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EXTENDED APPLICATIONS OF THE VORTEX LATTICE METHOD

Luis R, Miranda
Lockheed-California Company

SUMMARY

The application of the vortex lattice method to problems not usually
dealt with by this technique is considered, It is shown that if the dis-
crete vortex lattice is considered as an approximation to surface-dis-
tributed vorticity, then the concept of the generalized principal part
of an integral yields a residual term to the vortex-induced velocity that
renders the vortex lattice method valid for supersonic flow, Special
schemes for simulating non-zero thickness lifting surfaces and fusiform
bodies with vortex lattice elements are presented. Thickness effects of
wing~-like components are simulated by a double vortex lattice layer, and
fusiform bodies are represented by & vortex grid arranged on a series of
concentrical cylindrical surfaces, Numerical considerationa peculiar
to the application of these techniques are briefly discussed,

INTRODUCTION

The several versions or variations of the vortex lattice method that
are presently available have proven to be very practical and versatile
theoretical tools for the aerodynamic aralysis and design of planar and non-
planar configurations. The success of the method is due in great pert to
the relative simplicity of the numerical techniques involved, and to the
high accuracy, within the limitations of the basiec theory, of the results
obtained. But most of the work on vortex lattice methods appears to have
concentrated on subsonic flow application. The applicability of the basic
techniques of vortex lattice theory to supersonic flow has been largely
ignored. It is one of the obJectives of this paper to show how the vortex
lattice method can be easily extended to deal with problems at supersonic
Mach numbers with the same degree of success that it enjoys in subsonic flow.

The other objective of this paper is to discuss a couple of schemes
by which it is possible to simulate thickness and volume effects by using
vortex lattice elements only. This represents an alternative, with somewhat
reduced computational requirements, to the method of quadrilatera) vortex
rings (refs. 1 and 2), The simulation of thickness and volume effects makes
possible the computation of the surface pressure distribution on wing-bvody
configurations. The fact that this can be done without having to resort to
additional types of singularities, such as sources, results in a simpler
digital computer code.
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THE BASIC EQUATIONS

Ward has shown, (ref. 3), that the small-perturbation, linearized flow
of an inviscid compressible fluid is governed by the three first order vector
equations:

Vv =75, V.%=4q, v=V.7 (1)

on the assumption that the vorticity W and the source intensity Q are known
functions of the point whose position vector is R. The vector V is the
perturbation velocity with orthogonal cartesian components u, v, and w, and
WV is a constant symmetrical tensor that for orthogonal cartesian coordinates
with the x-axis aligned with the freestream direction has the form

2
1-M 0 0
[« ]
v = 0 1 .0 (2)
0 0 1

where M, is the freestream Mach number. If 82 = l-M&.z, then the vector w

has the components W = B2 u I +v J + w K. This vector was first introduced
by Robinson (ref. 4), who called it the "reduced current velocity". If W
denotes the total velocity vector, i.e., W =(uw+u) T+vJ +wk, and p
the fluid density, then it can be shown that for irrotational and homentropic
flow

PU = p,Ug +p, W +higher order terms (3)
where the subscript « indicates the value of the quantity at upstream infinity,

e.g8.s o = Uy 1. Therefore, to a linear approximation, the vector W is
directly related to the perturbation mass flux as follows:

W=(pT - po Tw) /Pex (L)

The second equation of (1), i.e., the continuity condition, shows that for
source-free flows (Q = 0), w is a conserved quantity.

Ward hus integrated the three first order vector equationeg directly
without having to resort to an auxiliary potential functign., He obtained
two different solutions for v (R), depending on whether B° is positive (sub-
sonic flow), or negative (supersonic flow). These two solutions can be com-
bined formally into & single expression if the following convention is used:

K=2 for 32 >0
2

R’ = Real part of {(x-xl)2 + 32[(y-yl)2 + (Z-Zl)z]}
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f = Finite part of integral as defined by Hadamard (refs. 5
and 6).

