4895.6 
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Table 28 

Nodal Coordinates for 

Node No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

25-Bar Space Truss 
see (Fig. 13) 

X Y 2 
inches inches inches 

-37.5 

37.5 

-37.5 

37.5 

37.5 

-37.5 

-100.0 

100.0 

100.0 

-100.0 

0.0 

0.0 

37.5 

37.5 

-37.5 

-37.5 

100.0 

100.0 

-100.0 

-100.0 

200.0 

200.0 

100.0 

100.0 

100.0 

100.0 

0.0 

0.0 

0.0 

0.0 
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Table 29 

TRUSS Element Descriptions for 
25-Bar Space Truss 

Member D.V. Linking Initial Area Area Config./Material Pth Node Qth Node- Side 
No. Group Area Upper Limit Lower.Limit Group.No. No. No. Constraint 

i b(i) A(') A('> 2 i in A(L) in2 W) 
Code 

i i 

1 1 2.0 N/A 0.01 1 1 2 -1 
2 2 

I I I 
2 1 4 

3 2 2 2 3 I 

4 2 I I 2 1 
2 2 
3 2 4 
3 2 5 I 
3 1 3 I' 

i 1 3 I 

4 4 5 I 
5 3 4 I 
5 5 6 I 
6 3 10 
6 6 7 I 

6 4 9 I 
.6 5 8 
7 4 7 

I 
7 3 8 I 
7 5 10 I 
7 6 9 
8 6 10 

8 3 7 8 5 9 1 
8 4 8 -1 



Table 30 

Displacement Boundary Conditions for 
25-B&r Space Truss 

(she Fig. 13) 

Boundary b.c. Code 
Node No. for ux 

7 +1 

8 +1 

9 +1 

10 +1 

b.c. Code 
for u 

Y 

+1 

+1 

+1 

+1 

b.c. Code b.c. Code 
for uz for uz 

+1 +1 

+1 +1 

+1 +1 

+1 +1 

Table 31 

Load Condition Data for 
25-Bar Space Truss 

1 1000.0 10000.0 -5000.0 

2 0.0 10000.0 -5000.0 

3 500.0 0.0 0.0 

6 500.0 0.0 0.0 
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Table 33 

Element Material Properties for 
25-Bar Space Truss 

Config. 
Group No. 

R 

Stress 
Upper Limit 

p 

lb/in2 

Stress 
Lower Limit 

OR(L) lb/in2 

Specific Modulus of 
Weight Elasticity 

32 
lb/in3 

% 
lti/il12 

1 40000.0 -35092.0 0.1 10 .x lo6 

i 
I 

2 I -1l.590.~ I / 

3 I -17305.0 I I 

4 
I I I 

I -35092.0 I 
I 

5 I -35092.0 i / 

6 

! - 6159.0 
I I 
I 1 

7 I - 6959.0 I I 

I I i 
8 40000.0 -11082.0 0.1 10 x lo6 
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Members 
in D.V. Group 

b(i) 

1 

2 

3 

4 

5 

6 

7 

8 

Final 

Weight (lb) 

Analyses 

Needed 

I 

Table 33 

Final Designs for Problem 5 
25-Bar Space Truss 

F 
ACCE‘ 

NEWSUMJ! 

0.010 

1;985 

2.996 

0.010 

0.010 

0.684 

1.677 

2.662 

545.172 

10 

Ial-Cross ectional 1 Yeas (in2) 
51 Ref. 72 Ref. 31 

CONMIN MIH Venkayya 

0.166 

2.017 

3.026 

0.087 

0.097 

0.675 

1.636 

2.669 

548.475 

9 

0.010 

1.964 

3.033 

0.010 

0.010 

0.670 

1.680 

2.670 

545.225 

17 

0.028 

1.942 

3.081 

0.010 

0.010 

0.693 

1.678 

2.627 

545.49 

7 

1 
Ref. 34 

Gallatly 
& Berke 

0.0100 

2.0069 

2.9631 

0.0100 

0.0100 

0.6876 

1.6784 

2.6638 

545.36 

8 
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Table 34 

Iteration History Data for Problem 5 
72-Bar Space Truss 
(see Section 4.2.3) 

I 

.-“” 1 

NEWSUMI: CON&DIN 

1 783.70 593.59 

2 609.72 565.46 

No. of Analyses ACCESS 1 

NEWSUMI: CON&DIN 

1 783.70 593.59 

2 609.72 565.46 

3 564.42 552.91 

4 552.07 552.05 

5 547.36 550.99 

6 546.02 549.17 

7 545.39 548.48 

8 545.22 548.48 

9 545.17 

10 

11 

12 

13 

14 

15 

16 
I I 

Weight (lbs) 
Ref 72 

Schmit 
& Farshi 

1060.9 

1073.1 

1019.0 

906.58 

864.06 

748.64 

666.68 

614.49 

581.75 

564.95 

556.13 

551.07 

548.39 

545.22 

545.23 

545.23 

Rei. 31 
Venkayya 

734.4 
589.2 

578.3 

577.3 

555.6 

545.5 

Ref. 34 
Gallatly 
& Berke 

734.38 

555.72 

549.08 

546.54 

545.92 

545.45 

545.36 
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Node No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 . 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Table 35 

Nodal Coordinates for 
72-Bar Space Truss 

(see Fig. 15). 

X Y 
inches inches 

0.0 

120.0 

120.0 

0.0 

0.0 

120.0 

120.0 

0.0 

0.0 

120.0 

120.0 

0.0 

0.0 

120.0 

120.0 

0.0 

0.0 

120.0 

120.0 

0.0 

0.0 

0.0 

120.0 

120.0 

0.0 

0.0 

120.0 

120.0 

0.0. 

0.0 

120.0 

120.0 

0.0 

0.0 

120.0 

120.0 

0.0 

0.0 

120.0 

120.0 

Z 
inches 

24010 

240:0 

240.0 

240.0 

180.0 

180.0 

180.0 

180.0 

lZO.0 

120.0 

120.0 

120.0 

60.0 

60.0 

60.0 

60.0 

0.0 

0.0 

0.0 

0.0 
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Member DV Linking 

NO. GrOUD 

i b (i> 

1 1 
2 1 
3 1 
4 1 
5 2 
6 2 
7 2 
8 2 
9 2 

10 2 
11 2 
12 2 
13 3 
14 3 
15 3 
16 3 
17 4 
18 4 
19 5 
20 5 
21 5 
22 5 
23 6 
24 6 
25 6 
26 6 
27 6 
28 6 
39 6 
30 6 
31 7 

Table 36 , 

Truss Element Descriptions for 
72-Bar Space Truss 

Zross Se 
Initial 

(0) 
Ai 

1.0 

I 

I 

I 
I 
I 
I 

i 
I 

I 
I 
I 

I 

I 

I 
I 

i 
1.0 

:. Are, 
Upper 
Limit 

o-0 
Ai 

N/A 

I 

I 
I 

I 

I 

I 

I 
I 
I 

I 
I 
I 

I 
I 

I 

I 

I 

I 

I 
1 

N/A 

<in21 
Lower 
Limit 

CL) 
Ai 

0.1 

I 

I 

I 

I 

I 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

1 
0.1 

- 
I Config. Pth Node 

Gr‘oup No. No. 

ui> 

1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 

1 5 
2 6 
3 7 
4 8 
2 5 
1 6 
3 6 
2 7 
4 7 
3 8 
1 8 
4 5 
1 2 
2 3 
3 4 
4 1 
1 3 
2 4 
5 9 
6 10 
7 11 
8 12 
6 9 
5 10 
7 10 
6 11 
8 11 
7 12 
5 12 
8 9 
5 6 

Qth Node 
No. 

Side 
Const. 

Code 

-1 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

i 
I 
I 

I 
I 

1 
t 

-1 
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Member DV Linkzfq 

No. 

i 

Group 

b (i) 

32 7 
33 7 
34 7 
35 8 
36 8 
37 9 
38 9 
39 9 
40 9 
41 10 
42 10 
43 10 
44 10 
45 10 
46 10 
47 10 
48 10 
49 11 
50 11 
51 11 
52 11 
53 12 
54 12 
55 13 
56 13 
57 13 
58 13 
59 14 
60 14 
61 14 
62 14 
63 14 
64 14 
65 14 
66 14 
67 15 
68 15 
69 I5 
70 is 
71 16 
72 16 

Table 36 (Conttd) 

Iross Se 
Initial 

(0) 
Ai 

1.0 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

t 

I 
I 

1.0 

Area . 
Upper 
Limit 

(U) 
Ai 

N/A 

I 

I 
I 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

N/A 

(in2) 
Lower 
Limit 

0.J 
Ai 

0.1 
I 

; 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

i 
0.1 

Config. Pth Node Qth Node 
koup No. No. No. 

R (iI 

3 
3 
3 
4 
4 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 

2 
4 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 

6 7 
7 8 
8 5 
5 7 
6 8 
9 13 

10 '14 
11 15 
12 16 
10 13 

9 14 
11 14 
10 15 
12 15 
11 16 

9 16 
12 13 

9 10 
10 11 
11 12 
12 9 

9 11 
10 12 
13 17 
14 18 
15 19 
16 20 
14 17 
13 18 
15 18 
14 19 
16 19 
15 20 
13 20 
16 17 
13 14 
14 15 
15 16 
16 13 
13 I.5 
14 16 

Side 
Const. 
Code 

-1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

i 
I 
I 

I 

I 
I 
I 
I -1 
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Table 37 

Displacement‘Boundary Conditions 
for 72-Bar Space Truss 

(see Fig. 15) 

Boundary b.+ Code 
Node No. for ux 

17 +1 

18 +1 

19 +1 

20 +1 

b.c. Code 
for u 

57 

+1 

+1 

+1 

+1 

b.c. Code 
for ua 

+1 

+1 

+1 

+1 

Table 38 

Load Condition Data for 
72-Bar Space Truss 

Load 
Condition 

No. 

k 

I No. of 
Loaded 

Nodes 

1 

Node 
No. 

