N76-28276

SHAPE OPTIMIZATION OF DISC-TYPE FLYWHEELS

By Richard S. Nizza

Lockheed Missiles & Space Company, Inc.

ABSTRACT

Recent developments in the field of flywheel powered electrical energy storage systems has prompted the need for a better understanding of the varied design and analytical criteria that must be considered in the selection of a flywheel. Techniques have been developed for presenting an analytical and graphical means for selecting an optimum flywheel system design, based on system requirements, geometric constraints and weight limitations. The techniques for creating an analytical solution are formulated from energy and structural principals. The resulting flywheel design relates stress and strain pattern distribution, operating speeds, geometry, and specific energy levels. The design techniques incorporate the lowest stressed flywheel for any particular application and achieve the highest specific energy per unit flywheel weight possible. Stress and strain contour mapping and sectional profile plotting reflect the results of the structural behavior manifested under rotating conditions. This approach toward flywheel design is applicable to any metal flywheel, and permits the selection of the flywheel design to be based solely on the criteria of the system requirements that must be met, those that must be optimized, and those system parameters that may be permitted to vary.

INTRODUCTION

This paper describes a procedure for designing an optimum flywheel shape based on the constraints of geometry, speed and stress so as to maximize energy density. The design procedure described relies on the application of linear elastic structural mechanics and the laws of conservation of energy and momentum. Little work has been reported in maximizing the energy density of solid disc flywheels. Much work however has gone into the design of turbine blades and discs, and electric generators and motors, which are perhaps the closest entity to the energy storage flywheel. The basic structural laws under which flywheels, turbine blades, generators and motors behave are the same but their functions, based on different design objectives, are different.

The energy density of a flywheel is represented by the simple relationship:

$$E = K_{S \rho} \frac{\sigma}{\rho}$$
(1)

where E = energy density

 $K_{S} =$ flywheel shape factor (dimensionless)

 σ = material working stress

 ρ = material density

Flywheel shape factors for several geometries are shown in Table 1. For disc flywheels the shape factor can approach 1.00. The disc shaped flywheel that produces this high a shape factor has constant stresses throughout. This is attributed to the fact that each unit volume of material is stressed equally to a predetermined working stress level and therefore produces the largest amount of energy possible. The flywheel shape that produces this constant stress is exponential in profile.

Equation (2) expresses the summation of forces in a flywheel (Reference 2).

$$\frac{d(XY\sigma_r)}{dX} - Y\sigma_t + \frac{\rho}{g} W^2 X^2 Y = 0$$
 (2)

For uniform strength the tangential and radial stresses must be equal and of constant value throughout.

Therefore,

$$\sigma_{+} = \sigma_{-} = \sigma = \text{constant}$$

Equation (2) can be restated as

$$\frac{d(XY)}{dx} - Y + \frac{\rho}{g\sigma} W^2 X^2 Y = 0$$
(3)

and by integrating,

$$\ln \frac{Y}{Y_{\rho}} = -\frac{W^2 X^2 \rho}{2g\sigma}$$
(4)

Applying the boundary conditions, at $X = X_R$, $Y = Y_R$

$$\frac{\rho W^2}{2g\sigma} = \frac{1}{X_R^2} \ln \frac{Y_o}{Y_R}$$
(5)

Substituting Equation (5) into Equation (4),

$$\frac{Y}{Y_{o}} = e^{-\left(\frac{X}{X_{R}}\right)^{2} \ln\left(\frac{Y_{o}}{Y_{R}}\right)}$$
(6)

