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SECTION 1 

SUmARY 

The Lunar Ejecta and Meteorites Experiment (LEN) was deployed on the 

moon on 12 December 1972. The objectives o f  the experiment were t o  metsure 

the long-term variat ions i n  cosmic dust i n f l u x  rates and the extent and nature 

o f  the lur,:ir ejecta. While analyzing these characterist ics i n  the data, i t  

was d scovered that  a major i ty o f  the events could not be associated with hyper- 

veloc ty pa r t i c l e  impacts o f  the type usually iden t i f ied  wi th  cosmic dust, but 

could only be correlated with the lunar surface and local  sun angle. 

The poss ib i l i t y  tha t  charged par t ic les could be incident on the sensars 

led the Principal Investigator ( P I )  t o  request tha t  an analysis o f  the elec- 

t ronics be performed t o  determine if such signals could cause the large pulse 

height analysis (PHA) signals. These signals indicate the energy o f  the hyper- 

veloci ty par t ic les i n  the normal mode o f  opertt ion. 

A qual i ta t ive analysis o f  the PHA c i r c u i t  showed that  an a l ternat ive mode 

o f  operation existed i f  the input signal were composed o f  pulses w i th  pulse 

durations very long compared t o  the durations f o r  which i t  was designed, by a 

factor o f  a t  least  40 t o  1. This al ternat ive mode would give large PHA outputs 

even though the actual input amplitudes were s m a l l .  This revelat ion led t o  the 

examination of the sensor and i t s  response t o  charged par t ic les t o  determine 

the type o f  signals tha t  could be expected. 
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A qualitative review of the sensor and application of basic electro- 

s t a t i c  theory indicated that very slow particles, below the normal experiment 

operating range, could produce pulses of the time duration required t o  excite 

the PHA circui t ' s  anomalous response. 

A grossly simplified model of the sensor was developed on a computer t o  

determine the range of particle characteristics t o  which the sensor would 

respond. T h i s  range was then compared w i t h  known or expected values for lunar 

dus t  particles and practical expectations for charge to mass ratios.  

A t  the same time, the electronics was analyzed using a standard IBM 

analysis program, SCEPTRE. 

The results of the sensor modeling and circui t  analysis showed con- 

clusively that charged particles moving a t  velocities below 1 kilometer per 

second would produce PHA responses of the type observed i n  the luna1 data and 

i n  addition could cause double accumulator counts, anothpr of the unusual 

events. 

This f ind ing  was of such importance to the understanding of lunar sur- 

face dust  transport that  i t  was decided to  continue the analysis to obtain 

more accurate data on particle mass, charge, and velocity. A theoretical 

calibration of the experiment response t o  charged particles was required to  

enable a complete analysis of the lunar  data to be performed. In addition, 

a practical measurement o f  the response using the experiment qualification 

model was t o  be attempted t o  corroborate the analysis. A complete physical 

calibration was impractical. 

1-2 
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The analysis was continued on tw fronts.  A s impl i f ied model o f  the 

electronics was developed because the SCEPTRE simulation was cunbersm and 

cost ly t o  use. 

developed t o  remove the l imi ta t ions of the simple model and provide greater 

accuracy. 

I n  para l le l  wi th th is,  a re f ined model o f  the sensor was 

The sensor f i l m ,  co l lector  grid, and suppressor g r i d  were divided i n t o  

7,360 elements f o r  computational purposes. Using basic e lect rostat ic  pr in-  

ciples, the charge distr ibut ions on each plane were calculated f o r  both the 

applied potent ia ls and the charged partic:e. The 7,360 simultaneous equations 

that  resu l t  from the mutual interactions between elements were solved i t e r -  

at ively.  The program used a large area of computer memory and was slow t o  

converge t o  a resul t .  No complete resu l ts  were obtained from t n i s  model 

because e f f o r t s  were made t o  speed up the convergence and overal l  running 

time t o  save future costs. 

Two other programs, which apply the sensor model resul ts  t o  the elec- 

t ronics and then analyze the results, were prepared and checked on simulated 

data. Program descriptions are given i n  the Appendix. 

The conclusion from the analysis t o  date i s  that  the LEAM experiment 

data contain s ign i f i can t  information r e l a t i v e  t o  mechanisms operating a t  the 

lunar surface. 

lunar events recorded by LEAM must be transposed i n t o  parameters o f  pa r t i c l e  

mass, velocity, and chargp and t h e i r  respective variat ions i n  space and time. 

To accomplish th is,  a ca l ibrat ion of the LEAM i n  response t o  charged par t ic les 

must be completed. 

To f u l l y  understand and appreciate these mechanisms, the 

1-3 
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T h i s  report recomnends that the analysis be continued, i n  conjunction 

w i t h  work being performed by the Principal Investigator, to provide a cm- 

prehensive picture of the dus t  environment a t  the lunar surface. The results 

would be, i n  addition to  characterization o f  the particles, that  unique events 

would be characterized, a1 lowing segmentation o f  the measurement range, and 

event types would be correlated w i t h  lunar cycles and temporal effects. 

theses on d u s t  formation and trsnsport would be refined and opportunities 

would be devel oped for understanding several unexplained phenomena observed 

on the lunar surface by astronauts and other experimenters. 

Hypo- 

A meeting was conducted on 20 July 1976 by the LEAM Principal Investi- 

gator w i t h  Dr. W .  Quaide and M.J. S m i t h  of NASA Headquarters to  discuss the 

present LEAM progran status and the importance o f  continuing both the analysis 

of the experiment response to charged particles and the lunar  da ta  analysis. 

A summary of the LEAM study status and the proposed t a s k  for extended 

study of the charged particle phenomenon i s  included herein as Appendix B. 

1-4 
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SECTION 2 

INTRODU CT ION 

The study o f  the LEAM experiment's esponse t o  charged particles was 

init iated a t  the request o f  the Principal Investigator, when i t  was observzd 

t h a t  data over a 2-year period showed an incidence of signals w i t h  outputs 

of 6 and 7 PHA counts, far greater than anticipated from data obtained on 

previous space fl ights.  Particles of th is  energy would normally penetrate 

the front film and provide signals a t  the rear film, b u t  this was not ob- 

served. 

or collector g r i d  strips, or which recorded two accumulator counts for one 

event. These events could not be explained by the normal experiment response 

to hypervelocity particles. The average event ra te  of less t h a n  10 particles 

per 3-hour period gave an extremely low probability of two particles being 

incident on the sensor a t  precisely the same time. The inhibit c i rcui t ,  which 

was employed t o  prevent crosstalk between adjacent sensor elements, prevents 

noncoincident events from being recorded i n  the same time frame. This guar- 

antees t h a t  PHA and accumulator data can be identified w i t h  the correct event. 

The majority of the events occurred around sunrise and xmset, b u t  thermally 

induced signals were ruled o u t  because the onset of the d a t a  occurred u p  t o  

60 hours before sunrise, when the experiment was thermally stable. 

operation o f  the experiment was verified by the internal calibration signals, 

which were generated automatically every 15.5 hours. 

There were numerous events which recorded impacts on two film s t r ips  

Normal 
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The preliminary analysis was discussed i n  de ta i l  i n  a Bendix report, 

ASTIR/TM66, prepared 1 August 1975. The electronics analysis using SCEPTRE 

showed t h a t  for long i n p u t  pulses to the PHA peak detector the diode i n  the 

forward p a t h  continued to conduct and maintain the i n p u t  to the threshold 

detector. T h i s ,  i n  t u r n ,  allowed the PHA counter to continue incrementing. 

In a d d i t i o n ,  i f  the pulse length and amplitude were above certain levels, a 

condition arose which caused double counting of the film accumulator. The 

accumulator increments whenever the PHA threshold detector i s  triggered. 

Double triggering was caused by the combination of pulse length, amplitude, 

and the circuit time constants. The circuit was designed for pulses of 2 

microseconds maximum length, while the pulses g i v i n g  the effects discussed 

above were over 80 microseconds i n  length. 

TJ determine the type of signal t o  be expected from the sensor i q  res- 

ponse to  charged particles, a very simple model of the sensor was developed 

which treated the sensor planes as solid conducting sheets rather t h a n  95% 

transparent grids. The model permitted an increased understanding of the 

electrostatic principles involved and allowed determination, w i t h i n  an order 

of magnitude, of the ranges of particle parameters t o  which the sensor would 

respot ’ . 
The simple sensor results showed that the electrmtatic forces involved 

were significant for particles of masses and charges i n  a range which could 

reasonably be expected t o  be present on the moon. 

were below 1 kilometer per second (km/sec), signal pulse lengths and amplitudes 

could be obtained from the film which  would cause the PHA circuit t o  give the 

observed large values and double accumulator count ing .  

Also, if the velocities 
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Thus, the simple sensor and SCEPTRE analysis showed that LEAM could 

respond t o  slowly moving charged particles and give data outputs similar to 

those observed on the moon. The simple model could not  give accurate values 

for the mass and charge ranges measurable by the experiment because of i t s  

gross simplification o f  the electric fields. Also, i t  d i d  not include any 

modeling of the film strips adjacent t o  the one being considered, which meant 

that multiple events and inhibits were ignored and FHA signal levels were 

general ly  too smal 1. 

To alleviate the limitations of the simple sensor and t o  provide an 

electronic model which would provide cost-effective results, a refined sen- 

sor model and a simple electronics model were developed. 

model included a true representatioK of the g r id  structures and the inter- 

actions between elements. 

The refined sensor 
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SECTION 3 

METHOD OF ANALYSIS 

3.1 REVIEW OF LEN OPERATION 

3.1.1 Sensor Operati on 

The sensor (Figure 3-1) normally operates upon impact of a particle 

that  causes ionization of film material a t  the impact s i te .  This  ionization 

is collected a t  the filrr! and collector g r id .  The negative potential of the 

film at t racts  the positive ions while the positive potential of the collector 

g r i d  at tracts the electrons. These actions cause small current f l m s  i n  the 

film and collectar g r i d  circuits,  which result  i n  a positive voltage pulse t o  

the film amplifier and a negative voltage pulse to the collector g r i d  ampli- 

f i e r .  The film and collector g r i d  areas are divided i n t o  l-inch strips, which 

allnw for identification of the impact s i te .  

A second film and g r i d  assembly is situated behind the f i r s t  and sep- 

arated from i t  by 5 centimeters. The operation of this rear assenbiy is 

similar to that of the front assembly. An analysis of impact locations on 

the b o  films provides an indication of the direction of travel of the particle,  

while the time taken to traverse the intervening front and rear film space 

provides a measure o f  particle velocity. 

3.1.2 Electrorics Operation 

The typical dual sensor logic  i s  divided i n t o  two sections, the f i r s t  

The meas- r&:rk or measurement section, and the rear rank, or buffer section. 

urement section includes identification pulse storage latches, accumulators, 

3-1 
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PHA conversion counters, and TOF conversion counter. The rear rank is a 

parallel- n ,  serial-out shift register, which shifts data, upon demand, to 

the ALSEP central station i n  predetermined telemetry frames. 

register s only cleared when mi data are to be transferred into i t  and 

after the old data have been transmitted to ALSEP 6 t  least once. The new 

data a r e  transferred from the front rank storage latches to the shift  regis- 

ter, provided that the current frame i s  not one i n  which daca are t o  be 

transferred to ALSEP. 

the new data are retained i n  the front rank storage latches, t h u s  allowing 

data from two events to  be retained. Further hits i n  rapid succession would 

be evidenced by accunulator counts only. The time interval during which 

rapidly occurring events, which exceed the storage capability, would be lost 

varies between 2 millisxonds and 3 seconds, depending upon the position of 

the telemetry sequence i n  ALSEP. Data have not been observed which approach 

this event frequency. 

The shift 

If the old data have been transferred to ALSEP once, 

The pertinent circuits for this analysis are those associated w i t h  

the front film as shown i n  Figure 3-2, which shows the 2lements o f  one typical 

film channel. These are the circuits which were previously referred t o  as 

the front rank or measurement section. There are two d i s t i n c t  s ignal  channels 

beyond the film amplifier: 

and ( 2 )  the pulse height analysis, or PHA channel. 

ately. 

(1) the film strip identification channel, or film ID, 

Each is discussed separ- 
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3.1.2.1 Fi lm S t r i p  ID Channel 

The ccnmnon f i l m  ampl i f ier  provides the -3-volt  f i l m  bias and a non- 

inver t ing gain o f  3. The output i s  appl ied t o  the f i r s t  ampl i f ier  of the ID 

channel, the PHA ampli f ier, and the analog i n h i b i t  inputs o f  the three other 

f i l m  channels. 

The I D  ampl i f ier  provides an inver t ing gain o f  5.25 a t  i t s  n o m 1  

input and a gain o f  0.49 a t  each o f  three noninverting inputs, which receive 

analog i n h i b i t  signals from the other f i l m  ampli f iers. These i n h i b i t s  cause 

the output o f  the ID ampl i f ier  t o  remain a t  o r  above 0 Vdc i f  one o f  more o f  

the other f i lms receive a coincident signal which i s  approximately 10 times 

greater than tha t  on f i l m  1. 

the other f i lms, an output i s  applied t o  the threshold detector. The thres- 

hold detector i s  designed t o  apply a log ic  "1" t o  the fol lowing NAND gate i f  

the input signal a t  the f i l m  ampl i f ier  exceeds 1 m i l l i v o l t  (mV). The NAND 

gate sets the fo l lowing la tch  c i r c u i t ,  provided tha t  the ID i n h i b i t  signal 

from the central electronics i s  also a t  log ic  "l", ind icat ing tha t  no other 

f ron t  f i l m  la tch  i s  set. The la tch  c i r c u i t  provides the signal t o  the output, 

v ia a buffer, t o  indicate which f i l m  s t r i p  has been impacted. 

I f  f i l m  1 has a signal equal t o  o r  greater than 

When the I D  la tch  i s  set, a l l  the ID signals are inh ib i ted  f o r  the 

four front f i l m  s t r ips,  which has the e f fec t  o f  negating crosstalk and makes 

the I D  channels f o r  the f ron t  f i l m  unresponsive u n t i l  the measurement cycle 

f o r  th is  h i t  i s  completed. 

3- 5 
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The OR function o f  a l l  the f i l m  and collec%or latches and the micro- 

phone sample one-shot signal s ta r ts  a measurement cycle. If a co l lec to r  l a t ch  

only i s  set  during the l-mil l isecond (msec) measurement period, a normal se- 

quence occurs, except tha t  tk data transfers and c lear  are inhibited while 

the c lear  la tch  signal is generated. Thus, a co l lec to r  signal alone w i l l  not  

be presented i n  the data output nor w i l l  ex is t ing data be changed. 

