MASA CR-

Copy Mo.

Bendix.

FINAL REPORT
 ANALYSIS OF LEAM EXPERIMENT RESPONSE TO CHARGED PARTICLES
 BSR 4234
 July 1976

(NASA Contract No. NAS9-14751)

Asrospace Systems Division

CONTENTS

Page

1. SUMMARY 1-1
2. INTRODUCTION 2-1
3. METHOD OF ANALYSIS 3-1
3.1 REVIEW OF LEAM OPERATION 3-1
3.1.1 Sensor Operation 3-1
3.1.2 Electronics Operation 3-1
3.2 ANALYSIS OF PULSE HEIGHT ANALYSIS (PHA) CIRCUIT 3-8
3.2.1 Circuit Analysis 3-10
3.2.2 Laboratory Tests 3-19
3.3 REFINED SENSOR MODEL 3-21
3.3.1 Simple Model and Its Limitations 3-21
3.3.2 Refined Model 3-22
3.4 SYSTEM MODEL 3-27
4. RESULTS AND IMPLICATIONS OF ANALYSIS 4-1
4.1 RESULTS 4-1
4.2 IMPLICATIONS OF ANALYSIS 4-6
5. CONCLUSIONS AND RECOMMENDATIONS 5-1
APPENDIX A COMPUTER PROGRAM DESCRIPTIONS A-1
APPENDIX B SUMMARY STATUS AND PROPOSED TASKS B-1

ILLUSTRATIONS

Figure	Title	Page
3-1	The Basic Sensor	3-2
3-2	Typical Film Channel	3-4
3-3	LEAM Peak Detector	3-12
3-4	Typical SCEPTRE Output	3-13
3-5	Simplified Peak Detector Model	3-16
3-0.	LEAM Grid and Film Structure	3-23
3-7	LEAM Sensor Orientations	3-30
4-1	Plot of PHA Counts vs. Charge (C) and Mass (M)	4-2
4-2	Plot of PHA Counts vs. Charge (Q) and Mass (M)	4-3
4-3	Plot of PHA Counts vs. Charge (Q) and Mass (M)	4-4
A-1	P5072CHG Program Calculates Charge Distributions in Films and Grids	A-12
A-2	P5072SGF Combined Sensor and Electronics	A-64/A-66
A-3	P5072INT Data Selection	A-82

SECTION 1

SUMMARY

The Lunar Ejecta and Meteorites Experiment (LEAM) was deployed on the moon on 12 December 1972. The objectives of the experiment were to measure the long-term variations in cosmic dust influx rates and the extent and nature of the lurar ejecta. While analyzing these characteristics in the data, it was discovered that a majority of the events could not be associated with hypervelocity particle impacts of the type usually identified with cosmic dust, but could only be correlated with the lunar surface and local sun angle.

The possibility that charged particles could be incident on the sensors led the Principal Investigator (PI) to request that an analysis of the electronics be performed to determine if such signals could cause the large pulse height analysis (PHA) signals. These signals indicate the energy of the hypervelocity particles in the normal mode of operation.

A qualitative analysis of the PHA circuit showed that an alternative mode of operation existed if the input signal were composed of pulses with pulse durations very long compared to the durations for which it was designed, by a factor of at least 40 to 1 . This alternative mode would give large PHA outputs even though the actual input amplitudes were small. This revelation led to the examination of the sensor and its response to charged particles to determine the type of signals that could be expected.

A qualitative review of the sensor and application of basic electrostatic theory indicated that very slow particles, below the normal experiment operating range, could produce pulses of the time duration required to excite the PHA circuit's anomalous response.

A grossly simplified model of the sensor was developed on a computer to determine the range of particle characteristics to which the sensor would respond. This range was then compared with known or expected values for lunar dust particles and practical expectations for charge to mass ratios.

At the same time, the electronics was analyzed using a standard IBM analysis program, SCEPTRE.

The results of the sensor modeling and circuit analysis showed conclusively that charged particles moving at velocities below 1 kilometer per second would produce PHA responses of the type observed in the lunal data and in addition could cause double accumulator counts, another of the unusual events.

This finding was of such importance to the understanding of lunar surface dust transport that it was decided to continue the analysis to obtain more accurate data on particle mass, charge, and velocity. A theoretical calibration of the experiment response to charged particles was required to enable a complete analys is of the lunar data to be performed. In addition, a practical measurement of the response using the experiment qualification model was to be attempted to corroborate the analysis. A complete physical calibration was impractical.

The analysis was continued on two fronts. A simplified model of the electronics was developed because the SCEPTRE simulation was cumbersome and costly to use. In parallel with this, a refined model of the sensor was developed to remove the limitations of the simple model and provide greater accuracy.

The sensor film, collector grid, and suppressor grid were divided into 7,360 elements for computational purposes. Using basic electrostatic principles, the charge distributions on each plane were calculated for both the applied potentials and the charged particle. The 7,360 simultaneous equations that result from the mutual interactions between elements were solved iteratively. The program used a large area of computer memory and was slow to converge to a result. No complete results were obtained from this model because efforts were made to speed up the convergence and overall running time to save future costs.

Two other programs, which apply the sensor model results to the electronics and then analyze the results, were prepared and checked on simulated data. Program descriptions are given in the Appendix.

The conclusion from the analysis to date is that the LEAM experiment data contain significant information relative to mechanisms operating at the lunar surface. To fully understand and appreciate these mechanisms, the lunar events recorded by LEAM must be transposed into parameters of particle mass, velocity, and charge and their respective variations in space and time. To accomplish this, a calibration of the LEAM in response to charged particles must be completed.

This report recommends that the analysis be continued, in conjunction with work being performed by the Principal Investigator, to provide a comprehensive picture of the dust environment at the lunar surface. The results would be, in addition to characterization of the particles, that unique events would be characterized, allowing segmentation of the measurement range, and event types would be correlated with lunar cycles and temporal effects. Hypotheses on dust formation and transport would be refined and opportunities would be developed for understanding several unexplained phenomena observed on the lunar surface by astronauts and other experimenters.

A meeting was conducted on 20 July 1976 by the LEAM Principal Investigator with Dr. W. Quaide and M.J. Smith of NASA Headquarters to discuss the present LEAM program status and the importance of continuing both the analys is of the experiment response to charged particles and the lunar data analysis.

A summary of the LEAM study status and the proposed tasks for extended study of the charged particle phenomenon is included herein as Appendix B.

SECTION 2

INTRODUCTION

The study of the LEAM experiment's response to charged particles was initiated at the request of the Principal Investigator, when it was observ:d that data over a 2 -year period showed an incidence of signals with outputs of 6 and 7 PHA counts, far greater than anticipated from data obtained on previous space flights. Particles of this energy would normally penetrate the front film and provide signals at the rear film, but this was not observed. There were numerous events which recorded impacts on two film strips or collector grid strips, or which recorded two accumulator counts for one event. These events could not be explained by the normal experiment response to hypervelocity particles. The average event rate of less than 10 particles per 3-hour period gave an extremely low probability of two particles being incident on the sensor at precisely the same time. The inhibit circuit, which was employed to prevent crosstalk between adjacent sensor elements, prevents noncoincident events from being recorded in the same time frame. This guarantees that PHA and accumulator data can be identified with the correct event. The majority of the events occurred around sunrise and sunset, but thermally induced signals were ruled out because the onset of the data occurred up to 60 hours before sunrise, when the experiment was thermally stable. Normal operation of the experiment was verified by the internal calibration signals, which were generated automatically every 15.5 hours.

The preliminary analys is was discussed in detail in a Bendix report, ASTIR/TM66, prepared 1 August 1975. The electronics analysis using SCEPTRE showed that for long input pulses to the PHA peak detector the diode in the forward path continued to conduct and maintain the input to the threshold detector. This, in turn, allowed the PHA counter to continue incrementing. In addition, if the pulse length and amplitude were above certain levels, a condition arose which caused double counting of the film accumulator. The accumulator increments whenever the PHA threshold detector is triggered. Double triggering was caused by the combination of pulse length, amplitude, and the circuit time constants. The circuit was designed for pulses of 2 microseconds maximum length, while the pulses giving the effects discussed above were over 80 microseconds in length.

To determine the type of signal to be expected from the sensor in response to charged particles, a very simple model of the sensor was developed which treated the sensor planes as solid conducting sheets rather than 95% transparent grids. The model permitted an increased understanding of the electrostatic principles involved and allowed determination, within an order of magnitude, of the ranges of particle parameters to which the sensor would respor '.

The simple sensor results showed that the electrostatic forces involved were significant for particles of masses and charges in a range which could reasonably be expected to be present on the moon. Also, if the velucities were below 1 kilometer per second ($\mathrm{km} / \mathrm{sec}$), signal pulse lengths and amplitudes could be obtained from the film which would cause the PHA circuit to give the observed large values and double accumulator counting.

Thus, the simple sensor and SCEPTRE analysis showed that LEAM could respond to slowly moving charged particles and give data outputs similar to those observed on the moon. The simple model could not give accurate values for the mass and charge ranges measurable by the experiment because of its gross simplification of the electric fields. Also, it did not include any modeling of the film strips adjacent to the one being considered, which meant that multiple events and inhibits were ignored and PHA signal levels were generally too small.

To alleviate the limitations of the simple sensor and to provide an electronic model which would provide cost-effective results, a refined sensor model and a simple electronics model were developed. The refined sensor model included a true representation of the grid structures and the interactions between elements.

SECTION 3

METHOD OF ANALYSIS

3.1 REVIEW OF LEAM OPERATION

3.1.1 Sensor Operation

The sensor (Figure 3-1) normally operates upon impact of a particle that causes ionization of film material at the impact site. This ionization is collected at the film and collector grid. The negative potential of the film attracts the positive ions while the positive potential of the collector grid attracts the electrons. These actions cause small current flows in the film and collecter grid circuits, which result in a positive voltage pulse to the film amplifier and a negative voltage pulse to the collector grid amplifier. The film and collector grid areas are divided into 1-inch strips, which allnw for identification of the impact site.

A second film and grid assembly is situated behind the first and separated from it by 5 centimeters. The operation of this rear assembiy is similar to that of the front assembly. An analysis of impact locations on the two films provides an indication of the direction of travel of the particle, while the time taken to traverse the intervening front and rear film space provides a measure of particle velocity

3.1.2 Electrorics Operation
 The typical dual sensor logic is divided into two sections, the first ra:k or measurement section, and the rear rank, or buffer section. The measurement section includes identification pulse storage latches, accumulators,

BSR 4234

PHA conversion counters, and TOF conversion counter. The rear rank is a parallel-in, serial-out shift register, which shifts data, upon demand, to the ALSEP central station in predetermined telemetry frames. The shift register is only cleared when rewi data are to be transferred into it and after the old data have been transmitted to ALSEP at least once. The new data are transferred from the front rank storage latches to the shift register, provided that the current frame is not one in which daca are to be transferred to ALSEP. If the old data have been transferred to ALSEP once, the new data are retained in the front rank storage latches, thus allowing data from two events to be retained. Further hits in rapid succession wouls be evidenced by accumulator counts only. The time interval during which rapidly occurring events, which exceed the storage capability, would be lost varies between 2 milliseconds and 3 seconds, depending upon the position of the telemetry sequence in ALSEP. Data have not been observed which approach this event frequency.

The pertinent circuits for this analysis are those associated with the front film as shown in Figure 3-2, which shows the elements of one typical film channel. These are the circuits which were previously referred to as the front rank or measurement section. There are two distinct signal channels beyond the film amplifier: (1) the film strip identification channel, or film ID, and (2) the pulse height analysis, or PHA channel. Each is discussed separately.

3.1.2.1 Film Strip ID Channel

The common film amplifier provides the -3-volt film bias and a noninverting gain of 3 . The output is applied to the first amplifier of the ID channel, the PHA amplifier, and the analog inhibit inputs of the three other film channels.

The ID amplifier provides an inverting gain of 5.25 at its normal input and a gain of 0.49 at each of three noninverting inputs, which receive analog inhibit signals from the other film amplifiers. These inhibits cause the output of the ID amplifier to remain at or above 0 Vdc if one of more of the other films receive a coincident signal which is approximately 10 times greater than that on film 1. If film 1 has a signal equal to or greater than the other films, an output is applied to the threshold detector. The threshold detector is designed to apply a logic " 1 " to the following NAND gate if the input signal at the film amplifier exceeds 1 millivolt (mV). The NAND gate sets the following latch circuit, provided that the ID inhibit signal from the central electronics is also at logic "1", indicating that no other front film latch is set. The latch circuit provides the signal to the output, via a buffer, to indicate which film strip has been impacted.

When the ID latch is set, all the ID signals are inhibited for the four front film strips, which has the effect of negating crosstalk and makes the ID channels for the front film unresponsive until the measurement cycle for this hit is completed.

The OR function of all the film and collector latches and the microphone sample one-shot signal starts a measurement cycle. If a collector latch only is set during the 1 -millisecond (msec) measurement period, a normal sequence occurs, except that the data transfers and clear are inhibited while the clear latch signal is generated. Thus, a collector signal alone will not be presented in the data output nor will existing data be changed.

When the system start occurs, a 1-millisecond gate signal is generated which has three functions:

1. Provide an enable to the front and rear PHA counters.
2. Provide a synthetic rear film signa. o complete the time of flight sequence if the normal signal does not occur within 1 millisecond.
3. Prevent a premature measurement completion signal.

The film count accumulator measures PHA signal threshold crossings, providing that a film ID latch is set. The ID latches are inhibited for any further hits during a measurement cycle, but the accumulator circuit may give evidence of later hits. If a second hit occurs within the PHA pulse of the first, the PHA is augmented, but no direct evidence of the second hit survives. If the second hit is delayed sufficiently to create an independent PHA pulse, but lies still within the $1-m s e c$ measurement gate, it will cause further PHA counting and one additional increment to the film accumulator. If it occurs more than 1 msec after the first hit, but before transfer of data into the shift register, it will cause an increment of the accumulator only.

3.? 2.2 Film Signal Pulse Height Analysis

The signals from the four film amplifiers are summed by the PHA amplifier which, together with the film amplifier, gives a gain of -10 from film strip to PHA amplifier output. This output is passed to the Peak Detecter circuit, which is a high-gain amplifier with a closed-loop gain of +1.0 fi. ~negative signals. The detector charges the capacitor C to the peak of the irput signal. When the input signal is removed, the diode in the forward path prevents discharge of the capacitor C back through the amplifier.

When transistor iX is on, capacitor C discharges with a time constant that is designed to give a $240-\mathrm{microsec}$ decay time. The voltage across the capacitor is sensed by the PHA threshold detector, which is a high-gain operational amplifier. When the voltage across capacitor C is more negative than -10 mV , the detector output is clamped at -0.6 V , the " 0 " level for the logic inver. .r of the following stage. When the voltage is more positive than -10 mV , a logic " 1 " (+2.5 V) is presented to the inverter input.

When the voltage on capacitor C is below threshold, the logic gates hold transistor TX on, which causes capacitor C to be in a short time constarit mode. "en threshold is achieved, transistor TX is turned off via the logic un^{n-1}. the next $25-\mathrm{kHz}$ clock pulse sets the flip-flop. When the flipflon is set, transistor TX turns on (allowing capacitor C to discharge), the -rA counter is enabled, and the accumulator is incremented. When the capacitor discharoes to below threshold level, the threshold detector causes the flip-flor to be reset and the PHA counter to be disabled. The length of the
pulse from the flip-flop, and thus the length of time the PHA counter is enabled, is proportional to the peak of the input pulse. Thus, the count recorded by the PHA counter is a measure of the pulse height.

The synchronization of the capacitor discharge with the $25-\mathrm{kHz}$ clock reduces the quantizing error.

3.2 ANALYSIS OF PULSE HEIGHT ANALYSIS (PHA) CIRCUIT

The description of operation given in Section 3.1 applies to the type of particle for which the experiment was designed. That is, a noncharged, hypervelocity particle which would cause a pulse input to the electronics with the following characteristics:

Amplitude	1 to 200 mV peak
Rise Time	400 nanoseconds (nsec)
Fall Time	$1,000 \mathrm{nsec}$
Width	600 nsec

The experiment was tested and qualified for this type of input under all conditions of lunar eivironment, and thus shown to meet the design iequirements.

When considering the effects of charged particles upon the sensor, it was realized that, for slow particles, current pulses of much greater length than 2 microsec could be obtained. (The sensor dynamics are discussed in later sections.) The PHA circuit was then analyzed for the effects of long input pulses.

A qualitative review of the peak detector circuit shows that, for a short pulse, the capacitor C is charged to the peak of the input signal and the decay time of the charge on the capacitor is proportional to this peak value. The time constant in this mode is approximately 45 microsec, which was chosen tc give the maximum count of 7 in 240 microsec. (The PHA output indicates at least 1 whenever a threshold is achieved.) When a long pulse occurs, the diode in the forward path is held in a conducting state, even while capacitor C is being discharged in what is normally called the short time constant mode. The effect of the conducting diode is that the signal is maintained at the amplifier output. The result at capacitor C is to effectively increase the time constant by 200 times, thereby maintaining the signal above threshold for a much longer time. The longest pulse which will not change the PHA value is theoretically 80 microsec, but the value depends upon the time relationship between the start of the pulse and the $25-\mathrm{kHz}$ clock and could be less than 80 microsec.

In addition to the extended count for long pulses, a condition arises that causes double accumulator counts. If a pulse of sufficient amplitude and length occurs, the falling edge of the pulse causes the input to the peak detector to go hard positive, shutting off the diode. The capacitor C now discharges normally. The time constants ahead of the peak detector are such that its input returns to a negative value, which causes the diode to conduct again. If the capacitor C had previously discharged below threshold and the signal is large enough (negative) to exceed threshold again, an extra accumulator count is made and renewed PHA counting occurs.

The above analysis indicates that negative pulses can also give PHA thresholds.

The qualitative analysis was followed by a detailed quantitative analysis of the electronics and by laboratory tests on the experiment prototype.

3.2.1 Circuii Airalys is

The circuit analysis was performed on the typical film channel of Figure 3-2 (from the film input to the input of the PHA threshold detector). The emphasis was placed on the peak detector portion of the film ct.annel since this is the circuit which gives rise to extended counting and multiple accumulator counts. The remainder of the circuitry was simulated by passive networks and fixed gain terms.

A detailed simulation was performed using the SCEPTRE* computer program to give a thorough understanding of the circuit operation under all conditions. This knowledge was then used to develop a simple model of the circuits because the SCEPTRE program used an excessive amount of computer time for this component configuration. This long run time would make the task very expensive for the multiple computations we planned over the ranges of mass. charge, and velocity applicable to the problem.

3.2.1.1 SCEPTRE Simulation

The simulation program, SCEPTRE, was developed by IBM for the Air Force Weapons Laboratory at Kirtland Air Force Base, New Mexico. The program calculates initial conditions, and transient and steady-state responses for large networks.

[^0]The film and PHA amplifiers were simulated by a simple gain term and the transistor $T X$ was assumed to be in the fully conducting state, i.e., ON; thus, the flip-flop and logic control of transistor $T X$ were not simulated. The linear transistors were simulated in the nonlinear regions with the best data available. The peak detector circuit is shown in Figure 3-3.

A typical output from a run is shown in Figure 3-4. The output is the voltage across capacitor C, shown as positive because of the sign convention used in the simulation. The output is observed to return negative at 700 microsec, but on this occasion the amplitude was insufficient to cause further PHA or accumulator counting.

A summary of the data obtained from several simulations is shown in Table 3-1. All runs were made for 1-msec duration, which is the measurement sample time. The times quoted are the length of time the output pulse remained above 9 mV , which i, the threshold level at the following detector circuit. The data show that PHA levels of 7 can be achieved with inputs of 30 mV and the multiple pulses do occur.

The simulation program provides information on all the intermediate points within the circuit. This information was used to identify critical components and, thus, enable us to devise a simple model of the circuits.

Computations were made on identical data inputs, using both SCEPTRE and the simple model to verify the latter's validity.

Table 3-1		
Input Ampl itude	Output Pulse Length (microsec)	Comments
50-microsec Pulse		
50 mV	184	No subsequent pulses - All normal
100	211	
150	234	
100-microsec Pulse		
50 mV	213	No subsequent pulse
100	243	Returned above 9 mV at 730 microsec until 890 microsec
150	260	Returnid above 9 mV at 670 mic cosec until 1.01 msec
200-microsec Pulse		
50 mV	248	Returned above 9 mV at 720 microsec
300-microsec Pulse		
10 mV	189.9	
20	219.6	
30	235.0	Returned above 9 mV at ≈ 780 microsec
40	245.6	Returned above 9 mV at ≈ 760 microsec
50	254.03	Returned above 9 my at ≈ 746 microsec
		All longer than normal

3.2.1.2 Simplified Peak Detector Mode 1

Analyzing the data from the SCEPTRE program identified the importance of the various components within the peak detector, thus allowing us to eliminate many of them without affecting the veracity of the result.

The obvious simplifications are to neglect the transistor a-ternal capacitances as they are small and the associated time constants $h \quad a$ effect on the result. Next, the coupling capacitors in the forward ano reedback paths are found to have no effect on the length of time the output remains above threshold or on the cause of the double accumulator counts.

When the input signal is negative, the circuit behaves as a simple amplifier with a gain of 1 . When the signal is positive-going, the diode ceases to conduct, allowing capacitor C to discharge. Once the diode ceases to conduct, the feedback loop opens and a large back bias is applied due to the high open loop gain. The diode will not conduct again until a forward bias is applied from the combined effects of the capacitor discharge and input level. In the simplified model, Figure 3-5, the diode is replaced by a switch, which opens whenever the input increases positively faster than the rate at which the voltage across R12 increases. The rate of rise of the voltage across R12 is calculated for the switch-open conditions. (The switch closes when a forward bias is achieved.)

The input to the peak detector is an emitter follower with a parallel capacitor across its load. The effect of the capacitor is to restrict the rate at which the emitter can rise towards thi +5 -volt supply line. Consequently, the input transistor cuts off if this input signal rises positively

Fiqure 3-5 Simpiified Peak Detector Model
faster than the emitter load can follow. The emitter follower just described is replaced by a switch whose condition depends upon the direction and rate of change of the input signal.

The loading of the emitter follower upen the coupling circuit between the PHA amplifier and the peak detector is small, so the coupling circuit is t ated as an independent element. The signal source VS2 for the peak detector is then the output of the coupling circuit. Similarly, the film amplifier loading of the coupling circuit between itself and the film is small, allowing these componerts to be treated independently. The signal source VS1 is -10 times the voltage across resistor R32 because the film and PHA amplifiers, together, give an inverting gain of 10.

The simple model, Figure 3-5, is thus comprised of a unity gain amplifier, two voitage sources, two switches, and 12 passive components. The model has four possible operating conditions:

1. Switches A and B closed.
2. Switch A open, switch B closed.
3. Switch A closed, switch B open.
4. Switches A and B open.

The input signal from the film is divided into many elemental ramp functions with known initial value, slope, and time duration. The response of the model to such a ramp is calculated (for all four conditions) using Laplace transform techniques. The correct response to be applied for any particular ramp element is determined by first deducing the state of switches A and B at the end of the time interval. For pxamole, if the switches are
initially closed and a particular ramp input would cause switch B to be open at the end of this time interval, the true signal values at the various points in the model are calculated using the condition 3 equations. The time increments are chosen to be small enough that the errors incurred due to opening switch B slightly early are negligible.

A further complication of the model is that, for large signals, one or all of the film, PHA, or peak detector amplifiers can saturate. This condition is accounted for using the ramp technique, where the relevant amplifier output is treated as a ramp with zero slope.

3.2.1.3 Complete Film Channel Model

The remainder of the film channel of Figure 3-2 was modeled to simulate the correct LEAM response to the sensor signals.

The film and collector grid ID model accounts for the analog inhibit signals from the three sensor elements, at either the film or collector grid, respectively, which are not impacted by the particle. A charged particle, unlike an uncharged meteorite particle, can induce signals in adjacent sensor elements. This affects the charge/velocity characteristics of the particle required to achieve threshold, because the inhibit signal from one element effectively reduces the signal from an adjacent element. In addition, the timing of the element IDs relative to one another and between films and collector grids is modeled. The inhibit signals prevent multiple film IDs unless they occur within approximately 0.2 microsec of one another. This limitation also applies to the collector grids. When a film or collector
grid ID is received, the system starts a measurement sequence with the setting of a bracket one-shot which lasts for 1 msec . If a collector signal starts the sequence, a film $I D$ must be received within this 1 -msec period or no data transfer takes nlace. A film ID alone can cause the system to operate through its full measurement sequence.

When a film ID is indicated, the four film signals are sumed and applied to the peak detector model. The output is recorded for PHA count and accumulator count. The accumulator counts PHA threshold cressings. The PHA count is limited to 7 in the LEAM, but in the model it is allowed to reach its full value of 26 if a long enough pulse occurs. This is done to obtain more information about the response.

3.2.2 Laboratory Tests

Measurements were made using the Prototype LEAM Experiment, the experiment test set, a variable pulse width generator, and a storage oscilloscope. The LEAM center support structure was removed from the outer housing and thermal bag, and the east sensor was removed from the center support structure. This dismantling was required to allow access to the microphone board upon which the PHA circuitry resides. The sensor circuitry was now without shielding, which meant that it was very susceptible to noise, making other than qualitative measurements difficult.

Pulse inputs were injected via the test set calibration adapter box, with the input pulse amplitude being measured directly on the film input test point.

Measurements were made on the A film channels 1 and 2, which gave identical results as follows:

Input
Pulse Width (microseconds)

2

Output

Pulse Amplitude (millivolts)

PHA of 1 registered on test set lamps. PHA of 2 registered on test set lamps. At capacitor C : $\mathbf{- 2 5 0} \mathrm{mV}$ peak pulse; rise time 1 microsec; fall time to $-10 \mathrm{mV}, 120$ microsec.
At flip-flop output: 4.5 -volt logic pulse 120 -microsec width.

First noticeable change at flip-flop output. Output at flip-flop; logic pulse greater than $200-$ microsec width, starting at threshold crossing. Second pulse at 950 microsec from threshold, greater than $20-$ microsec width. Occassional multiple pulses occurred around 950 microsec from threshold.
$2-100$
PHA threshold.
PHA threshold.
PHA threshold.
PHA threshold.

In summary, the laboratory tests showed that long pulses give large PHA counts with the actual value depending upon pulse amplitude and duration. Multiple pulses can occur, which add to the PHA count if they occur during the l-msec sample period, and increment the film hit accumulator, giving the appearance of multiple film hits. These tests also confirmed that negative pulses at the film input can give PHA and accumulator outputs.