The resulting solution for the perturbation velocity V at the point
whose position vector is Rl =X 1+ Yy 3+ z, %, is given by

V(R = - 5x ][H.W(ﬁ)vh—]e‘- as

(]

2 [R-
. 7LQ(§>V%;dV*5LK L w®) av  (5)

This formula determines the value of V within the region V bounded by
the surface S. The vector W is the unit outward (from the region V) normal
to the surface 8, Furthermore, it is understood that for supersonic flow
only those parts of V and S lying within the domain of dependence (Mach
forecone) of the point Rl are to be included in the integration.

For source-free (Q=0), irrotational (=0) flow, equation (5) reduces
to

2 R-R
¥ (R) = - 5= T.w(R) Vi as +%7(—{ﬁ x WE)} R—3-l as (6)
s s g

This is & relation between V inside S and the values of n.wand n x v
on S, but- these two quantities cannot be specified independently on S.

To determine the source-free, irrotational flow about an arbitrary body
B by means of equation (6), assume that the surface S coincides with the
wetted surface of the body, with any trailing wake that it may have, and with

a sphere of infinite radius enclosing the body and the whole flow field about
it, namely, S = SB + %ﬂ + Sm.

This surface S divides the space into two regicns, Ve external to the

body, and Vi internal to it. Applying equation (6) to both Ve and Vi, since
the integrals over S, converge to zerc, the following expression is obtained:
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R, = 2% fﬁ.m(mv-;—’ e - Lo f{ﬁ'
By * By

where § = fiy= -He is the unit normal to the body, or wake as the case may be,
positive from the interior to the exterior of the body, A W = We - Wi, and
AV = Ve - Vi, Here the subscripts designate the values of the quantities on
the corresponding face of S. The first surface integral can be considered
as representing the contribution of a source distribution of surface density
N . AW, while the second surface integral gives the contribution of a vorti-
city distribution of surface density N x A V.

If the boundery condition of zero mass flux through the surface SB + SW
is applied to both external and internal flows

-ﬁ.p'ﬁi--ﬁ.(pa'ﬁ +p°7ii)-0 (8)

then the condition N . A W = O exists over 85 + 8§, and the flow field is
uniquely determined by

) _
HE,) = - =2 7L TR x5 as (9)
SB.+SW

where ¥ (R) = N x A 7 is the surface vorticity density.

EXTENSION TO SUPERSONIC FLOW

In order to extend the application of the vortex lattice method to
supersonic flow, it is essential to consider the fundamental element of the
method, the vortex filament, as a nu-2rical approximation scheme to the
integral expressicn (9) instead of a real physical entity. The velocity field
generated by a vortex filament can be obtained by a straightforward limiting
procees, the result being

2 [ _ BF
W(Ry) =§§-K~ )(' rx 31 at (10)
c Ry
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where ['= lim Y. 0@~
Y=~o0
8 = O

§ is a dimension normal to y, and dl is the distance element along y. In the
classical vortex lattice method, applicable only to subsonie flow, the vorti-
city distribution over the body and the wake, i.e., over the surface Sp + Sy,
is replaced by a suitable arrangement of vortex filaments whose velocity
fields are everywhere determined by equation (10). This procedure is no
longer appropriate for supersonic flow. For this latter case, it is necessary
to go back to equation (9) and to derive an approximation to it. This is

done in the following.

If the surface Sp + Sy, which defines the body and its wake, is considered
as being composed of a large number of discrete flat area elements 7 over
which the surface vorticity density ¥ can be assumed approximately constant,
then equation (9) can be approximated by the following equation:

N
2 R-R
V(ﬁl)'-é‘.-"f 2 ‘fVJXR?A as (11)
J=l Ts 8

where N is the totai number of discrete area elements 7. When the poini
whose position vector is Ry is not part of TJ, the integral over this dis-
crete area can be approximated by the mean value theorem as fcllows:

R-R R-K '
f%*?'l'ds'% °J><]( < o (12)
R R
s B CJ ]

vhere Cy is a line in 7y parallel to the average direction of ¥ in Ty, &
is a distance normal to Cy, and 4l is the arc length element along Cg. Thip
means that the velocity field induced by a discrete vorticity patch 75 can
be approximated for points outside of 7y by some mean discrete vortex line
whos- strength per unit length is yy 4y. But if the point Ry I8 part of the
dizcvete area T, the integral in equation (11) has an inherent singularity
ot the Cauchy type due to the fact that R = R} at some point within r. In
order to evaluate the integral expression for this case, consider a point
close to Ry but located just above r by a distance ¢. As indicated in figure
1, the area of integration in 7 is divided into two regions, A ..  and A,
Obviously, the integral over A ,_ e has no Cauchy-type singularity, Hadamard's
finite part concept being sufficient to perform the indicated integration.
Thus,
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A T-r
'R'-El
=lim I(e) +ya <" 3 U (13)
N . R
c

The last integral in equation (13) represents the convertional discrete
vortex line contribution whose evaluation presents no difficulty. In order
to determine the integration denoted by I(«) assume that, for simplicity,
the coordinate system is centered at the pecint Pl, and that the x-y plane is
determined by the discrete area T. Then, if Y denotes the modulus of Y,

1( &) =.YJ_ Y,sénA-xgos/\ )‘3/2 dx dy (1k4)
A X ‘B (y

[

where A is the angle between the y-axis and the direction of the vorticity
in 7, and B2 = -8 (supersonic flow). The components of the vector
cross product ¥ ¥ (R-Ry ) ¥ x R which are nos normal to the plane of 7 have
been left out of equation (14) vecause, when the limit operation €0 is
carried out, they will vanish. The area Ae is bounded by & line parallel to
the vorticity direction going through x -(1+B)e and by the intersection of the
Mach forecone from the point (o, o, €) with the t-plane, consequently, if
the integration with respect to x is performed first,

"2 By? + &

ty - x )
e ”“AI[( freti e o )
M ty -(1+B)e

where t = tan A, and 1j, A2 are the values of y corresponding to the inter-
section of the line x=ty -(l+B)6‘ with the hyperbola , _ _Bi?‘yz + 20 Let

g= ¢ (1+213)-2( 1+B) ety -(B -t ) y2 , then the finiie part of the x-

integration yields

I(e) = A ty (ty-(1+B)e)
() Yc087C {Ba(y2+62)ﬁ JT}dy

A
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xcosA ‘ 2--(1*‘3) "tY‘(Ba‘ 2)Y2 l ay (16)
'3

Since ¢ is a very small quantity, the variation of y in the interval (Al, J\g)
is going to be equally small, ana, therefore, the quantity within brackets in
the last integrand of equation (16) can be replaced by a mean value and taken
outside of the integral sign. The same is not true of the term l/ﬂ- since
it will vary from co for y = A3, go through finite values in the integration

interval, and then again increase to @ for y = \2. With this in mind, and if
¥ denotes a mean value of y, I(€) can be written as

~ 2,2\ ~2 )‘2
I(e) = YCOSA Bee_(1+B) ety - (B°-t7) ¥ _[_ dy (17)
B2 3;2 + s2 ) ﬁ‘
M
But A1, X2 are the roots of ty-€ = -B\Jy2 + 62 , i.e., they are the roots of

the polynomial denoted by @#. Thus

Jo - J2imemetmay - (2 & V22 Joumey)  (8)

Introducing this expression for ./ @ into (17), and taking the limit
¢—0, the following value for I{e) is obtained:

I(o) = 1m1<e)--1£°—SLJ 7L ( (19)
M

c —0 -Y)(y-)\z)

The integral appearing in equation (19) can be easily evaluated by com-
plex variable methods; its value is found to be

_ dy
)\f V(=¥ (y-1,)
1
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The contribution of the inherent singularity to the velocity field induced
by vorticity patch T, within 7, denoted herein by w*, is therefore given by

Mo B 1me - xoeh (fR (21)

2n € -0

This contribution is perpendicular to the plane of 7, and it has only
physical meaning when B2 > t2, i.e., when the vortex lines are swept in front
of the Mach lines. It is expression (21), taken in conjunction with equation
(12), that makes the vortex lattice method applicable to svpersonic flow.