JPL Technical Memorandum 33-777

where X = radius

Y = thickness at radius X Y_o = hub thickness Y_R = tip thickness

 $X_{p} = tip radius$

Equation (6) gives the normalized thickness as a function of the normalized radius and the hub-to-tip thickness ratio. This equation represents the profile configuration for the constant stress flywheel geometry. According to Equation (6), the disc, even though with infinitely decreasing thickness, is prolonged to infinity. But practically, the disc is limited by a cylindrical boundary or radius X_{p} at which it has a thickness Y_{p} . Although the theoretical flywheel of infinite diameter would have a shape factor of 1.00, the practical flywheel of finite radius X_R would have a shape factor less than 1.00. In order to improve the shape factor of this exponentially shaped finite diameter flywheel, the author has chosen to take some of the material that theoretically existed between the finite diameter and infinity and place it near the rim of the flywheel producing a constant thickness section running from a point on the surface to the rim. The utilization of a flat tip as the means for improving the flywheel shape factor, in lieu of an exponentially flaired tip, was chosen for two reasons: number one, the shape factor difference between a flaired and a flat tip was found to be insignificant, and secondly, the manufacturing and machining operations are considerably simplfied by having a flat tip rather than a flaired tip. The question of how much constant thickness material should be added to the flywheel must now be determined. Since it is the objective to improve the shape factor as much as possible, it is necessary to solve Equation (1) in terms of the shape factor, K_c , for the various stresses and energy densities associated with each flatted tip flywheel that is generated for each hub-to-tip thickness ratio used in Equation (6). An analytical evaluation must first be performed to evaluate the resulting stresses and energy densities for each flywheel geometry.

One such analytical method developed at Lockheed Missiles & Space Company utilizes a computer program based on two dimensional stresses and strains developed in rotating machinery. These relationships were then expanded (Reference 3) and culminated in the computer program. A typical set of results are shown in Table 2. Tangential stresses, radial stresses and flywheel thicknesses are presented for various radii starting at the rim and extending to the hub. Once the stresses are determined the program then utilizes Equation (1) to calculate the shape factor from the calculated kinetic energy and maximum flywheel stress. A maximum shape factor is then obtained for each hub-to-tip thickness ratio by iteratively evaluating different flatted tips that begin at different percent radii.

Figure 1 represents the results of the relationship between the flywheel shape factor and the hub-to-tip ratio. The point at which the optimum flat begins has an optimum value which varies with the hub-to-tip thickness ratio. By applying the appropriate flat tip as the means for optimizing the flywheel shape factor for a particular hub-to-tip ratio, it can be recognized that for hub-to-tip ratios less than 1.00, the appropriate flat tip would extend from the tip to the hub, and the flywheel shape would be that of a flat unpierced disc having a shape factor of 0.606.

FLYWHEEL PARAMETRIC TRANSFORMATIONS

By increasing the hub-to-tip ratio, the shape factor is improved and becomes 1.00 at a hub-to-tip ratio of infinity. There are instances when a high hub-to-tip ratio may not be practical, such as when geometric constraints limit the axial length of the hub. It is therefore desirable to determine the effects of changing parameters on the rest of the system. A set of parametric relationships for relating flywheel diameters, speeds, weights, kinetic energy levels, operating stresses and thicknesses permits an easy determination of the effects on each parameter when one or two are changed. Equations (7), (8), and (9) express these relationships, and can be used for the flywheel shapes generated by Equation (6) having fixed hub-to-tip ratios.

$$\frac{\sigma_{\rm N}}{\sigma_{\rm o}} = \left(\frac{D_{\rm N}}{D_{\rm o}}\right)^2 \left(\frac{W_{\rm N}}{W_{\rm o}}\right)^2 \tag{7}$$

$$\frac{\mathrm{THK}_{\mathrm{N}}}{\mathrm{THK}_{\mathrm{o}}} = \left(\frac{\mathrm{W}_{\mathrm{o}}}{\mathrm{W}_{\mathrm{N}}}\right)^{2} \left(\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{N}}}\right)^{4} \left(\frac{\mathrm{KE}_{\mathrm{N}}}{\mathrm{KE}_{\mathrm{o}}}\right)$$
(8)

$$\frac{WT_{N}}{WT_{o}} = \left(\frac{THK_{N}}{THK_{o}}\right) \left(\frac{D_{N}}{D_{o}}\right)^{2}$$
(9)

where σ = working stress

- D = flywheel diameter
- W = flywheel speed
- KE = kinetic energy

THK = flywheel thickness

WT = flywheel weight

JPL Technical Memorandum 33-777

A specific example is used to demonstrate the application of these equations for a flywheel having a kinetic energy of 12 kilowatt-hours. This is shown in Figure 2 for several flywheels from three to four feet in diameter. The stagger of the data points is caused by the quantizing error in selection of either 75 or 80 percent flat value for the optimum hub-to-tip ratio. Since the optimum flat lies between these two values a smooth curve in actuality joins the optimum points.