4 

Load Components I 

p* P P 

(lbs) (lb:) (lb:) 

5000.0 5000.0 -5000.0 

0.0 0.0 -5000.0 

0.0 0.0 -5000.0 

0.0 0.0 -5000.0 

0.0 I 0.0 I -5000.0 
I 
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Confi; 
Group I 

W 

Table 39 

Element Material Properties for 
72-Bar Space Truss 

Stress 
'Upper Limit 

up' 

I lb/in2 

25000.0 

25000.0 

25000.0 

25000.0 

Stress 
I 

Specific 
Lcwer Limit Weight 

a) 
% 

lb/in2 
% 

lb/in3 
ER 

lb/in2 
I 

-25000.0 0.1 

-25000.0 0.1 

-25000.0 0.1 

-25000.0 0.1 

Modulus of 
Elasticity 

10 x lo6 

10 x lo6 

10 x lo6 

10.x 10 6 
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Table 40 

Final Designs for Problem 6 
72-Bar Space Truss 
(see Section 4.2.3) 

Members 
in D.V. Group 

b(i) 

1 

2 

7 0.1000 0.1000 

8 0.1000 0.1133 

9 1.267 1.268 

10 0.5118 0.5111 

11 

12 

13 

14 

I5 

16 

Final 

Weight (lb) 

Analyses 

Needed 

Final ross Sectional Area6 (in21 

ACCESS 1 

0.4105 0.4105 

0.5699 0.5614 

0.5233 0.5228 

0.5173 0.5161 

0.1000 0.1000 

0.1000 0.1000 

1.885 1.885 

0.5125 0.5118 

0.1000 0.1000 

0.1000 0.1000 

379.640 379.792 

9 8 

Ref. 72 Ref. 31 
MIH Venkayya 

Ref. 34 Ref. 83 
Gallatly Berke 

& Berke & Knot 

0.1585 

0.5936 

0.3414. 

0.6076 

0.2643 

0.5480 

0.1000 

0.1509 

1.1067 

0.5792 

0.1000 

0.1000 

2.0784 

0.5034 

0.1000 

0.1000 

0.161 

0.557 

0.377 

0.506 

0.611 

0.532' 

0.100 

0.100 

1.246 

0.524 

0.100 

0.100 

1.818 

0.524 

0.100 

0.100 

0.1492 0.1571 

0.7733 0.5385 

0.4534 0.4156 

0.3417 0.5510 

0.5521 0.5082 

0.6084 0.5196 

0.1000 0.1000 

0.1000 0.1000 

1.0235 1.2793 

0.5421 0.5149 

0.1000 0.1000 

0.1000 0.1000 

1.4636 1.8931 

0.5207 0.5171 

0.1000 0.1000 

0.1000 0.0000 

388.63 j 381.2 j 395.97 1 379.67 

22 ll2 I9 I5 
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No. of 
Analyses 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

--r L 

Table 41 

Iteration History Data for Problem 6 
72-Bar Space Truss 
(see Section 4.2.3) 

ACCI si 
NEWSDMT CON-Mm 

731.15 

477.95 

397.43 

383.27 

380.47 

379.86 

379.68 

379.64 

415.15 

383.79 

380.63 

380.42 

379.91 

379.79 

379.79 

l- 
Weig 

Ref. 72 
schmit 

& Farshi 

809.12 

838.09 

796.16 

763.61 

736.69 

716.63 

708.77 

645.07 

616.97 

525.29 

491.96 

468.69 

450.22 

433.77 

423.94 

413.65 

404.08 

397.43 

393.88 

388.14 

388.63 

243 

: (lbs) 
Ref. 31 

Venkayya 

656.8 

478.6 

455.0 

446.9 

445.5 

445.4 

401.7 

391.5 

383.6 

381.6 

381.2 

Ref. 34 Ref. 83 
Gallatly Berke 
& Berke & Knot 

656.77 

416.07 

406.21 

399.06 

396.82 

396.25 

396.02 

395.97 

656.77 

387.01 

379.67 

379.87 



Table 42 

Nodal Coordinates for 
63-Bar Truss Wing Carry-Through Structure 

(see Fig. 17). 

X Y Z 
inches inches inches 

0.0 140.0 20.0 

0.0 140.0 0.0 

-30.0 120.0 21.0 

-30.0 120.0 -i.o 

30.0 120.0 21.0 

30.0 120.0 -1.0 

-30.0 80.0 30.0 

-30.0 80.0 -3.0 

30.0 80.0 30.0 

30.0 80.0 -3.0 

-30.0 40.0 55.0 

-30.0 40.0 -5.0 

30.0 40.0 55.0 

30.0 40.0 -5.0 

-30.0 0.0 60.0 

-30.0 0;o -7.0 

30.0 0.0 60.0 

30.0 0.0 -7.0 
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Member DV Linking 

No. Group 

I b(i) 

1 
2 

3 

2 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

1 
2 
3 
4 

i 
7 
8 
9 

10 
il 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

ti! 
42 

- 

Table 43 

Truss Element Descriptions. for 
63-Bar Truss Wing Carry-Through Structure 
l- 

208s Se 
Initial 

(0) 
Ai 

20.0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

i 

i 

I 
I 

I 

I 
I 
t 

20.0 

% Area .(in') 
Upper Lawer 
Limit Limit 

A(u) CL) 
I Ai 

N/A 

I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

i 
I 
I 
I 
I 

I 

I 
t 

N/A 

0.01 

i 

/ 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
+ 

0.01 

r Config. Pth Node Qth Node 
group No. No. No. 

Ui) 

1 
2 
1 
2 

2 

2 
5 
6 
5 
6 
7 
8 
7 
8 
9 
9 
9 
9 
9 
9 

10 
11 
11 
12 
12 
13 
13 
14 
15 
14 
15 
16 
17 
16 
17 
18 
i9 
18 
19 
20 

1 
2 
1 
2 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

3 
4 
7 
8 

11 
12 

1 
3 
5 
7 
9 

11 
13 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1 

2 
5 
6 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

5 
6 
9 

10 
13 
14 

2 
4 
6 
8 

10 
12 
14 
9 

10 
7 
8 

13 
14 
11 
12 
17 
18 
15 
16 
6 

Side 
Const. 
Code 

-1‘ 
I 
I 
I 
I 
I 
I 
I 
I 
‘I 
I 

I 
I 

I 
I 

i 
I 
I 

I 
I 
I 
I 
I 

I 
I 
t 
-1 
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Table 43 (Cont'd) 

Member 

No. 

DVLinkiq 
Group 

I b(i) 

43' 43 
44 44 
45 45 
46 46 
47 47 
48 48 
49 49 
50 50 
51 51 
52 52 
53 53 
54 54 
55 55 
56 56 
57 57 
58 58 
59 59 
60 60 
61 61 
62 62 
63 63 

T 
Cross Sr 

Initial 

A(?' 
I 

20.0 

I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 

1 
20.0 

:. Are 
Ww- 
Limit 

AcL) 
I 

N/A 

I 

I 

I 

I 
I 
I 

I 
I 
I 
I 
I 
t 

N/A 

(in2> 
Lower 
Limit 

(U) 
Ai 

0.01 

I 

1 

I 
I 

I 
I 
I 
I 

I 

I 
t 

3.01 

___._ 

I 

Config. Pth Node Qth Node 
koup No, No. No. 

R (1) 

20 1 
21 5 
21 3 
22 5 
22 3 
23 9 
23 7 
24 9 
24 7 
25 13 
25 11 
26 13 
26 11 
27 17 
27 15 
28 5 
28 3 
29 9 
29 7 
30 13 
30 11 

4 
2 
2 

10 
8 

: 
14 
12 
10 

8 
18 
16 
14 
12 

4 
6 
8 

10 
12 
14 

Side 
Cons1 
Code 
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Table 44 

Displacement'Boundarp Conditions for 
63-Bar Truss Wing Carry-Through Structure 

(see Fig. 17) 

Boundary 
Node'No. 

15. 

16 

17' 

18 

b.c. Code 
for ux 

+1 

+1 

+1 

+1 

b.c. Code 
for u 

Y 

+1 

+1 

+1 

+1 

b.c. Code 
for uz 

+1 

+1 

+1 

+1 

Table 45 

Load Condition Data for 
63-Bar Truss Wing Carry-Through Structure 

Load No. of Load Components 
Condition Loaded Node px P pz 

No. Nodes No. 
(it-) (iL3) (lbs) 

k 

1 2 1 2.5 x lo6 -5.0 x 10 ‘6 2.5 x 10' 

2 -2.5 x lo6 5.0 x lo6 2.5 x 10' 

2 2 1 5.0 x lo6 -2.5 x lo6 2.5 x 10' 

2 -5.0 x lo6 x x 2.5 lo6 2.5 10' 
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Table 46 

Final Designs for 
63-Bar Truss W%ng Carry+Thxough Structure 

!bcticm 

Final Cross Sectional Area (in2) 
Truss 

Member No. (A) Stress Cons.traf.nts On& bf Streeti: & Stiffne& Conatraint6 
ACCESS 1 NEwsum Ref. 83 .ACCESS 1 NEWSUHC~ Ref. 83 

I 0.5 x 2 0.05 x.1 Berke-Khot 0.5 x 2 0.05 X 1' Berke-Khot 

1 38.28 .38.01 38.78 37.55 37.42 36.86 
2 35.93 35.90 36.40 36.49 36.40 36.90 
3 51.69 52.03 52.38 52.66 52.75 53.33 
4 54.49 54.40 55.04 53.76 53.80 53.31 
5 24.98 24.77 25.44 23.79 24.00 24.13 
6 28.46 28.40 28.69 28.95 28;87 27.82 
7 17.64 17.95 17.73 17.26 17.74 17.35 
8 20.52 20.90 20.75 21.40 21.81 22.00 
9 25.21 24.94 25.32 26.06 25.29 23.42 