MODELING OF LIFTING SURFACES WITH THICKNESS

The method of quadrilateral vortex rings placed on the actual body sur-
face (ref. 1) provides a way of computing the surface pressure distribution
of arbitrary bodies using discrete vortex lines only. Numerical difficulties
may occur when the above method is applied to the analysis of airfoils with
sharp trailing edges due to the close proximity of two vortex surfaces of
nearly parallel direction. An alternative approach, requiring somewhat less
computer storage and easier to handle numerically, consists in using a double,
or biplanar, sheet of swept horseshoe vortices to model a lifting surface
with thickness, as shown schematically in figure 2. This constitutes an
approximation to the true location of the singularities, similar in nature to
the 2lassical lifting surface theory approximation of a cambered sheet.

All the swept horseshoe vortices, and their boundary condition control
points, corresponding to a given surface, upper or lower, are located in a
same plane. The upper and lower surface lattice planes are separated by a
gap which represents the chordwise average of the airfoil thickness distri-
bution. The results are not too sensitive to the magnitude of this gap; any
value between one half to the full maximum chordwise thickness of the airfoil
has been found to be adequate, the preferred value being two thirds of the
maximum thickness. Furthermore, the gap can vary in the direction normal to
the x-axis to allow for spanwise thickness taper. On the other hand, the
chordwise distribution, or spacing, of the transverse elements of the horse-
shoe vortices have a significant influence on the accuracy of the computed
surface pressure distribution. For greater accuracy,for a given chordwisge
number of horseshoe vortices, the transverse legs have to be longitudinally
spaced according to the ‘cosine' distribution law

T c 2J-1
xJ-xo 3 [l-cos (rr—ﬁ-)] (22)

where x} - x. represents the distance from the leading edge to the midpoint
of the swept ieg of the Jth horseshoe vortex, ¢ is the length of the local

chord running through the midpoints of a given chordwise strip, and N is the
number of horseshoe vortices per strip. The chordwise control point location
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corresponding to this distribution of vortex elements is given by

xg-xo=§-[l-cos(n%)] (23)

The control points are located along the centerl. ne, or midpoint line, of the
chordwise strip (fig. 3). ILan has shown (ref. 7) that the chordwise 'cosine'’
collocation of the lattice elements, defined by equations (22) and (23),
greatly improve the accuracy of the computation of the effects due to lift.
His results are directly extendable to the computation of surface pressure
distributions of wings with thickness by the 'biplanar' lattice scheme pre-
sented herein,

The smal. perturbation boundary condition

v.h'=-u .h (24)
(- -]
is applied at the control points. In equation (24), n =21 + mJ + nk, and
n' = mJ + nk, where {, m, and n are the direction cosines of the normal to
the actual airfoil surface. Equation (24) implies that |ful <<|mv + nw| .
The use of the small perturbation boundary condition is consis :ent with the
present 'biplanar' approach to the simulation of thick wings.

MODELING OF FUSIFORM BODIES

The modeling of fusiform bodies with horseshoe vortices requires a
special concentrical vortex lattice if the simulation of the volume displace-
ment effects, and the computation of the surface pressure distribution, are
to be carried out. To define this lattice, it is necessary to consider first
an auxiliary body, identical in cross-sectional shape and longitudinal area
distribution to the actual body, with a straight barycentric line, i.e.,
without camber. The cross-sectional shape of this auxiliary body is then
approximated by a polygon whose sides determine the transverse legs of the
horseshoe vortices. The vertices of the polygon and the axis of the auxiliary
body (which by definition is rectilinear (zero camber) and internal to all
possible cross sections of the body) define a set of radial planes in which
the bound trailing legs of the horseshoe vortices lie parallel to the axis
(fig. 4). As the body cross section changes shape along its length, the
corresponding polygon is allowed to change accordingly, but with the constraint
that the polygonal vertices must always lie in the same set of radial planes.
The axial spacing of the cross-sectional planes that determine the transverse
vor“ex elements, or polygonal rings, follows the 'cosine' law of equation (22),
The boundary condition control points are located on the auxiliary body sur-
tace, and in the bisector radial planes, with their longitudinal spacing given
by equation (23).

