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'_ Recent developments in the technology of magnetic suspensions point to an_L

imminent application to spacecraft systems where long llfe is a requirement.

_: Magnetic suspensions offer several advantages over conventional bearings,
• _ arising because of the contactless nature of the load support. In application

to spacecraft reaction wheels, the advantages are: low drag torque, wear-

free, unlubricated, _acuum-compatible operation and unlimited life. In addi-

: tion, by the provision of redundancy in the control electronics, single-point

failures may be eliminated. The ra=lonale for selection of a passive radial,

active axial, dc magnetic suspension is presented, and the relative merits of

3-1oop and slngle-loop magnetic suspensions are discussed. The design of a
.618 N-m-set (.5 ft-lb-sec) reaction _heel using the slngle-loop magnetic sus-

pension is developed; the design compares favorably with current ball bearing

wheels in terms of weight and power.

INTRODUCTION

In application to reaction wheels for spacecraft, the primary advantages
of magnetic suspensions are: low drag torque, wear-free, unlubricated, vacuum-

compatible operation and unlimited life. Operation in the neighborhood of zero

speed poses no problems since the suspension capacity is independent of rota-

tional speed, there are no lubrication anomalies, and drag is virtually zero

(70.7 x 10-6 N-_/1000 rpm) (.01 oz-in./1000 rpm). In addition, by the provi-

sion of redundancy in the control electronics, single-polnt failures may be

eliminated. Pioneering work i_ the development of magnetic suspensions was

done at the University of Virginia, under the direction of Beams (reference
I). The earliest suspensions date back to 1937. Since then, magnetic sus-
pensions of various configurations have been constructed. Recent developments
in the technology of magnetic suspensions have been spurred by advancements in
magnetic materials and microelectronlcs, and point to applications in space-

craft _ystems where long llfe is a requirement. Some recent designs with the
viewpoint of an ultimate spacecraft avpllcatlon were reviewed by Henrlkson et
al (reference 2) and the design of a 1085 N-m-sec (800 ft-lb-sec) momentum
wheel assembly was described in (reference 3).
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MAGNETIC SUSPENSION CHARACTERISTICS

Magnetic suspension offers many advantages for rotational equipment, but .,
as may be expected, some limitations are also incurred. A summary of these
characteristics is presented in Table I.

TABLE 1

MAGNETIC SUSPENSION CHARACTERISTICS

ADVANTAGES

* High reliability (no wear, lubrication, or fatigue)

: ® Low torque (starting, drag and ripple_

: • High speed capability

, • Low noise and vibration

_ , No slngle-point failures (with redundant electronics)

• Compatible with vacuum environment (no lubricant)

• Insensitive to thermal conditions (large gaps)

DISADVANTAGE S

: • Lower capacity per unit weight

• Control electronics required

The advantages arise from the basic nature of contactless suspension

(non-bearing). High rellability is posslble because of the elimination of the

lub-'_ication,wear and fatigue characteristics normally associated with ball or
: fluid bearings; however, a control system must be providedp and its failure

rate _st be accounted for in the reliability calculation. In connection with

this point, it is of interest to vote that redundancy can easily be incorpor-
ated in the control system electronics; thus, single point failures can be

eliminated in the entire system without duplication of the mechanical and

structural elements (rotor, housing, etc).

The limitation of capacity is a result of the physics of magnetic force

generation: a pair of magnetized surfaces can develop a load capability of

1.6 x 10-6 N/m 2 (232 psi) at a flux level of 2 Wb/m 2 (near saturation level
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for iron). When compared with the 2065 x 106 N/m 2 (300,000 psi} design limit
_.' for ball bearing steels, it can be appreciated that substantially morei

material must be provided to obtain the same total load capacity. In order to "

_ minimize total system weight, it is therefore very important to design the
suspensions for the minimum required capacity and/or stiffness.

f

;_ SELECTION OF MAGNETIC SUSPENSION TYPE

The achievement of entirely contactless suspension is subject to the fund-

amental restriction of Earnshaw's theorem (reference 4), which specifies suf-
ficient conditions for instability in inverse-square force fields. The

" practical consequence of the theorem is that stability under magnetostatic

fields is impossible unless diamagnetic or superconducting materials are em-
ployed. In the presence of ferromagnetic materials, there is at least one

statically unstable coordinate airection, and suitable time-varying fields

; must be generated to assure stable suspension.

