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SUMMARY 

The convergence criterion for the vortex-lattice technique which deals with 

delta wings exhibiting significant leading-edge separation has two rr luirements. 

First, the wake must converge to a force-free position for any given number of 

discrete vortex elements. Second, the distributed loads must converge as the 

number of elements increases. Replacing the vortex sheets representing the 

wakes by a system of discrete vortex lines whose positions are determined as 

part of the solution (first requirement), one finds that the total loads corn- 

puted agree very well with experimental data. But t!le predicted pressure dis- 

tributions have some irregularities which are the rvsult of discrete vortex 

lines coming close to the lifting surface. Here it is shown that one can 

eliminate these irregularities and predict presscre distributions which agree 

fairly well with experlmental data (which show r~ome irregularities of their 1 - .. own) by replacing the system of discrete vortex lines with a single concentra- 

ted core. This core has a circulation equal tc; the algebraic SUP of the cir. 

cvlations around the discrete lines and is located at the centroid of these 

lines. Moreover, the second requirement is replaced by the requirement that 

the position and strength or' the core converge as the number of elements in- 

creases. Because the calculation of the position and strength of the core is 

much less involved than the calculation of the loads, this ap?roach has the ad- 

ditional desirable feature of requiring less computational time. 

INTRODUCTION 

A characteristic feature of the flow over wings 52-.ring highly swept, sharp 

leading edges is the forration of vortices above suction i;ides in the vicinity 

of the leading edges. These vortices roll up in a conicai-like spiral with a 

concentrated core. This vortex spiral grows in size and strength as it approaches - 
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the trailing edge, Below the angle of stall (i.e., the angle at which vortex 

bursting occurs), the effect of the leading-edge separation is to increase the 

velocity on the suction side of the lifting surface by adding a strong cross- 

flow component and hence to increase the aerodynamic loads. Experimental in- .. 
vestigations, such as those described in refs. 1-7, and numerical investigations, I 

such as those described in refs. 8 and 9, confirm these conclusions. Detailed 

descriptions of the flow field are alsr given in these references. 

Though the experimental results show that the pressure distribution is some- 

what influenced by the character (laminar or turbulentj of the boundary layer, 

the lift and pitching-moment coefficients are independent of the Reynolds number. 

Thus, one expects an inviscid modei of the flow to predict the total loads more 

reliably than tne distributed loads. And such has turned out to be the case. 

The early attempts to develop an inviscid model of these flows were based 

on assumptions of conical flow and/or slender-body theory. These assumptions 

are apparently discredited by the experiticntal obseivations; more discuosi2-.n is 

given in references 8 and 9. 

Subsequent attempts to develop inviscid models did not use these assumptions. 

Rehbach (ref. 10) developed a vortex-lattice technique which progressively short- 

ens the leading edge of a rectangular wing until a delta win2 is formed. Associ- 

ated with this method are questions concerning the second convergence requirement 

and the undesirable feature of long computation times; more discussion is given 

in refs. 8 and 9. Weber et a1 (ref. 11) developed a technique which uses piece- 

wise continuous, quadratic, doublet-sheet distributions. The second requirement 

apparently was not considered, and no results showing the computed shapes of the 

rolled-up wakes were given. 

In a related effort, Suciu and Yorino (ref. 12) developed a technique for 

modelling the region adjoining the trailing edge. However, numerical experiments, 

as described in refs. 8 and 9, show that the wake adjoining the trailing edge has 

very little influence 0.1 the aerodynamic loads. 

In the present paper, the question of the convergence of the centroidal 

line as the number of discrete elements increaees is considered; and this lime, 

instead of the system of discrete vortex lines, is used to comprte the pressure. 



SYMBOLS 

r/crUm 

nel 

aspect ratio 

wing semi-span 

pitching-moment coefficient about the z-axis 

normal-force coefficient 

local cross-normal-force coefficient 

pressure coefficient 

root chord 

local semi-spanlwing semi-span 

thickness ratio 

free-stream velocity 

body-fixed axes (z-axis is in spanwise direction) 

dimensionless chord station 

dimensionless spanwise station 

angle of attack 

dimensFonless circulation 

number of elemental areas of the lattice 

FORMULATION OF THE PROBLEM 

The perturbation velocity ~otential, 41, of the inviscid* irrotational, in- 

compressible flow past a wing is governed by Laplace's equation and satisfies 

the following boundary conditions: (a) the no-penetration condition nn the wing 

surface given by 
- - 
(urn + v+) n = 0 on s(;) = 0 

where n is the unit normal to the wing surface S, (b) the no-pressure discontin- 
uity condition across the wakes emanating from the leading and trailing edges of 

the wing given by 

~p = o across w(c) = o 

where Ap is the pressure jump across the wake surface w. This scrface is an UL- 

known of the problem and must be obtained as part of the solution, ( c )  the Kutta 

condition which requires that no-pressure jump exists across the wing surfacs 

along the leading and trailing edges where the wake surface is emanating, and 

(d) the disturbance velocity, V+, diminishes far from the wing surface, S, m d  

the wake surface, w. We note that the problem is nonlinear due to boundary con- 

dition ( h ) .  