The boundary condition to be satisfied at these control points is the
zero mass flux equation
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V.E=-T_.7% (25)

where all the components of the scalar product W . n = Bal u +mv +nw

are to be retained. Thus, equation (25) is a higher order condition than

equation (24). The use of this higher order boundary condition, within the .
framework of a linearized theory, is not mathematically consistent. There-

fore, it can only be justified by its results rather than by a strict mathe-

matical derivation. In the present treatment of fusiform bodies, it has been

found that the use of higher order, or ‘'exact' boundary conditions is a re-

quisite for the accurate determination of the surface pressure distribution.

The fact that the vector W, instead of Vv, appears in the left hand member
of equation (25) requires some elaboration. First, it should be pointed out
that for small perturbations W . n= Vv . n'. Furthermore, for incompressible
flow (B = 1), the vector W is identical to the perturbation velocity ¥. Con-
sequently, the boundary condition equation (24) is consistent with the con-
tinuity equation, V. W = 0, to a first order f.r compressible flow, and to any
higher order for incompressible flow. But when a higher order boundary con-
dition is applied in compressible flow to a linearized solution, it should be
remembered that this solution satisfies the conservation of W, not of Vv, i.e.,

V. w = 0. Thus, the higher order boundary condition should involve the
reduced current velocity, or perturbation mass flux, vector W, as in equation
(25), rather than the perturbation velocity vector ¥.

The body camber, which was eliminated in the definition of the auxiliary
body, is taken into account in the computation of the direction cosines f,m,
and n, which are implicit in equation (25). Therefore, the effect of camber
is represented in the boundary condition but ignored in the spatial placement
of the horseshoe elements. This scheme will give a fair approximation to
cambered fusiform bodies provided that the amount of body camber is not too
large.

THE GENERALIZED VORTEX IATTICE METHOD

Description of Method

The three features discussed above, i.e., the inclusion of the vorticity-
induced residual term w* for supersonic flow, the 'biplanar' scheme for rep-
resenting thickness, and the use of a vortex grid of concentrical polygonal
cylinders for the simulation of fusiform bodies, have been implemented in a
computational procedure herein known as the Generalized Vortex Lattice (GVL)
method. The GVL method has been codified in a Fortran IV computer program
(VORIAX), which has been widely utilized throughout the Lockheed-Californis
Company as an efficient aerodynamic design tool for advanced aircraft confi-
gurations in subsonic and supersonic flows.
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The basic element of the method is the swept horseshoe vortex with
'bound' and 'free' legs. In the present version of the method, the free legs
may trail to downstream infinity in any arbitrary, but predetermined, direc-
tion. The lattice formed by the bound legs of the horseshoe vortices is
laid out on the proper cylindrical surfaces, the trailing legs being parallel
to the x-axis., Figure 5 illustrates schematically the representation of a
simple wing-body configuration within the context of the present method. The
streamwise arrangement of the lattice follows the 'cosine' distribution law
(eq. (22)), whereas the spanwise, or cross-flow, spacing of the trailing legs
can be arbitrarily specified. To each horseshoe vortex there corresponds an
associated control point, placed midway between the bound trailing legs of
the horseshoe and longitudinselly spaced according to equation (23).

The velocity field induced by the elementary horseshoe vortex is derived
from equstion (12), and it includes the contribution given by equation (21)
when the velocity induced by a horseshoe at its own control point is evaluated
at supersonic Mach numbers. This veloecity field is used to generate the co-
efficients of a system of linear equations relating the unknown vortex
strengths to the appropriate boundary condition at the control points. This
linear system is solved by either a Gauss-Seidel iterative procedure (ref. 8),
or by a vector orthogonalization technique (ref. 9).

The pressure coefficients are computed in terms of the perturbation
velocity components. Force and moment coefficients are determined through a
numerical integration process. Due account is taken of the leading edge
suction through the application of Lan's procedure (ref. 7), which the GVL
method directly extends to supersonic flow.