Magnetic suspensions can, in general, be placed in three categories:

(MAoNTcISUSPENSIONS

: • DIAMAGNETIC I/J<,1.0) • EDDY CURRENT • AXIALLY ACTIVE
• SUPERCONDUCTING • RESONANT CIRCUIT • RAOIALLY ACTIVE

! • ALL AXES ACTIVE

444-8-5

The all-passlve systems are magnetostatically stable and therefore do not

require an active control system. However, diamagnetic suspensions have very
low specific load capacity because their permeability is very close to unity.

Superconducting suspensions require the added weight and complexity of a cryo-
genic cooling system. Of the active systems, ac systems (both eddy-current

repulsion and ac resonant) are characterized by high power loss and poor damp-
ing characteristics. For application to reaction wheels, the choice therefore
narrows to one of the dc magnetic systems.
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Comparison of DC Magnetic Suspension Types

DC magnetic suspensions were first so termed because a steady-state current

was used to provide passive magnetic restoring forces, with modulation of this

current used to provide total (3-dimensional) stability and levitation. This
: category has since been extended to include systems in which the passive re-

storing forces are provided solely by permanent magnets. Rotational de magne-
tic suspensions may be divided into three classes:

• Axial active, radial passive (I degree-of-freedom is actively
controlled)

• Radial active, axial passive (2 to 4 degrees-of-freedom are
actively controlled)

• All-active (5 degrees-of-freedom are actively controlled)

The comparative characteristics of the three types of systems are summar-
ized in Table 2.

TABLE 2

PROPERTIES OF DC MAGNETIC SUSPENSIONS

Axial Active - Radial Active -
Characteristics All Axes Active

: Radial Passive Axial Passive

Stiffness

Radial Low Adjustable Adjustable

Axial Adjustable Low Adjustable

Drag Torque Lowest Low Low

Power Loss Low High High

Control System I degree-of-freedom 2 to 4 degrees-of- 5 degrees-of-freedom
freedom

Reliability High Low Lowest

The principal advantage of using passive means to obtain restoring forces

is inherent simplicity and reliability; neither sensors, electronics, nor con-
trol coils are required. When the quiescent field used to obtain the passive

restoring forces is provided by permanent magnets, the power losses due to
I
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: constant coil currents are eliminated. However, the suspension stiffness is en-

tirely determined by the passive magnetics and, unless separate means are pro-

vided, cannot be altered from the original value. Additional damping forces

: (e.g., from eddy-currents) must be provided in order to ensure satisfactory dyn- '
amlc response and well-bounded amplitudes at resonant conditions.

•- Acti_a means of obtaining magnetic support forces have the advantage of

__ adjustable stiffness and damping characteristics, which are obtainable by varl-

_, ation of control system parameters. The disadvantages are that sensors, elec-
_ tronics, and forcing coils are required, with a resultant lowering of

_. reliability. Moreover, an active system requires suspension power not only dur-

_ ing dynamic-load conditions, but also standby electronics power during static-
load conditions.

• Selection of a particular suspension type depends heavily on application

_ requirements. In one important area, reliability, the axially actlve/radlally

passive suspension is superior to the other types. The reason for this is the

smaller number of degrees of freedom required in the control system. Thus, it

is primarily for the reliability consideration that the active axlal-passlve

radial suspension was chosen for reaction wheels. It should be noted, however,

that, for the same radial stiffness, the weight of this type of suspension is

higher than for an active system, and that speclfic attention must be directed

to designing for the minimum allowable radial spring rate for each application.

: Consideration is now given to the nature of the passive-radlal suspension

and to the method of axial control force generation for it.