DESCRIPTION OF THE METHOD OF SOLUTION 

The solution of the problem posed above is constructed by modelling the 

lifting surface with a bound-vortex lattice and the wake with a system of dis- 

crete, nonintersecting vortex lines. Each vortex line in the wake is composed 

of a series of short, straight segments and one final semi-infinite segment. The 

unknowns here are the circulations around the vortex segments and the positions 

of the finite segments in the wake. 

The distarbance velocity field produced by this model of the wing and wake 

is calculated according to the Biot-Savart law; thus, everywhere, except on the 

wing and the wake, Laplace's equation is satisfied. Moreover, the disturbance 

created by the wing dies out far from the wing and wake, boundary condition (d). 

Associated with each elemental area of the lattice and with each finite seg- 

ment in the wake is a control point. The lattice is arranged so that vortex seg- 

ments leaving the sharp edges do so at right angles to the edge. Moreover, con- 

trol points are placed between the last edgewise vortex segment of each row and 

column and the edge itself. This arrangement partially satisfies the Kutta con- 

dition (c) . 
The circulations and the positions of the finite segments in the wake are 

obtained by simultaneously requiring the normal component of velocity to vanish 

at the control points of the elemental areas of the lattice 

ments in the wake to be parallel to the velocities at their 

Boundary conditions (a) and (b) and the Kutta condition (c) 

and the problem is solved for this lattice (i.e., the first 

and the finite seg- 

own control points. 

are then satisfied, 

requirement of the 

convergence criterion is met). More details, especially those regarding the 

iterativc procedure used to effect the last step, are given in refs. 8 and 9. 

Instead of calculating the aerodynamic loads and testing the second re- 

quirement of convergence at this point, with the present procedure we calculate 

the centroidal line of the system of free-vortex lines representing the leading- 

edge wake. To construct this centroidal line, we consider a series of cross- 

flow planes. Proceeding from the vertex toward the trailing edge, we calculate 

the centroids of the vortex lines penetrating these planes according to 



where r is taken t o  be  t h e  c i r c u l a t i o n  around t h e  c e n t r o i d a l  l i n e  between t h e  
c j  

jth and ( j + l )  th p laner  and i t  given by 

-+ -+ 
r 3  is  t h e  p o s i t i o n  of t h e  c e n t r o i d  i n  t h e  j th  p lane ,  r i s  t h e  p o s i t i o n  of t h e  

i j 
i n t e r s e c t i o n  of t h e  ith v o r t e x  l i n e  wi th  t h e  j th  p lane ,  r, i s  t h e  c i r c u l a t i o n  

I 

around t h e  ith l i n e ,  and n is t h e  number of l i n e s  p e n e t r a t i n g  t h e  j th plane.  
j 

More l i n e s  p e n e t r a t e  t h e  p lanes  near  t h e  t r a i l i n g  edge than those  near  t h e  ver-  

tex;  thus ,  .I' inc reases  toward t h e  t r a i l i n g  edge. 
c j  

Now, t h e  number of elements is  inc reased  and new c e n t r o i d a l  l i n e s  a r e  ca l -  

cu la ted  u n t i l  t h e  changes i n  I' and f a l l  w i t h i n  p resc r ibed  to le rances .  A t  
c j j 

t h i s  p o i n t ,  t h e  second requirement of t h e  convergence c r i t e r i o n  is  m e t .  

Only when both requirements a r e  met, do we c a l c u l a t e  t h e  aerodynamic l o a d s  

and p ressure  d i s t r i b u t i o n .  The d e t a i l s  f o r  c a l c u l a t i n g  t h e  loads  a r e  given i n  

r e f .  8. The numerical r e s u l t s  below show, f o r  t h e  examples being considered a t  

l e a s t ,  t h a t  t h e  c e n t r o i d a l  l i n e s  converge t o  a p o s i t i o n  which i s  very  c l o s e  t o  

t h e  exper imental ly  determined p o s i t i o n  of t h e  c o r e ,  t h a t  t h e  t o t a l  l o a d s  agree  

very w e l l  wi th  t h e  experimental  d a t a ,  and t h a t  t h e  p ressure  d i s t r i b u t i o n s  a g r e e  

f a i r l y  w e l l  wi th  t h e  experimental  da ta .  

