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A vortex-lattice technique is developed to model unsteady, incompressible 

flow past thin wings. This technique predicts the shape of the wake aa a func- 

tion of time; thus, it is not restricted by planform, aspect ratio, or angle of 

attack as long as vortex bursting does not occur and the flow does not separate 

from the wing surface. Moreover, the technique can be applied to wings of arbi- 

trary curvattire undergoing general motion; thus, it can treat rigid-body motion, 

arbitrary wing deformation, gusts in the freestream, and periodic motions. 

Nunerical results are presented for low-aspect rectangular wings undergoing 

a constant-rate, rigid-body rotation about the trailing edge. The results for 

the unsteady motion are compared with those predicted by assuming quasi-steady 

motion. The present results exhibit hysteretic behavior. 

INTRODUCTION 

d 
For stead./ flows there is ample experimental evidence indicating that flows 

past thin wings, even those exhibiting significant leading-edge and wing-tip a! 

separatioi~, can be described by a velocity potential. We assume that the same 

is true for unsteady flow. 

The velocity potential for incompressible unsteady flow is governed by 

Laplace's equation and is subject to the following boundary conditions: 

(1) the fluid cannot penetrate the lifting surface, 

(2) the disturbance created by the lifting surface must die out away 

from the surface and its wake, 

(3)  there must not be a discontinuity in the pressure in the wake, and 

(4) the Kutta condition must be satisfied along the sharp edges when 

the flow is steady. 

The present technique is an improvement over the previously developed tech- 

niques for treating this problem. For example, Morino and Kuo (ref. 1) develop- 

ed a technique in which the integral equation governing the T:elocity potential 
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is solved numerically. Ashley and Rodden (ref. 2), Rodden, Gie~ing and blman I J 

(ref. 3) , Giesing, Kalman, and Rodden (ref. 4), and Albano and Rodden (ref. 5) 
developed techniques employing combinations of horseshoe-vortex lattice -.ad 

doublets. However, these methods can treat small harmonic motions, and be- ! 
cause none is capable of determining the geometry of the wake. the small harmon- 1 

? 
i .r 

ic motions must be about small angles of attack. Belotserkovskii (ref. 6) de- 

veloped a technique for treating general unsteady motion, but because it is not 

capable of determining the geometry of thi; ;siA,., it too is limited to small 

angles of attack. Djojodihardjo and Widnall (ref. 7) also developed a general 

technique in which the integral equation governing the velocity potential is , a 

solved numerically. Though they determined the geometry of the wake adjoining 

the trailing edge, they ignored the wing-tip vortex system; thus, their techni- 

que at best is limited to large angles of attack for moderately swept, high- 

aspect wings. With the present technique, the geometry of the wakes adjoining 

all sharp edges is determined as part of the solution, and there are no re- 

strictions on the type of motion. The essential difference between the tech- 

niques of Belotserkovskii, Djojodihardjo and Widnall, and the present paper are 

illustrated in figure 1. 

SYMBOLS 

aspect ratio 

wing semi-span 

normal-force, pitching-moment coefficients, respectively 

pressure coefficient 

root chord 

force vector 

length of vortex segment 

position vector 

nondimensional time 

'ime increment 

nondimensional velocity vector 

wing-fixed coordinate system 

angle of attack 

initial and final angl.es of attack 

nondimensional circulation 

rate of change of angle of attack 



THE PRESENT TECHNIQUE 

For completeness, the vortex-lattice technique for steady flows is briefly 

discussed. Then the modifications needed to model unsteady flows are described. 

Steady Flows 

The wing surface is represented by a lattice of discrete vortex lines, while 

the wake is represented by a series of discrete nonintersecting vortex lines. 

Each vortex segment of the lattice is straight (the elemental areas are not nec- 

essarily planar), and each line in the wake is composed of a series of short 

straight segments and one semi-infinite segment. Control points are associated 

with each elemental area of the lattice and with each finite segment of the wake. 

The desired velocity potential is the sum of the known freestream potential 

and the potentials of all the discrete vortex lines. The velocities generated 

by the latter are calculated in terns of the circulations around these qegments 

according to the Biot-Savart law. These circulations are the primary unknowns. 