Repulsion Versus Attraction

Schematic illustrations of passive repulsion and attraction suspension

techniques are shown in Figures I and 2, along with a listing of advantages and

disadvantages. In the repulsion system, the radial restoring force is gener-

: ated by the reaction between like magnetic poles. In the attraction _ ;tem,

the radial restoring force is caused by the tendency of the rotor to b_ i. a

position of minimum reluctance of the magnetic circuit.

In comparing the relative merits of these techniques, two significant
factors can be noted:

s The flux is contained within the magnetic clrcul; in the

attraction suspension, but is forced to be external in the

repulsive suspension. This flux containment results in

reduced drag torques, and also minimizes unwanted vehicle

disturbance torques that would otherwise be generated by

_nteraction with the ambient magnctic field, i

; 215
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• In the repulsion suspension, a separate means (such as a

dual-acting solenoid) must be provided to generate bi-

directional axial control forces; in the attractive suspen-

sion, it is possible to modulate (increase or decrease) the

existing magnetic field to generate axial control forces.

In addition, non-uniformities in the permanent magnets cause

periodic forces and large runouts, and large drag torques.

A comparison of the other features listed in Figures I and 2 also favors the

aLtractive system.

To summarize, the preferred suspension for spacecraft reaction wheels:

• Is dc magnetic

• Is active-axial, passive-radial

• Uses an attractive magnetic circuit.

CONTROL CONCEPTS FOR THE ACTIVE AXIS

As a consequence of Earnshaw's theorem, the radial restoring stiffness of

the passiw_ magnetics is accompanied by instability in the axial direction.
Because this unbalance force is a function of the difference between the

squares of two terms, the net force in the axial direction in a linear func-
tion of axial displacement near the equilibrium position. The axial equation

of motion of the magnetic suspension is thereby given by

,M_-K z=F
U

where

z u axial displacement from the equilibrium position

M u suspended mass

K = unbalance stiffness
U

F = applied force (total)

216
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Axial stability can be obtained by controlling the current to the control
coils to generate forces in the proper direction. Thus if the control force

includes rate-plus-displacement feedback given by

F = -B _ - K z,c

then the axial equation of motion becomes •

Mz+B_+ (E-K) z=F
u e

where F is the external force. This equation indicates system stability can
e

be obtained for K > Ku, a net static ctiffness of (K - Ku), and results in a

power loss under external axial loads. In practice, the rate sensor may be

avoided by using lead compensation of the position signal. A block diagram of

the axial control system is shown in Figure 3, and the root locus in Figure 4.

In addition to the lead compensation, a minor loop integrator can be
added (shown by dashed lines in Figure 3) in order that the unbalance stiffness

of the passive magnetics can be used to advantage in overcoming constant ex-

ternal loads. The integrator also enmbles long-term, low-power operation by

correcting for drift in any of the electronic components, including the posi-

tion sensor. With integral feedback, the static axial stiffness is negative;
the root locus of this system is shown in Figure 5.

MAGNETIC SUSPENSION DEVELOPMENT

Three-loop magnetic suspensions and their application to a large momentum

wheel were reported in ceference 3, where the nomenclature "3-1oop" was selected

because of the 3-1oop magnetic circuit.

A 1-1oop suspension model (Figure A-I) based on the configuration evolved
for the reaction wheel (Figure 7) was fabricated and tested in order to confirm

the design approaches and obtain preliminary data. The model has been operated

successfully through resonance speeds and has shown extremely low draF torques.

Test results are discussed in the Appendix.

APPLICATION TO REACTION WHEELS

The use of reaction wheels is a proven and accepted technique £or control

of spacecraft attitude. In a typical system, three orthogonally mounted wheels

are employed, each developing bidirectional control torques in response to com-
mands from the attitude control sensors.