3.3 REFTNED SENSOR MODEL

A previous report, ASTIR/M466, detailed the analysis which led to a simple model of the sensor. This simple model verified that the sensor can give valid responses to charged particles with certain mass, charge, and velocity characteristics. The model has several limitations which made it difficuit or, in some cases, impossible to accurately presist the response to certain particle types, and also gave undetermined inaccuracies in the results.

3.3.1 Simple Model and Its Limitations

The simple model was based on an analysis that considered the grids and film to be infinite plane conducting sheets. This was modified at the grids by applying a simple cosine function to the forces on the particle to allow the force to $g 0$ to zero in the grid planes.

The 1 imitations of the simple model were:

1. Solid electrodes were used instead of grids with 95\% transparency. Thus, the grid signals and forces due to induced charges were overestimated.
2. There was no interaction accounted for between the suppressor/ collector space and the film/collector space. Thus, the film could not see the particle until it passed the collector grid.
3. Induced charges were calculated by assuming the 1 -inch by 4 inch strips were circles of equivalent area.
4. Only one film strip and collector grid strip mere considered, whereas a particle will induce charges in all film strips and collector grid strips. This prevents considerations of multiple element events at the film or collector grids and gives inaccurate values for particle characteristics which can cause PHA thresholds.
5. The analysis only considered particle positions between the suppressor grid and film, with no account being taken of the forces on the particle outside the sensor. Thus, all calculations assume a particle emerging from the suppressor grid, on the film side, with a certain velocity. The true sensor measurement range is not calculated, as the suppressor, due to its potential, will accelerate positive particles and decelerate negative particles, while the image forces accelerate all particles.

To overcome the limitations of the simple model and thus obtain a more complete and accurate result, a different approach was utilized to refine the model.

3.3.2 Refinad Model

The sensor is composed of three parallel planes, termed the film, collector grid, and suppressor grid. The film and collector grid planes are each divided into four $1-i n$. by $4-\mathrm{in}$. strips and each strip is composed of four $1-\mathrm{in}$. by $1-\mathrm{in}$. squares. Thus, each plane has $161-\mathrm{in}$. by $1-\mathrm{in}$. segments. The suppressor grid is formed by one plane divided into a similar set of 16 segments. One of the $1-\mathrm{in}$. by 1 -in. square sections is shown in Figure 3-6.

The problen resolves itself into two areas, namely the charges induced in the sensor and the potential at the particle. The change in the induced charge as the particle position changes gives a measure of the current into the sensor electronics, while the difference in potential between successive particle positions gives a measure of the work done by the particle and, hence, enables calculation of the velocity profile along the path.

The charges on the sensor elements arise from two sources, the charges due to the applied potentials and the charges due to the particle. Both distributions are require so determine the potential at the particle, while only the latter is required to determine the current flow due to particle movements. The potential at the particie is thus seen to be from two sources, the applied potential charge and its own induced charge. This latter effect is similar to the image effects used on the simple model.

The task of modeling the sensor was complicated by several factors. The major problem was containing the model within a size that could be handled by the computer. The job is equivalent to solving nearly 8,000 simultaneous equations. It rapidly became obvious that a compromise had to be reached between accuracy and the number of elements into which the sensor films and grids could be divided. A secondary problem associated with the number of elements is that of devising a satisfactory bookkeeping scheme for keeping track of which element is influencing which. This task also is affected strongly by programming limitations of array dimension sizes and allowable DO loop nesting. The final model has 7,360 elements which between them have over 27 million interactions. Considerable effort was expended in accormodating these interactions within 132,701 influence coefficients. The use of
this reduced number of coefficients required careful bookkeeping and the formulation of generalized equations that expressed the relationships of the elements to the coefficients.

The coefficients could not all be retained in memory at the same oime, so they were calculated and retained on magnetic tape and called upon when required. The most efficient method for operating the sensor model would be to have all the coefficients available at once, but as this was not possible, a compromise of using two sets of coefficients at a time was used to speed up the iterative process. The two largest coefficients take up $\mathbf{1 3 0 , 0 0 0}$ bytes of core.

The sensor physical shape precludes its being easily divided into uniformly sized elements. Allied to this is the task of caiculating the interactions between the various elenents. As the configurations and shapes are not found in standard text books, all the interactions for the potentials produced at one element by a charge on another were calculated from elementary electrostatic principles.

The film and grids are divided into 7,360 uniformly charged elements, which are 0.125 in . on a side. The charge distributions due to the particle and the applied potentials are calculated separately and superposed.

In either case, the charge on an element is adjusted so that the total potential, caused by its own charge and that due to all other element charges and the particle if considered, is equal to to the applied potential. The charge adjustment is made iteratively by changing the charge on each element to the newly determined value at each iteration. The applied potentials are set to zero for calculations of the charge due to the particle.

The iterations are continued until the changes in charge distribution at each step are less than a specified value, i.e., the calculation has converged to within an acceptable tolerance of the final value.

All calculations and results are in terms of a unit coulomb charge on the particle. The potential of each element due to all other elements of the sensor is calculated using a set of stored "influence coefficients." These coefficients are the values of potential at an element due to a unit charge at another element. To save computer time, they were calculated once using first principles of electrostatics and stored for future use. A similar set of coefficients is calculated for each particle position, but they are determined in real time for each new particle path.

A computer program was prepared to perform these calculations. Several options are made available which are selected by input variables or cards. The basic calculations are: (1) to calculate the charge distributions due to the applied potentials and store them on tape; these distributions are fixed and used often; (2) to calculate the charge distribution due to the particle; and (3) to calculate the potential at the particle due to (a) the applied potential charge distribution and (b) the particle image charge distribution. Items 2 and 3 are repeated for each position of the particle. The charges on each film strip and collector grid strip are summed to give the total charge on each element at each step. The data relative to a particular particle path are stored on tape for future use.

3.4 SYSTEM MODEL

To determine the response of the LEAM to a charged particle, the data obtained from the sensor model are used as an input to the electronics model. The sensor model output is the characteristics of a particular path through the sensor calculated using a particle of unit charge. The system mode! uses these data in conjunction with the parameters for the particular particle in question to derive the actual response to that particle. Thus, the profile of the current flow in each film and collector grid strip is determined versus time. The profile is then applied to the electronic model as discrete ramp inputs for each time interval.

A program was prepared to accomplish this which performs the following tasks:

1. Reads input cards to determine which of the following options to perform:
a. Selection of sensor, up, east or west and particle path.
b. Normal or shielded film on east sensor.
c. Positively or negatively charged particles.
d. Preselected or random mass and charge values.
e. Number of particles.
f. Particle velocities.
g. Whether output is to be plotted and, if so, the dimensions of the axes.
h. How many of the data points to list on output.
2. If a plot is desired, the plot program data are generated.
3. If random particle characteristics are desired, a random number generator is employed to derive mass and charge values.
4. Data relevant to selected particle path read from tape.
5. Calculates work done on particle between successive steps and calculates velocity at each step.
6. Calculates currents in films and collector grids from rate of change of charge.
7. Determines if film and collector grid IDs occur.
8. Calculates input signal to PHA circuit.
9. If a film ID occurs, the electronics model subroutine is called to calculate PHA and accumulator response to the signal calculated in step 8.
10. Results are listed or plotted as selected by input cards. All results are stored by sensor on tape for future analysis.

Thus, a single particle path can be analyzed for either positively or negatively charged particles at any number of velocities, charges, and masses. The stored data for any sensor and any path can then be analyzed by a second program, which is designed to select the particles by type of event or velocity and can eitner plot or list the resulting selection. The types of events that can be selected, either singly or in combination, are coincidence, noncoincidence, multiple accumulator, multiple film or collector grid aajacent or nonadjacent, on any of the sensors or shielded film.

The orientations of the film and collector grid strips within the LEAM experiment are identified in Figure 3-7. This information is supplied so that the analysis data can be readily compared with the lunar data.

BSR 4234

SECTION 4

RESULTS AND IMPLICATIONS OF ANALYSIS

4.1 RESULTS

An accurate simplified representation of the electronics has been achieved in a computer model. This model simulates the inhibit circuits in addition to the PHA threshold circuit analyzed previously.

When the simplified electronics model was completed, it was checked out with the simple sensor model. This combined model gave useful results because it sould be used with the random number generator to generate numerous particles with differing mass and charge values and calculate the resulting responses very quickly compared with the SCEPTRE program.

The plots resulting from these runs are shown in Figures 4-1, 4-2, and 4-3. The PHA values and inuble accumulator events appear in bands which differ in shape, depending upon the velocity of the particles. The separation of events into those with and without double accumulator counts will permit a broad classification of the particles observed on the moon.

The intent with the r_{c} ined sensor model was that at least one particle path would be calculated and analyzed by the end of the contract period ending on 31 July 1976.

We have achieved the following towards this goal. A program to calculate the influence coefficients for the interactions between the 8512 sensor elements was prep، red, debugged, and 132,701 coefficients committed to magnetic tape storage. The sensor program that utilizes these coefficients

has been written, debugged, and operated. The main part of this program is the iterative loop, which adjusts the element charges to the values needed to give the required potentials both in the case of the applied potential distribution and the distribution due to a particle. Several problems were encountered in the implementation of this iterative loop:

1. The most efficient method of implementation involves holding the 132,701 coefficients in core while performing the iterations, but this takes 530,804 bytes of memory, which is virtually the entire capability of the computer. Thus, a method was devised which required repeatedly reading the coefficients from tape in blocks.
2. The calculation of the potential contributions at each element due to all the other elements is the most time-consuming portion of the iterative loop. The initial implementation of this part took almost 30 minutes per iteration to run. Considerable effort was expended in reducing the running time until we achieved the present t me of approximately 17 minutes, which was done by streamlining each of the 15 subsections of this part and then combining then where possible. The number of elements was reduced from 8,512 to the present number of 7,360 by considering the tops and undersides of the grids as single elements. This potentially impairs accuracy, but the difference is insignificant in our model. Finally, the whole part was formulated as a subroutine and compiled using the FORTRAN H compiler.
3. The present problem is ensuring rapid convergence of the iterative loop. then originally formulated, the loop was conditionally stable, depending upon the magnitude of the changes made in the elemental charges at each step. When stable, the convergence was extremely slow because of the small size of the changes in charge which were permissible. Althouyh time consuming, the present program will provide the required data.

The remaining tasks to achieve the one particle path for one sensor, once convergence is achieved, are:

1. To perform one run of the program to determine the charge distribution due to the applied potentials.
2. To perform 10 runs of the program to determine the distributions due to the particle. It is assumed that 10 data points will be sufficient to allow a good interpolation for the intermediate data points.
3. To perform interpolation to obtain all other required data.
4. To run sensor and electronics model program.
4.2 IMPLICATIONS OF ANALYSIS

The analysis as performed to date indicates that nearly all types of events observed on LEAM can be explained and that classification by event type will allow more accurate identification of particle mass, charge, and velocity characteristics.

The hypotheses explaining the events are described below. When the model is made fully operational, the hypotheses will be verified.

The coincident film and collector grid events were shown by the simple model to be obtained by a positive particle, between the collector grid and film, traveling toward the film.

Noncoincident events can be achieved by a positive particle with a combination of mass, charge, and velocity that provides sufficient signal at the film but not at the collector grid. The collector grid is less sensitive to charged particles. Noncoincidence at the collector grid cannot be observed because the experiment requires a film ID to allow completion of a measurement sequence.

Multiple accumulator events have been observed with the simple model and are caused by the electronics response to long duration input signals.

Multiple adjacent fi!m events are caused by a positive particle having a combination of mass, charge, and velocity that give a sufficiently large signal to achieve threshold on two or more films at once. The same mechanism would be expected to result in multiple collector grid events, but conceivably it could give only a single one if the signal level were in the right range.

Multiple nonadjacent film events are of the type where films 1 and 3 recorded an 10 threshold but film 2 did not. This phenomenon can be explained by a negatively charged particle traveling toward the film strip that does not record an ID threshold, e.g., film 2. It will be remembered that the film circuit requires a positive current to produce an $1 D$, which, in the case of a positive particle, was achieved by an induced negative
charge in the film. This charge was produced by a flow of elertrons to the film, equivalent to a positive conventional current flow into the amplifier. In the case of a negative particle, a positive induced charge occurs in the film and, thus, a negative current flows to the amplifier. This current will not produce an ID, as observed by film 2. Consider now films 1 and 3. If the particle has appropriate charge and velocity characteristics, it will induce sizable positive charges and, thus, negative current flows in them also. As the particle approaches the plane of the film, its influence on films 1 and 3 will decrease, falling eventually to zero at the film. Note that this is not the case with film 2 whose charge increases until impact. Thus, the charges at films 1 and 3 reach a peak positive value somewhere before the film and then decrease to zero at impact. When the charge starts to fall to zero, there is an electron flow to the film to replace the positive charge; this flow is again the positive conventional current flow into the amplifier. Therefore, if the magnitudes are correct, sufficient current can flow to produce an ID in films 1 and 3.

Shielded film events are explained by the fact that the thin dielectric virtually has no effect on the particle induced charge in the film except to restrict the approach of the particle to it. Thus, the induced signals will be identical to the unshielded films for particles in similar positions.

The following observed cases in the lunar data are less easy to explain and require assumptions which cannot yet be proven:

1. Multiple film, nonadjacent, events with no collector 10 .
2. Multiple collector, adjacent and nonadjacent, with single film ID.
3. Multiple film and multiple collector, both nonadjacent.

Analyzing these cases requires further knowledge of the effects of the particle on the film when it is in electrode spaces other than the coliector grid/film space. If the particle can truly induce a signal of threshold amplitude in the film when it is in these areas, then the remaining cases can probably be explained.

The detailed study of the sensor and electronics has led to a better overall understanding of the instrument responses and has indicated areas that affect the LEAM data but which must be left to future analysis.

Our analysis considers only particles traveling perpendicularly to the film. Obviously, particles are likely to be traveling in all directions. Particles traveling at the speeds considered here would probably describe curved paths in the proximity of the sensor elements, and this has not been considered. The implication is that particles, outside the field of view for hypervelocity particles, could be electrostatically deflected into the instmament if they have appropriate energy and charge characteristics.

The verification that the LEAM experiment is measuring charged dust particles as well as hypervelocity cosmic dust particles could lead to an understanding of phenomena observed by astronauts and other experimenters. Observations in this category include several instances of solar light scattering over the terminator regions reported by the Apollo crews in lunar orbit,
transient lunar events being investigated by experimenters on a worldwide basis, and indications at the Apollo 17 site that a substantial amount of lunar surface material has been added over the past 1 to 2 million years.*

[^1]
SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

There are several conclusions which can be drawn from instrument analysis alone, without reference to the lunar data.

The sensor definitely responds to charged particles that have certain ranges of mass, charge, and velocity. The physical dimensions and applied potentials of the sensor are such that charged particles incident upon it are affected dynamically and some particle selection takes place. Charged particles can be attracted into the sensor, thereby increasing its effective field of view. In theory, negative particles will cause sensor responses.

The electronics does not differentiate between signals from hypervelocity particles and charged particles, but the circuits are sensitive to pulse shape. The pulses from hypervelocity particles, for which the experiment was designed, are well defined, both from theory and gun measurements. They are known to be of short duration, whereas the sensor analysis has shown that long pulses, several hundred microseconds in length, can be produced. The electronics analysis has shown that several characteristic responses to long pulses can explain certain peculiarities in the LEAM lunar data, namely large PHA counts and double accumulator counts. Negative pulses will also give PHA thresholds.

When comparisons are made between the analyses and the lunar data, it can be concluded that different particle types are producing the observed events. Some of the events are probably due to particles within a small portion of the total response range, while some are certainly produced by negative particles.

The overall conclusion is that the combined theoretical analysis of the electronics and sensor together with the Principal Investigator's analysis of LEAM lunar data can provide a comprehensive picture of the dust environment at the lunar surface. Therefore, it is recommended that the sensor analysis be completed in order to allow a thorough analysis and understanding of the LEAM lunar data. The achievements to be expected from further study are:

1. Total ranges of mass, charge, and velocity of particles $b \cdot:$ g measured by the LEAM instrument.
2. Characterization of particles producing unique events, thus subdividing total measurement range into identifiable segments.
3. Correlation of particle types identified in 1 and 2 with lunar cycles and temporal effects.
4. Knowledge gained above will allow refinement of hypotheses on dust sources and transport.
5. Application of icsults to analysis of other lunar surface phenomena observed by astronauts and other experimenters.
6. Application of results to Pioneer experiment data, allowing additional information to be obtained on deep space particles.

In accordance with NASA policy, the LEAM experiment data and supporting documentation will be archived to make it available for future use by investigators anywhere in the world. This report and the results of the Qualification model tests constitute essential supporting documentation invaluable to future users of the LEAM experiment data. The bulk of the experiment data is incomprehensible without a detailed knowledge of its response to charged particles.

Thus, without this knowledge, the data cannot be applied to investigutions of other lunar surface phenomena. Future users of the data could apply the results herein to a continued analysis resulting in a comprehensive calibration of the instrument, which would include particles incident anywhere on all three sensors.

A more practical and cost-effective approach would be to require the Principal Investigator and the Bendix Project Engineer for the LEAM experiment to continue the analysis using the extensive knowledye and understanding which they have acquired over the past three years. The result wolld be a set of data and documentation with far greater appication to other areas of scientific research into lunar phenomena than is presently prasticable.

APPENDIX A

COMPUTER PROGRMM DESCRITITIUNS

The computer programs required for a complete theoretical andlysis of re LEAM experiment are described in the following sections. Flow charts and listings are included for information purposes.

The programs complement each other to achieve the finai results. The numbers given are from the progran numbering system for computer data sets, used ty the Bendix Corporation Data Center.

Program P5072CHG computes the path data using subroutines PLFIN. and POTCON. The outputs, which are stored on tape, are uti?ized by P507? ${ }^{\text {SGF }}$ to determine the experiment response to particular particles. The sutrout'ne used is LES, which itself uses subroutines COND1, COND2, COND3, arid CVOLT. Finally, the PHA and accumulator count data for the various particles are analyzed or sorted by P5072INT.

All programs were written ir FORTRAN IV for the IBM- 370 system. The plotting routines are those used by the Cal Comp plotting system.

A. 1 PROGPAM P5072CHG TO DETERMINE SENSOR CHARACTERISTICS TO CHARGED PARTICLES

A.1.1 Surmary

The program calculates

1. Charge distribution or the film, collectnr grid, and suppressor grid due to (a) applied potentials and (b) charged particle. These distributions are calculated separately and the one for applied potentials is committed to tape fur future use. Those
due to the particle are calculated for particle positions, which are selected by input card.
2. Total charges on each film and grid strip for each particle position. Thus, knowing the particle speed, the current in the film and collector grid circuits may be determined. (lhis calculation is performed in program P5072SGF).
3. Potential at ihe particle due to both the applied potentials and the particle image charge. This allows calculation of the work done on the particle along the path.

The program stores position, potentials, and charges on tape so that all parameters for one path are stored for future use.

A.1. 2 Description

The calculations center upon determining the charge distributions on the films, collector grids, and suppressor grid. The distributions on one grid are affected by the distributions on all other films and grids and vice versa. Thus, to determine the actual distribution is an iterative process which adjusts the individual charge distributions until the calculated potential at any element, grid or film matches the applied potentials. When the charge distribution due to the particle is determined, the applied potentials are set to zero.

The films and grids are divided into uniformly charged square elements of 3.175×10^{-3} meter on a side. The total number of elements used is 7,360 . The interactions between elements are determined in a subroutine POTCON using
influence coefficients, which have been previously calculated and stored on tape. An influence coefficient is the value of potential at one element due to a unit charge at another element.

The resulting charge distribution is used in two ways. The first sums the elemental charges on each film and collector grid to give the total charge on the respective sensor element at that time. This is done in the particle case only and gives the charge due to the particle at each chosen position relative to the sensor. The rate of change of charge, caused by particle movement, determines the sensor output current. The second use for the charge distributions is to calculate the potential at the particle caused by both the applied potential charge distribution and the distribution due to the particle itself. The latter gives rise to the method of images used for calculations involving infinite planes. The change in potential along the path through the sensor determines the work done on the particle and thus the change in its energy.

The program has two basic modes of operation:

1. To calculate the charge distribution due to the applied potentials and commit the values to tape.
2. To calculate the required parameters of potential at the particle and total charge on each film and collector grid strip, for each selected particle position.

Other operational options, which are variations and combinations of the above two modes, are available and will be discussed later.

A.1.2.1 Mode 1

The mode is selected by guide parameter G1 = 1 on the second input card, and guide parameter G2 is set to zero. The initial elemental charges are set to half the values estimated for uniformly charged surfaces at the potentials of the film, collector grid, and suppressor, and the elemental potentials are set to zero. Next, the elemental potentials due to all other charges are calculated using the initial charge values and the influence coefficients, which are read from tape. The difference between the potential at an element and the applied potential is due to the element's own charge and form factor. The charge, thus calculated, is compared with the original charge to determine the charge value for the next iteration.

The comparison includes a check to ensure that the calculated value does not lie outside the limits prescribed on an input card. If it is outside the limits, the elemental values are scaled to give the limit value for the total charge. The charge value for the next iteration is determined by taking a fraction of the difference between the calculated and original values and adding it to the original value. The fraction is selected on the input card, together with the number of iterations allowed and the maximum percentage difference desired between successive charge values on any element. The maximum percentage difference deterinines the accuracy of the resulting dist. ibution.

When the program transfers out of the loop, the calculated charge distributions are recorded on tape for future use. The transfer occurs when either the iterations allowed are completed or the desired accuracy is achieved.

A.1.2.2 Mode 2

This mode is selected by guide parameters $\mathbf{G 1}$ and $\mathbf{G 2}$ being set to 3.0 and 1.0 , respectively.

In this mode, the first step is to calculate the influence coefficients between the particle and the elements of the films and grids and vice versa. These coefficients, designated $P-Q$, are the values of potential at an element for a unit charge at the particle and vice versa. The coefficients are calculated for every particle position that is selected by an input card. Subroutine PLEINF is used in the calculation. The charges on the films and grids and the potential at the particle are calculated as follows,

1. The charge distribution due to the particle is calculated iteratively in an identical manner to that for the applied potentials, except that the applied potentials are set to zero and the initial element potentials are set to the values attributable to the particle (the values of the influence coefficients, P--Q). The potential contributions at each elenent due to all other elements are accumulated with the P--Q value to give the total potential at each element. This value is compared with the applied potential (now zero) as before, and the new elemental charge is determined using the same factor. The same criteria are applied as in Mode 1 to determine when sufficient iterations have been performed.
2. The potential at the par irle due to the applied potentials is computed from the influence coefficients ($P--Q$) and the charge distribution stored on tape in Mode 1.
3. The potential at the particle due to the charge it induces in the films and grids is computed from the influence coefficients ($P--Q$) and the charge distribution calculated for the particle alone.
4. The total charge on each film and collector grid strip is calculated by summing the respective elemental charges for each strip.

When all the potentials and charges have been computed for a particular position, the values are committed to tape as part of a data set which is compiled for each path through the sensor.

The program then reads the next input card for a new particle position. At each position, the program automatically alternates between the loop that reads the applied potential charges from tape and the loop that iterates to a new charge distribution due to the particle charge.

A.1.2.3 Other Options

Options are selected by input parameters G1 and G2:

1. When $\mathrm{Gl}=2.0$, the program calculates the potential at points selected by input cards, in addition to computing anci committing to tape the charge values of Mode 1.
2. When $G 1=3.0$, the program calculates the potentials of the previous option using the charge values recorded on the tape.
3. When $\mathbf{G 1}=5.0$, the charge values recorded on tape in Mode 1 are read in and used as the initial values for the first step of the iteration loop. This allows further refinement of the charge values without repeating the previous steps.
4. Wheir $\mathrm{G} 2=1.0$ and $\mathrm{G} 1=0.0$, the potentials at the particle due to the particle induced charges and the total film and collector grid strip charges due to the particle are calculated. The potential due to the applied potentials is not calculated. This :node has limited use on its own and, if called for, should have a dummy card for the JCL card defining FT25F001 to prevent erroneous data being stored on a data tape.

A.1.2.4 P5072SIC Program to Calculate Influence Coefficients

The program to calculate the influence coefficients P5072SIC is used once, and the results are stored on magnetic tape. This program calculates the coefficients from first principles, based on the physical geometry of the elements. The interactions occur many times due to the repetitive nature of the physical geometry, but any particular interaction is calculated only once. Each interaction is referenced by an index number so that the correct coefficient can be recalled from tape in program P5072CHG. This program, P507へ̃ㄴIC, determines the correct index number for the particular coordinates of the elements under consideration, then calculates the coefficient using subroutine INFLCF .

All coefficients are stored on tape yOL SER NOS T53344 using the following data set names:

ASD.P067.	CFWW
1	CFMSFW
	CFTUFW
	CFEDGW
	CFPFIW
	CFFMFM
	CFTUFM
	CFEDFM
	CFISFM
	CFTUTU
	CFISIS
	CFEDED
	CFEDIS
1	CFEDTU
ASD.P067.	CFTUIS

A JCL card is required for each data set.

A.1.3 Method of Use

Four input cards are required if full use of the program is to be made, including calculations involving particle position. This applies to every condition of $G 1$ and $G 2$ except $G 1=1.0$ and $G 2=0.0$. In this instance, the fourth card may be omitted.

Card 1 controls the iterative process of detemining the charge distributions.

The inputs required, all format code F7.4, are:

Columns 1-7; FACTOR, which determines the fraction of old and new charge values which are to be used for the value in the next iteration.

Columns 8-14; PERCEN, specifies the maximum percentage difference between new and old charge values required before exiting the iteration loop.

Columns 9-21; CYCLES, specifies the maximum number of iterative cycles allowed before exiting the loop. Card 2 defines the guide numbers G1 and G2 (Format, 2F3.1).

G1 $=0.0$ Does nothing with regard to applied potentials.
G1 $=1.0$ Charges due to applied potentials are computed and written to tape.
G1 = 2.0 Same as G1 = 1.0 and also computes the potential at specified point(s) from card 4.

G1 $=3.0$ Reads charge distribution due to applied potentials from tape and computes the potential at specified point(s) from card 4.
$\mathrm{Gl}=5.0$ Refines charges due to applied potentials. (From Tape).
$\mathrm{G} 2=0.0$ Does nothing with regard to particle.
G2 $=1.0$ Computes charge distribution due to particle. Computes image potential at position of particle and total charges on grid and film strips due to particle.

