18. MODERN MECHANISMS MAKE MANLESS MARTIAN MISSION MOBILE --

SPIN-OFF SPELLS STAIRCLIMBING SELF-SUFFICIENCY

FOR EARTHBOUND HANDICAPPED
By George N. Sandor, David R. Hassel and Philip F. Marino
Rensselaer Polytechnic Institute

SUMMARY

Sponsored by NASA at Rensselaer Polytechnic Institute in Troy, New York, under Mission-Hardware Research Grant No. NGL 33-018-091, en annuaily changing group of undergraduate and graduate students under Dr. Sandor's direction heve developed concepts for three wheel chairs, progressively improving designs .
a proposed unmaned roving vehicle for the surface exploration of Mars and, as a spin-off, have generated a concept for a stair-climbing wheel chair. The mechanisms employed in these are described in this paper. The Mars mission is envisioned using the booster rockets and aeroshell of the Viking missions.

INTRODUCTION

Rensselaer Polytechnic Institute's (RPI) first concept was a fourwheeled dragster-like rover with the weight of a single payload package carried largely by the driven rear wheels (refs. 1-5, 8, 9, and 11). The undriven front wheels, which were well ahead, served for "wagon steering" and for obstacle detection. In case one or both front wheels dropped in a crevasse or over a ridge, the vehicle would stop and perform an emergency maneuvor extricating its front end from the obstacle.

The wheels were a new RPI design: "toroidal" all-metal elastic wheels with cresswise hoop-spokes hinged to, but spaced apart from the flexible, grousered rim, which provides for a large footprint and avoids "stonecrushing" between rim and spokes (refs. 6, 7, ard 12).

The second-generátion vehicle could be folded to abour two-thirds of its length for launch, with the payload at one end.

MECHANISMS OF THE MARS ROVER

RPI's present third-generation Martian Roving Vehicıe (MRV) design is a four-wheel, single payload vehicle. Its demonstration model is shown in the

folded "launch-and-1and" configuration in Figure 1. When fully deployed, approximately 70% of the reight is carried on the driven rear whee!s, assuring good traction.

To fit inside the existing Viking aeroshell, the vehicle is much smalles in the folded configuration than in its roving mode. This collapsibility allows a relatively large volume for the payload of the vehicle and a larger vehicle wheelbase and wider track than would otherwis, . : possible. Once on the surface of Mars, the vehicle must be ablf to deploy itself into the roving configuration. As will be seen, this is accomplisied by the use of motor and gear assemblies which are used for other purposes during the vehicle's roving phase. Thus no additional weight and complexity is required for self-powered deployment.

RPI's MRV is capable of raising and lowering the payload and changing the payload attitude by the use of two motor-gear assemblies within the vehicie. On the demonstration model, each of these consists of an interi:slly geared permanent-magnet "pancake" motor working with a worm-and-gear pair (Fig. 2). These two assemblies control rotation between the front section of the vehicle and the payload tox, and rotation between the rear struts and the payload box. The rear struts are rutated by a torsion bar running across the payload box, keyed at the center to the smaller worm gear in Figure 2 and driven by a worm mounted in bearings attached to the gearbox floor. Each half of the torsion bar provides elastic suspension for its respective rear strut. The front section of the vehicle is rotated iy a split torque-tube concentric with and surrounding the rear-strut torsion bar. The right and left sections of the tube leave room for the worm-gear mounted in the mjddle on the torsion bar. A rigid inverted U-shaped crossover piect onnects these two half-tubes (Fig. 2), lending torsional rigidity to the ass mbly of the right and left tubes. Both half-tubes are driven simultaneously by a wormgear mounted to the right side of the U-shaped crossover as shown in Figure 2.

When reving, directional controi is accomplished by "wagon steering" of the front axle, which rotates about a single vertical axis at its center (Fig. 3), turned by a worm-and-gear pair powered bv an internally geared permanent-magnet motor. A precision potentiometer senses the position of the front : xle and feeds thi; information tack to the steering and rear-wheel drive control systems of the vehicle. The individual rear-wheel drives adjust their speeds to match the turning radius. When the front axle is turned 90° from its straight-ahead position, the rear wheels are driven in opposite directions and the vehicle can swing around with the center of turn at the mid-point between the two rear wheels.