The curves represent a family of varying diameters for a particular kinetic energy level. It is reasonable to assume that the kinetic energy requirements are already known for a desired application. The requirements for the operating speed, or the maximum flywheel stress will further restrict the number of available flywheel design selections. If we permit the flywheel speed to vary, we can superimpose a family of flywheel speeds on Figure 2 indicative of a specific kinetic energy and operating stress level. This was done for an operating stress level of 100 ksi. By utilizing a series of plots similar to Figure 2, reflecting various operating stress levels, a more complete selection of flywheel geometries is possible. These curves represent a means for selecting an optimum geometry flywheel based on the kinetic energy requirements, volumetric linitations, and desired flywheel life (reflected through operating stress level). Once a selection is made, a stress profile may be performed using the two dimensional stress program of Reference 3, which produces results similar to those of Table 2. If upon examination of the results of this initial computer run, the flywheel selected is found to be satisfactory, a much more rigorous, three dimensional, stress-strain examination can be performed using a finite element computer program. A process of contour mapping of the stresses and strains developed under rotating conditions for each and every point within the flywheel can then be made. Figures 3 through 6 show contours for radial, tangential, axial, and axial shear stresses for a quarter section view of a 12 kilowatt-hour flywheel. Figures 7 and 8 show the radial, tangential, axial and axial shear stress distribution along an axis of symmetry, perpendicular to the axis of rotation. The graphs are plotted from right to left. The radial and tangential stresses are maintained at the maximum for almost 80% of the radius and decrease only at the tip.

These techniques permit a very accurate determination of all stresses throughout a homogeneous flywheel, and provide all the quantitative information necessary to perform sensitivity tradeoff studies. This allows a flywheel to be geometrically optimized for a given application in a precise, quick, and economical fashion. The desirability of a constant stress and homogeneous material was assumed; however, in manufacturing thick forgings the metallurgical composition can vary considerably from the core to the surface as well as from the hub to the rim. The effects of the resulting stress pattern variations, developed within the material, must be taken into account and applied to the optimization procedure presented. Such methods have been developed at Lockheed Missiles & Space Company in the form of additional computer programs that evaluate the effects of non-homogeneity of the flywheel material.

ł

42

1. - 4 ...

'n,

ŝ

REFERENCES

- Lawson, L. J., "Design and Testing of High Energy Density Flywheels for Application to Flywheel/Heat Engine Hybrid Vehicle Drives," Intersociety Energy Conference, P-38, Paper 719150, New York: Society of Automotive Engineers, Inc., 1971.
- 2. Stodola, H., Steam and Gas Turbines, Vol. 1. McGraw-Hill Book Co., Inc., New York, 1927.
- 3. Gilbert, R. R., et al., flywheel Feasibility Study and Demonstration, Final Report to Environmental Protection Agency/Air Pollution Control Office, under contract EHS 70-104, April 30, 1971.

41.

Flywheel Geometry	Shape Factor K _S *	
Constant-stress disc (OD $\longrightarrow \infty$)	1.00	
Modified constant-stress disc (typical)	0.931	
Truncated conical disc	0.806	
Flat unpierced disc	0.606	
Thin rim $(ID/OD \rightarrow 1.0)$	0.500	
Shaped bar (OD→∞)	0.500	
Rim with web (typical)	0.400	
Single filament (about transverse axis)	0.333	
Flat pierced disc	0.305	
*From Ref. 1.	-:	

