U. S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS ONLY

NASA CR-132374
COPY NO. 4i
204017
ADVANCED SUPERSONIC TECHNOLOGY CONCEPT STUDY

REFERENCE CHARACTERISTICS

(NASA-CF-132374) ADVANCED SUPERSONIC TECHNOLOGY CONCEPT STUDY REPERENCE CHAFACTERISTICS (LTV Aerospace CoIp.) 307 p

N76-71826

Unclas
14809

HAMPTON TECHNICAL CENTER
LTV AEROSPACE CORPORATION
HAMPTON, VA

ADVANCED SUPERSONIC TECHNOLOGY OFFICE LANGLEY RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT NASI-10900

DECEMBER 21, 1973

FOR
$00 / 98$

U.S. DEPARTMENT OF COMMERCE National Technical Information Service

N76-71826

ADVANCED SUPERSONIC TECHNOLOGY CONCEPT STUDY REFERENCE CHARACTERISTICS

LTV Aerospace Corporation

21 December 1973

The work described herein was conducted by the Technical Staff of the LTV Aerospace Corporation/Hampton Technical Center for the Advanced Supersonic Technology Office, NASA Langley Research Center. The effort was performed under Contract NAS1-10900. The LTV/Hampton Technical Center team provides technical integration assistance to the Advanced Supersonic Technology Office for promising conceptual configurations. The purpose of this study was to develop and define a Reference Configuration Concept and its Characteristics to serve as a baseline reference for further trade studies, future configuration development, and for comparison with other industry developed configurations. The work was performed under NASA Project Manager, Mr. Cornelius Driver, Aeronautical Systems Office - Advanced Supersonic Technology Office, and Technical Coordinator, Mr. J. D. Pride, Jr., Systems Engineering Division - Aeronautical Systems Engineering Branch, NASA Langley Research Center. This report was prepared by the Technical Staff members shown below under the direction of C. W. Pearce, the Hampton Technical Center Advanced Aircraft Technology Project Manager. The contents of this document represent a level of effort of 4500 man hours.
${ }^{\circ}$ Technical Integration - B. Downie
${ }^{\circ}$ Propulsion - W. Lovell
${ }^{\circ}$ Confič:ration Concept - W. Berry, ${ }^{\circ}$ Weights - J. Espil
E. Swanson
${ }^{\circ}$ Noise - J. Russell
${ }^{\circ}$ Acrodynamics - J. DeYoung,
${ }^{\circ}$ Mission Analysis - B. Quartero
W. Holmquist, J. Russell
${ }^{\circ}$ Stability and Control - P. Smith

ADVANCED SUPERSONIC TECHNOLOGY CONCEPT STUDY REFERENCE CHARACTERISTICS

APPROVAL

LTV Aerospace Corporation

NASA Langley Research Center

C. Driver

Aeronautical Systems Office Advanced Supersonic Technology Office

C. W. Peace Project Manager

TABLE OF CONTENTS

Section No. Page No.
I FORWARD ii
II TABLE OF CONTENTS iv
III SUMMARY 1
IV INTRODUCTION 3
\checkmark REFERENCE CONFIGURATION CONCEPT 7
VI REFERENCE CONFIGURATION CHARACTERISTICS 26
VI-1 Aerodynamics 26
VI-1A Low Speed Aerodynamics 26
VI-1B High Speed Aerodynamics 92
VI-IC Sonic Boom 123
VI-2 Stability and Control 129
VI-3 Propulsion 176
VI-4 Weight Analysis 218
VI-5 Noise 237
VI-6 Mission Analysis 259
NOTE: ! 'st of symbols, figures, tables, and references appear at the end of each analysis section as appropriate.

SUMMARY

The study results to be summarized are a critical function of the design mission, ground-rules, criteria, and technology used. While every effort has been made to make these studies compatible with previous studies and national objectives the reader is cautioned that small changes in these parameters can have a large effect on study results.

The study results show a considerable increase in the payload and range capability of the Reference Configuration compared with the 1968 Boeing 336C Configuration in spite of more stringent takeoff noise requirements. In addition the Reference Configuration is much less complicated (no folding canard or demand leading edge devices, shorter more simple landing gear) and offers a more desirable 5 abreast seating arrangement. Many of these favorable changes are a result of improved low speed aerodynamic performance in conjunction with linear pitching moments to extreme angles of attack areas which were less well understood in the 1968 time period. These study results are believed to provide a solid base for trade studies on the effects of engine cycle and airplane size, takeoff and landing noise requirements, stability and control criteria, reserve fuel requirements, structural design approaches, and flutter criteria.

The Reference Configuration concept of this study exhibits the following performance characteristics:

For a design mission of 4000 nautical miles, with 292 passengers requires a TOGW of 762,000 pounds. This mission requires the
$800 \# /$ sec dry turbojet engine to be suppressed by 11.7 DB to meet the FAR 36 T.O. noise requirements.

For a New York to Paris mission the TOGW would be 696,500 pounds and the suppression required to meet FAR 36 would be 7.3 DB.

For the design mission the bare airframe noise at the FAR 36 takeoff measuring point is 105.6 DB and for landing the bare airframe noise exceeds the engine jet noise by 11.1 DB.

INTRODUCTION

The supersonic transport has become a reality in the Concorde and TU-144. Although marginally acceptable because of deficiencies in range, payload, D.O.C., and community noise these configurations can be expected to sell and earn a profit. It is clear, however, that future configurations for supersonic commercial application must have increased capability. If the foreseeable advanced technologies can be successfully implemented it is reasonable to expect substantial increases in payload fraction and range, at least FAR 36 noise levels, and D.O.C.'s competitive with the present generation of subsonic transports.

The NASA-Langley Research Center has been a leader in the development of advanced technology suitable for supersonic cruise applications. Some of these technologies have included the supersonic area rule, variable-sweep wings, supersonic wing camber and twist for drag due-to-lift reduction, favorable interference techniques, and sonic boom estimation techniques. Application of these and other advanced technologies has been high-lighted by the integration of several of these technologies into study airplane configurations. One of these concepts, with a subsonic leading edge wing, was eva'rated in-depth by the Boeing Company in 1968. In the course of this study, a number of configuration, stability and control, and performance projlems were identified. Continuing research has led to solutions to most probler: of an aerodynamic nature, but these solutions have not been integrated into an updated configuration concept. There have also been
advances in propulsion system concepts and materials that have not been previously considered.

The objective of this study is to identify a Reference Configuration concept and the associated characteristics obtainable through the application of the results of recent research. This concept is a 292 passenger M 2.7 design with a subsonic leading edge wing and utilizes four dry turbojet engines for propulsion. The engines use the variable geometry turbine feature to reduce the engine-size required to meet the FAR 36 noise requirements. The wing geometry has been refined to provide improvements in stability and control, and performance indicated by extensive wind tunnel tests. The Boeing 1968 study concept is used as a base from which the current study concept and characteristics are developed. It is anticipated that the present reference study configuration will provide a reasonable baseline for future trade studies and for application of further technology improvements. The Reference Configuration concept is defined in Section V. The characteristics of this concept are then analyzed and presented in Section VI. The major areas addressed are:

- Aerodynamics
${ }^{\circ}$ Stability and Control
${ }^{\circ}$ Propulsion
${ }^{\circ}$ Weights
${ }^{\circ}$ Noise
${ }^{\circ}$ Mission Payload/Range

Each of the areas addressed contain a further introduction which provides the objective and scope of the analyses and a summary which highlights the
results. It is intended that each of these areas of study be self sustaining, therefore, each contains its own list of symbols and references.

The design requirements used for this study are as follows:
${ }^{\circ}$ Cruise Mach no. 2.7
ºSubsonic wing leading edge
${ }^{\circ} 4000$ nautical mile range
${ }^{\circ}$ Sea level standard day take-off field length $\leq 10,500$ feet
${ }^{\circ} 1.2$ thrust margin at M 2.7 at 60,000 feet
${ }^{\circ}$ FAR-121:648 fuel reserves (modified)
$F A R 36$ noise rules

The mission profile is shown in Figure IV-7.

FIGURE IV-7 MISSION PROFILE

SECTION V

REFERENCE CONFIGURATION CONCEPT

INTRODUCTION

The development of configurations suitable for supersonic cruise involve in part subsystem integration to maximize the benefits obtainable through application of advanced supersonic technology. The initial JP-4 fueled baseline configuration, evaluated by NASA, was based on the Boeing 336C airplane, but did not incorporate a canard, and used only a horizontal tail for pitct: control and trim. The airplane was configured for 4 abreast seating and Mach 2.7 cruise. The geometry of this configuration is defined by the NASA computerized design identified as the 733-336C Follow-on 2 dated March 1973.

A preliminary investigation of subsystem integration of the above configuration identified several areas of concern primarily in the areas of the main landing gear, wing structure and fuselage interface, and the passenger arrangement. The solutions to these areas of concern has resulted in significant changes in the airplane geometry. A new computerized geometry definition to reflect these changes has been generated and is identified as 336C Follow-on 3 dated October 1973 hereinafter referred to in this docume ti as the Reference Configuration. It is to these areas of change that the following is addressed. A planform comparison of the Boeing 336C aircraft and the Reference Confiquration is shown in Figure V-1. The general arrangement, inboard profile, geometric characteristics, and weights of the Reference Configuration is shown in Figures V-2 and V-3 and Tables V-I and II.

REFERENCE AIRCRAFT DIFFERENCES

CANARD REMOVED

WING PLANFORM CHANGED \& INCREASED SPAN
HORIZONTAL TAIL VOLUME INCREASED LEADING EDGE DEVICES SIMPLIFIED TRAILING EDGE FLAP SIZES INCREASED WING MOVED FWD.

HARD SAS WITH C.G. CONTROL
PASSENGER VOLUME INCREASE TO 292
BODY LENGTH INCREASED
BODY DIAMETER INCREASED
LARGER DRY TURBO JET ENGINES
LANDING GEAR SHORTENED

Figure V-1 - Reference Configuration Differences from 336-C Configuration

FIGURE V-2 - REFERENCE CONFIGURATION GENERAL ARRANGEMENT

9
\pm

-

monour Hide
row
TABLE V-I
REFERENCE CONFIGURATION GEOMETRIC CHARACTERISTICS

GEoverer	wing	новİ	veri	vert fil on wing
		(60.000	$\xrightarrow{1090000} 10$	
(meat				
	${ }^{137.7778}$		$\underline{7.6}$	10.75
SNEP MIE DEG	74.0.i 70.84 \%	60.64	68.20	${ }^{13.4}$
Roro charo IV		$\frac{3667.200}{\substack{8200}}$	- 278.400	${ }_{\substack{452.400 \\ 62.40}}$
			-0.006	
		- ${ }_{\text {3, }}^{\text {257 }}$	2.296 .2 .237 20	. 136
Vot coff (Geass)			. 0.011	. 026
Tomat				

REFERENCE CONFIGURATION WEIGHT SUMMARY

Item	Weight (lbs.)
Wing	83,347
Horizontal Tail	5,271
Vertical Tail	4,735
Canard	0
Fuselage	54,314
Landing Gear	28,965
Nacelle	19,015
Structure Total	$(195,646)$
Engines	59,832
Thrust Reversers	10,601
Miscellaneous Systems	1,780
Fuel System-Tanks and Plumbing -Insulation	5,781 0
Propulsion Total	77,994)
Surface Controls	9,981
Auxiliary Power	0
Instruments	3,400
Hydraulics	5,600
Electrical	5,050
Avionics	2,690
Furnishings and Equipment	25,111
Air Conditioning	8,200
Anti-icing	210
Systems and Equipment Total	$(60,242)$
Mfg and Certif Tolerance	0
Weight Empty	333,882
Crew and Baggage-Flight,	675 1,640
Unusable Fuel	2,335
Engine 0il	795
Passenger Service	8,852
Cargo Containers	2,960
Adjustment for Computer Deviation	0
Operatins Weight	351,139
p\% s nngers,	(292) 48,180
Passenger Baggage	12,848
Cargo	0
Zero Fue? Weight	412,167
Mission Fuel	349,833
Design Gross We:ght	762,000

figure V - 3 - refereice configuration inboard profile

Mar $\because=\cdots \cdot \cdots$
$=$

SUMMARY

The Reference Configuration was derived from the Boeing 336C (reference V-1) and the application of results of further research conducted by the Langley Research Center. The Reference Configuration exhibits significant changes some of which are:
${ }^{\circ}$ no canard
${ }^{\circ}$ simplified leading edge devices
${ }^{\circ}$ different wing planform \& increased span
${ }^{\circ}$ hard SAS with C.G. control through fuel management
${ }^{\circ}$ longer fuselage
${ }^{\circ}$ shorter landing gear
${ }^{\circ} 5$ abreast seating
${ }^{\circ}$ larger turbojet dry engines
A comparison of the planform of the two configurations is shown in Figure $\mathrm{V}-\mathrm{l}$.

The combination of longer fuselage and slightly larger diameter fuselage, while maintaining a smooth area distribution at Mach 2.7 cruise, provides an increase in payload from 234 passengers to 292 passengers. A comparison of the cross sectional area distribution at Mach 2.7 is shown in Figure V-10. The impact of the area distribution on the aerodynamic characteristics is discussed in more detail in Section VI-1B. In addition, the increased fuselage length provides sufficient room aft of the passenger compartment for an optio:al fuel tank of 4000 gallons capacity. This as well as the additional tanks in the forward wing section, shown in Figure V-6, could be used for more precise control of C.G. travel, or an increase in range under lower load factor conditions.

The locating of the wing forward in combination with a longer aft fuselage arm, to meet aft stability C.G. travel requirements, resulted in a further aft aircraft C.G. thereby permitting a shorter lighter main landing gear.

Wing geometry changes both in planform and thickness ratio has permitted stowing of the main landing gear in the wing and fuselage eliminating an external protuberance on the upper surface of the wing.

Configuration Development

Fuselage

The fuselage lines of the initial NASA derivative of the $336 C$ configuration were based on a nominal 4 abreast seating with 58 rows of seats at 34 inch pitch all economy class (234 passengers). Because the rear spar of swept wing aircraft has considerably higher loads the floor height was based on maintaining the wing carry through structure at the depth of the rear beam. The rear beam has less depth than the front beam therefore resulting in a step in the forward box structure which could result in a significant weight penalty.

Examination of the initial fuselage constant section shows a fuselage outside moldline width of approximately 134 inches. This size of fuselage with its equivalent diameter is required to provide a smooth area distribution r..rve at Mach 2.7. Based on currently available commercial seats an addition : four inches in fuselage width will provide a more desirable five abreast seating arrangement (292 passengers). A cross section of the constant section of the Reference Configuration aircraft is shown in Figure V-4.

$\begin{array}{lc}\text { Figure } \mathrm{v}-\mathrm{4} & \text { TYP BODY SECTION } \\ & \text { REFERENCE CONFIGURATION }\end{array}$

Floor location is based on a minimum 78 inch head height at the centerline of the aisle and maintaining a full depth front spar carry through structure for the wing box.

The increase in fuselage diameter and changes in wing thickness, to be discussed later, require an increase in aircraft length to maintain approximately the same overall aircraft fineness ratio. The fuselage was therefore increased from 297 feet for the initial baseline to 315 feet for the Reference Configuration. This additional length provides room aft of the passenger compartment for an optional fuel tank of 4000 gallons capacity. Providing a tank in this area will give a more precise control of aircraft center of gravity travel plus additional fuel for increased range.

Cargo volume below the floor is provided from the front spar forward to the nose landing gear. With the use of standard cargo containers, only 1650 cubic feet is utilized of the available 3370 cubic feet.

Landing Gear

It will be demonstrated that this aircraft could be flown under relaxed static stability requirements (Reference Section VI-2). Under these conditions, the Reference airplane geometry could be configured to move the C.G. to approximately 60% of the MAC as opposed to the Boeing 969-336C location of approxim.tely 50% of the MAC. Since the main landing gear location is a function of C.G. position, this requires the landing gear to move aft. For the same flare angle, the length of the gear strut can be shortened and consequently results in a significant reduction in landing gear weight.

The initial NASA 336 derivative configuration main landing gear was a two strut gear with 12 wheels per strut and the tire size required for present airport runway and taxiway compatibility. This gear retracted forward into the wing; however, the wing was too thin to completely house the assembly. A protuberance was required on either the upper or lower wing surface to enclose the tires thereby adding additional drag to the cruise performance. Also, by moving the gear aft and retracting forward on this configuration a large portion of the wing structural box would be effected causing an additional weight penalty.

Studies indicate that the same type two post landing gear can be used and any upper or lower wing surface protuberance could be eliminated by retracting the gear inboard, partially into the fuselage and wing. This requires increasing the thickness slightly of the inboard portion of the wing and moving the maximum thickness point aft on the wing section. The housing of the landing gear in this manner would minimize performance and weight penalties.

In this landing gear system, each strut has a single boagie truck comprised of twelve (12) $40 \times 13-20$ tires. A schematic of the landing gear enclosure is shown in Figure V-5. A multi-spar concept surrounding the landing gear cutout provides a reduced weight structure for this configuration. A structural diagram of the aircraft is shown in Figure V-6.

Wing

The wing definition for the Reference Configuration is the result of aerodynamic considerations and a solution to the landing gear stowage

Figure V-5 - Wing Interface to M.L.G. and Engine Nacelles

Figure V-6 - REFERENCE CONFIGURATION STRUCTURAL DIAGRAM
problem. As noted above the inboard portion of the wing was increased in depth and the maximum thickness was moved aft. A plot of the wing thickness and t / c ratio for the Reference Configuration is shown in Figure V-7. A comparison of the rear beam depth of the initial NASA derivative configuration and the Reference Configuration is shown in Figure $V-8$. It can be seen that an average increase of 45% in rear beam depth is achieved from the inboard nacelle into the side of the fuselage. This results in weight savings for the same loading condition. No change was made in the wing thickness from wing station 400 to the tip.

Ten separate fuel tanks plus two optional tanks are provided in each wing. The ten main tanks provide for a total of 349,830 pounds of fuel. The two optional tanks provide an additional volume for 109,220 pounds of fuel. The location and capacity of each tank is shown on the structural diagram Figure V-6. Although not shown on the inboard profile, Figure V-3, additional fuel volume is available in the center wing box below the fuselage floor. With the use of bladder type tanks in this area an additional volume is available for 45,665 pounds of fuel. However, the structural weight increase associated with this installation was not considered in this study.

Engine Nacelle

The boundary layer splitter at the forward end of each nacelle is faired out at a poi:. s slightly aft of the mid-poịnt of the nacelle length. From this point the nacelle is faired into the wing lower surface aft to the trailing edge where the wing upper surface is blended into the nacelle upper moldine. Figure $V-9$ is an illustration of the wing to nacelle aft fairing.

Figure V - 8 WING REAR SPAR DEPTH COMPARISON

Figure V-7

LIST OF FIGURES

Figure No. Title

V-1	Reference Configuration Differences from $336-C$ Configuration
V-2	Reference Configuration General Arrangement
V-3	Reference Configuration Inboard Profile
V-4	Typical Body Section Reference Configuration
V-5	Wing Interface to M.L.G. and Engine Nacelle
V-6	Structural Diagram Reference Configuration
V-7	Reference Configuration Wing Thickness
V-8	Wing Rear Spar Cepth Comparison
$V-9$	Wing to Nacelle Aft Fairing
V-10	Equivalent Area Distribution Comparison

REFERENCES

Reference No. $\begin{array}{ll}\text { V-1 } & \text { The Boeing Co.; "Mach 2.7 Fixed Wing SST Model 969-336C } \\ & (\text { SCAT-15F), Document No. D6A-11666-1, dated November } 1969 .\end{array}$ LIST OF TABLES

Title
Table No.
V-I Reference Configuration Geometric Characteristics
V-II Reference Configuration Weight Summary

SECTION VI

REFERENCE CONFIGURATION CHARACTERISTICS

VI-1 AERODYNAMICS

A. LOW SPEED AERODYNAMICS

INTRODUCTION

This section presents the derivation of the low speed aerodynamic characteristics for the Reference Configuration during take-off and landing conditions. These aerodynamic characteristics were developed from unpublished data (References VI-1A-1, $-2,-3,-5,-8$) obtained in the LRC 7×10 high speed wind tunne1. A layout of the Reference Configuration is shown in Figure $V-2$. The wind tunnel models employed as a basis for estimating the aerodynamic characteristics had the same wing planform, but different wing trailing-edge-flap geometry and deflections, and a different horizontal tail size. The effects of these different control surfaces on the aerodynamic characteristics are analyzed and presented. The influence of the ground on the aerodynamic characteristics are also analyzed for this low aspect ratio wing configuration. The equations and procedures are developed to predict ground induced lift, drag, moment, and downwash, which include effects of changes in planform, flap, and/or ta; configurations. Experimental test data of ground effect on aerodynamic characteristics are analyzed to determine the significant parameters. Combining this data with image method theory for the wing leads to accurate generalized expressions for lift, drag, moment, and downwash.

The full scale airplane lift and drag characteristics are then developed for use in the take-off and landing performance analysis.

SUMMARY

Take-off and Landing Characteristics

During take-off, the airplane center of gravity (C.G.) is located at its most forward position which is 0.575 MAC (see Section VI-4). For takeoff the three inboard wing trailing-edge flaps (t_{1}, t_{2}, t_{3} Figure $V-2$) were deflected down 20 degrees and the outboard trailing-edge flap t_{4} was deflected down 5 degrees. The wing leading-edge flaps L_{1}, L_{2}, and L_{6} were deflected down 30,30 , and 60 degrees respectively. The take-off aerodynamic characteristics are presented in Figures VI-1A-1 through VI-1A-8. The specific L / D and C_{L} 's during take-off are presented in the Noise Section (Section VI-5).

During landing the airplane C.G. is located at its most aft position which is 0.597 MAC (Section VI-3). Thus the trimmed aerodynamic characteristics are different than those used for the take-off condition. The leading and trailing-edge flap deflections are the same as those used in the take-off condition. The aerodynamic characteristics during the landing condition are shown in Figures VI-1A-9 through VI-1A-13. The effect of the landing gear and spoilers during the ground roll are presented in paragraph 4(Analysis of Landing Gear and Spoilers)of this section.

The ground effect equation (Eq. 5 and 7) used for predicting the lift of the arrow wing, is derived by combining generalized ground image theory with experimental data results. This lift ground factor with ground height measured to $1 / 3$ the distance aft of the aerodynamic center on the MAC is independent of angle of attack, planform shape, and how the lift is generated. The lift performance near ground is directly the product of the ground factor and the lift performance away from ground.

The arrow wing pitching moment change near ground is given in Figure VI-1A-32 which can be used with Eq. (13) to predict changes due to large tail configuration changes. The drag change is given in Figure VI-1A-33 which can be used with Eq. (20) to predict changes due to large flap configuration changes.

Included is a method for predicting lift due to flap configuration changes (Eq. 23). These changes include sizing, span location on wing, and chord extent.

1. Aerodynamic Control Surface Characteristics

The summary aerodynamic characteristics of the Reference Configuration have been presented. The individual aerodynamic characteristics of the various control surfaces are discussed in detail in this section. These include the wing trailing edge flaps, the wing leading edge flaps, the horizontal tail, and the outboard vertical fins.

Because the summary lift and drag characteristics were derived from Reference VI-1A-2 model test data which had varied the deflection of the two inboard flaps ($\mathrm{t}_{1}, \mathrm{t}_{2}$) only, it was necessary to estimate the effect of the different wing trailing edge geometry and flap deflections on lift and drag. The Reference Configuration has three inboard trailing edge flaps $\left(t_{1}, t_{2}, t_{3}\right)$ all deflected at $20^{\circ}, 13.3^{\circ}$, or 5° and the outboard trailing edge flap $\left(t_{4}\right)$ deflected at 5°. The change in drag coefficients associated with changing these flap angles from the Reference VI-1A-2 model test is shown on Figure VI-1A-14. The incremental change in lift due to change in flap deflection angle for the Reference Configuration is shown on Figure VI-1A-15.

The effect of trailing edge flaps on lift and drag was ascertained by adjusting unpublished test data (Reference VI-1A-2) using the procedures described below. The variation of C_{L} with flap deflection angle was determined at several angles of attack for the two inboard flaps of the test model (Reference VI-1A-2). It was found that the angle of attack had negligible effect on the lift increment associated with the flap deflection. Figure VI-1A-15 presents this \because riation of C_{L} with flap angle for the two inboard flaps of the Reference VI-1A-2 test model. Also shown on Figure VI-1A-15 is the variation of incremental change in lift with flap angle for the three inboard flaps of the Reference Configuration. This curve was
obtained by correcting the Reference VI-1A-2 lift curve for flap chord to wing chord ratio, flap span to wing span ratio, flap span location, and the ratio of model wing area to wing reference area for the Reference Configuration.

The lift due to small configuration changes in the flap system can be predicted by ratioing unknown to known flap data.

If flap (a) differs in size and location from flap (b), its lift can be estimated from the ratio (with same δ):

$$
\begin{equation*}
\frac{c_{L_{f a}}}{c_{L_{f b}}}=\frac{\sum_{i=1}^{M_{o}}\left(1-n_{a v_{a i}}\right) \Delta n_{a i} \frac{\sigma_{a}}{1+3 \sigma_{a}}}{\sum_{i=1}^{M_{1}}\left(1-n_{a v_{b i}}\right) \Delta n_{b i} \frac{\sigma_{b}}{1+3 \sigma_{b i}}} \tag{1}
\end{equation*}
$$

Where: The summation is of individual flap segments along the span.

$$
\begin{aligned}
n & =2 Y / b \\
\eta_{a v} & =\text { spanwise midpoint of flap segment } \\
\Delta n & =\text { spanwise span of flap segment } \\
\sigma & =\text { flap chord ratio } c f / c \text { of flap segment }
\end{aligned}
$$

For example, if flap (b) extends from $.2 \leq \eta \leq .3$ and σ_{b} is . 10 ; while flap (a) extends from $.2 \leq \eta \leq .5$ and σ_{a} is .20 ; then the lift ratio is:

$$
\frac{C_{L_{f a}}}{C_{L_{f b}}} \quad \frac{(.65)(.3)(.2 / 1.6)}{(.75)(.1)(.1 / 1.3)}=4.22
$$

It can be seen that the area of flap (a) is 6 times larger than that of flap (b) but the lift is 4.22 times larger.

It should be noted that for the two inboard flaps $\left(t_{1}, t_{2}\right)$ of the Reference VI-1A-2 test model, the combined flap lift factor is 0.02346 ; whereas for the three trailing edge flaps of the Reference Configuration the combined flap lift factor is 0.02221 . In addition to this flap lift factor the ratio of the wing gross area to the wing reference area for the two configurations must be included in the analysis. From these factors the lift curve presented in Figure VI-1A-15 for the three inboard flaps of the Reference Configuration was obtained.

Figure VI-1A-16 presents the variation of incremental change in drag coefficient with flap deflection angle and angle of attack for the two inboard flaps (t_{1}, t_{2}) of the Reference VI-lA-2 test model. In order to obtain the flap drag of the Reference Configuration from the flap drag of the reference test model, an analysis was made to determine the effectiveness of the induced drag associated with the induced lift. The drag of the wing with a flap was represented by the following equation:
$C_{D_{\text {wing+flap }}}=C_{D_{0}}+K_{0} C_{L_{\text {wing }}}^{2}+K_{1} C_{L_{\text {wing }}} C_{L_{\text {flap }}}+K_{2} C_{L_{\text {flap }}}^{2}$

If the flap deflection angle is altered, the total drag will change !: cause of the change in lift.

$$
\begin{aligned}
C_{D_{\text {winginew flap }}} & =C_{D_{0}}+K_{0} C_{L_{\text {wing }}}^{2}+K_{1} C_{L_{\text {wing }}} C_{L_{\text {newflap }}} \\
& +K_{2} C_{L_{\text {newflap }}^{2}}
\end{aligned}
$$

The difference between the two drag values can be found as a function of flap lift as follows:

$$
\begin{aligned}
& C_{D_{\text {Wing+new flap }}}-C_{D_{\text {wing+flap }}}= K_{1} C_{L_{\text {wing }}}\left(C_{L_{\text {newflap }}}-C_{\left.L_{\text {flap }}\right)}\right. \\
&+K_{2}\left(C_{L_{\text {newflap }}}-C_{L_{f l a p}^{2}}^{2}\right) \\
&\text { Let } \left.K_{1} C_{L_{\text {wing }}}=K_{1} \text { (a new constant }\right) \\
& \text { Let } C_{D_{\text {wing+newflap }}-}-C_{D_{\text {wing }}+f l a p}=\Delta C_{D_{f l a p}} \\
&=K_{1}\left(C_{L_{\text {newflap }}}-C_{L_{f l a p}}\right)+K_{2}\left(C_{L_{\text {newflap }}}^{2}-C_{L_{f l a p}}^{2}\right)
\end{aligned}
$$

Equation (3)
Using this equation and the flap deflection drags and lifts from the Reference VI-1A-2 test model presented in Figures VI-1A-15 and -16 the value of K_{1} and K_{2} were determined for a particular change in flap angle and at a selected angle of attack. Using these same constants and the lift curve (Figure VI-1A-15) of the Reference Configuration, the incremental change in drag associated with change in flap lift and angle of attack was determined for three flap deflection angles.

It should be noted that the techniques described above were also employed to define the incremental change in the lift and drag associated with changing the outboard flap $\left(t_{4}\right)$ deflection angle from 0 degrees for Reference VI-IA-1 test model to 5 degrees on the Reference Configuration. The variation of drag changes with angle of attack shown on Figure VI-1A-14 include both the three inboard flaps and the outboard flap. Similarly Figure VI-IA-15 show the change in lift associated with changing the deflection angles of the three inboard trailing edge flaps $\left(t_{1}, t_{2}, t_{3}\right)$ of the Reference Configuration.

The leading edge flap settings of Reference VI-1A-1 model test data are the same as the Reference Configuration leading edge flap settings $\left(L_{1}, L_{2}=30^{\circ}, L_{3}, L_{4}, L_{5}=0^{\circ}, L_{6}=60^{\circ}\right)$. Therefore, no analysis was conducted on the effect of wing leading edge flap settings on the lift and drag characteristics of the Reference Configuration. The effect of wing leading edge flaps on lift and drag is presented in Reference VI-1A-3. The data of Reference VI-1A-4 would suggest that a correction should be applied to the low Reynolds number wind tunnel test data for leading edge suction effects when correcting to full scale conditions; however, no correction has been applied in this analysis.