Four-wheel ground contact on rough terrain is assu.ed: the front axle swings about a horizontal pivot. Its swing is centered and limited by steel bands and leaf springs (Fig. 3).

The entire frout axle and stee-ing system is mounted on a horizontaltransverse shaft and can be rotated to any position within ar arc of 240° by a metorized worm-aidd-gear pair (Fig. 3). This extra rotation (so-called "flipover") capability enables the front axle to flip to an "up" or "down"
position and keep it. : iterin.... at titude of the front struts.

Ti.e front and r... :i........... flipping
 tion. They also enable th w!i, flip-over maneuver. In adaition, they bo id. a. il. vehicle to climb

As can be seen in 1 in : : , wi. the beginning of

 is a spring loaded lockiag fingen ain Un, which fits within the hollow square-tuhe froit-jtrat $1 . \quad$. ... © The plunger is automatically released and incks whel th. f : : it it ilation reaches a straightened-out position (1igs. Jis. a

To deploy the front se:tion, th. 1...1tide motor (Fig. 2 front) is utilized to drive the rar while the front wheels roll forvard … the..... $1 i_{3} s, \%$ and 8 , This straightens the e. ant struts to a position ane d. and andic latching devices (Fig. 5) luck the articulation in the : tampatiod-out position (Fig. 9).
 struts end the a:le to its nomal tuma in in to.. ac.ring axle vertical (Fig. 3).

 wheels roll on the ground, he; straight, w when ationded rear struts (Fig. 10), while thet payload bod still out, the rear strut articulation hames ar: liml. 1 in the extended position (Fig. 11).

On the delinustration mudul,i i... : ,.......i ind maneuvering are

 system. The deployment comands necown 1, intin the rhizie and make it ready for roving are quences of comman, monali wei in roving. For example, to deploy the wherls, the rear hasion har motor is commanded to

 forward at low speed, thus swinging win hat for if the rear struts forward and locking then into posit on (1)g: ! ! and 111

By driving both front and rear struts downward, the payload is now raised off the ground and the vehicle becomes frlly operational (Figs. 12 and 13).

emepgency maveuver

A useful feature of the RPI-MRV is its ability to extricate its front wheels from a pit or depression. If the front wheels are driven over the edge of a cliff, the vehicle lifts both front and rear sections off the ground while the bottom of the payload rests on the ground. The front and rear wheels are interchanged by swinging the strut's overhead (Fig. 14). Once this interchange is completed, all four wheels are once again on solid ground, decause the rear struts are much shorter than the front section, and the vehicle can drive away from the edge of the cliff.

THE RPI WHEEL

The RPI-M'V's all-metal elastic toroidal wheel is shown in Figure 15 (refs. 6, 7 and 12). Large footprint and elasticity of suspension is achieved by hinged connectinn: between the hoop-shaped sprirg spokes and the flexible rim.

A "SPIN-OFF": STAIR-CLIMBING WIEEL CHAIR

One of the most interesting sun-offs of the RPI-MRV Project was the slopment of design concept for a vair-clambing wheel chair (refs. 13-

- At a previous presentation conceming the Martian Rover (ref. 3) a member of the audience suggested the possibiljty of adapting its unique undercarriage to a stair-climbing wheel chair. The suggestion was welconed, and resulted in a preliminary proposal in the form of a paper submitted to the Medical Society of the State of New York (ref. 15). The pubiication ur that paper (ref. 14) resulted in numerous inquiries directed to its author, Dr. G. N. Sandor. Noting this interest, Dr. Sandor took this idea to one of his classes and proposed that the class take on the development of the design concept for the "stair-climbing wheel chair" as a term nroject. The response was enthusiastic, and work began in February 1974.