To satisfy the no-penetration boundary condition, the normal component of 

the velocity is forced to vanish at each control point of the lattice. The velo- 

city field generated by the vortex segments is calculated according to the Biot- 

Savart law; thus, the disturbance dies out far from the wing and its wake. The 

finite segments in the wake are aligned with the velocity at their control points 

in order to render the pressure continuous. Finally, no vortex segments on the 

lattice are placed between the last row and column of control points and the 

edge where the Kutta condition is imposed. 

The problem is solved by the following iterative scheme: 

(1) a direction is assigned to each segment in the wake, 

(2) the circula2ions around each of the vortex segments are determined 

by simultaneously satisfying the no-penetration condition and 

spatial conservation of circulation, 

(3) the segments in the wake are rendered force-free while the circula- 

tions are held constant, 

(4) steps (2) and (3) are repeated until the shape of the wake doesn't 

change. 

An example of a steady solution is shown in figure 2. 

More Ge~ails and results are given by Kandil, Mook and Nayfeh (ref. 8) and 

by Kandil (ref. 9). 
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Unsteady Flows 

The initial condition can be a steady flow such aft one obtained by the meth- / 
od described above or no flow at all. Here we consider the former. When condi- 

tions change with time, starting vortices form along the sharp edges; then they 

are shed and convected downstream with the local particle velocity. Thus, an 

ever-growing portion of the wake must also be represented by a lattice, not a 

series of nonintersecting lines as in the steady case. This is the essential 

difference between the steady and the unsteady model. 

The continuous variation with time is approximated by considering the mo- 

tion to be a series of impulsive changes occuring at evenly spaced time inter- 

vals; thus, the motion becomes smoother as the time intervals become smaller. 

In figure 3, the wake adjoining the wing tip and trailing edge is spread 

out to illustrate how the lattice forms in the wake. The first arrangement 

shows the initial conditions; this corresponds to a steady solution such as the 

one shown in figure 2. The next arrangement corresponds to time = 1; hence, 

there is one shed vortex line in the wake. The last arrangement show1 corres- 

ponds to time = 2. An actual solution is shown in figure 4; this picture corres- 

ponds to time = 4. 

With an incompressible model of the flow, the instant the angle of attack 

changes, the vorticity on the wing and the position of the entire wake (i .e., 

the direction of the vorticity in the wake) change. A starting vortex forms a- 

long the sharp edges and subsequently is shed. But the strength of the vorticity 

in the wake does not change because the vorticity is convected downstream with 
i 

the fluid particles. Such a model of the flow is realistic only when the parti- 

cle velocity is small compared with the speed of sound (i.e., when the Mach num- 

ber is small), 

In terms of the present discrete-line representation, the instant the angle ' 

of attack changes, the circulations in the lattice representing the surface and 
I 

the directions of the finite segments representing the wake change. But the cir- 

culations around the finite segments in the wake do not. 

One cannot, simultaneously, render the wake force-free, satisfy the no- 

penetration condition on the surface, and spatially conserve circulation unless 

one adds a new vortex line which essentially parallels the sharp edges. Thu~, 

the Kutta condition cannot be imposed during unsteady motion. This new vortex 



.- line represents the shed vorticity which is convected downstream causing a 

lattice to form in the wake. One new vortex line is formed for each time inter- 

: val. When the wing stops rotating, lines continue to be shed; however, the 

strengths of these lines decrease and the steady-state results are approached 

rapidly. This is illustrated in figures 5 - 7. The sequence of events leading 

up to figures 5 - 7 is as follows: Initially the angle of attack was eleven 

degrees and the flow was steady. Then the angle of attack was increased at the 

rate of one degree per nondimensional time unit until the angle of attack reach- 

; ed fifteen degrees. At this point the angle of attack stopped changing. The 

general unsteady program was allowed to run for twelve time units. This allowed 

the strength of the shed vortices to vanish, those of appreciable strength to be 

convected far downstream, and the flow to achieve a steady state. 

In all three cases, the lift and moment produced by the unsteady flow are 

lower than those produced by a steady flow at the same angle of attack. The 

steady-flow results are shown by the dotted lines. 