When the system s t a r t  occurs, a l -mi l l isecond gate signal i s  gen- 

erated which has three functions: 

1. 

2. 

Provide an enable t o  the f ron t  and rear PHA counters. 

Provide a synthetic rear f i l m  signa. .a complete the tfme o f  

f l i g h t  sequence i f  the normal signal does not  occur w i th in  1 

m i  1 1 i second. 

3. Prevent a premature measurement completion signal. 

The f i l m  count accunulator measures PHA signal thresh0 i d  crossings, 

providing tha t  a f i l m  I D  la tch  i s  set. Thz I D  latches are inh ib i ted  f o r  any 

fur ther  h i t s  during a measurement cycle, but the accunulator c i r c u i t  may give 

evidence o f  l a t e r  h i t s .  

f i r s t ,  the PHA is augmented, but no d i rec t  evidence o f  the second h i t  survives 

If the second h i t  i s  delayed su f f i c i en t l y  t o  create cn independent PHA pulse, 

but l i e s  s t i l l  w i th in  the l-msec measurement gate, i t  w i l l  cause fur ther  PHA 

counting and one addit ional increment to  the f i l m  accumulator. If i t  occurs 

more than 1 msec a f te r  the f i r s t  h i t ,  but before t ransfer o f  data i n t o  the 

s h i f t  register,  i t  w i l l  cause an increment o f  the accumulator only. 

If a second h i t  occurs wi th in  the PHA pulse o f  the 

3-6 
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3.5 .2.2 Film Signal Pulse Height Analysis 

The signals f rom the four f i l m  amp1 Fiers are srarned by the PHA 

atnplifier which, together w i th  the f i l m  amplif ier, gives a gain o f  -10 fran 

f i l m  s t r i p  t o  PHA ampl i f ier  output. This output i s  passed t o  the Peak Detec- 

tc* c i rcu i t ,  which i s  a high-gain ampl i f ier  wi th  a closed-loop gain o f  +1.0 

FL ,. negative signals. The detector charges the capacitor C to  the peak o f  the 

iriput signal. Uhen the input signal i s  removed, the diode i n  the forward path 

prevents discharge o f  the capacitor C back through the ampli f ier. 

When transistor TX i s  on, capacitor C discharges wi th  a time con- 

stant that  i s  designed t o  give a 240-microsec decay time. The voltage across 

the capacitor i s  sensed by the PHA threshold detector, which i s  a high-gain 

operational ampli f ier. When the voltage across capacitor C i s  more negative 

than -10 mV, the detector output i s  clamped a t  -0.6 V, the "0" level  f o r  the 

log ic  inver'_.r o f  the fol lowing stage. When the voltage i s  more pos i t ive than 

-10 mV, a log ic  "1" (+2.5 V )  i s  presented t o  the inverter input. 

When the voltage on capacitor C i s  below threshold, the log ic  gates 

hold t rans is tor  TX on, which causes capacitor C t o  be i n  a short time con- 

stant mode. 

log ic  v+i. the next 25-kHz clock pulse sets the f l i p - f l op .  When the f l i p -  

f loo  ss set, t ransistor TX turns on (allowing capacitor C t o  discharge), the 

LrlA counter i s  enabled, and the accunulator i s  incremented. When the capa- 

c i t o r  discharac; t o  below threshold level ,  the threshold detector causes the 

f l i p - f l oc  t o  be reset and the PHA counter to  be disabled. The length o f  the 

''en threshold i s  achieved, t ransistor TX i s  turned o f f  v ia  the 
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pulse from the f l ip - f lop ,  and thus the length o f  time the PHA counter i s  en- 

abled, i s  proportional t o  the peak o f  the input pulse. Thus, the count re- 

corded by the PHA counter i s  a measure o f  the pulse height. 

The synchronization o f  the capacitor discharge w i th  the 25-kHz 

clock reduces the quantizing error.  

3.2 ANALYSIS OF PULSE HEIGHT ANALYSIS (PHA) CIRCUIT 

The descript ion c f  operation given i n  Section 3.1 applies t o  the type o f  

par t i c le  for which the experiment was designed. That i s ,  a noncharged, hyper- 

veloci ty pa r t i c l e  which would cause a pulse input t o  the electronics wi th the 

fol lowing characterist ics: 

Amp1 i tude 

Rise Time 400 nanoseconds (nsec) 

Fa l l  Time 1,000 nsec 

Width 600 nsec 

1 t o  200 mV peak 

The experiment was tested and qua l i f ied  f o r  t h i s  type o f  input under a l l  con- 

d i t ions o f  lunar eiivironment, and thus shown t o  meet the design iequirements. 

When considering the effects o f  charged par t ic les upon the sensor, i t  

was real ized that, for slow part ic les,  current pulses o f  much greater length 

than 2 microsec could be obtained. 

l a t e r  sections.) The PHA c i r c u i t  was then analyzed f o r  the ef fects  o f  long 

input pulses. 

(The sensor dynamics are discussed i n  

3- 8 
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A qua l i ta t i ve  review o f  the peak detector c i r c u i t  shows that, for a 

short pulse, the capacitor C i s  charged t o  the peak o f  the input signal and 

the &cay time o f  the charge on the capacitor i s  proportional to  t h i s  peak 

value. The time constant i n  t h i s  mode i s  approximately 45 microsec, which 

was chosen t c  give the maximum count o f  7 i n  240 microsec. 

indicates a t  least  1 whenever a threshold i s  achieved.) When a long pulse 

occurs, the diode i n  the forward path i s  held i n  a conducting state, even 

while capacitor C i s  being discharged i n  what i s  normally ca l led  the short 

time constant mode. The e f fec t  of the conducting diode i s  t ha t  the signal 

i s  maintained a t  the ampl i f ier  output. The r e s u l t  a t  capacitor C i s  t o  

e f fec t i ve ly  increase the time constant by 200 times, thereby maintaining the 

signal above threshold f o r  a much longer t ime.  The longest pulse which w i l l  

not change the PHA value i s  theoret ica l ly  80 microsec, but the value depends 

upon the time relat ionship between the s t a r t  o f  the pulse and the 25-kHz clock 

and could be less than 80 microsec. 

(The PHA output 

I n  addit ion t o  the extended count f o r  long pulses, a condition arises 

tha t  causes double accumulator counts. 

and length occurs, the f a l l i n g  edge o f  the pulse causes the input t o  the peak 

detectw t o  go hard posit ive, shutt ing o f f  the diode. The capacitor C now 

discharges normally. The time constants ahead o f  the peak detector a r e  such 

that  i t s  input returns t o  a negative value, which causes the diode t o  conduct 

again. If the capacitor C had previously discharged below threshold and the 

signal i s  large enough (negative) t o  exceed threshold again, an extra accun- 

u la tor  count i s  made and renewed PHA counting occurs. 

If a pulse o f  su f f i c i en t  amplitude 
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The above analysis indicates tha t  negative pulses can also give PHA 

thresholds. 

The qua l i ta t i ve  analysis was followed by a detai led quant i tat ive anal- 

ys is  o f  the electronics and by laboratory tests on the experiment prototype. 

3.2.1 Circus 5 Aialysis 

The c i r c u i t  analysis was performed on the typ ica l  f i l m  channel o f  

Figure 3-2.(from the f i l m  input t o  the input o f  the PHA threshold detector). 

The emphasis was placed on the peak detector port ion o f  the f i l m  ck.mnel since 

t h i s  i s  the c i r c u i t  which gives r i s e  t o  extended counting and mul t ip le  accum- 

u la tor  counts. The remainder o f  the c i r c u i t r y  was simulated by passive net- 

works and f ixed gain terms. 

A detai led simulation was performed using the SCEPTFtE* computer pro- 

gram t o  give a thorough understanding o f  the c i r c u i t  operation under a l l  con- 

di t ions.  This knowledge was then used t o  develop a simple model o f  the c i r -  

cu i ts  because the SCEPTRE program used an excessive amount o f  computer time 

f o r  t h i s  component configuration. This long run time would make the task very 

expensive f o r  the mul t ip le  computations we planned over the ranges o f  mass. 

charge, and ve loc i ty  applicable t o  the problem. 

3.2.1.1 SCEPTRE Simu 1 a t  i on 

The simulation program, SCEPTRE, was developed by IBM f o r  the A i r  

Force Weapons Laboratory a t  K i r t land A i r  Force Base, New Mexico. The pro- 

gram calculates i n i t i a l  conditions, and translent and steady-state responses 

f o r  large networks. 

* 
Bowers, J.C. and Sedore, S.R., "SCEPTRE: A Computer Program f o r  C i rcu i t  and 
System Analysis ,'I Prentice-Hall , Inc. 1971. 

3-10 



BSR 4234 

The f i l w  and PHA amplif iers were simulated by a simple gain term 

and the transistor TX was assuned t o  be i n  the fu l ly  conducting state, i.e., 

ON; thus, the f l i p - f l o p  and log ic  control o f  t rans is tor  TX were not  simulated. 

The l inear  t ransistors were simulated i n  the nonlinear regions w i th  the best 

data available. The peak detector c i r c u i t  i s  shown i n  Figure 3-3. 

A typ ica l  output from a run i s  shown i n  Figure 3-4. The output i s  

the voltage across capacitor C, shown as pos i t ive because o f  the sign conven- 

t i o n  used i n  the simulation. The output i s  observed t o  return negative a t  

700 microsec, but on t h i s  occasion the amplitude was insu f f i c i en t  to  cause 

further PHA o r  accumulator counting . 
A sumnary o f  the data obtained from several simulations i s  show 

i n  Table 3-1. A l l  runs were made fo,. 1-msec duration, which i s  the measure- 

ment sample time. The times quoted are the length o f  time the output pulse 

remained above 9 mV, which i the threshold level  a t  the fol lowing detector 

c i r cu i t .  The data show tha t  PHA levels o f  7 can be achieved wi th  inputs o f  

30 mV and the mul t ip le  pulses do occur. 

The simulation program provides in fomat ion on a l l  the intermediate 

points wi th in  the c i r c u i t .  This information was used t o  i den t i f y  c r i t i c a l  

components and, thus, enable us t o  devise a simple model o f  the c i rcu i ts .  

Computations were made on ident ical  data inputs, using both SCEPTRE 

and the simple model t o  ver i f y  the l a t t e r ' s  va l id i ty .  

3-11 



: -  

L 
0 

0 
I 

3 0  

ORIG~NAL PAGE IS 
OF PWR Q U m  

3-12 



* .  I 
I 4 

I 
I 

I I 

i I 

i : i 
1 I 

.---I 
0 
;' 
f 

.L- 

o 

0 
. o  

0 
* o  

0 I .  

1 

f b 

0 

- 8  

a 
b 

0 
0 

0 

* 1. * 
0 .. e 

l .  b 

I 
! 

\ 
e! 

f 

! 

I " 0  
i '  

. 

0 .  
.: i 
8 -  

. e  
8 . o  
0 

0 

0- 
* '  

* 
0 .  

8 

a 

i 
I 

i 
J 

' i 
. !  

! 
. 1 '  

I 
I 

I 

W c c 
c -. 
c 

E P w 
V 
u) 

a c 
1 
I 

! 

! ! 
I 

. 
a 

0 

' C  .. 

n 
n 

3-13 



BSR 4234 

Input 
h p l  i tude 

50-microsec Pulse 

50 mV 
100 
150 

100-microsec Pulse 

50 mV 
100 

150 

200-mi crosec Pul se 

50 mV 

300-microsec Pul se 

10 mV 
20 
30 

40 

50 

Table 3-1 
SCEPTRE Program Results 

Output Pulse 
Length (microsec) Camnents 

184 
211 
234 

213 
243 

260 

248 

189.9 
219.6 
235.0 

245.6 

254.03 

No subsequent pulses - A l l  normal 

No subsequent pulse 
Returned above 9 mV a t  730 microsec 
u n t i l  890 microsec 
Returwd above 9 mV a t  670 microsec 
u n t i l  1.91 msec 

Returned above 9 mV .a t  720 microsec 

Returned above 9 mV a t  e 7 8 0  
microsec 
Returned above 9 mV a t  e760  
m i  crosec 
Returned above 9 mY a t  ~ 7 4 6  
microsec 

All longer than  normal 
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3.2.1.2 Simplified Peak Dehctor Model 

Analyzing the data from the SCEPTRE program iden t i f i ed  the impor- 

tance o f  the various components within the peak detector, thus allowing us 

t o  eliminate many of them without a f fect ing the veracity a f  the resri?t. 

The obvious simpl i f icat ions are to neglect the transistor- + -  "ernal 

capacitances as they are small and the associated time constants h 

effect on the resul t .  Next, the coupling capacitors i n  the forward a m  ieed- 

back paths are found t o  have no e f fec t  on the length o f  time the output re- 

mains above threshold o r  on the cause o f  the double accunulator counts. 

-? 

When the input signal i s  negative, the c i r c u i t  behaves as a simple 

ampl i f ier  wi th  a gain o f  1. When the signal i s  positive-going, the diode 

ceases t o  conduct, allowing capacitor C t o  discharge. Once the diode ceases 

t o  conduct, the feedback loop opens and a large back bias i s  applied due t o  

the high open loop gain. The diode w i l l  not conduct again u n t i l  a forward 

bias i s  applied from the comb ned effects o f  the capacitor discharge and 

input level.  

a switch, which opens whenever the input increases pos i t ive ly  faster than the 

ra te  a t  which the voltage across R12 increases. The ra te  o f  r i s e  o f  the 

voltage across R12 i s  calculated for the switch-open conditions. 

closes when a forward bias i s  achieved.) 

I n  the s impl i f ied model , Figure 3-5, the diode i s  replaced by 

(The switch 

The input t o  the peak detector i s  an emitter fol lower wi th  a paral- 

!el capacitor across i t s  load. The e f fec t  o f  the capacitor i s  t o  r e s t r i c t  

the ra te  a t  which the emitter can r i s e  towards th12 +5-volt supply l i ne .  Con- 

sequently, the input t rans is tor  cuts o f f  i f  t h i s  input signal r ises pos i t i ve ly  
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faster than the emitter load can fol lar .  The emitter fol lower j u s t  described 

i s  replaced by a switch whose condition depends upon the direct ion and r a t e  o f  

change o f  the input signal. 