The total momentum exchange system can be configured as having a nominal

zero bias, or else can have a finite momentum along a particular spacecraft
axis. In the case of a zero bias system, which is of particular intere3t here,

?
g
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the wheels must be capable of operation in both directions of rotation, includ-

ing the region about zero speed. Although ball bearing supported wheels have
achieved lifetimes in the neighborhood of 4 to 5 years, their use for longer

missions is highly questionable. The main reason for this is the necessity of
assuring the presence of a lubricant in the ball contact area over this period

of time, and of providing a load-carrying film (or boundary lubrication) in the

near-zero speed region. Also, while statistical proof of long life can be ac-

complished on a design basis for a ball bearing system, it is virtually impos-
sible to guarantee its existence on each indiwidual wheel.

The obvious solution to the ball bearing problem is to avoid contact of
the bearing elements, and to eliminate the need for a lubricant supply. Magne-

tic suspension constitutes such a contactless support system, and forms the

basis for the reaction wheel design described in this paper.

Design Requirements

Each application of reaction wheels to a spacecraft attitude control sys-

tem has its own particular set of requirements. For the purpose of this devel-

opment, the requirements were based on an interplanetary spacecraft. _hese

requirements and the values achieved are listed in Table 3.

! The motor torque is the net (accelerating/decelerating) torque applied to
the wheel, and its reaction is usable for vehicle control purposes. This tor-

que must be delivered upon command in either direction over the total angular
momentum range of the wheel. The maximum motor power of 8 watts includes that

required for suspension and windage drag, in addition to the net torque deliv-
ered to the vehicle.

The suspension system peak power is consumed only momentarily, during ini-
tial levitation (< .01 sec).

t

The cross axis rate input causes a deflection at each bearing due to gyro-
scopic effects. The interpretation of this requirement is that there be no

physical contact of the touchdown bearing elements during this condition. The

weight and volume requirements include the reaction wheel plus one channel of
suspension control electronics.

Meeting the performance requirements at low ambient presEure and over the

stated temperature range should not be a problem as it can be with ball bearir_g

wheels. Because magnetic suspensions are low power devices and are directly

compatible with hard vacuum, the housing can be vented directly to space with

no adverse effects on the wheel. Performance over the temperature range should
also be readily achieved because of the absence of lubricants and the use of

sizable clearances. In fact, there should be no significant variation in per-
formance from the standard test conditions.

218
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TABLE 3

C .678 N-M-SEC REACTION WHEEL CHARACT£RISTICS

, Parameter Design Requirements Design Value Attained

_ Angular Momentum +.678 N-m-sec +.678 N-m-sec ,

Motor Torque (mln) +.0136 N-m +.0149 N-m
%

_ Motor Power (max) 8 watts 7 watts

_: Suspension Power

!_ Peak 8 watts 8 watts

_; ).verage I watt .5 watt

_ Max Cross Axis Rate .0175 rad/sec .83 rad/sec

_' Input

_ Weight 3.62 Kg 2.54 Kg

3 3
Volume .004095 m .001965 m

Environment

Temperature +20°C to +75°C +200C to +75°C

Pressure 10-14 tort 10-14 torr

Life 10 years, operating I unlimited

Vibration .I G2/Hz I > .I G2/Hz
I

The lO-year life requirement does not apply in the normal mechanical
sense because no wearout mechanisms are present. Thus, the definition of life is

reduced to determining the reliability of the suspension control system based
on constant failure rates.

Magnetic Suspension

Three-loop and l-loop euepenslcns were considered for this application.
The l-loop confisuration is shown in Figure 6. It is the simplest of the de-
8isns in which a permanent masher field i8 modulated to provide control forces;

; the permanent magnet and the contt'ol coil establish masnst£c flux in the same

i 219
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magnetic circuit loop. Passive radial stiffness is attained through the

action (minimum reluctanc,) of opposed concentric rings. Bidirectio_al contr£1

forces are provided by controlling the current in the coil.
J

The primary disadvantage of the 1-1oop configuration compared to the 3-

loop configuration is that the control current must counter the reluctance of

the permanent magnet in the 1-1oop design. This means that larger control cur-

rents are necessary to produce the same axial force, entailing larger power loss

under dynamic loads. In addition, hlgh-coercivity permanent magnet materials
such as the rare earth cobalts are essential to prevent the possibility of de-

: magnetization. Analysis shows that the reduction of the force-to-current gain
is only 50 percm for the case when the magnet is designed for minimum volume,

-_ and can be even lower with an increase in magnet volume.