10 26.82 26.14 27.49 25.15 24.67 25.95 
11 7.535 7.666 7.62 8.784 8.701 9.44 
12 8.801 9.128 8.82 8,966 9.105 9.82 
13 24.21 23.20 24.62 23.43 22.34 22.37 
14 20.63 19.83 20.98 19.57 18.72 18.59 
15 4.123 4.169 .4.16 5.165 5.064 5.79 
16 2.495 3.201 2.38 2.956 3.132 4.47 
17 37.07 36.90 37.53 37.07 36.64 36.89 
18 37.14 36.97 36.65 37.30 36.93 37.52 
19 0.010 0.010 .Ol 0.010 0.011 0.01 
20 !-011oio 0.013 .Ol 0.010 0.010 0.01 
21 0.151 1.565 .07 0.218 1.957 0.15 
22 0.067 1.231 .Ol 0.170 1.616 0.01 
23 0.137 0.0797 .08 0.010 0.011 0.01 
24 1.085 0.904 1.22 0.010 0.084 0.18 
25 0.065 0.132 .07 0.010 0.026 0.01 
26 2.574 2.488 2.83 4.191 4.291 0.11 
27 0.804 1.077 .81 0.985 1.314 0.01 
28 4.582 4.300 4.87 3.285 3.239 4.43 
29 0.670 0.895 .51 0.010 0.205 1.15 
30 2.651 2.819 2.69 7.861 6.985 6.94 
31 2.580 3.126 2.70 7.799 7.235 9.76 
32 5.829 5.783 5.89 9.300 10.53 11;03 
33 5.839 5.439 5.82 9.229 10.12 8.09 
34 6.122 6.073 6.19 9.769 11.07 11.59 
35 5.839 5.439 5.82 9.230 10.13 8.09 
36 2.783 2.961 2.82 8.257 7.356 7.30 
37 2.579 3.123 2.70 7.801 7.259 9.77 
38 2.705 3.698 2.71 7.883 8.834 6.98 
2: 5.736 2.603 5.025 3.629 5.83 2.70 9.184 7.852 8.762 8.615 10.92 9.77 

41 5.821 5.065 5.80 9.181 8.915 8.09 
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Table 46 (Cont'd) 

Truss 
Member No. (A) St] 

ACCESS 1 
0.5 x 2 

Final Cross Sectional Area (in2) ~~ 
I 

i 

98 COllStri 

NEWSUMT- 
0.05 x 1 

nt s ..Wx ~. 
Ref. 83 

Berke-Khot 

(B) Stress 
-ACCESS 1 

0'.5 x 2 

& Stiffne 
NEWSUMT 

0.05 x 1 

I Constraints 
Ref. 83 

Berke-Khot' 

42 16.45 15.96 16.60 25.23 24.67 24.61. 
43 18.80 18.33 18.99 27.07 26.54 24.54 
44 11.01 11.02 11.25 19.35 19.39 19.78 
45 13.40 13.40 13.66 21.18 21.23 21.63 
46 11.42 11.63 11.60 16.81 17.13 17.19 
47 5.961 6.158 6.03 12.65 12.76 12.98 
48 12.16 11.97 12.24 18.55 18.31 18.09 
49 14.25 14.07 14.40 19.91 19.98 19.67 
50 7.240 7.389 7.26 6.650 6.772 6.73 
51 7.416 7.024 7.85 5.758 5.797 7.49 
52 5.501 5.423 5.62 8.128 7.812 9.50 
53 0.566 1.127 .Ol 3.642 3.354 0.01 
54 3.639 3.548 3.69 5.986 6.79 
55 9.631 8;982 9.97 11.93 

5.621 
11.02 8.90 

56 4.375 4.053 4.54 5.848 5.569 3.80 
57 0.310 0.985 .03 1.691 2.316 3.38 
58 0.051 0.498 .Ol 0.010 0.397 .Ol 
59 0.125 0.543 .Ol 0.010 0.344 .Ol 
60 0.010 0.013 .Ol 0.010 0.036 .Ol 
61 0.010 0.018 .Ol 0.010 0.057 .Ol 
62 0.010 0.068 .Ol 0.010 0.069 .Ol 
63 0.015 0.246 .Ol 0.010 0.231 .Ol 

Final 

Weight (lb) 

Analyses 

Needed 

4976.0 

14 

5007.8 

10 

5034.5 

50 

6120.9 6152.8 6159.3 

13 9 50 
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Table 47 

Iteration History Data for Problem 7 
63-Bar Truss Wing Carry-Through Structure 

No. of 
Analyses 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

: 

;8 

49 

50 

(see Section 4.214 and Fig. 18) 

Weight (lb) - _ 

14264.3 

9352.6 

7079.7 

5997.6 

5483.4 

5230.2 

5104.6 

5042.2 

5009.8 

4992.5 

4983.1 

4982.2 

4978.4 

15868.2 

7864.1 

5706.2 

5205.4 

5083.7 

5025.4 

5010.7 

5008.8 

5007.8 

ts Only 
Ref. 83 

Berke-Khot 

30214.0 

6360.0 

5886.0 

5615.0 

5385.0 

5262.0 

5255.0 

5284.0 

5272.0 

5239.0 

5201.0 

5164.1 

5131.8 

5104.6 

5082.3 

5064.1 

5049.3 

5049:7 

5051.5 

5053.2 

: 

5oi7.9 

5036.2 

5034.5 

13022.8 

9550.6 

7544.2 

6806.8 

6456.7 

6284.9 

6201.5 

6160.4 

6159.9 

6140.6 

6123.8 

6120.9 

15868.2 

8172.5 

6633.4 

6287.1 

6251.4 

6158.4 

6154.6 

6152.8 

-&strafqts 
Ref. I83 

Berke-Khot 

30214.0 

7577.0 

6884.0 

$928.0 

6803.0 

6609 .O 

6473.0 

6388.0 

6333.0 

6292.5 

6262.6 

6240.5 

6230.7 

6215.7 

6220.1 

6258.7 

6286.3 

6300.4 

6301.7 

6296.0 

: 

6156.8 

6159.6 

6159.3 



Table 48 

CST Element Descriptions (Model 2) for 
M-Element Wing Box Example 

I 

CST D.V. Initial Thickness Thickness Config. ' Pth Qth $h Side 
Member Linking Thickness Upper Lower Group ' Node Node Node Constraint 

No. Group No. Limit Limit No. No. No. No. Code 

i b(i) tp' (in.) .ti"' (in.) tf) (in.) w> 1 

1 1 0.1960 1:oo 0.020 1 1 2 3 -1 

2 1 0.1960 1.00 0.020 1 4 3 2 -1 

3 2 0.1960 1.00 0.020 1 3 4 5 -1 

4 2 0.1960 1.00 0.020 1 6 5 4 -1 

5 3 0.1960 1.00 0.020 -2 5 6 7 -1 



Table 49 

Member 

No. 

i 

TRUSS 

1 

2 

3 

4 

5 

CST 

1,2 

394 
5 

SSP 

1 

2 

3 

4 

5 

6 

7 

8 

Final 

Weight (lbs) 

Analyses 

Needed 

r 

Final Designs for Problem 8 
18-Element Wing Box 
(see Section 4.3.1) 

8C 
CST Model 
Shear Webs 

Ai(in2) 

Final Designs 
ACCESS 1 

8A 8B 
CST Model 1 CST Model 

SSP SSP 

Ai(in2) Ai(in2) 

4.045 3.151 2.229 

0.1001 0.1000 a.0001 

0.1001 0.1000 0.1001 

0.1330 0.2324 0.3202 

0.1002 0.1000 0.1001 

ti(in) ti(in) 

0.08286 0.08641 

0.05363 0.05733 

0.03786 0.03932 

Ti(in) 

0.3636 

-ci(in) 

0.3851 

0.2236 0.2152 

0.1310 0.1361 

0.1156 0.1004 

0.09166 0.09113 

0.02000 0.02000 

0.02000 0.02000 

0.03096 0.03090 

ti(in) 

0.1093 

0.05911 

0.04098 

Ti(in) 

0.09345 

0.09437 

0.07687 

0.07293 

0.07570 

0.02001 

0.02001 

0.02804 

357.82 402.97 403.35 

9 11 9 

Ref. 34 
Gallatly 
& Berke 

Ai ( in3 Ai(& 

0.6505 1.0431 

0.1001 0.1036 

0.2366 0.3508 

0.2352 0.3315 

0.1001 0.1035 

ti ( in> ti ( in> 
0.1328 **0.1441 

0.0702 **o .0599 

0.0449 0.0435 

-ci(in) Ti (in> 

0.0876 0.0876 

0.0889 0.0895 

0.0808 0.0664 

0.0768 0.0553 

0.0815 0.0537 

0.0200 0.0219 

0.0200 0.0215 

0.0337 0.0256 

387.67 389.8 

4 *** 193 

Ref. 21 
Gallatly* 

* 
The original design obtained by Gallatly was scaled up so that the triangular 
idealization of the cover plates satisfies stress constraints. 