The l o a d i q  of the eaitter fol1,wer upgn the coupling c i r c u i t  be- 

tween the PIM ampl i f ier  and the peak detector i s  small, so the coupling c i r -  

cuit i s  P ,.ated as an independent element. The signal source VS2 f o r  the 

peak detector i s  then the output o f  the coupling c i r c u i t .  S ia l lar ly ,  the f i l a  

anp l i f i e r  loadhg of the coupling c i r c u i t  between i t s e l f  and the f i l m  i s  small, 

allawing these components t o  be treated independently. The signal source VS1 

i s  -10 times the voltage across res is tor  R32 because the f i l m  and PHA ampli- 

f iers,  together, give an inver t  ng gain o f  10. 

The simple d e l ,  Figure 3-5, i s  thus comprised o f  a un i t y  gain 

amplif ier, two voctage sources, two switches, and 12 passive components. The 

mcdel has four possible operating conditions: 

1. 

2. 

3. 

4. 

The input signal fran the f i l m  i s  divided i n t o  many elemental ramp 

Switches A and B closed. 

Switch A open, switch B cl-osed. 

Switch A closed, switch B open. 

Switches A and B open. 

functions with known i n i t i a l  value, slope, and t i m e  dunt ion .  The response 

o f  the model t o  such a ramp i s  calculated ( f o r  a l l  four conditions) using 

Laplace transform techniques. The correct response t o  be applied f o r  any 

part icular ramp element i s  detecnined by f i r s t  deducing the state o f  switches 

A and B a t  the end o f  the t ime interval .  For Pxamle, i f  the switches are 
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init ially closed and a particular ramp input  would cause switch B to  be open 

a t  the end of t h i s  time interval, the true signal values a t  the various points 

i n  the model are calculated using the condition 3 equations. The time incre- 

ments are chosen-to be small enough that the errors incurred due t o  openirlg 

switch B slightly early are negligible. 

A further canplication of the model is that, for  large signals, one 

or a l l  o f  the film, PHA, or peak detector amplifiers can saturate. This con- 

d i t i on  is accounted for using the ramp technique, where the relevant amplifier 

output is treated as a ramp w i t h  zero slope. 

3.2.1.3 Complete Fi lm Channel Model 

The remainder of the film channel of Figure 3-2 was nodeled t o  

simulate the correct LEN4 response t o  the sensor signals. 

The film and collector g r i d  ID model accounts for the analog i n h i b i t  

signals from the three sensor elements, a t  either the film or  collector g r id ,  

respectively, which are not impacted by the particle. A charged particle, 

unlike an uncharged meteorite particle, can induce signals i n  adjacent sensor 

elements. This  affects the charge/velocity characteristics of the particle 

required t o  achieve threshold, because the i n h i b i t  signal from one element 

effectively reduces the signal from an adjacent element. In addi t ion,  the 

timing of the element IDS relative t o  one another and between films and 

collector g r i d s  is modeled. The inhibit signals prevent multiple film I D S  

unless they occur w i t h i n  approximately 0.2 microsec of one another. This  

limitation also applies to  the collector gr ids .  When a film or collector 
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g r i d  IO i s  received, the system s ta r t s  a measurement sequence wi th  the set t ing 

of a bracket one-shot vhich lasts  f o r  1 msec. 

the sequence, a f i l m  ID must be received within t h i s  l-msec period o r  no data 

transfer takes nlace. A f i l m  I D  alone can cause the system t o  operate th rwgh  

i t s  f u l l  measurement sequence. 

I f  a col lector signal s tar ts  

When a f i l m  10 i s  indicated, the four f i l m  signals are sunned and 

applied t o  the peak detector model. The output i s  recorded f o r  PHA count and 

accunulator count. The accumrlator counts PHA threshold c rcx ings .  The PHA 

count i s  l imi ted t o  7 f n  the LEAM, but i n  the model i t  i s  allowed t o  reach i t s  

f u l l  value o f  26 i f  a long enough pulse occurs. This i s  done t o  obtain more 

information about the response. 

3.2 -2  Laboratory Tests 

Measurements were made using the Prototype LEAM Experiment, the experi- 

ment t e s t  set, a variable pulse width generator, and a storage oscilloscope. 

The LEAM center support structure was removed from the outer hcusing and ther- 

mal bag, and the east sensor was removed from the center support structure. 

This dismantling was required t o  allow access t o  the microphone board upon 

which the PHA c i r c u i t r y  resides. The sensor c i r c u i t r y  was now without shield- 

ing, which meant that  it was very susceptible t o  noise, making other than 

qi !a l i tat ive measurements d i f f i c u l t .  

Pulse inputs were injected v ia  the tes t  set ca l ibrat ion adapter box, 

with the input pulse amplitude being measured d i r e c t l y  on the f i l m  input test  

point. 
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Heasurements were wade on the A f i l m  channels 1 and 2, which gave 

ident ical  resul ts  as follows: 

Input 

Pulse 
Width Pulse 
(micro- knpl i tude 
seconds) (mi 1 1 i v o l  t s )  

2 

100 
300 

output 

4.5 
6.5 

FHA o f  1 registered on t e s t  set  lamps. 
PHA o f  2 registered on t e s t  set  lamps. 

28 A t  capacitor C: -250 mV peak pulse; r i s e  
time 1 microsec; f a l l  time 
t o  -10 mV, 120 microsec. 

A t  f l i p - f l op  output: 4.5-volt l og i c  pulse 
120inicrosec width. 

30 
30 

F i r s t  noticeable change a t  f l i p - f l o p  output. 
Output a t  f l i p - f lop ;  log ic  pulse greater than 
200-microsec width, s ta r t ing  a t  threshold 
crossing. Second pulse a t  950 microsec from 
threshold, greater than 20-microsec width. 
Occassional mu1 ti p l  e pul ses occurred around 
950 microsec from threshold. 

2 -100 PM threshold. 
6 - 28 PHA threshold. 

50 - 5  PHA threshold. 
?OO -1.5 PHA threshold. 

I n  sumnary, the laboratory tests showed tha t  long pulses give large 

PHA counts wi th the actual value depending upon pulse amplitude and duration. 

Mult ip le pulses can occur, which add t o  the PHA count i f  they occur during 

the 1-msec sample period, and increment the f i l m  h i t  accumulator, g iv ing the 

appearance o f  mul t ip le  f i l m  h i ts .  These tests also confirmed tha t  negative 

pulses a t  the f i l m  input can give PHA and accumulator outputs. 
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3.3 REFINED SENSOR HODEL 

A previous report, ASTIWlU66, detailed the analysis which led to a 

simple model of the sensor. This simple model verified that the sensor can  

give valid responses to  charged partlcles w i t h  certain mass, charge, and 

velocity characteristics. The model has several limitations which made it 

difffcult or, i n  sane cases, impossible to  accurately p&*,-t the response 

to certain particle types, and also gave undetermined inaccuracies i n  the 

results . 
3.3.1 Simple Model and I ts  Limitations 

The simple model was based on an analysis that considered the grids 

and film to  be infinite plane conducting sheets. This was modified a t  the 

grids by applying a simple cosine function to  the forces on t h e  particle t o  

allow the force t o  go t o  zero i n  the g r id  planes. 

The limitations of the simple model were: 

1. Solid electrodes *re used instead of g r ids  w i t h  95% transpar- 

ency. Thus, the g r i d  signals and forces due t o  induced charges 

were overestimated. 

There was no interaction accounted for between the suppressor/ 

collector space and the film/collector space. Thus, the film 

could not see the particle u n t i l  i t  passed the collector g r i d .  

Induced charges were calculated by assuming the 1-inch by 4- 

inch strips were circles of equivalent area. 

2. 

3. 
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4. Only one film strip and collector grid strip ere considered, 

whereas a particle w i l l  induce charges i n  a l l  film strips and 

collector grfd strips. Th i s  prevents considerations of multiple 

elenrent events a t  the film or collector gr ids  and gives inaccurate 

values for particle characteristics which can cause PHA t h r e s -  

holds. 

The analysis only considered particle positions between the sup- 

pressor g r i d  and film, w i t h  no account being taken of the forces 

on the particle outside the sensor. Thus, a l l  calculations 

assune a particle emerging from the suppressor g r id ,  on the 

film side, w i t h  a certain velocity. The true sensor measurement 

range is not calculated, as the suppressor, due to its potential, 

w i l l  accelerate positive particles and decelerate negative parti- 

cles, while the image forces accelerate a l l  particles. 

5. 

To overcome the limitations of the simple model and t h u s  obtain a more 

complete and accurate result, a different approach was utilized t o  refine the 

model. 

3.3.2 Refinad Model 

The sensor is  composed of three parallel planes, termed the film, col- 

lector g r i d ,  and suppressor grid. The film and collector g r id  planes are each 

d iv ided  i n t o  four 1 - i n .  by 4-in. strips and each strip is  composed of four 1 - in .  

by 1 - i n .  squares. Thus, each plane has 16 1 - i n .  by 1 - in .  segments. The sup- 

pressor g r i d  i s  formed by one plane divided i n t o  a similar set o f  16 segments, 

One o f  the 1 - i n .  by 1 - i n .  square sections i s  shown i n  Figure 3-6. 
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The probleaa resolves i t s e l f  i n t o  tw areas, narely the charges induced 

i n  the sensor and the potent ia l  a t  the part ic le.  The change i n  the induced 

charge as the p a r t i c l e  posi t ion changes gives a measure o f  the current i n t o  the 

sensor electronics, whi le the dif ference i n  potent ia l  behseen successive p a r t i -  

c le  positions gives a measure o f  the work done by the pa r t i c l e  and, hence, 

enables calculat ion o f  the ve loc i ty  p r o f i l e  along the path. 

The charges on the sensor elements ar ise f ran  tm, sources, the charges 

due t o  the applied potentials and the charges due t o  the par t ic le .  Both d i s t r i -  

butions are require bo determine the potent ia l  a t  the part ic le,  while only the 

l a t t e r  i s  required t o  determine the current f low due t o  p a r t i c l e  movements. 

The potential a t  the p a r t i c i z  i s  thus seen t o  be from two sources, the applied 

potential charge and i t s  own induced charge. This l a t t e r  e f f e c t  i s  s imi lar  t o  

the image ef fects used on the simple model. 

The task o f  modeling the sensor was complicated by several factors. 

The major problem was containing the model wi th in  a size that could be handled 

by the computer. The job i s  equivalent t o  solving nearly 8,000 simultaneous 

equations. 

between accuracy and the number o f  elements i n t o  which the sensor f i l m s  and 

grids could be divided. A secondary problem associated with the number o f  

elements i s  t ha t  o f  devising a satisfactory bookkeeping scheme f o r  keeping 

track o f  which element i s  influencing which. This task also i s  affected 

strongly by programing l i m i t a t i o n s  o f  ar ray dimension s izes and allowable 

DO loop nesting. The f i na l  model has 7,360 elements which between them have 

over 27 m i l l  ion interactions. 

dating these interactions wi th in 132,701 influence coeff ic ients.  

It rapid ly  became obvious that  a canpranise had t o  be reached 

Considerable e f f o r t  was expended i n  a c c m o -  

The use o f  
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t h i s  reduced nmber o f  coefficients required careful boakkeephg and the! 

formulation o f  gemral ized equations tha t  expressed the relat ionships o f  the 

elernents t o  the coefficients. 

The coeff icfents could not a l l  be retained i n  memory a t  the sime -:ime, 

so they were calculated and retained on magnetic tape and cal led upon when 

required. The most e f f i c i e n t  method f o r  operating the sensor model would be 

t o  have a l l  the coeff ic ients avai lable a t  once, but as t h i s  was not  possible, 

a compromise o f  using two sets o f  coeff icients a t  a time was used t o  speed up 

the i t e r a t i v e  process. The two largest coeff ic ients take up 130,000 bytes o f  

core. 

The sensor physical shape precludes i t s  being easi ly divided i n t o  uni- 

formly sized elements. A l l i e d  t o  t h i s  i s  the task o f  calculat ing the in te r -  

actions between the various elements. As the configurations and shapes are 

not found i n  standard tex t  books, a l l  the interactions f o r  the potentials pro- 

duced a t  one element by a charge on another were calculated from elementary 

electrostat ic principles . 
The f i l m  and grids are divided i n t o  7,360 uniformly charged elements, 

which are 0.125 in.  on a side. The charge d is t r ibut ions due t o  the pa r t i c l e  

and the applied potentials are calculated separately and superposed. 

I n  ei ther case, the charge on an element i s  adjusted so that  the total 

potential,  caused by i t s  own charge and that due t o  a l l  other element charges 

and the pa r t i c l e  if considered, i s  equal t o  t o  the applied potent ia l .  The 

charge adjustment i s  made i t e r a t i v e l y  by changing the charge on each element 

t o  the newly determined value a t  each i terat ion.  The applied potentials are 

s e t  t o  zero f o r  calculations o f  the charge due t o  the par t lc le .  
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The i terat ions are continued u n t i l  the changes i n  charge d i s t r i bu t i on  

a t  each step are less than a specified value, Le., the calculat ion has con- 

vwged t o  within an acceptable tolerance o f  the f ina l  value. 

A l l  calculations and resul ts are i n  terms o f  a u n i t  coulomb charge 

on the part ic le.  The potent ia l  of each element due t o  a l l  other el-nts o f  

the sensor i s  calculated using a set o f  stored "influence coefficients." 

These coeff ic ients are the values o f  potential a t  an element due t o  a u n i t  

charge a t  another element. To save computer time, they were calculated once 

using f i r s t  pr inciples of  e lectrostat ics and stored f o r  fu ture use. A s imi lar  

set of coeff icients i s  calculated for each pa r t i c l e  position, but they are 

determined i n  rea l  time f o r  each new pa r t i c l e  path. 

A computer program was prepared t o  perform these calculations. Several 

options are made available which are selected by input variables o r  cards. 

The basic calculations are: (1) t o  calculate the charge d is t r ibut ions due t o  

the applied potentials and store them on tape; these distr ibut ions are f i xed  

and used often; (2) t o  calculate the charge d i s t r i bu t i on  due t o  the part ic le;  

and (3 )  t o  calculate the potential a t  the p a r t i c l e  due t o  (a) the applied 

potential charge d i s t r i bu t i on  and (b) the pa r t i c l e  image charge distr ibut ion.  

Items 2 and 3 are repeated f o r  each posit ion o f  the par t ic le .  The charges on 

each f i l m  s t r i p  and col lector g r i d  s t r i p  are sumned t o  give the t o t a l  charge 

on each element a t  each step. The data re la t i ve  t o  a part icular pa r t i c l e  

path are stored on tape f o r  future use. 
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3.4 SYSTM MODEL 

To Qtennine the response of the LEAM to  a charged particle, the data 

obtained from the sensor model are used as an inpu t  to the electronics d e l .  