Table 1. Flywheel shape factors for various geometries

IPL Technical Memorandum 33-777

欱

ŧ

44

Table 2. Flywheel geometry and stress distribution

FLYWHEEL PARAMETERS

SPEED	1382 RAD/SEC
MATEPIAL DENSITY	.PRS LBS/CU-IN
POISSONS BATIO	• 30
YOUNES MODULUS	30000+02+03
TEMP. EXP. COEFFICIENT	7300+0E-09
TOTAL TEMP. DIFFERENCE	•O DEG-F
OUTSIDE RADIUS	21+0000 INCHES

FLYWHEEL DESIGN FACTORS

MEAN TANGENTIAL STRESS	108721 PSI
MOMENT OF INERTIA	400-453 LE-IN-SEC12
KINETIC ENERGY	382417805 IN-L95
	12-0055 KAH
WEIGHT	106P+41 LB
ENERGY DENSITY	359954+08 IN-LB5/LB
	11.3 WH/LB
SHAPE FACTOR	•9280
RADIAL GROWTH	+463714E-01 INCHES

RADIUS	THICKNESS	TENPERATURE	TANGENTIAL	RADIAL
(IN)	(IN)	(DEG-F)	STRESS	STRESS
			(PSI)	(PSI)
*******	******	*****	******	
01.0000	1.0450		44040	•
21+0000 20+5000	1 + 2655 1 + 2655	•0	66242	0
P0+0000	1+2658	•0	72139	13118
19.5000	1+2658	•0	77789	86025
19+0000	1+2555	•0	M3164	36729
14+5000		•0	88314	51240
18+0000	1 • 2658 1 • 2659	•0	93168	63569
17-5000	1+2055	•0	97734	75727
17.0000	1+2655	•0	101999	87725
16+5000	1.3466		105946	99589
16+0000	1.4914	•0 •6	107729	104940
	• • • • •		105023	105571
15-5000	1-6467	•0	108285	106128
15+0000	1+8194	•0	108519	106621
14-5000	1+9885	•0	108729	107056
14-0000	2.174A	•0	108917	107446
13+5000	2+3712	•0	109086	107791
13.0000	2.5772	•0	109238	108099
12-5000	2.7923	•0	109375	108373
18+0000	3+0158	•0	109499	108619
11+5000	3+2471	•0	109610	108636
11+0000	3+4850	•0	109711	109035
10+5005	3+7 287	•0	109808	109211
10+0000	3+9769	•0	109685	109369
9.5000	4+2283	•0	109959	109511
9.0000	4+4815	•0	110027	109639
6+5000	4.7350	•0	110058	109753
5.0000	4 • 9570	•0	110144	109856
7.5000	5+2360	• 0	110194	109945
7.0000	5+4502	•0	110239	110031
6+5000	5+7178	•0	110279	110104
6+0000	5+9470	•0	110316	110170
5+5000	6 1659	• 0	110346	110229
:+0000	6+3728	•0	110377	110261
4.5000	6+5660	• 0	110403	110326
4+0000	6+7435	•0	110425	110366
3+5000	6-9047	•0	110444	110400
3+0000	7+0472	•0	110461	110489
2+5000	7 • 1701	•0	110474	:10454
2+0000	7 • 27 22	+0	110464	110474
1-5000	7+3527	+0	110491	110490
1+0000	7+4107	+0	110493	110505
+5000	7 • 4457	•0	110465	110543
+0000	7+4574	•0		

9. S

「いいい」

ł

1.2

.