Horizontal Tail and Elevator

The summary drag polars and L/D curves of the Reference Configuration are presented in Figures VI-1A-1 through VI-1A-13 and include the trim effects associated with tail incidence angle.

The variation of the incremental change in lift with tail incidence angle for the Reference Configuration is shown as the solid line on Figure VI-1A-17. This was obtained from analysis of Reference VI-1A-2 model test data (dashed line shown on Figure VI-1A-17) with inrrections made to account for changes in the ratio of tail area to reference area. It should be noted that the angle of attack had very little effect on the tail lift characteristics. A change in wing trailing edge flap angle from 15 to 20 degrees was found to have little effect on the sail lift characteristics.

Figure VI-1A-18 shows the effect of tail incidence angle on the incremental changes in drag for the Reference VI-1A-2 test model. As the angle of attack increase the incremental change in drag associated with the tail incidence angle decreases. Although not shown on Figure VI-1A-19, as the wing inboard trailing edge flaps change from 20 degrees to 15 degrees, the incremental change in drag decreases slightly for tail incidence angles greater than 10 degrees. However, for this analysis, the effect of flap angle on tail drag was not included; therefore, the summary drag polars for the 5 degree flap case are slightly conservative. The drag associated with tail incidence is shown in Figure VI-1A-18.

In addition to the analysis of the lift and drag associated with tail incidence, the Reference VI-lA-2 data was evaluated to determine the effect of elevator deflection on lift and drag. This data is shown in Figures VI-1A-19 and VI-1A-20.

The variation of tail incidence angle with angle of attack was determined for three wing trailing edge flap settings for the C.G. located at 0.575 MAC , and is presented as Figure VI-1A-21. Figure VI-1A-22 shows the variation of tail incidence angle with angle of attack for the C.G. positioned at 0.597 MAC at trailing edge flap settings of 5 degrees and 20 degrees respectively. Figures VI-1A-23 and VI-1A-24 present the variation with angle of attack of incremental change in lift and the incremental change in drag respectively of the Reference Configuration with wing trailing edge flap deflections of 20 degrees at the C.G. position of 0.575 MAC .

The outboard vertical tail fins were added to the Reference Configuration (Figure $\mathrm{V}-2$) to increase the directional stability during cruise. At low speeds and high angle of attack while there is no effect on lift there is a drag penalty associated with the addition of the two outboard vertical tail fins. See model test data (Reference VI-1A-1) and Figure VI-1A-25.

Skin Friction Effects

The drag polars of the Reference Configuration were derived from the Reference VI-1A-1 data which includes the skin friction drag associated with the 0.03 scale model without outboard vertical fins. At Mach 0.2 the skin friction of the Reference VI-IA-1 model was 0.0113 whereas the skin friction of the full scale Reference Configuration with vertical tails was found to be 0.0068 . The effect of the test model boundary layer transition strips on the skin friction were not accounted for in this analysis.

Aerodynamic Characteristics in Ground Effect

The Reference Configuration flying near ground is in a flow field which is displaced upwards since the flow cannot penetrate the ground. The c., icition of zero normal flow at the ground surface and the flow about the aircraft $a \pm h$ height from ground is duplicated by an inverted image of tie aircraft at the same height below the ground. This image method representation simplifies the potential flow solution for the aircraft
near the ground. Near the ground the wing floats on a layer of pressured air and high velocities over the wing are not necessary for high lift. This pressured air on the lower surface also contributes to drag which at some angle of attack can exceed the reduction in induced drag due to ground induced upwash.

The objective is to predict ground induced increments in lift, drag, moment, and downwash, which include effects of changes in planform, flap, and/or tail configuration. Experimental test data of ground effect on the aerodynamic characteristics can be analyzed to determine significant parameters. Combining this data with image method theory for the wing, leads to accurate generalized expressions for lift, drag, moment, and downwash. This combination of analytical development with experimental data takes into account the complicated flow field described above. The lift due to the aircraft near ground can be expressed as the product of a lift ground factor and the lift of the aircraft away from ground. For a constant aspect ratio this factor is relatively independent of how the lift is generated, by angle of attack, flaps, or planform change.

Near ground test data of an arrow winged aircraft is available in unpublished form in Reference VI-1A-5. Low aspect ratio wing ground effect analysis based on theory, experiment, and image method theory is derived in :eference VI-1A-6.

Deve? opment
The ratio of lift coefficient near ground to lift coefficient away from ground is defined as a lift ground factor. If height h from ground is
measured to the wing leading edge, then as angle of attack α is increased the ground factor will increase since most of the wing is then nearer the ground. Similarly, if h is measured to the wing trailing edge, the ground factor will decrease with α. There is, thus, some rotation point on the wing chord for which the ground factor is relatively independent of α. The rotation point at mid-chord in effect results in an averaged height from ground. For a two-dimensional wing section, the mid-chord is the same as $X_{a c}+(1 / 3)\left(\bar{c}-X_{a c}\right)$ where the aerodynamic center is at $X_{a c}=$ $\bar{c} / 4$. For a delta wing, $X_{a c}=\bar{c} / 2$, then h_{0} is taken at $2 / 3$ mean aerodynamic chord aft of the leading edge of the mean aerodynamic chord.

Experimental lift ground factors evaluated from Reference VI-1A-5 data are presented in Figure VI -lA-26. These values were measured with h taken at . $435 \bar{c}$. These h values are changed to h_{0} values by the relation, $h_{0} / b=(h / b) .435 \bar{c}-.0034 \alpha^{\circ}$.

With this transformation, the experimental data approach a curve as shown with high scale in Figure VI-1A-26. These data follow a reciprocal function of the form

$$
\begin{equation*}
\frac{C_{L_{g}}}{C_{L}}=1+\frac{a_{0}}{\left(a_{1}+h_{0} / b\right)^{2}} \tag{4}
\end{equation*}
$$

The constants are evaluated by simultaneous solution from two values of the \subseteq.perimental fairing. The resulting function is given by Equation (5) and is plotted in Figure VI-1A-26.

$$
\begin{align*}
& E_{m p i r i c a l} \text { formula }(A=1.62): \\
& \frac{C_{L_{g}}}{C_{L}}=1+\frac{.01}{\left(.045+h_{0} / b\right)^{2}} \tag{5}
\end{align*}
$$

Theory of the aerodynamics of a blown (and unblown) wing near ground is developed in Reference VI-1A-6 for the wing of arbitrary planform and the jet of arbitrary cross-section. The theory is based on the ground image system as shown in Sketch a. It can be seen that the trailing vortex

SKETCH a. - Ground Image System of Wing.
sheet induces an upwash at the wing while the load vorticity induces downwash ahead and forward on the wing and upwash aft on the wing. Applying vortex laws the induced upwash and lift can be determined. Following the procedure of Reference VI-IA-6, a simplified version for the wing near ground can be made:

For $A \rightarrow 0$

$$
\frac{C_{L}}{C_{L}}=1+\frac{1}{(1 / 2)+32\left(h_{0} / b\right)^{2}+4\left(h_{0} / b\right)\left[1+32\left(h_{0} / b\right)^{2}\right]^{1 / 2}}
$$

Equation (6)
The same function is obtained for $A \rightarrow \infty$ except that the variable is height per unit chord, h/c. Therefore, the effect of aspect ratio is
simply the changing of b to c as aspect ratio increases. This is obtained by factoring b by the assumed function $\left(k^{2}+A\right)(k+A)^{2}$ where k is a constant. In Equation (7), $k=6$, and Equation (7) correlates accurately with the data of the arrow wing aircraft given in Figure VI-1A-26.

$$
\begin{aligned}
& \sigma_{L}=\frac{C_{L}}{C_{L}}=1+ \\
& \left.\frac{1}{2}+32\left(\frac{h_{0}}{b}\right)^{2} \frac{(6+A)^{4}}{(36+A)^{2}}+4 \frac{h_{0}}{b} \frac{1}{\frac{(6+A)^{2}}{36+A}\left[1+32\left(\frac{h_{0}}{b}\right)^{2}\right.} \frac{(6+A)^{4}}{(36+A)^{2}}\right]^{1} /^{2}
\end{aligned}
$$

Equation (7)
Equation (7) is independent of planform shape and twist or camber, or in effect, the ground factor is independent of how the lift was generated. For a finite aspect ratio, the shape of the surface pressure distribution has some effect on the ground factor. However, vortex theory shows that induced velocities depend on total lift and independent of loading distribution as distance increases. The distance to the ground image is twice times h_{0}. In general, with $\left(k^{2}+A\right) /(k+A)^{2}$ factoring h_{0} / b, Equation (7) applies to arbitrary aircraft configurations where k is evaluated from data of an aircraft of similar wing planform. For an arrow wing airplane with small flap deflection, $k=6$. For other wing planforms k is near 6.

Reference VI-1A-5 ground effect experimental data of pitching moment and circg was analyzed for significant parameters.

The longitudina? loading changes on a wing due to ground proximity can be estimated directly from flow logic. The ground induces a vertical velocity along the wing chord. This vertical velocity varies approxi-
mately linearly with x, being a downwash ahead of the wing and linearly progressing to an upwash behind the wing. For an airfoil section a linearly varying upwash induces a positive symmetric camber. The symmetric camber has a center of pressure at midchord which is the same as 1/3 of the distance from wing aerodynamic center to wing trailing edge, that is it is the same as x_{0}. The lift proportion induced by ground effect acts at this center of pressure, that is at x_{0}. This change in chordwise loading distribution results in a change in pitching moment due to ground effect. Then in equation form the pitching moment due to ground effect is approximated as

$$
\begin{equation*}
c_{m_{g}}=C_{m}-C_{L}\left(\sigma_{L}-1\right)\left[\frac{x_{0}}{\bar{c}}+\frac{C_{m}}{C_{L}}-\frac{x_{c g}}{\bar{c}}\right] f\left(h_{0}\right) \tag{8}
\end{equation*}
$$

where $C_{m_{g}}$ is pitching moment coefficient about $x_{c g}$ near ground; C_{m} is the value away from ground, σ_{L} is lift ground factor of Eq. (7); and $f\left(h_{0}\right)$ is a secondary function near unity. Statistically analyzing the arrow wing aircraft experimental data of Reference VI-1A-5 results in the function: $f\left(h_{0}\right)=\tanh \left[6.5(1+\sin \alpha) h_{0} / b\right]$. A correlation plot of Eq. (8) with data of Reference VI-1A-5 is shown in Figure VI-1A-27.

Away from ground the drag can be expressed as

$$
C_{D}=C_{D_{m}}+\left(C_{L}-C_{L_{m}}\right) \alpha_{i}
$$

Near ground

$$
C_{D_{g}}=C_{D_{m}}+\left(C_{L_{g}}-C_{L_{m_{g}}}\right) \alpha_{i_{g}}+\alpha C_{L_{g}}\left(h_{1}\right)
$$

where the $a C_{L_{g}}\left(h_{1}\right)$ term represents the static pressure drag near ground.

A ratio of these two drag equations gives

$$
\frac{C_{D_{g}-} C_{D_{m}}-{ }^{\alpha} C_{L_{g}}\left(h_{l}\right)}{C_{D}-C_{D_{m}}}=\frac{C_{L_{g}}\left(1-\frac{C_{L_{m g}}}{C_{L g}}\right)}{C_{L}\left(1-\frac{C_{L}}{C_{L}}\right)} \frac{\alpha_{i_{g}}}{\alpha_{i}}=\sigma_{L} \sigma_{i}
$$

Then the drag near ground is

$$
\begin{equation*}
C_{D_{g}}=C_{D_{m}}+\sigma_{L} \sigma_{i}\left(C_{D}-C_{D_{m}}\right)+\sigma_{i} C_{L_{g}}\left(h_{1}\right) \quad \text { Equation } \tag{9}
\end{equation*}
$$

By a similar derivation to that in Reference VI-lA-6

$$
\begin{equation*}
\sigma_{i}=\frac{a_{i}}{a_{i}}=1-\frac{1}{1+32\left(\frac{h_{0}}{b}\right)^{2}+4 \frac{h}{b}\left[1+32\left(\frac{h_{0}}{b}\right)^{2}\right]^{1} /^{2}} \tag{10}
\end{equation*}
$$

Equation
When the wing trailing edge touches ground the wing and image form a cone as shown in Sketch b. In this static condition the drag and lift are

SKETCH b. - Wing with Trailing Edge on Ground.
approximately related directly by $C_{D_{g}}=C_{L_{g}} \tan \alpha \cong \alpha C_{L_{g}}$. For the wing near ground the static lift part is approximately $C_{L_{g}}-C_{L}$, then

$$
\begin{equation*}
\alpha C_{L_{g}}\left(h_{1}\right) \cong \alpha\left(C_{L_{g}}-C_{L}\right)=\alpha C_{L}\left[\sigma_{L}\left(h_{\eta}\right)-1\right] \tag{11}
\end{equation*}
$$

Statistica!ly analyzing the arrow wing aircraft experimental data of Reference l'.1A-5 applied to Eq. (9) with Eqs. (10) and (11), results in

$$
\begin{array}{r}
C_{D_{g}}=C_{D_{m}}+\frac{1.017}{1+.017 \frac{4 h_{0}{ }^{3}}{1+4 h_{o}^{3}}}{ }^{\sigma_{L_{h_{o}}}} \sigma_{\alpha_{h_{0}}}\left(C_{D}-C_{D_{m}}\right)+ \\
1.017\left(\sigma_{L_{h_{1}}}-1\right) \alpha C_{L}
\end{array}
$$

Equation (12)
where σ_{L} is given by Eq. (7), σ_{α} by Eq. (10). The height h_{1} is given by

$$
h_{1}=5 / 6 h_{T E}+1 / 6 h_{0}
$$

where for partial span flaps $h_{T E}$ is the mean height to wing and flap trailing edge. A correlation plot of Eq. (12) with data of Reference VI-1A-5 is shown in Figure VI-1A-28.

Moment and drag predictions by use of Eqs. (8) and (12) are presented in Figures VI-1A-29 through VI-1A-33 for the arrow wing aircraft defined by: $\Lambda=74 / 70.5 / 60, W_{3}\left(L_{1-2}=30\right),\left(L_{6}=60\right), B_{9} N_{2} H_{3} E_{2} V_{1} ; t_{1_{f}}=t_{2}=t_{3}=15^{\circ}$ which mean: L.E. sweep inboard of 74°, midsemispan of 70.5°, and outboard of 60°; inboard L.E. radius of $1 \%, W_{3}$, with inboard L.E. flap deflected 30°, and outboard L.E. flap deflected 60°; long body; notched apex of wing; medium horizontal tail; engine nacelles; vertical tail; with trailing edge staggered flaps deflected 15°. This is referred to as the (Case 8) configuration for analysis purposes.

For configurations which differ a small amount from the above configuration, the change due to ground effect given in Figures VI-1A-32 and VI-1A-33 can be added to the away from ground values of the new configuration. These are design values to be added to the olit of ground effect moment and drag of Follow-On configurations. The lift near ground is obtained directly by use of Eq. (7). For the same lift coefficient

Figure VI-1A-32 indicates that the pitching moment is relatively independent of ground effect (however, α must decrease as h_{0} becomes smaller).

Application to Other Configurations

The primary effect of configuration changes on drag is the flap size and deflection and on moment is the tail size and body length which governs the distance to ground with angle of attack. Moment and drag of configurations which have an appreciable different horizontal tail size or tail distance and flap size or deflection from that described as in (Case 8), can be predicted by adding a correction term to the values of Figures VI-1A-32 and VI-1A-33.

The horizontal tail on the aircraft near ground is in a reduced downwash field from the wing and in ground induced upwash; and gains lift from both effects. For pitching moment, the moment change of a different configured aircraft is written as (at same $h_{\text {。 }}$ and same α),

$$
\begin{gather*}
\left(c_{m_{g}}-c_{m}\right)_{D C}=\left(c_{m_{g}}-c_{m}\right)_{\text {Case 8 }}-\left[\frac { T _ { t } } { \overline { c } } c _ { L t } \left(\frac{\left.\left.c_{L_{t g}}-1\right)\right]_{D C}+}{c_{L t}}+\right.\right. \\
{\left[\frac{\frac{7}{t}}{\bar{c}} c_{L t}\left(\frac{c_{L_{t}}-1}{c_{L t}}-1\right)\right]_{\text {Case } 8}} \tag{13}
\end{gather*}
$$

where $D C$ indicates different configuration.
where $l_{t}=x_{\text {tail }}-x_{c g}$ is tail distance.

The tail lift coefficient is given by

$$
\begin{equation*}
C_{L t}=C_{L_{\alpha t a i 1}} \alpha\left(1-\frac{\varepsilon}{\alpha}-\frac{i_{t}}{\alpha}\right) \frac{q_{t}}{q} \frac{S_{t}}{S} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{L_{\text {tail }}}=\frac{2 \pi A_{t}}{A_{t}+2\left(\frac{A_{t}+4}{A_{t}+2}\right)} \tag{15}
\end{equation*}
$$

The tail lift ground factor is

$$
\begin{equation*}
\frac{C_{L t_{g}}}{C_{L t}}=\alpha_{L t}\left[1+\frac{\varepsilon}{\alpha}\left(1-\sigma_{\varepsilon}\right)\right] \tag{16}
\end{equation*}
$$

Where $\sigma_{L t}$ is evaluated from Eq. (7) but with the tail aspect ratio, A_{t}, tail ground height, $h_{o t}$, and tail span, b_{t}. The tail height from ground is given by

$$
h_{0 t}=h_{0}+z_{t}-\left(l_{t}-x_{0}+x_{c g}\right) \sin \alpha
$$

Equation (17)
where Z_{t} is tail height above wing extended chord plane.

The near ground wing induced downwash at tail is

$$
\varepsilon_{g}=\sigma_{\varepsilon} \varepsilon
$$

where

$$
\begin{aligned}
\sigma_{\varepsilon} & =1- \\
& 1+32\left(\frac{h_{s}+.5 Z}{b}\right)^{2}+4\left(\frac{h_{s}+.5 Z}{b}\right)\left[1+32\left(\frac{h_{s}+.5 Z}{b}\right)^{2}\right]^{1} /^{2}
\end{aligned}
$$

Equation (18)
where h_{S} is height from ground to the wing trailing vortex sheet or wake; Z is distance from wake to tail positive up; b is wing span. Actually

$$
\begin{equation*}
h_{s}+.5 z=h_{o t}-.5 z \tag{19}
\end{equation*}
$$

which equals $h_{\text {ot }}$ for small z or as an approximation.

For the (Case 8) configuration, the tail geometry values are:

$$
\frac{1_{t}}{\bar{c}}=.95 ; A_{t}=1.74 ; \frac{S_{t}}{S}=.045 ; \frac{b_{t}}{b}=.22
$$

For drag prediction the drag change of a different configured AST is written as (same h_{0} and same α),

$$
\begin{equation*}
\left(C_{D_{g}}-C_{D}\right)_{D C}=\left(C_{D_{g}}-C_{D}\right)_{\text {Case } 8}+\left[C_{L_{g}}\left(h_{T E}\right)\right]_{D C}^{\alpha}-\left[C_{L_{g}}\left(h_{T E}\right)\right]_{\text {Case } 8}^{\alpha} \tag{20}
\end{equation*}
$$

where $C_{L_{g}}$'s are determined from Eq. (7) with the height $h_{T E}$ substituted for h_{0}. The trailing edge averaged height from ground is given by,

$$
\begin{aligned}
h_{T E} & =h_{o}-\left(\bar{c}-c_{f}-x_{o}\right) \sin \alpha-c_{f} \frac{b_{f}}{b} \sin \left(\delta_{f}+\alpha\right) \\
& \cong h_{0}-\left[\bar{c}-\left(1-\frac{b_{f}}{b}\right) c_{f}-x_{0}\right] \frac{\alpha^{\circ}}{57.3}-c_{f} \frac{b_{f}}{b} \sin \delta_{f} \quad \text { Equation (21) }
\end{aligned}
$$

where b_{f} is the summed flap spans and c_{f} is average flap chord.
For the Case 8 configuration,

$$
\begin{align*}
\frac{\bar{c}}{b}=.839 ; & \frac{c_{f}}{c}=.13 ; \frac{b_{f}}{b}=.4 ; \frac{x_{0}}{\bar{c}}=.667 ; \delta_{f}=15^{\circ} ; \text { then } \\
& \left.\frac{h_{T E}}{b}\right)_{\text {Case } 8}=\frac{h_{0}}{b}-.113-.00374 \alpha^{\circ} \tag{22}
\end{align*}
$$

The lift due to configuration changes in the flap system can be predicted by ratioing unknown to known flap data.

If flap (a) differs in size and location from flap (b), its lift can be estimated from the ratio (with same δ):

$$
\begin{equation*}
\frac{c_{L_{f a}}}{c_{L_{f b}}}=\frac{\sum_{i=1}^{M_{0}}\left(1-n_{a v_{a i}}\right) \Delta n_{a_{i}} \frac{\sigma_{a}}{1+3 \sigma_{a}}}{\sum_{i=i}^{M_{1}}\left(1-n_{a v_{b i}}\right) \Delta n_{b_{i}} \frac{\sigma_{i}}{1+3 \sigma_{b_{i}}}} \tag{Equation}
\end{equation*}
$$

where: The summation is of individual flap segments along the span.

For example, if flap (b) extends from $.2 \leq \eta \leq .3$ and σ_{b} is . 10 ; while flap (a) extends from. $2 \leq n \leq .5$ and σ_{a} is .20 ; then the lift ratio is:

$$
\frac{C_{L_{f a}}}{C_{L_{f b}}}=\frac{(.65)(.3)(.2 / 1.6)}{(.75)(.1)(.1 / 1.3)}=4.22
$$

It can be seen that the area of flap (a) is 6 times larger than that of flap (b) but the lift is 4.22 times larger.

Evaluation of Reference Configuration with Ground Effects

Utilizing the prediction procedure outlined above the effect of ground on the aerodynamic characteristics was determined. For the Reference Configuration the wing aerodynamic center is located about 170 inches above the ground ($h_{\circ}=120.0$) during ground run. Thus for the wingspan (b) of 1653.33 inches the h_{o} / b is 0.1028 . Using this as an initial point, the ratio of the C_{L} in ground to the C_{L} out of ground as a function, of the height of the wing aerodynamic center was computed using Equation (5) and the results are presented in Figure VI-1A-34. Based on the curves presented in Figure VI-1A-33, an equation was developed which approximates the effect of height above ground and angle of attack on the ratio of the in ground drag to the out of ground drag. The equation is as follows:

$$
\frac{C_{D_{\text {in cround }}}^{C_{\text {out ground }}}}{C_{\text {gre }}}
$$

where α_{c} defines the angle of attack corresponding to zero lift. For the Reference Configuration with the three inboard trailing edge flaps set at a deflection angle of 20 degrees and the outboard flap set at 5 degrees, the value of α_{0} is -4.67 degrees. Using this value in Equation (24), the effect of angle of attack and height above ground of wing aerodynamic center on the ratio of C_{D} in ground to C_{D} out of ground was computed and the results are presented in Figure VI-lA-35.
4. Analysis of Landing Gear and Spoilers

The landing gear of the Reference Configuration consists of two main landing gear struts with twelve wheels on each strut. The nose gear has one strut with two wheels. The major portion of the gear drag is due to the struts rather than the wheels. The drag of the main landing gear struts is based on a diameter of 18 inches and an exposed length equal to the compressed length of 162 inches as shown in Figure V-2 and the stroke length. Similarly, the drag of the nose landing gear strut is based on a diameter of 12 inches and an exposed length equal to the compressed length of 174 inches as shown in Figure V-2 and the stroke length. The stroke length is the difference between the strut length with the aircraft in the air. Based on the landing gear drag presented in Hoerner (Reference VI-1A-7) the gear drag for the Reference Configuratior :vas estimated to be 0.0087 .

To assist in the braking during ground run, spoilers were employed in front of the three inboard flaps. The spoilers spoil the flow over the flaps and thus decrease the flap lift. Based on Reference VI-1A-8 test
data, the decrease in lift was found to be dependent on the spoiler angle. For the Reference Configuration which uses spoiler deflection angles of 60°, it was determined that the flaps lose 36.7 percent of the associated flap lift. The incremental drag of the spoiler was obtained from the Reference VI-1A-8 test data and then adjusted to the Reference Configuration geometry.
5. Droop Nose Effects

Based on Reference VI-1A-8 test data, the effect of drooping the nose 12.5 degrees on the incremental change in lift and drag was evaluated. The effect was determined to be negligible during take-off and landing (Figure VI-1A-36).

A	aspect ratio ($\mathrm{b}^{2} / \mathrm{S}$)
A_{t}	aspect ratio of tail ($\mathrm{b}_{\mathrm{t}}{ }^{2} / S_{t}$)
a.c.	Aerodynamic Center
a_{0}, a_{1}	constants
b	wing span - ft.
b_{f}	summed trailing edge flap spans, ft.
b_{t}	tail span - ft.
c	wing chord - ft.
$\overline{\mathrm{c}}$	mean aerodynamic chord - ft.
C_{D}	drag coefficient ($D / q S$)
$C^{D_{g}}$	drag coefficient in ground effect
${ }^{C_{D}}$	minimum drag coefficient
C.G., cg	Center of gravity
C_{f}	flap chord - ft.
C_{L}	lift coefficient (L/qS)
$C_{L_{f}}$	lift coefficient due to flap
${ }^{L_{L}}$	lift coefficient in ground effect
$C_{L_{m}}$	lift coefficient at minimum drag
$C_{L_{\text {mg }}}$	minimum lift coefficient in ground effect
${ }_{\text {ct }}$	lift coefficient of tail ($L_{\text {tail }} / \mathrm{qS}$)
$C_{L t_{g}}$	lift coefficient of tail in-ground effect
$c_{-\alpha_{t a i l}}$	lift curve slope of tail
C_{m}	pitching moment coefficient (M/qSī)

VI-1A

LIST OF SYMBOLS (continued)

$\mathrm{C}_{\mathrm{m}}^{\mathrm{g}}$	pitching moment coefficient in ground effect
D	drag - 1 bs .
DC	different configuration
ho	height from ground at x_{0} station, 'ft.
$h_{\text {ot }}$	tail ground height, ft.
h_{s}	height from ground to wing trailing vortex sheet, ft.
$h_{\text {TE }}$	mean height to wing and trailing flap edge, ft.
$h_{x}, \mathrm{~h}$	height from ground at other longitudinal station $\left[h_{x}=h_{0}+\left(x_{0}-x\right) \alpha^{0} / 57.3\right], f t$
h_{1}	reference wing height ($5 / 6 \mathrm{~h}_{\text {TE }}+1 / 6 \mathrm{~h}_{0}$), ft.
i_{t}	tail incidence angle, degrees
k, k_{0}, k_{1}, k_{2}	constants
L	lift, lbs.
L_{7}, L_{2}, L_{6}	wing leading edge flap designation
1 t	tail distance ($\mathrm{xtail}-\mathrm{x}_{1 \mathrm{~g}}$), ft.
L/D	lift to drag ratio
MAC	mean aerodynamic chord, ft.
9	free stream dynamic pressure psf.
$9+$	stream dynamic pressure near tail - psf.
3	wing area, ft.
s_{t}	tail area, ft.
$t_{1},{ }^{+}, t_{3}, t_{4}$	wing trailing edge flap designation
x	longitudinal distance from leading edge of MAC ft.

VI-1A

LIST OF SYMBOLS (continued)

REFERENCES

Reference No.	Title
VI-1A-1	Unpublished Data.
VI-1A-2	Unpublished Data.
VI-1A-3	Unpublished Data.
VI-IA-4	Henderson, W. P.; Studies of Various Factors Affecting Drag Due to Lift at Subsonic Speeds, NASA TN D-3584, October 1966.
VI-1A-5	Unpublished Data. VI-1A-6
DeYoung, J.; Symmetric Loading of a Wing in a Wide Slipstream, Grumman Report No. ADR 01-04-66.1, dated	
VI-1A-7	October 1966. Hoerner, S. F.; "Fluid Dynamic Drag" dated 1958.
VI-1A-8	Unpublished Data.

Figure No.
Title

VI-7A-1	L/D vs C_{L} with 20° Flaps During Take-off of Reference Configuration
VI-1A-2	L/D vs $C_{\text {L }}$ with 13.3° Flaps During Take-off of Reference Configuration
VI-1A-3	Variation of C_{L} vs α for Reference Configuration with 20° Flaps
VI-1A-4	Drag Polar of Reference Configuration with 20° Flaps
VI-1A-5	Variation of C_{L} with α for Reference Configuration with 13.3° Flaps
VI-7A-6	Drag Polar of Reference Configuration with 13.3° Flaps
VI-1A-7	Variation of C_{L} with α for Reference Configuration with 5° Flaps
VI-TA-8	Drag Polar for Reference Configuration with 5° Flaps
VI-1A-9	L/D vs C_{L} of Reference Configuration with 20° Flaps During Landing
VI-1A-10	Variation of C_{L} with α for Reference Configuration with 20° Flaps
VI-1A-11	Drag Polar for Reference Configuration with 20° Flaps
VI-1A-12	Variation of C_{L} with α for Reference Configuration with 5° Flaps
VI-7A.. 13	Drag Polar for Reference Configuration with 5° Flaps
VI-1A-14	Effect of Trailing Edge Flap Deflection on Drag of Reference Configuration
$V I-1 A-15$	Effect of Trailing Edge Flap Deflection on Lift for Reference Configuration

LIST OF FIGURES (continued)

Figure No.