The sensor model output is the characteristics of a particular path through 

the sensor calculated using a particle of u n i t  charge. The system mode: 

uses these data i n  conjunction w i t h  the parameters for the particular parti- 

cle i n  question t o  derive the actual response t o  t h a t  particle. Thus, the 

profile o f  the current flow i n  each film and collector gr id  str ip i s  deter- 

as mined versus time. The profile is then applied t o  the electronic mode 

discrete ramp inputs for each time interval. 

A program was prepared t o  accomplish this which performs the fol 

tas ks : 

owing 

1. Reads input  cards t o  determine which of the following options t o  

perform: 

a. 

b. 

i. 

d .  

e. 

f. 

9. 

h .  

Selection of sensor, up, east or west and particle path. 

Normal or shielded film on east sensor. 

Positively or negatively charged particles. 

Preselected or random mass and charge values. 

Number of particles. 

Particle velocities. 

Whether output  is t o  be plotted and, if so,  the dimensions 

o f  the axes. 

How many of the da ta  points t o  l i s t  on output .  
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2. 

3 ,  

4. 

5. 

6. 

7. 

8. 

9. 

I f  a plot i s  desired, the p l o t  program data are generated. 

If random par t i c l e  characterist ics are desired, a random nunber 

generator i s  employed t o  derive mass and charge values. 

Data relevant t o  selected pa r t i c l e  path read from tape. 

Calculates work done on pa r t i c l e  between successive steps and 

calculates veloci ty a t  each step. 

Calculates currents i n  f i lms and col lector gr ids from rate  o f  

change o f  charge. 

Determines i f  f i l m  and co l lector  g r i d  IDS occur. 

Calculates input signal t o  MA c i r c u i t .  

If a f i l m  ID occurs, the electronics model subroutine i s  cal led 

to  calculate PHA and accumulator response t o  the signal calculated 

i n  step 8. 

10. Results are l i s t e d  or  p lo t ted as selected by input cards. A l l  

resu l ts  are stored by sensor on tape f o r  future analysis. 

Thus, a single pa r t i c l e  path can be analyzed f o r  e i ther  pos i t ive ly  or 

negatively charged part ic les a t  any number o f  veloci t ies,  charges, and masses. 

The stored data f o r  any sensor and any path can then be analyzed by a second 

program, which i s  designed t o  select the par t ic les by type o f  event or veloc i ty  

and can ei tner p l o t  or  l i s t  the resul t ing selection. The types o f  events that  

can be selected, e i ther  singly or i n  combination, are coincidence, noncoinci- 

dence, mul t ip le  accumulator, mul t ip le  f i l m  or col lector g r i d  adjacent or non- 

adjacent, on any o f  the sensors o r  shielded f i l m .  
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The orientations o f  the f i l m  and collector gr id  str ips within the 

LEAM experiment are ident i f ied i n  Figure 3-7. This information i s  supplied 

so that the analysis data can be readi ly  canpared with the lunar data. 
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SECTION 4 

RESULTS AND MPLICATIONS Of ANALYSIS 

4.1 RESULTS 

An accurate s impl i f ied representation o f  the electronics has been ach- 

ieved i n  a computer model. This model simulates the i n h i b i t  c i r c u i t s  i n  addi- 

t i o n  t o  the PHA threshold c i r c u i t  analyzed previously. 

When the s impl i f ied electronics model was completed, i t  was checked 

out wi th the simple sensor model. This combined model gave useful resul ts  

because it could be used with the random number generator t o  generate nuner- 

ous part ic les wi th  d i f fer ing mass and charge values and calculate the resul t -  

ing responses very quickly compared with the SCEPTRE program. 

The p lo ts  resul t ing from these runs are shown i n  Figures 4-1, 4-2, and 

4-3. The PHA values and t w b l e  accunulator events appear i n  bands which 

d i f fe r  i n  shape, depending upon the veloci ty o f  the part ic les.  

t i on  o f  events i n to  those with and without double accumulator counts w i l l  

permit a broad c lass i f icat ion o f  the part ic les observed on the moon. 

The separa- 

The in tent  wi th the rk' ined sensor model was that a t  leas t  one pa r t i c l e  

path would be calculated and analyzed by the end o f  the contract period end- 

ing on 31 July 1976. 

We have achieved the following towards th i s  goal. A program t o  calcu- 

l a t e  the influence coeff ic ients f o r  the interactions between the 8512 sensor 

elements was prep, red, debugged, and 132,701 coeff ic ients c m i t t e d  t o  

magnetic tape storage. The sensor program that  u t i l i z e s  these coeff ic ients 
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has been written, dehugged, and operated. The m i n  par t  o f  t h i s  p r o g r a  i s  
the i t e r a t i v e  loop, which adjusts the elanent charges t o  the values needed to  

give the required potentials both i n  the case o f  the applied potent ia l  d i s t r i -  

bution and the d i s t r i bu t i on  due t o  a part ic le.  Several problems yere encoun- 

tered i n  the implawntation o f  t h i s  i t e r a t i v e  loop: 

1. The most e f f i c i e n t  method o f  implementation involves holding the 

132,701 coeff ic ients i n  core while performing the i terat ions,  but 

th fs  takes 530,804 bytes o f  memory, which i s  v i r t u a l l y  the en t i re  

capabi l i ty  o f  the computer. Thus, a method was devised which re- 

quired repeatedly reading the coeff ic ients fran tape i n  blocks. 

2. The calculat ion of the potential contributions a t  each element 

due t o  a l l  the other elements i s  the most time-consuming port ion 

o f  the i t e r a t i v e  loop. The i n i t i a l  implementation o f  t h i s  par t  

took almost 30 minutes per i t e r a t i o n  t o  run. Considerable e f f o r t  

was expended i n  reducing the running time u n t i l  we achieved the 

present t :me o f  approximately 17 minutes, which was done by stream- 

l i n i n g  each o f  the 15 subsections of  t h i s  part  and then combining 

them where possible. The number o f  elements was reduced from 8,512 

t o  the present number o f  7,360 by considering the tops and under- 

sides o f  the grids as single elements. This potent ia l ly  impairs 

accuracy, but the difference i s  ins ign i f icant  i n  our model. F ina l ly ,  

the whole pa r t  was formulated as a subroutine and compiled using 

the FORTRAN H compiler. 
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3. The present problem i s  ensuring rapid convergence o f  the i t e ra t i ve  

loop. Vhen or ig ina l l y  formulated, the loop was condi t ional ly stable, 

depending upon the nagnitude o f  the changes made i n  the elemental 

charges a t  each step. When stable, the convergence was extremely 

slow because o f  the small size o f  the changes i n  charge which were 

permissible. Although time consuming, the present program w i l l  

provide the required data. 

The remaining tasks t o  achieve the one pa r t i c l e  path f o r  one sensor, 

once convergence i s  achieved, are: 

1. To perform one run o f  the program t o  determine the charge d i s t r i -  

bution due t o  the applied potentials. 

2. To perform 10 runs o f  the program t o  determine the d is t r ibut ions 

due t o  the par t ic le .  

su f f i c i en t  t o  al low a good interpolat ion f o r  the intermediate data 

points. 

3. To perform interpolat ion t o  obtain a l l  other required data. 

4. To run sensor and electronics model program. 

It i s  assumed tha t  10 data points w i l l  be 

4.2 IMPLICATIONS OF ANALYSIS 

The analysis as performed t o  date indicates that  nearly a l l  types o f  

events observed on LEAM can be explained and that  c lass i f icat ion by event type 

w i l l  al low more accurate ident i f i ca t ion  o f  par t i c le  mass, charge, and ve loc i ty  

characteristics. 
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The hypotheses explaining the events are described below. Hen the 

model i s  made f u l l y  operational, the hypotheses w i l l  be ver i f ied.  

The coincident f i l m  and co l lector  g r i d  *vents were s h m  by the s i q l e  

model t o  be obtained by a pos i t ive par t ic le ,  between the co l lector  g r i d  and 

f i l m ,  t ravel ing toward the f i l m .  

Noncoincident events can be achieved by a pos i t ive pa r t i c l e  wi th a can- 

bination o f  mass, charge, and ve loc i ty  that  provides suf f ic ient  signal a t  the 

f i l m  but not a t  the co l lector  gr id.  The co l lector  g r i d  i s  less sensit ive t o  

charged part icles. Noncoincidence a t  the co l lector  g r i d  cannot be observed 

because the experiment requires a f i l m  ID t o  al low completion o f  a measure- 

ment sequence. 

Mul t ip le  accunulator events have been observed with the simple model 

and are caused by the electronics response t o  long duration input signals. 

Mul t ip le  adjacent f i ! m  events are caused by a posi t ive pa r t i c l e  having 

a combipation o f  nass, charge, and veloci ty tha t  give a su f f i c i en t l y  large 

signal t o  achieve threshold on two or  more f i lms a t  once. The same mechanism 

would be expected t o  resu l t  i n  mul t ip le  co l lector  g r i d  events, but conceivably 

i t  could give only a single one i f  the signal level  were i n  the r i g h t  range. 

Mul t ip le  nonadjacent f i l m  events are o f  the type where f i lms 1 and 3 

recorded an ID threshold but f i l m  2 d id  not. This phenomenon can be ex- 

plained by a negatively charged pa r t i c l e  t ravel ing toward the f i l m  s t r i p  

that  does not record an ID threshold, e.g., f i l m  2. It w i l l  be remembered 

that the f i l m  c i r c u i t  requires a posi t ive current t o  produce an ID, which, 

i n  the case o f  a p o s i t i v e  par t ic le ,  was achieved by an induced negative 
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charge i n  the film. This  charge was produced by a flow o f  electrons 

to  the film, equivalent to a positive conventional current flow i n t o  

the amplifier. 

charge occurs i n  the film and, thus, a negative current flows t o  the mpli- 

fier. This current will not produce an ID, as observed by film 2. Consider 

now films 1 and 3. 

characteristics, it will induce sizable positive charges and, t h u s ,  negative 

current flaws i n  t h a n  also. As the particle approaches the plane of the film, 

its influence on films 1 and 3 will decrease, f a l l i n g  eventually to  zero a t  

the film. Note that this i s  not  the case w i t h  film 2 whose charge increases 

u n t i l  impact. Thus, the charges a t  films 1 and 3 reach a peak positive value 

somewhere before the film and then decrease t o  zero a t  impact. When the 

charge starts t o  f a l l  to zero, there i s  an electron flow t o  the film t o  re- 

place the positive charge; this flow is again the positive conventional cur- 

rent flow i n t o  the amplifier. Therefore, i f  the magnitudes are correct, suf- 

ficient current can flow t o  produce an ID i n  films 1 and 3. 

In the case of a negative particle, a positive induced 

If the particle has appropriate charge and velocity 

Shielded film events are explained by the fact t h a t  the t h i n  dielectric 

virtually has no effect on the particle induced charge i n  the film except to 

restrict the approach of the particle to i t .  Thus,  the induced signals will 

be identical to  the unshielded films for particles in similar positions. 

The following observed cases i n  the lunar data are less easy to  explain 

and require assumptions which cannot yet be proven: 
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1. 

2. 

Mult ip le  f i l m ,  nonadjacent, events with no co l lector  ID. 

Mul t ip le  col lector,  adjacent and nonadjacent, with single f i l m  

ID. 

Mul t ip le  f i l m  and mul t ip le  col lector,  both nonadjacent. 3. 

Analyzing these cases requires fu r ther  knowledge o f  the ef fects  o f  the pa r t i c l e  

on the f i l m  when i t  i s  i n  electrode spaces other than the co l lector  g r i d / f i lm  

space. 

f i l m  when it i s  i n  these areas, then the remaining cases can probably be ex- 

p l  ained. 

If the pa r t i c l e  can truly induce a signal o f  threshold amplitude i n  the 

The detai led study o f  the sensor and electronics has led  t o  a bet ter  

overal l  understanding o f  the instrument responses and has indicated areas tha t  

a f fec t  the LEAH data but which must be l e f t  t o  fu ture analysis. 

Our analysis considers only par t ic les t ravel  ing perpendicularly t o  the 

f i l m .  Obviously, par t i c les  are l i k e l y  t o  be t ravel ing in  a l l  direct ions. 

Part ic les t ravel ing a t  the speeds considered here would probably describe 

curved paths i n  the proximity o f  the sensor elements, and th is  has not been 

considered. The impl icat ion i s  tha t  part ic les,  outside the f i e l d  o f  view f o r  

hypervelocity part ic les,  could be e lec t ros ta t i ca l l y  deflected i n t o  the inst-3- 

ment if they have appropriate energy and charge characterist ics. 

The ver i f i ca t ion  tha t  the LEAM experiment i s  measuring charged dust 

par t ic les as well  as hypervelocity cosmic dust par t i c les  could lead to  an 

understanding of phenomena observed by astronauts and other experimenters. 

Observations i n  t h i s  category include several instances o f  solar 1 i gh t  scatter- 

ing over the terminator regions reported by the Apollo crews i n  lunar o rb i t ,  
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transient lunar events being investigated by experimenters on a worldwide 

basis, and indications at the Apollo 17 site that a substantial m u n t  of 

lunar surface material has been added over the past 1 to 2 million years.* 

* 
Abstracts o f  Papers Submitted to the Seventh Lunar Science Conference, 
March 15-19, 1976. 
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SECTION 5 

CONCLUSIONS AND RECOWENDATIONS 

There are several conclusions which can be drawn from instrument 

analysis alone, without reference to the lunar data. 

The sensor de f i n i t e l y  responds t o  charged par t i c les  tha t  have cer ta in  

ranges o f  mass, charge, and velocity. The physical dimensions and applied 

potent ia ls o f  the sensor are such tha t  charged par t i c les  incident upon i t  are 

affected dynamically and some pa r t i c l e  selection takes place. Charged pa r t i -  

cles can be at t racted i n t o  the sensor, thereby increasing i t s  e f fec t i ve  f i e l d  

of view. In  theory, negative par t i c les  w i l l  cause sensor responses. 

The electronics does not di f ferent iate between signals from hyperveloci t y  

par t i c les  and charged part ic les,  but the c i r c u i t s  are sensi t ive t o  pulse shape. 