ş

••*

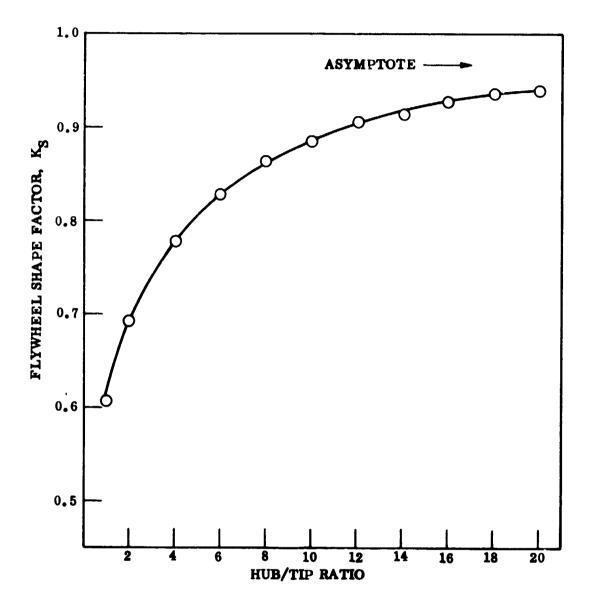


Fig. l. Flywheel shape factor vs. flywheel hub/tip thickness ratio

ł

ł

Fig. 2. Flywheel weight and hub/tip ratio vs. hub thickness for several flywheel diameters

r

<u>_</u>

47

i

17

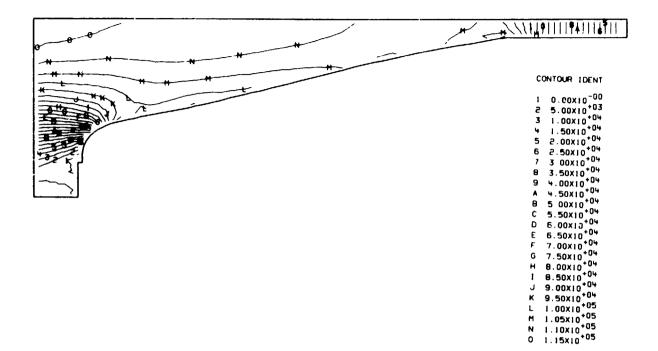


Fig. 3. Contour map of R-stress

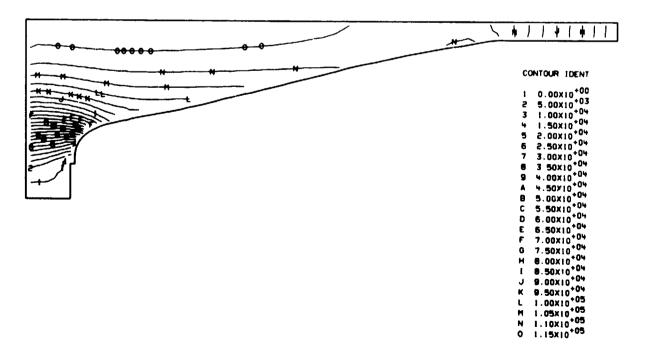
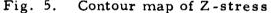
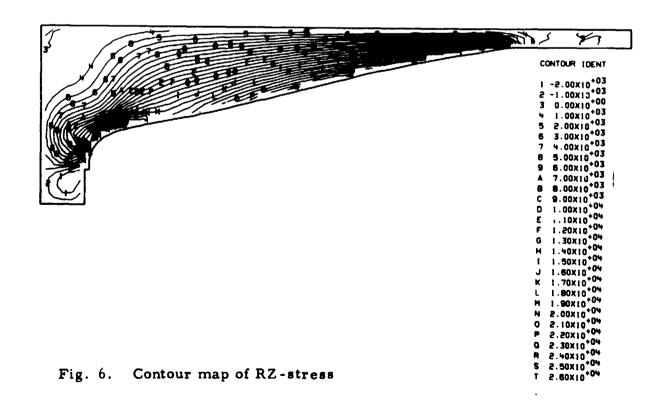