VI-1A-16	Effect of Flap Deflection Angle on Drag for t_{1} and t_{2} of Reference 2 Test Model
VI-1A-17	Effect of Tail Incidence Angle on Lift of Reference Configuration
VI-1A-18	Effect of Tail Incidence Angle on Drag of Reference 2 Test Model
VI-1A-19	Variation of Elevator Lift with Trailing Edge Flap Angle
VI-1A-20	Variation of Elevator Drag with Trailing Edge Flap Angle
VI-1A-21	Variation of Tail Incidence Angle with Angle of Attack During Take-Off
VI-1A-23	Variation of Tail Incidence Angle with Angle of Attack During Landing
VI-1A-24	Variation of Tail Lift with Angle of Attack for Reference Configuration
Variation of Tail Drag with Angle of Attack for Reference Configuration	
VI-1A-25	Effect of Angle of Attack on Drag of Outboard Vertical Fins
VI-1A-27	Ground Induced Lift for Arrow Wing Aircraft
VI-1A-?8	Arrow Wing Configuration Pitching Moment Coefficient Near Ground. Correlation of Analysis with Experiment
VI-1A-30 Arrow Wing Configuration Drag Coefficient Near Ground	
Correlation of Analysis with Experiment	

VI-1A

LIST OF FIGURES (continued)

Figure No.

VI-1A-31	Reference Configuration Drag Polar and $C_{L}{ }^{\sim} \alpha$ Curve Near Ground
VI-1A-32	Reference Configuration Change in Pitching Moment Coefficient Due to Ground Effect
VI-1A-33	Reference Configuration Change in Drag Coefficient Due to Ground Effect
VI-1A-34	Effect of Wing Height on Lift for Reference Configuration
VI-1A-35	Effect of Wing Height on Drag of Reference Configuration
VI-1A-36	Effect of Nose Droop on Lift and Drag

Figure VI-1A-i - L/D vs C_{L} with 20° Flaps During Take-off of Reference Configuration

Figure VI-TA-2 - L/D vs C_{L} with 13.3° Flaps During Take-off of Reference Configuràion

Figure VI-1A-3 - Variation of C_{L} vs α for Reference Configuration with 20° Flaps

Figure VI-1A-4 - Drag Polar of Reference Configuration with 20° Flaps

Figure VI-1A-5 - Variation of C_{L} with α for Reference Configuration with 13.3° Flats

Figure VI-1A-6 - Drag Polar of Reference Configuration with 13.3° Flaps

Figure VI-1A-7 - Variation of C_{L} with α for Reference Configuration with 5° Flaps

Figure VI-iA-8 - Drag Polar for Reference Configuration with 5° Flaps

Figure VI-1A-9 - L/D vs C_{L} of Reference Configuration with 20° Flaps During Landing

Figure VI-1A-10 - Variation of C_{L} with α for Reference Configuration with 20° Flaps

Figure VI-1A-11 - Drag Polar for Reference Configuration with 20° Flaps

Figure VI-1A-12 - Variation of C_{L} with α for Reference Configuration with 5° Flaps

Figure VI-1A-13 - Drag Polar for Reference Configuration with 5° Flaps

Figure VI-1A-14 - Effect of Tralling Edge Flap Deflection on Drag of
Reference Configuration

Figure VI-1A-15 - Effect of Trailing Edge Flap Deflection on Lift for Reference Configuration

Figure VI-1A-16 - Effect of Flap Deflection Angle on Drag for t_{1} and t_{2}
of Reference 2 Test Model

Figure VI-1A-17 - Effect of Tail Incidence Angle on Lift of Reference Configuration

Figure VI-1A-18 - Effect of Tail Incidence Angle on Drag of Reference 2
Test Model

Figure VI-1A-19 - Variation of Elevator Lift with Trailing Edge Flap Angle

Figure VI-1A-20 - Variation of Elevator Drag with Trailing Edge Flap Angle

Figure VI-1f.- zl - Variation of Tail Incidence Angle with Angle of Attack During Take-Off

Figure VI-1A-22 - Variation of Tail Incidence Angle with Angle of Attack During Landing

Figure VI-1A-23 - Variation of Tail Lift with Angle of Attack for Reference Configuration

Figure VI-1A-24 - Variation of Tail Drag with Angle of Attack for Reference Configuration

Figure VI-1A-25 - Effect of Angle of Attack on Drag of Outboard Vertical Fins

Figure VI-7A-26 - Ground Induced Lift for Arrow Wing Aircraft.

Figure VI-1A-27 - Arrow Wing Configuration Pitching Moment Coefficient near Ground. Correlation of Analysis with Experiment.

Figure VI-1A-28 - Arrow Wing Configuration Drag Coefficient near Ground. Correlation of Analysis with Experiment.

Figure VI-1A-29 - Reference Configuration Pitching Moment Coefficient near Ground.

Figure VI-1A-30 - Reference Configuration Drag Coefficient and L/D Ratio Near Grourid.

Figure VI-1A-31
Reference Configuration Drag Polar and $C_{L}{ }^{\sim} \alpha$ Curve
Near Grour. ${ }^{1}$.

Figure VI-1A-32 - Reference Configuration Change in Pitching Moment Coefficient Due to Ground Effect

Figure VI-1A-33 - Reference Configuration Change in Drag Coefficient Due to Ground Effect.

Figure VI-7A-34 - Effect of Wing Height on Lift for Reference Configuration

Figure VI-1A-35 - Effect of Wing Height on Drag of Reference Configuration

Figure VI-?A-3E - Effect of Nose Droop on Lift and Drag

VI-1B HIGH SPEED AERODYNAMICS

INTRODUCTION

Recent advances in low speed aerodynamic technologies have resulted in wing configurations that exhibit significant improvements to that of the Boeing 969-336C (Reference VI-1B-1). Changes which were incorporated into the Reference Configuration wing to improve the aerodynamic characteristics consisted of a new wing planform to improve the longitudinal stability and lov: speed performance characteristics, and a supersonic twist and camber distribution optimization including favorable nacelle-wing interference effects to reduce trim drag at cruise. Other changes from the 969-336C SST configuration which affect the high speed aerodynamic characteristics include an increased fuselage size, changes to the wing thickness distribution, and a new and larger engine nacelle configuration. The theoretical aerodynamic methods used to derive the estimated high speed lift and drag performance of the Reference Configuration are an improved version of those used in the late 1960's (Reference VI-TE-2). The basis and methods used are outlined. High sneed drag polar and the maximum lift-to-drag ratio behavior achieved are presented for the Reference Configuration.

SUMMARY

The 969-335C SST configuration developed by the Boeing Company during the nationa?. SST Program (Unpublished Reference VI-1B-1) was used as the basis for the Reference Configuration. The Reference Configuration incorporates
changes from the 969-336C configuration primarily to improve low speed performance, and to provide for increases in passenger and fuel capacities, and to facilitate landing gear stowage. The Reference Configuration achieved a maximum lift-to-drag ratio of 8.67 for cruise at Mach 2.7 at an altitude of 60,000 feet. This compares to a value of 8.9 for the same conditions for the 969-336C configuration. The increase in aircraft wave drag associated with the changes from the 969-336C configuration to the Reference Configuration was the major reason for the reduction in the aerodynamic performance.

Reference Data Base

High speed drag polars for the 969-336C SST configuration were developed by the Boeing Company in 1969 as part of the national SST program Reference VI-1B-1 . The main changes from the 969-336C configuration to the Reference Configuration which affect the aerodynamic drag are the increases in the fuselage size and wing spanwise and chordwise thickness distributions, and changes to the engine nacelle geometry and wing planform. The drag polar shapes for the 969-336C SST configuration (Unpublished Reference VI-1B-1) are based on wind tunnel test data and were selected as a logical starting point for the determination of the lift dependent drag behavior for the Reference Configuration. Drag polars for the Reference Configuration were thereby derived by comianing the characteristic polar shape, obtained by correct: Ξ the lift dependent drag behavior of the 969-336C configuration for differences in wing aspect ratio and reference area, with a zero-lift drag buildup for the Reference Configuration obtained by analytical methods.

High speed drag polars for the 969-336C SST configuration were available from unpublished reference VI-1B-1 for five Mach numbers ($M=2.7,2.3,1.2, .95$, and .6). These polars are presented for three Mach numbers ($M=2.7,1.2$, and .6) in Figure VI-1B-1. Propulsion drag and air conditioning drag are handled as a separate aerodynamic drag increment and are not included in the drag polars. A breakdown of zero lift drag items for these polars follows:

Mach No.	.6	1.2	2.7
$C_{D_{F}}$.00571	.00504	.00379
$C_{D_{W}}$	0.	.00308	.00176
$C_{D_{\text {Roughness }}}$.00022	.00051	.00021
$C_{D_{\text {Bumps \& }}}$	0.	.00031	.00027
Gullies			

Table VI-1B-I. Zero Lift Drag Breakdown - 969-336C SST.

Assumptions and Technology Used to Develop Drag Characteristics

The airplane drag was separated into two categories for analysis: (1) lift dependent drag, and (2) zero lift drag. The lift dependent drag behavior was determined for the Reference Configuration by correcting the drag polars of unpublished reference VI-1B-1 (Figure VI-1B-1) for differences in airplane induced drag while the zero lift drag was determined primarily from a buildup of computed friction, wave, and roughness drag increments.

The drag polars of unpublished reference VI-1B-1 (Figure VI-1B-1) provided the basis for the lift dependent drag behavior, or polar shapes, derived for the Reference Configuration. These polar shapes were determined from wind tunnel test data and were corrected to account for the difference in wing
aspect ratio on airplane induced drag for the two configurations. (A comparison of wing planforms for the two configurations is shown on Figure VI-lB-2). A correction to account for the change in the wing reference area defined, from 9898 square feet for the 969-336C configuration to 9969 square feet for the Reference Configuration, was also applied.

The major portion of the zero lift drag was determined from a buildup of the computed friction, wave, and roughness drag components. The Reference Configuration did not require a drag penalty for landing gear and pod bumps and gullies or trim drag at cruise. The zero drag penalty for landing gear and pod bumps and gullies is in keeping with the increased wing thickness of the Reference Configuration, which eliminates the need for landing gear bumps, and a method of fairing the wing trailing edge which eliminates the other bumps and gullies. The zero trim drag at cruise is based on the capability to design the wing with the proper camber and twist distribution and to optimize the nacelle position to result in a zero pitching moment for trim at the cruise condition. The cruise polar ($M=2.7$) of the Reference Configuration benefits from a zero lift drag coefficient reduction of .0002 relative to that of the 969-336C configuration due to this effect. No other changes in trim drag relative to the 969-336C configuration were considered or investigated.

Figure $V=-1 B-3$ illustrates the breakdown of the cruise polar as described above for the 969-335C configuration used for the drag basis. Here the reduction in trim drag mentioned above is indicated as an increment in the zero lift drag. The drag remaining after the zero lift drag and lift induced drag components are accounted for is indicated as $\Delta C_{D p}$ and is attributed to camber
and separated flow effects. The similar breakdown for the cruise polar of the Reference Configuration is illustrated in Figure VI-1B-4.

Skin friction and wave drag solutions were obtained by means of NASA computer programs. A computer plot of the geometry representation of the Reference Configuration used in these programs is illustrated in Figure VI-1B-5. A list of the computer programs used is contained at the end of this section. References VI-1B-3 and VI-1B-4 document the programs used for the wave drag and configuration plots.

Airplane roughness drag for the Reference Configuration was determined at a value of six percent of friction drag at cruise $(M=2,7)$. For Mach numbers below cruise the 969-336C roughness drag values (Unpublished Reference VI-1B-1) were ratioed to provide the Reference Configuration values to the same ratio obtained at the cruise Mach number.

Impact of Configuration Concept on Baseline Drag Characteristics

The Reference Configuration incorporates a number of design changes which result in an increase in aircraft volume relative to the 969-336C configuration. The fuselage length was increased from 295 feet to 315 feet while the width was increased to 140 inches to allow for an increase in passenger seating, from 234 to 222 , plus room for optional fuel storage in the aft (tail) region. The inboard wing sections were thickened and the point of maximum thickness shifted aft to 75% chord to provide an additional ten inches wing depth for gear stowage without bumps on the wing in the vicinity of wing station 114 (for both structural and aerodynamic considerations). Finally, the engine size was ircreased from an airflow of 633 pounds per
second to 800 pounds per second and a new "D" engine nacelle configuration was adopted. The effect of these changes on the nacelle net cross section area distribution is shown in Figure VI-1B-6. As a result of all of the changes, the aircraft volume was increased resulting in increases in aircraft friction and wave drag. A summary of the increases in skin friction and wave drag coefficients attributed to these changes is made in Table VI-IB-II below for the cruise condition at an altitude of 60,000 feet. The coefficients shown are based on a common reference area of 9898 square feet. The values listed for the incremental changes are considered to be representative values for the effects indicated.

Configuration Change	$\Delta C_{D_{F}} \times 10^{4}$	$\Delta C_{D_{W}} \times 10^{4}$
Fuselage Size Increase	.2	2.0
Wing Thickness Increase	.3	3.1
Wing Planform Change		
Change from 633\#/sec nacelle to 800\#/sec "D" nacelle	1.1	.5
Total	5.2	-2.4

Table VI-1B-II. Increases in Skin Friction and Wave Drag at Cruise for Reference Configuration Relative to 969-336C SST.

In addition to the values summarized in Table VI-1B-II, increases in C_{D} of 3.0×10^{-4} and $C_{D_{1, N}}$ of 1.0×10^{-4} were obtained for the values calculated for the 969-336C configuration relative to the values quoted in Unpublished Referer. Y Y $\mathrm{V}-1 \mathrm{~B}-1$. The reason for these differences is unknown.

A comeritison of skin friction drag is made in Table VI-1B-III below for Mach numbers of $.6,7.2$, and 2.7, for the two configurations. The
coefficients shown are based on a common reference area of 9898 square feet. The reason for the differences between the values calculated for the 969-336C configuration and those quoted in Unpublished Reference VI-1B-1 is unknown.

Configuration	Source	$C^{D_{F}}$	$\left(S_{R E F}=9898 \mathrm{ft}^{2}\right)$	
Mach No.		. 6	1.2	2.7
Altitude		7,500 ft	34,300 ft	60,000 ft
969-336C	Ref. 1	. 00571	. 00504	. 00379
	Calcuiated	. 005654	. 005307	. 004091
Reference	Calculated	. 005971	. 005603	. 004320

Tabie VI-1B-III. Skin Friction Drag Coefficient ($C_{D_{F}}$) Comparison.

The aircraft wave drag is à function of the longitudinal distributions of area along Mach angle cuts. The integrated average area distributions for $\cdot \mathrm{a}$ Mach number of 2.7 are compared in Figure VI-1B-7 for the total aircraft and for the aircraft fuselages alone. (The difference in the characteristic shape of the fuselage area distributions arises to some extent from the cifforence in the cross section shape of the fuselage configurations, Which is circular for the Reference Configuration and non-circular for the gro-235c configuration.) The effect of the increased volume of the Roforence Configuratio: is apparent in this figure. The Reference Configuration fur age area distr bution was contoured to provide a near-optimum shape fon $\because \because \because \leq 2.7$ totc: integrated average area distribution shown in figure VI-TE-7. An ancrease in wave drag would be expected for the Reference Configuration as a result of the increase in volume. In Figure VI-1B-8, the wave drag, based on a common reference area of 9898 square feet, is plotted
as a function of aircraft volume. The effects of the changes to the $969-336 \mathrm{C}$ configuration leading to the Reference Configuration are mapped on this figure. The total drag polars for the 969-336C and Reference Configuration are compared for Mach numbers of $.6,1.2$, and 2.7 , and a common reference area of $9898 \mathrm{ft}^{2}$ in Figures VI-1B-9 through VI-1B-11.

Reference Configuration High Speed Aerodynamic Characteristics

High speed drag polars used for range performance computation of the Reference Configuration are presented. The propulsion and air conditioning drag are also shown. Maximum lift-to-drag ratio performance is compared with that of the 969-336C configuration for Mach numbers above . 6 .

High speed drag polars are presented for the Reference Configuration in Figures VI-1B-12 through VI-1B-14 for subsonic ($M=.6$), transonic ($M=1.2$), and supersonic cruise $(M=2.7)$, Mach numbers. They are also presented in tabulated form in Table VI-1B-IV for Mach numbers of .6, .8, .95, 1.05, 1.2, $1.4,1.6,1.8,2.2,2.4$, and 2.7. These polars are based on the Reference Configuration reference area of 9969 square feet. Lift coefficients achieved for the conditions presented and the lift coefficients required to obtain the maximum lift-to-drag ratios are indicated on the figures. A correction factor was applied to the cruise polar to account for the change in friction drag for altitudes above 60,000 feet when used for mission range performance computations. This correction factor was: $d C_{D} / d h=.037151 \times 10^{-6} / \mathrm{ft}$. The propulsion drag and air conditioning drag used for the Reference Configuration mission range performance is presented as a function of Mach number in Figure VI-1B-15. These drag increments must be added to the drag polars
(Figures VI-1B-13 through VI-1B-15 and Table VI-1B-IV) to obtain the total aircraft drag used for performance analysis.

The maximum lift-to-drag ratio performance is presented for the Reference Configuration for Mach numbers of .6 and above in Figure VI-1B-16. The 969-336C maximum lift-to-drag ratio performance is also included on this Figure for comparison purposes. These curves represent the maximum lift-to-drag ratios obtained using the total drag including propulsion and air conditioning drag. The reduction in the maximum lift-to-drag ratio performance relative to the $969-336$ Configuration is a result of the increased skin friction and wave drag associated with the increases in wing thickness and fuselage size incorporated into the Reference Configuration design concept.

A	Wing Aspect Ratio
$\overline{\mathrm{c}}$	Wing Mean Aerodynamic Chord - in.
C_{D}	Airplane Drag. Coefficient
${ }^{C_{\text {Dumps }} \text { \& }}$	Airplane Drag Coefficient Due to Bumps \& Gullies
$C_{D_{f}}$	Airplane Friction Drag Coefficient
$C^{C}{ }_{j}$	Airplane Induced Drag Coefficient
${ }^{\text {d }}$ Roughness	Airplane Roughness Drag Coefficient
${ }^{C^{\text {d }}}$ W	Airplane Wave Drag Coefficient
C_{1}	Airplane Lift Coefficient
c.g.	Airplane Center of Gravity
$\mathrm{dC}_{\mathrm{D}} / \mathrm{dh}$	Variatjon in Airplane Drag Coefficient with Altitude ft. ${ }^{-1}$
h	Altitude - ft.
$(\mathrm{L} / \mathrm{D})_{\text {max }}$	Airplane Maximum Lift-to-Drag Ratio
M	Mach Number
SEQUIV	Average Equivalent - Body Area for Cuts Taken Along Mach Lines
$\mathrm{S}_{\text {GROSS }}$	Airnlane Gross wing area - ft. ${ }^{2}$
$S_{\text {NET }}$	Nacelle Cross Section Area Minus Inlet Capture Area - ft. ${ }^{2}$
$S_{\text {REF }}$	Airtlane Reference Wing Area - ft. ${ }^{2}$
$\triangle_{\text {dp }}$	Airplane Lift-Dependent Drag Coefficient Due To Camber, Planform, and Miscellaneous Effects
$\Delta_{D_{\text {TRIM }}}$	Airplane Drag Coefficient Increment Due To Trim

LIST OF TABLES

Table No.
Title

Zero Lift Drag Breakdown - 969-336C SST
VI-1B-II Increases in Skin Friction and Wave Drag at Cruise for Reference Configuration Relative to 969-336C SST

VI-1B-III Skin Friction Drag Coefficient ($C_{D_{F}}$) Comparison
VI-1B-IV \quad High Speed Drag Polars - Reference Configuration - Sref $=$ $9969 \mathrm{ft}^{2}$

REFERENCES

Reference No.
VI-1B-1 The Boeing Co.: Mach 2.7 Fixed Wing SST Model 969-336C (SCAT-15F), Document No. D6A-11666-1, dated November 1969.

VI-1B-2 Baals, Donald D; Robins, Warner A., and Harris, Roy V., Jr.: Aerodynamic Design Integration of Supersonic Aircraft, Journal of Aircraft, Vol. 7, No. 5, September-October, 1970, pp. 385-394.

VI-1B-3 Harris, Roy V., Jr.: An Analysis and Correlation of Aircraft Wave Drag, NASA TM X-947, 1964.

VI-1B-4 Craidon, Charlotte B.: Description of a Digital Computer Program for Airplane Configuration Plots, NASA TM X-2074, 1970.

NASA COMPUTER PROGRAMS

Number
D1260
D1266
D2290
D2500

Title
Aircraft Wetted Areas and Reference Lengths
Airplane Turbulent Skin Friction Drag
Configuration Plots
Wave Drag

LIST OF FIGURES

Figure No.	Title
VI-1B-1	Drag Basis - 969-336C High Speed Drag Polars
VI-1B-2	Wing Planform Comparison - 969-336C SST. and Reference Configuration
VI-1B-3	Cruise Drag Polar Breakdown - 969-336C SST
VI-1B-4	Cruise Drag Polar Breakdown - Reference Configuration
VI-1B-5	Computer Plot - Reference Configuration Geometry
VI-1B-6	Nacelle Net Cross Section Area Distribution Comparison
VI-1B-7	Equivalent Area Distribution Comparison At Cruise
VI-1B-8	Airplane Wave Drag Comparison - Sref $=9898 \mathrm{ft} .^{2}$
VI-1B-9	Drag Polar Comparison - M = . 6
VI-1B-10	Drag Polar Comparison - M $=1.2$
VI-1B-11	Drag Polar Comparison - $M=2.7$
VI-1B-12	Reference Configuration Drag Polar - $M=.6$
VI-18-13	Reference Configuration Orag Polar - M $=1.2$
VI-1B-14	Reference Configuration Cruise Drag Polar - $M=2.7$
VI-1B-15	Propulsion Bleed And Air Conditioning Drag
VI-1B-16	Maximum Lift-To-Drag Ratio Performance

$$
\begin{gathered}
.8 \\
21,000 \mathrm{ft} . \\
.009466 \\
.008700 \\
.008256 \\
.008134 \\
.008335 \\
.008858 \\
.009703 \\
.010871 \\
.012361 \\
.014173 \\
.018764 \\
.024645 \\
.031815
\end{gathered}
$$

$$
\begin{gathered}
C_{D} \\
.95 \\
30,000 \mathrm{ft} . \\
.011420 \\
.010298 \\
.009544 \\
.009159 \\
.009144 \\
.009497 \\
.010219 \\
.011311 \\
.012771 \\
.014601 \\
.019367 \\
.025609
\end{gathered}
$$

$$
\begin{gathered}
1.05 \\
32,000 \mathrm{ft} . \\
.013900 \\
.012538 \\
.011602 \\
.011093 \\
.011011 \\
.011357 \\
.012129 \\
.013328 \\
.014955 \\
.017008 \\
.022397 \\
.029493
\end{gathered}
$$

$$
\begin{gathered}
1.2 \\
34,300 \mathrm{ft} . \\
.014684 \\
.013409 \\
.012593 \\
.012234 \\
.012334 \\
.012891 \\
.013906 \\
.015378 \\
.017309 \\
.019697 \\
.025848
\end{gathered}
$$

Table VI-1B-IV - High Speed Orag Polars - Reference Configuration - $\mathrm{S}_{\text {ref }}=9969 \mathrm{ft}^{2}$

$$
\begin{gathered}
1.6 \\
41,300 \mathrm{ft} . \\
.011642 \\
.011174 \\
.010825 \\
.010596 \\
.010486 \\
.010495 \\
.010623 \\
.010871 \\
.011238 \\
.012329 \\
.013897 \\
.015943 \\
.018465 \\
.021464 \\
.028894
\end{gathered}
$$

$$
\begin{gathered}
1.8 \\
44,600 \mathrm{ft} . \\
.010286 \\
.009922 \\
.009679 \\
.009557 \\
.009557 \\
.009679 \\
.009921 \\
.010286 \\
.010772 \\
.012108 \\
.013929 \\
.016237 \\
.019031 \\
.022310
\end{gathered}
$$

$$
\begin{gathered}
C_{D} \\
2.2 \\
51,500 \mathrm{ft} . \\
.008479 \\
.008260 \\
.008173 \\
.008216 \\
.008390 \\
.008694 \\
.009130 \\
.009696 \\
.010393 \\
.012178 \\
.014487 \\
.017319 \\
.020673 \\
.024551
\end{gathered}
$$

$$
\begin{gathered}
2.4 \\
55,000 \mathrm{ft} . \\
.008108 \\
.007916 \\
.007866 \\
.007958 \\
.008191 \\
.008567 \\
.009085 \\
.009745 \\
.010548 \\
.012578 \\
.015176 \\
.018342 \\
.022076 \\
.026378
\end{gathered}
$$

ig: re VI-iB-1 Drag Basis - 969-336C High Speed Drag Polars

Reference Configuration $S_{\text {REF }}=9963 \mathrm{ft}^{2}$
$S_{\text {GROSS }}=10996.365 \mathrm{ft}^{2}$

Figure VI-1B-2 Wing Planform Comparison-969-336C SST

Figure VI-1B-5 Computer Plot - Reference Configuration Geometry

Figure Vi-lB-6 Nacelle Net Cross Section Area Distribution Comparison.

Figure VI-1B-7 Equivalent Area Distribution Comparison At Cruise

Figure VI-1B-9 Drag Pilar Comparison $-M=.6$.

Figure VI-1B-10 Drag Polar Comparison - $M=1.2$

Figure VI-1B-11 Drag Polar Comparison - $M=2.7$

Figure VI-1B-12 Reference Configuration Drag Polar $-\mathrm{M}=.6$.

Figure VI-1B-13 Reference Configuration Drag Polar - $M=1.2$.
Figure VI-1B-14 Reference Configuration Cruise Drag Polar $-\mathrm{M}=2.7$.

Figure VI-1B-15 Propulsion Bleed And Air Conditioning Drag.

Figure VI-TB-16 Maximum Lift-To-Drag Ratio Performance

VI-1 AERODYNAMICS

VI-IC SONIC BOOM

INTRODUCTION

Sonic boom solutions were computed for the Reference Configuration to provide an indication of the sonic boom pressure levels to be expected for this type aircraft. The methods used are outlined and the results attained are summarized.

SUMMARY

Sonic boom solutions were obtained for start of cruise ($M=2.7$; $h=61,000 \mathrm{ft}$.) and climb ($M=1.2 ; h=35,000 \mathrm{ft}$.) conditions. Pressure peaks of +2.3 and -2.1 1b./ft ${ }^{2}$ were obtained for the start of cruise condition which compares to +2.9 and $-3.1 \mathrm{lb} . / \mathrm{ft}^{2}$ obtained for the climb condition. An increment in sonic boom overpressure of approximately $1 / 4 \mathrm{lb} . / \mathrm{ft} .^{2}$ is attributed to the low speed requirement for wing anhedral.

Sonic Boom Characteristics

Sonic boom solutions were computed by means of NASA computer programs. A list of the programs used is contained at the end of this section. Standard atmospher ${ }^{2}$, no wind, conditions were assumed with the aircraft in a steady state evil ilight condition. A tail load of zero was assumed.
T. T : $\mathrm{n}^{\circ} \mathrm{c}$ boom sicnature obtained for a selected mission for the Reference Con:ig....ation is riresented in Figure VI-1C-1 for the start of cruise weight of 673,605 pounds and altitude of 61,000 feet. The altitude was selected
as the start of cruise altitude as determined by the mission-range performance program. Figure VI-IC-1 also shows the equivalent area distribution, $A E$, and the actual area distribution due to aircraft volume, AV. The equivalent area distribution includes the effect due to the lift distribution and is the primary determining input for the sonic boom signature as computed by the sonic boom computer program.

Figure VI-1C-2 shows the same information for the climb weight of 725,676 pounds at a Mach number of 1.2 and an altitude of 35,000 feet. As indicated, this condition results in a much more severe sonic boom overpressure than that obtained for the start of cruise condition (Figure VI-1C-1).

While optimization for sonic boom was not a consideration for this study, certain effects are known to be beneficial, such as distribution of the lift over a greater length. In the computation of the sonic boom pressure signatures, it became evident that the effect of negative dihedral on the wing was in effect tending to shorten the effective length of the wing. This is due to the high degree of wing sweepback and the fact that the sonic disturbance is propagated along Mach lines. The effect of the wing anhedral was therefore obtained for possible future consideration and is presented in Figure VI-1C-3. The anhedral of the wing is required for low speed stability $\left(\mathrm{C}_{1_{\beta}}\right)$. Figure VI-IC-3 indicates the low speed stability requirement for win: anhedral results in an increase in sonic boom overpressures or the onler of $1 / 4$ pound per square foot.

VI-1C

LIST OF FIGURES

Figure No.	Title
VI-1C-1	Sonic Boom - Start of Cruise
VI-1C-2	Sonic Boom - Supersonic Climb Condition
VI-1C-3	Sonic Boom - Effect of Wing Anhedral
	LIST OF SYMBOLS
A	Area
A_{E}	Equivalent Body Area Due To Lift and Volume Effects For Cuts Taken Along Mach Lines
A_{V}	Equivalent Body Area Due To Volume Effect For Cuts Taken Along Mach Lines
${ }^{c_{1}}$	Stability Derivative
$\Delta \mathrm{p}$	Incremental Change In Pressure
Δt	Incremental Change in Time
	NASA COMPUTER PROGRAMS
Numbe	Title
Acsen	Sonic Boom
D2340	Lifting Surface
D2500	Wave Drag

Figure VI-1C-2 Sonic Boom - Supersonic Climb Condition.

Figure VI-1C-3 Sonic Boom - Effect Of Wing Anhedral

VI-2 STABILITY AND CONTROL

INTRODUCTION

The historical development of the U.S.Supersonic Transport technology development program has been outlined in this report's main Introduction; however, some of the important points, as they affect aircraft'stability and control, performance and noise, are reiterated herein.

The Boeing 969-336C configuration, reference VI-2-5, has shown good landing and take-off performance for a stable aircraft by utilizing a lifting canard. However, this high-lift configuration exhibited a substantial pitch-up at a lift coefficient of approximately 0.9 requiring an alpha limiter so that a second trim point was not attained (See Figure VI-2-2).