NUMERICAL EXAMPLES 

Figures  1 and 2 show t h e  a c t u a l  c a l c u l a t e d  p o s i t i o n s  of t h e  f ree -vor tex  

l i n e s  f o r  two d e l t a  wings. The plan view a l s o  shows t h e  bound-vortex l a t t i c e .  

And t h e  t h r e e  dimensional view shows t h e  f ree-vor tex l i n e s ,  t h e i r  c e n t r o i d a l  

l i n e ,  and t h e  t r a c e  of t h e  s p i r a l  v o r t e x  s h e e t .  A l l  t h e  fol lowing r e s u l t s  a r e  

assoc ia ted  wi th  t h e s e  two wings. 

Figures  3 and 4 show t h e  convergence of t h e  c i r c u l a t i o n s  around t h e  cen- 

t r o i d a l  l i n e .  And f i g u r e s  5-8 show t h e  convergence of t h e  p o s i t i o n  of t h e  cen- 

t r o i d a l  l i n e  and t h e  c l o s e  agreement between t h e  p o s i t i o n  of t h e  c a l c u l a t e d  l i n e  

and t h e  exper imental ly  determined p o s i t i o n  of t h e  v o r t e x  core .  

Figures  9 and 1 0  show t h e  convergence of t h e  t o t a l  loads  c a l c u l a t e d  by us ing 

the  system of d i s c r e t e  l i n e s  and by us ing t h e  c e n t r o i d a l  l i n e  as a f u n c t i o n  of 

the  number of e l e n e n t s  ( n e l ) .  These r e s u l t s  a r e  compared w i t h  those  obta ined by 

t h e  leading-edge-suction analogy ( r e f .  13)  and w i t h  experimental  d a t a .  We n o t e  



that there is a considerable difference in the experim~ntally determined normal- 

force coefficients in figure 10. 

Figures 11 and 12 show comparisons of the predicted cross-load coefficients 

and experimental data. And figures 13-16 show comparisons of the predicted 

pressure distributions at several chordwise stations with those obtained by 

another method (ref. 11) and with experimental data. We note that the shape and 

size of the suction peak on the upper surface under the vortex differ from one 

experiment to another, depending on how thick the wing is and on whether the 

boundary layer is laminar or turbulent (refs. 5, 6, and 14). 

CONCLUDING REMARKS 

The second requirement of coniiergence is based on the centroidal line of 

the free-vortex lines representing the wake. Using this requirement greatly 

reduces the computational time. The position of the centroidal line compares 

very well with that of the vortex core. The centroidai line can also be used to 

calculate the total and distributed aerodynamic loads with gooa accuracy. This 

results in more reduction in the computational time and smoothing of the peaks 

produced by using many discrete lines. 
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Figure 1 . -  A typical  solution of the wake shape for a 
de l ta  wing with R = 1.  12x12 l a t t i c e .  

Figure 2.-  A typical solution of the wake shape for a 
de l ta  wing with 1R = 1.46. 12x12 l a t t i c e .  



Figure 3 . -  Variation of c irculat ion along the vortex core 
of a delta wing with Ai = 1. a = 15O. 
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Figure 4.-  Variation of c irculat ion along the vortex core 
of a de l ta  wing w i t t i  1R = 1.46.  a = 14'. 
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Figure 5.- Spanwise position of vortex-core path 
on a delta wing with At = 1. a = 15'. 
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Figure 6 . -  Height of v~rtex-core path on a 
delta wing with 1R = 1.  ci = 15'. 
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Figure 7 . -  Spanwise position cf vortex-core path 
on a de l ta  wing with R = 1.66. a = 14'. 
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Figure ti.- Height of vortex-core path on o 
del ta  wing wlth P = 1.46. a = 14'. 



6 DISCRETE FREE VORTICES 
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Figure 9. - ~ormal- force and pitching-moment 
co~fficients of a delta wing with At = 1. 
a = 15O. 
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Figure 10.- Normal-force and pitching-moment 
coefficients of a delta wing with IEL = 1.46. 
a = 14O. 



Figure 11.- Longitudinal 
for a  de l ta  wing with 

distribution of cross load 
1R = 1. 12x12 l a t t i c e ;  
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Figure 12.- Longitudinal distribution of cross load 
for s del ta  wing with R = 1.46.  12x12 l a t t i c e ;  
ci = 14O. 



Figure 13.- Surface pressure distribution of a de l ta  
X wing a t  - =  0 .7 .  A I R  1; a =  15'. 
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Figure 14.- Surface pressure distribution of a delra 
X wing a t  - = 0.82.  R = 1: a = 15'. = r 
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Figure 15.- Surface pressure distribution of a delta 
X wing at - = 0.67. 1R = 1.46; a = 14'. 
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Figure 16.- Surface pressure distrilution of a delta 
X wing at - = 0.83. I% = 1.46; a = 14'. 
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