** 
Each portion was modelled by a quadrilateral element in the original work by 
Gallatly. 

***Subsequent iterations give heavier designs as shown in Table 50. 
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No. of 
Analyses 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

,Table 50 

Iteration History for Problem 8 
18-Element Wing Box 

8A 
CST Model 1 

SSP 

Weight (lbs) 
&xEss 1 

T--T- CST Model 2 
SSP 

8C 
CST Model 1 
Shear Webs 

-~ 

585.066 

466.410 

422.779 

408.848 

404.744 

403.516 

403.118 

402.966 

553.876 

472.150 

424.312 

412.152 

407.856 

405.716 

404.608 

403.822 

403.542 

403.354 

565.344 

422.770 

378.480 

366.354 

361.926 

359.776 

358.546 

357.824 

Ref. 34 
Gallatly 
& Berke 

593.44 

407.09 

388.95 

387.67 

387.90 

387.91 

387.68 

387.85 

387.97 

388.07 

388.15 

388.14 

388.23 

388.26 

388.28 

1 
Ref.. 21 
Gallatly 
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Node No. 
X Y Z 

(inches) (inches) (inches) 

1 0.0 300.0 10.00 
2 0.0 250.0 15.00 
3 0.0 185.0 13.00 
4 0.0 100.0 5.000 
5 100.0 258.3 8;58333 
6 100.0 214.2 12.8333 
7 100.0 157.2 11.0833 
8 100.0 83.33 4.33333 
9 190.0 220.8 7.36833 

10 190.0 181.9 10.8833 
11 190.0 132.1 9.35833 
12 190.0 68.33 3.73333 
13 260.0 191.7 6.31667 
14 260.0 156.8 9.36667 
15 260.0 112.6 8.01667 
16 260.0 56.67 3.26667 
17 325.0 164.6 5.396 
18 325.0 133.5 7.958 
19 325.0 94.54 6.771 
20 325.0 45.83 2.833 
21 385.0 139.6 4.546 
22 385.0 112.0 .6.658 
23 385.0 77.84 5.621 
24 385.0 35.83 2.433 
25 440.0 116.7 3.767 
26 440.0 92.33 5.467 
27 440.0 62.53 4.567 
28 440.0 26.67 2.067 
29 490.0 95.83 3.058 
30 490.0 74.42 4.383 
31 490.0 48.62 3.608 
32 490.0 18.33 1.733 
33 535.0 77.08 2.421 
34 535.0 58.29 3.408 
35 535.0 36.09 2.746 
36 535.0 10.83 1.433 
37 570.0 62.50 1.925 
38 570.0 45.75 2.650 
39 570.0 26.35 2.075 
40 570.0 5.00 1.200 
41 600.0 50.00 1.500 
42 600.0 35.00 2.000 
43 600.0 18.00 1.500 
44 600.0 0.00 1.000 

Table 51 

Nodal Coordinates for 
150(130)-Element Swept Wing 

(see Fig. 21j , 
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Table 52 

Truss Element Description for 
150(13O)--Element Swept Wing 

Cross Sectional Area Data for All Elements 

Ato) Initial Design i = 0.02 in2 (0.1292 ca) 

Upper Limit 00 
Ai = 1.50 in2 (9.6774 cra2) 

I Lower Limit (L) 
Ai - 0.01 in2 (0.0645 

Member 
No. 
i 

DV Linking Config. 
Group No. Group No. 

b(i) fi(i) 

Pth Node 
No. 

I Qth Node. 1 Side 
nt No. 

I 

Constrati 
Code 

1 1 1 1 5 +2 

2 2 2 5 9 I 

3 3 3 9 13 

4 4 4 13 17 

5 5 5 17 21 

6 5 6 21 25 

7 6 7 25 29 
8 6 8 29 33 

9 7 9 33 37 

10 7 10 37 41 

11 8 11 3 7 

12 9 12 7 11 

13 10 13 11 15 

14 11 14 15 19 

15 12 15 19 23 

16 12 16 23 27 

17 13 17 27 31 

18 13 18 31 35 

19 14 19 35 39 

20 14 20 39 43 
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Table 53 

CST Element Description for 
l50(130)-Element Swept Wing 

Thickness Limits for All Elements; 

Upper Limit m 
% - Not Assigned 

Lawer Limit a) 
% - 0.02 in.(0.508 mm) 

Initial Thickness Data 

-DesignI 

I 

Elements 1 - 24 (0) 
5 = 0.20 in. (5.08~~~) 

25 -60 ty)= 0.10 in. (2.54mm) 

Design II All Elements (0) 
5 = 0.30 in. (7.62mm) 

Member DV Linking 
No. I Group No. I 

Config. , 
Group No. Pth Rth 

i b(i) Node No. Node No. Node No. 

1 

6 

2 

7 

3 

8 

5 
lfl -- 

9 2 9 6 7 

10 2 10 11 10 

11 2 11 7 8 

12 
I 

2 
I 

12 
I 

12 
I 

11 

13 3 13 9 10 

14 3 14 I 14 13 

15 3 15 10 11 

16 .3 16 15 14 

17 3 17 11 12 

18 3 18 16 15 

19 4 19 13 14 

20 4 20 18 17 

21 4 21 14 15 

5 

2 

6 

3 

7 

4 

9 
6 

10 

7 

11 

8 

13 

10 

14 

11 

15 

12 

17 

14 

18 

Side 
Constraint 

Code 

-1 

I 
'I 

I 
I 
I 

I 
I 

I 
I 
I 
I 
I 

I 

I 

I 
I 
I 
I 
I 

-1 
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Table 53 (Conttd) 

Member DV Linking Config. 
Connectivity Data 

Side 
No. Group No. Group No. Pth Qth j$h Constraint 

i b(i) a(i) Node No. Node No. Node No. Code 

22 4 22 19 18 15 -1 

23 4 23 15 16 19 I 
24 4 24 20 19 16 I 
25 " 5 25 17 18 "'21 

26 5 26 22 21 18 I 

27 5. 27 18 19 22 I 

28 5 28 23 22 19 I 
29 5 29 19 20 23 I 

30 5 30 24 23 20 I 
31 5 31 21 22 25 I 
32 5 32 26 25 22 I 
33 5 33 22 23 26 I 

34 5 34 27 26 23 I 

35 5 35 23 24 27 I 
36 5 36 28 27 24 

37 25 26 29 I 37 6 
38 6 38 30 29 26 I 

39 6 39 26 27 30 I 

40 6 40 31 30 27 I 

41 6 41 27 28 31 I 
42 6 42 32 31 28 I 
43 6 43 29 30 33 I 
44 6 44 34 33 30 I 
45 6 45 30 31 34 
46 6 46 35 34. 31 I 
47 6 47 31 32 35 I 

48 6 48 36 35 32 I 
49 7. 49 33 34 37 I 
50 7 50 38 37 34 I 
51 7 51 34 35 38 I 
52 7 52 39 38 35 -I 

53 7 53 35 36 1 39 -1 
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Table 53 (Cont'd) 

Member Member 
No. No. 

i i 

54 54 

55 55 

56 56 

57 57 

58 58 

59 59 

60 I 60 

DV Linking DV Linking Config. Config. 
Group No. Group No. Group No. Group No. 

b(i) b(i) W) W) 

54 54 40 39 36 

55 55 37 38 41 

56 56 42 41 38 

57 57 38 39 42 

58 58 43 42 39 

59 59 39 40 43 

60 60 44 43 40 

Side 
Constraint 

Code 

.il 
I 
I 
I 
I 

c 
-1 
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Table 54 

SSP Element Description for 
l50(130) Element Swept Wing 

~- -- 
Member 

No. 
i 

Design II 

DV Linking 
Group No. 

b(i) i 

Configuration 
Group No.' 

a(i) 

1 1 1 

2 1 2 

3 1 3 

4 1 4 

5 2 5 

6 2 6 

7 2 7 

8 2 8 

9 2 9 

10 2 10 

11 3 11 

12 3 12 

13 3 13 

14 3 14 

15 4 I.5 

16 4 16 

17 4 17 

18 4 18 

19 4 19 

20 4 20 

21 5 21 

22 5 22 

Thickness Limits for All SSP Elements 

Upper Limit (u) 
3 = Not Assigned 

Lower Limit OJ 
=i = 0.02 in.(O.S08mm) 

Initial Thickness Data for All SSP Elements 

Design I = 0.20 in:,(S.O8mm) 

(0) 
=i = 0.15 in; (3.8&n) 

l- 

J 

ConnectiT 
Pth 

Node No. 
v 
Node No. 

1 

5 

9 

13 

17 

21 

25 

29 

33 

37 

2 

6 

10 

14 

18 

22 

26 

30 

34 

38 

3 

7 

5 

9 

13 

1P 

21 

25 

29 

33 

37 

41 

6 

10 

14 

18 

22 

26 

30 

34 

38 

42 

7 

11 

l- Side 
Constraint 

Code 

-1 

I 
I 

I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 
-1 
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Table 54 (Cont'd) 

Member DV Linking Configuration r Connectivity Data Side 
No. Group No. Group No. Pth Qth Constraint 

i b (0 fi(f) Node No. Node No. Code 

23 5 23 11 15 -s 
24 5 24 15 19 I 

I 
25 6 25 19 23 

I 
26 6 26 23 27 I 
27 6 27 27 31 

I 
28 6 28 31 35 
29 6 29 35 39 I 

30 6 30 39 43 I 

I 
31 7 31 4 8 I 
32 7 32 8 12 I 
33 7 33 12 16 I 
34 7 34 16 20 I 
35 8 35 20 24 

36 8 36 24 28 
I 
I 

37 8 37 28 32 I 
38 8 38 32 36 I 
39 8 39 36 40 

I 
40 8 40 40 44 I 
41 9 41 5 6 

I 
42 9 42 6 7 

I 

43 9 43 7 8 I 
44 9 44 9 10 I 
45 9 45 10 11 I 

46 9 46 11 12 I 

47 9 47 13 14 48 9 48 14 15 I' 

49 9 49 15 16 I 
50 10 50 17 18 I 

51 10 51 18 19 I 
52 10 52 19 20 I 

53 10 53 21 22 1 
54 10 54 22 23 -1 



Table 54 (Cont'd) 

Member 
No. 

i 

DV Link.ing 
Group No. 

b(i) 

Configuration 
Group No. 

E(i) 
-._ -.- ~- - 

- 
I Connectt 

Pth 
Node No. Node No. 