The pulses from hypervelocity part ic les,  for  which the experiment was designed, 

are well  defined, both from theory and gun measurements. They are known t o  be 

o f  short duration, whereas the sensw analysis has shown tha t  long pulses, 

several hundred microseconds i n  length, can be produced. The electronics 

analysis has shown tha t  several character ist ic responses t o  long pulses can 

explain cer ta in  pecu l ia r i t ies  i n  the LEAM lunar data, namely large PHA counts 

and double accumulator counts. Negative pulses w i l l  also give PHA thresholds. 

When comparisons are made between the analyses and the lunar data, it 

can be concluded tha t  d i f ferent  par t i c le  types are producing the observed 

events. 

t i o n  o f  the to ta l  response range, while some are cer ta in ly  produced by negative 

part ic les.  

Some of the events are probably due t o  par t ic les wi th in  a small por- 
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The overal l  conclusion i s  t ha t  the combined theoretical analysis o f  the 

electronics and sensor together with the Pr incipal  Investigator 's analysis o f  

LEPM lunar data cadi provide a canprehensive p ic ture o f  the dust e n v i r o m n t  

a t  the lunar surface. Therefore, it i s  recmended tha t  the sensor analysis 

be completed i n  order t o  al low a thorough analysis and understanding o f  the 

LEAM lunar data. The achievements t o  be expected from fur ther  study are: 

1. 

2. 

3. 

4. 

5. 

6. 

Total ranges o f  mass, charge, and ve loc i ty  o f  par t i c les  b..:ig 

measured by the LEAM instrument. 

Characterization of par t i c les  producing unique events b thus sub- 

div id ing t o t a l  measurement range in to  ident i f iab le  segments. 

Correlation o f  par t i c le  types i den t i f i ed  i n  1 and 2 wi th lunar 

cycles and temporal effects. 

Knowledge gained above w i l l  allow refinement o f  hypotheses on dust 

sources and transport . 
Application of IGsults t o  analysis o f  other lunar surface phen- 

omena observed by astronauts and other experimenters. 

Appl i ca t ion  of resul ts  t o  Pioneer experiment data, a1 lowing addi - 
t iona l  information t o  be obtained on deep space par t ic les.  

I n  accordance wi th  NASA pol icy,  the LEAM experiment data and supporting 

documentation w i l l  be archived t o  make i t  avai lable f o r  future use by invest i -  

gators anywhere i n  the world. This report  and the resul ts  o f  the Qua l i f i ca t ion  

model tests  const i tute essential supporting documentation invaluable t o  future 

users o f  the LM experiment data. The bulk o f  the experiment data i s  incom- 

prehensible without a detai led knowledge o f  i t s  response t o  charged par t ic les.  
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Thus, without t h j s  knowledge, the data cannot be applied t o  invest igct ions 

o f  other lunar surface phenomena. Future users o f  the data could apply the 

resul ts  herein t o  a continued analysis resul t ing i n  a comprehensive cal ibra- 

t i o n  o f  the instrument, which would include par t ic les incident anywhere on 

a l l  three sensors. 

A more pract ica l  and cost-effective approach wou d be t o  require the 

Principal Investigator and the Bendix Project Engineer f o r  the LEAM experi- 

ment t o  continue the analysis using the extensive know edge and understanding 

which they have acquired over the past three years. The resu l t  vJoLld be a 

set o f  data and documentation wi th far  greater appl icat ion t o  other areas o f  

sc ien t i f i c  research i n t o  lunar phenomena than i s  presently prasticable. 
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APPENDIX A 

COMPUTER PROGFLW DESCRAPTIUNS 

The computer programs required for a complete theoretical awlysis  of 

-172 LEAM experiment are described i n  the following sections. Flow c h a r t s  

and 1 istings are included for information purposes. 

The programs complement each other to achieve the f i n a ;  results. The 

numbers given are from the program numbering system for computer data sets ,  

used ty  the Bendix Corporation Data Center. 

Program P5072CHG coinputes the path data using subroutines PLFIK and 

POTCON. Tho outputs, which are stored on tape, are u t i :  ized by P50771iGF t o  

determine the experiment response t o  particular particles. The subrout ‘ne 

used i s  LES, which i t se l f  uses subroutines COND1, COND2,  COND3, ard CVOLT.  

Finally, the PHA and accumulator count da ta  for the various particles are 

analyzed or sorted by P5072INT. 

All programs were written ir: FORTRAN IV for the IBM-370 system. The 

p l o t t i n g  routines are those used by the Cal Comp p l o t t i n g  s.vstem. 

A .  1 PROGPAM P5072CHG TO DETERMINE SENSOR CHARACTERiSTICS TO CHARGED 
PARTICLES 

A . l . l  Sumnary 

The program calculates 

1. Charge d i s t r ibu t ion  or: the fi lm, collectnr g r i d ,  and  suppressor 

grid due t o  ( a )  applied potentials and ( b )  charged particle.  

These distributions are calcdlated separately and the one f o r  

applied potentials i s  cmnitted t o  tape f o r  future use. Those 
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2. 

3. 

due t o  the p a r t i c l e  are calculated f o r  p a r t i c l e  positions, 

which are selected by input card. 

Total charges on each f i l m  and g r i d  s t r i p  f o r  each p a r t i c l e  posi- 

'ion. Thus, knowing the p a r t i c l e  speed, the current i n  the f i l m  

and co l lector  g r i d  c i r c u i t s  may be determined. 

i s  performed i n  program P5072SGF). 

Potential a t  i!w p a r t i c l e  due t o  both the applied potent ia ls and 

the p a r t i c l e  image charge. This allows calculat ion o f  the work 

done on the p a r t i c l e  along the path. 

( l h i s  ca lcu lat ion 

The program stores position, potentials, and charges on tape so tha t  a l l  param- 

eters f o r  one path are stored f o r  future use. 

A. 1.2 Descri p t  i on 

The calculat ions center upon determining the charge d is t r ibut ions on 

the f i lms, co l lector  grids, and suppressor grid. The d is t r ibut ions on one 

g r i d  are affected by the d is t r ibut ions on a l l  other f i lms and gr ids and vice 

versa. Thus, t o  determine the actual d i s t r i bu t i on  i s  an i t e r a t i v e  process 

which adjusts the individual charge d is t r ibut ions u n t i l  the calculated poten- 

t i a l  a t  any element, g r i d  or  f i l m  matches the applied potentials. When the 

charge d i s t r i bu t i on  due t o  the p a r t i c l e  i s  determined, the applied potent ia ls 

are set t o  zero. 

The f i l m s  and gr ids are divided i n t o  uniformly charged square elements 

o f  3.275 x meter on a side. The to ta l  number o f  elements used i s  7,360. 

The intcractions between elements are determined i n  a subroutine POTCOFI using 
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influence coefficients, which have been previously calculated and stored on 

tape. An influence coeff ic ient  i s  the value of potent ia l  a t  one element due 

t o  a u n i t  charge a t  another element. 

The resul t ing charge d i s t r i b u t i o n  i s  used i n  two ways. The f i r s t  sums 

the elemental charges on each f i l m  and co l lector  g r i d  t o  give the t o t a l  charge 

on the respective sensor element a t  t h a t  time. This i s  done i n  the p a r t i c l e  

case only and gives the charge due t o  the p a r t i c l e  a t  each chosen pos i t ion 

r e l a t i v e  t o  the sensor. The ra te  of change of charge, caused by p a r t i c l e  move- 

ment, determines the sensor output current. The second use f o r  the charge 

d is t r ibut ions i s  t o  calculate the potent ia l  a t  the p a r t i c l e  caused by both the 

applied potent ia l  charge d i s t r i b u t i o n  and the d i s t r i bu t i on  due t o  the p a r t i c l e  

i t s e l f .  The l a t t e r  gives r i s e  t o  the method of images used f o r  calculat ions 

involving i n f i n i t e  planes. The change i n  potent ia l  along the path through the 

sensor determines the work done on the p a r t i c l e  and thus the change ;n i t s  

energy. 

The program has two basic modes o f  operation: 

1. To calculate the charge d i s t r i bu t i on  due t o  the applied potent ia ls 

and comnit the values t o  tape. 

To calculate the required parameters o f  potent ia l  a t  the p a r t i c l e  

and t o t a l  charge on each f i l m  and co l lector  g r i d  s t r i p ,  f o r  each 

selected p a r t i c l e  posit ion. 

2. 

Other operational options, which are variat ions and combinations o f  

the above two modes, a r e  avai lable and will be discussed l a t e r .  

A- 3 
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A.1.2.1 Mode 1 

The mode i s  selected by guide parameter 61 = 1 on the second input 

card, and guide parameter 62 i s  set  t o  zero. The i n i t i a l  elemental charges 

are set t o  ha l f  the values estimated f o r  uniformly charged surfaces a t  the 

potent ia ls o f  the f i l m ,  co l lector  gr id,  and suppressor, and the elemental 

potent ia ls are set t o  zero. Next, the elemental potent ia ls due t o  a l l  other 

charges are calculated using the i n i t i a l  charge values and the influence co- 

ef f ic ients,  which are read from tape. The dif ference between the potent ia l  a t  

an element and the applied potent ia l  i s  due t o  the element's own charge and 

form factor. The charge, thus calculated, i s  compared w i th  the or ig ina l  charge 

t o  determine the charge value f o r  the next i te ra t ion .  

The comparison includes a check t o  ensure tha t  the calculated value 

does not l i e  outside the l i m i t s  prescribed on an input card. 

the l im i ts ,  the elemental values are scaled t o  give the l i m i t  value f o r  the t o t a l  

charge. The charge value for the next i t e ra t i on  i s  determined by taking a f rac- 

t i o n  o f  the dif ference between the calculated and or ig ina l  values and adding 

i t  t o  the or ig ina l  value. The f rac t ion  i s  selected on the input card, together 

wi th the number o f  i terat ions allowed and the maximum percentage dif ference 

desired between successive charge values on any element. The maximum percen- 

tage dif ference detemines the accuracy o f  the resul t ing d is t ,  ibut ion.  

I f  i t  i s  outside 

When the program transfers out o f  the loop, the calculated charge 

d is t r ibut ions are recorded on tape f o r  future use. The transfer occurs when 

ei ther the i terat ions allowed are completed o r  the desired accuracy i s  

achieved. 
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A.1.2.2 Mode 2 

This mode i s  selected by guide parmetws 61 and 62 being set t o  

3.0 and 1.0, respectively. 

In  t h i s  mode, the f i r s t  step i s  t o  calculate the influence co- 

e f f i c i en ts  between the pa r t i c l e  and the elements of the f i lms  and gr ids and 

vice versa. These coeff ic ients,  designated P--Q, are the values o f  potent ia l  

a t  an element f o r  a unit charge a t  the pa r t i c l e  and vice versa. The coef- 

f i c i en ts  are calculated f o r  every pa r t i c l e  posi t ion tha t  i s  selected by an 

input card. Subroutine PLEINF i s  used i n  the calculat ion. The charges on 

the fi lms and gr ids and the potent ia l  a t  the pa r t i c l e  are calculated as 

follows, 

1. The charge d is t r ibu t ion  due t o  the pa r t i c l e  i s  calculated 

i t e ra t i ve l y  i n  an ident ical  manner t o  tha t  f o r  the applied 

potentials, except that  the applied potent ia ls are set t o  

zero and the i n i t i a l  element potent ia ls are set t o  the values 

at t r ibutable t o  the pa r t i c l e  (the values o f  the influence 

coefficients, P--0).  The potent ia l  contributions a t  each 

element due t o  a l l  other elements are accumulated with the 

P--Q value t o  give the to ta l  potential a t  3ach eleme,tt. This 

value i s  compared with the applied potential (now zero) as 

before, and the new elemental charge i s  determined using the 

same factor. The same c r i t e r i a  are applied as i n  Mode 1 t o  

determine when suf f ic ient  i terat ions have been performed. 
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2. 

3. 

4. 

The potent ia l  a t  the par 'pie due t o  the applied potent ia ls i s  

canputed fram the influence coef f ic ients  (P--Q) and the charge 

d is t r ibu t ion  stored on tape i n  Mode 1. 

The potent ia l  a t  the pa r t i c l e  due t o  the charge it induces i n  

the f i lms  and gr ids i s  canputed from the influence coef f ic ients  

(P--0) and the charge d is t r ibu t ion  calculated f o r  the pa r t i c l e  

a1 one. 

The t o t a l  charge on each f i l m  and col lector g r i d  s t r i p  i s  cal-  

culated by s m i n g  the respective elemental charges f o r  each 

s t r ip .  

When a l l  the potentials and charges have been canputed f o r  a part i -  

cular position, the values are c a n i t t e d  t o  tape as par t  o f  a data set  which 

i s  compiled f o r  each path through the sensor. 

The program then reads the next input card f o r  a new pa r t i c l e  posi- 

t ion. A t  each posit ion, the program automatically alternates between the 

loop tha t  reads the applied potential charges from tape and the loop that  

i terates t o  a new charge d is t r ibu t ion  due t o  the pa r t i c l e  charge. 

A.1.2.3 Other Options 

Options are selected by input parameters G1 and 62: 

1. When 61 = 2.0, the program calculates the potential d t  points 

selected by input cards, i n  addit ion t o  computing anti comnit- 

t i ng  t o  tape the charge values o f  Mode 1. 

When G 1  = 3.0, the program calculates the potentials o f  the 

previous option using the charge values recorded on the tape. 

2 .  
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3. When G1 = 5.0, the charge values recorded on tape i n  Mode 1 

are read i n  and used as the i n i t i a l  values f o r  the f i r s t  step 

o f  the i t e ra t i on  loop. This allows fur ther  refinement o f  the 

charge values without repeating the previous steps. 

Wheir 62 = 1.0 and G1 = 0.0, the potent ia ls a t  the p a r t i c l e  

due t o  the p a r t i c l e  induced charges and the t o t a l  f i l m  and 

co l lector  g r i d  s t r i p  charges due t o  the p a r t i c l e  are calculated. 

The potent ia l  due t o  the applied potent ia ls i s  not calculated. 

This node has l im i ted  use on i t s  own and, i f  ca l led fo r ,  should 

have a dumny card f o r  the JCL card defining FT25F001 t o  prevent 

erroneous data being stored on a data tape. 

4. 

A.1.2.4 P5072SIC Program t o  Calculate Influence Coeff icients 

The program t o  calculate the influence coef f ic ients  P5072SIC i s  used 

once, and the resul ts  are stored on magnetic tape. This program calculates 

the coeff icients from f i r s t  pr inciples,  based on the physical geometry o f  the 

elements. 

the physical geometry, but any par t icu lar  interact ion i s  calculated only once. 