Note: If $G 1=2.0$ or 3.0 and/or $G 2=1.0$, cards giving $X P, Y P$ and $Z P$ must be present, where $X P, Y P$ and $Z P$ are the coordinates of the particle relative to the center of the film.

Card 3 defines the maximum and minimum charge values for each sensor plane during the iteration process. These values limit the excursions of the charge values to prevent divergence. (Format 6E11.4).

Card 4 defines the particle path position, the distance of the particle from the film and the total number of points (NPTS) to be calculated (particle positions). ZP is the distance of the particle from the film in meters. XP and YP are the distances from the center of the film plane, in meters, as shown below,

f card of this type is required for every particle position or position for witch potential due to applied potentials is required. (Format 3E11,4, I3). XP and YP must have the same respective values on each card for each path, i.e., on a particular path only ZP changes.

Tapes are required for storage of the charges due to applied potentials and for the path data which includes potentials and total charges.

If the charge distribution due to applied charges is held on tape and further refinement of the values is desired, i.e., a smaller value of PERCEN, then Gl should be given the value of 5.0 . The existing values will be read from tape and further iterations performed until the new accuracy is achieved.

Some WRITE statements, that are not shown on the flow chart which follows, are included for diagnostic purposes. These print out some of the terminal point numbers so that the position in the program can be determined and also the potential and charge of selected elements in each plane are printed prior to executing terminal points 3508 or 3509.
A.1.4 Flow Charts and Program Listings

A flow chart of the program is given in Figure A-1.
Program listings for P5072CHG, P5072SIC, and subroutines POTCON, PLEINF, and INFLCF follow on pages A-13 through A-53.

Figure A-1 P5072CHG Progran Calculates Charge Distributions in Films and Grids A-12

ORIGINAL FAGE KS OE POOR QUALITY

BSR 4234

P5072CHG

G1＝0． 0 DOES NOTHINS WITH REGARD TO APPLIED POTENTIALS
G1＝1．B CHARGES DUE TO APFLIED POTENTIPLS COMFUTED FNG WRITTEN TO TAPE
G1＝2．SAME AS G1＝1．FALSO COMPUTES POTENTIAL AT SPECIFIED POINT（S）
G1r－3．a READS CHFRGE DISTRIBUTION OUE TG AFPLIED POTENTIALS FROM TAPE AND COMPUTES POTENTIFL AT SPECIFIED FOINT（S）
G1＝5．REFINES CHARGES DUE TO APPLIED POTENTIFLS．（FROM TAPE，
G2＝0．© DOES NOTHING WITH REGARD TO PARTICLE
G2 $=1$ ． 0 COMPUTES CHFRGE DISTRIBUTION DUE TO PRRTICLE．．COMPUTES IMAGE POTENTIAL AT POSITION OF PARTICLE．COHFUTES TOTAL CHARGES ON GRID FHD FILM STRIPS DUE TO FRRTICLE．

NOTE IF G1＝2． 0 OR 3．0 AND／OR $G 2=1$ ． 0 CARDS GIYIMG XP，YP RND ZP MUST BE PRESE ？
note cards giving values of factor，percen fnd cycles must rlways be PRESENT
In the folloning rrrays the prefix g indicates the total charge on an ElEmENT，THE PREFIX P THE TOTAL POTENTIAL AT FN ELEMENT DUE TO ALL OTHER Charges rad the prefix p nith suffix a the patentifl．at an element due to the charge on the frirticle floge．the p－og numbers free rlso the influence COEFFICIENTS FOR THE EFFECT OF THE ELEMENT CHFRGES UPON THE POTENTIAL AT THE PARTICLE．
DIMENSION PNQ $(2,2,4,4,7,8)$ ，PTUQ $(3,2,4,4,2,8), \operatorname{PEDQ}(2,2,4,4,2,8)$
DIMENSION PISG（3，4，4，2，2），PFISQ（4，4，8，8）
DIMENSION CHG（3），SCALE（3），QMFX（3），QMIN（3）
DIMENSION ELFINK（8）
COMMON GFMS（4，4，8，8），PFMS（4，4，8，8）
CUMMON FIN（2，2，4，4，7，8），GIN $(2,2,4,4,7,8)$
COMMON $\operatorname{GED}(2,2,4,4,2,8), \operatorname{PED}(2,2,4,4,2,8)$
COMMON GTU $(3,2,4,4,2,8)$ ，PTU（ $3,2,4,4,2,8)$
COMMON GIS（3，4，4，2，2），PIS（3，4，4，2，2）
DATA ELARNK／8＊0．©／
C．
THE GBOVE 15 ARRFYS REQUIRE 25536 WORDS 《I．E． 162144 BYTES）
3506 TO 3514 PROUIDE ROUTING THROUGH THE PROGRAM ELOCKS REFD（5，S5GO）FACTOR，PERCEN，CYCLEE
3500 FORMAT（SF7．4）
WRITFくG，SOGQ FACTOR：，PERCEN，CYCLES
guben FGRMAT（Six，FACTGR＝＇，F7．4，＇FERCEN＝＇，F7．4，＇CYCLES＝＇，F7．4）
PERCEN：0．01＊FFRCEN
REFD（E1， $\mathrm{E501}$ ） $\mathrm{G} 1, \mathrm{G} 2$
3501 FORMATSAFZ．1）
WRITE 6, 8061） 01,62

REFDSS，8U2 GOMAK，GMIN
EG2日 FORMAT（EFIS．4）
WRITE（6，SE21）OMTX，OMIN

IF（Ci2．GT，G．FILJNE＝1
JFくG1．GT．日．૬うl．INE－G
T114F：：0
IndM－0
IFくGi．GT．4） 60 T0 2504


```
    3502 RERD<5, 3503, END=3514)XP, YP, 2P, NPTS
    3503 FORMAT(3E11. 4, 13)
    WRITE(6, 8RQ2)XP, YP, ZP
    8002 FORMFT(5X, 'XP, YP, ZP = ", 3(E11. 4, 3X))
        IF(IMUM. GT. 1)00 TO 5999
        HRITE:25)XP, YP, NPTS, ELANK
        IMUM=1NUHN1
        00 T0 5999
C COMPUTES POTENTIALS/INFL. COEFFS DUE TO PPRTICLE PNDRETURNS TO I5GA
    3504 HRITE(6,80033)
    8003 FORMAT (5K, '3504')
        IF(B1. LT. 2. 5. OR. LINE. EQ. 1)00 TO 2019
        IF<JUMP. EQ. 1)}00 TO 2050
        READ (9)GIN, GTU, GED, GIS, GFMS
        REWIND 9
        JLHMP=1
        IF<B1. GT. 4>30 TO 3505
        00 T0 205a
C GOES TO 2019 ZOROS RLL CHARGES & RETURNS TO 3505 OR GOES TO 2050 *
C COMPUTES POTENTIAL AT PARTICLE FOSITION RETURNING TO }351
    3505 COLNT=0.0
    WRITE(6.8004)
    8004 FOFIMRT(5X, '3505')
    3568 IF\LINE. EQ. 1)G0 T0 3506
        V1=-7.0
        V2=24.0
        43=-3. }
        G0 T0 }199
    3506 V1=0.0
        V2=0.0
        V 3 = 0 . 0
        G0 10 2010
C GOES TO 1999 & SETS P-- TO ZFRO, OR GOES TO 2010 & SETS P-N = P--Q IN BOTH
C CASES RETURNING TO 350%
    3507 NFITE(6, 8005)
    84G5 FORIMAT(5%'3507')
        IF CCOUNT: LT. O. 5. AND. LINE. EQ. 1>GO TO 4999
        GO TO 4499
C GGIES TO ITERATION BLGOK BUT EYPASSES COMFUTATION OF POTENTIRL
C CONTRIEUTIONS DUE TO ELEMENTS OU FIRST PASS. RETURNS TO 35U8 FOR FURTHER
C ITFRATION OR TO }3509\mathrm{ WHEN ITERATION COMPLETED. AILL CHARGGES NOW COMFUTED
    3599 HRITE(6, 8066)
    8065 FORMAT(5X, '3509')
        IF<G1. GT. 4)G0 TO 2050
        IF(G1. GT. 2 5. OR. LINE. EQ. 1)GOI TO 3510
    6GS0 WRITE<S`GN, GTU, GED,GIS,GFMS
        RFININD 9
        IF\G1. GT. 4)G0 TO 3514
        IF(G1. LT. L. 5. FND. G2. LT. 6. 5)G0 T0 3514
        JUMF=1
    3510 G0 T0 2050
C COMPUTES POTENTIAG. AT PARTICILE, RETURNING TO 35:11
    3511 IF\I.INF. EG. O\@O TO 3515
        PAR:=SUM
        WRITE(E, S517)PAR
        3517 FORMMT(E:4, PAF: = ',F1.1. 4)
        60 T0 s516
    3545 FAFF=5lN
    WRITE\G, SD|\AFF
```



```
        60 50 21gm
```



```
    Sr:1% WRTTF(E, Er,9,FFF1, AF?, GFS, HF4, H' L, AC?, FC%, AC4
```



```
    (1:1.4)
```

WRITE 25 ）ZP，APP，PAR，AC1，AC2，AC3，AC4，AF1，FF2，AF3，AF4

3513

IFCLIN EQ．©．PND．G2．GT．0．5）$=1$
IF（LINE．EQ．1．PND．G1．GT．1．5）L＝a
IFKLINE．EQ．1．AND．G1．LT．1． 5 ）$=1$
IFくLINE．EG．©．PND．G2．I．T．O．5）L＝a
LINE＝L
IF（G1．GT．1．5）G1＝3， 0
IFKLINE．EQ．1．RND．G1．GT．2．5）E0 TO $35 Q 4$
60 T0 3522
C THIS BLOCK SETS FLL POTENTIAL CONTRIEUTIONS FROM ELEMENTS TO ZERO
C
$1999002907 \mathrm{~K}=1,4$
DO 20＠E $L=1,4$
$002005 \mathrm{M}=1,8$
10 20e14 $N=1,8$
PFMS（K，L，M，N）$=0 . a$
IF（M．GT． 7 ）GO TO 2054
D0 2R03 $1=1,3$
IFくM．GT．2．OR．N．GT．2）EE TO 2019G
PIS（I，K，L，M，N）＝0． 0
2000 ［0 2002 $J=1,2$
IF（M．GT．2）G0 Ta 2001.
$F T U\langle I, J, K, L, H, N\rangle=0.0$
20．31 1F（I．GT．2）GO TG zag2
FW（I，J，K，L，M，W）$=0.0$
IF（M．GT．2）GO TO 2002
PF．D（I，J，K，L，M，N）＝0． 0
2002 CONT INUE
2003 CONTINUE
2064 CONTINUE
20＠5 COHT INLIF
2006 CONTIMUE
zegr ERHITAME
Ga TO 3597
C．THIS FIGOK EETS PLL ELEMFNT CHARGE $T O$ ZEFO
C
2019 TH F $=0$

\＆ H GTXUM GT 1 गGO TO 5505
FYI $1:=9,6$

SUFGOG． 0
60 T0 9620
sgan FYL．M：－2．OE－1 S
GRTMD
SUFG：－2 GE－13
9020 队0 2027 K
［10 2022 $L=1,4$
$[1020=5 \quad M=1,8$
［00 $\mathrm{F}=4 \mathrm{~N}=1, \mathrm{E}$
GFME（K．．L． $\left.\mathrm{H}_{1} \mathrm{~N}\right)=$ FYLM

$G I S(1, k, 1, M, N)=S, N F$
GISC2．R，L，M，N）－GFYO
GJS＇E，K，L，M，N＝F＇YiM

 GTlは1，T，K，I，M，ND＝G1Fi，


```
    2024 CONTIMUE
    2025 CONTIMLE
    2026 CONTIMME
    2027 CONTIMHE
    G0 T0 3505
C THIS BLOCK SETS POTL. CONTRIENTIONS P-- EQUPN TO CORRESPONDING P--Q
C
    2010 00 2018 k=1,4
    D0 2017 L=1,4
    DO 2016 M=1,8
    DO 2015 N=1,8
    FFHS(K,L,M,N)=PFMSQ(K,L,M,N)
    IF(M. GT. 7)GO TO 2015
    DN 2014 I=1.3
    IF(M. GT. 2. OR. N. GT. 2)GO TO 2011
    PIS(I,K,L,M,N)=P1SR(I,K,L,M,N)
2011 DO 2013 J=1,2
    IF\M. GT. 2)G0 TOU 2012
    PTU(I,J,K,L,M,N)=FTLKR(I,J,K,L,M,N)
2012 IF(I.GT. 2)GO TO 2013
    PW(I, J,K,L,T,N)=FNQ(1,J,K,L,M,N)
    IF(M. GT. 2)GO TO 2013
    PED(I,J,K,L,M,N)=FEDEKI,I,K.L,M,N)
    2013 CONTINUE
    2014 COHT INUE
    2015 CONTINHE
    2016 CONTIMHE
    2017 CONTIMHE
    2018 CONT INLF
    G0 T0 3507
C THIS ELOCK COHFUTES POTENTIPL RT PPRTICIE
C
    2050 51444=0.0
    100 205S K=1,4
    DO 205:7 L=: 4
    DO 2RT5 M=1.:
    [0 2FT5 N=1.8
    SLUN=SUH+PFMSQ(K,I_,H,N)*GFMS(K,L,M,N)
    IF(M.GT. F)GO TO 205S
    DO 20r.4 I=1,3
    IF\M. GT. 2. OR. N. GT. 2>G0 TO 2051
    SLH1=SUH+FISO(I,K.L.M,N)*:NIS(I,K,L.M,M)
    2051 [00 205E J=1,2
    IF(M. GT, 2)ETO TO 2052
    S(MH-5(H1+FTUTCI,J,K,L,M,N)*GTUCI,J,K,L,M,N)
2052 IF'r . GT. 2)G0 TO 2003
    S(MI=S(H.1+PNO(I,J,K,L,M,N)*GW(I,J,K,L,M,N)
    IF'M. GiT. 2>GO.TO 205?
    S(H=SLHI+FE[MUI,J,K,L,M,N)*GED(I,J,K.L.N,N)
    2avis COUdTJMLE
    2054 CONTIPdIE
    CN55 CONTINLE
    2056 CONTINUE
    2057 COINTIPUF
    2GGE CONTTIULE
    60 T0 こ511
C
C THIS BLOCK COHFUTES CHARLT, LNGRIC FNO FILM ETRIFS
C
2.100 FCO.1=0.0
    AC2=0.6
    AC:}=0.
    Fri:4= =9.0
    PFI=G. P
    AFP=0. O
    PFS=C.0
```

```
    PF4=0.0
    D0 2105 KL=1,4
    D0 2104 M=1,8
    DO 2103 N=1.8
    PF1=RF1+GFMS(KL, 1,M,N)
    PF2=PF2+FFMS\KL,2,M,M)
    PF3=PF3+GFMS\KL, 3, M,N)
    PF4=AF4+GFMS<KL, 4,M,N)
    IF(M.GT. 7)60 TO 2103
    IFCM. GT. 2. OR. N. GT. 2)G0 TO 2101
    PF1=PF1+GIS(3,KL, 1,M,N)
    PF2=PF2+GIS(3,KL, 2,M,N)
    PFS=PFS+GIS(3,KL, S,M,N)
    PF4=P%4+GIS(3,KL,4,M,N)
    FRC1=PCC1+GIS(2,1,KL,M,N)
    PC2-AC2+GIS(2,2,KL,M,N)
    ACS=PC3+GIS(2,3,Kl,M,N)
    fCC4=PNC4+GIS(2,4,KL,M,N)
2101 IF(M.GT. 2)G0 TO 2102
    PF1=AF1+GTU<3,1,KL,1,M,N)+GTU<3, 2,1,KL,M,M)
    AF2=FF2+GTU<3,1,KL,2,M,N)+GTU(3,2,2,KL,M,N)
```



```
    i.F4=PF4+GTU(3,1,KL, 4,M,N)+GTU{3,2,4,KL,M,N)
    fC1=fNC1+GTU<2,1,1,KL, P, N)+GTU(2, 2,KL, 1,M,N)
    PC2=PC2+GTU(2,1,2,KL,M,N)+GTU(2,2,KL, 2,M;N)
    PCZ=PRS+GTU(2,1,3,KL,M,N)+GTUL2,2,KL,3.M,N)
    fRC4=PC.4+GTU(2, 1,4,KL,M,N)+GTU(2, 2, KL, 4, M, N)
21Q2 FNL1=AC1+GH(2,1,1,KL,M,N)+GW(2,2,KL,1,M,N)
    FCC2=AC2+GH(2,1,2,KL,M,N)+GN(2,2,KL,2,M,N)
    PCZ=PMC3+GN(2, l, 3,KL,M,N)+GN(2, 2,KL, S,M, H)
    Fr,4=FRC.4+GN(2,1,4, KL,M,N)+GN(2,2,KL,4,M,N)
    IF(M.GT. 2)GO TO 2103
    PC1=FRC1+GEL, (2,1,1,KL,M,N)+GED(2,2,KL,1,M,N)
    AC, =AC2+GED(2,1,2,KL,M,N)+GEL(2,2,KL, 2,M,N)
    fC:<=PRC}+GE[(2,1,Z,KL,M,N)+GE[M<2,2,KL,S,M,N
    AC.4=f(C4+GED(2,1,4,KL,M,N)+GED(2,2,KL, 4, M,N)
2103 CONTINUF
2104 COWTIMUF
21e55 COMTINLEE
    G0 T0 3512
    4499 CAILL POTCON
C
C COMPUTE CHARGE ON EACH ELEMFNT MLE TO AFPLIED FOTENTIFL FNDOFOTENTIAL
C COHITRIELITIONS FRGM FLLL OTHER FLEMENTS PNO PFRTICLE NOTE TMAT IF FAFTICLE
C. IS PRESFNT THEN GLL PFFI.IED FOTENTIFIE FRE ZERO.
    4999 CAK(1)=0.6
    CHG(2)=0.0
    CH5(3)=6.0
    [0 2018 K=1,4
    00 25:17 1.=1,4
    [4 251.6 M=1, %
    00 253.5 N=1,8
    CHG(Z)=CHG(z)+(V-PFMS(K,I.,M,N))*W. 1185SF-12
    IFCM.GT. 73GO TO 2515
    V=V1
    [0 25:4 ]=1, %
    IF\I. EQ. こ)V=V%
    IFCI.FQ S)\:V
    IF(M. GT. Z. GR. N isT. z)GO TO z'NLL
```



```
25.11 [0̈ rinlz J=1,2
    IF(M.GT. 2)G0 TO 2ए.j2
    CHG(I)=CHG<I?+(V-FTUKI,J,K,I,M,M)>*G.GZ*21B2E-13
```



```
        CHB(1)=CHG(I)+(Y-PED(1, J,K,L,M N))*O. 4137133E-13
```



```
    2514 CONTIMUE
    2515 CONTIPUE
    2516 COMTIMUE
    2517 CONTIMME
    2518 CONTIMUE
    D0 2530 I=1.3
    SCPLEE(1)=1.0
```



```
    IF(CHB<I). LT. GMIN<I ) SCPLLE(I)={MIN(I)NCHOK(I)
    2530 COMTIPME
C
C STRRT HIRES
    CRIT=0.0
    y=41
    00 5005 I=1,2
    1F(1. EQ 2)Y=YZ
    D0 50,04 J=1,2
    DO 5063 K=1,4
    DO 5002 L=1,4
    DO 56401 M=1,7
    DO 5009 H=1,8
    TEMP1=\Y-FW\I,J,K,L,M,H\rangle)*Q. 5148147E-13
    TEMP1=TEMP1*SCPLEE\I)
    TEMP2=TEMP1*FFCTOR+GH<I,J,K,L,M,N\*<1-FPCTOR)
    TEMPS:=PERCFN*GN\I,J,K,L,M,N\
    TEFP4=TEPPP1-GiN(I,J,K.L,M,N)
    TEMP3=FES(TEMPS)
    TEMP4=AES(TEMP4)
    IF(TEMP4. GT. TEMP3)CRIT=1.00
    CN(I, J,K,L,M,H)=TFMP2
50,G CONTINME
S0R1 CONTIMUE
5NG? CONTIMME
SEG.5 CCWNTIPME
5004 CONTINHE
56065 CONTIPPIE
C
C EHD HIRES. START GRID EDGES
C
    Y=41
    00 5a1x I=1,2
    IF<1.EQ. 2)V=V2
    10 5010 J=1,?
    00 5099 K:=1,4
    bo 5048 L=1,4
    DO 500, M=1,2
    00 5#EE6 N=L, 
    TEMP1={V-PED(I,J,K,L,M,N))*O. 413713SE-13
    TEMP1:-TEMP1*SCALIE(1)
    TFMP2=TFMP1*FFC:TOR+GED(I,J,K,L,M,N)*(1-FFLCTOR)
    TEMPE=PEKCFN*GED(I,J,K,L,M,N)
    TEMF4=TEMF:1-GE[,(1, T,K,L,M,N)
    TEMF`=RRS(TEMP?)
    TFMP&=HRS(TEIMP4)
    IF&TEMF4 GT. TEMF\)ERIT=1. Q
    GEFCI,J.K:I,M,NO=TFHF'? ORITINAL PAGE LS
    50ne \CONT]NIF:
    5067 CONTJPN&:
    Famte Eind] JH|
    Frtum (.C|ITTN|H
    Si110 CONTIDHE:
    STv:I CRHIJN!LE
```



```
~
    Y=vi
    DO 50,7 I=1,3
    IF(1.EQ. 2)Y=42
    IFCI. ER. 3)V=43
    D0 5016 J=1,2
    DO 5015 K=1.4
    L0 5014 L=1,4
    D0 5013 M=1,2
    DN 5012 Nk=1,8
    TEMP1=(Y-PTUCI, J, K,L,M, N) )*Q. 93221@2E-13
    TEMP1=TEMP1*SCPLEK(I)
    TEMP2- TEMP1*FACTOR+GTU(I,J,K,L, M,N)*(1-FACTOR)
    TEMP3=PERCEN**GTU(I, J, K,L,M, N)
    TEPP4=TEMP1-GTU\I, J,K,L,M, N\
    TEMP3=ARS(TEMP3)
    TEMP4=-PES(TENP4)
    IF(TEMP4. GT. TEMP3)CRIT=1.0
    GTUCL,J,K,L,M,N\=TEMP2
    5012 COHTTJMME
    Sa13 COHIT IMLE
    5 0 0 1 4 ~ C O N T I M E ~
    5015 CONTIIMLE
    5 0 1 6 ~ C O N T I N U E ~
    5 0 1 7 \% ~ C O N T I H N E S
C
C END MAIN GRIDAFILM T & U. STPRT INTERSECTION SRUPIRES
C
    Y=W1
    D| 5022 I=1,3
    IF(I.EQ. 2)V=V2
    IF(I. E&. 3)Y=VS
    D0 5a21 K=1,4
    D0 5020 L=1.4
    D0 501S M=1,2
    00 5018 N=1,2
    TEMP1=(Y-FJS(I.K.L.M.M))*E. 7111799E-1.3
    TEMFI=TEHW1*SOHL.E(I)
```



```
    TEMFS=FEFLFN+GISCI,K,L.M, N%
    TEMP4=TEFN1-GIS<J,k.L,M.N)
    TEMPS=FAE(TEHFS)
    TFIMP4=FF:\(TFPMF4)
    IF(TEMF4. GT. TFMFE)CPIT=1. GI
    GTS\I.K.L.M.W\=TEMP?
EN1E CONTINUL
5015 CNNTIMLIE
5Gz0 CONTIHLE
5A21 COHNT IMME
    5022 COWTJAHDF
f
C EINI INTEFSFETION SQUIRRES. START FILM MAIN SOMFKFES
    W=V-s
    00 50%m k=1,4
    L0 50% 1-1.4
    mo :mact N=1.5
    [0] FO,Z N=1.6
```



```
    TFINO1 TENFPIt TH||:O?
```



```
    TFHFO-HFFXGN+IFN:OT,I,M,N
```



```
    GFMS<K,L,M,N\=TEMP2
5 0 2 3 ~ C O N T I N M E ~
5 0 2 4 \text { CONTIMME}
5 0 2 5 ~ C O N T I M M E ~
5025 CONTIMME
    HRITE(6,8106)(PIS(1, 2, 2, 2,2),015(1, 2, 2, 2,2),I=1,3)
8100 FORMAT (3 (5X, 'PIS = ', E11. 4,5X,'G15 = -, E11. 4/%)
    HRITE(6. 1,01)(PTU(1,2,2,2,2,8),GTU(1,2,2,2,2,8), I=1,3)
8101 FORMPT ( = 湮'PTU =', E11. 4,5X,'GTU = ', E11. 4/>)
    WRITE(6, (102)(PED (1, 2,2,2,2,8),GED(1,2,2,2,2,8),1=1, 2)
8102 FORMPT (2<5x,'PED = ', E11. 4,5X 'GED = -, E11. 4/>)
    HRITE(6, 8103)(PW(1, 2, 2,2,7,8),GW(1, 2, 2, 2,7,8), I=1, 2)
g103 FORHAT (2(5x. 'FW = ', E11. 4,5K 'GN = ',E11. 4/'))
    WRITE(6, 8194)PFMS(2, 2, 4, 4), GFMS(2, 2, 4, 4)
8104 FGRMAT(5%''PFMS = ',E11. 4.5%'GFM5 = ',E11. 4/)
C
    END FILM MAIN SOUARES
COHPUTATIION OF NEN CHARGE DISTRIEUTION COMPLETED
    IF CRIT IS MOT ZERO THEN CHFNGE OF CHARGE ON AT LERST OME ELEMENT
    EXCEEDED SPELIFIED PERCENTAGES. IF CRIT IS ZERO THEN ITERATION HAS
    REACHED REQUIRED ACCURFGCY
    COUNT=COUNT+1
    IF (COAMT. LT. CYCLES-0. 1. FMD. CRIT. GT. G. 5)G0 TO 3508
C CONDITIONHLL RETURN TO START OF ITERATION FROCESS
C HHFN ITERATION COMPLETED GANJOR FERMITTED MUMSER OF CYCLES REPCHED
C COHFUTE POTENTIGA AT POSITIGN GF PMRTICIE INE TO APPILIED POTENTIFLLS
C FWOD PGRTICLE IMHGE CHFFGGES
    GO TO SENG
    COHFUTE FOTENTIFI. AT ELEMENTS DUE TO ONE CCUMLOME RT OGRTICLE
C
C
    5999 Z=2F-0. n0197028
    [0 Gact% I=1,2
    JF\I. EN. 2)2=2P-6. G0t6.564
    00 6000 J=1,2
    D0 Gans K=1,4
    [0 60004 L==1,4
    [0 6003 14=1,7
    10 60002 N=1,8
    IF(N. EQ. 2)GO TO GGOG
    F=0.0
    E=0.002175
    X-0. 02921*k+5. E4\175*M-0. 085725-XP
```



```
    (0) T0 Erad
    Gana F=0. ga\1F5
    E:-D.0
    x-0. 02G21*L+0. 90<175+N-0. 05721S-8P
```



```
    6लOL CFIIL PIFJINFGS,Y,7, A, Fi, FOTI.)
    FNQCJ, I,K゙,I,M, &)=FUTl
    ErMm? CONTINH
    EGMO COHTJNHF
    EEOLG CONTIHME
    EGigS CONTIPHF
    NEWTE CINN SUF
    Gini= cund NIF
C
C END PARTICIF ON WIFFS
C
G. START FHRTICIF ON GRID FDGES
    ORIGINAL PAGE IS 
```

```
    00 6015 I=1,2
    IF(I. EQ. 2)Z=ZP-0.0067564
    DO 6014 J=1,2
    DO 6013 K=1,4
    D0 }6012L=1,
    DO 6011 N=1.2
    DO 601日 N=1,8
    IF<J. EQ. 2)G0 TO 60e8
    A=0.6
    B=0. }90317
    K=0.02921*K+0.0254+M-0. 1111225-XP
    Y=0.02921*L+0. 003175*N-0. 087313-YP
    60 T0 6069
    6008 f=0.603175
    B=8. }
    X=8.02921*LL+0. 003175*N-0.087313-XP
    Y=0. 02921*K+0. 0254*+4-0. 1111.25-VF
    6009 CPULL PLEINF(X,Y,Z, R, B, POTL)
    PEDQ< I, J,K,L,M,N\=POTL
    G010 CONTIME
    6 0 1 1 ~ C O N T I M U E ~
    6012 COMTIMUE
    6013 CONTIPME
    6 0 1 4 \text { CONTTIMUE}
    6015 CONTIPME
C
C END PARTICLE ON GRID EDGES
C START PARTICLE ON MAIN GRID/FILMT * U
    Z=2P-0.0097@28
    00 6a23 I=1.3
    IF(I. EQ. 2)Z=ZP-0. 006.7564
    IF(I. EQ. S)Z=ZP
    DO 6e2z J=1,2
    DO 68E1 K=1,4
    D0 6020 L=1,4
    00 6019 M=1,2
    D0 6018 N=1,8
    IF(J. EQ. 2)G0 TO E016
    R=0. 001905
    B=0. 003175
    x=0.022921*K+0. 027305*14-0. 11.29825-XP
    Y=0. 62921*L+0. 093175*N-0. 6873125-YP
    Gn TO 6917
    6016 A=0.003.175
    B=6.001905
    X=0.02921*L+0.003175*N-0.0873125-XP
    Y=0.02921*K+0. 027305*M-0. -139825-YP
6017 CFLLI FLEINF(Y,4.Z,R,B,POTL)
    PTUQ(I,J,K,L,M, N):=FOTL.
ga18 CONTINJr.
60:LS CONTINUF
gaza cGNTIRUUE
6021 CONTINLE
602% CONTINUE
6023 COHNTINIE
C
C FND FGRTICLE ON MAIN GRIDIFILIA T * U
0
c: START FARTICILE ON GRIDFFILH INTEREEETICII SQUAKFS
    z=7%-a. acmob;R
    OC164,# )=:1,3
```



```
    IF(1. EQ. 3)Z=2P
    DC 6027 K=1.4
    D0 6026 L=1, 4
    DO 6025 M=1,2
    DO 6024 N=1.2
    f=6.6019e5
    B=0.601905
    X=0.02921*K+0.027395**4-0.1139825-XP
    Y=0. 02921*L+0. 027385*N-0. 1139825-YP
    CPIL PLEINF(X,Y,Z,R,B, POTL)
    PISRCI,K,L,M,N)=POTL
    6024 CONTIMRE
    6025 CONTIPHLE
    6026 CONTIMME
    6027 CONTINUE
    6028 COHTINDE
C
C END PPRTICIE ON GRID/FILM INTERSECTION SQUPRES
C STPRT FARTICLE ON FILM MAIN SOUPRES ELEMENTS
            Z=2F
            00 6032 K=1,4
            D0 6031 L=1,4
            D0 6030 M=1,8
            D0 6029 N=1,8
            A=0.003175
            B=0. (4) 2175
            X=0. 02921*K+0. G13175*+4-0.0873125-XP
            y=0.02921*L+0.003175*H-0. 9875125-4F
            CFRLI PIETPAF(X,Y,Z, R, B, POTL.)
            PFHSQ\langleK,I,M,N\=FOTL
    Ta己g COHTIMUE
    .330 COMTIHUE
    6031 CONTIMUE.
    c.A`? C.ONTINIIE
c
G: FHID PGFTICIE ON FILM MAIN SGMMFISS ELFMEMTS
C
C FII. FOTENTIFH S MAF TO CHAFGGE ON FARTICLLE COMPLETED. HOTE THHT PWQ, PELQ,
C FTUN.FISO & FFMSO ARE ALSO THF. IHFIUFNGE COFFFIGIENTS FGR CGMFUTING
```



```
fo TO 3504
    3514 CONTINHE
    ENT,
```