55 10 55 23 24 

56 10 56 25 26 

57 10 57 26 27 

58 10 58 27 28 

59 11 59 29 30 

60 11 60 30 31 

61 11 61 31 32 

62 11 62 33 34 

63 11 63 34 35 

64 11 64 35 36 

65 11 65 37 38 

66 11 66 38 39 

67 11 67 39 40 

68 11 68 41 42 

69 11 69 42 43 

70 11 70 43 44 

Side 
Constraint 

Code 

7 
I 
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111 1.11 I I I I I I I1.1.1 ..I m--m I I , ..-. - .-. . .._-.--.-..--- 

Table 55 

Displacement Boundary Conditibns for 
150(130)-Element Swept Wing 

(see Fig. 21) 

Boundary b.c. Code b.c. Code b.c. Code 

Node No. for Ux for U 
Y 

for Uz 

1 +1 +1 +1 

2 +1 +1 +1 

3 +1 +1 +1 

4 +1 +1 +1 

262 



Table 56 

Element Material Properties for 
150(130)-Element Swept Wing 

For All Elements of All Element Types; 

Stress,Upper Limit p = 25000 psi (17237 N/cm2) 

Stress Lower Limit CL) 
OR =-25000 psi (-17237 N/cm2) 

Specific Weight p!t = 0.096 lbs/in3(2.6573 g/cm3) 

Modulus of Elasticity ER = 10.6~10~ psi(7.3084~10~ N/cm2) 

Poisson's Ratio % = 0.3 
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Table 57 

Load Condition Data for 
l50(130)-Element.Swept Wing 

For all nodes, px = 0.0 and P i 0.0 
Y 

Node P 

No. (lL3) 

Load Condition 1 

5 1282.0 19 1453.0 

6 2581.0 20 1057.0 

7 3398.0 21 459.0 

8 2380.0 22 958.0 

9 978.0 23 1251.0 

10 2013.0 24 852.0 

11 2593.0 25 362.0 

12 1764.0 26 756.0 

13 727.0 27 986.0 

14 1386.0 28 671.0 

15 1906.0 29 282.0 

16 1297.0 30 589.0 

17 570.0 31 768.0 

18 1190.0 32 522.0 

Load Condition 2 

5 2361.0 19 1025.0 

6 3876.0 20 355.0 

7 2308.0 21 843.0 

8 793.0 22 1374.0 

9 . 1772.0 23 825.0 

10 2895.0 24 284.0 

11 1705.0 25 665.0 

12 582.0 26 1092.0 

13 1310.0 27 651.0 

14 2135.0 28 224.0 

15 1258.0 29 518.0 

16 433.0 30 851.0 

17 1047.0 31 508.0 

18 1719.0 32 175.0 

264 
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33 206.0 

34 431.0 

35 563.0 

36 383.0 

37 144.0 

38 302.0 

39 395.0 

40 269 .O 

41 62.0 

42 129.0 

43 169.0 

44 116.0 

33 402.0 

34 646.0 

35 398.0 

36 154.0 

37 311.0 

38 482.0 

39 306.0 

40 135.0 

41 133.0 

42 206.0 

43 131;o 

44 58.0 

- 



Initial Design I 
No Spar Caps 

9B 

II 
No Spar, Caps 

I II 

Truss 

1 
2 

2 . 
5,6 
7,8 
9,lO 
11 
12 
13 
14 

l5,16 
17,18 
19,20 

L 

ixL2 in.2 
0.01001 0.01002 
0.01001 0.01002 
0.02421 0.02559 
0.02868 0.01485 
0.01000 0.01585 
0.02004 0.01725 
0.01004 0.01002 
0.2918 0.2727 
0.06336 0.09786 
0.05966 0.08638 
0.07223 0.1102 
0.07242 0.08050 
0.03183 0.06264 
0.01000 0.01001 

CST in. in. in. in. 
l- 6 0.2033 0.2039 0.2013 0.2020 
7 - 12 0.1773 0.1777 0.1765 0.1766 

13 - 18 0.1562 0.1569 0.1556 0.1561 
19 y 24 0.1288 0.1296 0.1281 0.1288 
25 - 36 0.1096 0.1153 0.1098 0.1146 
37 L48 0.09276 0.1027 0.09352 0.1023 
49 -60 0.02000 0.02000 0.02000 0.0200 

SSP in. 
1-4 0.02912 
5 -10 0.02001 

11 -14 0.04795 
15 -20 0.05293 
21 -24 0.2074 
25 - 30 0.1122 
31 - 34 0.09017 
35 -40 0.05539 
41 - 49 0.03194 
50 -58 0.07131 
59 - 70 0.1279 

0.0292 0.0281;:. 
0.02177 0.02000 
0.04439 0.04850 
0.03531 0.05080 
0.2089 0.2076 
0.03732 0.1043 
0.09038 0.,08992 
0.07999 0.05634 
0.03255 0.03186 
0.04911 0.06871 
0.06435 0.1179 

in. 
0.029,21 
0.02171 
0.04425 
0.03587 
0.2092 
0.03300 
0.08976 
0.07837 
0.03257 
0.04759 
0.06160 

Final 
Weight (lbs) 2464.201bs 2462.821bs 2463.121b" 

Analyses 
Needed 8 8 9 9 

Table 58 

Final Designs for Problem 9 
150(130)-Element Swept Wing 

(see Section 4.3.2 ) 
I 9A I 9c 9D 
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II I . .I ~ 
I 

Table 59 

Iteration History for Problem 9 
150(130>&lement Swept Wing 

Problem 9A 9B 9c 9D 

Initial Design I II I II 
No Spar Caps No Spar Caps 

lbs 
1 2992.18 3381.401bs 2968.121bs 3351.281bs' 

2 2584.38 2701.50 2567.02 2647.94 

3 2499.98 252'8.02 2496.10 2514.66 

4 2473.40 2480.20 2474.08 : 2478.78 

5 2469.12 2468.81 2467.74 : 2467.94 

6 2466.50 2463.46 2465.04 2463.92 

7 2464.20 2462.81 2463.64 2462.06 

8 2463.12 2460.84 

9 

10 

266 



Table 60 

Nodal Coordinates for 
133-Element Delta Wing 

(see Fig. 27) 

Node No. 

1 0.0 960.0 6.468 
2 0.0 840.6 11.47 
3 0.0 720.0 15.01 
4 0.0 600.0 17.08 
5 0.0 480.0 17.69 
6 0.0 360.0 16.84 
7 0.0 240.0 14.52 
8 0.0 120.0 10.74 
9 0.0 0.0 5.492 

10 100.0 840.0 6.385 
11 100.0 720.0 11.14 
12 100.0 600.0 14.26 
13 100.0 480.0 15.76 
14 100.0 360.0 15.62 
15 100.0 240.0 13.86 
16 100.0 120.0 10.46 
17 100.0 0.0 5.434 
18 200.0 720.0 6.281 
19 200.0 600;0 10.72 
20 200.0 480.0 13.33 
21 200.0 360.0 14.09 
22 200.0 240.0 13.02 
23 200.0 120.0 10.11 
24 200.0 0.0 5.362 
25 300.0 600.0 6.146 
26 300.0 480.0 10.19 
27 300.0 360.0 12.12 
28 300.0 240.0 11.94 
29 300.0 120.0 9.660 
30 300.0 0.0 5.268 
31 400.0 480.0 5.966 
32 400.0 360.0 9.463 
33 400.0 240.0 10.49 
34 400.0 120.0 9.051 
35 400.0 0.0 5.143 
36 500.0 360.0 5.710 
37 500.0 240.0 8.441 
38 500.0 120.0 8.193 
39 500.0. 0.0 4.966 
40 600.0 240.0 5.322 
41 600.0 120.0 6.887 
42 600.0 0 :o 4.696 
43 730.0 84.0 4.360 
44 730.0 0.0 3.959 

I X 
inches 

Y Z 
inches inches 
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Member 
No. 

i 
T Des 

L 
I 

b(I) (i) 

g Variable 
king Dat 

b(!(i) 

r NC ! Numb 

III 

b(')(i) 

Config. 
Group 

$i 

Pth Qth $h 

Node Node Node 

1 1 1 1 1 1 2 10 
2 1 1 1 2 2 11 10 
3 1 1 1 1 2 3 11 
4 1 1 1 1 10 11 18 
5 2 2 2 2 3 12 11 
6 2 2 2 1 3 4 12 
7 2 2 3 2 4 13 12 
8 2 2 3 1 4 5 13 
9 3 3 4 2 5 14 13 

10 3 3 4 1 5 6 14 
11 3 3 5 2 6 15 14 
12 3 3 5 1 6 7 15 
13 4 4 6 2 7 16 15 
14 4 4 6 1 7 8 16 
15 4 4 7 2 8 17 16 
16 4 4 7 1 8 9 17 
17 2 5 8 2 11 19 18 
18 2 5 8 1 11 12 19 
19 2 5 9 2 12 20 19 
20 2 5 9 1 12 13 20 
21 3 6 10 2 13 21 20 
22 3 6 10 1 13 14 21 
23 3 6 11 2 14 22 21 
24 3 6 11 1 14 15 22 
25 4 7 12 2 15 23 22 
26 4 7 12 1 I.5 16 23 
27 4 7 13 2 16 24 23 
28 4 7 13 1 16 17 24 
29 5 8 14 1 18 19 25 
30 5 8 14 2 19 26 25 
31 5 8 14 1 19 20 26 
32 5 8 14 1 25 26 31 
33 6 9 15 2 20 27 26 

Table 61 

CST Element Description for 
133~Element Delta Wing 

Thickness Data for All Elements 

I (0) 
Initial Design 5 - 0.10 Fn. (2.54mm) 

II (0) 
3 = 0.15 in. (3.81mm) 

Upper Limit (Lo 
% = Not assigned 

Lower Limit CL) 
% = 0.02 in. (0.5081mn) 

i 
Side 

Constr. 
Code 

2.68 



Membe 
No. 

i 

- 

34 
35 
36 
37 
38 

2 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

!r 
I 

Table 61 (Cont'd) 

Design Variable 
L 

I 

b(I)(i) 

III 

b(')(i) 

Config. 
Group 

a::; 
Pth Qth Rth 

Node Node Node 

6 9 15 1 20 21 27 
6 9 16 2 21 28 27 
6 9 16 1 21 22 28 
7 10 17 2 22 29 28 
7 10 17 1 22 23 29 
7 10 18 2 23 30 29 
7 10 18 1 23 24 30 
6 11 19 2 26 32 31 
6 11 19 1 26 27 32 
6 11 20 2 27 33 32 
6 11 20 1 27 28 33 
7 12 21 2 28 34 33 
7 12 21 1 28 29 34 
7 12 22 2 29 35 34 
7 12 22 1 29 30 35 
8 13 23 1 31 32 36 
8 13 23 2 32 37 36 
8 13 23 1 32 33 37 
8 13 23 1 36 37 40 
9 i4 24 2 33 38 37 
9 14 24 1 33 34 38 
9 14 25 2 34 39 38 
9 14 25 1 34 35 39 
9 15 26 2 37 41 40 
9 15 26 1 37 38 41 
9 15 27 2 38 42 41 
9 i5 27 1 38 39 42 

10 16 28 3 40 41 43 
10 16 28 4 41 44 43 
10 16 28 5 41 42 44 

T Node Numbers 
Side 

Constr. 
Code 

-1 

I 
I 

I 

I 

I 

1 

I 

I 

i 

I 

I 

I 

I 

' I 

I 

I 

I 
1 

-1 



Table 62 

SSP Element Description for 
133-Element Delta Wing 

Member 
No. 

i 

Design Variable 
Link-l 

I 

b(')(i) 

1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 2 
15 2 
16 2 
17 2 
18 2 
19 2 
20 2 
21 2 
22 2 
23 3 
24 3 
25 3 
26 3 
27 3 
28 3 
29 4 
30 5 
31 5 

Thickness Data for All Elements ' 

I p) 
i = 0.15 in. (3.81Omm) 

Initial Design 
II (0) 

5 = 0.12 in. (3.302mm) 

Upper Limit $J) = not 
i assigned 

Lower Limit CL) 
5 = 0.02 in. (0.508mm) 

-- 

: Data 
II 

b(=)(i) 
~___ 

1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 

2 
4 
4 
4 
5 
5 
5 
6 
6 
7 
8 
9 
9 

- 
I Config. 