Since the passive radial stiffness is proportional to the square of the

flux density, it is desirable to provide as high a bias flux density as pos-

sible, allowing sufficient modulation margin before saturation occurs. Con-

sidering that the flux density at satur&tion for soft material such as

electomagnet iron is in the range 1.6 to 2.0 Wb/m2, a bias density level of

1.4 Wb/m2 is a suitable value for design; this leaves adequate margin for modu-
lation to develop axial control forces.

The minimum radial stiffness required for the .5 ft-lb-sec reaction wheel

was determined to be in the range 12,270 N/m (70 ib/in.) to 29,250 N/m

(167 ib/in.), corresponding to a rotor weight in the range of .453 (I ib) to 1.36

Kg (3 Ibs). The following constraints on radial stiffness were considered in

determining these values:

• Suspension without touchdown in any attitude, in both 0-g

: and 1-g environments.

• Radial and angular rigid-body resonance frequencies to be
above 20 Hz.

: • No touchdown under cross-axis rates up to .0175 rad/sec.

Previous testing on a 3-1oop suspension model had demonstrated that the

resonance speeds could be dwelt on for extended perlod_ without significant

effect on motor or suspension power. For this reason, the possible location of

resonance speeds in the operating speed range was deemed acceptable, and no
additional constraints were imposed.

Sizing l-loop and 3-1Lop suspensions for the expected stiffness range re-

vealed that the former were lighter by a factor of nearly 3:1. The weight CON-
parison, the design simplicity, the fewer number of machined parts and ease of
manufacture and assembly were the basis for selecting the l-loop design for the

reaction wheel. Iterations in the design process determined the rotor weight

220
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to be .816 Kg (1.8 ibs) and the corresponding value of radial stiffness,

19,280 N/m (110 ib/in.). The suspension was sized accordingly and is shown in
the wheel layout of Figure 7.

RWA Design Description

A minimum weight design was achieved by optimization of the rotor radius

and the maximum operating speed [88.9mm (3.5 in.) rotor radius at 1500 rpm)l.

Several variations of the spin motor configuration, when combined with the

rotor, housing, and suspension tradeoff data, showed that the minimum weight

design utilized a segmented spin motor, with its cage serving as the major RWA
inertia element.

The spin motor is made up of two 40-degree segments, thus leaving ample !

circumferential room for the provision of redundancy (common cage feature).

The motor characteristics are shown in Figure 8. The magnetic suspension con-

figuration completely contains the permanent magnets, thus eliminating the

potential problem of flaking due to the existence of microcracks in the

material. The spacer ring is sized to transmit all the mechanical loads !

rather than the magnets. The design permits the parts to be machined w_th

relatively loose tolerances, the pole piece clearances and the touchdown bear-

ing clearances being set at assembly.

The touchdown system must be capable of absorbing the impact at touchdown,

and also capable of dissipating the energy in the wheel. The use of Journal

bearings was chosen for the reaction wheel design. A survey of potential mat-

erials was made and a Garlock product, DU, was chosen. DU is a prefinished,

inert, hiBh performance bearing material that requires no lubricant, and _re-

sents no outgassing problem. In this application the calculated llfe is 255

hours at the maximum RWA speed of 1500 rpm.

Normal contact of the touchdown bearings as a sequenced event occurs at

zero wheel speed. However, in the case of unscheduled touchdown at maximum

speed, the wheel energy must be dissipated thermally. If this energy is con-

tained within the volume of a single bearing, the calculated temperature rise

is 38°C; at the upper ambient of 75 °, the resulting touchdown bearing tempera-
ture of 113=C is well within the allowable material limit of 280=C.