As the result of an extensive NASA/LRC low speed wind-tunnel development program, significant improvements in longitudinal stability at high angles-of-attack for the take-off and landing modes were achieved by careful attention to wing planform, leading-edge radius, leading-edge high-lift devices and trailing-edge flap location, size and deflection. The significant aerodynamic results to be applied to the Reference Configuration are:
a. A triple-sweep wing planform ($\Lambda_{\text {ref }}=74^{\circ} / 70.5^{\circ} / 60^{\circ}$) with a subsonic leading-edge and increased span.
b. No significant pitch-up present for the selected high-lift configuration.
c. No canard required for aircraft trim.

Abstract

d. Aft center-of-gravity selected (negative static margin) to minimize landing approach attitude and hence to minimize landing gear length and to maximize trimmed approach lift-todrag ratio. (Acceptable handling qualities appear to be achievable with a stability augmentation system, SAS, incorporating both pitch rate damping and pitch stiffness functions. However, the SAS has not been adequately defined), and e. Improved high-lift configuration trimmed lift-to-drag ratios.

The following paragraphs present the various longitudinal stability and control criteria assumed for the reference baseline configuration development, the aerodynamic data base used and the detailed advanced supersonic configuration development. These paragraphs are then followed by analyses describing the establishment of levels of Stability and Control together with the resulting aerodynamic center-of-gravity limits.

SUMMARY

The Reference Configuration described herein was developed from estimated aerodynamic characteristics based on NASA/LRC wind-tunnel data to provide acceptable longitudinal stability and control and performance capability in the take-off and landing modes of flight. These two high-lift modes were selected as the most critical. Based on the criteria that were established, the airplane exhibits significantly improved stability and control characteristics over the Boeing 969-336C airplane. The various configuration changes that were made resulted in a new baseline airplane without a canard and with an aft center-of-gravity position that allowed the aircraft to be
flown unstable such that a trim up-load is required from the aft mounted horizontal tail. The airplane trimmed lift-to-drag ratio was improved over that of the 969-336C configuration.

REFERENCE CONFIGURATION CHARACTERISTICS

Criteria

Several criteria were used to develop the stability and control requirements for the Reference Configuration.

Longitudinal Stability and Control
a. Take-off
${ }^{\circ}$ Forward center-of-gravity set by nose-wheel rotation speed consistent with geometry limited maximum lift coefficient, in ground effect
${ }^{\circ}$ Control to geometry limit in full ground effect
${ }^{\circ}$ No significant pitch-up
${ }^{\circ}$ Alpha limit set to provide a Δn_{z} of 0.15 at the minimum demonstrated speed with one engine inoperative and zero rate-of-climb
b. Landing
${ }^{\circ}$ Control to geometry limit in full ground effect
${ }^{\circ}$ No significant pitch-up
${ }^{\circ}$ Approach speed defined at a lift coefficient of 0.55

> Minimum demonstrated speed defined at a lift coefficient consistent with a 0.5 g(incremental) maneuver from trim at the approach speed, i.e. a lift coefficient of 0.825 osatisfactory short-period characteristics at approach speed oAft center-of-gravity limit based on the ability to provide a nose-down pitchịng acceleration of 0.1 .rad/sec ${ }^{2}$ at the minimum demonstrated speed and the maximum landing weight. (This criterion affords acceptable aircraft response rates).
> c. Supersonic Cruise
> The criteria are incomplete at the time of this study, and consequently not considered in this analysis.

Lateral - Directional Stability and Control

The criteria are incomplete at present, and consequently not considered in this analysis.

Data Base

The high-1ift aerodynamic characteristics of the reference concept are based on extensive NASA/LRC wind tunnel tests, references VI-2-1, -2, -3 and -4 . These wind-tunnel data, in coefficient form, are based on the original SCAT-15F-9898 dimensions of span, reference mean aerodynamic chord and reference wing area. Therefore, when using these wind-tunnel results corrections had to be applied to make these data compatible with the Reference Configuration geometry. In addition, these data were modified to account for shortened fuselage forebody, extended aft fuselage, modified wing leading-edge high-lift devices, wing trailing-edge geometry, trailing-edge flap location and size,
downwash at the tail and horizontal tail size.

The Reference Configuration concept wing is scaled up from the wing presented in reference VI-2-3 but with modified trailing-edge planform geometry, see Figures VI-2-1A, 1B. However, when using the wind tunnel test model (9898 model reference geometry) longịtudinal force and moment coefficient data of reference VI-2-3, corrections had to be made to convert these data to the actual wind tunnel model reference configuration as follows:
$C_{F}=C_{F_{N D}(N A S A}$ DATA) $\frac{S_{N R(N A S A R E F)}}{S_{R(R E F)}}=C_{F_{N D}} \times \frac{1282.78}{1388.016}=0.92418 C_{F_{N D}}$
$C_{m}=C_{m_{N D}} \frac{S_{N R} \bar{c}_{N R}}{S_{R} C_{R}}=C_{m_{N D}} \times \frac{1282.78 \times 38.31}{1388.016 \times 37.174}=0.95242 C_{m_{N D}}$
$\left.\left(\mathrm{dCm} / \mathrm{dC} C_{F}\right)=\left(\mathrm{dCm} / \mathrm{dC}_{F}\right)_{N D} \frac{\bar{c}_{\mathrm{NR}}}{\bar{c}_{\mathrm{R}}}=\left(\mathrm{dCm} / \mathrm{dC}_{F}\right)_{\mathrm{ND}} \times \frac{38.31}{37.174}=1.0306(\mathrm{dCm} / \mathrm{dC})_{F}\right)_{N D}$

Assuming the wing from reference VI-2-3 was 0.03 scale, the Reference Configuration aircraft wing span became 137.77 feet with a reference wing area of $9969 \mathrm{ft}^{2}$ and reference mean aerodynamic chord of 1154.86 inches (see Figure $V-2)$. The moment reference for the test data of reference VI-2-3 is $0.4556 \bar{c}_{9898}$ ref which when converted to the actual Reference Configurations reference mean aerodynamic chord became $0.4436 \bar{c}_{\text {ref }}$.

The modified trailing-edge planform geometry has been accounted for by estimated trailing-edge flap contributions due to location and size.

Figure VI-2-IA - Wing Planform Definition Data

WING AREA-FT	${ }^{\circ} X^{0}-1 N$	$\bar{C}-1 N$	$\bar{Y}-1 N$
REF- 9969.000	929.7411	1154.8625	278.0021
GROSS- 10996.365	889.2009	1343.0684	265.3174
SCAT-15F-9898-REF	861.4087	1274.3550	248.8898

PLANFORM Of reference airplane configuration
Figure VI-2-1B - Wing Planform Definition Data

Configuration Development

The Reference Configuration was developed from the original Boeing model 969-336C using estimations based on extensive NASA/LRC wind-tunnel data. The significant longitudinal aerodynamic features of the 969-336C from reference VI-2-5 are:
a. A highly swept ($\Lambda_{\text {ref }}=74^{\circ} / 60^{\circ}$) wing planform with a subsonic leading-edge.
b. A folding canard used for trim at low speeds and retracted at high speeds.
c. An apex slot which opens when the leading-edge flaps are deflected.
d. Leading-edge flaps which are used as control devices at high angles-of-attack, and
e. An all-moving horizontal tail with a geared elevator.

Figure VI-2-2 presents the 969-336C free-air stability data, with and without a canard, from reference VI-2-6 Figures 11 and 12. The main purpose of the canard was to trim out the trailing-edge flap contribution to pitching moment. Although, for a stable aircraft, the trimmed lift-to-drag ratio can be improved by use of a canard, there was an associated reduction in airplane stability and the severe pitch-up was present in both configurations.

A wind-tunnel test development program was initiated by the NASA/LRC to improve the arrow-wing supersonic transport high-lift configuration stability characteristics at high angle-of-attack with an aft fuselage mounted horizontal tail. The wind-tunnel testing has

Figure VI-2-2 - Boeing Model 969-336C High-Lift Configuration, Out of Ground Effect
resulted in a high-lift configuration with much improved stability characteristics (near linear variation of C_{m} with C_{L}) to high angles-of-attack (32 degrees is limit of test data shown) and increased negative $\mathrm{C}_{\mathrm{m}_{0}}$, without a canard. These favorable effects have resulted from wing planform and leading-edge radius changes, modified deflection of the leading and trailing-edge flaps and size of these high-lift devices. It has been assumed that the favorable pitching moment characteristics of a wing having a 1% leading-edge radius can be achieved with the Reference Configuration employing a 0.5% leading-edge radius.

As the level of airplane stability is increased, i.e., the slope $d C m / d C_{L}$ becomes more negative, the airplane can be trimmed at a farther aft center-of-gravity location. Increasing both the stability and negative $C_{m_{0}}$, by large trailing-edge flap size and deflection, and allowing the aircraft to fly unstable, enables the airplane to be trimmed at an even farther aft center-of-gravity position requiring an up-load from the horizontal tail (improved lift-to-drag ratio). It was therefore rationalized that a configuration employing an aft fuselage mounted tail could produce take-off and landing approach trimmed lift-to-drag ratios at least as high as those of the 969-336C with a forebody canard. It therefore remained to define the center-of-gravity range, resulting from a given high-lift configuration, as determined by the selected stability and control criteria.

The effect of reduced lateral-directional stability is not considered in this report and additional wind-tunnel tests are presently being planned to study the configuration changes necessary to improve the apparent lateral-directional stability problems without degrading the acceptable longitudinal characteristics. Reference VI-2-3 illustrates the effect, on lateral-directional stability, of the high-lift leading and trailing-edge flap devices.

Figure VI-2-3-A Wind-Tunnel Test Development Longitudinal Stability Sumnary in the High-Lift Configuration

A configuration development summary stability plot is presented on Figure VI-2-3. These data clearly indicate the improvement in stability characteristics as the arrow-wing was developed toward the Reference Configuration. (Increased negative $\mathrm{dCm} / \mathrm{d} \alpha$ to high angles-of-attack). Figure VI-2-4 presents three (3) sets of arrow-wing wind-tunnel test stability data plotted in the SCAT-15F-9898 reference system. The three (3) curves are identified from NASA/LRC 7×10 foot high-speed wind-tunnel tests as follows:

Curve 1: $\mathrm{E}_{2} \mathrm{~N}_{2} \mathrm{~B}_{9} \mathrm{H}_{3} \mathrm{~V}_{7} \mathrm{~W}_{3}\left[\left(\mathrm{~L}_{7,2}=30^{\circ}\right)\left(\mathrm{L}_{3-5}=0^{\circ}\right)\right] \mathrm{T}_{6} \mathrm{~L}_{6}$ $t_{1_{f}}=t_{2}=t_{3}=15^{\circ}, t_{4}=0^{\circ}, \Lambda_{\text {ref }}=74^{\circ} / 60^{\circ}$ (reference VI-2-3, run no. 21)

Curve 2: Same as curve 1 except $\Lambda_{\text {ref }}=74^{\circ} / 70.5^{\circ} / 60^{\circ}$ (reference VI-2-3, run no. 30)

Curve 3: $\mathrm{E}_{2} \mathrm{~N}_{2} \mathrm{Bg}_{9} \mathrm{H}_{3} \mathrm{~V}_{1} \mathrm{~W}_{3}\left[\left(\mathrm{~L}_{1-3}=30^{\circ}\right)\left(\mathrm{L}_{4,5}=0^{\circ}\right)\right] \mathrm{T}_{6} \mathrm{~L}_{6}$ ${ }^{t} l_{f}=t_{2}=t_{3}=20^{\circ}, t_{4}=5^{\circ}, \Lambda_{\text {ref }}=74^{\circ} / 70.5^{\circ} / 60^{\circ}$ (reference VI-2-3, run no. 72)

The improvements illustrated by the test data in curve 3 of Figure VI-2-4 provided an acceptable base from which to make adjustments due to any further configuration changes. These changes are illustrated in Figure VI-2-5 and present three (3) sets of stability data, also plotted in the SCAT-15F-9898 reference system. Curve 1 is a replot of curve 3 of Figure VI-2-4 and curves 2 and 3 are based on configuration adjustments as follows:

Curve 2: Same as curve 1 except the trailing-edge flaps are sized to represent those indicated on the Reference Configuration layout, see Figure V-2. References VI-2-7 and -8 were used to obtain the increments in lift and pitching moment due to the trailing-edge flap modification.

Figure VI-2-4-A Longitudinal Stability Summary of the High-Lift Configuration Development from Reference VI.2-3

Figure VI-2-5-High-Lift Configuration Longitudinal Stability as Affected by Modifications to the High-Lift Devices

Curve 3: Same as curve 2 except L_{3} is returned to 0°, (i.e. $L_{1,2}=30^{\circ}$, $L_{3-5}=0^{\circ}$). The effect of the change in leading-edge devices was derived from a comparison between reference VI-2-3, run no. 21 and reference VI-2-2, run no. 151. (Elimination of one of the leading-edge flap segments provided a mechanically simpler configuration.)

Reference VI-2-9 indicates that, to obtain maximum landing performance, the aft center-of-gravity should be at approximately 0.60 to $0.65 \bar{c}$, based on the SCAT-15F-9898 reference system. A preliminary weight and balance study ascertained that the probable center-of-gravity range was from 0.50 to $0.60 \overline{\mathrm{c}}$. To obtain the most rearward center-of-gravity, indicated above, the aft fuselage was extended ten (10) ft. Approximately half of the normal fuel reserves could then be carried in an aft fuselage fuel tank which would allow the center-of-gravity to be readily moved to any aft position as dictated by performance, static balance and stability and control requirements.

The Reference Configuration fuselage now became 315 foot long ($1 t / \bar{c}=1.232$) so adjustments to the level of tail-on stability were estimated. References VI-2-3 and -4 indicated changes in stability due to fuselage length and horizontal tail position changes. The downwash data that was generated from reference VI-2-3 indicated a $\mathrm{d} \varepsilon / \mathrm{d} \alpha=0.905$ and from reference VI-2-4 a $\mathrm{d} \varepsilon / \mathrm{d} \alpha=$ 0.565. As aerodynamic theory would indicate a $d \alpha / d \varepsilon$ of 1 at the trailingedge to 0.85 at infinity, for an aspect ratio 1.62 wing, the determined value of 0.565 was ignored. Reference VI-2-8 was used to estimate the values of downwash slope at the two tested tail lengths and the estimated value at the
longest tail arm was expressed as a percentage of that estimated for the shorter tail arm. This percentage was estimated to be 95.8 .

Reference VI-2-3
$\left(1_{t} / \bar{c}\right)_{\text {aero }}$ $d \varepsilon / d \alpha$
0.917
0.905

Reference VI-2-4
1.163
$0.867(0.905 \times 0.958)$

Using the values of $\mathrm{d} \varepsilon / \mathrm{d} \alpha$, in combination with the measured tail contributions to stability, values of q_{t} / q were calculated and ploted at the two respective test values of l_{t} / \bar{c}. Using a faired curve between these two points, values of $d \varepsilon / d \alpha$ and q_{t} / q were established for an l_{t} / \bar{c} of 1.232 . Using the value of tail-off $d C m / d C_{L}$ from reference VI-2-4, and estimating the tail contribution to stability at an l_{t} / \bar{c} of 1.232 , a tail-on value of $d C m / d C_{L}$ was determined. The change in total airplane stability, between the measured level (reference VI-2-4) and the estimated level for the Reference Configuration, was estimated to be -0.0056. By a comparison of the tests from references VI-2-2 and -3 a $\Delta C_{m_{0}}$ was established for changes in fuselage forebody length (B_{5} to B_{g}). This trend was used to establish a $\Delta C_{m_{0}}$ of 0.0045 for the Reference Configuration forebody length. Using these estimated values of $C_{m_{0}}$ and $\Delta\left(d C m / d C_{L}\right)$, and applying them to curve 3 of Figure VI-2-5, the stability plot presented on Figure VI-2-6 was generated. All data to this point are presented in the SCAT-15F-9898 reference system.

An illustration of the improvements made in the Reference Configuration are shown in Figure VI-2-7 where a comparison between the modified SCAT-15F configuration and the Reference Configuration is presented. At a given lift coefficient the following effects are noted:
 Fuselage Length Change

Figure VI-2-7-A Summary of the Change in Longitudinal Stability Due to Configuration Modifications
${ }^{\circ}$ more negative pitching moment, and
${ }^{\circ}$ lower trimmed angle-of-attack
These effects are highly desirable in maximizing the take-off and landing approach performance and minimizing the main landing gear length.

Static Stability and Control

In the following paragraphs the same high-lift configuration is used for both the take-off and landing approach modes of flight. No assessment of the resulting stability levels is made in this section of the report.

Static Longitudinal Stability and Control, Out of Ground Effect

Longitudinal control power capability was estimated for the Reference Configuration high-lift configuration using data from reference VI-2-4. Various combinations of tail incidence, i_{t}, and elevator deflection, δ_{e}, indicated that the maximum control effectiveness occurred at an $i_{t} / \delta_{e}= \pm 20^{\circ} / 22.5^{\circ}$. The resulting maximum control deflection data were plotted and faired to produce the following tabulated results at an $1_{t} / \bar{C}$ of 1.163 in the SCAT-15F9898 reference system:

C_{N}	$\left(i_{t} / \delta_{e}=-20^{\circ} /-22.5^{\circ}\right)$	$\left(i_{t} / \delta_{e}=+20^{\circ} /+22.5^{\circ}\right)$
0	.0545	-.0552
0.2	.0547	-.0553
0.4	.0556	-.0563
0.6	.0568	-.0580
0.8	.0575	-.0600
1.0	.0578	-.0617
1.2	.0578	-.0624

The tail maximum lift coefficient, developed at an i_{t} / δ_{e} of $-20^{\circ} /-22.5^{\circ}$, was checked at $C_{L}=0$ by dividing the delta pitching moment, from the tail-off to the fully deflected tail values, by the horizontal tail volume coefficient. The maximum lift coefficient was calculated to be 1.44. The exposed windtunnel tail mean aerodynamic chord length was 7.835 inches, and at the test Reynold's Number (RN) of 1.23×10^{6} per foot, gave a model tail RN of 0.803 x 10^{6}. The Reference Configuration full-scale tail RN, at nose-wheel liftoff, was estimated to be a minimum of 32.3×10^{6}. The variation of twodimensional maximum lift coefficient with RN, from the data of reference VI-2-10, is presented on Figure VI-2-8. Using the noted RN variation, presented by these curves, indicated that a full-scale maximum lift coefficient of 1.864 was achievable.

The wind-tunnel model exposed horizontal tail area was $0.4275 \mathrm{ft}^{2}$ and assuming the model was 0.03 scale produced a full scale horizontal tail area of $475 \mathrm{ft}^{2}$. Correcting this area due to the 15 degree anhedral angle results in an exposed full scale projected tail area of $458 \mathrm{ft}^{2}$.

The estimated data that were presented on Figure VI-2-6, including the tailoff stability, were now converted to the Reference Configuration reference system, as outlined in the Data Base section, for horizontal tail areas of 458 and $916 \mathrm{ft}^{2}$ respectively (Figure VI-2-9). The establishment of the noted alpha and center-of-gravity limits will be discussed in the section on Aerodynamic Center-of-Gravity Limits.

Figure VI-2-8 - The Variation of Maximum Lift Coefficient with Reynold's Number

Static Longitudinal Stability and Control, In Ground Effect

The high-lift configuration tail-off pitching moment curve and horizontal tail contribution to stability of Figure VI-2-9 were adjusted due to the presence of the ground. These ground effects were obtained from Section VI-1A (see also references VI-2-7 and -11). The free-air horizontal tail maximum control contributions were also adjusted due to ground effects producing the in-ground-effect high-lift configuration stability and maximum control curves of Figure VI-2-10 for the two noted horizontal tail sizes. It should be recognized that these data reflect the effect of aircraft rotation, on the ground, about the main landing gear at all the presented angles-of-attack. In reality, once the aircraft starts to rotate, it will become airborne and the ground induced effects will start to diminish, resulting in no pitch-up being present. These data are therefore pessimistic in terms of the stability level at angles-of-attack greater than approximately 4 degrees. They do, however, serve to establish the minimum nose-wheel lift-off angle-ofattack (-3.2 degrees).

Supersonic Aerodynamic Center Location

An investigation of supersonic stability was undertaken to approximate the position of the Reference airplane's aerodynamic center. The test data of references VI-2-12 and -13 (SCAT-15F-9898) were used and the stability slopes at luw values of lift coefficient were established. These data were corrected to the Reference Configuration's reference system and converted to aerodynamic center location and are presented in Figure VI-2-11. The method of reference VI-2-14 was used to establish an aerodynamic center shift due to

Figure VI-2-10 - The Effect of Horizontal Tail Size and Maximum Control Deflection on the Reference Configuration Trim and Stability, In Ground Effect
planform differences between the SCAT-15F-9898 and the Reference concept airplane. The aerodynamic center shift was estimated to be approximately 4\% aft due to the planform change and is presented on Figure VI-2-11. Assuming that the 'rigid' model shape tested at $M=2.7$ is the actual flexible airplane shape for that Mach number, and using flexibility factors from reference VI-2-5, the flexible airplane aerodynamic center was estimated and is presented on Figure VI-2-12. The $M=2.7$ aerodynamic center is estimated to be located at $0.5925 \bar{c}_{\text {ref }}$ which is further forward than the take-off and landing aft center-of-gravity limit ($0.597 \bar{c}_{\text {ref }}$).

The cruise performance calculations assumed 'zero' trim drag, i.e. the horizontal tail was set at its maximum lift-to-drag ratio incidence providing an upload on the tail. The test data of references VI-2-12 and -13 were used to obtain the values of the tail-on zero-lift pitching moment coefficient at zero degrees tail setting for Mach numbers of $1.2,2.3$, and 2.7. These values were converted to the Reference Configuration reference system and are plotted on Figure VI-2-13. The horizontal tail contribution to pitching moment from zero incidence was established at the tail setting for maximum tail lift-todrag ratio and then corrected for reference system, horizontal tail arm and tail area. These values were used to establish the residual pitching moment that would have to be trimmed by correct location of the cruise center-ofgravity and are also plotted on Figure VI-2-13. The resulting center-ofgravity position for 'zero' trim drag is plotted on Figure VI-2-12 and illustrates essentially a constant location of $0.56 \bar{c}_{\text {ref }}$. Additional analyses

MACH NUMBER

Figure VI-2-11 - Rigid Airplane Aerodynamic Center Position
$\operatorname{tad}_{2} \sim$ NOILISOd ZJINGJ JIWUNAOOUGB'

$\begin{array}{lllllll}7 & 0 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0\end{array}$
suo! 7 !
(TEST TAIL CONTRIBUTION CORRECTED FOR TAIL AREA AND ARM CHANGES)

Figure VI-2-13-Supersonic Pitching Moment Data
are required to determine the most desirable level of supersonic cruise static margin. A positive static margin is desired in 1 g flight at $M=2.7$ to compensate for loss of stability due to structural flexibility at the required 2.5 g maneuver condition. If the desired level at $M=2.7$ is less than the approximate $.03 \overline{\mathrm{c}}$ shown on Figure VI-2-12, then a redefinition of the wing camber and twist is required to provide the proper cruise design zero-lift pitching moment. Additional static margin can be provided by the ability to manage fuel.

Aerodynamic Center-of-Gravity Limits

The aerodynamic take-off, landing and in-flight center-of-gravity limits have been established based on the previously developed Criteria. These limits result from initial estimations of the Reference Configuration design gross weight, maximum landing weight and pitching moment of inertia, thrust-to-weight ratio and geometry limited airplane maximum lift coefficient, in ground effect. The finalized values of these items may be different from those presented below and the effect of the differences will be discussed in the last section. The estimated data are as follows:

```
\({ }^{\circ}\) Design Gross Weight \(=776,000 \mathrm{Ib}\)
    \({ }^{\circ}\) Maximum Landing Weight \(=500,000 \mathrm{lb}\left(\mathrm{I}_{y} \simeq 48.4 \times 10^{6}\right.\) slugs \(\left.\mathrm{ft}^{2}\right)\)
    \({ }^{\circ}\) Thrust-to-Weight Ratio \(=0.34\)
    \({ }^{\circ}\) Take-off Lift Coefficient, in ground effect \(=0.648\)
```

${ }^{\circ}$ Approach Speed Lift Coefficient $=0.55$
${ }^{\circ}$ Minimum Demonstrated Speed Lift Coefficient $=0.825$
${ }^{\circ}$ Center-of-Gravity Range $=26$ inches

In-Flight Limits

Refering to Figure VI-2-9, and noting the maximum trim capability for $\pm{ }_{i} / \delta_{e}= \pm 20^{\circ} / 22.5^{\circ}$ at the minimum demonstrated V, the following results are obtained:
a. Aft C.G. Trim Limits, $O G E, V_{m i n}$ dem:

$\mathrm{S}_{\mathrm{T}} \cos 15^{\circ} \sim \mathrm{ft}^{2}$	458	916
$]_{t} / \bar{c}$	1.361	1.361
$\bar{v}=1_{t} / \bar{c} \cdot S_{T} / S$. 0624	. 1248
$\mathrm{C}_{\mathrm{m}} .4436 \bar{c}_{\text {ref }}$	-. 218	$-.3053\left(i_{t} / \delta_{e}=20^{\circ} / 22.5^{\circ}\right)$
$\Delta C_{m_{\theta}}$. 083	. $083\left(\ddot{\theta}=-0.1 \mathrm{rad} / \mathrm{sec}^{2}\right)$
ΣC_{m}	-. 135	-. 2223
$\mathrm{dCm} / \mathrm{dC}_{\mathrm{N}}$	-. 1584	-. 2613
$\therefore \mathrm{CG} \sim \overline{\mathrm{c}}_{\text {ref }}$. 6020	. 7049

b. Fwd CG Trim Limits, $0 G E, V_{\text {min }}$ dem:
$\bar{V} \quad .0624$. 1248
$C_{m} .4436 \bar{c}_{\text {ref }} \quad-.0333 .0622\left(i_{t} / \delta_{e}=-20^{\circ} /-22.5^{\circ}\right)$
$\mathrm{dCm} / \mathrm{dC}_{\mathrm{N}} \quad-.0391$. 073
\therefore CG ~ $\overline{\mathrm{C}}$ ref .4827 . 3706
Using the assumed approach lift coefficient of 0.55 , the following neutral stability data are presented:
c. Neutral Stability CG, OGE, $V_{\text {approach }}$:

$\overline{\mathrm{V}}$.0624	.1248
$\mathrm{dCm} / \mathrm{dC}$		
N	-.1317	-.1653
$\therefore \mathrm{CG}^{\sim} \overline{\mathrm{C}}_{\text {ref }}$.5763	.6089

Nose-Wheel Rotation Limits

The significant parameters in the computation of the forward center-of-gravity position based on nose-wheel rotation requirements are:
${ }^{\circ}$ Wing-body $C_{m_{0}}$, in ground effect
${ }^{\circ}$ Horizontal tail maximum lift coefficient, in ground effect
o Take-off maximum airplane lift coefficient, in ground effect

- Gear location aft of most aft center-of-gravity position
${ }^{\circ}$ Center-of-gravity range

Take-off gross weight affects the take-off speed and thrust-to-weight ratio, the aircraft acceleration capability, and hence take-off distance. Thrust-to-weight ratio also has a second order effect on the forward center-ofgravity position.

Based on Figure VI-2-10 the horizontal tail maximum lift coefficient is computed to be 1.896, in ground effect. Checking the landing gear location, based on turn-over limitations, gave a minimum distance of 55 inches aft of the most aft center-of-gravity ($0.597 \bar{c}_{\text {ref }}$). For the two horizontal tail volume coefficients assumed, the forward centers-of-gravity were calculated. These results, including the estimated center-of-gravity locations computed in the previous paragraphs, are presented on Figure VI-2-14. It can be seen that for the assumed exposed projected horizontal tail area of $441 \mathrm{ft}^{2}$, for

Figure VI-2-14-Center-of-Gravity Limits for Take-off and Landing
the Reference airplane, there is more than 26 inches of center-of-gravity range available. This result allows the landing gear to be located farther aft than the assumed 55 inches.

Two additional incremental distances were assumed, namely 65 and 75 inches, and the resulting forward centers-of-gravity recalculated. It can be seen that, with the presently assumed horizontal tail size' $\left(441 \mathrm{ft}^{2}\right)$ and a 26 inch center-of-gravity range, the landing gear can be located aft of the most aft limit by 70 inches. Based on these results the most forward and aft take-off limits are established as follows:

$$
\begin{aligned}
& \text { Most aft }=0.597 \bar{c}_{\mathrm{ref}} \\
& \text { Most forward }=0.575 \bar{c}_{\mathrm{ref}}
\end{aligned}
$$

Alpha Limit at the Most Forward In-Flight Limit

No significant pitch-up is present for the Reference airplane high-lift configuration; however, an alpha limiter is recommended on the basis of rateof descent criteria. Based upon a zero rate-of-climb condition with one engine inoperative at the minimum demonstrated speed and most forward in-flight center-of-gravity position ($0.53 \bar{c}_{\text {ref }}$), an alpha limit of 18 degrees was established. The selected forward center-of-gravity position provides a minimum upset margin of 0.15 g 's to manage gust induced disturbances and a minimum approach condition performance level. (Trimmed lift-to-drag ratio of 5:1).

Recommended Aerodynamic Center-of-Gravity Envelope

The recommended aerodynamic center-of-gravity envelope is presented on Figure VI-2-15 as a function of airplane gross weight. Assuming the 18 degree alpha limit, the gust margin is 0.15 g 's at $0.53 \overline{\mathrm{c}}_{\text {ref }}$ and greater than 0.15 g 's at farther aft centers-of-gravity. The recommended cruise range of from 0.53 to $0.56 \bar{c}_{\text {ref }}$ may require fuel management reevaluation and/or wing camber changes.

Figure VI-2-16 presents the variation of trimmed airplane lift-to-drag ratio and angle-of-attack, as a function of center-of-gravity position, for the landing approach condition.