$$
\begin{aligned}
& \text { ORIGINAL PAGE IS } \\
& \text { OF POOR QUALIIY }
\end{aligned}
$$

```
        SUPRDUTINE POTTCON
        DIMENSION CFFW(9678), CFMSFW(5194), CFTUFW(21364), CFEDRW(10682)
        DIMEMSION CFPFIW(10975), CFFNFM(2809), CFTUFM(8904), CFEDFM(5936)
        DIMENSION CFISFM(9408), CFTUTU(18595), CFISIS(605), CFEDED(7438)
        DIMENSION CFEDIS(3136), CFED RU(15512), CFTUIS(2464)
        COMMON GFMS (4, 4, 8, 8), PF.15 (4, 4, 6,8)
        COHTHN PW}\langle2,2,4,4,7,8),GW\langle2,2,4,4,7,8
        COMHON . OED(2,2,4,4,2,8),PED (2,2,4,4,2,8)
        COHMON GTU(3,2,4,4,2,8),PTU( 3, 2, 4, 4, 2,8)
        COMHON GIS(3,4,4,2,2),P1S(3,4,4,2,2)
        EQUIYFLENCE (CFTUFW(1), CFTUTU(1), CFTUFM(1), CFPFIW(1), CFWW(1), CFISIS
        2(1),CFMSFW(1), CFFMFM(1), CFISFM(1), CFEDIS(1), CFEDTU(1), CFTUIS(1)),(
        3CFED(WN(1), CFEDFM(1), CFEDED(1))
    START INTERSECTION SQLARES ON INTERSECTION SQUARES
    REPD(29)CFISIS
    DO 4648 Ll=1,4
    DO 4647 NM=1,2
    IMP1=3*LL +NNN
    DO 4646 MM=1,2
    DO 4645 KK=1,4
    IMP2=3*KK+MM
    DO 4644 M=1, 2
    IHD2=M-1 MP2
    DO 46.43 K=1,4
    IMOE=INDO+3
    IHOS=1RBS(INO2)
    INMOA=-IMP1
    DO 4642 L=1,4
    INO4=1N[-4+3
    IND6=11*IRES(IND4+1)
    1ND7=11*IRES(1ND44+2)
    INX1= IND6+INDS
    INK2=1NDPT+IND3
    no 4e.41 II=1,3
    TF1HP13:=0.0
    [0) 4640 I=1.3
    IF\I. EQ. II\GO TO 4637
    IF(I. EQ. 3. OR. II. EQ. 3)GO TO 4638
    IND1:-243
    G0 T0 4e39
4637 1N[D1=1
G0 T0 4039
4E.SS IF(I+IL. EQ. 4)INN1=364
    IF\I+II. EQ. S.INLI=485
46.39 INDE'X1=INY1+INIS:
    INDEX2= INM2+I NW,L
```



```
    2,I.,M, <')
46a(0 CONTINLF
    PIS<II,KK,LL,|M, NH\=FIS\II,KK,ILL,MM, NND+TFHPIS
4641 CONTMHLF
464? CONT INUE
4643 CONT INIE
464.4 C.CNTTIPHE
4E45 CONT INUF
4F.4E GENTIMUE
4 .17 CONN TNUE
4048 GIMNT IHUE
C
C
```



```
C
    STRRT WIRES ON WIRES
    REMIND }2
    REPD(10)CFMM
    DO 4516 NN=1,8
    DO 4515 LL=1,4
    IMO1=15*LL+AN
    TEMP5=14*LL+AN-0. 5
    D0 4514 MM=1, ?
    DO 4513 KK=1, 4
    1MD2=13*KK+MM
    TEMP6=14*KK+MMH+Q. }
    HOLD1=0.0
    HOLD2=0.0
    HOLD3=0.0
    HOLD4=6.0
    TEMP17=IMD2-TEMPS
    D0 4512 N=1.8
    INDS=N-INDI
    TEMP7=N-TEMP6
    DO }4511\mathrm{ L=1,4
    IMD3=IND3+15
    1MDS=46*IPASS(IND2)+1
    TENTP=TEIP7+14
    TEMP1=ABS(TEMPT)+0. 7
    IMD7 = INT <TEMP1)+4876
    D0 4516 M=1,7
    INO4=M-IND2
    D0 4509 K=1,4
    IND4=IND4+13
    INDEX1 = IFRSS(1ND4 ) + INDS
    TEMPE=IND4+TEMP1T+K
    TEMP8=ARS(TEPP8)-0. 3
    INDE=4今*INT (TEMP8)
    INDEXS=INDT+IHIDS
    INDEX2=INDEX:1+2438
    INDEX4=1NDEX3+2401
    TEMP12=-CFWW( INDEX1)
    TEMF9:CFN|(INLEX2)
    TEMF1Z=CFW||(INDEX3)
    TEMP10=CFINH(INCEX4)
    TEMP21=GIN(1, 1,K,L,M,N)
    TEMFZ2=G.O\1, 2,K,L.M,N)
    TEMF2S={iW(2,1,K,L,M,N)
    TEMF}24={(N\\2,2,KL,M,N
    HOLO1=HOLD1+TEMP9*TEMP23+TEITP12*TEHP21+TEMP10*TEMF24+TEPF13*TEMP22
    HOLD2=HOL[2+TFMP:T*TFMF2:1 +TFMF:12*TEMP2T+TEMF:10*TFMF22+TEMF13*TEMP24
```



```
4509 CINTINLIE
4510 CONTINUE
4 5 1 1 ~ C O N T I N U E : ~
4512. CONTINLIE
    FW(1, L, KK, I.L, HM, INN=PWC1, 1, HK, LL, MM, NNN)+HOL_LL
    FW(2,1,KK,LL, NM, NN\=FW\2,1, KK,LL,MM, NJ';+HOLGZ
    FW(1, 2,KK,LL.MM, N|)=FN(1, 2.KK,LL,MM, NH\+HOLDS
```



```
4 5 1 3 ~ C O N T I N U E ~
4514 CONTINUE.
4%15 CONTINUEE
45.15 CONTINULE
C
C HIRES ON WIEES FINISHED
C}\mathrm{ STRRT FILM MGIH SGIMAPE ON WJRTES ANO VICE VEREG
C STRET FILM HFIIN SGINAFE ON WJRLSS ANO VICE VERSA

\section*{BSR 4234}
```

C
RENIND 18
REPD(11)CFMSFH
D0 4531 MN=1,8
D0 4530 LLm1,4
IND6=15*LL+NW
00 4529 MM=1,7
DO 4528 KK=1,4
TEPMP1=14*KKK+MM+0. 5
DO 4527 JJ=1,2
TEMP12=GN(1, JJ, KK, LL, MM, NN)
TEMP14=GN<2, JJ, KK,LL, MM, NN\
TEMP13=0.0
TEMP16=-0.0
IF(JJ. EQ. 2)G0 T0 4521
TEMP4=-TEP4P1
DO 4520 K=1,4
TEMP4=14+TEMP4
D0 4519 M=1,8
TEMP2=TEMP4+M
TEMP2=RBS(TENP2)*6.7
IND2=1NT(TEMP2)
INDS=-INDG
DO 4518 L=1.4
INDS=1MOS3+15
DO 4517 N=1,8
IND34=1MD3+N
INDEX1:=49*IFES(IND4) +IMDC
INDEX2=1NDEX1+2597
TEMP\=CFMSFW(1MOEX1)
TEMFS=CFI4SFIN(INOEX2)
TEMP13=TEHP13+GFMS<K,L,M,N)*TEMP3
TE|P16=TE|P1G+GFMS(K,L,M, M)*TEMFS
PFNS(K,L,M,N)=FFHS(K,L,M,N)+TEMP3*TEHP12+TEMFSN*TEMF14
4517 CONTINME
4 5 1 8 ~ C O W T I P U E E ~
4519 CONTINUE
4520 cONTIHHUE
GU TO 4526
4521 TEIHP4=-TEMP1
DO 4525 L=1,4
TEMF4=TEMP4+14
OM 4524 N=1,8
TFWH2=TEMF4+N
TEMPZ2-GBS(TEINF2)+6.7
JHD2-IHT(TEMF%)
INDS: -INDG
DO 4523 K:=1,4
INOS=INOS+1=5
OO 4522 M:1,8
INDA=INDS+M
INDEX1:=49*IFBSCINO4; + IND2*
INOEXO: I Mr,FXI +25,97
TEMF:X=CFMSF|(INHFYS1)
TEMPE=CFMSFN(JHTEXZO
TEMP:S=TEIHP:S+GFMS(K,L,M,N)*TFMFE
TFMP:LG=TEMFIG+GFMS(K,L,M,N):7FMF:5
PFMS<K,L,M,NO= FFMS\K,L,M,W)+TENFS*TEMFI2+TEMFS.TEMF14
4522 CNNTINNIE
452% COWT IP\&LE
4FO.4 CONTTINUE
4%%% COWd I NILE

```


```

45%% COWTTMLF
4%% [ONT]NUF

```
```

4 5 2 9 ~ C O N T I N U E ~
4 5 3 0 ~ C O N T I N L E ~
4 5 3 1 ~ C O N T I N U E ~
C
END FILM MAIN SQLIARES ON WIRES AND VICE VERSA
START GRID/FILM MAIN T U ON WIRES FIND VICE VERSA
START LARTE EDGES ON WIRES AND VICE VERSA
REWIMD 11
RERD(12)CFTUFW
REWIMD }1
RERD(13)CFEDGW
REWIND 13
DO 4548 NN=1,8
D0 4547 LL=1,4
IND1=15*LL+NN
TEMP1=16*LL+2*NNN-7.5
DO 4546 MH=1, ?
DO 4545 KK=1,4
TEMP2=14*KK+2*MM1-6.5
TEMP }3=14*KK+MP4+G. 5
TEMP13=GIN(1, 1, KK, LL,MM, NM)
TEMP14=GW(1, 2, KK, LL, MM, NN\)
TEMP18=GW(2, 1,KK, LL, MM, IN:)
TEMP19=G/4(2, 2, KK, LL, MM, NN)
TEMP12=0.0
TEMP15=6.0
TEMP16=0.0
TEMP17=0. a
H001=e.0
HaD2-6.0
HOTS=0.a
HOD4=0.6
DO 454,4 N=1,8
INO2=N-INNC1
TEMF4=N-TEMP3
10 4543 L=1,4
1N02=1N02+15
INDS=49*IARS(IND2)
TEMF4:-TEMF4+1.4
TEMPS-FES(TFMF4)
ING4=INT(TEMF5+0.7)
00 4542 M=1, 2
TEIMFE-N-TEMFZ
TEMPT=M-TEIMF:L
00 4541 k%1,4
TEMFE=TEMFG+1.4
TEMPT=TEMPT+16
TEMFE=FBSS(TEMFT)-0. 3
INDS*-49*INT (TEMFE;
TEMPG: GES(TEHFE)+G1.7
INDG=INT\TFHFG;
INM1.2:7403+1NHO

```

```

7090 1NOEXN: INS:1
INDEXO= INMO+16,28%
INOEX% IN:I +MEST

```

```

 1N|PX'\cdots11S:2+5194
    ```

```

 TEMFES: (FFDONCINOEXI)
    ```

```

 TEMFOSGFFIMNCDNENO
    ```

\footnotetext{
TEMP39：CFEDGN（INDEX6）
TEMP30＝GED（1，1，K，L，M，N） TEMPS1＝GED \(\langle 1,2, K, L, M, M\rangle\) TEMP32＊CED（2，1，K，L，M N） TENP33＝GED（2，2，K，L，M，N）
HOD1 \(=H 001+\) TEMP36＊TEMP3Q＋TEMP37＊TEMP31＋TEMP38＊TEMP32＋TEMP39＊TEMP33
 HOD3 \(=4003\)＋TEMP \(36 * T E M P 32+T E M P 3 ? * T E M P 33+T E M P 38 * T E M P 30+T E M P 39 * T E M P 31 ~\) HOD4ㅍHOD4＋TEMP36＊TEMP33＋TEMP37＊TEMP324TEMP38＊TEAP31＋TEMP39＊TEMP30 \(\operatorname{PED}(1,1, K, L, M, N)=P E D(1,1, K, L, M, N)+T E M P 3 E * T E M P 13+T E M P 37, *\) TEMP 14＋TEMP 238＊TEMP18＋TEPTP39＊TEPP19
PED（1，2，K，L，M，N）＝PED（1，2，K，L，M，N）＋TEMPS6＊TEMP14＋TEMP37＊TEMP13＋TEMP 338＊TEMP19＋TEMP39＊TEMP18
PED \((2,1, K, L, M, N)=P E D(2,1, K, L, M, N)+T E M P 36 * T E M P 18+T E M P 37 * T E M P 19+T E M P\) 438＊TEMP13＋TEMP39＊TEPHP14
PED（2，2，K，L，\(H, N)=P E D(2,2, K, L, M, N)+T E M P 36 * T E M P 19+T E M P 37 * T E M F 18+T E M P\) 538＊TEMP14＋TEMP39＊TETHP13
D0 \(4539 \quad 1=1,3\)
IFくI．EQ．2）G0 T0 7010
IFくI．ER．3）GO TO 7020
00 TO 7030
7010 INOEX1 \(=1 \mathrm{NX} 1+2597\)
INOEX2＝INX2＋1．3132
I NDEX3＝1NK1
INDEX4＝1 NX2＋10389
00 TO 7650
7020 INDEX1 \(=\) INX：1 +5194
INDEX2 \(=1 N \times 2+15876\)
INDEXS＝INX1＋7791
INDEX4＝INX2＋18620
7036 TEITF20＝CFTUFIU（1HOEX3）
TEMP21＝CFTLIFI（INDE゙X4）
TEMP1G＝CFTIJFIU INDEX1）
TENP11＝CFTUFNKINDEX2）
TEMP22＝GTU（1，1，K，L，M，N）
TEMPZZ \(=G T U(I, 2, K, L, M, N)\)
TEMP12－TEMF12＋TEMP10＊TEPF22＋TEMP11＊TEMP23
TEMF15＝TEMF：15＋TEMP1G＊TEMF2S＋TEMF11＊TEMP22
TEMF16＝TEMP16＋TEMF：20＊TEMF22＋TEMF21＊TEMP23
TEMP17＝TEMF17＋TEMF20＊TEMF2玉＋TEHP21＊TEMP22
PTUく1，1，K，L，M，N）＝FTUくI，1，K，L，M，N）＋TEMP1E＊TEMF13＋TEMP11＊TEMP14＋TEMP
\(220 *\) TEMF－18＋TEMF \(21 *\) TEMP19
FTU《I，2，K，L，M，N）＝FTUKL，2，K，L，M，N〉＋TEMP11＊TEMP13＋TEMP10＊TEMF14＋TEMP
321＊TEMF－18＋TEMF\＆G＊TEMF19

\section*{4539 CONT INUE}

4541 CONTINLE
4542 CUNTINLIF．
4！：4：CONTINUE
4544 CCNTTHUE
\(F W(1,1, K K, L L, M M, N W)=F W(1,1, K K, L L, N, W N)+T E M F 12+H O L 1\)



454：CONTJNIE
4Fi4E CONT INLE
4547 CONATINLE
45．4E COTAT IRUE
ENO GRIDAFILIT T \＆U ON WIFES RND VICE VERSA
END FLATE ELOES OH WIRES FNO VICF VERSA
STHET PLATE／FILM INTEFSECTION UN WIFFE FNO VICEVEFSA
FFADC14OCFFFIN

}
```

 D0 4574 LL=1,4
 TEMP1=16mLL_2*NN-7. 5
 DO 4573 M, =1,7
 DO 4572 KK=1.4
 TEMP2=14*KK+2*MM-6.5
 TEMP11=GW(1, 1,KK,LL,MM, NW)
 TEMP12=GW<1, 2, KK, LL, MM, NN\
 TEMP13=GW(2, 1, KK,LL,MM, NNS
 TEMP14=GN(2, 2,KK,LL, MH1,NN)
 TEMP15=0.6
 TEHP16=0.0
 TEPHP17=0.0
 TEPP18=0.0
 DO 4571 M=1,2
 TEMPS=M-TEMP2
 DO 4570 V=1,4
 TEMPS=TEMP3+14
 TEMP4=FBS(TEMP3)+0. 7
 IMD4=INT (TEMP4)
 00 4569 N=1,2
 TEMPS=N-TENP1
 00 4568 L=1,4
 TEMP5=TEMP5+16
 TEMPG=ABS(TEMPS)-0.3
 INCG=49*INT(TEMPG)
 IMX=1ND4+IND6
 DO 4567 I=1,3
 IF(I. EQ. 1)GO TO 4566
 IFCI. EG. 2)GO TO 4576
 IFCI. EO. 3)GO TO 4577
 45E6 INDEX1=INX
 INDEX2=1 NX+2744
 G0 TO 7040
 4576 INOEN1=1NXX+2744
 INOEX2=INX
 60 T0 7040
 4577 IN[EX1. INX+54SE
 INOEX'=1NN+S2こ2
 7G4@ 7EMF%=CFFFIW《1NTJEN1)
 TEMPE=CFFFIW(INLE**)
 TEMP1S-TEMF1S+GIS`I,K,L,M,N'*TEMF`
 TEMF16:TEMF1E+GIE(I,L.K,N,M)*TENFF
 TEMF:LT=TEMP17+GISGJ,R.L,M,ND*TEMFS
 TEMP18-TE|F18+GIS(I,L,K,N,M)NTEMFS
 FIS<I,K,L.M,N)=FISCJ,K,L,M,N\+TEMP7*TEMF:LI+TEIFE*TEMP1\Xi
 PIS{I,L,K,N,M)=FIS,I,L,K N,M)+TEMFT*TEMP,1Z+TEMPS*TEMP14
 4567 EONTINIF
 456% COUTIMNE
 4:6.5 CONT JNUF
 4F%G CINTIPNLE:
 4571 CONTIPNIE

```




```

457: CONTINUE
457S CONTIMME
4rï̈4 C.ONT IN.N.F
4ETE: CONT INUF
C

```

```

C

```

```

C
F+(4)t|!) 1.t

```

```

 DO 4585 KK=1,4
 DN 45S4 MM1=1,8
 INLL=15*KK+MM
 DO 4583 LL=1.4
 DO 4582 NNT=1,8
 IND2=15*LL+NN
 TEMP13=0.0
 DO 45E1 M=1,8
 INDS=M-IND1
 D0 4588 K=1,4
 INDS=1MDZ+15
 INT,Ci=IABS(INDS)+1
 DO 4579 N=1 3
 INUO=IN-INDE
 DO 45%'s L=1,4
 INDJ: INOS+15
 INDEX=53*IASS\IND5\+IND4
 TEM: & : FHFH\IMDEXP):GFMS(K,L,M,N)
 TEMi.1 .. -1,R:13+TEMP1
 4578 ErNT:N.
 45,9 fO- 「Mr.uE
 4 5 8 0 ~ c 0 1 : ? . 4 . 4 F
 4581 CON 2:NUE
 FFHSCKK,LL. MH, NN\=FFIGSKKK,LL,MM, NNNOTTEMF1S
 4582 CONTINUE
 45e3 CONTIMME
 4:E4 CONTIN!E
 4585 CONTINLIF
 c

```

```

 STGRT GRJD'FILM WFIN T & U ON FIIM MGJN SOUGFE GND VICE VEESF
    ```

```

 RENINT}1
 READG1ESOFTUFM
 FFNINO 16
 REAISIT:CFETFM
 RENINO 1:
 DO 459: kk=4, 4
 DO 45E5 MM=1.8
 TEMF:I=1G+1K+%+MM-:`,
 D0 45E.4 (.1.-.1,4
 DG 4EFS: N|=1.8
 IND.1:-15*l.I +r.N
 TENP:\=-a a
    ```

```

 TFHF:19:M,
 TENFSS=GNEOL,NK, NW, NM;
 WH1454, N-1, %
 IN|P: |-JN|!1
 1445041 1:1,4
 1N⿱一⿻口⿰丨丨⿱二小
    ```

```

 0n 40,041,N-1.:
 TFHF:% it-TFMF!
 M0 40:-4 ki.1.4
    ```


```

 JM&יi= INTGTEFHF%;
 1W:N-sNST+IN\Gamma.4
 IN|+X]..]NX
    ```