The magnetic suspension has a radial stiffness of 19,280 N/m (110 Ib/in.)
and an axial stiffness of 175,000 N/m (1000 ib/in.). The axial stiffness

can be varied from 0 to 350,000 N/m (2000 ib/in.) electronically. The perm-

anent magnets used for the suspension are made from samarium cobalt because

of its reversible, stralght-llne demagnetization characteristic and high in-

trinslc coercive force. This is especially important in the 1-1oop deslgn ,

because the control flux, which goes through the magnet, opposes the permanent

A
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magnet flux when it is desired tc decrease the flux density in the gap. The

B-I!characteristic also enables the magnet to be magnetized prior to assembly

and eliminates the need for keepers. The weight breakdown of the system _s
given in Table 4,

TABLE 4

.5 FT-LB-SEC REACTION WHEELWEIGHT BREAKDOWN

Element Weight Kg (Ibs)

Housing .860 (1.9)

Rotor (including cage) .815 (1.8)
Motor Cage

Magnetic Suspension .453 (1.0)

Motor Stator (2 segments) .272 (,6)

Electronics .090 _.2)

Vent Valve .045 (.I)

Connector .045 (.1) __

2.58 Kg (5.7 Ibs)

SUSPENSION ELECTRONICS

The suspension electronics pr irides control forces to maintain levitation

of the rotor in the axial direct_ n. The main components, as shown in Figure 9,

are the axial position sensor, compensation network, power amplifier, and an

integrator. The primary design considerations are maximum reliability and mln-

Imum power consumption.

Position Sensors

Various types of position sensors are =apable of measuring distances on
the order of .128 to 1.28 mm (.005 to .050 iuch) as required in this ap-

plication. Of these, tht eddy-current sensor offers a number of advantages
mak£ng it very attractive. It has a high sensitivity Frovldlng a good signal

So noise ratio; the sensing probe is small, thus minimizing mounting problems;
and the electronics is ver,, simple.

222 _ :
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In the eddy-current sensor an ac source excites the probe which is simply
a coll of wire oriented so that the induced field intersects the sensed sur-

face. The surface must be a conductor so that eddy currents can be induced in

it. The closer the probe to the sensed surface, the greater are the eddy
currents. An electronic circuit converts the eddy current variation to adc

signal. An ac oscillator excites the probe through a high source i_ped__-.ce.
Th_ voltage across the probe then varies as the probe impedance changes with

the varying eddy currents. The voltage is converted to do by rectification and

filtering. The eddy-current sensor can provide a typical _:tput scale factor

of .3 volt per mil and has good linearity, it is somewhat _ensitive to temp-

erature and excitation frequency changes, bu_ in the closed loop _a_netic sus-

pension application this is not a disadvantage.

Compensat ion

Compensation consists of a lead/lag network which is required to stabilize
the static unbalance in the axial direction. Enough phase lead must be added

: to lift the phase curve up above-180 degrees at the zero dB gain crossover
frequency. Approximately 40 degrees of lead at 100 Hz is adequate. This will

result in increased gain at high frequencies, tending to excite mechanical

resonances. Thus, the lag is used to keep the high frequency gain as low as

possible without introducing excessive phase lag at crossover.

An integrator is used, with positive feedback to minimize steady-state
power consumption and to eliminate the effects of control electronics c,rposi-

tion sensor drift. It operates very slowly so that it does not interfere with

the dominant dynamics of the suspension system. Steady-state coil cur,ents

are _ntegrated and added to the position signal, thus moving the position com-
mand to a point where the rotor is at a force equilibrium with the permanent

magnet forces. At this point no coil current is required.

Power Amplifier

The power amplifier consists of a linear power bridge which controls cur-

rent in either direction through the coils in response to the compensated po-

sitlon error signal. A current feedback loop is incorporated because the

magnetic force is provided by current rather than voltage. A high gain loop
minimizes the effects of coil inductance.