Longitudinal Dynamic Stability

Only the Reference airplane high-lift approach configuration was examined for dynamic longitudinal stability characteristics. The effect of flying during landing at neutral and unstable conditions (0.575 and $0.597 \bar{c}_{\text {ref }}$ respectively), was established by conducting a simple controls fixed short-period dynamic analysis. This was achieved by examination of the roots of the airplane characteristic equation of motion and reviewing the solutions against some known handling qualities criteria. Present and proposed FAR's, references VI-2-15 and -16 give no quantitative requirements for stability, therefore the criteria of references VI-2-17 and -18 were selected. The inherent airframe characteristics were found to be unacceptable, when compared against the selected criteria, indicating the need for some form of stability augmentation system (SAS). Based on the Boeing development of a Hardened SAS concept, reference VI-2-19, three (3) levels of pitch-rate

Figure VI-2-15 -Aerodynamic Center-of-Gravity Envelope

Figure VI-2-16 -Landing Approach Configuration Trim Data
damping were investigated. This analysis assumed a perfect SAS, i.e., with no system dynamics or lags, and just examined the roots resulting from the modified characteristic equations of motion. The results are presented on Figures VI-2-17 and -18 for the selected center-of-gravity locations, 0.575 and $0.597 \bar{c}_{\text {ref }}$ respectively. Based on these results it is indicated that artificial pitch stiffness, ΔM_{α}, is required in order, to increase the shortperiod undamped natural frequency, which in turn will reduce the damping ratio.

Reference VI-2-18 requires a damping ratio no greater than 1.3 for acceptable handling qualities under normal (non-emergency) flight conditions. An arbitrary pitch stiffness gain of one (1) degree of horizontal tail incidence per degree angle-of-attack was chosen and combined with a pitch-rate gain of three (3) degrees of horizontal tail incidence per degree per second pitch rate and checked at the aft center-of-gravity of $0.597 \bar{c}_{\text {ref }}$. This result is also presented on Figures VI-2-17 and -18 and shows much improved short-period characteristics indicating the requirement for a SAS incorporating both pitch-rate and stiffness functions. Gain scheduling appears to be required for supersonic flight due to the fact that the airplane will be flown with a positive static margin in 1 g flight at $\mathrm{M}=2.7$. The results that are plotted on Figures VI-2-17 and -18 are tabulated below:

$$
\begin{gathered}
W=500000 \text { LB } \quad C_{\text {LTRIM }}=.55 \\
3 \text { DEG GLIDE SLOPE }
\end{gathered}
$$

SYM CG $\sim \bar{c}_{\text {ref }}$
$\begin{array}{lll}\triangle & .575 \\ \odot & .597\end{array} \quad$ NEUTRAL POINT $=.{ }^{575 \bar{c}^{\text {ref }}}$

Figure VI-2-17 -Longitudinal Short Period Stability Characteristics Approach Configuration

FOR DEFINITION OF SYMBOLS, SEE FIGURE VI.2-17

Approach Configuration
Figure VI-2-18-Longitudinal Short Period Stability Characteristics

$C G \sim \bar{c}$. 575	. 575	. 597	. 597	. 597	. 597	. 597
$U_{0} \sim \mathrm{ft} / \mathrm{sec}$	276.5						\rightarrow
$\mathrm{K}_{\mathrm{g}} \sim \mathrm{deg} / \mathrm{deg} / \mathrm{sec}$	0	3	0	1	2	3	3
$K_{\alpha} \sim$ deg/deg	0	0	0	0	0	0	1
$-L_{\alpha} \sim \mathrm{ft} / \mathrm{sec}^{2}$	176.1	176.1	178.9	178.9	178.9	178.9	178.9
$-L_{\alpha} / U_{0} \sim 1 / s e c$. 637	. 637	. 647	. 647	. 647	. 647	. 647
$n_{z_{\alpha}}=-L_{\alpha} / g$	5.46	5.46	5.56	5.56	5.56	5.56	5.56
Static margin $\sim \bar{c}$	0	0	-. 022	-. 022	-. 022	-. 022	-. 022
$\omega_{n} \sim \mathrm{rad} / \mathrm{sec}$. 582	. 896	. 463	. 624	. 782	. 829	. 964
$-L_{\alpha} / U_{0} \omega_{n}$	1.093	. 712	1.40	1.038	. 89	. 781	. 672
$5_{\text {SP }}$	1.418	1.328	1.76	1.523	1.456	1.421	1.223

Effect of Changes in Operating Conditions on the Reference Airplane

Configuration Development

Since the Reference Configuration take-off and landing trim calculations were initially estimated some performance parameter changes have taken place. The significant terms that have been changed are as follows:
${ }^{\circ}$ The noise limited take-off power thrust-to-weight ratio changed from 0.34 to 0.27
${ }^{\circ}$ the take-off lift coefficient changed from 0.648 to $\underline{0.531}$

The combined effects of these two parameters result in the capability of moving the main landing gear aft by an additional 17 inches for the same horizontal tail size (441 ft^{2}). This would then allow the main landing gear struts to be slightly shorter.

	VI-2 LIST OF SYMBOLS
ac	aerodynamic center
$\mathrm{B}_{3,5,9}$	fuselage designation
$\overline{\text { c }}$	mean aerodynamic chord, ft or inches
C_{F}	$\text { force coefficient, } \frac{\text { Force }}{\mathrm{qs}}$
CG	center of gravity
${ }^{\text {L }}$	lift coefficient, $\frac{\text { Lift }}{q S}$
c_{1}	two-dimensional lift coefficient
C_{m}	pitching moment coefficient, $\frac{\text { Pitching Moment }}{q s \bar{c}}$
c_{m}	zero-lift pitching moment coefficient
$c_{m}{ }^{\prime}$	pitching moment coefficient necessary to produce a given θ
c_{N}	normal force coefficient in stability axis system
E_{2}	engine nacelle designation
g	gravitational constant, assumed to be $32.2 \mathrm{ft} / \mathrm{sec}^{2}$
$\mathrm{H}_{1,3}$	horizontal tail designation
i_{t}	tail incidence setting, degrees
K_{α}	stability augmentation pitch-attitude gain
K_{8}	stability augmentation pitch-rate gain, seconds
L $_{1,2,3,4,5,6}$	wing leading-edge flap designation
LEMAC	leading-edge of the mean aerodynamic chord, fuselage station
l_{t}	horizontal tail arm from moment reference, ft or inches
L_{α}	dimensional variation of lift with angle-of-attack, $\mathrm{ft} / \mathrm{sec}^{2}$
M	Mach number

	VI-2 (Continued) LIST OF SYMBOLS
MAC	mean aerodynamic chord, ft or inches
M_{α}	dimensional variation of pitching moment with angle-ofattack, sec ${ }^{-2}$
N_{2}	notch.at wing-fuselage junction
n_{z}	normal acceleration, $\mathrm{ft} / \mathrm{sec}^{2}$
n_{L}	normal acceleration per radian angle-of-attack, g's/radian
OGE	out of ground effect
q	free-stream dynamic pressure, $1 \mathrm{~b} / \mathrm{ft}^{2}$
q_{t}	local dynamic pressure at the horizontal tail, lb/ft ${ }^{2}$
S	wing area, ft^{2}
$\mathrm{S}_{\text {T }}$	exposed horizontal tail area, ft^{2}
T_{6}	wing-tip geometry designation
U。	free-stream trimmed airspeed, ft/sec
$V_{1,23}$	vertical tail designation
\bar{v}	horizontal tail volume coefficient
W	airplane gross weight, lb
W_{3}	wing leading-edge designation
α	angle-of-attack, degrees or radians
${ }^{\alpha}$ wrp	angle-of-attack with reference to the wing reference plane,
α_{t}	horizontal tail angle-of-attack, degrees
Δ	increment
δ_{e}	elevator deflection, degrees

	VI-2 (Continued) LIST OF SYMBOLS
$\mathrm{d} \varepsilon / \mathrm{d} \alpha$	rate-of-change of downwash at the tail with angle-of-attack
$d \mathrm{Cm} / \mathrm{d} \alpha$	rate-of-change of pitching moment coefficient with angle-of-attack, radian ${ }^{-1}$
$\mathrm{dCm} / \mathrm{dC} \mathrm{L}$	rate-of-change of pitching moment coefficient with lift coefficient
$\mathrm{dCm} / \mathrm{dC} \mathrm{N}$	rate-of-change of pitching moment coefficient with normal force coefficient
$\zeta_{S P}$	longitudinal short-period damping ratio
$\ddot{\theta}$	pitching acceleration, radians/sec ${ }^{2}$
Λ	wing leading-edge sweep angle, degrees
ω_{n}	longitudinal short-period undamped natural frequency, radians/sec

REFERENCES

Reference No.
Title

VI-2-1	Unpublished Data.
VI-2-2	Unpublished Data.
VI-2-3	Unpublished Data.
VI-2-4	Unpublished Data.
VI-2-5	The Boeing Co.; "Mach 2.7 Fixed Wing SST Model 969-336C (SCAT-15F), Document No. D6A-11666-1, dated November 1969.
VI-2-6	Unpublished Data.
VI-2~7	DeYoung, J.; "Ground-Induced Lift of Arrow Wing Aircraft," Memorandum V-19000/3NASA-436, dated 27 July 1973. (Unpublished)
VI-2-8	USAF Stability and Control DATCOM, "Stability and Control Methods," Air Force Flight Dynamics Laboratory, Ohio, dated October 1960, Revised November 1965.
VI-2-9	Unpublished Data.
VI-2-10	Abbott, I. H., and von Doenhoff, A. E.; "Summary of Airfoil Date," NACA TR 824, dated 1945.
VI-2-11	DeYoung, J.; "Lift, Drag and Moment Near Ground of AST Aircraft," Memorandum V-19000/3AVO-096, dated 24 August 1973 (Unpublished)
VI-2-12	Unpublished data.
VI-2-13	Unpublished Data.
VI-2-14	Middleton, W. D., and Carlson, H. W.; "A Supersonic Lifting Surface Program, No. D 2340." (Unpublished)
VI-2-15	Federal Aviation Regulations - Part 25, "Airworthiness Standards, Transport Category Airplanes, Rules Service Co., dated 1 October 1972.

REFERENCES (Continued)

Reference No.
VI-2-16 Dept. of Transportation, FAA, "Tentative Airworthiness Standards for Supersonic Transports," dated 1 January 1971.

VI-2-17 Shomber, H. A., and Gertsen, W. M.; "Longitudinal Handling Qualities Criteria: An Evaluation," Journal of Aircraft, Vol. 4, No. 4, dated 1967.

VI-2-18 Anon; "Flying Qualities of Piloted Airplanes," Military Specification MIL-F-008785 A (USAF), dated 31 October 1968.

VI-2-19 Tomlinson, L. R.; "SST Longitudinal Control System Design and Design Processes, Hardened Stability Augmentation Design," Report No. FAA-SS-73-1 (Boeing D6-60285), dated June 1973.

LIST OF FIGURES

Figure No.	Title
VI-2-1A, 1B	Wing Planform Definition Data
VI-2-2	Boeing Model 969-336C High-Lift Configuration, Out of Ground Effect
VI-2-3	A Wind-Tunnel Test Development Longitudinal Stability Summary in the High-Lift Configuration
VI-2-4	A Longitudinal Stability Summary of the High-Lift Configuration Development from Reference VI-2-3
VI-2-5	High-Lift Configuration Longitudinal Stability as Affected by Modifications to the High-Lift Devices
VI-2-6	High-Lift Configuration Longitudinal Stability as Modified by Fuselage Length Change
VI-2-7	A Summary of the Change in Longitudinal Stability Due to Configuration Modifications
VI-2-8	The Variation of Maximum Lift Coefficient with Reynold's Number
VI-2-9	The Effect of Horizontal Tail Size and Maximum Control Deflection on the Reference Configuration Trim and Stability, Out of Ground Effect
VI-2-10	The Effect of Horizontal Tail Size and Maximum Control Deflection on the Reference Configuration Trim and Stability, In Ground Effect
VI-2-11	Rigid Airplane Aerodynamic Center Position
VI-2-12	Flexible Airplane Aerodynamic Center and "Zero" Trim Drag Center-of-Gravity Positions
VI-2-13	Supersonic Pitching Moment Data
VI-2-14	Center-of-Gravity Limits for Take-off and Landing
VI-2-15	Aerodynamic Center-of-Gravity Envelope
VI-2-16	Landing Approach Configuration Trim Data

VI-2LIST OF FIGURES (Continued)
Figure No. Title
VI-2-17 Approach Configuration Longitudinal Short Period Stability Characteristics
VI-2-18 Approach Configuration Longitudinal Short Period Stability Characteristics

VI-3 PROPULSION

INTRODUCTION

In previous studies airplane-propulsion integration has proved to be the single most difficult design problem with supersonic transport type airplanes. Even when high specific thrust engine cycles (afterburning turbojets-which produce the highest cruise efficiency) have been used, the payload fraction has proved to be marginally acceptable from an economic point of view (Reference VI-3-1). The adoption of special regulatory rules, in the areas of noise, reserve fuel requirements, and subsonic overland legs to avoid sonic boom can only make the airplane-propulsion integration problem more difficult. These rules can have as much or more influence on the choice of the engine cycle than the basic airplane mission performance requirements. It was deemed desirable, therefore, to define a reference study engine which would develop the highest possible specific thrust and still be capable of meeting the minimum acceptable noise requirements (Federal Aviation Regulations part 36). The resulting reference airplane configuration will then form a solid basis for future trade studies on the influence of these special rules.

The type of engine selected for this study is a non-afterburning single spool turbojet. Performance data, for this type of engine, was provided for use in the Reference Configuration mission range and noise studies, by means of a computer program developed by the NASA Langley Research Center (LRC). This program provides engine performance data for a single spool turbojet engine with or without afterburning using a cycle match procedure. It is the same computer program as that used to generate the data of Reference VI-3-2.

Results of this study indicate that the engine is sized by take-off community noise requirements, and that the use of a variable geometry turbine results in an engine which is 8 percent smaller than one employing a fixed geometry turbine. In addition, the variable geometry turbine engine will provide significant fuel savings relative to the fixed geometry turbine engine at part throttle operation corresponding to subsonic holding conditions.

The initial results of this study indicate the desirability to determine the performance gains, if any, to be realized with a completely variable geometry single spool turbojet engine, that is both the compressor and the turbine employ variable geometry.

Engine Performance Computation Procedures

For completeness of this report a summary of the operation characteristics of the program cited in the introduction, has been extracted from Reference VI-3-2, modified as it pertains to this study and presented below. The parameters discussed are identified with Sketch (a).

The LRC single spool turbojet performance program calculates design-pointcycle performance and then uses the computed value of turbine-entrance correr ied flow at design ($W_{4} \sqrt{\theta_{4}} / \delta_{4}$) to define, by flow matching, all possible operating points of a given design cycle through a desired Mach number, altitude, and power-level range. The program conducts a step-by-step thermodynamic progression from the undisturbed free-stream condition, to the air intake, through the individual engine components, to the exhaust nozzle.

The exhaust nozzle employed in this program is a completely variable convergentdivergent nozzle which fully expands the exhaust gas to ambient pressure at design, at all off design and at all part power operating conditions. With input to the program of the parameters listed in Table VI-3-I, the program will compute the performance parameters presented in Tables VI-3-II, -III, and -IV. The nondissociated thermodynamic properties of gases from Reference VI-3-3 were used in the flow-process calculation. The present study uses the combustion-products tables for a fuel with a hydrogen-carbon ratio of 2 to simulate JP-4 jet-fuel performance.

The nondimensionalized compressor-map characteristics shown in Figure VI-3-1 were used for all engine designs to retain the parametric identity of the study to the maximum degree possible. Each design-point value of compressor ratio CPRD was established on the map, as shown by the target symbol in Figure VI-3-1 (a), at a point along the 100 -percent corrected-speed curve ($N_{\text {corr }}$), 10 percent of CPRD below the surge value. Off-design compressoroperating points were established by iteration along constant correctedspeed lines until the resulting turbine-entrance corrected flow was matched with the design value; off-design corrected speed was defined by Mach number, altitude, and engine desired-power level.

Definition of operating points by turbine-corrected flow match was required because a map of turbine work and flow characteristics was not included in the program. The quantities that could compromise constant, corrected turbine-entrance flow as the matching parameter are (1) turbine-entrance Mach number less than unity, (2) unknown changes in effective turbine-entrance flow area, and (3) variation in γ_{4} and the gas constant R_{4} due to changes in
turbine-entrance temperature (TET) and gas constituency from the design values. Only condition (3) was considered to have important influences; examination of the effects of γ_{4} and R_{4} variations from design indicated a maximum variation in corrected flow of less than two percent of design value when TET was varied from high values at design to very low values at off-design partial power. The variation in compressor corrected inlet flow with Mach number and associated altitude resulting from the present flow-match procedure is presented in Figure VI-3-2 for the range of conditions studied.

Control of the operating modes of any engine with a fixed geometry turbine can be accomplished by giving values to two and solving for the third of the following parameters: compressor physical rotational speed, turbine-entrance temperature, and exhaust-nozzle-throat area. For maximum power at all offdesign conditions, compressor rotational speed was set at 100 percent of design, turbine-entrance temperature was set at a design value, and the required nozzle-throat and corresponding exit areas were calculated. Partial power was defined by a schedule of compressor rotational speed and ratio of nozzle-throat area to maximum-power throat area (see Figure VI-3-3). Engine control specified in this manner required computer program loops to satisfy flow matching at both the turbine-entrance and nozzle throat by varying turbine-entrance temperature.

NOTE:
1 A fixed geometry turbine is one in which the flow area can not be changed from its design value.

Alteration to the computer program logic to provide for the concept of a variable ${ }^{2}$ geometry turbine was made. Upon solution of the compressor-turbine operating point required by flow matching at maximum power, the turbineentrance area was reduced to maintain constant corrected turbine-entrance flow and the exhaust-nozzle-throat area required to pass the internal flow was calculated. The program recognizes a maximum variation in turbine area. To solve for this limit, iteration of turbine-entrance temperature and area is conducted until the limiting input area value is obtained, or a limiting minimum nozzle pressure ratio is reached.

The present study was conducted with the air-inlet total-pressure recovery schedule with Mach number shown in Figure VI-3-4. This schedule is considered typical of fully variable internal-external compression inlets. The exhaust nozzle was assumed to fully expand the internal flow to ambient pressure with a gross-thrust coefficient of 0.985 . The schedule for controlling partialpower engine operation (Figure VI-3-3) is similar to that for a recent turbojet (GE4) designed for supersonic speeds.

Engine Parameters

The scope of this study was such that it did not permit the optimization of each airplane/engine combination. Therefore, to maintain simplicity, each of

NOTE:
2 Variable geometry turbine as used in this study is defined as a turbine in which the flow area can be varied from its design value by means of opening or closing the stators (turbine nozzles).
the baseline engines was designed to have a compressor pressure ratio (CPRD) of $15: 1$ and a maximum turbine-entrance temperature (TETD) of $3060^{\circ} \mathrm{R}$ at standard day atmospheric conditions. Thrust variation between engines of a type (fixed or variable geometry turbine) is achieved by varying sea level static corrected airflow ($W_{\text {corr }}$). All engine performance data (of a type) are therefore scalable directly with thrust with the exception of exhaust gas velocity $\left(V_{8}\right)$ which remains constant.

The scale factors for engine performance are given below:

$$
\begin{aligned}
& F_{g_{r}}=F_{g_{b}}\left(F_{N_{r}} / F_{N_{b}}\right) \text { Take-off } \\
& F_{N_{r}}=F_{N_{b}}\left(F_{N_{r}} / F_{N_{b}}\right) \text { Take-off } \\
& {R D_{r}}=R_{b}\left(F_{N_{r}} / F_{N_{b}}\right) \text { Take-off } \\
& W_{f_{r}}=W_{f_{b}}\left(F_{N_{r}} / F_{N_{b}}\right) \text { Take-off } \\
& V_{8_{r}}=V_{8_{b}} \\
& A_{8_{r}}=A_{8_{b}}\left(F_{N_{r}} / F_{N_{b}}\right) \text { Take-off } \\
& W_{8_{r}}=W_{8_{b}}\left(F_{N_{r}} / F_{N_{b}}\right) \text { Take-off }
\end{aligned}
$$

The scale factors for thrust (F_{g}), ram drag (RD) and fuel flow (W_{f}) were incorporated directly within the missions analysis computer program, explained elsewhere in this report, to generate the engine performance data for the particular airplane and mission desired.

Take-off, maximum climb and maximum cruise performance levels were established at the maximum design power level. Idle performance was defined as that performance which resulted with the engine operating at its minimum operational thrust level, as determined by the computer program.

Selection of Engine Size

The engine size selected for the Reference Configuration was the smallest engine that would provide the following:

1. Sufficient thrust at start cruise (maximum weight) for the airplane to cruise at the desired cruise altitude and Mach number. (Standard $+8^{\circ} \mathrm{C}$ Day)
2. Sufficient thrust to achieve a take-off balanced field length of 10,500 feet or less.
3. After take-off, following the clearance of the 35 foot obstacle, the engine must provide sufficient thrust to continue to climb at a 3 percent gradient (4 engine airplane) with the critical engine inoperative, and the remaining three engines operating at take-off power.
4. The engine must be capable of providing sufficient thrust at take-off power (derated by limiting exhaust jet velocity to 2400 feet per second) to effect a normal four engine take-off in 10,500 feet on a simple hot day of standard $+10^{\circ} \mathrm{C}$.

The result of the engine sizing procedure established that the noise criteria, item 4 above, was the most critical, that is, it required the largest engine. Early studies of jet engines have established the prime noise source of a turbojet engine as its exhaust jet velocity. This means that the lower the exhaust velocity the lower the engine noise. The exhaust velocity can be reduced by means of a jet noise suppressor or part power operation (reduced
throttle). Both of these techniques result in a reduction in thrust and thus require larger engines.

A plot of predicted jet suppressor effectiveness as a function of exhaust jet velocity has been extracted from Reference VI-3-4 and reproduced as Figure VI-3-5. Although this plot shows that the expected reductions in jet noise at the nominal take-off jet velocity of $3000 \mathrm{ft} / \mathrm{sec}$ is significant, there is no prediction as to the associated thrust loss. It is conceivable that the thrust loss could be as high as 10 or 12 percent.

One technique for reducing jet velocity without reducing the engine thrust or increasing engine size is to vary the airflow through the engine. This can be accomplished by means of variable geometry components such as the compressor and/or turbine. The LRC single spool turbojet computer program, as previously stated, has the capability of producing performance for an engine with a variable geometry turbine.

The effect of a variable geometry turbine on engine performance is shown on Figure VI-3-6, in comparison with a fixed geometry turbine engine. These engines were sized to the same maximum take-off thrust. The variable geometry turbine permits; the engine to develop 7.8% more power at the desired exhaust jet velocity, or a 7.8% smaller engine to meet the same take-off noise requirements.

An additional advantage of the variable geometry turbine engine is to provide a reduction in fuel consumption compared to the fixed geometry turbine when operuting at reduced power. This comparison is shown for typical holding conditions on Figure VI-3-7.

It has been established that turbojet engines provide the highest supersonic cruise efficiency and since the single spool turbojet engine with a variable geometry turbine also offers improved subsonic performance, both in lower fuel consumption and reduced noise, it was selected as a desirable type of engine to meet the requirements of the Reference Configuration. The Reference Configuration would have the following design characteristics:
overall compressor pressure ratio of 15:1
turbine-entrance temperature of $3060^{\circ} \mathrm{R}$
uninstalled corrected compressor airflow of $800 \mathrm{lbs} / \mathrm{sec}$ An engine with these design characteristics would provide an uninstalled net engine thrust of $82,800 \mathrm{lbs}$, at sea level static standard day conditions with no service airbleed or power extraction.

The weights of this reference engine were ratioed to those of the $633 \mathrm{lbs} / \mathrm{sec}$ engine, used on the Boeing 336C supersonic study airplane.

Engine Performance

Standard day engine performance data, without service airbleed or power extraction; for the selected engine was generated for use in mission studies. Performance data for a simple hot day of standard $+8^{\circ}$ Celsius was also generated for hot day mission studies and are presented on Tables VI-3-II and VI-3-III, respectively.

Similar data were generated for simple hot day atmospheric conditions of standard $+10^{\circ}$ Celsius for use in noise and engine sizing studies. These data are presented on Table VI-3-IV. As shown on Tables VI-3-II, -III, and -IV the parameters of gross engine thrust, ram.drag and fuel flow are used in
mission and take-off studies. The parameters of net engine thrust (the difference between gross engine thrust and ram drag), exhaust gas flow, exhaust gas (jet) velocity and nozzle area are used for noise studies. The remaining parameters are used for identification.

Engine performance data was not penalized for service airbleed or power extraction since this effect amounted to approximately a 1% increase in cruise fuel flow or a 1% decrease in range at maximum cruise power. This increment was considered to be well within the range of accuracy for initial studies. The effects of propulsion drag (due to inlet spillage, nozzle boattail and air conditioning discharge) are normally included as an aerodynamic drag increment in the performance section (VI-6). Should these effects, however, be included with those of service airbleed and power extraction and charged to the engine performance, the result is to increase the specific fuel consumption at Mach 2.7 cruise, from 1.31 to 1.39 at constant thrust.

Maximum take-off performance for the Reference Configuration is shown on Figure VI-3-8 for atmospheric condition of standard and standard $+10^{\circ} \mathrm{C}$ days. This data is valid for both fixed and variable geometry turbine engines. Also, shown on Figure VI-3-8 is derated (with an exhaust jet velocity of $2400 \mathrm{ft} / \mathrm{sec}$) take-off performance for both fixed and variable geometry turbine engines at atmospheric conditions of standard and standard $+10^{\circ} \mathrm{C}$ days. These data are presented for altitudes of sea level, 2000 and 4000 feet.

Idle performance, for both fixed and variable geometry turbine engines at atmospheric conditions of standard and standard $+10^{\circ} \mathrm{C}$ days, is shown on Figure VI-3-9.

LIST OF SYMBOLS

A	area, ft^{2}
Fg	gross thrust, lbs
F_{N}	net thrust, $1 \mathrm{lbs}=\mathrm{Fg}-\mathrm{RD}$
JP-4	jet fuel
M	Mach number
N	rotational speed, percent of design value
$N_{\text {corr }}$	corrected rotational speed, $N / \sqrt{\theta}$, percent
p	pressure, lb/ft ${ }^{2}$
R	gas constant
RD	ram drag, lbs
T	temperature, ${ }^{\circ}$ Rankine
V	velocity, ft/sec
W	weight flow, lb/sec
$W_{\text {corr }}$	corrected weight flow, $W \sqrt{\theta} / \delta, 1 \mathrm{l} / \mathrm{sec}$
W_{f}	fuel flow, lbs/hr
γ	ratio of specific heats
δ	ratio of total pressure to standard sea-level pressure
n	efficiency
θ	ratio of total temperature to standard sea-level temperature

VI-3

LIST OF SYMBOLS (Continued)

Subscripts:
b baseline
d design
P airplane
r required
sls sea-level static conditions
$t \quad$ stagnation or total conditions
0 free stream station
1 compressor inlet
2 compressor outlet
4 combustor outlet (turbine nozzle entrance)

5

7 exhaust-nozzle throat
8
exhaust-nozzle exit

Abbreviations:
Alt altitude, feet
CPR operating compressor pressure ratio, $\mathrm{P}_{\mathrm{t}, 2} / \mathrm{P}_{\mathrm{t}, 1}$
PRD design compressor pressure ratio, $\left(\mathrm{P}_{\mathrm{t}, 2} / \mathrm{P}_{\mathrm{t}, 1}\right)_{\mathrm{d}}$
TSFC thrust specific fuel consumption, lb/hr/lb
TET turbine entrance stagnation temperature, ${ }^{\circ}$ Rankine
TETD design turbine-entrance stagnation temperature, ${ }^{\circ}$ Rankine

REFERENCES

Reference No.

 TitleVI-3-1 The Boeing Company: Mach 2.7 Fixed Wing SST Model 969-336C (SCAT-15F), Document No. D6A-11666-1, dated November 1969.

VI-3-2 Keith, Arvid L., Jr.; Effects of Variable Turbine Area on Subsonic Cruise Performance of Turbojet Designed for Supersonic Application. NASA TN D-5962, October 1970.

VI-3-3 Hall, Eldon W.; and Weber, Richard J.: Tables and Charts for Thermodynamic Calculations Involving Air and Fuels Containing Boron, Carbon, Hydrogen, and Oxygen. NACA RM \#56B27, 1956.

VI-3-4 Foss, Richard L., and Bragdon, Ellwood L.: Propulsion Technology Advances Needed for a Quiet Supersonic Transport. Society of Automotive Engineers Paper No. 730898, October 1973.