Each interact ion i s  referenced by an index nunber so that  the correct  coef- 

f i c i e n t  can be recal led from tape i n  program P5072CHG. This program, P5072tIC, 

determines the correct index number f o r  the par t icu lar  coordinates o f  the 

elements under consideration, then calculates the coef f i c ien t  using subroutine 

INFLCF. 

The interactions occur many times due t o  the repe t i t i ve  nature o f  
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All coefficients are stored on tape YOL SER NOS T53344 using the 

fol lowing data set  names: 

ASD.P067. CFUW 
cmsfw 
CFTUFU 
CFEDGW 
CFPFIW 
CFFMFM 
CfTuFM 
CFE DFM 

CFISFM 
CFTUTU 
CFIS IS  
CFEDED 
CFEDIS 
C F t D N  

ASD. PO67. CFTUIS 

A JCL card i s  required f o r  each data set. 

A.1.3 Method o f  Use 

Four input cards are required i f  f u l l  use o f  the program i s  

made, including calculations involving p a r t i c l e  position. This app 

every condition o f  61 and 62 except G1 = 1.0 and 62 = 0.0. I n  t h i s  

the four th  card may be omitted. 

t o  be 

es t o  

nstance, 

Card 1 controls the i t e r a t i v e  process o f  determining the cP,arge d i s t r i -  

butions. 

The inputs required, a l l  format code F7.4, are: 
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Columns 1-7; FACTOR, which determines the f rac t i on  o f  o l d  and new charge 

values which are t o  be used f o r  the value i n  the next i t e ra t i on .  

Columns 8-14; PERCEN, specif ies the maximun percentage dif ference between 

new and o ld  charge values required before e x i t i n g  the i t e r a t i o n  

1 oop . 
Columns 9-21; CYCLES, specif ies the maximun number o f  i t e r a t i v e  cycles 

allawed before ex i t i ng  the loop. 

Card 2 defines the guide nunbers G1 and 62 (Format, 2F3.1). 

G1 = 0.0 Does nothing with regard t o  applied potentials. 

G1 = 1.0 Charges due t o  applied potentials are computed and wr i t ten t o  tape. 

G1 = 2.0 Same as G1 = 1.3 and also computes the potent ia l  a t  specif ied point(s)  

from card 4. 

G1 = 3.0 Reads charge d i s t r i bu t i on  due t o  applied potent ia ls from tape and 

computes the potent ia l  a t  specif ied point(s) from card 4. 

(Fran Tape). G1 = 5.0 Refines charges due t o  applied potentials. 

62 = 0.0 Does nothing wi th  regard t o  par t ic le .  

62 = 1.0 Computes charge d i s t r i bu t i on  due t o  par t ic le .  Computes image 

potent ia l  a t  posi t ion of p a r t i c l e  and t o t a l  charges on g r i d  and 

f i l m  s t r i p s  due t o  pa r t i c l e .  

Note: If G1 = 2.0 or  3.0 and/or 62 = 1.0, cards giv ing XP, YP and ZP must be 

present, where XP, YP and ZP a r e  the coordinates o f  the p a r t i c l e  re la-  

t i v e  t o  the center o f  t ne  f i l m .  

A-9 



BSR 4234 

Card 3 defines the maximum and minimum charge values for each sensor plane 

during the i t e ra t i on  process. These values l i m i t  the excursions o f  

the charge values t o  prevent divergence. (Format 6E11.4). 

Card 4 defines the pa r t i c l e  path posit ion, the distance o f  the pa r t i c l e  fran 

the f i l m  and the to ta l  number of points (NPTS) t o  be calculated (par- 

t i c l e  positions). ZP i s  the distance o f  the p a r t i c l e  from the f i l m  

i n  meters. XP and YP are the distances from the center o f  the f i l m  

plane, i n  meters, as shown below, 

I I i 
1 I 

IAF4 I I I 

h card o f  t h i s  type i s  required f o r  every pa r t i c l e  posi t ion o r  posi t ion 

frlr witich potential due t o  applied potent ia ls i s  required. 

3€11,4, 13). XP and YP must have the same respective values on each 

card for each path, {.e., on a par t icu lar  path only ZP changes. 

(Format 

Tapes are required f o r  storage o f  the charges due t o  applied potent ia ls 

and for the path data which includes potentials and t o t a l  charges. 
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If the charge d is t r ibu t ion  due t o  applied charges i s  held on tape 

and fur ther  refinement of  the values i s  desired, i .e., a smaller value o f  

PERCEN, then G1 should be given the value o f  5.0. The ex is t ing values w i l l  

be read fm tape and fur ther  i terat ions performed u n t i l  the new accuracy i s  

achieved. 

Some WRITE statements, tha t  are not shown on the f l o w  chart  which 

follows, are included f o r  diagnostic purposes. These p r i n t  out sane of the 

terminal point numbers so tha t  the posi t ion i n  the program can be determined 

and also the potent ia l  and charge o f  selected elements i n  each plane are 

pr inted p r io r  t o  executing terminal points 3508 o r  3509. 

A.1.4 Flow Charts and Program Lis t ings 

A f low chart o f  the program i s  given i n  Figure A-1. 

Program 1 is t ings  f o r  P5072CHG, P5072SIC, and subroutines POTCON, PLEINF, 

and INFLCF fol low on pages A-13 through A-53. 
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P5072CHG 

C 
C 
c 
C 
c 
C 
c 
C 
r= 
C 
C 
C 
C 
C 
C 

C 
C 
c 
C 
c 
C 
C 
C 

e 

c .  
c 
C 

35m 

88BO 

3581 

8861 

E;B2!M 

B82L 

Q i 4 . 0  
a m i .  0 
Qi=2.8 
a=3 .  B 

oic5.0 
a*. 0 
W=i. 0 

NOTE 

NOTE 

IN THE 

DOES NOTHING WITH FEGFWZD TO RPPLIED POTENTIRIS 
CHFIRGES DU& TO RPPLIED POTENTIRLS COMPUTED ftN0 WRITTEN TO TRFE 
Sf3I-E AS G1=2.B & ALSO COMPUTES POTENTIAC AT SPECIFIED POINT{S) 
READS CHRRGE DISTRIBUTION DUE TO FIPPLIED POTENTIALS FROM TAPE Am 
COMPUTES POTENTIAL RT SPECIFIED POINTCS) 
REFINES CHRRGES WE TO WPLIED POTENtIF(LS.~FRO# T W E  > 
WES NOTHING WITH REGkRD TO PHRTICLE 
COMPUTES CHRRGE DISTRIBUTION DUE TO W T I C L E . .  C W T & S  1- 
POTENTIFH, AT POSITION OF PARTICLE.COP1FUTES TOTRL CHFIRGES ON 
GRID FtND FIW STRIPS DUE TO PARTICLE. 

IF G1~2.0 OR 3.0 AND/OR 0 2 4 . 0  CARDS GIVING X P 0  'fP AND ZP MUST BE 
PSSE 7 

CRRDS GIVING WVUES OF FWTORcPERCEN A N 0  CYCLES MUST RLWqVS BE 
PRESENT 
FOLLOWING ARRFIYS THE PREFIX G INDICATES THE TOTRL CHARGE ON AN 

EI,EMENf>THE PREFIX P THE TOTAL POTENTIAL AT AN ELEMENT ME TO RLL OTHER 
CHAROES RNO PREFIX P MITH SUFFIX Q THE POTENTIAL. AT FU4 ELEMENT DUE TO 
THE CWRGE ON THE m T 1 C L E  AL.ONE.THE P--8 NUMErEHS RtK ALSO THE INFLUENCE 
COEFFICIENTS FOR THE EFFECT OF THE ELEMENT CtiRRGES UPON THE POTENTIAL 
AT THE PHRTICLE. 
DIMENSION PblRC20 2, 4,40 ?re>, PTUQC3t 2,4,40 2 0  e>, PEUQC2r20 4 4 ~ 2 0  8 )  
DIPENSION PISQC3r 4,4, 2 r 2 ) r  PFIlSQC4,4r 8 0  8 )  
DIMENSIO1.( CHGC3)c SWILE<3>, QMHXC3)r QP1INC3) 

C M O N  
COMMON 

COMMON 
COMMON GISC3,40 4,2,2>r PISC3,4,4,20 2) 

D I  MEIJSL ON BLANKCEr> 
GFMS<4,4,8, 8 ) ~  PFMSC4r 40 888) 
PWC20 2, 40 4r7; 8>0 015C2r 20 4 r 4 r  7+8> 

GTUC3r 2r4r442, FI), PTU(3j2r 4,4# Z 8 >  
COMMON GEDC20 20 4 4 0  2 4  8 ) ,  PED<& 2,4,4,2,8> 

DATR BLFU.IK/S*GI. 0 /  
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c 
c 
c 

4637 

4638 

4639 

su 
011 
011 
DII 

. D1i 
un 
an 
COI 
COI 
COI 
EQ 
2<1: 
3CFI 

Y 
1 

!I 
1 
LT 
LT 
LT 
LT 
W 
J: 
)1 

El 

STftRT INTERSECTI0N UXIARES OEi INTEFSECTION SOUARES 

w 
M 
M 
If 
M 
D( 
II 
o( 
II 
M 
11 
X I  
II 
M 
II 
I? 
II 
XI 
J I  
n( 
Ti  
M 
It 
If 
II 
Ci( 
It 
GI 
If 
If 
I f  
I I  

m < 2 8 > C F I S I S  
3 4648 U=L4 
3 4647 *l,2 
m=3*u+NN 
3 4646 W h l 1 2  
3 4645 K K = l r 4  
4F2=3W+fW 
3 4644 * l a 2  
JD2=M-IW2 
3 4643 K = L 4  
4@2= IND2+3 
'*3=1fu35< IND2) 
W=-XWi 
3 4642 L 4 . 1 4  
JW=INW+3 
W6=1laIf3EtSC f N W + I >  
W7=i l*IAeS~IN1)4+2>  
WI= I-+ I ND3 
*e=- IW7+ I ND3 
3 4 6 4 1  11-1>3 
flwI3=8. 8 
3 464Q I = L 3  
- < I . E Q .  II>GO TO 4637 
= < I .  Ea. 3. OR. I I .  EO. 3)GO TO 4638 
JDIr-243 
3 TU 4639 
W i = I  
3 TO 4639 
- i I + f I .  EQ. 4)INDl=364 
z ( 3 + I I .  EQ. 5?IND1=485 
~ww.=xmi+Ir~ir:i. 
uwxa- I NXZ+ I t m  
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START NIRES OM 

RENINb 29 
R€cy)<l0>#IIII 
W 4526 
W 4515 U&4 

NIRES 

CONT I NUE 
CXiNf ' I  NLlE 
CONT I NlJE 
CrJt4T I NlJE 

14 I RES ON W J RE5 

STHRT FILM Wilt4 
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7010 

7826 

7030 

w 4539 I=3.a3 
IF<I. EQ. 23GQ TO ?El&@ 
IFCI. EQ. 3)oO TO 7828 
00 TO 7030 
INDE%9.=INXI+ZS97 
fPtDE%2= INX2+%3%32 
IHDEX3=1MxI 
IWEX4=1NX2+10388 
00 TO 7638 
INDE%l=fNX1+5194 
INlX%2=1N%2+15€V6 
INI)EX3=INXl+7791 
INDE%4=1N%2+18628 
TEIIP20=CFTUFIJ< INDEX3 > 
TEMPZI=CFTUFIJ< I W X 4 >  
TEMFlB=CFTlJFIJ< INDEX1 > 
TEtPll=CFTUFIJ< I NIEX2 > 
TEMP~~=GTU< I A, K, L, ri, N> 
TEMP23GTUC I J  2, K, LC MI N) 
TEMPi2r TEMP12+TEMPIB*TEMF22+TEhPllaTEMP23 
TEPlF'A.S= TEMP1 5+TEMPIBaTEPIP23+TEPPII*TEMPaZ 
TEtlFA6sTEMPl G+TEMP28*TEMP22+TEPlP21*TEMP23 

PTUC 1, 1, K, La MI N)=PTU< Irl, K, LI'M, N>+TEMP16*TEMP13+TEMll*TEMP14+fEMP 
TENPlf=TEMP~T+TEl*IPL*TEMr23+TE lIPZi*TEtIP22 

4539 
4541 
4542 
4543 
454 4 

4545 
4346 
4547 
4 :T;4 8 

C. 
c 
r 
i 
c 
C 
c 

END PLATE EC&EI5 UfJ WIRES AND VICE VERSA 

57 hRT PLATE/F I l.M INTERSECT f ON ON W I RE5 FtNO V I  CEVEf?5R 
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4578 
4979 
45R0 
4581 

4362 
4583 
45F4 
4385 

c 
c 
C 
c 
c 
c. 
f :  
C: 

ORIGINAL PAGE IS 
UF POOR QUALITY 
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4541 
4592 

4s93 
459.1 
4595 
45% 

E: 

c 
c 
c 
c 
C 

e 

. 
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a? 
4618 

463.9 

EtJD PLATE/FXLtl T & U ON PLRTEiFILM T & U 
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3P5 
PEDCIr2J K, L, M, N)+EDCI, 2, K, L MJ N>+TEX3*TEMP12+TEX4*TEW34+TEXT*TEM 
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GRID SCrPPI3RT STRUCTUREITW cafo UNDEkSfbES FujO EWIWLENT FILM ELEMENTS ON 
FILM PMIN !XAlfiRE ELEFlENTS C13MFLETED. TOTAL CFTUF14C > = 8904 

STWT NEXT GRID EKES Opi FILN MAIN S M F S  ELEMENTS.CFEWHC > 
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IFM. NE. l>T l=$ - 
-=a 0292I*K-8.98382 

mrN4 
IF<K. EQ l)mi19Cz 
Do 2875 rl=Mt4I)G3 

T B T I  
I F W  NE. 2 ) T W  
X=TUlF%+0.@27305W 

00 2074 L+i,4 

1m=3rdc-~e 

' fND2=INM+W 

T3=T2 
I F < L  NE. l)m* 
T E r P H .  82921*L-0. M i  
IND3=INU2+1- 
NHIWI 
IF<L. Et2 I)WIN=8 
W 2073 N=WlIN,15 

T4=T3 
IFOS. NE. 8>T+i 
Y=TEt4P2+0.883175*N 
fNM=IND3+1I*N 
w 2072 I=l, 5 

t=8. e 
IFCI. EB. 2>2=8. -1524 
IFCI. EQ. 3>Z=P. E1829464 
IFCX. EQ. 4>Z=@. 0897@2s 
IFCI. EQ. 5>2=P. @@67564 
INWX=IM)4+583*1 
IFCT4+1. LT. 1. 5)GO TO 287.1 
TEW3=8.@Q1985 
TEMP4=0. 0EG175 