Group 
No. 

--___ 
i 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

27Q 

Node N nber 

Pth 
Node 

- ___. 
10 
11 
12 
13 
14 
15 
16 
18 
19 
20 
21 
22 
23 
25 
26 
27 
28 
29 
31 
32 
33 
34 
36 
37 
38 
40 
41 
43 

2 
3 

11 

Q 
th 

Node 

11 
12 
13 
14 
15 
16 
17 
19 
20 
21 
22 
23 
24 
26 
27 
28 
29 
30 
32 
33 
34 
35 
37 
38 
39 
41 
42 
44 
10 
11 
18 

I Side 
Constr. 

Code 

-1 
I 

i 

I 
I 
I 
I 
I 

1 

I 
I 

I 
I 
I 

I 
I 
t 

-1 



Table 62 (ContQd) 

Member 
No. 

i 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

. 
Design Variable 

-Linki 
1. 

b(I)(i) 

6 
(; 
6 
7 

: 
7 
8 
8 
8 
8 
8 
9 
9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
10 
10 
11 
11 
11 
11 
11 
11 
11 
I2 
12 
12 
12 
12 
12 
12 

3 Data 
IX 

b(=)(i) 

10 
10 
11 
12 
12 
13 
13 
14 
14 
15 
I.5 
16 
17 
17 
18 
18 
19 
19 
20 
20 
21 

/ 21 
22 
22 
23 
24 
24 
25 
25 
26 
26 
27 
28 
28 
28 
28 
28 
28 
28 

r -I 
Config. 

Group 
No. 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

t; 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

l- Node Number 

Pth Q-ih 
Node Node 

4 
12 
i9 
5 

13 
20 
?6 

6 
i4 
21 
27 
32 
'7 
15 
22 
28 
33 
37 

8 
16 
23 
29 
34 
38 
41 
9 

17 
24 
30 
35 
39 
42 

1 
10 
18 
25 
31 
36 
40 

12 
19 
25 
13 
20 
26 
31 
14 
21 
2? 
32 
36 
15 
22 
28 
33 
37 
40 
16 
23 
29 
34 
38 
41 
43 
17 
24 
30 
35 
39 

1: 
10 
18 
25 
31 
36 
40 
43 
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Side 
Constr. 

-1 
I l 

I 
I 
I 
I 
i 
1. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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Table 63 

Displacement Boundary Conditions for 
1334Zleqent Delta Wing 

(see Fig. 27) 

Boundary b.c. Code b.c. Code b.c. Code 
Node No. for Ux for U 

Y 
for Uz 

1 +1 +1 +1 

2 +1 +1 +1 

3 +1 +1 +1 

4 +1 +1 +1 

5 +1 +1 +1 

6 +1 +1 +1 

7 +1 +1 +1 

8 +1 +1 +1 

9 +1 +1 +1 

Table 64 

Load Condition Data for 
133-Element Delta Wing 

No. of Load Conditions 1 

No. of Loaded Nodes 35 (all free nodes) 

Loaded Node Numbers 10,11,12,...43,44 

Load Components 

for all Loaded Nodes Px = 0.0 lbs. 

P = 0.0 lbs. 

= 8075.0. lbs. (35919.2 h) 
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Table 65 

Element Material Properties for 
133-Element Delta Wing 

For all elements in all element types; 

Stress Upper Limit (U) 
% - 125,000 psi (86,184 N/cm2) 

Stress Lower Limit p - -125,000 Psi (-86,184 Nhm2) 

Specific Weight f% - 0.16 lb/h3 (0.004429 kg/cm3) 

Modulus of Elasticity ER - 16.4 x lo6 psi(1.1307x10g N/cm2 

I Poisson's Ratio % = 0.3 
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Table 66 

Displacement Constraints for 133-Element Delta Wing 

No. of 
d.o.f.'s 

Constrained 

35 

No. 

I 

kht I 
Displ. 

Upper Limit Dir&tion 
X,Y.sZ 

Displ 
Const 

Code in. 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22' 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

3 2 

2 

14.0, 

T 
14.0 
28.0 

I 
28.0 
42.0 

1s 
30.0 
56.0 

56.0 -56.0 
70.0 -70.0 

I 
70.0 
84.0 
84.0 
84.0 

100.8 
100.8 

Displ. 
Lower Limit 

in. .. 

-14.0 

t 
-14.0 
-28..0 

I 
-28.0 
-42.0 

I 
-30.0 
-56.0 

-7d.o 
-84.0 
-8.4.0 
:84.0 

-100.8 
-100.8 
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Problem 
CST Model 

SSP Model 

Initial Design 

-4 
51.6 
7 s 8 
9 , 10 

11 , 'X2 
13 , 14 
15 ., 16 
17 , 18 
19 , 20 
21 , 22 
23 , 24 
25 , 26 
27 , 28 
29 - 32 
33 , 34 
35 , 36 
37 , 38 
39 , 40 
41 , 42 
43 , 44 
45 s 46 
47 , 48 
49 - 52 
53 , 54 
55 , 56 
57 , 58 
59 60 
61 L 63 

-i 

I 
I 
I 
T 

Table 67 

Final Designs for 
133-Element Delta Bing 

Thicknesses (in) 1 
10A 
II 

1OB 
I 

1oc 
II 

10D 
III 

I 

II 

I I 

I I I 

0.02000 0.02000 0.02000 0.02000 
0.02000 0.02000 0.02000 0.02000 
0.02000 0.02000 0.02000 0.02001 
0.1498 0.1368 0.1494 0.05171 
0.1498 0.1368 0.1494 0.2361 
0.1450 0.1353 0.1457 0.2134 
0.1450 0.1353 0.1457 0.02000 
0.02000 0.02000 0.02000 0.02000 
0.02000 0.02000 0.02000 0.02000 
0.1164 0.1368 0.1159 0.02888 
0.1164 0.1368 0.1159 0.1853 
0.1289 0.1353 0.1297 0.1943 
0.1289 0.1353 0.1297 0.02000 
0.02000 0.02000 0.02000 0.02000 
0.09088 0.08104 0.09022 0.02000 
0.09088 0.08104 0.09022 0.1364 
0.1223 0.1174 0.1232 0.1902 
0.1223 0.1174 0.1232 0.02000 
0.06518' 0.08104 0.06431 0.02000 
0.06518 0.08104 0.06431 0.08141 
0.1172 0.1174 0.1181 0.1885 
0.1172 0.1174 0.1181 0.02521 
0.03628 0.03961 0.03488 0.02000 
0.1074 0.09565 0.1081 0.1691 
0.1074 0.09565 0.1081 0.04288 
0.08406 0.09565 0.08406 0.08617 
0.08406 0.09565 0.08406 0.07335 
0.05036 0.04990 0.05028 0.04511 

10E " 
III 

II 

I -. 
0.02000 
0.02000 
0.02000 
0.05037 
0.2233 
0.2148 
0.02104 
0.02000 
0.02000 
0.03322 
0.1776 
0.1959 
0.02000 
0.02000 
0.02266 
0.1381 
0.1874 
0.02150 
0.02000 
0.08606 
0.1858 
0.02710 
0.02000 
0.1714 
0.04176 
0.08820 
0.07484 
0.04519 

Continued to the next page 
--. 
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Table 67 (Cont'd) 

.micknes$ (in) 

Problem ! ! ! : 10A 10B 1oc 

CST Model I II I I 11 
SSP Model I I .I I I 
Initial Design 

1 '- 7 
8 13 

14 -18 
19 - 22 
23 -25 
26 -27 

28 
29 

30 , 31 
32 , 33 

34 
2 35 36 
8 
8 

37 , 38 
l-l 39 , 40 , 
W 41 , 42 

5 44 43 45 , 
46 , 47 
48 , 49 
50 , 51 
52 , 53 
54 , 55 

56 
57 , 58 
59 , 60 
61 , 62 

63 
64 - 70 

II 

0.02000 0.02000 0.02000 
0.02000 0.02000 0.02000 
0.02000 0.02000 0.02000 
0.02000 0.02000 0.02000 
0.02172 0.02219 0.02161 
0.02172 0.02219 0.02161 
0.02172 0.02219 0.02161 
0.02001 0.02001 0.02001 
0.02001 0.02001 0.02001 
0.02001 0.02000 0.02001 
0.02001 0.02000 0.02001 
0.02000 0.02000 0.02001 
0.02000 0.02000 0.02001 
0.05958 0.06159 0.05960 
0.05958 0.06159 0.05960 
0.05958 0.06159 0.05960 
0.07531 0.08104 0.07506 
0.07531 0.08104 0.07506 
0.07531 0.08104 0.07506 
0.07347 0.07546 0.07366 
0.07347 0.07546 0.07366 
0.07347 0.07546 0.07366 
0.07347 0.07546 0.07366 
0.05702 0.05678 0.05714 
0.05702 0.05678 0.05714 
0.05702 0.05678 0.05714 
0.05702 0.05678 0.05714 
0.02000 0.02000 0.02000 

Final 
Weight (lb) 10742.24 10824.14 10741.50 9636.31 9521.22 

Analyses 
Needed 9 

I 

9 

I 

10D ___--. 
III pi.-- 

I ; ~- 
I 

0.02000 
0.02000 
0.02000 
0.02000 
0.02391 
0.02391 
0.02391 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.03702 
0.03702 
0.03702 
0.1049 
0.1049 
0. LO49 
0.08940 
0.08940 
0.08940 

~ 0.08940 
0.03033 
0.03033 
0.03033 
0.03033 
0.02000 

-L-P- 

- ~- - z- ~ 

10E 

III 

II 

I 

0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.03555 
0.04184 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.03903 
0.03116 
0.02000 
0.1012 
0.04810 
0.02000 
0.1056 
0.08814 
0.07648 
0.05479 
0.02000 
0.02000 
0.02000 
0.07340 
0.02000 

12 



. Table 68 

Iteration History for Problem 10 
133-Element Delta Wing 

Problem No. 