```

 コ|リ:「:-IN: -.*
    ```
```

 TEMPM=CFTUFMKINDEX2)
 T2MP6=CFE[CNM(INDEX4)
 TEMPT=RFEDFM(IMDEXE2)
 TEMP12=TEMP12+TEMPG*TED(1, 1,K,L,K,N)&TEMP7*TED(2, 1,K,L,M,M)
 TEPP14=TEMP14+TEMPG*TED(1, 2,KL, M, M) TEMP*GED<2, 2, K,L,M,M)
 PED(1, 1,K.L, M, N)=PED(1, 1,K. L, M. N) + TEMP6*1EPP13
 PED(2, 1,K,L,M,N)=FED(2, 1,K,L,M, M)+TEMPT*TEMP13
 PED(1, 2,K,L,N,N)=PED(1, 2,K,L,M,N)+TEMPG*TEMP15
 PED(2, 2,K,L,M.N)=PED(2, F.K.L.M,N)+TEMP7*TEMP15
 00 45,98 I=1,3
 IF(1. EQ. 2)TEMP4=CFTUFMCIMDEX3)
 IF&1.5Q 3)TEMP4=CFTMFH(INDEX1)
 TEMP1E=GTU(1, 1,K,L,M, &!)
 TEMP17=GTU(1,2,K,L,MN
 TEMP12=TEG:12+TEPP4*TEPF16
 TEMP14=TEHT14+TEMP4*TEMP47
 PTU<I,1,K,L,M,N)=FTU<I, 1,K,L,M,N)+TEMP4*TEMP13
 PTU(I, 2,K,L,M,N)=PTU<I, 2,K,L,M, H)+TEMP4*TEMP15
 45e8 CONTIAME
 4589 COHT INME
 4590 CINTIMMLE
 45S1 CINTINME
4592 CONTIRGE
PFHE(KK. LL, PM, (NN)=FF:/S(KKK, LI , MMM, NN)+TTMP12
PFMS(LL,KK, 刿, (MM)=' - (LL,N,N,NH, MM)+TEMM'14
4 5 9 3 ~ C O N T I N U E ~
4594 CONTIMME
4595. CONT ISHE
45%* CONTIMME
C:
C EHO GRIDGFILA MAIH T \& U ON FILM MHIN SQUPRE PHOS YIRE YERSR
C
C
ENO GRID EDGES ON FILM MAIN SQLHFE ELEMENTS fMD YICE vERSA
START INTERSECTION SQUGFES ON FILM MAIN SRMARE ELFPENTS FRDD YICE VERE
REFTVIE)CFTSFH
MG 461E KK=1,4
TEMF-1-1E**K-7.E
m0 4615 MA=1,8
TEMIM:TENH1+%
DO 40.14 LL=1.4
TEMF2-1E+LLL-7. F
0 4E1\Xi NN=1, E
TEMF:2-TEMF2+2
TFMF1S:=0.0
TF.HF12=GFMS(KK: I.L. INH, NNM)
[G 4EJ2 M=1,2
TEMF-T-TEMP1
D0 4011 k= 1.!
TEHW'S= TFHPS+16
7EMF*\&=HFS!TFHF.\)+日.7

```

```

 DN 4rig M=1,:
 TE, \because-N:N-IFHFZ
 [n 4raty 1:1.a
 TFMF:S,TFMF'i+1F
    ```


```

 INIF::I- InH*4+Ji|
 IN|+\therefore\: IN|+\because1+1:
    ```






\section*{BSR 4234}
```

 3*G1S(2,K LoMN)
 PIS(1,K,L,M, N)=P1S(1,K,L,M,N)+TEMPS2*TEMP12
 PIS(2,K,L,M, H)=PIS(2,K,L,M,N)+TEKP33*TENP12
 PIS(3,K,L,M,N)=PIS(3,KLLM,N)+TEMP31*TEMP12
 4609 CONTIMME
4616 CONTIMME
4 6 1 1 ~ C O N T I P M E ~
4612 CONTIMME
PFNS<KK LL, NHL NN)=PFFHS(KKK LL. MML, NNO)+TEMP13
4643 CONTIMME
4614 CONTIMNE
4615 CONTIMME

```

```

C
END INTERSECTION SOUPRES ON FILM MAIN SOURRES RMD YICE VERSA
STFRT PLATEAFILM T \& U MN PLRTE/FILM T \& U
STPRT GRID EDGES ON GRID EDGES
REWIRD 18
REPD(19)CFTUTU
RENIKD 19
REPDC21)CFEDED
REWIMD 21
DO 46,36 MH=1,2

```

```

 00 4635 KK=1.4
 TEMP1=TEMP1+10
 IMD1=3*KK+4W-1
 00 4034 MNF1.8
 TEMP2=2*N4-7.5
 D0 403S LL=1.4
 TEMP2=TEMF2+16
 IHD2=15*LL+HN
 TEMF13=0.4
 TEMP2z=0.6
 TEMPIS=0.0
 TEMF43=0.0
 DO 4032 M=1,2
 TEMP3=H1-TENF2
 INMZ=M-IME1
 00 4631 K=1,4
 TEMP:S=TEMFS+16
    ```

```

 IN19-50*1NT(TEMF4)+2915
 INDS=IMOS+3
 INMM=IAES(J-IFS)+1
 00 16ड0 N=1,8
 TEMF5=--\TEMF1+2*N)
 IRG5:N-IMD2
 DO 1629 L = =1,4
 TE.MF5=TFMF5+16
 TEMFO= MRS\TE:IFS\+EA,7
 INFO: INT \TEMFO.S
    ```

```

 INMO=1J&IFRO,IRH:O
 INMG-TWDEE+INN:IG
 INM+XI= INLS:
 TNOEN%-5HWF+116E
    ```




```

 TEMPG=GET (2,1,KL,MM)
 TEMP1Q=GED(2, 2,K,L,M,M)
 TEX4=CFEDED(IPDEX1)
 TEX2=CFEDED(INDEX2)
 TEXB=CFEDED(INDEX3)
 TEX4=CFEDED(INDEX4)
 TEMP13=TEMP13+TEX1*TERP7+TEX2*TENPG*TEX3*TEMPG4TEX4*TEMP1O
 TEPP23=TEMP23+TEX1*TEMPB+TEX2*TEHP7+TEXZ*TEMP10+TEX4*TEMPS
 TEMP33=TEMP33+TEX1*TEMP94TEXZ*TEMP1Q+TEX3*TEMP? TEX4*TEMP&
 TENP43=TEMP43+TEXI*TEMP4O+TEX2*TERPS+TEX3*TEMP8+TEX4*TENPT
 D0 4628 II=1,3
 TEMP53=0. 8
 TEYP14=0.6
 DO 4627 I=1,3
 IF(I. EQ II)GO TO 4617
 IFCI.EQ. 3.OR II. EQ. 3)EO TO 4618
 111=2
 E0 T0 4619
 4617 11I=0
G0 T0 4619
4618 IF(I+II. E0. 4)III=3
IF(I+II.Ea. 5)III=4
4619 1MDEX1=IMDS+583*III
IMDEX2=1MD9+3136*1II
TEMP53=TEMP53+CFTUTU(INDEN\&)*GTU<I, 1,K,L,M, M)+CFTUTU<INDEX2)*GTU<I
2,2,K,L,M,N)
TENFF14=TEMP14+CFTUTUKINDEX2)*GTU(I,1,K,L,M, N)+CFTUTUKIMDEX1)*GTUKI
3,2,K,L,M,N)
4 6 2 7 ~ C O N T I P M E ~
PTU(1I, 1, KK, LL, MMA, NN)=PTU(I I, 1, KK, LL, MM, PMN) + TEMPGS3

```

```

4628 CONTIMLE
4629 cONTJM茾
4638 CONTINME
4631 COWTIPME
4632 CUNTIHWE
FEO(1, 1,KK,LL,MM, NN\)=FED(1, 1,KK,LL, MM, MN) +TEMP1S
PED(1, 2,KK, LL, MA, MN)=FE[$1, 2,KK,LL, MM, NNN)+TEMP2S
```


```
 4633 CONTIIWHE
 4034 CONTJNLIE
 4035 CUNT INHE
 4ESE CONTINME
C
C EIK PLATEIFILMT & U ON PLATE/FILM T & U
C EHO GRID EOGES OH GRID EDGES
C STPRT EONES OH IHTEPSENTION SOUAFES FN[:ICE VEFES
 REFD\2Z)CFEDIS
 DO 40.44 I.L=1.4
 [0 40%< NH=1,2
 TEMFL=PN-1E*LL+7.5
 TEMF2=1. 5-4*LL-2*1NN
 DO 4EE2 KK=1.
 [O MES1 MM=1. .
 TFMF3: 1. 5-4*KK-2*N!
 TEMF\cdot1=MM-15-kN+7.5
```

```
 TEHFO4=GIS(G, k;: LL, MH, WN)
```

```
 TH1\becauseL品白
 TF!S\4-19.a
 IFIS!⿱一𫝀口19
```
```
 TEMPG=TEMP1
 DO 4602 N=1,8
 TEMPG=TEMPG-2
 TEMP4=TEMP4-2
 TENP7=TEMP2
 TבMP8=TEMP3
 03 4679 K=1,4
 TEMP7=TEMP7+4
 TEMPQ=1בrPe+4
 DO 4678 L=1,4
 TEMP9=TEMP6+16*L
 TEMP10=TEMP4+16*L
 TEMP9=PB5(TEMP9)-0. 3
 IMDIE14*IMT(TEMP9)
 TEMP10=fi8S(TEMP18)-0. 3
 IND2=14*INT(TEMP18)
 D0 4677 M=1,2
 TEMP11=TEMP7+M
 TEMP14=TEMP8+M
 TEMP11=RBS(TEPP11)+0.7
 IPD3=1NT(TEMP11)
 TEMP14=PES(TEMP14)+0.7
 IND4=1NT (TEMF14)
 INDEX1=IND1+IMO4
 IMDEX2=1RDEX1+784
 INDEXS=1MD2+IPNO3
 IHDEX4=1MDEX3+784
 IHDEX5=INDEX1+1568
 IHDEXG=1. DEX1+2352
 INDEXY=1NDEX3+1568
 INDEXE=1MDEX3+2352
 TEX1=CFEDIS(INDEX1)
 TEXC2=CFEDIS(IHDEX2)
 TEX3=CFEDIS(INDEX3)
 TEX4=CFEDIS(11HDEX4)
 TEXS=CFEDIS(INDEXS)
 TEX6=CFEDIS\INUEX6)
 TEX7=CFEDIS(INDEX7)
 TEX8=CFEDIS《INDEXB)
 TCED1=GED(1, 1,K,L,M,M)
 TGED2=GED(2,1,K,L,M,M)
 TGED3=GED(1, 2,K,L,M,N)
 T3ED4=GED(2, 2, K,L, Hi,N)
 TP1S12=TFIS12+TEX1*TGED1+TEX2*TGED2+TEX3*TGED3+TEX4*TCED4
 TP1S34=TPIS34+TEX2*TGEL1+TEX1*TGEE&+TEX4*TGED3+TEXZ*TGEL4
 TPIS5:=TPISG+TEX5*TGE[1+TEX6*TGED2+TEX7*TGEDS+TEX8*TGED4
 PED(1, 1,K,L,M, N)=FED(1,1,K,L,M,N)+TEX1*TEMP12+TEX2*TEMP34+TEXS*TEM
 2P5
 PED(2,1,K,L,M,M)=PED(2,1,K,L,M,M)+TEX2*TEMP12+TEX1*TEMP34+TEXE*TEM
3P5
 PED<1, 2,K,L,M,N)=FED<1,2,K,L,M,N\rangle+TEX3*TENP12+TEX4*TEMP34+TEX7*TEM
4P5
 PED(2, 2,K,L,M,N)=FED(2, 2,K,L,M,N)+TEX4*TEMF12+TEXS*TEMP24+TENS*TEM
5PS
4677 CONTTMUE
4078 CONTIINUE
4679 CONTIMAF
4680 CONTIMUE
 FIS(1, KK,I.L,MM, NN)=FIS(1,KK,I.I, INM, NNJ)+TFIS12
 PIS(2,KK,IL, NM,NN)=PIS(2,KK,LL,MM,NN)+TFPIS54
 PIS(3, KK.LL,MM, NN)=F'IS($,KK,L.I,MMM, NHN+TFIS5
4 6 8 1 ~ C O N T I N U F ~
4%E? CONTINUE
4%N3 CONTINUF
4084 COWNTINIE
C
```
REMIND 22
RERD(23)CFEDTU
D0 4783 LL=1. 4
TEMP1=7. 5-16献
D0 4762 M \(N=1.8$
$1 \mathrm{NDI}=-(15 * 4+\mathrm{HW})$
TEMP2-TEMP1-2*N
004701 MMF1, 2
TEMP3=MM+7. 5
TEMP4=1. 5-2*4M
DO $4700 K K=1,4$
TEMP3=TEMP3-16
TERP4=TEMP4-4
DO $4699 \mathrm{~N}=1,8$
IMD2 $=$ IMDI +N
TEMP5=TEMF3-2*N
DO $4698 \mathrm{~L}=1,4$
IMOZ $=1 M^{2}{ }^{2+15}$
TEMP5=TEMPS +16
``````
TEMPR=ARS (TEMPS) + 7
IHO6 $=1$ NT \langle TEMPS $)+2908$
DO $4697 \mathrm{M}=1.2$
``````
TEMP8:TEHF4 $4+\mathrm{M}$
00 4690 $K=1.4$
TEIMF7:TEMP7+16
TEMPR=TEMPE+4
TEMP9:-ABS(TE14F7)-6. 3
INDG 5 5**INT (TEMP9)
TEMF1Q=AES(TEMPR)+0. 7
IHO1G:INT (TEMP1G)
INDEXI $=$ IMLE $E$ INOTO
INOEX2=1 HDEX1+742
I HOEXS $=1$ MDEX $1+148.4$
INOFX4= 1 NOEX $1+2226$
``` ```
1 HDEXT $=$ IMDEX5 $5+6272$
INDEXE:INDEXT +9468
TEX1: CFEDTU(INOEXI)
TEXE=CFE[TUG IMDEX2)
TEXS=CFEDTUKINDEXZ)
TE:K4=EFEDTUGINDEX4)
TEX5:CFELTUCINSEXS)
TEXE CFFTVTUC IHDEXG)
TEXT=CFEDTU(INAEXT)
TEXS:CFFDTUC INOEXS;
D0 40日, II=1.3
``````
TEMP: $\mathrm{E}=\mathrm{a}$
``````
TFIIF 15 : 14 is
[0] $40.91 \mathrm{I}-1 . \mathrm{x}^{\circ}$
``````
IFCII. EO. 2 )GO TO ximes
IFEIL FES SoGin TO 4ese.
```   ``` inf 10 4rat
```

## BSR 4234

```
4 6 8 5
```



``` TEMP15＝TEMP15＋TEX6＊GED \((1,1, K, L, M, M)+T E X 2 * C E D\langle 1,2, K L, M, M)\) PED〈I，1，KL，M N＝\(=P E D\langle 1,1, K, L, M . N\rangle+T E X 2 * T E M P 12+T E X 6 * T E M P 14\) \(P E D(1,2, K L, M, N=P E D(1,2, K, L, M, N+T E X 6 * T E M P 12+T E X 2 * T E M P 14\) 60 TO 4694
13＝TEMP13＋TEX3＊GED（I，1，K，L，M，N）＋TEX7＊GED（1，2，K，L，H，N） TENP15＝TENP15＋TEX7＊EED（I，1，K，L，H，N）＋TEX3＊GED（I，2，K，L，M，N） \(P E D(I, 1, K L, M, M)=P E D(1,1, K, L, M, N)+T E X 3 * T E M P 12+T E X 7 * T E M P 14\) PED（T，2，K，L，M，N）＝PED（I，2，K，L，M，N）＋TEXP＊TEMP12＋TEX3＊TEMP14 CO ： 4694
IF i．EQ．1）E0 TO 4690
IFK\＆I．EQ．3）CO TO 4691
TEMP13＝TEMP13＋TEX1＊GED（I，1，K，L，M，H）＋TEXS＊GED（I，2，K，L，M，N） TEMP15 \(=\) TEMP15＋TEX5＊GED \((1,1, K, L, M, N)+T E X 1 *(G E D(1,2, K, L, M, N)\) PED（I．1，K．L，M．M）＝PED（1，1，K，L，M，M）＋TEX1＊TEMP12＋TEX5＊TEMP14 PED \((1,2, K, L, M, N)=P E D(I, 2, K, L, M, N)+T E X 5 * T E M P 12+T E X 1 * T E M P 14\) 60 TO 4694
4690 TEMP13＝TEMP13＋TEX2＊GED（I，1，K，L，M，N）＋TEX6＊GED（I，2，K，L，M，N） TEMP15＝TEMP15＋TEX6＊GED（1，1，K，L，M，N）＋TEX2＊GED（1，2，K，L，M，M） PED（I，1，K，L，M．N）\(=P E D(I, 1, K, L, M, N)+T E X 2 * T E M P 12+T E X 6 * T E M P 14\) PED（I，2，K，L，M，N）＝PED（I，2，K，L，M，H）＋TEX6＊TEMP12＋TEX2＊TEMP14 GO TO 4694
4691 TEMP13＝TEMP13＋TEX4＊GED（I，L，K，L，M，M）＋TEXB＊GED（I，2，K，L，M，N） TEMP1S＝TEMP－15＋TEX8＊r，\(D(I, 1, K, L, M, M)+T E X 4 * G E D(I, 2, K, L, M, N)\) PED \((1,1, K, L, M, N)=F E D(1,1, K, L, H, N)+T E X 4 * T E M P 12+T E X 8 * T E M P 14\) PED \((I, 2, K, L, M, N)=P E D(I, 2, K, L, M, N)+T E X 3 * T E M F 12+T E X 4 * T E M P 14\) COHT INLE
PTLL《II，1，KK，LL，MM，MN）＝DTU（II，1，KK，LL，MM，NN \()+\) TEMP13 PTU（II，2，KK，LL，MM，PHN）＝PTU（II，2，KK．LL，MHL INM）＋TEMP－15
4695 COHT INUE
4696 COIVTINLE
4697 COWTINLE
4695 COHTINUE
4699 COHT INUF
47 GO COHT INLUE
4761 CONTINUE
47 G2 CONTIMUE
476 S CUNTINLIE
ENI EDGES ON MRIN GRIC，FILM T \＆U FND YICE VERSA
STHRT MAIN GRID，FILM \(T \& 1\) OW INTEREECTION SQUARES RND VICE VERSA
RFWIND \(2 \overline{3}\)
READC24）CFTUIS
DO 4721 LL＝1， 4
TEMP1＝7． \(5-16+L L\)
004720 NPN－1． 2
TEWF2二TEMF1＋NN
INO1：\(-(3+L L+N N)\)
```



```
TEMF \(3=7.5-10 * K K\)
［O 471E MU1，？
TFMF \(4=\) PII + TENF 5
```



```
กก \(4717 \mathrm{~N}=\mathrm{L}, 8\)
TEMF \(=\) TEMF2－2＋N TFIHF6＝TFMF4－ご相 GO 471世゙ L＝1．4 TF！IPTi－TEMF：

IMD3 \(=1401+H\)
INDA=IMD2+1
D0 4714 K=1,4
INDS \(=1 \mathrm{INDS}+3\)
1 PDA \(=1 M D 4+3\)

IMD6=1PBS (IND4)
IND9=IND6+IND7
1ND10=1N05+1+108
D0 4713 II \(=1,3\)
TEMP12=GIS(II.KK, LL, MM, AN)
TEMP13=0. 8
DO \(4712 \quad I=1,3\)
IFCI. EQ. 3. OR. II. EQ. 3)GO TO 4704
1ND11=616
IF (I. EC. II)INDI1=0
GO TO 4785
4764 IMD11 \(=1848\)
IF(I. EQ. II)IND11=0
IFくI+I:. EQ. 4) IMOI1=1232
4705 IMOEX1=1NO9+IND11
IPDE \(22=1\) MD1
TEXI=CFTUIS(INTYEX1)
TEX2=CFTUIS (INOEX2)
TEMF13:-TEAF1S+TEX1*GTUKI, 1, K,L, M, N)+TEX2*GTU(1, 2, K, L, M, N) TU(1, 1,K,L,M, N)=PTL(1, 1, K,L,M, N)+TFX1*TEPF12
TU(1, 2,K,L,M,N)=PTU(1,2,K,L.M, H)+TEX2*TEMP12
471: CONTINUE
FIS(II,KK, LL, NM, NH) \(=P 15(1 I, K K, L L, M H 1, N N)+T E M P 1 \Xi\)
4712 fOHTINUE
4714 GCNTINLEE
47.I. COWTIINE
47. COMTINLE

471 CONTIPNLE
4718 CONTINLE
4719 CONTINUE
4720 CONTIHLE
\(47 \% 1\) CONTINUE
C.
C. FND MFIN GRIDGILM T \& U OM INTEFSECTIOH SOUREES FND VICE VERSA

FFIUIND 2.
FETURN
ENT,
SUBROUTTAE PLEINTETP \(2=X * X+4 * *+Z * Z\)IF（TEMP2．GT．©．16E－3） 00 T0 6092IMAX \(=10\)JMAX \(=10\)\(54 \mathrm{H}=\mathrm{a}\)
IF（R．LT．©．1E－2）IMPX＝1．
IFi日 1 T．日．1E－2）JMAX＝1
TEMP1＝Y＋日．55＊E
TEMPS＝\(\dot{x}+\mathrm{A} .5 * \mathrm{~A}\)
TEMP5＝TEMP3－0．1＊A＊I
DO Gewat \(I=1\) ，I MAX
D0 60EM \(J=1\) ．JMAXTEMP6＝TFMF：1－1＊E＊J
TEMPT－TEMFE＊TEMFE＋TEMPS＊TEMPS＋Z＊Z\(R=\) ERRT（TETAP7）
\(5144=54+4+1, R\)
GOMA CCHTINLEGQNI CONTINUEPOTL＝（5LM＋E S9877E16）（（IMAX＊JPMX）co TO 6MOK
60x TEMP2＝SNFTITEMF2
POTL＝Ø．EYETTE18／TEMF2
GQAE RETURIEND

\section*{BSR 4234}
```

            IFCK. EQ. 1)MMAN=8
            DO 2ROT M=MMM1N, 14
            Y=TEMP2+0. @63175*M
            IND4 =1NOS3+49*M
            00 2006 I=1,2
                Z=0. 0029464*<1-1)
                INDEX=1苜44+2401*I
                CPLL INFLCF<<<,Y,Z,0.0,0.003175,0.0,0.003175,COEFF)
                    CFHH\INDEX)=COEFF
                    CONTINUE
            continue
                cONTINUE
                COHTINUE
    COHTINLE
WRITE(E. 3INÖ)
HR1TE(6, 3004)(CFWHN(I), I=3,9678, 129)
HRITE(12) CFINH
END FILE 12
FLL WIRE ON WIRE INFLUENCE COEFFS, CFWNC %,COHFLETED. TOTAL MU*BER =9E78
START NEXT OH FILM MAIM SQUARE ON WIRE CFMCSWK \. GRID 1, FIRST,GRIO 2.
DO 2015 K=1,4
TEMP1=0. 12921*K-0. 05302225
IMO1=14*K-3745
MMH1N=1
IF <K. EQ. 1\MMIN=8
DO 2014 M=NH11N, 14
x=TEMF:1+6. Gu\175*M
INDZ= IMDSI+M
00 2013 L=1,4
TEMP2=0. 62921*L-0. 65461
IND?=1ND2+?35*L
NM1/N-1
IF(L. EQ. 1)NMIN=8
DO 2G12 M=NM1N.15
Y=TEHF2+G. 603175*N
INO4=1NUS+4FkN
DO 2011 I=1,2
Z=0.0126492-0.0.0.99464*I

```

```

                            CRLLL INFLIGF(%,Y, 2, a, 0, 6. 66\175, 0.003175,0.043175, CUEFF)
                            CFMSFW\INUEX)=CGEFF
                    CONTINIF.
                CONTINUE
                coittinuF
        COITIPME
    20.44 conminuF
    HRITEQE.EMGO
    ```

```

    WRJTFC1O; FFHEFW
    ENT, FIIES 12
    
FII. MAIH SIUAFE FIIM UN WIFFS COMFLETED. TGTAL HLMEEF = 5:94

```

```

    0, 2001 1-1,
    ```

```

        TEMMP2=1 1:4:-% S
        NO 20,00 Mm=1,7
    ```



```

        IF<K. EQ. 1)MMAX=1.
        DO 2019 M=1, NMMPX
        X=TEMPS+6. 027305*M
        TEMPS=TEMP4+M
        TEMPM=ABS(TEMPS)+0.7
        IND1=INT(TEMPS)-5724
        00 2M18 L:=1,4
            TEMP5=0.02921*L-B. 05461
            IND2=INDI+735*L
            MMIN=1.
            IF(L EQ. 1)NMIN=8
            D0 2017 N=NMIN, 15
                Y=TEMPS+6. 603175*N
                INDS=1ND2+49*N
                00 2016 I=1,4
                    Z=0.0
                    IF(I. EQ. 2)Z=0. 0029454
                    IF(I. EQ. 3)Z=0. 0097628
                    IF<I. EQ. 4)Z=0. 0067564
                    INOEX=INDS+259%*I
                    CPLL INFLCF(X, Y, 2, 0, 0,0.0031275,0.003175, 0. 001905, COEFF)
                    CFTUFW(INDEX)=CGEFF
                CONTIBUE
            CONTINIE
            CONTIMLE
                CONTINUE
    CONTINUE
    CONTINUE
GRID SUPFORT STRUCTURE, TOP FIHD LHDERSI[IES, RND EQUIVALENT FILM ELEMENTS OH
WIRES WITH J=JJ, COHFILE ED. CFTUFW人 >. TUTFLL NUNEER =1038S
START NEXT ON CFTUFIUK \FQK J HOT EQLIFL TO IJ
00 2027 L=1,4
TEMP1=0. 022921*L-0.0536225
INDI=14*L+7598
NHIN=1
IF<L. EQ. 1)NHIN=8
DO 202E 1,=NMIIN, 14
X=TEMF1+E. ENS175*N
IND2:INDL+N
DO 2025 K=:1,4
TFMF2=0. 02921+K-n. 055.0G
TFHFK=1 E*K-\&. Fi
||f\#X=%
IF'K. EN, 1)MMA'S=1
[0120.24 M=1, M1F:'
TFPF4=TFMF2+0. 62TE@G**M
TEMPr:-TEMPS+M
10 202%3 N||:1,8

```

```

                        THMFR=TFMFP-2*NN
                        TEMF口=4G*RF:, - FMFG%+@, 7
                        INDS=INDON+INT (TENFE:
                        00 202% I=1,4
                            Z-(1. m
    ```



```

                    Colvr:PH,F
                GUNT INAIF
    20;4
CONT JHMF