CFTUTUC I NW>;)=COEFF 
GO TO 2672 

CkLL INFLGFCX.. Y r  2, TEIX3, TEMP4c TEMP48 TEklF3, GOEFF) 

2871 CFTUTUi INDEX>=@. 0 
2872 CIW4T I NUE 
a-173 CONTINUE 
2871 CONT I NUE 
2 B t 5  CONT I N E  
2876 C.CINT I NLIE 

c 
C &I- J=JJ PLFtTE/FILM T FtND U ON PLfiTE/FJLM T fiND U COPIPLETED. NUMBER = 2915 
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NNWtx-2 
IFCL. EQ. I>PINNFU(=l 
00 3 w  NN=LNNWu( 

TEW7=fEtP5-0. @27385*NN 
rmP8=TEHP6+NN 
00 3- N = L 8  

Y=TEHp7+0. 883175.. N 
T-TEt"8-EtN 

IND2=INM+i4*INTiTENP9) 
TE~~S~RRSCTEP~P~->-B. 3 

W 3W3 I t L 4  
z*. ma0762 
IFCI. FQ. 2)P31Qj. 0@29464 
IF<I.  EQ. 3 ) t - B .  #We28 
IFCI. EQ. 4>2=0. El067564 
I~=Im2+78J*I 
T W - .  -1985 

CFEDISCIND&Xj=COEFF 
CRLL INFLCFCX, Y ,  2, TEP~PS, TEMPS, 0. ~ 3 1 7 5 ,  e. e, COEF) 

me33 CONTINUE 
3304 CONTINUE 
m05 CONT I NLE 
3806 CONT I NLE 

3368 CCWT I N1!E 
3009 CONTINUE 

CONT I NUE 

WRITEC6,31@8> 

ldRITE<12> CFEFjIS 
END FILE 12 

WRITE<& SBC3BTCCFEDISC I >, 1=4,3136, 87) 
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CFWTU<IEIClf;X>=CC&FF 
3818 COWTINE 
361% CONTINUE 
3812 CONTINUE 
3m3 COKTINUE 
36M4 CONiINuE 
3el5'CONTfNuE 

C 
C EDGES ON SUPPORT STRUCTURE/FILH T & U FOR J=JJ coIWLElED.NoneER = 2968 
c 
C 
C 

STRRT NEXT ON S H E  FOR J NOT EQLlAL TO JJ.CFEDTUC2969 ON > 
W 3022 L x L 4  

f E W i = 8 .  8292l*L-8.@0254 
fW2=i6*L-8.5 
)4E11lRx=2 
IFCL. Ed  l>IlllPWX=l 
M3 3w1 tSP(=l,MMMAX 

TEPIP3=TEW1-0. 827305*t'UI 
fEMP4=TE 14P%+I%l 
DO 3028 N = b 8  

X=TEPlP3+@. 883175*N 
TEPlPS=TEtlF4-2*N 
TEPW'i=RK C TEMPS >+8. 7 
IND3 ==JNTCTFMPS>-l68 
DO 3819 K = L 4  

TEMF5=8. 0292i*IC-@. 8530229 

MIlFli(==2 
JFCK. En. I ) N W X = i  

T E P ~ P ~ - I ~ * K - ~ .  5 

w ~ I . E (  r i = i , w x  
TEIIPi=TEMP5+6. 025&*14 
TEPlP8=TEtlP6+M 
DCJ 3@17 tJtJ=l,8 

+='I EMPi-8. 083itCJ*NN 
TEMPS~TEMPB-Z*NH 
TErlPS=APS(TEtl~S)-8. 3 
I NU?= f NGA.+56* I NT C TEMP9 > 
w 3616 I = I ,  4 
Z=0.@888762 
I F <  I .  Ea. Z>Z=8. 9829464 
JFCI. EQ. 3jZ=h. 0897628 
IFC I .  EQ. 4>2=6. 0067564 
INDEX= TNhZ+Si36* I 
TEMP94. 881175 

CFEDTUC T NDEX > =C.OEFF 
CfiI.1- INFLCf(X, Y J  ZI  8. 081985~ TEMPS, 0. 0, TEMPL5r COEFF) 

3016 CONTINLIE 
389 7 CONT I N l F  
3 o m  C:CiNT I NCIE 
381 3 CDt*JT I NllE 
33261 ' CONT J NLlE 
3821 COI4-r I NllF 
3022 CClNT J NUE 

IW ITF i b r  ?$.OB) 
WRITEC6J froG@) CCFEDTUC 1 >, 13312~ 235) 
WRITFC12) CFEDTiJ 
END FILE i.? t 

c: 
C. HI..L EMES ON SUPPORT STRlV:TIlRE/FILM T FtND U CJ~MPLETEO. TCITFIL C:FEDTU< > m i 5 5 1 2  
C: 
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INOi=3*IC-fi28 
MIN=i 
1FCK E& i>NIIN=2 
00 3827 n-=4afN03 

X=TECUSI+tB. 02738H 
INDa-SLNDI+Pl 
bo 3e26 L=L4 

T U 9 2 4 t  02921*L-8.88254 
TWfr3=16*L-8.5 
NNHCU(=2 
IFCL. EQ. A>Np(pvu(rl 
M) '362s NN=10 m x  

TEW4=TEPlP2-" &/305*NN 
TEHP5=TE1.PT, +4N 
W 3824 N:*r8 

'#=TEFF* +0. @@3175*N 
TEMPIS= TEMP5-2*N 
TEMP6: FIBS<TEW6>-8. 3 
IND3= ND;l+ii*INT<TEMP6> 
M3 3e.a 1=1,4 

z=e 0 
IF< 1 EQ. 2)2=0.8829464 
I F <  I .  W. 3>2=0. r389i028 
IFC I .  EQ. 4)2==@.886iSrS4 
INDEX=IND3+6I65*1 
TEtlP7=8. @019@5 
CRLL I NFLCF C XI V I  2, TEMP?, TEMP70 8. 083175, TEMP?, COEFF > 
CFTUISC INDEX>=C.OEFF 

3023 CM4T I NUE 
3024 CONT I NUE 
3825 CDNT I NLE 
3026 CCtNT f NUE 
302? CONTINUE 
3828 CONTINUE 

WHliTE<€v 3188) 
WHSTE(6r 3b08>(CFTUIS< I > ,  1=9,2464,42) 
WRITE (12 > CFTUI S 
ENP FII-I? 12 

c 
C AI- SUPPCjRT ST'RlJCTUHE/F ILM T W D  U ON INTER56CT ION SGtUkRES. COMPLETED. 
c TOTAL CFTUISi >=2464 
C 
C A L L  I NFLI. IENCE CQEFFI C I ENTS CALC:UI,HTED. TOTAL NUtIBER=l327B~ 
3nde FOkCIRT(ii(2X.. E l@.  3 > i  
3 3  86 FC1RllFiT C '' 61 *' r ' NEW IjHTFI SET ' r' > 

END 
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m I N E  INFLCF<Xa VI Zr CII B a  SI f r  COEFF> 
tEHP2=Z*t 
l€HPA=X*X+VW+TEW2 
.IFCTEllPl. GT. 0.16E-3>ciO TO 1004 
I W 4 Q  
JNAX=.l@ 
KHFu(=IQI -t 
-0. e 

IFCT. LT. e. IE-Z)M+I 

IFW. LT. 8. I E - 2 ) I H f W ~  
IFCB. Lf.  0. I E - 2 ) J W = l .  

fEHP8-T 
TEWS=B. 0 
IFCS. GT. 0. iE-2>00 TO 1-0 
TEW8=8.0.  
TEWS=T 
m x = i  
TEMP3=X+6. 55*A-8. 55*TEW8+0.5*TEMP9 

le09 TEIIIPI=’f+B. 55*B-8. 5*S 

W 1883 K4,KMWA 
TEMP4=TEPW3+0. l*K*TEW8 

TEMPS=<TEMP4-B.I*FI*I> 

TEMP6=TEMPI-O. i*B* J 
TEMP7=TEWPB*TEPlP6+TEMP3*TEMPS*fEMPS+TEMP2 
Rl=SQRT C TEMP? > 
TEMP6-TEMP6+S 
TEMPt=fEMP5-TEMPS 
TEMP7=TEMP7*fEMP7+TEMP6*TEMP6+TEW2 
RZ::SQRT (TEPIF? > 
TEMP7=S+fEPIPS 
TEMP6~<R1+R2+TEMPT~/iRI+RZ-TEIIIPi~ 
SUM=SU ?+el .OG<TEEP6 > 

DO 1802 I=L INHX 

DO 1881 J=I, JMRA 

1881 COlJT I NClE 
1862 COlJT I NUE 
1663 COlJT 1 NUE 

7’EblP8=S 
IF<S. LT. 8. IE-2)TEMP8~T 
COEFF= (SUM*0. 89877E18 )/~TErlP8*IM~X*JMkX*K~IHX} 
00 TO 1005 

i@@4 TEMPi=SQHT (TEMP1 
COEFF-8. 89877E1.8/’TEPIPl 

1865 RETURN 
ENC, 
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A.2 PROGRAM P5072SGF TO DETERMINE SENSOR SI6NALS DUE TO CHARGED PARTICLES 
AND RESULTING ELECTRONICS RESPONSE 

A.2.1 Sunnary 

This program uses the p a r t i c l e  path characterist ics calculated by 

program P5072CHG t o  generate sensor signals f o r  selected par t ic les and then 

determines the response o f  the electronics t o  these signals. The p a r t i c l e  

parameters o f  mass and charge are selected e i ther  by input card or by a ran- 

dom number generator. The output from the electronics model i s  stored on 

tape f o r  fu ture analysis and may be plotted, i f  desired, by selecting the 

proper code on an input card. 

A. 2.2 Description 

A.2.2.1 Determination o f  Velocity 

The star t ing veloci ty i s  one o f  the parameters supplied by input 

card. The new veloci ty o f  the p a r t i c l e  a t  the end o f  each incremental step 

i s  determined from the new p a r t i c l e  energy and the pa r t i c l e  mass, using the 

relat ionship that energy equals h a l f  the product of mass and veloci ty squared. 

The new energy :s determined by subtracting from the s tar t ing energy the work 

done i n  traversing +.he step distance. The work done i s  calculated from the 

potentials. Program P5072CHG provides two potentials a t  each step. One i s  

the potential due to  the applied potentials EPOT(0) and the other i s  the po- 

t e n t i a l  , per u n i t  charge, due t o  the pa r t i c l e  charge CPOT(0). The work done 

between two points i s  equivalent t o  the product of the potent ia l  dif ference 

between the points and the charqe. Thus, the work done i s  determined from 
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Q+EPrrr(J) + O*O*CPOT(J) calculated for the tuo steps, J and (J-1). The tine 

taken f o r  the step i s  determined fm the average ve loc i ty  over the step and 

i t s  distance. 

A.2.2.2 Determination o f  Grid and Fi lm Currents 

The currents are equivalent t o  the time ra te  o f  change o f  charge. 

Program P5072CHG provides the t o t a l  charge on each f i l m  and col lector g r i d  

element a t  each step. The current i s  found from the difference i n  charge a t  

the beginning and and o f  the step, divided by the time interval ,  calculated 

above. 

A.2.2.3 F i l m  and Grid I D  Thresholds 

The two systems are ident ical  except f o r  signal po lar i ty ,  so only 

the g r i d  I D  w i l l  be described. The input t o  the l inear  ampl i f ier  a f t e r  the 

input c i r c u i t  i s  calculated f o r  each col lector g r i d  s t r i p  using the ramp 

function response equations arr ived a t  by Laplace transform. The input t o  a 

threshold detector i s  the sum o f  the amplif ied signal from the impacted f i l m  

plus the factored inputs from the other f i l m s  applied as analog i n h i b i t  sig- 

nals. 

The t ime t o  reach threshold i s  determined by performing a l i nea r  

interpolat ion between the present and most recent steps. Thresholds a t  other 

col lector gr ids are only permitted i f  they wcur  wi th in  0.2 microsec o f  the 

f i r s t  ID. 

The time of the f i r s t  I D ,  e i ther f i l m  o r  grid, i s  used as the s t a r t  

time f o r  the PHA measurement i n  the electronics subroutine LES. 
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A.2.2.4 PHA h p l i f i e r  Signals 

The inputs t o  the four  f i l m  ampli f iers are srmmed t o  be used as 

inputs f o r  subroutine LES. To save canputing time, data points are not ac- 

cumulated u n t i l  the input reaches one-tenth o f  the input threshold level .  

A.2.2.5 Program Flow 

The f i r s t  input card i s  read t o  re t r ieve  the parameters which select  

the various options. The number o f  par t i c les  t o  be analyzed, the ve loc i ty  o f  

the part icles, the mass and charge, i f  random numbers are not  used, the num- 

ber o f  the input data se t  for path data, and the number o f  the output data set  

and codes f o r  pr in tout  selections are ret r ieved from t h i s  card. The qecond 

card gives p l o t  axes dimension information. 

The f i r s t  step i s  t o  define the physical stopping point  wi th in  the 

sensor as e i ther  the f i l m  or  east sensor shield followed by the i n i t i a l i z a t i o n  

and setup o f  the CalCanp p lo t te r .  This setup can be bypassed if no p lo t t i ng  

i s  desired. Next, the pa r t i c l e  path data are read i n  from tape as the potent ia ls 

and charges a t  each par t '  'e posit ion, plus a header record which defines the impact 

posi t ion on the sensor re la t i ve  t o  the center and the t o t a l  nunber o f  data points. 

I f  random par t ic les are t o  be selected, the f i r s t  mass and charge 

vaiues are calculated. The random number generator sca;es the values deve- 

loped so tha t  they f a l l  w i th in  a range specified by the axes dimensio,: i n fo r -  

mation given on the second input card. A l l  random numbers generated are lised 

t o  save computing time over the method which uses a l l  numbers f o r  der iv ing 

masses and charges and then rejects those which do not f i t  the problem. the 
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variables are in i t ia l i zed ,  and thc p a r t i c l e  pos i t ion a t  rrhich leasurable sfg- 

nals can be detectEd i s  then & m i n e d  for use as tk s tar t ing  point  f o r  the 

m i n i n g  calculations. The steps start a t  10 meters fm the sensor and step 

in  rapidly until e i ther  the signal rea- metenth of C e  threshold o f  a 

col1ector g r i d  or f i l m  c i r a r i t  or a point  0.4 cent i le ter  fraa the suppressor 

g r i d  i s  reached. This i s  done t o  give a starting point  for the potent ia l  

measurements and the calculations o f  work done on the part ic le,  since absolute 

potentials are measured re la t i ve  t o  infinity or  a po int  o f  zero potential.  