The idea of a central pivot and four struts was adopted directly from the rover. The flexible wheel (Fig. 16 A), however, was deemed impractical for stair climbing. The problem encountered was ore of approaching the first step. It was felt that the step would have to touch the wheel somewhere below the point at which a tangent to the wheel maue a 45° angle with the ground. Such a wheel would have a minimum diameter of about $30^{\prime \prime}$. Four $30^{\prime \prime}$ wheels did not seem practical. An alternate solution was to provide any desired attack angle by means of a track (Fig. 16B). At the right side of this
figure there would be internal guide wheels at top and bottom. Changing the relative positions of these two wheels allows generation of any attack angle desired. Figures 16C, 16D and 16E repiesent three other solutions which were proposed. Figure 16C is the "lohed wheel." This particular shape is one used on a prototype stair-climbing wheel chair built several years ago. Figure 16D is the "cam wheel." The cam, on the left, contacts the step and lifts the wheel up behind itself, then folds away and allows the wheel to roll. Figure 16E represents three versions of a dual-wheel concept which arose hal fway through the project. In the irst version, the two wheels turn about their own axes and also about the pivot between them, similar to a lobed wheel with 2 inbes. In the second version, the auxiliary pivot is moved out from betwiten the wheels. The rightmost wheel would rise, engagie the next higher step, lift the whelc chair one step, roll forward, and repeat. Version three has the same action, using linear actuators or hydraulic cylinders to provide the lifting action. In evaluating the mechanisms, "A" was considersd toc big, and " C " was deemed unsuitable for varying stair sizes. " D " and " E ", although of reasonable size and excellent adaptability, were thought to be much more complex than a track and were held in reserve in case a suitable track brought on too many complications of its own. It was decided that the individual inventors (student members of the class) would pursue the concepts represented by Figures 16 D and 16F, and the rest of the group would set to work on a track-type stair climber, with two 3 to 4 inch wide tracks, one on each side.

At this point a l/6-scale plastic and balsa wood model was constructed, resembling Figure 17 . Using this model as a rough guide, eleven teams were formed to tackle various aspects of the design. Some of the best technical solutions came from team members who were also "Martians," that is, involved in the Martian Rover Project. The resulting design is shown in a simplified form in Figure 18.

design concept of the wherl chair

The fully mocorized chair would be 10.1 centimeters (42 inches) long and 6.4 centimeters (25 inches) wide overall, about the size of present conventional wheel chairs. Seat height wouli be variable by the occupant at will from the height of a normal chair to a height at which a person in the chair would be at eye level with a standing person. This restoration of the vertical dimension of movement is highly desirable to the disabled, especially when he confronts a pay phone, supermarket, library, or overhead kitchen cabinets. Vertical movement is accomplished by pivoting the main struts. In doing so, the inner, or level-travel wheels lose contact with the ground and the chair rests on the stable wide stance of the tracks.

CLIMBING STAIRS

In public buildings, stair climbing boiween floors is usually made unnecessary by elevators. Getting into public buildings and private homes is
another matter, however. There is invariatily a curb between the parking lot and the entrance sidewalh and building entrance. The more athletic wheel chair users can jump curbs, but two or three steps might as well be a locked and barred gate to a conventional wheel chair user. The stair-climbing chair will tacke 5 or h inch curha head ren. ©tairs will be climbed backwards, to keep a luw center of gravity.

M:SCENHI:G sTAIkS

Descent gives rise to the whel chair user's greatest apprehension and fear of falling. To overcome this, the chair will face downhill giving good visibility, which is reassuring as wel: as necessary in avoiding loose objec*s. To assure sufficient stair clearance, two four-bar mechanisms were proposed which retract the inner wheels when the chair support strut is moved fully rearward for stair climbing or descending. The mechanism for retracting the fruni iasce red wheels, shown schematically in Figure 18, is detailed in Fi ures 19A and 19B. Figure 19A represents level travel and 19B shows the whee: retracted as in Figure 18.

DRIVE SYSTEMS

Two separate drive systems were incorporated. The track-drive motors will be hub-mounted in the forward track guide wheels and have manual shoe type brakes. The level drive, in the configuration of Figure 17, would be powered at the two rear wheels, steering by varying the speed ratio of the: e wheels. By driving the two rear whee is in opposite dirertions, a turn in place can be accomplished.

The strut pivots of the Martian Rover used nearly sei, scking worm gear: . To keep down weight and expense, while improving efficiency, a gearmotor ("M" in Fig. 19C) ani spur gear combination was found which met the torque and powur requirements. The motors would fit inside the aluminum box beam. struts (Fig. 19C). A sina11, low-torque brake, mounted on the free end of the motor rotor shaft, would provide locking action.