VI-3

LIST OF FIGURES

Figure No.
Title

VI-3-1	Nondimensional Compressor Map VI-3-2
VI-3-3	Variation of Compressor Inlet Flow with Mach Number for Range of Design Engines
VI-3-4	Schedule of Ratio of Exhaust Nozzle-Throat Area Used for Partial Power Control
VI-3-5	Schedule of Air-Inlet Total-Pressure Recovery Used for All Engine Designs
VI-3-6	Predicted Jet Noise Suppressor Effectiveness
VI-3-7	Thrust Variation with Exhaust Jet Velocity for Fixed and Variable Geometry Turbine Engines
VI-3-8	Comparison of Thrust Specific Fuel Consumption at Typical Holding Conditions - Standard Day
VI-3-9	Take-off Thrust Comparison Fixed and Variable Geometry Turbine Engines
Idle Thrust Comparison Fixed and Variable Geometry Turbine Engines	

Table No. Title

VI-3-I Program Input
VI-3-II JP-4 Fueled Engine Performance Variable Geometry TurbineStandard Day

VI-3-III JP-4 Fueled Engine Performance Variable Geometry TurbineStandard $+8^{\circ} \mathrm{C}$ Day

VI-3-IV JP-4 Fueled Engine Performance Variable Geometry TurbineStandard $+10^{\circ} \mathrm{C}$ Day

TABLE VI-3-I - PROGRAM INPUT

Flight condition (standard day):
Altitude
0 to stratosphere

Mach number
0 . to 3.6
Power setting
Maximum and partial
Compressor:
Design pressure ratio 4 to 30
Design efficiency
0.875

Maximum rotational speed, percent 100
Combustor:
Maximum design turbine-entrance temperatures, ${ }^{\circ} \mathrm{R} 2260$ to 3460
Combustion efficiency 0.98
Design combustor total-pressure ratio 0.95
Fuel sensible energy, Btu/LB (JP-4 fuel) 1600
Fuel total enthalpy, Btu/LB (JP-4 fuel) 20,000
Initial liquid-fuel temperature, ${ }^{\circ} R \quad 350$
Turbine:
Polytropic efficiency 0.90
Cooling air, percent 0
Nozzle:
Tailpipe total-pressure ratio 0.95
Gross thrust coefficient 0.985
Static-pressure ratio 1.0

(a) Pressure Ratio as a Function of Corrected Flow

(b) Efficiency as a Function of Corrected Flow

FIGURE VI-3-1 - Nondimensional Compressor Map

FIGURE VI-3-2 = Variation of Compressor Inlet Flow with Mach Number for Range of Design Engines

FIGURE VI-3-3 - Schedule of Ratio of Exhaust Nozzle Throat Area Used for Partial Power Control

FIGURE VI-3-4 - Schedule of Air-Inlet Total-Pressure Recovery Used for All Engine Designs

FIGURE VI-3-5 - Predicted Jet Noise Suppressor Effectiveness

FIGURE VI-3-6 - Thrust Variation with Exhaust Jet Velocity for Fixed and Variable Geometry Turbine Engines

FIGURE VI-3-7 - Comparison of Thrust Specific Fuel Consumption at Typical Holding Conditions - Standard Day

(a) Full-power Take-off Fixed or Variable Geometry Turbine Engines

FIGURE VI-3-9 - Idle Thrust Comparison Fixed and Variable Geometry Turbine Engines
 3243.2
3274.4
3319.3
3361.4
3428.3
3380.3
3425.1
$3504 \cdot 2$
3567.2
3455.4
3495.6
3588.5
3656.9
3719.2
3664.1
3753.2
3816.8
3816.8
3830.6
3918.2
3918.2
4001.1
4001.1

MO7j
7301
78101
180 (LBS/HR)

TABLE VI-3-II (CONTINUED)

NOZZLE	EXHAUST
EXIT	GAS
AREA	FLOW
(SQFT)	(LBS/SEC)

$$
\frac{\text { FLOW }}{(L B S / H R)}
$$

.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40

.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40

$$
15000 \cdot 0 \quad 3060
$$

$$
64813.5 \quad 11578.4
$$

$$
60064.7 \quad 11578.4
$$

$$
54777 \cdot 0 \quad 11578 \cdot 4
$$

$$
\begin{aligned}
& 11578.4 \\
& 11578.4
\end{aligned}
$$

$$
\frac{11578.4}{-11578 \cdot 4}
$$

$$
11583.9
$$

$$
\begin{aligned}
& 11345.2 \\
& 10996.8
\end{aligned}
$$

$$
\begin{array}{r}
10996.8 \\
10295.4
\end{array}
$$

$$
\begin{array}{c|c|}
0 & 0 \\
0 & 0 \\
n & 0 \\
N & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\frac{8556.5}{7595.2}
$$

> | 0 | 0 | 0 | 0 | 5 | c | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | | | | | | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | | | | | | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

TABLE VI-3-III

 10.024
10.145
10.620
10.653
10.724
11.058
11.185
11.367

TABLE VI-3-III (CONTINUED)
STANDARD ± 8 C DAY

TURB•	GROSS	RAM	TOTAL	JET	NOZZLE	EXHAUST
IN	THRUST	DRAG	FUEL	VELOCITY	EXIT	GAS
TEMP•	$(L B S)$	(LBS)	FLOW	(FT/SEC)	AREA	FLOW
(R)						

TABLE VI-3-III (CONTINUED)

MACH	$\triangle L T I U D E$ IURB.	GROSS	RAM	TOTAL	JET	NOZZLE	EXHAUST
NO.	FEET IN	IHRUSI	DRAG	EUEL	VELOCIIY	EXIT	GAS
	TEMP.	(LBS)	(LBS)	FLOW	($F 1 /$ SEC)	AREA	FLOW
	(R)			(LBS/HR)		(SQFI)	($18 S /$ SFC)
. 40	$5000 \cdot 0 \quad 3060$	74002.6	9771.0	72004.5	3328.2	10.724	726.3
. 40	$5000.0 \quad 2785$	68238.2	9771.0	61698.4	3081.1	10.566	723.4
-40	5000.02509	61928.1	9771.0	51184.9	2807.5	10.415	720.5
. 40	5000.02234	54649.6	9771.0	40500.6	2487.8	10.386	717.5
. 40	5000.01958	45056.5	9771.0	29103.9	2060.2	10.825	714.4
. 40	5000.01700	33506.0	9771.0	18627.4	1538.3	12.406	71.1 .5
.40	$5000.0 \quad 1687$	32870.9	9774.7	18157.3	1509.2	12.554	711.6
. 40	$5000.0 \quad 1614$	28980.4	9479.2	15537.2	1372.9	12.923	689.5
. 40	5000.01542	25114.5	2187.3	131450	1228.5	13.518	667.8
- 40	$5000.0 \quad 1449$	19937.1	8554.5	10298.7	1048.3	14.182	621.2
. 40	$5000 \cdot 0.1 .378$	15758.4	7790.7	8301.8	910.3	14.538	565.5
. 40	$5000.0 \quad 1317$	12364.4	7006.8	6792.4	794.4	14.756	508.4
. 40	$5000.0 \quad 1264$	9150.8	6174.3	5587.8	668.1	15.390	447.9
.40	5000.01217	6563.0	5328.8	4661.9	554.7	16.054	386.5

3081.1
2807.5
2487.8
2060.2
1538.3
1509.2
1372.9
1228.5
1048.3
910.3
794.4
668.1
554.7 72004.5
 74002.6
$\begin{array}{ll}5000.0 & 3060 \\ 5000.0 & 2785 \\ 5000.0 & 2509 \\ 5000.0 & 2234 \\ 5000.0 & 1958 \\ 5000.0 & 1700 \\ 5000.0 & 1687 \\ 5000.0 & 1614 \\ 5000.0 & 1542 \\ 5000.0 & 1449 \\ 5000.0 & 1.378 \\ 5000.0 & 1317 \\ 5000.0 & 1264 \\ 5000.0 & 1217\end{array}$
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40

TABLE VI-3-III (CONTINUED)

	IEMP.	(LBS)	(Li3S)	ELOW	(FT/SFC)	EA	-w
	(R)		-	3S/HR/		ETJ	CSEC)
- 80	15:00.0 3060	72326.8	17267.6	65525.2	3552.3	2.606	665.1
- 80	15000.0 2785	66984.8	17267.6	56072.9	3303.0	12.338	662.4
. 80	$15000.0 \quad 2509$	61107.4	17267.6	46444.7	3025.4	12.074	659.8
. 80	15000.02234	54388.7	17267.5	36653.0	2703.9	11.910	657.0
. 80	15000.0 1958	45703.4	17267.6	36217.5	2282.2	12.154	654.1
- 80	$15000.0 \quad 1700$	35564.7	17267.6	16626.4	1783.2	13.295	651.5
. 80	15000.01690	35173.8	$17272 \cdot 9$	16300.9	1763.2	13.370	651.6
. 80	15000.01613	31186.4	16754.5	13788.4	1628.7	13.529	631.5
. 80	15000.01531	27704.5	16248.0	11316.3	1479.1	13.852	611.8
-80	15000.01409	21713.2	15111.4	7981.4	1248.0	14.407	568•3
- 80	$15000 \cdot 1315$	16974.6	13774.7	5776.3	$1071 \cdot ?$	14.709	517.6
. 80	$15000.0 \quad 1235$	$13066 \cdot 0$	12.379 .6	4200.7	918.0	14.974	464.9
. 80	15000.1162	9461	$10902 \cdot 5$	$2978 \cdot 7$	$755 \cdot 2$	15.671	$409 \cdot ?$
1.00	36152.03060	$41732 \cdot 2$	10702.6	$36580 \cdot 3$	3792.1	14.892	359.5
1.00	36152.02785	38823.3	10702.5	31498.2	3541.7	14.491	358.1
1.00	36152.02509	$35533 \cdot 9$	$10702 \cdot 6$	26313.6	3263.8	14.074	356.6
1.00	$36152 \cdot 02234$	32013.0	$10702 \cdot 6$	21044.5	2944.3	13.739	$355 \cdot 2$
1.00	36152.01958	$27401 \cdot 2$	$10702 \cdot 6$	15403.0	2531.3	13.747	353.6
1.00	36152.01700	22221.8	10702.6	$10212 \cdot 9$	$2061 \cdot 2$	14.393	352.1
1.00	36152.01689	21093.4	10707.3	10010.4	2039.5	14.455	$352 \cdot 2$
1.00	35152.01589	20112.5	10520.5	8432.0	1900.3	14.419	345.7
1.00	35152.01505	18135.7	$10235 \cdot 2$	7066.4	1763.0	14.480	$336 \cdot 0$
1.00	36152.01385	$15016 \cdot 2$	9584.0	5192.7	1560.8	14.400	314.2
1.00	$36152 \cdot 01285$	12.366 .9	$8861 \cdot 3$	3814.0	1391.6	14.210	290.3
1.00	36152.01181	9649.8	$8036 \cdot 1$	2586.1	1198.6	14.242	263.0
1.00	36152.01076	7032.2	7170.5	1541.8	979.7	14.733	234.5

MACH	ALTITUDE TURE.	GROSS	RAM	TOTAL	JET	NOZZLE	EXHAUST
NO.	FEET IN	THRUST	DRAG	FUEL	VELOCIIY	EXIT	GAS
	TEMP.	(LBS)	(LBS)	FLOW	(FT/SEC)	AREA	FLOW
	(R)			(LBS/HR)		(SQ FT)	(LBS/SEC)
2.70	$65000 \cdot 0 \quad 3060$	57268.0	34728.6	31367.5	4365.3	41.472	428.5
2.70	$65000 \cdot 0 \quad 2785$	53184.6	34728.6	-25065.2	4070.7	39.916	426.8
$2 \cdot 70$	65000.02509	48675.4	34728.6	18639.6	3741.2	38.358	425.0
$2 \cdot 70$	$65000 \cdot 02234$	43591.4	34728.6	12111.2	3364.8	36.986	423.2
$2 \cdot 70$	65000.01958	37457.5	34728.6	5397.0	2904.1	36.621	421.3

TABLE VI-3-IV

$\frac{836 \cdot 2}{832.9}$

$$
\frac{10}{2 x \mid a b}
$$

$$
\frac{1}{a} \dot{d}
$$

ghe
He

$$
\begin{array}{r}
10.583 \\
\hline 10.434 \\
\hline 10.315 \\
\hline 10.320 \\
\hline 10.865 \\
12.777 \\
12.919 \\
1.3 .379 \\
13.997 \\
\hline 14.644 \\
\hline 14.336 \\
\hline 15.273 \\
\hline 1509
\end{array}
$$

$$
\begin{aligned}
& 577 \cdot ? \\
& 507 \cdot 1
\end{aligned}
$$

$$
-633 \cdot 3-15.909-507.1
$$

$$
\cdots
$$

.-

$$
=
$$

$$
\square
$$

MACH	ALTITUDE TURB.	GROSS	RAM	TOTAL	JET	NOZZLE	EXHAUSI
NO.	FEET IN	THRUST	DRAG	FUEL	VELOCITY	EXIT	GAS
	TEMP.	(LES)	(LEBS)	FLOW	($E T / S E C$)	AREA	FLOW
	(R)			LES/HR)		(SQFT)	LBS (SEC)
$0 \cdot 00$	$2000 \cdot 0 \quad 3060$	$69852 \cdot 2$	0.0	70510.4	3212.7	10.047	710.2
0.00	$2000 \cdot 02785$	64297.6	0.0	60434.8	2968.9	9.920	$707 \cdot 4$
0.00	$2000 \cdot 02509$	$58162 \cdot 4$	$0 \cdot 0$	50156.3	2696.5	9.818	$704 \cdot 5$
$0 \cdot 00$	$2000 \cdot 0 \quad 2234$	$51048 \cdot 3$	Q.0	39710.9	2376.5	9.854	$701 \cdot 6$
0.00	2000.0 1958	$41566 \cdot 1$	0.0	28566.7	1943.6	10.408	698.5
0.00	2000.01700	29857.8	$0 \cdot 0$	18321.8	1401.9	12.361	695.7
0.0 O	2000.01690	$29378 \cdot 6$	$0 \cdot 0$	17976.1	1379.2	12.496	695.8
0.00	2000.1626	25901.5	0.0	15698.5	125502	12.925	674.0
0.00	2000.1565	$22565 \cdot 0$	$0 \cdot 0$	13670.3	1129.6	13.528	652.5
$0 \cdot 00$	$2000 \cdot 01484$	18100.6	C.O	11162.1	974.2	14.147	606.9
0.00	2000.01422	14431.7	O 0	9340.8	853.6	14.462	552.3
0.00	$2000 \cdot 0 \quad 1367$	11330.0	Q,0	787 CL 2	745.3	14.756	496.6
0.00	2000.1322	$8402 \cdot 1$	Q.0	6695.2	627	15.466	437.3
-10	2000.0.3060	71116.4	2456.3	7147308	322405	10.119	720.4
-10	$2000 \cdot 0.2785$	65473.8	2456.3	61252.4	2980.4	9.988	717.6
-10	$2000 \cdot 0.2509$	$59244 \cdot 3$	$2456 \cdot 3$. $20825 \cdot 2$	-2707.8	9.8882	71.4 .7
.10	2000.02234	52027.0	2456	- 4222 L	- 2381.7	9.01.1	711.7
-10	$2000 \cdot 01958$	42419.5	2456.3	28924.3	1955.4	...10.454	$708 \cdot 6$
-10	2000.01700	30583.3	$2456 \cdot 3$	18532.4	1415.6	-12.368	705.7
$\cdot 10$	2000.01690	30149.7	2457.0	18177.6	139503	12.471	705.8
.10	$2000 \cdot 0 \quad 1624$	26507.8	2382.0	15830.4	1266.3	12.936	683.8
.10	2000.01562	23091.7	2307.5	13742.2	1139.5	13.530	661.9
-10	2000.01481	18496.7	2147.4	11180.3	281.5	$14 \cdot 158$	615.6
-10	2000.01418	14737.0	1954.7	9323.7	859.4	14.480	$560 \cdot 1$
-10	$2000 \cdot 01360$	11492.5	1758.0	7794.7	745.5	14.838	503.6
.10	$2000 \cdot 01316$	8576.8	$1548 \cdot 3$	6638.4	631.8	15.460	443.4

-

MACH	ALTITUOE TURB.	GROSS	RAM	TOTAL	JET	NOZZLE	EXHAUST
No.	FEET IN	THRUST	DRAG	FUEL	VELOCITY	EXIT	GAS
	TEMP.	(LBS)	(LBS)	FLOW	(FT/SEC)	AREA	FLOW
	(R)			LBS/HR1		(SQ FI)	(LRS/SEC)
. 20	$2000 \cdot 03060$	$73250 \cdot 1$	5031.6	73048.0	3242.8	10.247	737.8
- 20	2000.0 2785	67504.8	5031.6	62576.3	3000.3	- 10.097	734.9
. 20	2000.0 2509	61060.2	5031.5	51894.2	2724.9	9.998	731.9
. 20	2000.02234	53662.3	5031.6	$410.38 \cdot 1$	2404.7	10.017	728.9
- 20	2000.0 1958	43863.9	5031.6	2946 CL 5	1974.3	10.531	725.7
- 20	2000.0 1700	31804.7	5031.6	18818.2	1437.4	12.386	722.8
- 20	2000.0 1690	31282.9	5033.1	18449.6	1413.6	12.527	722.9
- 20	2000.01623	27492.9	4879.9	15997.3	1282.3	12.987	$700 \cdot 3$
. 20	2000.01558	23949.1	4727.9	13802.9	1153.7	13.563	678.0
-20	2000.0 1476	19131.6	4396.0	11168.0	991.0	14.207	630.0
- 20	$2000 \cdot 01412$	15240.7	4001.2	9254.8	868.5	14.510	573.2
-20	2000.0 1352	11844.5	3596.6	7675.6	751.2	14.883	$515 \cdot 0$
. 20	2000.0 1307	8840.?	3166.7	5503.3	636.9	15.479	453.4
- 30	$2000 \cdot 0 \quad 3060$	75881.3	7770.2	74931.0	3263.4	10.411	759.5
. 30	2000.02785	69901.0	$7770 \cdot 2$	64146.1	3018.1	10.266	756.5
. 30	2000.02509	63330.9	$7770 \cdot 2$	53144.3	2745.5	10.135	753.5
- 30	$2000 \cdot 02234$	55698.6	$777 \mathrm{C} \cdot 2$	41967.7	$2424 \cdot 6$	$10 \cdot 144$	750.4
- 30	2000.0 1958	45550.8	$7770 \cdot 2$	30046.0	1991.7	10.665	$747 \cdot 1$
- 30	2000.01700	33163.7	777c.2	19092.0	1456.0	12.492	744.0
. 30	2000.01690	32618.2	7772.6	18703.2	1431.8	12.632	$744 \cdot 1$
. 30	2000.01621	28647.6	$7536 \cdot 8$	16131.7	1297.8	13.093	721.0
- 30	2000.0 1555	24927.5	7302.9	13847.0	1166.3	13.684	698.1
- 30	$2000 \cdot 0 \quad 1470$	19824.6	6780.6	11071.5	999.8	14.330	647.7
. 30	$2000 \cdot 01402$	15699.0	$6170 \cdot 6$	$9059 \cdot 1$	870.4	14.680	589.2
- 30	$2000 \cdot 01346$	12304.9	$5539 \cdot 7$	7560.0	$760 \cdot 1$	14.940	$528 \cdot 8$
- 30	$2000 \cdot 0 \quad 1297$	$9 \mathrm{C} 96 \cdot 7$	4875.6	6329.5	$638 \cdot 6$	15.637	$465 \cdot 3$

TABLE VI-3-IV (CONTINUED)
TAKEOFF AND PART POWER PERFORMANCE (CONTINUED)

$\text { STANDARD }+10 \text { C DAY }$							
MACH	$\triangle L T I T U D E ~ T U R B$.	GROSS	RAM	TOTAL	JET	NOZZLE	HAUST
NO.	FEET IN	THRUST	DRAG	FUEL	VELOCITY	E×IT	GAS
	TEMP.	(LBS)	(LBS)	FLOW	(FT/SEC)	AREA	OW
	(R)			BS/HRI		(SQ FT)	/SEC)
0.00	$4000 \cdot 0 \quad 3060$	$66284 \cdot 1$	$0 \cdot 0$	$66806 \cdot 3$	3232.7	10.096	669.7
0.00	4000.02785	61052.7	0.0	57310.7	2989.3	9.962	667.1
0.00	4000.02509	55281.3	0.0	47623.9	2717.7	9.850	664.4
0.00	$4000.0 \quad 2234$	48595.6	$0 \cdot 0$	37779.6	2398.9	9.870	661.7
0.00	$4000 \cdot 0 \quad 1958$	39712.4	0.0	27269.8	1969.1	10.387	658.8
0.00	$4000 \cdot 0 \quad 1700$	28811.9	0.0	17606.8	1434.4	12.211	$656 \cdot 1$
0.00	$4000.0 \quad 1690$	28402.6	$0 \cdot 0$	17270.3	1413.9	12.311	$656 \cdot 2$
0.00	4000.01622	24940.1	0.0	15015.2	1281.6	12.772	635.6
0.00	4000.01560	21773.7	0.0	13042.2	1155.9	13.318	615.3
0.00	4000.01476	17414.1	$0 \cdot 0$	10586.9	991.5	14.002	573.7
0.00	4000.01414	13919.7	$0 \cdot 0$	8857.?	870.6	14.297	522.3
0.00	4000.01354	10860.5	$0 \cdot \mathrm{C}$	7366.5	754.2	14.653	470.4
0.00	$4000 \cdot 01310$	8141.0	$0 \cdot 0$	6272.1	641.5	15.217	414.5
-10	4000.0 3060	67472.8	2300.2	67713.6	3244.4	10.169	679.3
$\cdot 10$	$4000 \cdot 02785$	62206.7	2300.2	58081.5	3003.0	10.016	676.6
.10	4000.02509	56299.5	2300.2	48255.5	2728.8	9.914	673.9
. 10	4000.0 2234	49516.7	2300.2	38269.8	2410.0	9.928	671.1
-10	$4000 \cdot 01958$	40553.7	$2300 \cdot 2$	27610.1	1982.5	10.418	658.2
.10	4000.01700	29549.0	2300.2	17809.4	1450.4	12.132	655.4
.10	$4000.0 \quad 1690$	29064:3	2300.8	17464.3	1426.5	12.329	665.5
-10	$4000.0 \quad 1621$	$25509 \cdot 3$	2230.7	15137.8	1292.4	12.786	644.7
.10	$4000.0 \quad 1558$	22242.7	2160.9	13112.2	1164.0	13.345	624.1
.10	$4000.0 \quad 1473$	17816.6	2015.8	10619.3	1000.3	13.997	581.8
.10	4000.01410	14225.6	1835.9	8844.9	877.3	14.293	529.6
-10	4000.01349	11094.6	1653.7	7344.9	759.9	14.65 ?	476.9
. 10	$4000.0 \quad 1305$	8295.5	1457.6	6228.4	644.7	15.241	420.3

TABLE VI-3-IV (CONTINUED)

TAKEOFF AND PART POWER PEREORMANCE (CONTINUED)
STANOARD +10 C OAY

MACH	ALTITUDE TURE.	GROSS	RAM	TOTAL	NET	NOZZLE	EXHAUST
No.	EFEI LN	THRUST	DRAG	FUEL	VEICCLTY	EXII	GAS
	TEMP.	(LBS)	(LBS.)	ELOW	(EI/SEC)	AREA	FLOW
	(R)			LBS/HR)		(SQFT)	(18S/SEC)
. 20	$4000.0 \quad 3060$	69467.7	4710.5	69188.1	3262.4	10.296	695.5
. 20	$4000.0 \quad 2785$	64013.9	4710.5	59323.3	3018.2	10.152	692.8
- 20	$4000.0 \quad 2509$	58041.9	4710.5	42259.9	2747.7	10.015	690.0
. 20	$4000.0 \quad 2234$	51089.5	4710.5	39032.9	2428.6	10.019	687.1
- 20	4000.01958	41860.1	4710.5	28118.8	1998.7	10.515	684.1
. 20	$4000.0 \quad 1700$	30626.6	4710.5	18034.9	1468.3	12.255	681.3
. 20	$4000.0 \quad 1685$	29925.2	4712.4	17581.7	14.34 .4	12.446	681.5
. 20	$4000.0 \quad 1619$	26402.4	4568.7	15280.4	1306.3	12.853	660.2
20	4000.0 .1554	22988-8.	4426.3	$13172 \cdot 2$	1174.8	13.426	639.2
. 20	4000.01468	18396.0	4125.6	10603.2	1009.4	14.063	595.3
. 20	$4000.0 \quad 1402$	1460600	3757.4	8728.1	880.4	14.399	541.9
. 20	4000.01344	11490.8	3382.0	7284.8	769.8	14.545	487.6
. 20	4000.01295	8501.8	2980.9	6114.0	646.3	15.352	429.7
. 20	$4000 \cdot 0 \quad 1253$	6179.2	2575.3	5208.5	$543 \cdot 7$	15.89n	371.2
- 30	$4000.0 \quad 3060$	71907.5	$7270 \cdot 7$	70943.1	$3282 \cdot 1$	10.460	715.6
- 30	$4000 \cdot 0 \quad 2785$	66289.2	7270.7	60788.3	3037.7	10.306	712.8
. 30	4000.02509	60079.9	7270.7	50429.1	2764.3	10.176	709.9
- 30	$4000.0 \quad 2234$	52937.5	7270.7	39901.6	2445.7	10.163	707.0
- 30	$4000 \cdot 0 \quad 1958$	43435.0	7270.7	28672.3	2015.6	10.649	703.9
. 30	4000.0 .1700	31899.4	7270.7	18349.6	1486.4	12.362	701.0
. 30	$4000.0 \quad 1685$	31179.4	7273.8	17828.8	1452.5	12.550	701.2
. 30	$4000.0 \quad 1617$	27515.1	7052.6	15425.0	1323.0	12.946	679.3
. 30	4000.01550	23907.2	6833.9	13209.7	1187.2	13.541	657.8
. 30	$4000 \cdot 0 \quad 1460$	18973.6	6361.6	10445.4	1013.0	14.212	611.8
- 30	$4000 \cdot 0 \quad 1396$	15186.7	5790.9	8643.9	891.1	14.460	556.7
- 30	$4000 \cdot 0 \quad 1335$	11801.6	5207.9	7112.1	$770 \cdot 3$	14.830	500.5
-30	4000.01286	$8764 \cdot 0$	4587.8	5949.5	649.5	15.474	$440 \cdot 8$

T́Able VI-3-IV (CONTINUED)

$-$ - -

VI-4 WEIGHT ANALYSIS

INTRODUCTION

The objective of the weight analysis is to establish a realistic design gross weight in selection of a conceptual supersonic configuration which will serve as a reference for current and future advanced technology evaluations. The design goal was to achieve a Reference Configuration having the mission capability of flying four thousand (4000) nautical miles at Mach 2.7 cruise speed while carrying two hundred ninety two passengers with baggage.

Historically, the genealogy of the Reference Configuration can be traced back to the NASA SCAT-15. A derivative, the Boeing 969-336C, characterized by fixed "arrow" wing geometry and forebody mounted retractable canards became the baseline model for additional investigations: Through extensive wind tunnel testing conducted by NASA/LRC, advanced low speed aerodynamic concepts were developed specifically for incorporation into the $969-336 \mathrm{C}$ model.

The configuration changes resulting from application of these concepts to the 969-336C indicated that major weight reductions were possible. From a structural weight viewpoint, the most significant of these changes were:
${ }^{\circ}$ Deletion of canard system
${ }^{\circ}$ Deletion of portions of wing leading edge
High Lift Systems
${ }^{\circ}$ Shifting center-of-gravity aft resulting in decreased landing gear strut length

Accepting the structural design of the 969-336C, incorporating the advanced aerodynamic concepts, and taking advantage of the ensuing weight savings led to a modified version of the 969-336C without canards. This version became the statistical weight base from which the computer generated Reference Configuration would evolve.

SUMMARY

The structural weight analysis is based on a strength designed all titanium primary structure. Design features and construction techniques for major components are:
${ }^{\circ}$ Wing and aerodynamic surfaces - stresskin titanium skin/core sandwich panels
${ }^{\circ}$ Fuselage - titanium skin/stringer/frame construction
© Two-strut main landing gear and single strut nose gear structure high strength steel
${ }^{\circ}$ Engines - $800 \mathrm{lb} / \mathrm{sec}$ mass flow dry turbojets oversized to meet noise requirements

The weight development of the Reference Configuration is summarized as follows:
${ }^{\circ}$ Establishment of a statistical weight base for computerized methods using the 969-336C prototype (having a 316650 lb operating wt. and a 635000 lb gross wt.) for correlation.
${ }^{\circ}$ Incorporation of OW and GW changes from prototype to production 969-336C (increased OW from 315650 to 326650 lbs and GW from 635000 to 750000 lbs) enabling valid comparison with Reference Configuration
> ${ }^{\circ}$ Incorporation of advanced aerodynamic concepts and other changes resulting in weight reductions (21566 lbs)
> ${ }^{\circ}$ Generation of weights and sizing of Reference Configuration through computerized methods resulting in OW increases (46056 lbs) and a new OW of 351140 lbs with a GW of 762000 lbs.

The net results indicate increases of 1.6% in gross weight and 7.5% in operating weight which are due primarily to growths of 25% in payload and 10% in propulsion (engine oversizing to meet FAR 36 noise criterion). A comparative summary of these results appears in Table VI-4-1.

A graph indicating the gross weight breakdown, expressed in percentages, of the production 969-336C in comparison with the Reference Configuration appears as Figure VI-4-1.

Discussion

Methods

One of the prime requisites for attaining valid design evaluations during early conceptual development of an aircraft system, is availability of accurate weight and balance data. Obtaining precise mass data would require a detailed structural weight analysis comparable to the effort expended by the Boeing Company during the National SST program. Analysis of such magnitude is beyond the scope of this study. However, it is possible, after establishing a sound reference base, to produce first level mass data with reasonably adequate confidence levels. These data, while not highly detailed, do reveal trends and serve to isolate, identify, and assess impacts resulting from incorporation of variations in design or technology.

[^0]

FIGURE-VI-4-1

Design Weight Fractions

For this study, computerized statistical estimating techniques were employed in performing parametric weight and balance evaluations. A basic mass data program was modified and adapted to evaluate supersonic transport aircraft and yield a high correlation with the 969-336C Boeing derivative. All analyses were performed on an identical basis, and variations in design and technology concepts appeared as real value differences. Comparative assessment of specific variations was accomplished and developing trends were evaluated. Selecting an appropriate design gross weight involved a sizing synthesis with an array of aircraft weights ranging from 400 to 850 thousand pounds. The weight data from this sizing program were subjected to mission performance evaluations and the candidate model with the best gross weight/ thrust/range match was selected as the point design Reference Configuration.

Materials

In accordance with the design philosophy of retaining the structural concepts of the 969-336C, the Reference Configuration weights represent an all titanium primary airframe structure composed of stresskin sandwich panels for wing and other aerodynamic surfaces, titanium skin-stringer-frame fuselage construction, and high strength steel alloy landing gear structure.

The use of stresskin in the weight base was deemed a conservative approach because of the existence of other advanced materials and construction techniques which promise equal or lighter weights. Of the alternate materials and techniques under consideration, two seem extremely promising. One is a diffusion bonced titanium skin/stringer built-up construction technique pioneered by NASA; the other is a patented process, LID, liquid interface

$$
\begin{aligned}
& \text {-336C PRODUCTION } \\
& \begin{array}{r}
326650 \\
48900 \\
374444 \\
750000
\end{array} \\
& \text { TABLE VI-4-2 } \\
& \begin{array}{l}
\text { (REFERENCE BOEING DOCUMENT) } \\
-336 \text { PROTOTYPE } \quad \triangle \text { WEIGHT }
\end{array} \\
& \begin{array}{r}
270444 \\
635000
\end{array}
\end{aligned}
$$

diffusion bonded titanium skin/core sandwich panel. In the NASA process, the continuity of the bond between skin and stringer increases panel buckling resistance, improves flutter characteristics, and enhances fatigue life. The LID process, in comparison to other bonding and brazing techniques, promises improvements in shear strength, resistance to interlaminar separation, and elimination of interface stress corrosion. Specimen panels of both construction techniques are undergoing actual flight testing on YF12 Mach 3 aircraft under auspices of NASA/Edwards.