At each time step, the solution is obtained in essentially the same way 

that the steady problem is solved. But now there is the added complication of 

convecting the shed vorticity downstream with the particle velocity. This is 

accomplished by moving the ends of the segments of the shed line according to 
-b + + 
r(t + At) = r(t) + vAt 

where 2 is the particle velocity and At is the time interval. 
The nondimensional loads are calculated according to 

-f 
F = 2Rf x 2 

where R is the nondimensional length of the segment on which the force 9 acts, 
-F 
I' is the circulation around this segment multiplied by a unit vector parallel 

-+ 
to the segment and v is the velocity at the midpoint of the segment. The re- 

sultant force is obtained by adding the forces on the bound segments. The 1 
t i 

pressures are calculated by averaging one-half the forces on the segments along 
i 

the edges of an elemental area over the elemental area, exceptions being those 

elements along the leading edge for which the entire force acting on the forward 

segment is averaged. 

Figure 8 shows the convergence as the number of elements is increased. Com- 

paring figures 9 and 10 with figures 5 and 6 shows that the unsteady results 

approach the steady results as the rate of changing the angle of attack decreases. 

Figures 11 and 12, which show hysteretic behavior, compare the results for 



increasing angle of attack, decreasing angle of attack, and the steady state. 

The initial conditions are the steady-state solutions at eleven and fifteen 

degrees. 

More details and results are given by Atta (ref. 10). 

CONCLUDING REMARKS 

The method presented here is general. It can be used to treat arbitrary mo- 

tions, including harmonic oscillations. And it can be used to treat leading- 

edge separation. 
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Figure 1.- Comparison of different methods. 



Figure 3.- Shed-vortex lines. 
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Figure 4.- Wake shape in an unsteady flow. a. 11'; af = 15'; 
& 1; AR = 1; t 4. 



Figure 5.- Variation of the normal-force coefficient. 
a o = l l O ;  a f = l S O ;  & = I ;  A t = l .  

Figure 6.- Variation of the pitching-moment coefficient. 

a. = 11'; af = 15 ; & = 1; At = 1. 
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Figure 7.- Pressure coefficient variation. OLo = llO; af = 15O; 

& = 1 AR = 1; At = 1; X/Cr = 43.75X. 

Figure 8.- Pressure coefficient for different lattices. 

@o = 11'; af = 15'; & 5 1; AR = 1; At 1; 

X/Cr = 43.75%; t = 5. 
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Figure 9.- Quasi-steady variation of the normal-force coefficient. 
a. = 11'; af = 15'; 6 = 0.25, At = 1; AR = 1. 

Figure 10.- Quasi-steady variation of the pitching-moment 
coefficient. a, = llO; af = 15'; 6 = 0.25; At 1; 
AR = 1. 
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Figure 11.- Normal-force coefficient. 
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Figure 12.- Pitchinglnoment coefficient. 



SUMMARY OF OPEN DISCUSSION ON FUTU!Ul VORTEX-LATTICE UTILIZATION 

John C. Houbolt 
NASA Langley Research Center 

The response of the attendees during the open discussion on vortex-lattice 
utilization was excellent. The intent of this summary is not to evaluate the 
comments made but simply to indicate the topics discussed. Essentially, the 
discussion focused on the following general topics: grid layout, drag calcula- 
tions, bodies in combination, vortex lift, and separated flow effects. 

In order to stimulate and initiate the discussion, a panel was set up 
on a spur-of-the-moment basis. Members were Jan Tulinius of NASA Langley 
Research Center, Joseph Giesing of McDonnell Aircraft Company, Winfried Feifel 
of The Boeing Company, and Brian Maskew 9f Analytical Methods, Inc. The sub- 
jects covered by each of these members are essentially as follows: 

Tulinius, in effect, gave a very good impromptu paper. He covered two- 
dimensional and three-dimensional drag effects and discussed the equivalence of 
near- and far-field drag estimates. He mentioned supersonic vortex-lattice 
methods and pointrd out problems associated with Mach cone and sonic line singu- 
larities, with natural edge conditions, and with nonplanar effects. He also 
discussed the use of distributed singularities versus the use of lattice con- 
straint functions. Also covered was the topic of free vortices, whether of the 
leading-edge variety for arbitrary planforms or as associated with trailing-edge 
and tip wakes. 