```
```

2025 CONTIMUE
2026
2027
CONTINHE
CONTINUE
WRITE<6, 3100)
WRITE(6, 3600) (CFTUFWN(I), I=4, 21364, %9)
MRITE(12) CFTUFW
END FILE 12
C
ALL CFTUFNS ) COMPLETED. NUMRER IN THIS BLOCK = 10976. TOTPL = 21364
STFRT NEXT ON FLATE EDGES ON WIRES WITH J=JJ. CFEDGWK >
DO 2033 K=1,4
TEMP1=0.02921*K-0.05461
TEMPP2=14*K-7. 5
DO 2632 MM=1,7
TEMM:3=TEH1P1-0. 003175*MM
TEMP4=TEHF2-2*MMM
MNAPK=2
IF<K. EQ. 1)PMARX=1
DO 2031 M=1. M1FX
X=TEM4PS+0. 0254*N1
TEMF:5=TEMP4+14
TEMFS=FESS(TEMPS)+E. 7
INO1=IT.T(TEMFS)-5724
DO 2030 L=1,4
TEMP5=@. 62921*L-0. 65461
IND2=1NOI+7SE*L
NMIN=1
IF<L. EQ. 1)NMIN=8
DO 2029 N=NMIN, 15
Y=TEMP5+G, E03175*N
IMDSS=1NT)2+49*N
D0 2628 1=1,2
Z=0}102=464*<I-1
INDEX=INOS+2597*I
CRLL INFLCF(
CFEDGN\INDEW`=CUEFF
CONTINUE
CONTINISE
CONTIRINE
CONTIMUE
CONTINUE
cohtinIf:
C
c PLATE EDGES ON WIRES WITH J=JJ COMPLETEL. NUMREF OF COEFFS = 5194
STGRT WEN' '.\ FLATE EDGFS ON WIFES WITH I NOT EOUAL TO JJ. CFEDIUWCSIGS ON
00 2059 l=1,4
TFMF.1=6. 02921*L_-0. 05202%5
TEMF:=14*L-21.5
NMIN-I.
IF<1. FO. 1 OHMIN-G
DO 203R N=NWIN 14
X=TENIF1+G. nos1>ri*N
TFHFS: TEHFO+N

```

```

        ORIGINAL PAGFI IS
        wn mos% 人--1.4
    ```


```

                DO 2HON NIT 1,8
    ```

```

                    TEHNOM,THNE:I-Z*NN
                ||HFW:%
                IFCN EO.JMAMF:=1
    ```
 DO 2035 M=1. MMAX
 Y=TEMPY5+0. 0254*M
 TEMPT=TEMPG+M
 TEMP7=49*PES(TEMP7)+TENP3
 INO1m=1NT (TEMPT)
 D0 2034 1=1,2
 Z=0, 0029464*(1-1)
 INDEX=1NOLI+2744*I
 CALL INFLCF}\langleX,Y,Z,0.0,0.003175, 0. 0, 0.00317%, COEFF)
 CFEDGW\INUEX)=COEFF
 CONTIMUE
 CONTINUE
 CONTIHUEE
 CONTINBE
 CONT IHLIE
CONTINLE
NFITE(6,310g)
WRITE(E, 3aG0) (CFEDGW〈I), I=2, 19682, 89)
HRITE(12) CFEDGW
END FILE ía
C
FLL FLATE EDGES ON WIRES CGMPLETED. TOTML OF CFEOGNS > IS 10E82
STRRT NEXT ON PLATEAFILN INTERSECTION SQUFPES ON W榇ES. CFRTIWK %
00 2046 K=1,4
 TEMP1=0.02921.*K-0. 01574675
 TEPMP2=14*k-7.5
 MMAX=2
 IF<K. ER. 1)MMFIX=1
 DO 2045 M=1, MMAX
 TEMPS=TEMP1+E.ESTS4S*H
 TEMP4=TEINF2+M
 DO 20xi4 |N=1.7
 X=TEMF3-M. 005175%**14
 TEIAF!}=\mathrm{ TETMF4 - 2*NMM
 TEMFS:=ABS\TEMP5;
 00 2014S L=-1,4
 TEMF6-6. 日2921*L-6. 655EE
 TEMFF=:1E+L.-E.\sigma
 N|4FP:=2
 IF(L. EG. 1)NMNM天=1
 DO 2014% |{=1, NMF'X
 TFHFE=TFMFE+G. MF7.SA5;N
 TENFG=TFMFT+M
 [012041. N|=1, &
 Y: TEMFE-0. 00-17GNPNN
 TFMF1H-TFIMFG-2+1HM
```



```
 INLDL=INT (TFNFIG;-z7E&
 [0] 20.10 I=1,4
 Z=[1.E
 IF(I. ER. こ)で5. 6029**.4
 IFCJ.EC, З)て=0. 010%70ce
```



```
 IWNEX= I WlM, +%7.14.* I
```



```
 LFFFTNQIHHFX'准OEFF
 CONT INLIE
 COHdTINJF
 CuidT 1N|F
 C.CWT:PNF
 C-HdTJPdir
 C「M1:1HH
 - , |\\1/d|
```



## BSR 4234

```
HRITE{6, S000;(CFFFIN{I), I=11, 14976, 129)
HRITE(12) CFFFIN
END FILE 12
C
c
c
C
c
 START NEXT ON CONTRIRUTIONS TO FILM MAIM SQARE ELEMENTS. NOTE THAT CONTRIEU
 TIONS FROM WIFES FF:E THE SFINE FSS FILM ELEMENTS TO WIRES
 STGET OF FILM MAIN SQUARE ON FILM MAIN SULIARE ' CFFMFM,
00 2051 K:=1,4
 T1=0.0
 IF(K. NE. 1)Tj=1
 TEMF1=01. Q292!*k-0.054 I1
 IN[1=15*K-1241
 MMIH=1
 TFCK. EQ. LOHHIN=8
 DO 20E`T M=|MIN. 15
 T2=T1
 IF\M. NE. 8.\T2=1
 X=TEMF1+E. GW玉175*M
 INO2=INUI+M
 0G 2045 L=1.4
 :3=「2
 IF(1.. NE. 1)TE=1
 TEMF`=0.02Gく1*L-0. 05461
 INDS=1NO2+755*L
 NMIIV=1
 IF\L. ER. 1.)NMIH=8
 OO 204e N=r:VIN, 15
 T4=T3
 IF(N.NE. B)T4=1
 Y=TEHF2+0.0031:5*N
 IWOF%=J|LS+5S*N
 IF(T4. L.T. G. S\Ma TO 2%47
 TEMFS=0. 6@\175
 GFLLL INFLEF\X,Y,0.6, TE!FF3, TEMF'S, TEMF`, TFHFZ, CUEFF\
 CFF(AFMOIM[PFO =COEFF
 GO TG 2Gre
```



```
 C:Or'T11AMF
 CONT IN|UE
 COHDT INHIF
 COR|TINMF
 WFITECES SIMIT;
```



```
 WEJTES:L?) & FFMFM
 ENO FILF 1%
C
```










```
 [O] ciFIE M=1, M|F%
```



```
 TEHF4-SFHFZ+1
 D(1):4%%N
```

```
 *=TEMP3-A 003175**M
 TEMP5=TEMP4-2*+M
 TEMP5=ABS(TEMPS)+Q. }
 INDA=1NT(TEMPS)-4:56
 D0 2054 L=1,4
 TENPS=0. 02921*L-0. 05461 **
 IND2=1NCri+840mL
 MMIN=1
 IFCL. EQ. 1)NMIN=8
 DO 2053 N=NMIH. 15
 v=TEMF5+A."-175*N
 -DS=1ML2- = +N
 00 2052 I=1.3
 <-0.0
 IF(1. EQ. 2)Z=0. G057(028
 IF<I. EQ. 3)Z=0. 0067564
 INOEX=1NOS+2968*I
 TEMP6=0. 003175
 CPHL INFLCFF X, Y, Z, TEMPG, TEMPE, TEMPG, 0. 001905, COEFF)
 CFTUFM(INOEX)=COEFF
```



```
 CONTIMLE
 CONTINME
 continue
 NTINME
CONTINHE
 HRITE(6, 3100)
 WRITE(6, 3440) (CFT(IFM(1), I=4, 89014, 89)
 HRITEG12) CFTUFIM
 END FILE 12
c
C GRID SUFPORT STRUCTURE, TOP FHHO UNDERSIDESS AHD EQUIVALENT FILM ELEMENTS ON
C
C
 2052
 2053
 2054
 2055
 2055
 2057
 FILM PHAIN SCHAFE ELEMENTS COHFLETED. TOTGL CFTUFHS }>=890
 STPRT HEXY GRID EIGGES ON FILM MAIN SGAIAFE ELEMENTS. CFFDFFMC,
 00 206.3 K=1,4
 TEHP1=0. 60921*K-0. 053022S
 TEMP2=16*K-8.5
 NHAFX=Z
 IFK. EQ. 1)MMAK=1
 DO 20E2 M=1, MMHX
 TEMFS=TEHP1+E. Q254*M
 TEMP4=TEFHFZ+N
 DO zmb1. MM=1,8
 X=TEMFS-E. GGZ175*MM
 TEMF5=TEMF4-2*FMM
 TEMPS=ABS(TEMF5)+0.7
 INK\=INT<TFMF5
 00 2060 L=1,4
 TEMF5=0. Q20921*L-0. 054F%
 IND2=1NO1+64G*L
 NHTJN=1.
 IF(I. EO. 1)NMIN=&
 [0 2055 N=NM4N, 15
 Y=TFMFF+D. 60, LP5+N
 INTS=I WIN;+5R;*N
 00, Ma,& I=1,2
 z-a.609740e
 IFCI HO%%-G bmozer,4
```



```
 TEHFO, is Qucliz:
```




```
 (con) IM|:
OMCH
 CONTINJI.
```

BSR 4234

```
 2060 CONTIMME
 2062 CONTINPE
2063 CONTIMME
 HRITEi6, 3100)
 MRITE(6, 3000) (CFEDFM(I), I=11, 5936,'r9)
 WFITE(12) CFEDFM
 EMD FILE 12
C
 GRID EDGES ON FILM MRIN SQUPRE ELEMENTS COMPLETED. TOTAL CFEDFMS >=5936
 STPFR MEXT INTERSECTION SQUPRES ON FILH MPIN SQUPRE ELENENTS. CFISFMS ,
 DO 2078 K=1,4
 TEMP1=0.02921*K-0. 05588
 TEMP2=16*K-8.5
 M*XX=2
 IF<K. EQ. 1)AMFTX=1
 DO 20069 M=1. PH+RX
 TEHP3=TENP1+0. 6273405*M
 TEMP4=TEPIP2+N
 [0 2068 PH1=1.8
 X=TEMFS-0. Qu@S175*MM
 TEHPS=TEMF:I-E*PMM
 TEMPS=AFS(TEMFS)+0. }
 INOL=INTCTEMPS)
 D0 2067 L=1,4
 TEMP5-0. 02921*L-0. 05588
 TEMFG=16*I-S 5
 NMAMX=2
 IFCL. EQ. 1)NMAX:=1
 DO zÜEG N=1, NMAX
 TEPMPT=TEMF5+E. 0127305*N
 TEMFS=TEMFE+N
 D0 2065 NN=1. 5
 Y=TEMFT-0. GES.175*NN
 TEMFG=TEMF:-2*NN
 TEMFG=HESQTENFG`-0. 3
 IHN2=INO1+56%:INT(TEMF9)
 00 2004 I=1.3
 2=0.9
 IFII. EO. O)Z=(1.0497,2%
 IF\I. F.G 3'Z=日. Gmer5e4
```



```
 TEMF:G=9, 60\175
 TFMFIG=0, EmtGMS
 CHLI. INFLCFGS'\,Z TEMPG, TEMEG, TEMF10, TEMF1G, GOEFF:
 CFISFMCIMDF:O-COEFF
2GE.4 COHTIPME
zanes lONTINUF
Egne- cONTIRHUE
2067 CONTJNUE:
Eñ:% CONTIMUF
2009 CONTINWUF
2070 CONT IMUE
 HNITF(%, \1:4%)
```



```
 MFITEGI2' CFJSFM
 EMT FILE L?
C


```

    10 2HTE k=1,4
    T1:9.0
    ```
```

    IF(K. NE. 1)\11=1
    TEMP1=0.02921**-0.08382
    IHD1 =3*K-840
    MMIN=1
    IF(K. EQ. 1)PMINN=2
    DO 2075 M=WH1M 3
        T2=T1
        IFIM NE. 2)T2=1
        X=TEMP1+0.027305*M
        IMD2=1ND1+M
        DO 2074 L=1,4
        T3=72
        1F<L. NE. 1)T3=1
        TEMP2=0. 02921*L -0.05461
        1MD3=1ND2+165*L
        MMIN=1
        IF(L. EQ. 1)NMIN=8
        DO 2073 N=N#1IN 15
            T4=T3
            1F(N. NE. 8)T4=1
            Y=TEI4P2+0. 08-175*N
            INDM4=INOS+11*NN
            00 2072 I=1,5
                Z=a.0
                    IF<I. ER. 2)Z=0. 0001524
                    IF(I. EQ. 3)Z=E. 6029464
                    IF<I. EQ. 4)Z=N. 0097028
                    IF<I. ER. 5)Z=61. MOK7564
                    INHFX=IMD4+583*I
                    IF(T4+1. LT. 1. 5)G0 T0 2071
                    TEMFS=0. 001905
                    TEMP4=0. 0.E17%
                    C.FLLL IMFLCF(X,Y, Z, TEMF`, TEMP4, TEMP4, TEMP3, COEFF)
                    CFTUTU(INDESN=COEFF
                    G0 TO 2072
                CFTUTU\INDEX)=0.0
            COHTIPHUE
        CONTINLIE
        CCOHT INLIE
    COHT INLIE
    OHT INLLE
    C
C ML.S J=\J FLATE/FILM T FND UI ON FLATE/FJLM T FND U COMPLETED. NUMEER = 2915
c
c
c
START HEST ON EAME FOR I HOT EQUAL TG JJ. CFTUTU< )
1012083 1.%1,4
TEMP1:=0. n29%1*L-6. 0n254
TEMP:2=16*L-E.5
M||f(%)=2
IF\I.. EN : \MMMAX=1
no 2n8e m|=1. N|MM人

```

```

        TFIF4: TEMF?+性
        F0 20%1 1& 1.E
            X=TEMF
            TFWFT:=TFPMF4-5*N
            TEMF5:=HFS\TEMF「;)+0.7
            IN|!1- JNT:TEMFr:,-221
    ```



```

                    |||fir: ?
                    IFCK, FR! ISNIFN=1
                    DO EOTG M.1.NMNO
    ```
```

        ItRMP=1trmy+G. Wi< Scoswh
        TEMP8=TEMP6+M
        DO 2078 NM=1.8
    Y=TEMP7-0. 003: 75*AN
    TEMP9=TEMP8-2*FN
    TEMP9xPRS(TEMP9)-0. 3.
    IND2=1NOH+56*INT(TEHP9)
    D0 2077 I=1,5
        Z=a.a
        IF(I. EQ. 2)Z=0. 0061524
        IF(I. ER. 3)Z=0.0029464
        IF(I. EQ. 4)Z=0. 0097028
        IF<I. ER. 5)Z=0. 00075544
        INDEX=IND2+3136*I
        TEPP9=0. 001965
        TEMP10m=0.603175
        CPML INFLCF <K Y, Z, TEMP9, TENF10, TEMP9, TEMP10, COEFF)
            CFTUTU(INOEX)=COEFF
                    continue
    CONTIMM
MRITE<6, 3100)
WRITE(6, 3600)(CFTUTU(I), I=3, 18595, 83)
HFITE(12) CFTUTU
END FILE 12
c
C PAL PLATE/FILM T AND U ON PLATE/FILM T ANI, U COMPLETEL. FOR I NOT EQUPL TO
C JJ MMPER IS 15680. WITH 2915 FOR J=JJ TOTFL CFTUTUK > =18595
C START NEXT ON INTERSECTION SQUARES ON INTERSECTIGN EQURRES. CFISIS()
DO 2089 K=1,4
T1=0.0
IF<K. NE. 1)T1=1
TEHF1=0. 0.2921*K-0. 08382
INDI=こ*K-180
MMIN=J
IF(K. EQ. 1)MMIM=2
[0 2aEs ,I=MMIN. 3
T2=T1
IF(H. NE. こ)T2=:1
X=TEMF1+6. GR7SG5*N
INDZ-INI,I+M
DO 2GR% L=1.4
TS=T?
IF\I. NE. 1)TS=1
TEMF?=0. 0129%1*L-9.05382
JNTS= JNDO+ST*L.
NMIN:I
IF\l. FQ 1)NHITJ=?
DCOZOEF N=NHJN,S
74-7.5
IFSN. NF. 2)T4=:1

```

```

                1N|A: J|NO:+J1+N
                [00 zar: ]-1,5
                    Z=E.6
                    IFEI. EQ, 2)T=0. 004lE%4
    ```

```

                    IF:I.FQ. 4D:=0. 609%me
    ```


\section*{IFCT4＋I．LT．1．5） 60 TO 2084}

\section*{TEMP3＝9． 001905}

CPLL IAFLCF〈X，Y，Z，TEMP3，TEMP3，TEMPミ，T－MP3，COEFF）
CFISIS（1MEX）＝COEFF
60 TO 2085

\section*{2094 \\ 2085 \\ 20856 \\ 2287 \\ 2088 \\ 2089}

CFISIS（IHDEX）\(=0.0\)
CONTIAME
CONTIMUE
CONTIMME
CONT IMLIE
COHTIAME
MRITE（6，उ1（na）
HRITE（6，3e6a）（CFISIS（I），I＝5，605，12）
WRITE（12）CFISIS
END FILE 12
INTERSECTION SEWPR－ES ONINTERSECTION SQUARES COMPLETED．TOTPR CFISISC＞＝6日̄
START MEXT ON GRIG，EDGES ON GRID EDGES CFEDED ）\(J=J J\) FIRST
D0 \(2095 k=1.4\)
T1＝0． 6
IF（K．NE．1）T1 \(=1\)
TEFF1＝0． \(62921 * k-0.18001\)
IND1 \(=\) S＊K－840
M－IIN＝1
IF〔K．EQ． 1 ）MMIM \(=2\)
DO \(2894 \mathrm{M}=1 \mathrm{HIN} \mathrm{N}_{3} \mathrm{~S}\) T2＝T1
IF（HI．NE．2） \(12=1\)
\(X=\) TEMP1＋e． \(025.54 * 1\)
I \(\mathrm{HD} 2=1 \mathrm{H} / \mathrm{D}_{1}+\mathrm{H}\)
DO 249s \(\mathrm{L}=1.4\) \(T \mathbf{T}=\mathrm{T}\) ？
IFCI．NE． 1 ）T3＝1
TEMP \(2=0.02921 * \mathrm{~L}-0.05461\)
INDS＝1M32＋165＊L NM1／V＝1
IFCL．EQ． 1 ；NHIN＝E DO \(2092 \mathrm{~N}=\mathrm{NHIN} \cdot 15\)
\(\mathrm{T} 4=\mathrm{T} 3\)
IF（N．NE SOT4：1
\(Y=T F H P 2+9, ~ M E S 175 * N\)

00 \(2691 \quad \mathrm{I}=1,2\)
\(z=0.0\)
JFil．EQ．2）Z＝4．G02946．4
INDEX－INT4＋5E3＊I
IF（T4＋J．LT．1．5pga to 2090
 CFFDEDCIURF：＝C．OEFF
gn Tn Firl．

CONTJHAF rontiblif
comp Inde．
Cont jumf


```

    M***FX=2
    IF(L. EQ. 1)PNHMAXX=1
    DO 3001 MN4=1, NMEMFX
    TEMP3=TEMP1-0. 0254**M
    TENP4=TEMP2+MMH
    D0 210a N=1,8
        X=TEMP3+0.603175*N
        TENPS=TEMP4-2*N
        TEMPS=AES{TEMPS\+0. ?
        INMI=INT(TEMFSS-1970
        C0 2699 K=1,4
            TEMP5=0.02921*K-0.0530225
            TE\4P6=16**K-8.5
            MMAX=2
            IF(K. EQ. 1)MMAX=1
            DO 2658 M=1, MHMAX
                TEMFT=TEMP5+0. M254*M
                TEMPE=TEPMFG+N
                D0 2097 NN=1,8
                    Y=TEMF7-0. 603175*NN
                    TEMP9=TEMF8-2**NN
    ```

```

                    INDC=INOI+56*INT&TEMFG)
                    00 2056 I=1,2
                    Z=7.6
                            IF(I. EQ. 2)Z=0. (1029464
                            IHLUEX=IN[2+S130*I
                            CFLLL INFLCF(X, Y, Z. 0. 0, 0. 00\175, 0. 0, 0. 003175, COEFF)
                    CFEDED(INOEX)=COEFF
                    COHTINULE
                CONTIMUE
                CCNTINME
        CONTTINLF
    CONTIMME
    COHNT IPNG
    COMT INLE
|\&FITESE, SIEG%

```

```

|FTTEST2) GFEIFF[
ENT FILE 12
i
2056
2097
2098
2095
2105
3044
30n2
3n92
WFITE:O-
C FLL FIMES OM ELGFS EOMFIETFIS. TOTAL = 11E6+E.272=7438
C STGET NFXT GN FINES OW INTERGECTION SONARFS CFEDISS;
C
[00 <00% k=: 1,

```

```

    TEMF=2=4*K-S!
    MWHAC= "
    IFCF: FR J \H|NO: =-1
    ```


```

        TFMr-4-If HF*+H
    ```



```

            t0 Smbar 1: L. & 
    ```


```

        NMMAX=2
        IFCL. EQ. 1) NMHMAX=1
        DO 3605 NN=1, NMMPX
            TEMP7=TERMP5-0. 027305*NN
            TEMPB=TEHPETNN
            DO 3004 N=1,8
            Y=TE\HP7+Q. 603175:N
            TEMP9=TEMP8-2*N
            TEMP9=FRBS(TEMP9)-0. }
            IND2=INO1+14*INT\TEMPG)
            D0 3003 I=1,4
                    z=0. 00M0762
                    IF(I.ER.2)Z=0.0029464
                    IF(I. EQ. S) Z=0. B497028
                    IF<I. EQ. 4)Z=0.0065564
                    INDEX=IND2+784*I
                    TEMPS=0.001905
                    CPLL INFLCFFX, Y, Z, TEMP9, TEMP9, 0. 003175, 0. 0, COEFF)
                    CFEDIS\INHEX;=COEFF
                CONTINUE
            COHTINUE
                cONT INUE
                cONTINUE
            CONTINUE
        cohtimue
    COMTINIEE
WRITE(E, 3100)
WRITE(6, 30(10)(CFEDIS(I), I=4, 3136, 87)
WRITE(12) CFFDIS
END FILE 12
EDGES ON INTERSECTION SOUARES COMPLETED. TOTAL CFEDIS( ) =3136
START NEXT ON EDGES ON SUPPGRT STRUCTUREJFILM T \& U CFEDTUK >
FOR J=JJ
D0 3015 K=1,4
TEIP:L=a. 02921**-6. 02E.3525
TEMF:Z=4*K-2.5
MAF:
IFOK. FR. 1)NMFX=1
D0 3014 H=1, MMAX:
TFHFS-TFHM:1+0.0.054*|N
TEMP4-TFIMF:2+M
DO SadS |ill=:2.2
x=TFMFS-9. 0.273n5*MH

```

```

            TEMFE=AESCTFIFO%+G.?
            INT:1-INT:TEIHF:`-1964
            00 3unl2 L=1,4
                TFMF'5:0. 0%G2:1+1 -6. 054E1
                INr, =- INT%1+210+L
                N4JPS=1
                    IF(L. EQ. 1)NMIN-S
                    DO 3011. N=1MMJN.15
                Y=TFMF5+0. GQ3175*N
                INTM=INT:+14*N
                [0) 30101 }1=1.
                    Z=0. 64194762
    ```



```

                    IHOEN- JWF:+74:*1
                    THNPG=4, amz1:5
    ```

```

    3018
    3 0 1 1
    3012
    3013
    3014
    3015
    c
c
C
3016
3017
301%
3015
3029
392:1
3n2% CONTJNUE
TEMP1=0.02921*LL-0.00254
TFMP2=16*L-8.5
MMIMP=2
IF<I. EQ. 1)MAMMXX=1
DO Sü1 |AN=1, FIMMPX
TEMP3=TEMF1-0. 027305*MM
TEMP4=TEIAP2+1/11
DO 302G N=1.8
X=TEFHP3+1.003175*N
TEMP5=TEMP4-2*N
TEMPS=ARS(TEMFS)+0.7
IND1=-INT (TFMP5)-168
DO 3a19 K=1,4
TEMF5=0. 02921*K-01.0530225
TEMPE-16*K-8. 5
MIHFX=2
IF<K. EQ. 1)MHRK=1
DO 3G1\& M=1, M4APX
TEMP7=TEMPF5+6.025A*N4
TEMF8=TEMPG+M
D0 3017 NHN=1.8
Y=TEMFT-6. 003175*NN.
TEMFG=TEMPE-2*NNN
TEMP9=ARS(TEHFS)-0. 3
INLE=IN[1+56*INT(TEMPS)
DO 3016 I=1,4
z=0.0000075?
IF(I. EQ. 2)Z=0. M029464
JF\I. ER. 3)Z=6. nagraze
IF(I. EQ. 4)7=0. n@E.7504
IMDFX=SND2+3136*1
TEMPG=0. añ175
CFII_ INFLCF(X, Y, z, 0. 0.1905, TEMF9, 0. (1, TEMP9, COEFF)
CFEDTU(IMIDEX)=C.OEFF
CONTIPUUE
continue
cont IMUE
CONTINLIE
CONTJNUE
CONTINLIF
HFITF(E, 3196)
WRITF(G, 3GGG)(CFFDTU\I),I=2,15542, 235)
WKITF:12) GFFDTU
END FJLEE 1?
C STFRT NEXT OW SIFPORT STEIGTURF/FILMT T GNU UI ON INTEFSECTION SRURRES.
C CFTIISS:
i

```

\section*{CFEDTUKINTEX）\(=\) COEFF}

\section*{CONTINUE}
```

CONTIME
CONTIMRE CONTIMUE CONTIMUE
CONTIMUE
EDGES ON SUPPORT STRUCTURE／FILA T \＆U FOR $J=J J$ COMPLETED．MUMEER $=2968$
START NEXT ON SAHE FOR J NOT EQUAL TO JJ．CFEDTU（2969 ON ）
DO 3 a22 L＝1， 4
TEMP1 $=0.02921 * L-0.00254$
－1PR＝16＊L－8． 5
IF（L．EQ．1）$M A M A X=1$