The sensor a m e n t s  a t  t h i s  posi t ion are written out i f  the selection 

code demands them, followed by the calculations o f  work done and the magnitude 

o f  the reraining pa r t i c l e  energy. Providing tha t  the reraining energy i s  posi- 

t ive, the new veloc i ty  and the time increment are determined, followed by a 

calculat ion o f  the new f i l m  and col lector g r i d  currents. 

The f i l a  and co l lector  grid threshold ID status i s  then detennined 

together wi th the value o f  the PHA m p l i f i e r  input signal. 

This skpence i s  continued u n t i l  a l l  pa r t i c l e  posit ions have been 

analyzed or the remaining energy reaches zero, indicat ing that  the sensor 

forces have stopped the part ic le.  

when the sequence i s  cmplete and i f  a f i  l m  ID has occurred alone, 

before a co l lector  ID or  less than 1 msec a f t e r  a col lector g r i d  ID, the data 

are passed t o  subroutine LES, which calculates the electronics response. 

The resul ts o f  the electronics analysis, namely the PHA, f i l m  and 

col lector grtd ID and accumulator counts, together wi th  the pa r t i c l e  charge, 

MSS, and veloci ty are stored f o r  future analysis and, i f  required, the points 

are plotted. 
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The progra then returns to the start  to read the next selection. 

A.2.2.6 Subroutine LES 

Section 3.2.1.2 describes t h e  operation of the sfrple d e l  of the 

_electronics- The lodeling is accarplished i n  subroutine LES. 

The prograr uses the data points passed to  it  by durly arguments 

and similarly returns values for the PHA count and accuaulator count. 

The output signal fraa the sensor is a pulse whose length and zmpli- 

tude are determined from t h e  path characteristics and particle characteristics 

i n  t h e  WIN program of P5072S6F- The signal is i n  the fora of discrete mpli- 

tudes a t  discrete times. This subroutine treats the signal as a series of ramp 

functions by developing straight-line equations for the signal between adjacent 

values . 
The program then evaluates the slope of the raaops t o  determine the 

status o f  the two switches. The result of this evaluation determines which of 

three subroutines w i l l  be used t o  calculate the value of the output signal. 

The subroutines called are CON0 1, COND 2, and COND 3, which calculate the 

responses using predetermined equations t h a t  were arrived a t  by using the 

Laplace transfon technique. A fourth subroutine, CVOLT, is used to  calculate 

the voltages across the capacitors a t  the end of each step, as these are re- 

quired as in i t ia l  conditions for the next ramp function. 

A.2.3 Method of Use 

All references t o  Job Control Cards (JCL) are for the IBM-370 sy:tem. 
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Operation o f  the program requires a minimum of two input  cards, plus 

one data tape produced by P507xH6 giving particle path data for the path and 

sensor t o  be analyzed. The miniam input allows, on the one p t h ,  either: 

(1) analysis of one particle with its nass, charge, and velocity selected by 

input  card, or (2) analysis of any number of randaasly selected particles, a l l  

a t  one selected velocity, up t o  a nwtil#lw of 999 particles. The results will 

be printed and optionally plotted. If more than one particle i s  desired i n  (l), 

different randan nunbers i n  (2), or different velocities or different paths 

are desired, then additional sets of cards must be added w i t h  the new codes 

and the appropriate path data sets must be available on tape. 

The information required on the cards is as follows: 

4- 6 

7- 13 

14-23 

24-29 

Card 1 

COlUnn Requ i rernen ts 

1-3 A nunber from 1 t o  999, format 13, representing the number of 

particles to  be generated. If discrete particles are selected, 

the value should be 001. 

A number, format 13, which determines the rate a t  which the 

element charge values will be written out,  e.g., if the value is 5 ,  

every 5 th  step w i l l  be pr inted out during analysis. 

A nunber representing the particle/s i n i t i a l  velocity, Format F7.2. 

Not used. 

An odd number used t o  s tar t  the random number generator, Format 

16. 
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card 1 (cant.) 

COlWlIl ReqUireDents 

30-32 The n e  of the particle, e.g., 5, for the 5 t h  particle of 

the total set of randan parttcle- generated for which the charge 

data are des id .  If zero, a l l  particle data w i l l  be selected on 

the basis o f  the number i n  colupgls 4 through 6. 

The particle charge, format E10.4. If randan numbers are selected, 

t h i s  value may be blank. 

The particle mass, format E10.4. 

this value may be blank. 

A nunber which if greater than 10 will cause randan particles t o  

be produced and a plot of the results generated. If greater than 

1 but less than 10, random particles will be generated. If less 

than 1, discrete values must be put i n  colunns 33 through 52. 

The i n p u t  data set number which matches the JCL cardr e.g., 

FT12F001. 

The output data set number. 22 and 25 must be used for shielded 

film data sets. 

33-42 

43- 52 If random numbers are selected, 

53-55 

56- 58 

59-61 

Card 2 

Card 2 provides information required by the CalComp plotter t o  set  up 

the axes and by the random number generator to  set up mass and charge values. 

The axes charge and mass information is developed as follows, w i t h  references 

being made t o  the following figure. 
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Consider the charge values: because o f  the range o f  values, the logar- 

ithn o f  the charge i s  plot ted on a log scale. The distance along the y-axis i s  

given by QCON*log (log C’* where QCoN i s  a constant and Q i s  the charge. 

The randan nunber generdtor develops numbers between 0 and 1.0. The 

value of 0.5 i s  subtracted LO give a range o f  -0.5 t o  +0.5, which i s  then 

mul t ip l ied by QRG, t t  desired range o f  log Q values. We now have the cor- 

rec t  range cente !d about the or ig in.  The mean value o f  the desired range, 

QMN, i n  incF s frtnn the or ig in,  i s  added t o  the generated value t o  place 

the rang, i n  the required >pea. The value obtained (y) i s  the posi t ion along 

the log Q axis, I n  inches, o f  the desired log Q. 
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COlUrm 

1-4 

5-a 

9-16 

17-26 

27-30 

31-34 

35-42 

43-52 

53-56 

57-60 

Therefore, scale value = exp (y/WM). 

To obtain log Q. we now mul t i p l y  by the scale factor, 

Q = =P (log 0). 
An ident ical  procedure i s  followed f o r  the mass M. 

The values required by Card 2 are: 

Requirement 

QRG, range i n  inches of required log Q values on ,he p l o t  (Fonna 

F4.2). 

QMN, mid-point of range i n  inches fran o r i g i n  (Format F4.2). 

QFR, scale factor  (value of log Q axis a t  or ig in) ,  ignore any 

minus sign (Format E8.2). 

WON, axis constant for s i r e  o f  axes t o  be p lo t ted (Format F10.8). 

i.e., axis length f o r  one cycle i n  inches (CYC) = QcCm* I n  10. 

WFR 

WCON 7 
AXLEQ length o f  the log Q-axis i n  inches (Format F4.2). 

AXLEM length o f  the log M axis i n  inches (Fonnat F4.2). 

A l l  the same as the equivalent log Q def in i t ions,  f o r  
log M. 

If a p l o t  i s  not required, a card must be submitted but i t  may 

be blank. 
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A.2.4 F l m  Charts and Program Listings 

A flow chart for progrum P5072SGF i s  show in Figure A-2. 

Progrim l i s t ings  are provided for progrim P5072S6F and subroutines 

LES, CONOl, C 0 2 ,  CONW, and CVOLT on pages A-67 through A-77. 
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6 .  

* ,  

- ' - - - -x 
C 
C 
C 
C 
c 
C 
C 
C 
c 
C 
c 
C 

P5072SGF 

NF IS DFITFI SET REF. NUMBER FOR PARTICLE PRTH DRTR 
NM#lf IS M T A  E T  REF. NU-R FOR WTFUT DATA SETS F15 FOUOWS 

POSITIVE CHARGE : UP & ERST NORMAL PATH 28 
WEST SENSOR 2% 
ERST SHIELDED F I L M  22 

NEGRTIYE CHARGE : UP & EAST NURFUSL PRTH 23 

NOTE : REF. 

WEST SENSOR 24 
EAST SHIELDED FILM 25 

NOS. 22 & 25 MUST EE USED FOR SHIELDED F I L M  DATA SETS 

\ 

ORIGINAL PAGE IS 
OF POOB QUALITY, 
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C PARTICLE PATH CHARFCTERISTICS 

ORIGINS PAGE Is 
OF POOR QU- 
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IFW I >p8 
IO< I >=e 
cioc I B - 0 .  e 
CiFC 1>=0.8 w< I >=e. e 
WF<I>=B. 8 
VXMiCI>43. e 
VIDF(I>=e. 0 
C2Q< I >=s, e 

ENROY-;0.5*M*vEt*yEL 
C DETEFtMINE STARTINCi CONDITIONS 

03 726 J ~ 2 ~ 1 2  

cwcn=e. e 
7W COI4TXNUE. 

XFCDXSTCJB. LE. f. 369E-2BOO TO 730 
P 

_ _  725 
726 

. 738 
735 

. .  

. \  

736 
737 

738 

739 

746 

74.1 

742 

74 li 
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C 
2168 

2178 
2188 
2183 
2184 

2f86 

C. 
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2298 
2388 

2359 

23# 

23x3 
23x* 

2378 

23- 

2385 

2396 
c 



ORIGINAL PAGE IS 
OF Pooa QUALITY 
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ORIGINAL PAGE IS 
GF POOR Q U m  
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A.3 P50721NT DATA SELECTION PROGRI)) 

A.3.1 Surary 

The sensor and electronics model p r o g r a ~ ~  produce sets of data for 

par t ic les on par t icu lar  paths. These data sets include a l l  types o f  events 

i n  random order far a par t icu lar  sensor and path. The data selection p r o g i ~  

was prepared t o  allow selection o f  a l l  par t ic les giving a pa r t i cu la r  respoAse 

o r  canbination o f  responses. The range of par t ic les obtained can then be cor- 

re lated wi th  the lunar data f o r  that  response o r  combination o f  responses, 

thereby giv ing important data f o r  the formation o f  hypotheses regarding p u r t i c l e  

sources and transport theory. 

The program selects the responses t o  be analyzed by referencing4 code 

inserted on an input card. The output can be selected as e i ther  a printed 

l i s t i n g  o r  a CalComp plot. 

A.3;2 Description 

The type and nlnnber o f  selections are read from a data card. This card 

defines the type o f  event to  be selected, the veloci ty o f  the par t ic les o f  in- 

terest, whether o r  not the data are t o  be plotted, the data set  reference n W r  

o f  the data t o  be analyzed, and the number o f  data sets t o  be recorded per l i s t /  

p lot .  

If a l i s t  i s  desired, the headings are wr i t ten out; i f  a p l o t  i s  re- 

quired, a card i s  read which defines the size o f  the axes and scales. The data 

required by the p lo t t ing  routine t o  set up the axes and t i t l e s  are then produced. 
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The data set t o  be analyzed i s  read from tape a record a t  a time, and 

each record i s  analyzed for  canfornmnce with the! characterist ics selected on the 

input card and either plotted, l ls ted,  o r  rejected. Whem a l l  records from tha t  

data set  are analyzed, a check i s  instituted t o  determine i f  mre than one event 

type i s  to  be plot ted o r  l i s t e d  on the one output medium o r  whether mre analyses 

are t o  be performed. 

The selections available are as follaws. 

The variable KIND, o f  dinemion 8, selects the options by set t ing a 1 

i n  the respective array member corresponding t o  the i tem nueber below: 

1. A l l  PHA events l isted o r  plotted. 

2. Coincident f i l m  and co l lector  g r i d  events. 

3. F i l m  only events. 

4. Mu1 ti p l  e a c c w l  ator events . 
5. Multiple, adjacent, f i l m  events. 

6. Multiple, adjacent, g r i d  events. 

7. Multiple, nonadjacent, f i l m  events. 

8. Multiple, nonadjacent, g r i d  events. 

The desired sensor and the east sensor shielded f i l m  are selected by data 

set reference number. Part icular veloci t ies o r  a l l  veloci t ies are selected by 

the veloci ty parameter on the input cards. If a l l  veloci t ies are  required, VEL 

i s  set t o  zero. The plot ted output symbol i s  related t o  IK ,  which indicates the 

selection code. IK i s  a combination o f  the codes l i s t e d  i n  KIND, i.e., 1 t o  8 

f o r  single plots or 24, say, f o r  coincident, mult ip le accumulator events. 
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A.3.3 bkthod of Use 

Three input data cards are required if a p l o t  o f  the data i s  requested; 

i f  a pr inted l i s t -  i s  requested, the third card must be OniWed. 

COluRn 

1-8 

9- 15 

16 

17- 18 

19-22 

23-24 

The first card data requirements are: 

Requirement 

KIND; Place 1 i n  the posit ions corresponding fa the desired options. 

VEL: the veloci ty o f  the desired selections. If a l l  ve loc i t ies are 

required, leave c o l m s  blank (Forinat F7.2). 

LOP: Insert  a 1 i f  a p l o t  i s  desired, otherwise leave blank. 

IDSR: Input data set  'kference number (Format 12); fm JCL card. 

IK: Code indicat ing type o f  selection f o r  t i t l e s  and p l o t  symbols, 

e.g., 1 through 8 f o r  single selections o r  24 f o r  coincident mul t ip le  

accumulator, etc . (Format 14). 

NDSPP: Number o f  data sets t o  be recorded/plotted. 

data set  o r  selection i s  t o  be recorded on the same l i s t  or plot ,  

another card ident ical  t o  card 1 i s  required with columns 23 and 24 

blank. 

If more than one 

The second card requires an alpha-numeric t i t l e  i n  the f i r s t  28 columns. 

This t i t l e  i s  used ir! both the plot ted and pr inted outputs. 

The t h i r d  card i s  ident ical  t o  card two i n  program P5072SGF. A data 

tape i s  required which carr ies the results from program P5072SGF. 

The program w i l l  repeat f o r  each additional s e t  of cards. 
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A.3.4 Flow Charts and Program Listings 

A f l o w  chart o f  the program is shown i n  Figure A-3 and a program l i s t i n g  

i s  provided on pages A-83 through A-84. 
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