Because of the considerations mentioned, neither weight disadvantages, such as those reportedly arising from use of aluminum brazed titanium core sandwich, nor weight advantages anticipated from utilization of more exotic materials are reflected in the weights.

Weight Derivation

The statistical weight derivation began with the adoption of the 635000 lb . gross weight 969-336C prototype (Reference VI-4-1) as the reference base for structural weights. The 750000 lb. gross weight 969-336C production version is used in the final weight comparisons because its higher gross weight and similar range makes possible a more valid direct comparison with the Reference Configuration than could be achieved if the prototype were used. Of this 115000 lb. difference in gross weight, 104000 lbs. is fuel and the remaining 11000 lbs. is attributable to operating weight changes. A comparative weight summary listing these differences is presented at Table VI-4-2.

Incorporation of advanced aerodynamic concepts, resulted in the following significant weight reductions.
${ }^{\circ}$ Deletion of the canard and provisions yielded a net weight reduction of 5109 lbs.
${ }^{\circ}$ Deletion of part of wing L.E. high lift devices resulted in a weight decrease of 6224 lbs.
${ }^{\circ}$ A 20 inch decrease in main landing gear strut length resulted in a weight reduction of 5000 lbs.

One item, listed as manufacturing and certification tolerance, was deleted from the reference model as being unacccuntable within the accuracy tolerance of the computer generated data during early conceptual evaluations. A list of these weight reductions is presented as Table VI-4-3.

The final phase of weight development was the computerized weight synthesis of the specific Reference Configuration. The results indicate that a 762000 lb . design gross weight is required to achieve the desired payload, range and noise goals.

Of the operating weight increases, the largest single increase (14812 lbs.) occurs in the propulsion group as a result of increased engine size dictated by sizing engines for noise (throttle back). Another propulsion related increase is the 10601 lb . increment for thrust reversers. These and other operating weight increases are presented in Table VI-4-4.

These weight changes in derivation of the operating weight are summarized in Table VI-4-5.

A weight summary listing the weight derivation from the 969-336C prototype through the production version and finally to the Reference Configuration is presented in Table VI-4-6.

TABLE VI-4-3

CHANGE SUMMARY REDUCTIONS
ITEM/DESCRIPTION WT~LBS
Wing 4,870
Leading edge flaps - deleted inboard sections and demand system
Canard 2,950
Canard deleted entirely
Fuselage 1,409
Deleted canard attachment and stowage provisions
Landing Gear 5,000
Reduced strut length by 20 inches
Flight Controls 4,052
L.E. Flap - operating system 3,302
Canard - operating system 750
Mfg and Certification Tolerance 3,094
Deleted as unaccountable in conceptual evaluations
Operating Items 191Unusable fuel adjustmentTotal Reductions21,566

TABLE VI-4-4
CHANGE SUMMARY
INCREASES
ITEM/DESCRIPTION WT~LBS
Wing 4,061
Increased gross weight, area, span, t / c at root, addedfixed L.E. in lieu of L.E. flaps
Horizontal Tail 2,901
Increased area from 456 to $600 \mathrm{ft}^{2}$ (exposed area 296 to 441 $\left.\mathrm{ft}^{2}\right)$
Increased gross weight effects
Vertical Tail 1,465Increased gross weight effects
Fuselage 4,153
Increased width to 5 abreast seating increasedlength from 295 to 315 ft .
Landing Gear 4,484
Increased gross weight and improved flotation
Nacelle 1,603
Increased length and diameter to accommodate larger engines
Propulsion 18,554
Engines - increased mass flow from 633 7,082 to $800 \mathrm{lbs} / \mathrm{sec}$
Thrust reversers - added thrust reversers 10,601
Fuel tanks and plumbing - added aft fuselage 871 and apex tanks
Surface Controls 1,602
Effects of increased gross weight

TABLE VI-4-4 (continued)
CHANGE SUMMARY
INCREASES

ITEM/DESCRIPTION

$W T^{\sim}$ LBS
Furnishings and Equipment $\quad 3,821$
Provisions for 58 additional passengers achieved by 5 abreast seating
$\begin{array}{ll}\text { Air Conditioning } & 310\end{array}$
Increased environmental requirements for additional passengers
Operating Items
3,102
Cabin attendants - increased from 7 to 10510 to accommodate additional passengers

Engine oil - increased for larger engines 123
Passenger service - increased requirements for 1,769 additional passengers

Cargo containers - larger containers due to 460
increases in body width and depth and baggage requirements

Adjustment for computer deviation 240

Total Increases
46,056

TABLE VI-4-5
 DERIVATION SUMMARY

ITEM/DESCRIPTION WT~LBS
-336C Production Operating Weight 326,650
Total Reductions - 21,566
Total Additions $+46,056$
Reference Configuration O.W. (Computer Generated) 351,140
TABLE VI-4-6
aubluns nolivaiyad Lhoish

Balance

Mass balance characteristics are a major parameter influencing design, configuration development, and flying qualities of all aircraft. Because of the broad operational requirements of supersonic aircraft, (flight at subsonic, transonic, and supersonic speeds), the trim and stability requirements are more extensive than those for subsonic applications. Attainment of a design goal fulfilling the trim conditions at the extremes of the operational spectrum, requires a high degree of flexibility in the balance potential of a configuration.

Ensuring this flexibility of operation over a wide C.G. range was accomplished with a combination of design implementations. The primary step in providing the configuration with an aft C.G. potential was to move the wing forward relative to the fuselage while remaining within acceptable forward contour limits of the area distribution curves dictated by the cruise Mach no. area ruling criterion. The next phase involved extending the aftbody section (of the fuselage) by ten (10) feet increasing the overall fuselage length to 315 ft . Thus, the aircraft C.G., at lower gross weights at or near reserve fuel conditions, tends to be aft satisfying the approach stability requirements. Optional fuel tanks are located in the aftbody and wing apex to satisfy the take-off and cruise trim requirements.

With proper fuel management, the aircraft is capable of operating within a C.G. range from 53 to 60 percent of the reference mean aerodynamic chord (MAC $=1154.28$ inches). This range is illustrated in Figure VI-4-2.

FIGURE-VI-4-2 Operational Center-of-Gravity Envelope

Two potential benefits of the current design illustrate the significant influence that balance can have on weight and warrant discussion.

One potential benefit is the possibility of utilizing the optional fuel tanks as heat transfer reservoirs in thermal management of fuel which has not been addressed in this study.

The second, influence of balance on structural weight, is indicated in this study. Introduction of an advanced aerodynamic concept, making possible the operation of the aircraft at aft C.G. positions and reducing the angles of attack in take-off and landing modes, resulted in a decrease of 20 inches in landing gear strut length. The result of this was a significant weight reduction of 5000 lbs.

Another aspect of influence by balance on design may be illustrated by the following assumption. Most, if not all, current supersonic aircraft (transport) designs have engines mounted on the trailing edge of the wing for a multitude of design reasons. If, for reasons of improving performance or noise abatement, engine sizes were drastically increased, the balance could be measurably affected. The impact of additional weight at an aft position could adversely affect a point design having a limited C.G. operating range either hampering or limiting growth or major changes. Capability of operation over a broad C.G. range, particularly in aft regions, would diminish the impact of such changes, perhaps even absorbing the effects without requiring any major configuration changes.

VI-4
 LIST OF REFERENCES

Reference No.
VI-4-1
Title
The Boeing Co.; "Mach 2.7 Fixed, Wing SST Model 969-336C (SCAT-15F)," Document No. D6A-11666-1, Dated November 1969.

LIST OF FIGURES

Figure No. VI-4-1 Design Weight Fractions VI-4-2 Operational Center-of-Gravity Envelope

LIST OF TABLES

VI-4-1
VI-4-2
VI-4-3
VI-4-4
VI-4-5
VI-4-6

Title
Characteristics Comparison
Weight Change Summary
Change Summary Reduction
Change Summary Increases
Derivation Summary
Weight Derivation Summary

This section presents the predicted noise characteristics of the Reference Configuration for both the takeoff and approach conditions, and for the airframe only. The effective perceived noise levels (EPNL's) were calculated at the FAR 36 (Reference VI-5-1) prescribed noise measurement stations shown in Figure VI-5-1. During takeoff, the effective perceived noise level is normally considerably greater than either the approach noise level or the airframe noise level. In addition to presenting the EPNL at the noise measurement position, community noise profile maps are presented for the takeoff condition with both unsuppressed and suppressed engines. A summary is included of the engine noise prediction method used to obtain the EPNL values.

To reduce the noise levels during takeoff, oversized engines were employed which operate at partial power (Thrust $=54600$ lbs/engine rather than 73550 lbs/engine sea level static takeoff) and jet exhaust suppressors were used. These are variable geometry turbine engines with variable geometry exit nozzles. Several takeoff profiles were evaluated to optimize the EPNL at the FAR 36 measurement positions. For a 3 degree approach condition, the engine EPNL was predicted at the FAR 36 prescribed measurement positions.

The overall sound pressure level (OASPL) of the airframe was evaluated at the times the aircraft was nearest the FAR 36 observer measurement stations.

All engine performance, speed of sound calculations, and atmosphere absorption factors for noise attenuation are based on a $77^{\circ} \mathrm{F}$ day with 70% humidity.

SUMMARY

The takeoff and approach noise levels are presented in Table VI-5-1, along with the overall sound pressure level (OASPL) of the airframe and the amount of engine noise suppression required to meet the FAR 36 requirement of 108 DB. The results of the noise study of the Reference Configuration are briefly as follows:
${ }^{\circ}$ To meet the FAR 36 standards 11.7 DB of engine suppression are required during Takeoff
${ }^{\circ}$ During Takeoff the Airframe noise of 105.6 DB is less than the FAR 36 requirement of 108 DB
© During approach the airframe noise exceeds the engine noise by 11.1 DB
${ }^{\circ}$ During approach the airframe noise is 0.3 DB less than the FAR 36 requirement of 108 DB

- A variable geometry turbine yields an engine noise reduction of 3 DB over a fixed geometry turbine during Takeoff

Engine Noise Prediction Method

Prediction of aircraft engine noise at ground observer stations is dependent on the engine performance characteristics and the flight profile. The engine performance characteristics including jet velocity, relative to ambient air and jet area, are used in SAE AIR 876 Method 2 (Reference VI-5-2) for computing maximum passby noise level. This method yields the maximum passby noise
level at 200 feet radius for each third octave band level of preferred frequencies at a directivity angle of 135°. Because the directivity angle between the engine and the observer varies with time, it is necessary to obtain the maximum passby noise level over a range of directivity angles. Table VI-5-2 presents the variation of sound pressure level corrections with directivity angle and frequency which are used in this analysis. These values were obtained from Reference VI-5-3. Using these values the variation of engine sound pressure level (SPL) with frequency level and directivity angle is computed.

The flight profile characteristics include the time history of the range and altitude. Thus at a particular time at each observer position, an effective perceived noise level (EPNL) is obtained at the observer position.

Table VI-5-III presents a typical PNL time history prediction and the EPNL during takeoff with observer located near 3.5 nautical miles (21280 ft.) from brake release and at a sideline distance of 0.35 nautical miles (2128 ft) along the runway centerline. These observer locations are some of the FAR 36 prescribed noise measuring locations.

Takeoff Noise Level

To minimize community noise levels during takeoff, oversized engines were employed which operate at partial power $\left(V_{\text {Jet }}=2400 \mathrm{ft} . / \mathrm{sec}\right.$ and Thrust $=$ 54600 lbs./engine rather than 73550 lbs./engine at sea level static takeoff on a $77^{\circ} \mathrm{F}$ day). These engines employ variable geometry in both the turbine and the exit nozzle. Section VI-3 presents the engine performance characteristics. Takeoff profiles were evaluated which use various climb gradients.

A Trade study between climb gradient (altitude) and speed showed that as the aircraft velocity increases the noise level decreases. For this study, the runway length of $10,500 \mathrm{ft}$. dictated a liftoff velocity of $352 \mathrm{ft} . / \mathrm{sec}$. (208 knots) and the velocity at 3.5 nautical miles (21280 ft.) from brake release was $385 \mathrm{ft} . / \mathrm{sec}$. (228 knots). At the 3.5 mile point, the C_{L} is 0.42 and the corresponding L / D is 8.2 . The takeoff profile for the Reference Configuration is presented in Figure VI-5-2. At thrust cut-back the effectiveness of the jet suppressor is reduced (Figure VI-3-5) as a result of lower jet velocity (1935 ft./sec.). For this study it was assumed that the flaps could be partially retracted to 5° at 700 ft . altitude. Using this takeoff profile, the variation of effective perceived noise level (EPNL), with distance along the runway centerline and along a sideline position . 35 nautical miles (2128 ft.) from the runway centerline are presented in Figures VI-5-3 and VI-5-4 respectively. Also shown on these figures is the FAR 36 allowable noise level and the area where engine noise suppression is required. A comparison of these two figures shows that the maximum EPNL occurs at the runway centerline and not along the sideline. Figure VI-5-5 presents contour plots for specific EPNL values for $120 \mathrm{DB}, 115 \mathrm{DB}$, and 108 DB with no suppression. Figure VI-5-6 presents similar contour plots assuming engine suppression of 11.7 DB .

A noise analysis was conducted using fixed geometry turbine engines with variable geometry exit nozzles over the same flight profile at the same thrust level. With these engines the predicted EPNL was 3.0 DB higher than the variable geometry turbine engines at the FAR 36 prescribed measuring stations.

Approach Noise Level

During approach the noise level was evaluated at the FAR 36 prescribed measuring points which are 1.0 nautical mile (6080 ft.) from the 50 foot obstacle threshold point along the runway centerline and at a sideline distance of 0.25 nautical miles (1520 ft.). Figure VI-5-7 shows the 3° approach profile. During approach the trailing edge flaps t_{1}, t_{2}, t_{3}, and t_{4} were deflected to $20^{\circ}, 20^{\circ}, 20^{\circ}$, and 5° respectively. A tradeoff of aircraft aerodynamics and airframe noise level dictated the landing velocity to be $269 \mathrm{ft} . / \mathrm{sec}$. (159 knots) and a lift coefficient of 0.55 at the 1.0 nautical mile point. The aircraft landing weight is 482,000 lbs. and the L / D is 5.2 . With this 3° approach profile the EPNL at the FAR 36 prescribed measuring points were computed to be 96.6 DB on the runway centerline, and 83.7 DB on the sideline.

Airframe Noise Prediction

The airframe overall sound pressure level (OASPL) of the Reference Configuration was computed from equation 1 :

$$
\begin{equation*}
\text { OASPL }=10 \log _{10}\left[\frac{v^{6}}{h^{2}} \frac{S}{A R}\right]-29.95+S P L(F L A P+G E A R) \tag{1}
\end{equation*}
$$

This equation 1 was obtained from the Reference VI-5-4 equation shown below:

$$
0 A S P L=10 \log _{10}\left[\begin{array}{lll}
\frac{v^{4}}{h^{2}} & \frac{W}{C_{L}} & \frac{1}{A R}
\end{array}\right]-0.7
$$

To obtain Equation 1 , the ratio of W / C_{L} was replaced by $1 / 2 \rho V^{2} S$ where ρ is the sea level air density.

Equation 1 was used to determine the airframe OASPL along the runway centerline directly under the airplane. Figure VI-5-3 shows the variation of
airframe noise with axial distance along the runway centerline. At the FAR 36 measurement positions on the runway centerline (3.5 nautical miles from start of roll for takeoff and 1.0 nautical mile from 50 ft . threshold point for landing), the input values for the parameters of Equation 1 and the corresponding OASPL values are:

Parameter		Takeoff
AR	$3.5 \frac{\text { Landing }}{\text { n.mile pt. }}$	$1.0 \frac{1.62}{\text { n.mile pt. }}$
S - sq. ft.	1.62	1.62
SPL(FLAPS + GEAR)-DB	2969	9969
V - ft/sec	385 (228 knots)	269 (159 knots)
h - ft	933	369.0
OASPL - DB	105.6	107.7

From the above it can be seen that during takeoff the airframe noise level of 105.6 DB is 2.3 DB less than the FAR 36 limitation of 108 DB , whereas during landing the airframe noise of 107.4 DB is only 0.6 DB less than the FAR 36 limitation of 108 DB. During takeoff, the gear is retracted, and noise associated with 5° flaps is 2.0 DB . Comparison of the airframe noise with the engine noise is presented in Table VI-5-1.

The data employed by Lockheed (Reference VI-5-4) to correlate the airframe noise is based on high aspect ratio (AR > 6), light weight ($W<50000$ lbs.). airframes. The most significant contributor to airframe noise is the wing lift. The strength of the wing vortices are dependent on the span loading. The span loading of the Reference Configuration is $5530 \mathrm{lb} . / \mathrm{ft}$. whereas the span loading from the Lockheed aircraft data were less than $500 \mathrm{lb} . / \mathrm{ft}$. Subsequent investigations were made by Lockheed to incorporate noise data from
the C-5A which has an aspect ratio of 8.0 , a weight of 750000 lbs , and a span loading of $3370 \mathrm{lb} . / \mathrm{ft}$. From the $\mathrm{C}-5 \mathrm{~A}$ noise data the effect of aspect ratio on airframe noise is greater than shown in Equation 1. Using this new Lockheed correlation, the OASPL of the AST was found to be 125 DB during takeoff rather than 105 DB as calculated with equation 1 . It appears that the airframe noise levels obtained from equation 1 may be low. The actual airframe noise of the low aspect ratio ($A R=1.62$) AST needs to be ascertained.

VI-5

LIST OF REFERENCES

Reference No.	Title
VI-5-1	Federal Aviation Administration Department of Transportation Part 36, Noise Standards; Aircraft Type Certification.
VI-5-2	SAE AIR 876, Jet Noise Prediction, Society of Automotive Engineers Aerospace Information Report, 10 July, 1965.
VI-5-3	Noise Prediction Methods for Gas Turbine Engines, Volume I, by Noise Evaluation Staff of Flight Propulsion Division, General Electric Company, November 1964.
	LR 23640, Far Field Aerodynamic Noise Measurement Program, Lockheed California Company, 22 June 1970.

LIST OF SYMBOLS

AR	Aspect Ratio
CL	Lift Coefficient
DB	Decibels
EPNL	Effective Perceived Noise Level - Decibels
OASPL	Overall Sound Pressure Level - Decibels
PNL	Perceived Noise Level - Decibels
R	Distance
SPL	Sound Pressure Level - Decibels
SPL(flaps+gear)	Sound Pressure Level of Flaps and Landing Gear Decibels
V	Airframe Velocity - Ft/Sec
V Jet	Jet Exit Velocity at Sea Level Static - Ft/Sec

LIST OF TABLES

Table No.
Title

VI-5-1 Takeoff and Approach Noise Summary
VI-5-1

Variation of Sound Pressure Level Corrections with Frequency and Directivity Angle

VI-5-3
Typical Noise Time History

VI-5

LIST OF FIGURES

Figure No.
Title

VI-5-1	FAR 36 Noise Measurement Locations for Typical Approach and Takeoff
VI-5-2	Reference Configuration Takeoff Profile and Noise Summary VI-5-3
VI-5-4	Variation of EPNL Along Runway Centerline with Downrange Distance
VI-5-5	Variation of EPNL Along Sideline with Downrange Distance VI-5-6
VIntour Plots of Constant EPNL Values for Takeoff with	
Unsuppressed Engine	

TABLE VI-5-1

Takeoff and Approach Noise Summary

FAR 36
Measurement . FAR 36
Point•1 Measurement Maximum Required Airframe
(Runway Point 2 Engine Suppression Noise
Centerline) (Sideline) (SPL) Level (OASPL)

Takeoff
119.7
111.6
119.7
11.7
105.6
3° Approach
96.6
83.7
96.6

None
107.7

* All noise levels are in Decibels.

Above SPL Values to be Subtracted from
Maximum Passby Sound Pressure Levels.
FREQUENCY
$(H Z)$

Directivity Angle - Degrees

Typical Noise Time History During Take-off

Aircraft Axial Distance from Brake Release (ft.)	Directivity angle (Degrees)	Time (Seconds)	Perceived Noise Leve] (DB)	Tone Corrected Perceived Noise Level (DB)
5358. 3	10.8	$=30.06$.	-84.94	87.53
14967.2	15.0	-11.32	97. 87	98.39
17601.7	19.5	-6.44.	103.95	103.91
$18373 . ?$	74.4	-5.01	95.00	-93.92
19145.1	2.4. 2	-3.53	98.37	97.29
19774.1	35.0	-2.38	99.99	98.91
20110.0	49.7	-1.57	103.42	102.34
70496.0	49.0	- $=.74$	105.38	104.30.
20689.0	- 54.6	-. -30	105.76	104.68
20882.0	61.4	- 14	105.92	104.84
21075.0	67.7	-. 60	105.58	104.5u
21268.0	79.5	- 1.07	105.66	104.50
21460.9	90.6	1.55	106.69	105.61
21653.9	04.9	- 2.05	106.71	105.62
21846.9	99.6	-2.56	108.13	107.05
72039.9	104.2	- 3.09	107.98	106.90
2223?.9	$1 \mathrm{CH.7}$	-. 3.63	110.73	109.64
22425.9	113.0	- 4.18	110.44	109.36
22518.9	117.0	-4.74	113.46	112.38
23004.8	124.4	- 5.90	112.66	111.58
23390.8	130.7	-7.09	113.57	112.43
23776.8	136.1	-8.32	113.48	-112.40
24162.8	140.7	-9. 56	112.53	111.95
24741.7	145.?	-11.45	111.12	110.62
25220.7	150.6	13.38	109.78	109.34
26092.6	155.0	15.97	108.10	108.10
27057.5	159.0	-19.24	104.12	104.35
28601.4	163.?	-24.51	101.47	102.02
31303.3	167.5	. 33.81	92.38	- 93.47
39022.7	171.5	-60.50	84.90	-87.06

EPNL $=111.56 \mathrm{DB}$
Excess Ground Attenuation $=1.38 \mathrm{DB}$
Multiengine Shield Factor $=1.08$ DB

Observer Station at 21654 ft . from Brake Release and Sideline position at 2128 ft . from Runway Centerline
*NOTE: Sideline noise is measured where noise level after liftoff is greatest. **NOTE: Sideline noise is measured where noise level is greatest.

FAR 36 Noise Measurement Locations for Typical Approach and Takeoff
Figure VI-5-1

Reference Configuration Takeoff Profile and Noise Summary
Figure VI-5-2

Variation of EPNL Along Runway Centerline with Downrange Distance
Figure VI-5-3

Variation of EPNL Along Sideline with Downrange Distance

Figure VI-5-4

Figure VI-5-5 Contour Plots of Constant EPNL Values for Takeoff with Unsuppressed Engine
ω

Figure VI-5-6

> Flaps set at 20° $\begin{array}{ll}\text { [. } & \text { Point } 1 \\ \square & \text { Point } 2\end{array}$

This section is addressed to the payload/range and take-off performance characteristics of the Reference Configuration.

The Reference Configuration is analyzed for the design supersonic cruise mission and take-off performance. Following this is an analysis of alternate missions (New York to Los Angeles - New York to Paris), special missions (ranges of 1500 to $3500 \mathrm{n} . \mathrm{mi}$. in $500 \mathrm{n} . \mathrm{mi}$. increments) and an overload mission (limited by flotation requirements).

The airplane design performance objectives were a range of approximately 4000 nautical miles at 2.7 cruise Mach number with 61,030 pounds (292 passengers with baggage) payload and a take-off field length not to exceed 10,500 feet with an acceptable noise level during normal all engine take-off (FAR 36). The range performance of the Reference Configuration is based upon the fuel reserves established by FAR 121,648 modified for holding altitude. The mission profile for this study is shown on Figure VI-6-1.

The aerodynamic, power plant, and weight data that were used in the performance analysis are presented in Sections VI-1, VI-3, and VI-4.

SUMMARY

The analysis shows that noise considerations determine the engine size and subsequently the aircraft gross weight. The requirement for acceptable noise

Figure VI-6-1 - Mission Profile and Reserves
levels during take-off resulted in larger propulsion units than necessary for take-off within the prescribed field length or to fly the design mission. The design gross weight take-off mission performance analysis results are shown in Table VI-6-I and Figure VI-6-2 including an all-subsonic mission and a mixed mission, for the Reference Configuration with initial characteristics as follows: Take-off gross weight $\quad 762,000$ lbs.

Operating weight empty 351,140 lbs.
Payload (292 passengers) 61,030 lbs.
Engine-airflow
800 lbs/sec/eng.
S.L. static installed thrust on standard day 77,610 lbs/eng

Take-off Field Length Performance
FAR 25 Safety Requirements
Balanced field length on standard $+8^{\circ} \mathrm{C}$ day with 3 engines at full thrust 7500 ft .

Take-off distance on standard $+8^{\circ} \mathrm{C}$ day with all engines at full thrust 6600 ft .

FAR 36 Noise Requirements
Balanced field length part power 10500 ft . ($2400 \mathrm{ft} / \mathrm{sec}$ exhaust velocity)

The alternate mission performance results, obtained by off loading fuel, for a New York to Los Angeles and a New York to Paris mission are summarized in Table VI-6-II.

Procedures and Ground Rules

An "en route" performance computer program developed by NASA Langley Research Center was used to determine the aircraft weight and fuel required for the design range. This program computes range based on the following major inputs:

FIGURe VI-6-2 - DESign mission Performance profile
TABLE VI-6-I
PERFORMANCE SUMMARY

\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic \& \begin{tabular}{l}
Supers \\
Standard Day
\end{tabular} \& \begin{tabular}{l}
ic Cruise \\
Hot Day (Std.Day \(+8^{\circ} \mathrm{C}\))
\end{tabular} \& Subsoni Standard Day \& \[
\begin{aligned}
\& \text { Cruise } \\
\& \text { Hot Day } \\
\& \left(\text { Std. Day }+8^{\circ} \mathrm{C}\right)
\end{aligned}
\] \& *Mixed Mission

Standard Day

\hline 1. Mach No. \& 2.70 \& 2.62 \& . 95 \& . 95 \& 2.70/.95

\hline 2. Range - N. Mi. \& 4000 \& 3930 \& 3360 \& 3350 \& 2000/2820

\hline \multicolumn{6}{|l|}{3. Initial Values}

\hline a. ${ }^{2} \mathrm{~L} / \mathrm{D}$ \& 8.57 \& 8.65 \& 12.50 \& 12.50 \& 8.56/12.50

\hline b. TSFC - $1 \mathrm{bs} / \mathrm{hr} / \mathrm{lb}$ \& 1.312 \& 1.330 \& . 891 \& . 909 \& 1.310/.865

\hline c. Altitude - ft. \& 61,500 \& 60,500 \& 28,500 \& 28,500 \& 61,000/33,500

\hline \multicolumn{6}{|l|}{*NOTE: 1. The mixed mission of supersonic and subsonic is identified as a supersonic cruise to mid-point of an all supersonic cruise mission then a subsonic mission completion utilizing all reserve fuel.}

\hline \multicolumn{6}{|l|}{2. The L/D shown includes the propulsion drag shown in Section VI-1B, Figure VI-1B-15. (See also Section VI-3)}

\hline
\end{tabular}

TABLE VI-6-II
PERFORMANCE SUMMARY
ALTERNATE MISSIONS (FUEL OFF-LOADED)
New York-Los Angeles
Subsonic Cruise

96.
00889
0^{028}

19.21
009‘ 2ε
ग!7ร! ハәұวелечว
4. Initial Values
c. Altitude - ft. Figure VI-1B-15
a. ${ }^{1} / D$
b. TSFC
TSFC - lbs/hr/lb 1. The L / D shown
1.
NOTE:
${ }^{\circ}$ Desired mission profile and fuel reserve schedule
${ }^{\circ}$ Aircraft gross weight and operating weight empty
${ }^{\circ}$ Payload
${ }^{\circ}$ Aerodynamic polar
${ }^{\circ}$ Engine performance

The program also provides details of each of the mission segments such as required fuel, thrust, altitude, speed and time. The mission profile selected for this study is presented in Figure VI-6-1 and consists of the following segments:

1. A take-off fuel allowance of ten minutes taxi plus one minute at full take-off thrust, no credit for distance.
2. Climb and accelerate according to the speed schedule shown in Figure VI-6-3. The program automatically determines optimum initial cruise altitude for maximum range except when available thrust prevents the aircraft from reaching that height (climb ceiling).
3. The cruise is started at either optimum altitude or climb ceiling. The program then assumes that the range factor remains constant over the entire cruise range.
4. The program does not calculate descent but accepts estimated inputs of descent distance, time and fuel. In this study 200 n.mi. and 20 minutes were selected for the first two inputs. A fuel estimate was made based on 20 minutes idle flow at average descent altitude and speed.

Figure VI-6-3-Climb Speed Schedule

Reserve Fuel Definition

The total reserve fuel consists of the following items:

1. 7% of trip fuel
2. Fuel for a missed approach, equivalent to two minutes take-off fuel flow.
3. Fuel for a 260 n.mi. ($300 \mathrm{~s} . \mathrm{mi}$.$) flight to an alternate airport at$ optimum (subsonic) speed and altitude.
4. 30 minutes holding fuel at $15,000 \mathrm{ft}$. and optimum velocity.