```

```

TEMP3＝TEMP1－6． $127305 *$ MM
TEMP4＝TEIAPZ＋1／1

```

```

TEMP5＝TEHP4－2＊N
TEMPSSARS（TEMFS）+0.7
DO $3619 K=1,4$
TEMF5＝0．02921＊K－0． 0530225
TEMPE＝16＊k－8． 5
MITAX $=2$
IFKK．ER． 1 ）MHAK $=1$
D0 3 G18 $\mathrm{N}=1$ ，MHAX

```

```

TEMFB＝TEMPG＋M
3A17 $\quad A N=1,8$
$Y=T E M F 7-6.003175 * N 1$
TEMPY＝ARS（TEHFS）－D． 3
INLた $=1 \mathrm{NLD} 1+56 *$ INT（TEMP9）
$030161=1,4$
IF（I．EQ．2） $2=01.1029464$

```


```

IMDFX＝ $\mathrm{TNDC2}+3126 * 1$
TEMP9＝0．AME175
CFEDTU（INDEX）$=$ C．OEFF
CONTIRUE
CONTIALIE
CONTINU
CONT JNUE
COHTINLIF
WFITF（E，इ1A
WRITF（6，3日G1）（CFFRTU《I），$I=2,15512,235$ ）
END FJLE 1？

```

```

START NEXT CW SIFPDRT STEUGTURFAFILM T GNU $I I$ ON INTEFSECTION SQURRES．
CFTMSK？
$10202 \pi+1.1$

```


BSR 4234
```

        IMD1=3*K-620
        MMIN=1
        IFCK. EQ. 12MMIN=2
        DO 3827 M=N*IIN, 3
        X=TEMP1+0. 027305**M
        IND2=IND1+M
        DO 3026 L=1,4
        TEMP2=0.62921*L-0. 00254
        TEMPY = =16*L-8. 5
        NH44RX=2
        IF<L. EQ. 1 ) NMMMAX=1
        DO 3625 NM=1, NNMAXX
            TEMF4=TEMP2-? #
            TEMPS=TEHF?.NN
                DO 3824 N: L, }
                    Y=TEMP, +0. EN23175*N
                    TEMPE= TEMP5-2**H
                    TEMF6: AES<TEMP6)-0. 3
                    IND3= ND2+11*INT(TEMP6)
                    DO 30.3 1 1=1.4
                    Z=00
                    IF(1 EQ. 2)Z =0.0029464
                    IF(I. 'Q. 3)Z=0. 9097028
                    IF(I. E.. 4)Z=0. QG157564
                    INDEX=INDS+616*I
                    TEMF7=9. 001905
                    CRIL INFLCF(X,Y,Z, TEMPT, TEMP7, 0. 003175, TEMPY, COEFF)
                    CFTUIS(INDEX)=COEFF
                    CONTINUE
                CONTINUE
            CONTINLIE
        COHTINUE
        COHTINUE
    CONTINUE
HRITE<6, 31(Ga)
WFITE(6, 3600)(CFTUIS(1), I=4, 2464,41)
WRITE(1%) CFTUIS
FND FILF 12
C FIL SUPPGRT STRUUCTURE/FILM T FND U ON INTERSECTION SQUARES. COMPLETED.
C TOTAL CFTUIS: >=2.4E4
C FILL IPFLINENCE COEFFICIFNTS CFLCUU_ATED. TOTAL. NUMAEER=132?Q1
3AMG FORMATC11(2% F16. 3);
3196 FORIMAT<"G", NEN IJATA SET"O
EW[,

```

ORIGINAL PAGE IS OR POOR QUALITY.
```

    SUBROUTINE IMFLCF(X, H,Z,P,B,S,T,COEFF)
    TEMP2 = Z*Z
    TEPPP1=X* X+Y*Y+TENP2
    IF(TEMP1. GT. 0. 16E-3)E0 TO 1004
    IMFX:=10
    JMFXX=10
    KMPXX=10
    SUM=0. a
    IF(F. LT. 0. 1E-2)IMANX=1
    IF(B.LT. Q. 1E-2)JMPX=1
    IF\T. LT. 0. 1E-2)KPMPX=1
    TEMP8=T
    TEMP9=0.0
    IF(S.GT. 0. 1E-2)GO TO 1000
    TEMP&=0.0.
    TEMPS=T
    KMAX=1
    1000 TEMP1=4+0. 55*B-0. 5*S
TEMP3=x+G. 55*A-0. 55*TEPMP8+0. 5*TEMP9
DO 1003 K=1, KMAX
TEMP4=TEMPZ+Q. 1*K*TEMPS
[0 1002 I=1, I IFX
TEHPS=(TEMF4-0.1*A*I)
D0 1001 J=1, JMAX
TEMPG=TEMF1-6.1*B*J
TEMP7=TEMPG*TEMPG+TEMPT
R1=5QRT (TEPPT)
TEMPG=TEMPG+S
TEMPT=TEMPTS-TEHPS
TEMP7=TEMPT*TEMPT+TEPPE*TEMPG+TEMPZ
RZ:=SGRT(TEMF7)
TEMP7=5+TE!NFS
TEMPG=(F1+R2+TEMP7)<br>R1+R2-TEHPT)
SUM=SUl +FAL.OIT(TEMPE)
COINTINUE
CONTINUE
COIAT INLES
TEMPG=5
IF(5. L.T. 0. 1E-2)TEMP8=T
COEFF={SLH|*0. 89E77E1G)r゙(TEMPE*1MAX*JMFX*KMAN)
G0 T0 1005
10G4 TEMF1=SQRT \TEMP1)
COFFF=0. 89877E10,TEMF1
1G05 RETUFN
END

```

\section*{A. 2 PROGRAM P5072SGF TO DETERMINE SENSOR SIGNALS DUE TO CHARGED PARTICLES AND RESULTING ELECTRONICS RESPONSE}

\section*{A.2.1 Surmmary}

This program uses the particle path characteristics calculated by program P5072CHG to generate sensor signals for selected particles and then determines the response of the electronics to these signals. The particle parameters of mass and charge are selected either by input card or by a random number generator. The output from the electronics model is stored on tape for future analysis and may be plotted, if desired, by selecting the proper code on an input card.

\section*{A.2.2 Description}

\section*{A.2.2.1 Determination of Velocity}

The starting velocity is one of the parameters supplied by input card. The new velocity of the particle at the end of each incremental step is determined from the new particle energy and the particle mass, using the relationship that energy equals half the product of mass and velocity squared. The new energy is determined by subtracting from the starting energy the work done in traversing the step distance. The work done is calculated from the potentials. Program P5072CHG provides two potentials at each step. One is the potential due to the applied potentials \(\operatorname{EPOT}(J)\) and the other is the potential, per unit charge, due to the particle charge CPOT(J). The work done between two points is equivalent to the product of the potential difference between the points and the charge. Thus, the work done is determined from
\(Q^{\star E P O T}(J)+Q^{\star} Q^{\star}\) CPOT(\(J\)) calculated for the two steps, \(J\) and (\(\left.J-1\right)\). The time taken for the step is detemmined from the average velocity over the step and its distance.

\section*{A.2.2.2 Determination of Grid and Film Currents}

The currents are equivalent to the time rate of change of charge. Program P5072CHG provides the total charge on each film and collector grid element at each step. The current is found from the difference in charge at the beginning and and of the step, divided by the time interval, calculated above.

\section*{A.2.2.3 Film and Grid ID Thresholds}

The two systems are identical except for signal polarity, so only the grid ID will be described. The input to the linear amplifier after the input circuit is calculated for each collector grid strip using the rams, function response equations arrived at by Laplace transform. The input to a threshold detector is the sum of the amplified signal from the impacted film plus the factored inputs from the other films applied as analog inhibit signals.

The time to reach threshold is determined by performing a linear interpolation between the present and most recent steps. Thresholds at other collector grids are only permitted if they cocur within 0.2 microsec of the first ID.

The time of the first ID, either film or grid, is used as the start time for the PHA measurement in the electronics subroutine LES.

\section*{A.2.2.4 PHA Amplifier Signals}

The inputs to the four film amplifiers are summed to be used as inputs for subroutine LES. To save computing time, data points are not accumulated until the input reaches one-tenth of the input threshold level.

\section*{A.2.2.5 Program Flow}

The first input card is read to retrieve the parameters which select the various options. The number of particles to be analyzed, the velocity of the particles, the mass and charge, if random numbers are not used, the number of the input data set for path data, and the number of the output data set and codes for printout selections are retrieved from this card. The second card gives plot axes dimension information.

The first step is to define the physical stopping point within the sensor as either the film or east sensor shield followed by the initialization and setup of the CalComp plotter. This setup can be bypassed if no plotting is desired. Next, the particle path data are read in from tape as the potentials and charges at each part" "e position, plus a header record which defines the impact position on the sensor relative to the center and the total number of data points.

If randon: particles are to be selected, the first mass and charge vaiues are calculated. The random number generator scaies the values developed so that they fall within a range specified by the axes dimensio: information given on the second input card. All random numbers generated are :sed to save computing time over the method which uses all numbers for deriving masses and charges and then rejects those which do not fit the problem. The
variables are initialized, and the particle position at which measurable signals can be detected is then detenmined for use as the starting point for the remaining calculations. The steps start at 10 meters from the sensor and step in rapidly until either the signal reaches one-tenth of \(t\) : e threshold of a collector grid or film circuit or a point 0.4 centimeter from the suppressor grid is reached. This is done to give a starting point for the potential measurements and the calculations of work done on the particle, since absolute potentials are measured relative to infinity or a point of zero potential.

The sensor currents at this position are written out if the selection code demands them, followed by the calculations of work done and the magnitude of the remaining particle energy. Providing that the remaining energy is positive, the new velocity and the time increment are determined, followed by a calculation of the new film and collector grid currents.

The film and collector grid threshold ID status is then determined together with the value of the PHA amplifier input signal.

This sequence is continued until all particle positions have been analyzed or the remaining energy reaches zero, indicating that the sensor forces have stopped the particle.

When the sequence is complete and if a film ID has occurred alone, before a collector ID or less than 1 msec after a col?ector grid ID, the data are passed to subroutine LES, which calculates the electronics response.

The results of the electronics analysis, namely the PHA, film and collector grid ID and accumulator counts, together with the particie charge, mass, and velocity are stored for future analysis and, if required, the points are plotted.

The program then returns to the start to read the next selection.

\section*{A.2.2.6 Subroutine LES}

Section 3.2.1.2 describes the operation of the simple model of the electronics. The modeling is accomplished in subroutine LES.

The program uses the data points passed to it by dumay arguments and similarly returns values for the PHA count and accumulator count.

The output signal from the sensor is a pulse whose length and amplitude are deterwined from the path characteristics and particle characteristics in the MAIK program of P5072SGF. The signal is in the form of discrete amplitudes at discrete times. This subroutine treats the signal as a series of ramp functions by developing straight-line equations for the signal between adjacent values.

The program then evaluates the slope of the ramps to determine the status of the two switches. The result of this evaluation determines which of three subroutines will be used to calculate the value of the output signal. The subroutines called are COND 1, COND 2, and COND 3, which calculate the responses using predetermined equations that were arrived at by using the Laplace transform technique. A fourth subroutine, CVOLT, is used to calculate the voltages across the capacitors at the end of each step, as these are required as initial conditions for the next ramp function.

\section*{A.2.3 Method of Use}

All references to Job Control Cards (JCL) are for the IBM-370 system.

Operation of the program requires a minimum of two input cards, plus one data tape produced by P5072CH6 giving particle path data for the path and sensor to be analyzed. The minimm input allows, on the one path, either: (1) analysis of one particle with its mass, charge, and velocity selected by input card, or (2) analysis of any number of randomly selected particles, all at one selected velocity, up to a maximum of 999 particles. The results will be printed and optionally plotted. If more than one particle is desired in (1), different random numbers in (2), or different velocities or different paths are desired, then additional sets of cards must be added with the new codes and the appropriate path data sets must be available on tape.

The information required on the cards is as follows:

\section*{Card 1}

Column Requirements
1-3 A number from 1 to 999, format I3, representing the number of particles to be generated. If discrete particles are selected, the value should be 001.

4-6 A number, format 13 , which determines the rate at which the element charge values will be written out, e.g., if the value is 5 , every 5th step will be printed out during analysis.

7-13 A number representing the particle/s initial velocity, format f7.2.
14-23 Not used.
24-29 An odd number used to start the random number generator, Format 16.
```

Card 1 (Cont.)
Column Requirements
30-32 The number of the particle, e.g., 5, for the 5th particle of
the total set of randsm particler generated for which the charge
data are desired. If zero, all particle data will be selected on
the basis of the number in columns 4 through 6.
33-42 The particle charge, format E10.4. If random numbers are selected, this value may be blank.
43-52 The particle mass, format E10.4. If random numbers are selected, this value may be blank.
53-55 A number which if greater than 10 will cause random particles to be produced and a plot of the results generated. If greater than 1 but less than 10, random particles will be generated. If less than 1, discrete values must be put in columns 33 through 52.
56-58 The input data set number which matches the JCL card, e.g., FT12F001.
59-61 The output data set number. 22 and 25 must be used for shielded film data sets.

```

\section*{Card 2}

Card 2 provides information required by the CalComp plotter to set up the axes and by the random number generator to set up mass and charge values. The axes charge and mass information is developed as follows, with references being made to the following figure.

Consider the charge values: because of the range of values, the logarithm of the charge is plotted on a log scale. The distance along the \(y\)-axis is given by QCON* \(\log \left(\log \mathrm{C}^{\prime}\right.\) where QCON is a constant and \(Q\) is the charge.

The random number generator develops numbers between 0 and 1.0. The value of 0.5 is subtracted 0 give a range of -0.5 to +0.5 , which is then multiplied by \(\mathrm{QRG}, \mathrm{tr}\). desired range of \(\log \mathrm{Q}\) values. We now have the correct range cente id about the origin. The mean value of the desired range, QMN, in inct. s from the origin, is added to the generated value to place the rang: in the required irea. The value obtained \((y)\) is the position along the \(\log Q\) axis, in inches, of the desired \(\log Q\).

Therefore, scale value \(=\exp (y / Q C O N)\).
To obtain \(\log Q\), we now multiply by the scale factor, \(Q F R\), then
\[
Q=\exp (\log Q)
\]

An identical procedure is followed for the mass M.
The values required by Card 2 are:

\section*{Requirement}

QRG, range in inches of required \(\log \mathrm{Q}\) values on the plot (Format F4.2).

QMN, mid-point of range in inches from origin (Format F4.2).
QFR, scale factor (value of \(\log Q\) axis at origin), ignore any minus sign (Format E8.2).

QCON, axis constant for size of axes to be plotted (Format F10.8), i.e., axis length for one cycle in inches (CYC) \(=Q C O N *\) in 10. \(\left.\begin{array}{l}\text { WRG } \\ \text { WNN } \\ \text { WFR } \\ W C O N\end{array}\right\} \begin{aligned} & \text { All the } \\ & \log M .\end{aligned}\).
AXLEQ length of the \(\log \mathrm{Q}\)-axis in inches (Format F4.2).
AXLEM length of the \(\log M\) axis in inches (Format f4.2).
If a plot is not required, a card must be submitted but it may be blank.

\section*{BSR 4234}

\section*{A.2.4 Flow Charts and Program Listings \\ A flow chart for program P5072SGF is shown in Figure A-2. \\ Program listings are provided for program P5072SGF and subroutines \\ LES, COND1, COMD2, COND3, and CVOLT on pages A-67 through A-77.}

Figure A-2 P5072SGF Combined Sensor and Electronics

\section*{P5072SGF}

C
C NF IS DATA SET REF. NUMBER FOR PARTICLE PATH DATA
C MDOUT 15 OATA SET REF. NUMEER FOR OUTPUT DATA SETS RS FOLLOWS
C
C
C
\(c\)

\section*{POSITIVE CHARGE : UP \& EAST NORMAL PATH 20} WEST SENSOR EAST SHIELDED FILM 22 21 negative charge : up \& EAST mormpl path 23 WEST SENSOR 24 EAST SHIELDED FILM 25 NOTE : REF. NOS. 22 \& 25 MUST BE USED FGR SHIELDED FILM DATA SETS

DIMENSIOH DFTA(2, 1000), IBUF (1000), BLFNK (8), CC (4, 500), CF(4,500) DIMFNSION IG(4), IFM(4), C1G(4), C2G(4), C1F (4), C2F(4), VCG(4), VCF(4) DIHFNSION VIDG(4), TIMF (4), TIMG(4), VK1F (4), VR2: . 7), VRIG:4), VR2G(7) DIMENSION VILF (4), CPOT (5G日), EFOT (506), [15T(56a)

\section*{BSR 4234}
```

            REPL M
            INTEGER OUT
        600 READC5, 6000, END=5900) MULH, OUT, YEL, QMAX, IX, IPNLM, Q, M, KODE, MF, NOOUT
            READ (S, G010)\HRG, GMN, QFR, QCON, I'RG, WHN, WFR, HCON, AXLEQ, RXLEM
            WRITE\6, G020)QRG, QMN, OFR, QCON', WRG, NHN, INFR, WCCN, HSLEQ, RKLEM
            SHLD=0.0
            IF (NDOUT. EQ. 22)SHLD=5. 4864E-3
            IF (HDOUT. E(N. 25)SHLD=5. 4864E-3
            1F<KODE. LT. 10)GO TO 603
    c DEFINE PLOT AXES & TITLE
            CFLL. PLOTS(IEUF, 1800,0)
            CALLL PLOT<1. 0, 1. 0, -3)
            CYC=2. 30259*HCON
            DTV=1/CYC
            CRLL LGRKIS\0. 0,0.0.6H-LN M, -6, FXLEM, 0.0. WFF,DTV)
            CYC=2. 30259*GCON
            DTV=1/CYC
            CFHL LGRXISKO. 0.0.0,6H-LN Q.6, AXLEG,90., GFR,ITV)
            YAX=RXLEQ+Q. 5
            CALL SYMBCLCG. 5, YFX, 14, 15HVELOCITY (M/S),0.0.15)
            CRLL NUMBER(999, 99%., 14, VEL, 6.0.,-1)
    C FINISH RXES DEFIMITIC*
C
C PARTICLE PATH CHARACTERISTICS
603 RENIMO NF
RFAD(HF)X,Y, NPTS, BLAINK
WRITE{G, 6G3G)VEL, }X,\psi,NPTS, IK, NF, NDOUT
DO EOS K=1, NFTS
READ(NF)DIST(K), EFOT(K'), CPOT(K), (CC(L,K),L=1,4), (CF(L,K),L=1,4)
gGS CONTINUE
Gac do 400G KP=1, NuM
NKITE(6.6035)KF
IF<KODE. LT. 1)GO TO 625
610 TY-1%**55339
IF\IY`615.6:16,616
615 I't=I''+2147483E:47+1
616 YFI:I%
YFL=YFI.*. 4656613E-09
IN-IY
YFI_='rFL-a. 5
RATNQ:=YFL.*NFG+CHMN
OSV=EXP (RANIGOGGON)
QUFL-ESV*(-GFF)
Q-EXF(OWHL)
615 14:5%*65559
IF(JY)E1S, ERN.620
619 JY:TY+21474ER647+1.
ERG YFI=JY
YFL:ジザL*.465F.613E-69
Ix-14
4'F! - 'FFL-9, \Xi

```


```

    NVFI:=N:V*(-WHRO
    H:FxFEDUFI.%
    ( INJTIMI JTHTJ(M
Ez5 THFE:Q,a
Nन!a
Aff:-1
HF1f:0.4

```

```

    NIGT:909
    NHFT: -49
                                    ORIGINAL PAGE IS
                                    OF POOR QUALITY
    Yド| |: YFL
    |F..H
    |% rag I=:1,4
    ```
```

        IFM(1)=0
    IG<1)=0
    C1G(1)=0.0
    C1F(I)=0.0
    VCo(1)=0.e
    VCF(1)=0.0
    VIDG<I\=0.0
    VIDF (I )=0.0
    C2G<I)=0.0
    C2F(1)=0.0
    70O COHTINUE
    ENRGY=0.5*M*VEL*VEL
    C DETEFIUINE STARTING CONDITIONS
D0 726 Jm2,12
IF(DIST(J). LE. 1. 369E-2)GO TO }73
* JJ==,J
TINC=(DIST(J-1)-DIST(J))NVEL
D0 725 K=1,4
C2G(K)=Q*<CC(K, J)-CC<K, J-1)\/TINC
C1G(K)=C2G(K) .
CZF(K)
C1F(K)=C2F(K)
IF(C2G(K). LT. -0. 4E-9. 0R. C2F(K). GT. 0. 4E-9)60 TO 730
72S CONTINUKE
726 CONTINUF
736 POT:1 =6*EPOT(JJ-1)+(N*Q*CPOT(JJ-1)
7 3 5 J = 5 . 5 + N D
LP=LP+1
IFSIPNUHT. EQ. 6)GO TO 736
IF(KP. NE. IPINH\G0 TO 738
7S6 IFGLP.LT. OUT)GUL TO 738
737 1P=0
HRITE(6, E040)C2G, C2F,TIME,DIST(J-1)
738 IF(OIST(J). GT. SHLD)GO TO 739
OHTH(1,J)=TIHE
[^TH<2, J> =0.0
60 70 2500
739 ND=NN+1
FOT2 =Q*EPOT(J)+(Q*Q*CPOT (J)
NOFK=FOT2-FOT1
EEM:-ENFG'r-WORK
IF\&FEM. GT. O. G) - TU }74
740 IF(DJST\J). GE. ETSG4E-2)G0 TO 741.
HF:ITE<E, 6056)J
60 T0 250%
741 IF(OISTGJ). GE. ST(NFE-2)G0 T0 742
|FTTE<6, GDE0%:
GO TO 25GM
742 HFITES6, ENTAST
OO T(1 2rj040

```

```

    GVFI :" (VEII +VFL ?D/2
    ```

```

    T1HE:-TJHF+T THW:
    VEI 1: VFI_2
    C CAT CUHGTF NFW GRI[ RIND FILM GUFFFNTE
10 EOM K=1,4

```

```

    C%F(K)=G*(CFEK,J)-CF(K,J-1)),TINC
    &NO EDINTTHUUE
    C COLIFSTOF GFISD JD
[N] 1000 K=L, t
SLP=(GOG(K)-C1GrK)),TINC

```


＇R1G（K）＝5um1 + SUM2＋SUM13
S（MM4＝0．5＊EXF（－2．272727273E3＊TINC）＊（2．2E5＊C1G（K）－VCG（K））
SU． \(5=5 L P * 48.4 *(1-E X P(-2.272727273 E 3 * T I N C))\)
VR2G（K）\(=5\) UM \(4+5\) UM5
C10 \((K)=C 2 G(K)\)
\(V C G(K)=V R 1 G(K)-V R 2 G(K)\)
1000 CONTINUE
IF（ND．LE．NDGT＋1） \(\mathrm{SO}_{\mathrm{C}}\) TO 1010 IF（TIME．GT．TIMG（1）＋2E－7） 60 TO 1100
1010 IF＜NGID．EQ．4）GO TO 1100
VFROC（5）＝VR2G（1）
VR2C（6）＝VR2G（2）
VF2G（7）\(=V R 2 G(3)\)
D0 \(1100 K=1,4\)
IF（IGくK）．EQ．1）G．TO 1100
YID \(=15.75 *\) YR2G（K）\(-1.47 *(Y R 20(K+1)+\) VR2G（K＋2）+ VR2G（K＋3））
IF（VID．LE．－．12E－1）60 TO 1050
UxDG（K）＝VID
60 TO 1160
1650 1F（naid．GT．0）60 TO 1060
MDGT＝ND
1G（K）\(=1\)
NGID＝1

TIMG（1）＝T1itG（1）＋TIME－TIHC
IFSNFID．GT．a 1 GO TO 11 ge
TIMID＝TIMG（1）
GO TO 1149
\(1960 \mathrm{NGID}=\mathrm{NGIO}+1\)
TJMG（NGID）＝（．12E－1－VIDG（K））＊TINC／（VIN－VIDG＜K）
TIMOSNGID \(=\) TIMG（NGIL）+ THME－TINC
IF（TIMG（NGID）－TIMG（1）．LT． \(2 E-7\) ）IG（K）\(=1\)
1100 CONTINUE
c FILIM 10
D0 \(2000 k=1,4\)
SLAB：（CZF（K）－C：LF（K））／TINC

SUMS＝2．2ESNSLP＊TINC

SUH：
VF：2F \((K)=5 \mathrm{SH} 4+5 \mathrm{EH} 15\)
\(\mathrm{C} 1 \mathrm{~F}(\mathrm{~K})=\mathrm{C} 2 \mathrm{~F}(\mathrm{~F}\) ）
Y（F \((K)=\) VRAF \((K)-V R 2 F(K)\)
2000 continue
IF（ND．I．F．WTFT +1 ）（cio To 2010
JFSTMME GT．TIMF（1）＋2E－7）60 TO 2150
2014 1F（TH \({ }^{-r}\) ER 4） 40 TO 2100

VRFF（6）－VRTF

00 \(2 \mathrm{ata} k-1,4\)
IF（IFM（K）．Fe，1）an To 2100

rici 70 वाल

JFHKKか」
（1F） 101

THFC
JFMOM．GT．GOGU TO 2100
tump：Tillacts

00102180
BSR 4234

\section*{2100 CONTIME}

\section*{C CPICCHLATE PHM FPluEs}

SVRAF＝VRAF（1）＋MRAF（2）＋YRAF（3）＋VRAF（4）
IFCNDT．BT．1） 702150
IFCSMRAF．LT．．1E－3） 50 T0 735
DATPU（1，1）＝TIME－TINE
DATA 2,1\(\rangle=0\).
DATR（1，2）＝TIME
DPTAC2，2）＝SVRAF
\(\mathrm{HDT}=2\)
6010735
2150 MDTFADT＋3．
DATA（1．NDT）＝TIME
DPTR 2. NDT \(=S V F I F\)
6070735
2500 IF（NFID．EQ O） 60 TO 2700
IF（MGID．FQ ejen TO 2F＇e
IF（TIMG（1）＋．IE－2 LT．IMF（i）SE0 TO 2780
2510 ETIME＝TIMID＋．1E－2
3000 CPLL LES〈DATA，MDT，ET IME．OIT．KP．IPTNM，NPHR，MRCC）
1FKKOOE．LT．19）C0 TO 3500
c PrEpfRE TO plot phit yflue PHP＝NPHA
C plot ypilve
CFLL SYMBOL（RPANMY，RFINDE．OL，75，0．8，－1）
CFIL MUMEER（999．，999．，， 87, FHA．6． \(0,-1\) ）
IF（1\＃BCC LT．2） 60 TO 3590
CALL SYMBOL（999．；999．，．03，125，0． \(4,-1\) ）
60 TO 3590
2ien MFITE（E，7ena）
3500 POF＝PRS（C）
FAOL \(=\) PALOG（ \(A Q\) ）
PITL＝PLOGS \((M)\)
1СTOT： \(1 \mathrm{G}(1)+1 \mathrm{G}(2) * 2+16(3) * 4+, \mathrm{G}(4) * 8\)
I＇TOT＝IFM（1－1FM（2）＊2＋IFM（3）＊4＋1FM（4）＊8
HRITE CMDCUIT VEL，TI，M，IGTOT．IFTOT：NFHA，NPNCC
WFITE（E，6（186）R，M，IG．IFM
MRITE（E．7E10）PRL，FMM．
40Ge COHTIRME

CFLL SYFEOL（20．日．0，14，11，0．0，－1）
CAIJ SMMBU＿（2a，10．．14，11，a a，－2）
CPLL PLOT（22，，1．，－3）
450 e GO TO 6 CH
Shath CONTIHAF．
IFKKODE．LT．16）60 ro 5100
CfLL PLOT（e．，0．999）
Stan COUT IHUE
GGU FOKNAT（2IS．F7．2，E10．4，I6．13，PE16．4，313）
Eain FOFHAT（2（2F4．2，E8．2，Fin．8），2F4．2）

3IT，NUITFIM DHTA SET \(=\cdots\) IS）

－4＊，FG3

：州 10 ：－， 112 ’


```

* SURROUTINE LES (DPATR, ND, ETIME, OUT, K, IPMMM, NPHA, NACC)
C REYISED 15 DEC 1975
DIMENSITN DATA<2, 1000)
C0%WOL YCL, YCL, YC4, YC5, YC8, TC1, TC2, TC3, TC4, TC5, TC6, YFL1, YPL2, X, SLP
TMTEGER SHEB,OUT
vRd=a.e
VRz=0:0
YR\2=0.0.
VR3=0.0
vesz=0.0
YRO=a
SHPB=4
IVRY=2
NFCC=O
vCI=0.e
VC1=0.0
VC4=a 6
YC5=a.0
NCS=0.0
TCi=. 4545454545E4
TCZ=. 3501.4c056E4
TC3= 49454455522E5
TC4=. 140.2967643E3
805=249502515F5
TC6:: 730,1894
J=6
HPMf=e
TJME=[ATH\1, MD)
KOUNTT=ND
L=N(i+1
D0 2024 J=L, 1000
IF(TJMF. GE ETIME)GO TO 2025
TIME:TIME+2F-6
KCHRT=KOUNT+1
DATA(1, I)=TIME
20%e continme
2025 1.-ND+1
IF<KOLWNT. I.T. L\GO TO 2030
DO 20EN 1=L, KOUNT
DPTA(2, ])=0.0
20EM CONTINIF
1F(k. NF IFNNMI)(5O TII 2080
IF<OUIT.GT. SNM)GO TO 20R0
HRITF(E. S.14F)
Fugen Jn=: ?
Z1m IF GJNC. FO. KOUNT+1DGN TO 2-EOQ
T<:[NATA<1. INE:>
T1=|NTHES. INE -1)
YN| I: MHI\#C(F, INC:-1)

```

```

    IHC. INE+1.
    f
C. GHLIMMGTE JMFIT GI OFE (SIP)
C
Y: VHI P-VH|l .1
\therefore.T:-T:
G| F-:4,%

```

```

i.