Giesing's remarks also constituted a very gund impromptu paper. He dis- 
cussed areas for numerical improvenent of the lattice method with topic coverage 
as follows: 

Supersonic flow 

Infinite velocity on Mach cones 
Smearing of loads - loads wandering out. of Mach cone 
Instability of solutions 

Convecting singularities (jets, wakes, leading-edge vortices) 

'1 
Infinite velocity when vortex contacts control point 

i Force or pressure calculation inconvenient on yawed elements 
Wake next to fuselage 
Low lift for jet flaps 



Subsonic flow 

Discontinuity in Ax causes disturbance in pressures 
Collocating points on body surfaces, while using axial singularities can 
cause instabilities 

High frequency lattice method expensive and/or inaccurate 
Computing tjme and accuracy trade-off for wing-bodies 

Areas where Giesing felt there was need for basic improvement in the 
lattice methods are as follows: 

Transonic flow 

Empirical corrections 

Viscous corrections 

Steady 
Unsteady 

Oscillatory flow 

Nonplanar flaps down, etc. 
Wing- jet j nteraction (compressible) 
Leading-edge vortex 

Lateral-directional forces 

Feifel emphasized the need for practical considerations and input sim- 
plicity. He discussed problems related to the treatment of cambered wings. He 
also felt more attention should be given to grid system layout, especially with 
respect to the simulation of bodies or other complex configurations. The treat- 
ment of high lift configurations, such as constant chord flaps on tapered wings, 
and the situation of wings with cutouts also represent problem areas. 

Maskew's comments are summarized as follows. He referred to the use of 
constraint functions discussed by Tulinius as a possible alternative to the 
subvortex technique for keeping the number of unknowns down while effectively 
using a large number of vortices. Maskew mentioned that he had used constraint 
functions with a subvortex model, as reported in NASA TI: X-73115 (ref. 1). The 
number of unknowns was halved without spoiling the pressure calculations at the 
arbitrary points. With the small number of unknowns, i.e., 46, the savings in 
solution time was about the same as the time required to fiani;~ulate the metrix. 
For a larger number of unknowns, there should be a savings in computer time. 
On the question posed by Houbolt on separated flow modeling, Maskew felt the 
answer might be found in Giesing's comments, namely, that the multienerpy 
mod~ling developed by Shollenberger for jet flow interference might also be 
adapted for the low energy region associated with separated flows. Moskcw 
mentioned that certain problems arise in wake rollup calculations of compli- 
cated flap systems. For tne 747 flap system, with edge vortices on each flap, 
he found that the two opposing regions from the flap edges adjacent to the high- 



is speed aileron pose a ploblem in that the calculations predict an orbiti .ng mot ion 
which does not appear in real flow. The two vortices in fact soon cancel each 
other, leaving a single wake vortex. This merging problem needs further inves- 

i 

f; 
tigation so that it can be modeled correctly. Another problem he discussed 

2 deals with the near-field calculation of forces using the Kutta-Joukowski law 
B applied to vartex segments. He pointed out that in most cases the forces are 
f calculated only on the bound vortex segments, and with the assumption that the 

chordwise segments are alined with the local mean velocity and therefore carry 
$, 

no 104. In some configurations this assumption is not valid. He brought out : the example of a yawed wing which has been paneled for symmetrical flow and 
, S- raised the question, does the wing need repaneling before calculating the yawed 

9 
i condition. The problem alsc appears on wings with deflccted flaps. Large mean 
I spanwise flow components exist on the flaps, particularly near the tip, and if 
5 :he forces on the chordwise segments ?re computed in this case, the Kutta 
f -  trailing-edge condition appears violated. Maskew pointed out that this problem 
j 

requires further attention and that perhaps the chordwise segments should always 
? 

b? alined with the mean flow direction. 

In summary, the following items appear to be of chief concern in continuing 
and future development of the vortex-lattice methods: 

1. Grid layout, especially with respect to the use of the 114-point, 
314-point rule, or the approach which employs equal angular spacing 
within a semicircle 

2. Drag calculation techniques 

6. Treatment of lateral flow or of combined pitch and yaw displacement 
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3. Bodies in combination 
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