CST Model 

SSP Model 1(12) 

Initial Design 

No. of 
Analyses 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

r Weight (lbs) 

10A 

11(16)* 

II 

14871.40 15207.54 14946.32 

12061.76 12309.34 12210.22 

11169.82 11199.10 11153.64 

10848.26 10882.88 10812.32 

10774.66 10842.60 10764.38 

10754.16 10830.14 10749.08 

10747.34 10826.48 10743.14 

10742.24 10824.14 10741.50 

10B 

I(101 

I(=) 
I 

1oc 10D 10E 

11(16) 

I(121 
I 

111(28) 111(28) 

I(12) 11(28) 

I 

14689.76 

11827.41 

10545.80 

10082.38 

9851.14 

9694.20 

9658.88 

9640.82 

9637.64 

9636.18 

I 

14424.34 

11693.76 

10433.40 

9907.82 

9745.98 

9648.46 

9586.08 

9541.12 

9533.94 

9526.32 

9521.22 

1 

* 
Numbers in ( ) indicate the numbers of linked design variable 
groups. 
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Node No. 

1 
2 
3 

; 4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 4 
21‘ 
22 n 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

Table 69 

Nodal Coordinates for 
150(130) Element Swept Wing 

(see Fig. 21) 

X 
(meters) 

Y 
(meters) 

0.0 
0.0 
0.0 
0.0 
2.5400 
2.5400 
2.5400 
2.5400 
4.8260 
4.8260 
4.8260 
4.8260 
6.6040 
6.6040 
6.6040 
6.6040 
8.2550 
8.2550 
8.2550 
8.2550 
9.7790 

14.4780 

9.7790 
9.7790 

15.2400 

9.7790 
11.1760 
11.1760 
11.1760 
11.1760 
12.4460 
12.4460 
12.4460 
12.4460 
13.5890 
13.5890 
13.5890 
13.5890 
14.4780 
14.4780 
14.4780 

15.2400 0.8890 
15.2400 0.4572 
15.2400 0.0000 

7.6200 0.2540 
6.3500 0.3810 
4.6990 0.3302 
2.5400 0.1270 
6.5608 0.2180 
5.4407 0.3259 
3.9923 0.2815 
2.1166 0.1101 
5.6083 0.1856' 

1.7356 

4.6203 

0.1270 

4.8692 
3.9827 

3.3553 

1.2700 

2.8600 
1.4394 
4.1808 
3.3909 
2.4013 
1.1641 
3.5458 
2.8448 
1.9771 
0.9101 
2.9642 
2.3452 
1.5883 
0.6774 
2.4341 
1.8903 
1.2350 
0.4656 
1.9578 
1.4806 
0.9167 
0.2751 
1.5875 
1.1621 
0.6693 

Z 
(meters) 

0.0948 
0.1604 

0.2764 

0.2379 
0.2036 

0.2377 

0.0830 
0.1371 
0.2021 
0.1720 
0.0720 
0.1155 
0.1691 
0.1428 
0.0618 
0.0957 
0.1389 
0.1160 
0.0525 
0.0777 
0.1113 ~~~ 
0.0916 
0.0440 
0.0615 
0.0866 
0.0697 
0.0364 
0.0489 
0.0673 
0.0527 
0.0305 
0.0381 
0.0508 
0.0381 

-__-.0.0254 
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Table 70 

Node 
No. 

Load Condition Data for 
150(130) Element Swept Wing 

For all nodes Px = 0.0 and P =I 0.0 
Y 

pz 
Node P Node P 

(N) 
No. 

(N;1 
Nor 

(N; 

Load Condition 1 

2 
7 
8 
9 

10 
11 
12 
13 
14 
15 

-16 
17 
18 

5702.62 19 6463.27 
11480.9 20 4701.77 
15115.1 21 2041.73 
10586.8 22 4261.39 

4350.36 23 5564.72 
8954.27 24 3789.89 

11534.2 25 1610.26 
7846.66 26 3362,86 
3233.86 27 4385.95 
6165.23 28 2984.76 
8478.31 29 1254.40 
5769.34 30 2620.00 
2535.49 31 3416.23 
5293.38 32 2321.97 

Load Condition 2 

5 10502.3 19 4559.43 
6 17241.3 20 1579.12 
7 10266.5 21 3749.85 
8 3527.44 22 6111.86 
9 7882.25 23 3669.78 

10 12877.6 24 1263.29 
11 7584.22 25 2958.07 
12 2588.87 26 4857.46 
13 5827.17 27 2895.79 
14 9496.95 28 996.40 
15 5595.86 29 2304.18 
16 1926.08 30 3785.44 
17 4657.29 31 2259;70 
18 7646.49 32 778.44 

L 

- 

- 

33 916.33 
34 1917.18 
35 2504.35 
36 1703.67 
37 6405.44 
38 1345.14 
39 1757.05 
40 1196.57 
41 2757.90 
42 5738.21 
43 7517.50 
44 5159.94 

33 1788.19 
34 2873.55 
35 1770.39 
36 685.03 
37 1383.40 
38 2144.04 
39 1361.16 
40 600.51 
41 591.61 
42 916.33 
43 582.72 
44 258.00 

. 
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Table 71 

ha1 Designs for Problem 9 
150(130) Element Swept Wing 

(see Section 4.3.2) 

Problem No. 

Initial Design 

9A 9B I 9c I 9D 

I I II 

Truss 

1 
2 
3 
4 

5,6 
7.8 
9,lO 

11 
12 
13 
14 

15,16 
17.18 
19.20 

No Spar Caps 

CST 

l-6 5.1638 5.1791 5.1587 5.1308 
7-12 4.5034 4.5136 4.4831 4.4856 

13 - 18 3.9675 3.9853 3.9522 3.9649 
19 - 24 3.2715 3.2918 3.2537 3.2715 
25 - 36 2.7838 2.9286 2.7889 2.9108 
37 - 48 2.3561 2.6086 2.3754 2.5984 
49 -60 0.5080 0.5080 0.5080 0.5080 

6SP 

1 -4 0.7396 0.7447 0.7290 0.7419 
5 - 10 0.5083 0.5530 0.5080 0.5514 

11 -14 1.2179 1.1275 1.2319 1.1240 
15 -20 1.3444 0.8969 1.2903 0.9111 
21 -24 5.2680 5.3061 5.2730 5.3137 
25 - 30 2.8499 0.9479 2.6492 0.8382 
31 -34 2.2903 2.2957 2.2840 2.2799 
35 -40 1.4069 2.0318 1.4310 1.9906 
41 - 49 0.8113 0.8268 0.8092 0.8273 
50 -58 1.8113 1.2474 I.7452 1.2088 
59 - 70 3.2487 1.6345 2.9947 1.5646 

Final 
Mass (KG) 1117.74 1117.11 1117.25 1116.22 

Analyses 
lJeeded 8 I 8 

0.06458 0.06465 
0.06458 0.06465 
0.15619 0.16510 
0.18503 0.09581 
0.06452 0.10226 
0.12429 0.11129 
0:06477 0.06465 
1.88258 1.75935 
0.40877 0.63135 
0.38490 0.55729 
0.46600 0.71097 
0.46725 0.51935 
0.20535 0.40413 
0.06452 0.06458 

pd 

9 

t,(mm> 
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Table 72 

Iteration History ior Problem'9 
l50(130) Element Swept Wing 

~aet3 (KG) 

Problem 9A 9B 9c 9D 

Initial Design I II I II 

No Spar Caps No Spar Caps 

KG KG KG KG 

1 1357.23 1533.78 1346.32 1520.11 

2 1172.25 1225.38 1164.38 1201.08 

3 1133.97 1146.69 1132.21 1140.63 

4 1121.98 1125.00 1122.22 1124.35 

5 1119.97 1119.83 1119.35 1119.44 

6 1118.79 1117.41 1118.12 1117.61 

7 1117.74 1117.11 1117.49 1116.77 

,- 1117.; /, 1116.72 1; ,. /. 
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I Table.73 

, Nodal:Coordinates for 
133+Element Delta Wing 

:(see Fig. 27) 
/ 

Node No. 
.' I 

. x. 
', (mete&) I 

,I! 
haters) I heteZrs1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

O?Q 

d.0 
2.5400 

2.5400 
5.0800 

5.0800 
7.6200 

7.6200 
10.1600 

10.1600 
12.7000 

12.7000 
15.2400 

I 
15.2400 
18.5420 
18.5420 

24.3840 
21.3360 
18.2880 
15.2400 
12.1920 
9.1440 
6.0960 
3.0480 
0.0 

21.3360 
18.2880 
15.2400 
12.1920 
9.1440 
6.0960 
3.0480 
0.0 

18.2880 
15.2400 
12.1920 
9.1440 
6.0960 
3.0480 
0.0 

15.2400 
12.1920 
9.1440 
6.0960 
3.0480 
oio 

12.1920 
9.1440 
6.0960 
3.0480 
0.0 

r9.1440 
6.0960 
3.0480 
0.0 
6.0960 
3.0480 
0.0 
3.0480 
0.0 

0.1643 
0.2913 
0.3813 
0.4338 
0.4493 

t 
0.4277 
0.3688 
0.2728 
0.1395 
0.1622 
0.2830 
0.3622 
0.4003 
0.3967 
0.3520 
0.2657 
0.1380 
0.1595 
0.2723 
0.3386 
0.3579 
0.3307 
0.2568 
0.1362 
0.1561 
0.2588 
0.3078 
0.3033 
0.2454 
0.1338 
0.1515 
0.2404 
0.2664 
0.2299 
0.1306 
0.1451 
0.2144 
0.2081 
0.1261 
0.1352 
0.1749 
0.1193 
0.1107 
0.1006 
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- 