Chair leveling is to be accomplished by the combined motions of the chair-support strut and a motor-driven ballscrew connecting the side of the chair to a pivoted nut on the chair suppori strut (shown in Fig. 18).

It is thought that the chair itself, the speed control system and the power supply could be adopted with minor alterations from present electric wheel chairs. The track, struts, chair-leveling mechanism and wheel retractors are all unique items which need to be tested in a prototype to confirm estimated power, strength, and dimensional aspects.
 done evaluating the dynamic staility ff to: culte vehicle with the turning
 mization of the wheel tase ant where tructi linessions.

The human side of ties prulela wis aroidered tarly in the project and was

 tacts showed thet once a prouvye is m: a large effort must be devoted to assuring adaptability of the aroi $\because=1:$ a \ddagger artivice ueer's abilities and disabilities. Careful consideratin mait : eiret to operating characteristics and aesthetic appearance, thus facililati: anculance by the user as well as by ine general public.

The idea of a stair-climbi:s whecl thair, while not unique in itself, has inspired some very original mechanisme witch !upefully may make this stair climber the first to gain wide acceptance. In renabilitation work, a distinction is made between the disabled and the bandicapped. A disability is only a handicap to the extent that it prevents a person from being a full participant in society. A handicap is imposed and may be removed or cvercome. The purpose of this wheel chair would be to remore such handicap.

AChiowly

The authors wish to express thcir appreciation for the support of the Mars Roving Vehicle project under WASA Grart No. NTL 33-01E-091 at Rensselaer Polytechnic Institute, sponsored by the uranch of NASA in charge of new mission hardware developmen: headed by Mr. Panl Tarver.

Both the Mars Rover and the stai r-climing wheel chair design had many contributors among RPI's stuatntis ten or nore on the Mars project and fifteen in connection with the wheel cheir. Their enthusiasn and youthful energy were inspirations to the authors.

The first author wishes to ecknowledge the sponsorship of the Alcoa Foundation in support of his chalr, the Klcoa Frumdation Professorship of Mechanical Design at Rensselaer Polytechric Instituto.

All three authors are indebted to Frs. Frances K. Willson for suggestions for the clarity of the text and her metioulous typing of the paper.