Fig. 4. Contour map of T-stress

JPL Technical Memorandum 33-777


۰*۳*.-


ŧ

48

ł

+ + + 1 + / + / + / / / / / / / / / / / / /	
	CONTOUR IDENT
	1 -2.40x10+04
	5 -5.30X10
	3 -2.20110 07
	4 -2.10x10+04
	5 -2.00X10
The second se	0 ~1.9UX10 -
	8 -1.70×10+04 9 -1.60×10+04
	A -1.50×10+04
	8 -1.40x10 ⁺⁰⁴
	C -1.30x10 ⁺⁰⁴
	D -1.20x10+04
	E -1 10x10
	F -1.00x10+04 6 -9 00x10+03
	G -9.00x10 ⁺⁰³ H -8.00x10 ⁺⁰³
	1 -7.00x10 ⁺⁰³
	J -6.00x10+03
	K -5.00x10 ⁺⁰³
	L -4 00x10 ⁺⁰³
	M -3.00X10+03
	N -2.00x10+03
	0 -1.00x10+03 P 0.00x10+00
	P 0.00x10+00 Q 1.00x10+03
	R 2.00X10+03
	S 3.00x10 ⁺⁰³
	T 4.00x10 ⁺⁰³
	U 5.00x10 ⁺⁰³
	V 6.00X10-03
	W 7.00x10 ⁴⁰³
	X 8.00X10+03
	Y 9.00x10+03 Z 1.00x10+04
Fig. 5. Contour map of Z-stress	1.16X10 ⁺⁰⁴

この行動が読

÷

ST 1

÷

1 22 4

.

د بر ۲۰۰۰ بالار ۲۰۰۰ بالار

2 . . .

,

۲.

, , . .

ь ,

÷

4...

** 12. * 75. 50 -

à

ł

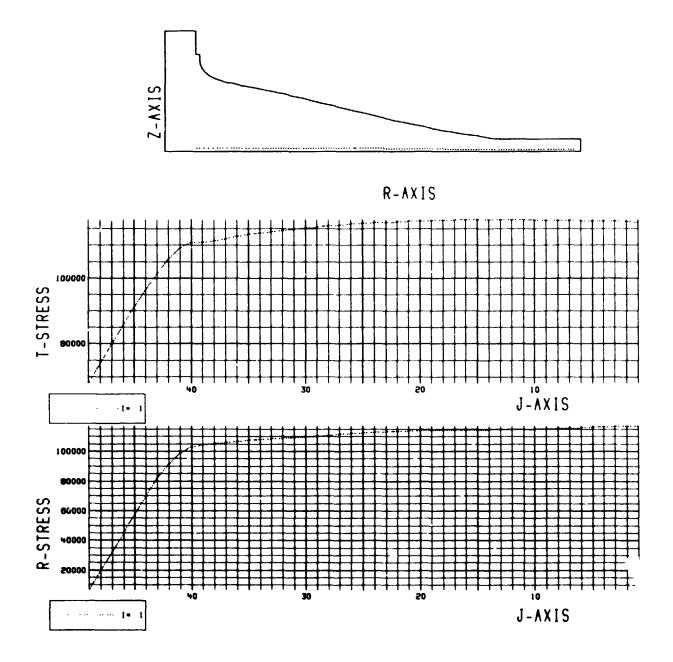
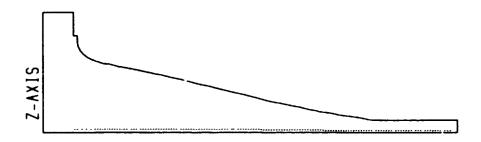


Fig. 7. Radial and tangential stress distribution

JPL Technical Memorandum 33-777


٦ ř

ŧ

50

,

}

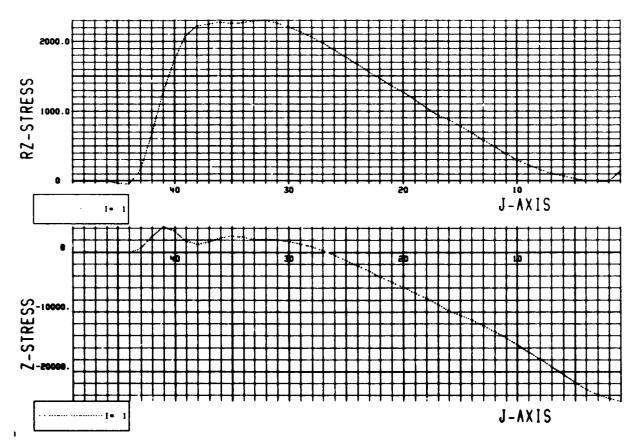


Fig. 8. Axial stress and axial shear stress distribution

JPL Technical Memorandum 33-777

51

うちょう かいしょう しょうないちょう