The amplifier operates from a +28-volt dc power source. A small _+8-volt

" : power supply is included in the suspension electronics for the I.C. operational

_ amplifiers. The use uf this supply is _elected over the more conventional
_+15volts to conserve power. Each operational amplifier uses less than 5 mw

. of power. The power consumption of the suspension electronics with the wheel

at operating speed is .4 watt. Some power, about .I watt, is lost due to

• ._, 223
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pickup of rotoz frequency by the suspension electronics. Thus, th= total

standby power loss is .5 watt. The lift-off power consumption is 8 watts.

The electronics is packaged in three cordwood modules within the wheel

' housing. Since there is no thermal dissipation or severe vibration, the modules

are not embedded with epoxy, This minimizes the weight of the modules, to about

.023 Kg (.05 ib) each.

CONCLUSIONS

The application of magnetic suspension to spacecraft reaction wheels offers

several advantages as compared to conventional bearings, arising from the con-

tactless load support. These advantages are: lower drag torque 70.7 x 10-6

N-m/t000 rpm (.01 oz-in./1000 rpm), no lubricant required, the lack of any wear-

out mechanism provides virtually unlimited life, no increase in power at low

temperature, lower steady-state power, no single point failure mechanism in the

unit (with redundant suspension electronics and spin motor), launch loads are

not taken by the on-orbit bearing surfaces, and the unit is unaffected by vacuum

operation.

The design is competitive with ball bearing reaction wheels in terms of

weight and power. All the concepts used in the reaction wheel design have been

either utilized in flight hardware, or, as in the case of the magnetic suspen-

sion, have been demonstrated in development hardware. The sensitivity of the

design to peak motor power ks .136 Kg/watt (.3 ib/watt) and to momentum,

.803 Kg/N-m-sec (2.4 Ib/ft-lb-sec).

The advantages of magnetic suspensions summarized here apply to other mom-

entum devices, such as bias wheels and energy wheels.
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APPENDIX

_Le design of a magnetic suspension model and its principal test results are

described in this appendix. The model (photograph, Figure A-I) employs the radial-
passive, axial-active, 1-1oop suspension configuration shown in Figure 6. The model

incorporated the suspension e_olved in the reaction wheel design. The model was

different from the configuration of Figure 7 in that an existing non-segmented ac
induction motor was used rather than the segmented motor, no cover was fabricated,

and the electronics were external, in breadboard form. '_wever, the suspension

system was the same as that developed for the reaction wheel design, and the re-

sults are therefore representative. The axial control system utilizes a single
lead-lag network for compensation, with a current amplifier to drive the control

coils. Provisions were made for tests with or without the positive integral feed-

back technique. An eddy-current proxlmitor was used for axial position sensing.

Slldlng-contact touchdown bearings made from a teflon-based material wereprovlded.

Test Results

The test model has been successfully levitated and operated at speeds up to
3200 rpm (design speed being 1500 rpm). Successful operation of the touchdown

system has also been achieved over th_s speed range. Very stable suspension has

been attained, with minimal power loss under both ambient conditions and steady
external loads, achieved by the use of positive integral feedback of control
current.

The measured model characteristics are summarized in Table A-I.

TABLE A-I

ONE-LOOP MODEL CHARACTERISTICS

Momentum (1500 rpm) .19 N-m-see (.14 ft-lb-sec.)

Drag Torque Coefficient 10.6 x (N-n,/1000 rpm (.0015 oz-in/lO00 rpm)
10 -6

Stiffnessl

Radial (each end) 17,500 N/m (100 ib/in.)
Axlal Unbalance -250,000 N/m (1430 ib/in.)

J

i Suspension Power

Lift Off 12 watts

Operating .5 watt

Rotor Weight 0.68 kg (1.5 lb)
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The net axial stiffness and damping were continuously adjustable, depending

on the feedback gain settings. It was vossible to overate from both control coils

simultaneously (series or parallel), or from only one coil at a time. The

frequency response was in good agreement with analysis.

The tests have demonstratea the viability of the one-loop suspension concept '

and its application to reaction wheels.

z

7
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Figure 6

' One-Loop S_spension Configuration
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Figure 8
Performance Data, Segmented Spin Motor
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Vigure A-I

One Loop Magnetic Suspension Model
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