Numerical Considerations

At supersonic Mach humbers, the velocity induced by a discrete horseshoe
vortex becomes very large in the very close proximity of the envelope of Mach
cones generated by the transverse leg of the horseshoe. At the characteristic
envelcpe surface itgelf, the induced velocity correctly vanishes, due to the
finite part concept. This singular behavior of the velocity field occurs only
for field points off the plane of the horseshoe. For the planar case, the
velocity field is well behaved in the vicinity of the characteristic surface.
A simple procedure to treat this numerical singularity consists of defining
the characteristic surfaces by the equation

(xx)? = ¢ B (yy)® + (2-22)°) (26)

where C is a numerical constant whose value is greater than, but close to, 1.
It has been found that this procedure yields satisfactory results, and that
these results are quite insensitive to reasonable variations of the parameter
C.
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Another numerical problem, peculiar to the supersonic horseshoe vortex,
exists in the planar case (field point in the plane of the horseshoe) when
the field point is close to a transverse vortex leg swept exactly parallel
to the Mach lines (sonic vortex), while the vortex lines immediately in front
of and behind this sonic vortex are subsonic and supersonic, respectively.
This problem can te handled by replacing the boundar; condition equation for
such sonic vortex with the averaging equation

~Yp*_y t2 ¥k T ypry, = O (27)

where vy # is the circulatior strength of the critical horseshoe vortex, and
Yr*_q ang Ypx4 80 the respective circulation values for the fore-and-aft

adjacent subsonic and supersonic vortices.

The axialwash induced velocity component (u) is needed for the computa-
tion of the surface pressure distribution, and for the formulation of the
boundary condition for fusiform bodies. When the field point is not too
close to the generating vorticity element, the axialwash is adequately des-
cribed by the conventional discrete horseshoe vortex representation. But if
this point is in the close vicinity of the generating element, as may occur
in the biplanar and in the concentrical cylindrical lattices of the present
method, the error in the computation of the axialwash due to the discretiza-
tion of the vorticity becomes unacceptable. This problem is solved by resor-
ting to a vortex-splitting technique, similar to the one presented in refer-
ence 10. Briefly, this technique consists of computing the axialwash induced
by the transverge leg of a horseshoe as the summation of several transverse
legs longitudinally redistributed, according to an interdigitation scheme,
over the region that contains the vorticity represented by the single discrete
vortex., This is done only if the point at which the sxialwash value is re-
quired lies within a given near field region surrounding the original dis-
crete vortex.

COMPARISON WITH OTHER THEORIES AND EXPERIMENTAL RESULTS

Conical flow theory provides a body of 'exact' results, within the con-
text of linearized supersonic flow, for some simple three-dimensional confi-
gurations., These exact results can be used as bench mark cases to evaluate
the accuracy of numerical techniques. This has been done rather extensively
for the GVL method, and very good agreement between it and conical flow theory
has been observed in the computed aerodynamic load distribution and all force
and moment coefficients. Only some typical comparisons are presented in this
paper, figures 6 through 9.

Finally, the capability of computing surface pressure distributions by
the method of this paper is illustrated in figures 10 and 11.
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CONCLUDING REMARKS

It has been shown that vortex lattice theory can be extended to super-
sonic flow if Aue account is taken of the principal part of the surface vorti-
city integral. Furthermore, special vortex lattice layouts, which allow the
simulation of thickness and volume with horseshoe vortices, have been presen-
ted., All this greatly enhances the value of vortex lattice theory as a com-
putationally efficient design and analysis tool, as exemplified by its exten-

sive use at the Lockheed-California Company, discussion of which has been
precluded by space limitations.
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Figure 1l.- Definition of integration regions for the
computation of principal part.
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Figure 2.~ Modeling of thick wing with horseshoe vortices.
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Figure 3.- Vortex lattice collocation.
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Figure 4.- Modeling of fusiform body with horseshoe vortices.
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Figure 5.- Generalized vortex lattice model of wing-body configuration.
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Figure 6.- Theoretical comparison of arrow wing lift slope
and aerodynamic center location.
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Figure 7.- Theoretical comparison of arrow wing drag-due-to-~lift factor.
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Figure 8.- Theoretical comparison of chordwise

loading for delta wing.
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Figure 9.- Theoretical comparison of chordwise loading

for sweptback rectangular wing.
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Figure 10.- Comparison with experimental pressure distribution
t

on wing-body model at Mach = 0,5,
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