No. of 
d.o.f.'s 

Constrained 

35 

Table 74 

Displacement Constraints for 133 Eliment Delta Wing 

Node Direction 
No. XDY #= 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

Displ. 
Constraint 

Code 

2 

Displ. 
Upper Limit 
~~ cm> 

0.3556 
I 

v 
0.3556 

, 0.7112 

f 
0.7112 
1.0668 

1 
1.0668 
1.4224 

I 
1.4224 
1.7780 

I 
1.7780 
2.1336 

t 
2.1336 
2.5603 
2.5603 

Displ. 
Lower Limit 

Cm> 

-0.3556 

t 
-0.3556 
-0.7112 

-0.7112 
-1.0668 

-1.0668 
-1.4224 

I 
-1.4224 
-1.7780 

I 
-1.7780 
-2.1336 

+ 
-2.1336 
-2.5603 
-2.5603 
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Table 75 

Final Designs gor 
133-Element Delta Wing 

Continued to the next page 
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Table 75 (Cont'd) 

Thickness -ci (mm> 

Problem No. 10A 10B 1oc 10D 10E 

CST Model II I II III III 

SSP Model I I I I II 

Initial Design II I I 1, I 

1 -7 0.508 0.508 0.508 '0. 08 0.508 
8 - 13 

14 -18 I I 1 1 19 - 22 0.508 0.508 0.508 0.508 
23 -25 0.552 0.564 

I 
5.489 0.508 

26 -27 t 
0.607 

1; 

t' l 

3 ;g;; 1; 

t 

1;. ::fz 

4 41 : 42 
iI 3; 20” 1:513 1:564 1.514 . 0.940 0.508 

‘:I’ 

0:991 

4; 
t f t t 0.791 

w 1.513 1. 64 1.514 0.940 0.508 
ti 44 45 

ccl , 

1.9.13 2.058 1.907 2.664 
46 47 , 
48 49 f i t 1.913 2. 58 1.907 i 2.570 

1.222 
, 2.664 0.508 

50 51 , 1.866 1.917 1.871 2.271 2.682 
52 53 , 
54 55 

, 

1 1 1 1 2.239 
1.943 

56 1.866 1.917 1.871 2.271 1.392 
57 58 , 1.448 1.442 1.451 0.770 0.508 

59 60 s 
61 62 

6; 
64 - 70 

Final 
Mass (KG) 

Analyses 
Needed 

1 1 1 I t 
0.508 

1.448 1.442 1.451 0.770 1.864 
0.508 0.508 0.508 0.508 0.508 

4872.59 4909.74 4872.26 4370.89 4318.75 

9 9 9 11 12 
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Table 76 

Iteration History for Problem 10 
1334lement Delta Wing 

I. 
~8 (KG) 

.I 
'roblem No. 10A 10B 1oc 10D 1OE 

iT Model X1(16)* I(10) 11(16) III(28) III(28) 

iP Model I(12) Ia I(12) IW) II(28) 

1itial Df?slgn II I I I 1 . 

No. of 
Analyses 

1 6745.55 6898.02 6779.53 6663.16 6542.77 

2 5471.12 5583.42 5538.46 5364.82 5304. 20 

3 5066.54 5079.82 5059.20 4783.49 4732.51 

4 4420.68 4936.39 4904.38 4573.29 4494.11 

5 4887.30 4918.12 4882.64 4468.40 4420.70 

6 4878.00 4912.46 4875.70 4397.21 4376.46 

7 4874.91 4910.80 4873.00 4381.19 4348.17 

8 4872.59 4909.74 4872.26 4373.00 4327.78 

9 4371.56 4324.52 

10 4370.89 4321.06 

11 4318.75 

* 
Numbers in ( ) indicate the numbers of linked design 
variable groups. 
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Table 77 
I,' 

Initial Weights of All E,x&le Probleh 
v . 

Problem Description Weight*k(lbs) 
No. TRUSS ~."' C;ST ) SSP Total 

1 1 10 Bar Truss without 4196.46 ,' - ,,4196;.46 
2 

i 

Displacement Constraints ', ;,; ,' i , 
_. 

:, : * . 
,3 i0 Bar Truss with 12589.4 A 

;. 
-' -'.' 12589.4 ! 

'4 Displacement Constraints' " '. - .. 
II. 

5 25 Bar Truss 661.44O.t : - ,, : 661.4c;Ot 
(1468.77) * - (1468.7;) 

6 72 Bar Truss 853.087 - , - 853.087 

7 63 Bar Wing 11104.7t 11104.7t 
Carry-Through (60432.1) - (60432.1) 

8 18 Element Wing Box 64.6800 646.930 224.468 936.078 

Swept Wing 
Design I with Spar Caps 4.888 2442.00 835.092 3281.9Ei 

9 Design I without Spar Caps 2442.00 835.092 3277.08 
'Design II with Spar Caps 4.888 4332.56' 626.318 ' 4963.78 

Design II without Spar Caps 4332.56 626.318 4958.88 

Delta Wing 

10 Design I 12218.50 3581.58 15800.08 

Design II 18327.76 2865.26 21193.00 

I 
I. 

* 
Weights for problems 8 through 10 are for one wing. 

t Initial designs are infeasible and scaled up to the weight indicated in ( ). 
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Table 78 

CPU Times for Truss Examples 
(see Section 4.2) 

Problem Description Pre- Analyses. ODtimizer . Gross 
Processor Decompose Gradient Analyses Function Total 

Strut. No, K Total Evaluations -'Total 

1A NEWSW 0.1176 0.0149 0.3497 0.9972 0.6348 1.6241 2.8604 

1B NEWSUMT 0.1023 0.0161 0.3564 1.0279 0.6478 1.6849, 2.9296 

1c NEWSUIQ 0.1057 0.0174 0.3688 1.0471 0.6745 1.7276 3.0028 

1D NEWSUMT 0.1061 0.0149 0.3582 1.0374 0.6608 1.6941 2.9567 

10 2 NEWSUMI: 0.0985 0.0151 0.2354 0.6809 0.4719 1.3745 2.2783. 

Bar 2 CONMIN 0.0962 0.0134 0.1965 0.6012 0.2093 0.7308 1.5964 

3 NEWSUMZ 0.1163 0.0219 0.2580 0.8425 0.5237 1.4893 -2.5253 

3 D.P. NEWSUMX 0.1476 0.0122 0.2575 0.7845 0.5604 1.3451 2.3537 

3 CONMIN 0.1115 0.0211 0.2562 0.8303 0.8939 2.1371, 3.2304 

4 NEWSm 0.1211 0.0156 0.2311 0.7360 Cj.4822 1.3203 2.2968 

4 D.P. NEWSUM'I 0.1082 0.0101 0.2093 0.6706 0.4867 1.1432 2.0383 

4 CONMIN 0.1126 0.0143 0.1980 0.6146 0.9457 2.2541 3.1651 

25 5 NEWSUKC 0.2119 0.0865 0.5199 1.8697 0.3887 1.0175 3.1689 

Bar 5 CONGN 0.2043 0.0781 0.4720 1.6808 0.1355 0.4827 2.4663 

72 6 NEWSUHT 0.3587 0.6475 1.7268 7.3587 0.6979 1.9648 9.'7358 

Bar 6 CONMIN 0.4503 0.6481 1.7209 7.3171 0.4446 1.0586 8.9272 

63 7A.5~2 NEWSUMT 0.4887 0.7216 13.8404 22.3682 19.5635 67.1472 90.4671 

Bar 7B0.05~1 NEWSMT 0.4646 0.5231 10.3327 16.0890 11.6198 35.1771 52.0825 

WCTS 7C.5x2 NEWSUMI 1 0.4780 0.6467. 12.1667 19.8499 20.0149 66.7336 87.5114 

7D0.05~1 NEW& 0.4634 0.4474 8.9331 13.9237 10.0092 30.3099 ' 44.9616' 



. 

Table 79 

CPU Times for Wing Examples (seconds) 
(See Section 4.3) 

Problem Description Pre- Analyses Optimizer 1 Gross 
Processor Decompose Gradient Analyses Function Total 

Strut. No. K Total Evaluations Total 

18E. 8A NEWSW 0.1934 0.0388 0.7914 1.4944 0.6629 1.8016 3.3663 

Wing 8B NEWSUHC 0.2050 0.0474 0.9748 1.8893 0.8155 2.2993 4.2747 

Box 8C NEWSUHC 0.1907 0.0394 0.6807 1.4567 0.6265 1.7328 3.4273 

9A NEWSUMT 1.2604 3.2957 4.7495 15.0074 1.1711 2.7007 19.0559 

Swept 9B NEWSUMC 1.2804 3.7126 5.3579 16.9855 1.3509 3.1303 21.4959 

Wing 9C NEWSUMT 1.5008 3.8625 9.0155 23.5768 4.3269 10.8091 35.9675 

9D NEWSUMT 1.4164 3.7216 8.7616 22.9311 4.2720 10.2195 34.6471 

10A NEWSUMT 0.8833 4.1195 4.4148 11.6084 1.6869 5.3825 17.9467 

Delta 10B NEWSUMC 0.8739 4.0156 3.4463 10.4747 1.1611 3.0374 14.7252 

Wing 1oc NEM3JMT 0.8955 4.0711 4.3311 11.4568 1.7297' 5.3993 17.8281 

10D NEWSUMT 0.8956 4.9267 7.1228 15.8396 4.3581 15.4182 32.292s 

10E NEWSLl'kB 0.9442 6.0469 12.6151 24.7358 9.6434 41.4708 67.7864 

*U.S. GOVERNMENT PRINTING OFFICE: 1976 - 635-27506 