```
C CRLCULATE COPDITION 1 VPLIUES
C
 2150 CPLL COHD1 (VR32, VR1, YR2, YR9, YR12)
 CPLL CYOLT (YR32, VRA, YR2, VR9, VRL2)
 KOMD=1
 60 TO 2082
C POSITIYE SLOPE. - CRLCNLATE SHITCH STPTUS
C
2160 YR202=YR2
 VR112=YR12
 YR132=VR32
 CPLL COND1 (VR132, VR1G1, YRH62. VR109, VR112)
 CRAL COHDZ(YR2O2,B,C)
 RYRI=YR101-YR1
 RYR2=4R2Q2-4R2
 IF(RYRAL.LE. RYR2)GO TO 2170
 SWRB=5HPB-1
 60 TO 2180
2178 YR2=4R1
2180 60 T0 (2181, 2181, 2184, 2186), SNPE
2181 STOP 181
2184 IFGYR12. EQ. 0. 0\GO T0 2390
 VR2G2:-YR2
 CRLI. COHDE (VR2&12, YR2GG, YRE゙12)
 CFH.L COHLDS (VRSQS, VRJ12)
 RYR2= VR202-VF2
 RYR12=4R\12-VRR12
 IF\RYRZ.GT. FVR12;GO TO 239G
 G0 T0 2200
2186 IF\YR:I2.EQ 0. G)GO TO 2290
 VR112=VR12
 VR132= VR32
 CPHIL COMP1 (VF132, VR1G1, VF102, VR1G9, VR112)
 CALI CONLOS (VRSOG,YRE12:
 PVFR:=YR102-VR2
 RVRIこ-VFZ:\-WF:12
 IF<FVR2. GT. F'YF\L`GO TO 2290
 fif Tत 2450
C
```



```
C
 22F1 CHLL CONDE (VFS, VFG, VF1F)
```




```
 KOT\!-%
 60 T0 Fr,00
```



```
 TO}=\mathrm{ WFTFC1. THE:S
 T1=|\mp@code{HHC1, INC-\;}
 VFI_1=IHTR&%, IPNC-1)
 VAI.2: I.ATH(?, IRC:
 INLS: TNCC+!
 Y-VAL_2-VHi_1
 x:T2-71.
 Sl_F:YR
 VROG2-VR2
 VK\1%: UP:Z
 VK|O. VRO%
```



```
 GFII CON|OQF:HM, H. F;
```




```
C
```


## BSR 4234

```
2290 SWPN=SWPRB-2
2300 CPLLL COND1 (VR32, VR1, YR2, R, B)
 CP1, COND3(YR9, YR12)
 CPLL CYOLT (YR32, YR1, YR2, YRO, YR12)
 KOND=3
 G0 T0 2600
2350 1F{IMC. EQ. KOUNT+1)E0 TO 2800
 T1=-DRTR(1, IMC-1)
 T2=-DATP<1. INC)
 YPL_1=[HTA(2, INC-1)
 VPL2=DATF(2. INC)
 INMC=INC+1
 Y=YPL_2-YPML1
 X=T2-T1
 SLP=Y/X
 1FQSLP. GE. 0. 0)GO TO 2370
 YR202=4R2
 YR112=YR12
 VR132=YR32
 CFHI CONO1 (YR132, YR101, YR1R2, YR109, YR112)
 CPFLL COHDL(YR202,B,C)
 RYR1=YR101-YR1
 RYR2=YR2G2-4R2
 IF\RYR1. LE. RYR2\GO TO 2360
 SNAB=5WPBB-1
 G0 TO 2378
2360 YR2=4R1.
 4R152=4R32
2370 60 TO (2380, 2375,2380, 2375), SNARR
2ड7G CFHL COND1 (YR132, VR101, YR102, VR109, VR112)
 CRLL CUNDS(F., VRS12)
 IF(YREM1. LE. YR\12) GO TO 2こ78
 G0 T0 2300
2378 SHPF:=SNAFB+2
 G0 T0 2150
23@0 VR2G2-YK2
 CAIL CCHHO2(VF2EE, F F)
 CFLI_ CONDS(F, YR312)
 IF\YR20%.LE. VRS12)G0 TO 2395
 60 T0 2400
2355 S|AFE=E|JFF+2
 GO TO 2200
 235G SWF1E=SWFHR-2
C
C CAIGULATE VALUES INDER CONDITIGN 4
C
 2400 CFLL COWD1《UFER,VR1, R,E,C)
 CFI_I. COMDO(VF2, F,E)
```




```
 Ku极=.4
 GO TO 2nem
24%M JFSIHK. FG. KOlNT+1OGO TO 2EGO
 T1:{NHTH(1, I|N,-1)
```





```
 INN: JNS+1
 Y: VFI.E-VHI.1
 X=T;
 SLF-Y;
 VF**, VF2
 VFM1%-VF1%
 VF.| < %-VFO2
```




```
 CFIL COMDS(A, VIz12)
 IFEVR101. LE VR202)co T0 2500
 IF(VR2e2. LE. VR312)60 TO 2475
 00 T0 24a3
2475 5NFB=54PB42
 00 T0 2200
2500 SMME=SNMB+1
 IF(YR1R1. LE YR312)50 T0 2550
 60 10 2300
2559 SNMS=5NMB+2
 60 T0 2150
2600 IF(IPNHM ER 0)G0 TO 2601.
 IF<K. NE. IPNMM\GO TO 2603
2601 IF(J-OUT) 2,503,2602, 2602
2eP2 J=0
 MRITE(6, 3000)T2, VR32, VR1, YR2, YR12, YR9, SNPS
 60 T0 2605
2683 J=J+1
2605 IF(4R9. LE. -. LE-01)R0 TO 2620
 60 TO (26i&. 2;50), IYR9
2610 PT2=T2
 IVK9=2
 TPHM=PT2-PT1
 MMM=TPHNO. 4E-64
 NPHMF=NPHPI+NLMY
 60 TO 2750
2620 TIMID=ETINE-. 1E-2
 IF<T2. LT. TIRIIDSE0 TO 2750
 GO TO (2630, 2640). IVR9
2630 IF (INC.LT. KOMNT+1>G0 TO 2750
 PT2=T2
 TPHP:-PT2-PT1.
 MUM=TPHPU/. 4E-64
 MPHP=NFHFI+NMMM
 GO }70\mathrm{ 2gQ0
2649 PT1=T2
 1VRS=1
 IFENPICC. EQ. O)NPHFI=1
 NPCC=NACC+1
2750 60 TO <2160, 2250, 2350, 2450), kON0
z800 CONTJHHE
 WRITE\6, 370G)NPHP, NACC
3000 FORMAT(7:O E(E12, 5.6X),5x, 12)
```



```
 2F:9', 12X,'SHITCH R/E'/1')
3700 FOFPMFIT(G%,5X, "PHF = ',IS,10X, FACCUMULAFTGR COUNT = =, IS)
 RETURIN
```

```
 SUBROUTINE CONDAKYR32, VR1, VR2, YR9, YR12)
C
C
REVISED 25 SEPT 1973
COMMON VCI，VC1，VC4，VC5，VC8，TC1，TC2，TC3，TC4，TCS，TC6，VFL1，YPL2，X，SLP REPL MR12，MR32
INTEGER VS1PB，VS2AB
VS1R \(=-10+V R 32\)
YR32＝（YPL1－VCI）＊EXP（－TC1＊X）＋SLP＊（1－EXP \((-T C 1 * X)) / T C 1\)
VS1B \(=-10\) VRR32
VSIPB＝1
IF（RBSC（YSIA）．LT．5．0）G0 TO 200
YS1A＝5IGN（S．6．YS1A）
VS1AB＝VS1fB +1
200 IF（ABS（YS1B）．LT．5．a） 60 TO 4 4 an
VS1E \(=516 \mathrm{~N}(5.6, \forall 51 B\) ）
YSIRE \(=\mathbf{V S 1 R B}+2\)
40060 TO（ \(540,694,600,600\) ），V51AB
500 YR1 \(=.95780487 E-2 *(Y C I-\) YFLi 1\() *(T C 1 * E X P(-T C 1 * X)-T C 2 * E X P(-T C 2 * X))-.957\)
\(180487 E-2 * S L P *(E X P(-T C 2 * X)-E X P(-T C 1 * X))-甘 C 1 * E X P(-T C 2 * X)\)
VR2 \(=\) VR1
IF \(\langle\) VR2．LT．-5 ．Q）YR \(2=-5.0\)
IF CYR2．GT．5．日）YR2：5．e
\(Y 52 R=4 \mathrm{~F} 1\) ？
VF12＝YR2
VS2B＝VR12
4 S2AE＝1
IF（ABS〈YS2A）．L．T．5．a）GO TO 5SA
YS2A－SIGN55．G．YSZA）
\(V S=A B=\psi S=A B+1\)
530 IF（ARSCVSZB）．LT．S．0）G0 TO 55S
YSZR－SIGN（S C，VS2E）
VSTRS：－VSERB＋2
550 GO TO（ \(560,570,574,570\) ），VSARB
```




``` 3EXF（ \(-T(4 * *))-10 * S L F *(980616624 E-63 *(1-E X F(-T C 1 * *))-9874988744 E-\)
```




```
GO T0 906
570 MF12－くVSEE－VSEA9．
```



```
SuMz＝9． \(452 \mathrm{E}-3+\mathrm{ilF} .12+(1-\mathrm{ESF}(-\operatorname{TC} 4 * X))\)
VRG：SUM1＋51H2
G0 To ere
60日 MR2 \(2=\)（VE1E－VE1．HOX
```



```
YF：2：YFi
```




```
VSZA＝VR12
VF1 \(2=\mathrm{VR} \mathrm{Z}\)
VOE＝VFL？
VS2HE＝1
IF（AEESUS2F）．LT．5．G）GO YO 630
VSこA．
VSPAE－VEZAEPA
```



```
VEPE：\(\therefore\) IUNE D．YERE
```




```
 660 S\M3*1. 463486024E5*(3. 3E-8*VC8-6. 8E-6*VC4)*EXP(-TC4**)
 SM^4=2. 930321409E-04*(YS1P-YC1)*(TC2*EXP(-TC2*K)-TC4*EXP(-TC4*K))
 S\15=2. 930321408E-04*NR32*(EXP(-TC4*X)-EXP(-TC2*X))
 VR9=SUNH+SUM4+SUN5
 GO TO 900
 900 CONTINUE
 RETLRN
 EMD
 SIMROUTINE CONDE(YR2, YR9, YR12)
C
C REVISED 26 SEPT 1975
C
 COMMON VCI, YC1, YC4, YC5, YC8, TC1, TC2, TC3, TC4, TC5, TC6, YPL1, YPL2, X, SLP
 REPL MR12, MRZ2
 INTEGER VS2PB
 VR2=5*(1-EXP(-TC3*X))+YR2*EXP(-TC3*X)
 IFCVR2. LT. -5. 日)VR2=-5. ©
 IF(VR2. GT. 5. 日)VR2=5. 0
 150 60 TO (200, 300, 300, 300), 452FB
 20日 VR9=(YCE*3. ЗE-8-YC4*6. 8E-6)*EXP(-TC4*X)/6. 833E-6-0. 99517*(VR2*(TC4
 1*EXP(-TC4*X)-TC3*EXP(-TC3*X))/4. 937516846E4+5. 010661914*(EXP(-TC.3*
 2X)-EXP(-TC4*X)))
 GO TO 9日e
 300 MR12=(YS2B-VS2A)/X
 SLM11=(VC8*3. ЗE-8-VC4*6. 8E-6+VS2R*6. 8E-6)*EXP(-TC4*X)/6. 833E-6
 SUH12=9.452E-3*MR12*(1-EXP(-TC4*X))
 VR9=5UN14+5UM12
 90G CCNTINUE
 RETURN
 END
 SUBROUTINE CONDS(VFS,VR12)
 COMMON YCI, VC1, YC4, VCS, VCE, TC1, TC2, TC3, TC4, TCS, TCE, YFLL1, VFLL, X, SLP
 SUM1R=(TCE*EXP(-TCr**)-TCE*EXP(-TCE*X))/2. 195153128E4
 SUNB=(EXP(-TCE*X)-EXPQ-TCS*X)),2. 195153128F.4
 VR12=(YC4+VC8)*SUNHF+. 21EQG74122ES**C;4*SUMB
 VRG=VCB*SUMR+2. 22816\SSSE7*(VCE*S. SE-S-VC4*6. 8E-6)*SUMB
 RETLIRN
 END
 SUEROUTINE CVOLT(VRZ2, YR1, VR2, VR9, YR12)
 C
C REYISED 24 SEPT 1975
 COHMON VCI, VC1, VC4, VCS, VCE, TCL, TC2, TCS, TC4, TCE,TCG, VPL1, YAI_2, X
 VCI=WGL.2-VFES
 VS1E=-1G*VRS2
 IFQVSIE. LT. -5. E)VS1E=-5.0
 IF\VSIE: GT. S. GOVSJF:=5.0
 VCI=VE1E-VRI
 VCr=WRO
 VC4=VR12-VFG
 VCS:WRG
 RET!FPN
 F.N[
```


## A. 3 P5072INT DATA SELECTIOM PROGRM

## A.3.1 Summary

The sensor and electronics model programs produce sets of dita for particles on particular paths. These data sets include all types of events in random order for a particular sensor and path. The data selection program was prepared to allow selection of all particles giving a particular response or combination of responses. The range of particles obtained can then be correlated with the lunar data for that response or combination of responses, thereby giving important data for the formation of hypotheses regarding particle sources and transport theory.

The program selects the responses to be analyzed by referencing a code inserted on an input card. The output can be selected as either a printed listing or a CalComp plot.

## A.3:2 Description

The type and number of selections are read from a data card. This card defines the type of event to be selected, the velocity of the particles of interest, whether or not the data are to be plotted, the data set reference number of the data to be analyzed, and the number of data sets to be recorded per list/ plot.

If a list is desired, the headings are written out; if a plot is required, a card is read which defines the size of the axes and scales. The data required by the plotting routine to set up the axes and titles are then produced.

## BSR 4234

The data set to be analyzed is read from tape a record at a time, and each record is analyzed for conformance with the characteristics selected on the input card and either plotted, listed, or rejected. When all records from that data set are analyzed, a check is instituted to determine if more than one event type is to be plotted or listed on the one output medium or whether more analyses are to be performed.

The selections available are as follows.
The variable KIND, of dimension 8 , selects the options by setting a 1 in the respective array member corresponding to the item number below:

1. All PHA events listed or plotted.
2. Coincident film and collector grid events.
3. Film only events.
4. Multiple accumulator events.
5. Multiple, adjacent, film events.
6. Multiple, adjacent, grid events.
7. Multiple, nonadjacent, film events.
8. Multiple, nonadjacent, grid events.

The desired sensor and the east sensor shielded film are selected by data set reference number. Particular velocities or all velocities are selected by the velocity parameter on the input cards. If all velocities are required, VEL is set to zero. The plotted output symbol is related to IK, which indicates the selection code. IK is a combination of the codes listed in KIND, i.e., 1 to 8 for single plots or 24, say, for coincident, multiple accumulator events.

## A.3.3 Method of Use

Three input data cards are required if a plot of the data is requested; if a printed list is requested, the third card must be omitted.

The first card data requirements are:

## Column Requirement

1-8 KIND; Place 1 in the positions corresponding to the desired options.
9-15 VEL: the velocity of the desired selections. If all velocities are required, leave columns blank (Format F7.2).

16 LOP: Insert a 1 if a plot is desired, otherwise leave blank.
17-18 IDSR: Input data set reference number (Format 12); from JCL card.
19-22 IK: Code indicating type of selection for titles and plot symbols, e.g., 1 through 8 for single selections or 24 for coincident multiple accumulator, etc. (Format 14).

23-24 NDSPP: Number of data sets to be recorded/plotted. If more than one data set or selection is to be recorded on the same list or plot, another card identical to card 1 is required with columns 23 and 24 blank.

The second card requires an alpha-numeric title in the first 28 columns. This title is used in both the plotted and printed outputs.

The third card is identical to card two in program P5072SGF. A data tape is required which carries the results from program P5072SGF.

The program will repeat for each additional set of cards.

## A.3.4 Flow Charts and Program Listings

A flow chart of the program is shown in Figure A-3 and a program listing is provided on pages A-83 through A-84.


Figure A-3 P5072INT Data Selection

## P5027INT

1
$F$
DIMENSION TITLE（7），KIMD（8）
RERA．M
104 RERD（5，110．END＝500）KIND，VEL，LOF，IDSR，IK，NDSPP
110 FORMAT（8I1，FT．2，I1，I2，I4，I2）
PEAD（5，120）TITLE
HRITE（6，121）TITLE
126 FGRMATく7R4；
121 FORIART（2X，7A4）
NRITE（6，37 $)$ IDSR，VEL，IK，NDSPP
$J=6$
IF（LOP．EQ．G）GO TO 19G
C DEFINE PLOT RXES RAD TITLES
READ（E，13G）QRG，QMN，GFR，QCON，WRG，WIMN，WFR，WCON，FXILEO，FXLEM
13＠FOFMAT（2（2F4．2，E8．2，51E．8），2F4．2）
HRITE（E，1EQ）QRG，QMN，QFR，QCON，WRG，WMN，WFR．WCON，FXLEG，RMLEM
189 FORIART（30X，2（2F4．2，E8．2，F10．8），2F4．2）
Cfll PLOTSCIELUF，10aE， 6 ）
CFLL $\operatorname{FLCT}(1.0,1.6,-3)$
$C Y C=2$ ． $30255 *$ WC．ON
DTV＝1／CVC
CALL LGRXIS（B．0，0．6，5H－LN M，－5，FXLEEM，0．0，WFR，DTV）
CYC：＝2． $30259 * Q C O N$
DTV $=1 / C Y \mathrm{C}$

YAX＇$=$ Fixi $E(Q+E .5$
CALL SYMFH，（E1，5，YAX，14，1EHVELECITY（M／S），0．0，15）
IFCVEL．EO．E． 6 JGO TO 115

GO TO LES


$Y K=I K$
TALL NUMEFES 999，599．．．14，YK，6．6，－1）
$\because \mathrm{AXO} \times \mathrm{H} \mathrm{HX}-\mathrm{B}$

GO TO 20E
190 HFITEG6．140）


C SEIECT［MTA FFOUIFED EY INFUT COCES

IFCVEI．FO．OROTO TO 210
IFく东VEI．NF VEL DGO TO FC0
21 IFKKINOM：FO．1）GU TO 2EO







IF：IFTOI FO ：$\because 40$ TO

IF CJFTOT．Fの $\because \because n$



日， 71120



```
 IF(IGTOT. EQ. 6)00 TO 260
 IF(IGTOT. EQ. 7)GO T0 260
 IF(IGTOT. EQ. 12)G0 TO 260
 IF(IGTOT. EQ. 14)00 TO 260
 IFKIGTOT. EQ. 15)G0 To 260
 60 TG 200
 260 IF(KIND(7). EQ. 0)G0 TO 270
 IF\IFTOT. EQ. 5\G0 TO 270
 IF(IFTOT. EQ 9)GO TO 270
 IF(IFTOT. EQ. 10)GO TO 276
 GO TO 200
 270 IF(KIND(8). EQ. ©)G0 TO 280
 IF\IGTOT. EQ. 5\G0 TO 280
 IF(IGTOT. EQ. 9)G0 TO 280
 IF(IGTOT. EQ. 10)GO TO 280
 G0 TO 200
 280 CONTINUE
 IFKLOF. EQ. Q\GO TO 300
C PREFARF TO PLOT PHA DATA
 PHA=NPHA
 CYFL=RLOGSQ
 QSV=QVAL/(-QFR)
 RGND=FILOG(RSV)
 RANDCO=RAND*(NCON
 NWFL=ALGG(M)
 NSV=WVALP'(-NFFR>
 RPMLD:=F'_OG(NSV)
 RAN[MM=RAND*WCON
C flOt pHf dATf
 INTEQ=IK
 IF\IK. GT. B`INTEQ=0
 CALL SYMBOL (FANDM, RANDQ, 04, INTEQ, 0. 0, -1)
 CRLL NUMEEF(999, 599., G7, FHF, 6. 6, -1)
 G0 To 200
c LIST DATA
3GG WFITESE, 160%:WVEL, O.M, IGTOT, IFTOT, NFHA, NACC,
```



```
 00 TO 200
 350 FFININD IUSR
 J=J+1
 IF(J. EQ. HOSFP)gO TO 40G
 FFFD\E, 110, FHO=EGOOKTND, VEL, LOF,IOSR,IK.
 HEITEGE, STGOIDSR, VEL, IK
 601 TO 2:64
```



```
 40G contjmue
 JFGlOF. FO, ODGO TO 45G
 CFILL STMFOI, 人, , 6. (1, 14, 11, 6, 6, -1;
 CHLL SYMFAM (20, 10, , 14, 11, 6, 4,-2)
 CALL Fl OT(E%,-1,-3)
 450 50 Ta lon
 Gory contInuE
 IFiGFEGGOMO TO 51G
 CALL FLaT(a, , a, , 590)
 E1a CONT INHF
 rint Ta 70%
 GGG1 HFTTE(E, (TM)
```



```
 7044 (OW+7] 3HUE
 FNS
```

BSR 4234

APPENDIX B
SUMMARY STATUS AMD PROPOSED TASKS
LEAM CHARGED PARTICLE ANALYSIS RESULTS TO DATE

## CONFIRMED EXPERIMENT RESPONSE TO CHARGED DUST PARTICLES

## 

COMPLETED SIMPLIFIED ELECTRONICS MODEL FOR EASY RESPONSE EVALUATION

COMPIETED DETAILED SENSOR MODEL FOR ANALYSIS OF PARTICLE RESPONSE
UP AND EAST SENSORS ONLY (SHOULD BE OPTIMIZED FOR COST EFFECTIVENESS)
completed programs for analysis of particle data
identified preliminary boundaries for particle mass charge and velocity
ANALYSIS OBJECTIVES TO COMPLETE
BENDIX PROJECT ENGINEER
BSR 4234
926t Kınc $0 z$
P/E - P/I TASK REQUIREMENTS


## PERFORM QUAL MODEL TESTS

analyze leam data for temporal effects and statistically significant PATTERNS CORRELATE ANALYTICAL CHARACTERISTICS WITH LUNAR CYCLES AND TEMPORAL
EFFECTS
PREPARE HYPOTHESES ON MATERIAL TYPES, SOURCES AND TRANSPORT MECHANISMS
evaluate application of resilts to other lunar surface phenomena
analyze cosmic particles and ejecta
SUPPORT LUNAR SURFACE OPERATIONS

BSR 4234



[^0]:    *Bowers, J.C. and Sedore, S.R., "SCEPTRE: A Computer Program for Circuit and System Analysis," Prentice-Hall, Inc. 1971.

[^1]:    *Abstracts of Papers Submitted to the Seventh Lunar Science Conference, March 15-19, 1976.