REFERFMCDS

1. Sandor, G.N., and Raytield, W. P., "lirisstur on Mars," ASME News, Hudson Mohawk Section, Vol. 7, No. \therefore, Tas.-Fel., 1970 , pp. $3-\overline{7}$.
2. Grupe, J.A., (G.N. Sandor, Alv.), "Promision Bystem for a Martian Roving Vehicle: Power Supply Analysis, Mr. ol Finere. Rept., RPI, June 1970, 33 pn.
3. Sandor, G.N. and Rayfield, W.P., "Rensselaer's Roving Vehicle for Mars," Proceedings of the First Western Space Congress, VANDERBERG SCIENTIFIC AND TECH. SOCIETIFS CUINCIL, Santa Maria, Calif., Oct. 1970, pp. 838-855.
4. Rayfield, W.P. and Sandor, G.N., "Design of a Roving Vehicle for Mars," Invited Paper, ASME Design Engrg. Conf., N.Y.C., April 1971.
5. Koehler, R.C.. (G.N. Sandor, Adv.) "Automatic Steering and Leveling Control for an U anned Martian Roving Velicle," Mr. of Engrg. Rept., RPI, June 1971, 36 pp.
6. Simon, R.L., (G.N. Sandor, Adv.), "Design of a Toroidal Wheel for a Martian Roving Vehicle," Mr. of Engrg. Rept., RPI, June 1971, 148 pp.
7. Klette, C.E., (G.N. Sandor, Aà.), "Martian Roving Vehicle Wheel Test Apparatus," Mr. of Engrg. Rept., RPI, June 1972.
8. Rayfield, W.P., (G.N. Sandor, Adv.), "The Conceptual Design of an Unmanned Roving Vehicle for Surface Exploration of Mars." Doctoral Dissertation, RPI, June 1972, 149 pp.
9. Cobb, W.A.; (G.N. Sandor, Adv.), "Dynamic Evaluation of a Scaled 4 Wheel Martian Roving Vehicle," Mr. of Engrg. Rent., RPI, June 1972, 78 pp.
10. Janes, T.M., Jr., (G.N. Sandor, Adv.), "Collapsibility/Deployment of an Unmanned Martian Roving Vehicle," Mr. of Engrg. Rept., RPI, July 1972, 56 pp .
11. Rayfield, W.P., (G.N. Sandor, Adv.), "Roving Vehicle for Mars," 2nd Graduate Award ($\$ 1,500$ to student, plus grant to RPI), Div. 1I, Oct. 1970, The Lincoln Foundation's 1970 Engrg. Student Design Competition, sponsored by the Jas. F. Lincoln Arc Welding Fdn., Cleveland, Ohio
12. Simon, R.L., (G.N. Sandor, Adv,), "Design of a Toroidal Wheel for a Martian Roving Vehicle," 2nd Graduate Award ($\$ 1,500$ to student, plus grant to RPI), Div. II, Nov. 1971, The Lincoln Fcundaticn's 1971 Engrg. Student Design Competition, sponsored by the Jas. F. Lincoln Arc Welding Fdn., Cleveland, Oinio.
13. Sandor, G.N., "Motorized Wheel Chair Can Even Climb Stairs," (Geaman), Medical Tribune, an international weekly, German language issue for West Germany, Vol. 7, No. 11, Mar. 1972, published in Wiesbaden, pp. 1 \& 48; and also in the German language issue of the same weekly published in Baden for Switzerland, Vol. 5, No. 11, Mar. 1972, pp. 1 \& 20.
14. Sandor, G.N., "Wheel Chair Can Elevate to Gye Level," Chronic Disease Management, Vol. 6, No. 4, April 1972, p. 18.
15. Sandor, G.N., 'Umnanned Martian Roving Vehicle Inspires Stair-Climbing Wheel Chair," N.Y.S. Journal of Medicine, Dec. 1973, Vo1. 73, No. 24, pp. 2880-2883.
16. Redkey, Henry, "Rehabilitation Practices in Sermany," Rehabilitation Record, July-Aug. 1963, pp, 12-14.
c

Figure 1. RPI MRV demonstration model in folded "launch and land" configuration.

Figure 2. Strut-rotation gearbox in center of payload box. Rear strut worm gear at left, front strut gear at right, pancake motor in front. Similar pancake motor, hidden in back, rotates rear struts.

Figure 3. Front end of the RPI MRV with "flip-over" worm and worm gear (left, and steering gear (center).

Figure 4. Side view of the MRV demonstration model in the first stage of deployment from its folded launch-land configuration, ; howing articulation of front struts. The front whecss are at the right.

Figure 5a. Close-up of mechenism in unlocked position showing spring loaded locking plunger anc release member.

Figure 5b. Front strut articulation and locking mechanism in locked posicion (top) and before locking (bottom).

Figure 6. The front strut articulation hinge in the straightenedout position, locked by the square plunger inside the square-tube frame member.

Figure 7. While the paylnad box rests on the ground, deployment starts by rotating the rear section of the articulated forward strut clockwise as shown here.

Figure 8. With the payload box still on the ground, the front .ruts are approaching the locking position while the front wheels roll on the ground in the course of deployment.

Figure 9. The MRV during deployment, shown just after the fror.. strit articulation has beea locked in the straightentuout position. The payload box still rests on the growad.

Figure 10. The PYI MPV in the process of "walking" the rear wheels 'rin 'olded into deployed position. The thens ! ! in till resting on the ground.

Figure 11. After rompliting the rear wheel deployment, the MRV is "edy t. litt it: paylond box off the ground.

Figise 12. The front struts have been rotated downward, lifting the front of the payload box off the ground.

Figure 13. Rear struts having been rotated downward, the payload box is off the ground and the RPI MRV is fully deployed in the roving configuration.

Figure 14. The KPI MRV executing a emergency maneuver. The front and rear struts are exchanging positions: clearing each other as they pass overhead.

Pigure 15. The RPI "ail-metal e"astic" toroidai wheel.

Figuret 16 to 15 . SpI's ata: -climbing wheal chat? deapp.