Payload/Range Performance

A breakdown of the design mission details are shown in Table VI-6-III. The effects of the following parameters on the design mission and the aircraft and powerplant size were investigated:

Thrust to Weight Ratio (engine sizing)

If noise is not taken into consideration as a criterion, the minimum powerplant size on an aircraft is determined by any of the following items:
a. Take-off within a specified field length
b. Safety rules during take-off such as balanced field length and climb capability with an inoperative engine
c. Climb ceiling which could prevent the aircraft from reaching the optimum cruise altitude
d. Acceleration to desired speed, in particular through the transonic region
e. Cruise efficiency (lowest fuel consumption)
f. Deterioration of engine performance due to above normal ambient temperatures, high power extraction or airbleed from the engine (e.g. surface blowing) etc.
g. Safety regulations during landing (climb capability with an inoperative engine)

Without noise restrictions a maximum range (or minimum gross weight for a given range) was obtained for this Reference Configuration, at an installed thrust to weight ratio of approximately .32 (engine airflow $=630 \mathrm{lbs} / \mathrm{sec}$). This T/W value is defined as maximum standard day installed static take-off thrust over take-off gross weight.

However, inclusion of the noise as a parameter in the engine sizing increased the installed thrust to weight ratio to .41 , which required a powerplant with an airflow of $800 \mathrm{lbs} / \mathrm{sec} / \mathrm{eng}$.

Hot Day

Standard atmospheric conditions were specified for the design mission. The effect on the range of an ambient temperature increase to $8^{\circ} \mathrm{C}$ above standard was investigated. For a cruise Mach no. of 2.7 the higher temperature resulted in a $75 \mathrm{n} . \mathrm{mi}$. or approximately 1.9% range penalty. If limitations due to aerodynamic heating require decrease in cruise Mach number to 2.62 , the analysis showed approximately the same range reduction as at $M=2.7$.

Holding Altitude

Current (FAR) reserve fuel regulations for international flight include a requirement for 30 minutes holding at 1500 ft altitude. The effect of an
increase in this altitude to $15,000 \mathrm{ft}$ was investigated. The result showed a 46 n.mi. range increase or about a 1% gain. During the holding the airplane flies at minimum drag. The minimum drag value did not change with altitude although it occurred at a higher velocity. The 1% range extension is therefore due to a 15% reduction in fuel flow at $15,000 \mathrm{ft}$.

Type of Powerplant

The design mission performance of the Reference Configuration is based on engines with variable turbine geometry. This type of powerplant showed approximately one percent improvement in the range of the design mission compared to conventional engines.

Since the variable geometry powerplants operate more efficiently in terms of fuel consumption when power is reduced, the range gain increased to $91 / 2 \%$ for an all subsonic mission at $M=.80$. However, possible weight differences were not considered in the comparison between the two types and could negate a portion of the range difference. The major advantage of the variable geometry engine is discussed in the noise section.

All Subsonic Mission

Completely subsonic missions were performed with the Reference Configuration at crlise speeds of $M=.80$ and $M=.95$. The same reserve fuel allowance was maintained as in the design (supersonic) mission. The range results were $3220 \mathrm{n} . \mathrm{mi}$. at $M=.8$ and $3360 \mathrm{n} . \mathrm{mi}$. at $M=.95$. Details of these subsonic flights are shown in Tables VI-6-IV and VI-6-V.

The range capability of the Reference Configuration was investigated for an initially supersonic ($M=2.7$) flight that had to be continued subsonically. The selected mission profile included a supersonic distance equal one-half the design range (2000 n.mi.) and no reserves, except for 2000 lbs landing fuel. Thus it was assumed that the remaining cruise fuel plus the reserves were used for the subsonic continuation of the flight. The overall range was 4660 n.mi. for a subsonic speed of $M=.80$ and 4820 n.mi. at $M=.95$. Details of this mission are shown in Table VI-6-VI.

Take-Off

A computer program developed by LTV Hampton Technical Center was used in the study of the Reference Configuration take-off performance. This program determines the balanced field length with an inoperative engine and the normal all engine take-off distance. In addition, a time history is printed of the parameters that determine noise.

The Tentative Airworthiness Standards for supersonic Transports were followed as closely as practical in the evaluation of the study configuration take-off performance to satisfy the safety requirements. Certain regulations were not considered at this time due to the unavalability of related data at this preliminary stage of aircraft development. One of the major differences between the SST standards and the conventional aircraft safety regulations, FAR 25 , is related to the lack of a definable wing stall on most supersonic configurations. The angle of attack at which stall occurs is so large that the drag would arrest the aircraft speed and consequently cause a loss in
lift making 1 g flight unattainable before the stall attitude is reached. The flight regions that become critical instead are those where stability and/or control deteriorates and where drag starts to exceed available thrust resulting in the inability to maintain level flight.

To cover these two conditions, the tentative standards in paragraphs FAR 25.103 (B) and (C) define a "minimum demonstrated flight speed" ($V_{\text {min }}$) or a "maximum demonstrated angle of attack" and a "zero rate of climb speed" $\left(V_{z r c}\right)$. In this study the $V_{z r c}$ was found to be more critical than $V_{\min }$. The take-off performance of the study aircraft had to meet both safety and noise standards. The maximum acceptable take-off field length was set at 10,500 ft. The Reference Configuration with powerplants sized by noise considerations but with these engines at full throttle, needed approximately 7500 ft . for a balanced field length (with one engine inoperative) and 6600 ft . for an all engine take-off distance on a standard $+8^{\circ} \mathrm{C}$ day. However, for noise abatement the normal all engine take-off had to be performed at a part throttle setting corresponding to a $2400 \mathrm{ft} / \mathrm{sec}$ jet velocity and at a standard day plus $10^{\circ} \mathrm{C}$ temperature.

Various take-off and climbout profiles were flown with flap changes and power cutbacks at different altitudes. (It should be noted that present day noise regulations FAR 36 do not permit any alterations of the aircraft configuration.) Noise requirements made it necessary to utilize the available $10,500 \mathrm{ft}$. field length. This allows the aircraft to accelerate more and consequently achieve a higher L / D in the climb.

The equation for available climb gradient in unaccelerated flight is as follows: Tangent $\gamma=\frac{\text { THRUST }- \text { DRAG }}{\text { GROSS WEIGHT }}$

If the excess thrust over drag is not entirely used for climbing, the airplane will also accelerate.

Since aerodynamic lift during the climb is nearly equal gross weight, it is possible to re-arrange the above: Tangent $Y=\frac{T}{W}-\frac{1}{L / D}$

It can be seen that for a higher value of L/D a steeper climb is obtained for a given thrust or that a lower thrust is required to maintain the same climb gradient. Both effects are beneficial for noise abatement.

The Reference Configuration at 762,000 lbs. take-off gross weight and a maximum ground rotation lift coefficient of .648 (20° flaps) could lift-off at 190 kts. However, Figure VI-6-4 shows that lower C_{L} values (and corresponding higher speeds) are required to achieve maximum L/D.

Alternate Missions

Two alternate missions were analyzed to determine the effect of off-loading fuel on the performance characteristics of the Reference Configuration. The alternate missions selected were New York to Los Angeles and New York to Paris. The mission range for these are 2150 and 3158 nautical miles respectively. The New York-Los Angeles mission performance is based on a subsonic cruise . 95 Mach number while the New York to Paris is based on a supersonic cruise 2.7 Mach number. The Reference Configuration performance characteristics are shown in Tables VI-6-VII and VI-6-VIII.

Figure VI-6-4 - Take off Lift to Drag Ratio vs. Lift Coeff.

Special Missions

A spectrum of mission ranges at supersonic cruise 2.7 Mach number were analyzed for performance characteristics to provide a basis on which to establish relative DOC values. The range of these missions are from 1500 nautical miles to 3500 nautical miles at 500 nautical mile increments. The mission profile used is that shown in Figure VI-6-1 and maintaining the same fuel reserves. Fuel is then off-loaded to that necessary to attain the selected range. The performance characteristics associated with the resultant gross weights are shown in Tables VI-6-IX thru VI-6-XIII.

Overload Mission

The overload mission was analyzed based on a gross weight limited by the flotation capability of the Boeing 969-336C/750,000 pound gross weight version. The flotation of the Reference Configuration with the landing gear and wheel arrangement shown in Figure V-5 was established to be within the range of the 969-336C when at a gross weight of 870,000 pounds. No structural increases are included and it was assumed that the airplane would operate under reduced flight load conditions. The increase to 870,000 pounds was provided by adding 108,000 pounds of fuel. This would provide a range of 5220 nautical miles for the Reference Configuration. The performance characteristics associated with this mission are shown in Table VI-6-XIV.

Figure No.
Title

VI-6-1	Mission Profile and Reserves
VI-6-2	Design Mission Performance Profile
VI-6-3	Climb Speed Schedule
VI-6-4	Take-off Lift Drag Ratio vs. Lift Coefficient

Table No.
Title

VI-6-I	Performance Summary - Design Gross Weight Mission (762,000 1bs.)
VI-6-II	Performance Summary - Alternate Missions (Fuel Off-Loaded)
VI-6-III	Mission Performance - Design Supersonic Cruise Mach 2.7
VI-6-IV	Mission Performance - All Subsonic Design Mission Mach . 80
VI-6-V	Mission Performance - All Subsonic Design Mission Mach . 95
VI-6-VI	Mission Performance - Mixed Supersonic/Subsonic Mission
VI-6-VII	Mission Performance - All Subsonic Cruise ($M=.95$) New York to Los Angeles
VI-6-VIII	Mission Performance - All Supersonic Cruise ($M=2.7$) New York to Paris
VI-6-IX	Mission Performance - 1500 n.mi. Range/A/C 0ff-Loaded/All Supersonic Cruise $M=2.7$
VI-6-X	Mission Performance - 2000 n.mi. Range/A/C Off-Loaded/All Supersonic Cruise M $=2.7$
VI-6-XI	Mission Performance - 2500 n.mi. Range/A/C 0ff-Loaded/All Supersonic Cruise $M=2.7$
VI-6-XII	Mission Performance - 3000 n.mi. Range/A/C Off-Loaded/All Supersonic Cruise $M=2.7$

VI-6

LIST OF TABLES (Continued)

Table No.	Title
VI-6-XIII	Mission Performance $-3500 \mathrm{n} . \mathrm{mi}$. Range/A/C Off-Loaded/Al1 Supersonic Cruise M=2.7
VI-6-XIV	Mission Performance - All Supersonic Cruise (M=2.7) with Max. Fuel (Overloaded Gross Weight)

MISSION PERFORMANCE

MISSION: DESIGN SUPERSONIC CRUISE MACH 2.7
Model No. REFERENCE CONFIGURATION

Aircraft Characteristics

Take off gross weight - lbs. 762,000
Operating weight empty - lbs. 351,140
Payload - No. passengers 292
Lbs. - cargo 0
Total weight - lbs. 61,030
Wing area - ft^{2} - reference 9,969

- actual 10,996
S.L. static thrust per engine - lbs. 77,610

Initial thrust to weight ratio . 41
Initial wing loading - lbs/ft ${ }^{2}$ - reference 76.4

- actual 69.3

Design Mission

Take off

Operating	Δ Fuel	Δ Range	Δ Time
Weight(lbs.)	lbs.	N.Mi.	min.

Take off	762,000	9,360	0	11
Start climb	752,640	60,130	254	17
Start cruise	692,510	204,940	3,549	138
End Cruise	487,570	5,850	200	20
End descent	481,720			
Taxi-in		2,080	0	-5
Block fuel and time	282,360		191	
Trip range		4,003		

NOTES: 1. Taxi-in fuel taken out of reserves on landing at destination.
2. C.A.B. range corresponding to block time and fuel equals trip range minus traffic allowances as will be specified for supersonic aircraft.
TABLE VI-6-III
MISSION PERFORMANCE (Continued)
Model No. REFERENCE CONFIGURATION
Reserve Fuel Breakdown:

1. 7% Trip fuel 19,620
2. Missed approach 10,420
3. 260 N. Mi. to alternate airport 24,550
4. 30 min. holding at 15,000 feet 14,960
Total Reserve 69,550
Initial Cruise Conditions:
Lift Coefficient 09683
Drag Coefficient 01129
Lift/Drag 8.57
TSFC - lbs/hr/lb 1.312
Altitude - ft. 61,500

TABLE VI-6-IV

MISSION PERFORMANCE

MISSION: ALL SUBSONIC DESIGN MISSION MACH . 80
Model No. REFERENCE CONFIGURATION

Aircraft Characteristics

Take off gross weight - lbs. 762,000
Operating weight empty - lbs. 351,140
Payload - No. passengers 292
Lbs. - cargo 0
Total weight - lbs. 61,030
Wing area - ft^{2} - reference $\quad 9,969$

- actual 10,996
S.L. static thrust per engine - lbs. 77,610

Initial thrust to weight ratio . 41
Initial wing loading - 1bs/ft² - reference 76.4

- actual 69.3

Design Mission

Take off 762,000
Start climb 752,640
Start cruise 734,120
End cruise 484,220
End descent 481,710
Taxi-in
Block fuel and time
Operating Δ Fuel Δ Range Δ Time Weight(lbs.) lbs. N.Mi. min.

9,360 $0 \quad 11$
18,520 $23 \quad 4$
$249,900 \quad 3,11733$
$2,510 \quad 75 \quad 8$

Trip range
3,215
NOTES: 1. Taxi-in fuel taken out of reserves on landing at destination.
2. C.A.B. range corresponding to block time and fuel equals trip range minus traffic allowances as will be specified for supersonic aircraft.
TABLE VI-6-IV
MISSION PERFORMANCE (Continued)
Model No. REFERENCE CONFIGURATION
Reserve fuel Breakdown:

1. 7% trip fuel 19,620
2. Missed approach 10,420
3. $260 \mathrm{~N} . \mathrm{Mi}$. to alternate airport 24,540
4. 30 min . holding at 15,000 feet 14,960
Total Reserve 69,540
Initial Cruise Conditions:
Lift Coefficient 17989
Drag Coefficient 01343
Lift/Drag 13.39
TSFC - lbs/hr/lb 872
Altitude - ft. 21,500

TABLE VI-6-V

MISSION PERFORMANCE

MISSION: ALL SUBSONIC DESIGN MISSION MACH . 95

Model No. REFERENCE CONFIGURATION

Aircraft Characteristics

Take off gross weight - lbs..	762,000
Operating weight empty - lbs.	351,140
Payload - No. passengers	292
Lbs. - cargo	0
Total weight - lbs.	61,030
Wing area - ft^{2} - reference	9,969
- actual	10,996
S.L. static thrust per engine - lbs.	77,610
Initial thrust to weight ratio	.41
Initial wing loading - lbs/ft ${ }^{2}$ - reference	76.4
	- actual
	69.3

Design Mission

	Operating Weight(lbs.)	Δ Fuel lbs.	Δ Range N.Mi .	Δ Time min.
Take off	762,000			
		9,360	0	11
Start climb	752,640			
		22,810	33	5
Start cruise	729,830			
		244,980	3,231	344
End cruise	484,850			
End descent	481,710	3,140	95	10
Taxi-in		2,080	0	5
Block fuel and time		282,370		375

2. C.A.B. range corresponding to block time and fuel equals trip range minus traffic allowances as will be specified for supersonic aircraft.
TABLE VI-6-V
MISSION PERFORMANCE (Continued)
Model No. REFERENCE CONFIGURATION
Reserve Fuel Breakdown:
3. 7% trip fuel 19,620
4. Missed approach 10,420
5. $260 \mathrm{~N} . \mathrm{Mi}$. to alternate airport 24,540
6. 30 min . holding at 15,000 feet 14,960
Total Reserve 69,540
Initial Cruise Conditions:
Lift Coefficient 17200
Drag Coefficient 01376
Lift/Drag 12.50
TSFC - lbs/hr/lb 891
Altitude - ft. 28,500

TABLE VI-6-VI

MISSION PERFORMANCE

MISSION: MIXED SUPERSONIC/SUBSONIC MISSION
Model No. REFERENCE CONFIGURATION

Aircraft Characteristics

```
Take off gross weight - lbs.. 762,000
Operating weight empty - lbs. 351,140
Payload - No. passengers 292
    Lbs. - cargo 0
    Total weight - 1bs. 61,030
Wing area - ft 
    - actual 10,996
S.L. static thrust per engine - lbs. 77,610
Initial thrust to weight ratio .41
Initial wing loading - lbs/ft2 - reference 76.4
- actual 69.3
```

Design Mission

Take off	762,000	9,360	0	11
Start climb (61,000 ft.)	752,640	59,970	253	17
Start supersonic cruise (M=2.7)	692,670	109,950	1,747	68
End Supersonic cruise	582,720		100	10
End descent to subsonic cruise	579,770	2,950	10	
alt. 33,500 ft. (= start subsonic cruise at				
M=.95) End subsonic cruise End des ent to sea level	417,070	162,700	2,622	285
End mission	414,170	2,900	100	10
Block fuel and time	412,170	2,000	0	5
Trip range		349,830		406

MISSION PERFORMANCE

MISSION: ALL SUBSONIC CRUISE ($M=.95$) NEW YORK TO LOS ANGELES

Model No. REFERENCE CONFIGURATION

Aircraft Characteristics

Take off gross weight - lbs. 643,500 (fuel off loaded)
Operating weight empty - lbs. 351,140
Payload - No. passengers 292
Lbs. - cargo 0
Total weight - 1bs. 61,030
Wing area - ft^{2} - reference $\quad 9,969$

- actual 10,996
S.L. static thrust per engine - lbs. 77,610

Initial thrust to weight ratio . 48
Initial wing loading - lbs/ft ${ }^{2}$ - reference $\quad 64.6$ - actual 58.5

Design Mission

	Operating Weight(lbs.)	Δ Fuel lbs.	Δ Range N. Mi.	Δ Time min.
Take off	643,500			
		9,360	0	11
Start climb	634,140			
		18,540	29	4
Start cruise	615,600			
		138,500	2,026	220
End cruise	477,100			
		3,140	95	10
End descent	473,960			
Taxi-in		2,080	0	5
Block fuel and time		171,620		250
Trip range			2,150	
NOTES: 1. Taxi-in fuel taken out of reserves on landing at destination. 2. C.A.B. range corresponding to block time and fuel equals trip range minus traffic allowances as will be specified for supersonic aircraft.				

TABLE VI-6-VII
 MISSION PERFORMANCE (Continued)

Model No. REFERENCE CONFIGURATION
Reserve Fuel Breakdown:

1. 7% trip fuel 11,870
2. Missed approach

10,420
3. $260 \mathrm{~N} . \mathrm{Mi}$. to alternate airport 24,540
4. 30 min . holding at 15000 feet $\underline{14,960}$

Total Reserve 61,790

Initial Cruise Conditions:
Lift Coefficient . 17410
Drag Coefficient . 01392
Lift/Drag 12.51
TSFC - 1bs/hr/1b 870
Altitude - ft. 32,500

MISSION: ALL SUPERSONIC CRUISE ($M=2.7$) NEW YORK TO PARIS
Model No. REFERENCE CONFIGURATION

Aircraft Characteristics

Take off gross weight - lbs..	696,500 (fuel off loaded)
Operating weight empty - lbs.	351,140
Payload - No. passengers	292
Lbs. - cargo	0
Total weight - lbs.	61,030
Wing area - ft^{2} - reference	9,969
- actual	10,996
S.L. static thrust per engine - lbs.	77,610
Initial thrust to weight ratio	.45
Initial wing loading - lbs/ft ${ }^{2}$ - reference	69.9
	- actual
	63.3

Design Mission

	Operating Weight(lbs.)	Δ Fuel lbs.	Δ Range N. Mi.	Δ Time min.
Take off	696.500			
		9,360	0	11
Start climb	687,140			
		43,800	226	15
Start cruise	643,340			
		160,070	2,732	106
End cruise	483,270	5,850	200	20
End descent	477,420			
Taxi-in		2,080	0	5
Block fuel and time		221,160		157
Trip range			3,158	
NOTES: 1. Taxi-in fuel taken out of reserves on landing at destination. 2. C.A.B. range corresponding to block time and fuel equals trip range minus traffic allowances as will be specified for supersonic aircraft.				

TABLE VI-6-VIII
MISSION PERFORMANCE (Continued)

Model No. REFERENCE CONFIGURATION
Reserve Fuel Breakdown:

1. 7% trip fuel
2. Missed approach
$\begin{array}{ll}\text { 2. Missed approach } & 24,540 \\ \text { 3. } 260 \text { N. Mi. to alternate airport } & 14,960\end{array}$
3. 30 min . holding at 15000 feet

15,330
10;420

14,960
65,250
Total Reserve

Initial Cruise Conditions:
Lift Coefficient
.09759

Drag Coefficient
.01144

Lift/Drag
8.53

TSFC - $1 \mathrm{bs} / \mathrm{hr} / 1 \mathrm{~b}$
1.314

Altitude - ft.

TABLE VI-6-IX

MISSION PERFORMANCE

MISSION: 1500 N.MI. RANGE/A/C OFF LOADED/ALL SUPERSONIC CRUISE M=2.7

Model No. REFERENCE CONFIGURATION

Aircraft Characteristics

$$
\begin{array}{lr}
\text { Take off gross weight - lbs.. } & 584,300 \\
\text { Operating weight empty - lbs. } & 351,140 \\
\text { Payload - No. passengers } & 292 \\
\text { Lbs. - cargo } & 0 \\
\text { Total weight - lbs. } & 61,030 \\
\text { Wing area - } \mathrm{ft}^{2} \text { - reference } & 9,969 \\
\text { - actual } & 10,996 \\
\text { S.L.static thrust per engine - lbs. } & 77,610 \\
\text { Initial thrust to weight ratio } & .53 \\
\text { Initial wing loading - lbs/ft }{ }^{2} \text { - reference } & 58.6 \\
& \text { - actual } \\
& 53.1
\end{array}
$$

Design Mission

	Operating Weight(lbs.)	Δ Fuel lbs.	Δ Range N.Mi .	Δ Time min.
Take off	584,300			
		9,360	0	11
Start climb	574,940			
		42,190	184	12
Start cruise	532,750			
		56,820	1,115	43
End cruise	475,930			
End descent	470,080	5,850	200	20
Taxi-in		2,080	0	5
Block fuel and time		116,300		91
Trip range			1,499	
NOTES: 1. Taxi-in fuel taken out of reserves on landing at destination.				
2. C.A.B. range corresponding to block time and fuel equals trip range minus traffic allowances as will be specified for supersonic aircraft.				

TABLE VI-6-IX
MISSION PERFORMANCE (Continued)

Model No. REFERENCE CONFIGURATION

ReservesFuel Breakdown:

1. 7% trip fuel 7,990
2. Missed approach 10,420
3. $260 \mathrm{~N} . \mathrm{Mi}$. to alternate airport 24,540
4. 30 min . holding at 15000 feet 14,960
Total Reserve 57,910
Initial Cruise Conditions:
Lift Coefficient 09459
Drag Soefficient 01126
Lift/Drag 8.40
TSFC - lbs/hr/lb 1.315
Altitude - ft. 66,500

TABLE VI-6-X

MISSION PERFORMANCE

MISSION: 2000 N.MI. RANGE/A/C OFF LOADED/ALL SUPERSONIC CRUISE M=2.7
Model No. REFERENCE CONFIGURATION
Aircraft Characteristics
Take off gross weight - lbs. 616,000
Operating weight empty - lbs. 351,140
Payload - No. passengers 292
Lbs. - cargo 0
Total weight - lbs. 61,030
Wing area - ft^{2} - reference 10,996
S.L. static thrust per engine - lbs. 77,610
Initial thrust to weight ratio 61.8

- actual 56.0Design Mission

Operating	Δ Fuel	Δ Range	Δ Time
Weight(lbs.)	lbs.	N. Mi.	min.

Take off	616,000	9,360	0	11
Start climb	606,640	44,930	194	13
Start cruise	561,710	83,700	1,605	62
End cruise	478,010	5,850	200	20
End descent	472,160			
Taxi-in		2,080	$-145,920$	5
Block fuel and time		111		

TABLE VI-6-X

MISSION PERFORMANCE (Continued)

Model No. REFERENCE CONFIGURATION
Reserve Fuel Breakdown:

1. 7% trip fuel
10,070.
2. Missed approach

10,420
3. $260 \mathrm{~N} . \mathrm{Mi}$. to alternate airport 24,540
4. 30 min. holding at 15000 feet 14,960

Total Reserve 59,990

Initial Cruise Conditions:
Lift Coefficient . . 09508
Drag Coefficient . 01127
Lift/Drag
8.44

TSFC - 1bs/hr/lb
1.313

Altitude - ft.
65,500

MISSION PERFORMANCE

MISSION: 2500 N.MI. RANGE/A/C OFF LOADED/ALL SUPERSONIC CRUISE M=2.7
Model No. REFERENCE CONFIGURATION

Aircraft Characteristics

Take off gross weight - lbs. 649,500
Operating weight empty - lbs. 351,140
Payload - No. passengers 292
Lbs. - cargo 0
Total weight - lbs. 61,030
Wing area - ft^{2} - reference $\quad 9,969$

- actual 10,996
S.L. static thrust per engine - lbs. 77,610

Initial thrust to weight ratio .48
Initial wing loading - lbs/ft ${ }^{2}$ - reference 65.2 - actual 59.1

Design Mission

	Operating Weight(lbs.)	Δ Fuel 1bs.	Δ Range N.Mi .	Δ Time min.
Take off	649,500			
		9,360	0	11
Start climb	640,140			
		48,010	206	14
Start cruise	592,130			
		111,930	2,094	81
End cruise	480,200	5,850	200	20
End descent	474,350			
Taxi-in		2,080	0	5
Block fuel and time		177,230		131
Trip range			2,500	
NOTES: 1. Taxi-in fuel taken out of reserves on landing at destination. 2. C.A.B. range corresponding to block time and fuel equals trip range minus traffic allowances as will be specified for supersonic aircraft.				

TABLE VI-6-XI
MISSION PERFORMANCE (Continued)
Model No. REFERENCE CONFIGURATION
Reserve Fuel Breakdown:

1. 7% trip fuel 12,260
2. Missed approach 10,420
3. $260 \mathrm{~N} . \mathrm{Mi}$. to alternate airport 24,540
4. 30 min . holding at 15000 feet 14,960
Total Reserve 62,180
Initial Cruise Conditions:
Lift Coefficient 09556
Drag Coefficient 01128
Lift/Drag 8.47
TSFC - lbs/hr/lb 1.312
Altitude - ft. 64,500

MISSION PERFORMANCE

MISSION: 3000.N.MI. RANGE/A/C OFF LOADED/ALL SUPERSONIC CRUISE AT M=2.7 Mode1 No. REFERENCE CONFIGURATION

Aircraft Characteristics

$$
\begin{array}{cr}
\text { Take off gross weight - lbs. } & 684,7,00 \\
\text { Operating weight empty - lbs. } & 351,140 \\
\text { Payload - No. passengers } & 292 \\
\text { Lbs. - cargo } & 0 \\
\text { Total weight - lbs. } & 61,030 \\
\text { Wing area - } \mathrm{ft}^{2} \text { - reference } & 9,969 \\
\text { - actual } & 10,996 \\
\text { S.L. static thrust per engine - lbs. } & 77,610 \\
\text { Initial thrust to weight ratio } & .45 \\
\text { Initial wing lo ding - lbs/ft }{ }^{2} \text { - reference } & 68.7 \\
& \text { - actual } \\
& 62.3
\end{array}
$$

Design Mission

Take off		684,700	9,360	0	11.
Start climb		675,340			
			51,480	220	15
Start cruise		623,860		. 2	
			141,360	2,578	100
End cruise		482,500			
End descent	*	476,650	5,850	200	20
Taxi-in			2,080	0	5
Block fuel and time			210,130		151

Trip range
2,998
NOTES: 1. Taxi-in fuel taken out of reserves on landing at destination.
2. C.A.B. range corresponding to block time and fuel equals trip range minus traffic allowances as will be specified for supersonic aircraft.

TABLE VI-6-XII

MISSION PERFORMANCE (Continued)

Model No. REFERENCE CONFIGURATION
Reserve Fuel Breakdown:

1. 7% trip fuel 14,560
2. Missed approach . 10,420
3. 260 N. Mi. to alternate airport 24,540
4. 30 min. holding at 15000 feet $\underline{14,960}$

Total Reserve 64,480

Initial Cruise Conditions:
Lift Coefficient . 09598
Drag Coefficient . 01128
Lift/Drag 8.51
TSFC - lbs/hr/lb 1.312
Altitude - ft. 63,500
TABLE VI-6-XIII (bemmenche
MISSION PERFORMANCE
MISSION: 3500 N.MI. RANGE/A/C OFF LOADED/ALL SUPERSONIC CRUISE AT M=2.7
Model No. REFERENCE CONFIGURATION
Aircraft CharacteristicsOEse

Take off gross weight - 1 bs.Operating weight empty- Tbs.

$$
0
$$Payload - No. passengersLbs. - cargoTotal weight - lbs.Wing area - ft^{2} - reférence- actual

S.L. static thrust per engine - lbs.
Initial thrust to weight ratio
Initial wing loading \quad lbs/ ft^{2} - reference
$\cdots 2$ 722,400 35 T, 140

$$
\cdots
$$

$\therefore 50 \operatorname{met} 292$
$\therefore 50 \operatorname{met} 292$ Bubtorn nim obriaeramb beatm10,99677,6104372.565.7
Mrecen Tom

$$
\infty
$$

rbei
61,030

$$
9,969
$$

\square
....
-ban oe:\pm
Design Mission
BSiO.12.8B
Take off $00 \mathrm{e}=$ 722,400
Start climb 713,040
Start cruise 657,540
End cruise 484,970
End descent479,120
Taxi-in

	\% 8	Operating Weight(lbs.)	Δ Fuel lbs.	\triangle Range N. Mi.	Δ Time min.
Take off	00d, 53	722,400	9,360	${ }^{3} 0$	11
Start climb		713,040			
			55,500	236	16
Start cruise		657,540			
			172,570	3,066	119
End cruise		484,970	5,850	200	20
End descent		479,120			
Taxi-in			2,080	0	5
Block fuel and time			245,360		171
Trip range				3,502	

NOTES: 1. Taxi-in fuel taken out of reserves on landing at destination.2. C.A.B. range corresponding to block time and fuel equals triprange minus traffic allowances as will be specified for super-sonic aircraft.

TABLE VI-6-XIII

MISSION PERFORMANCE (Continued)

Model No. REFERENCE CONFIGURATION
Reserve Fuel Breakdown:

1. 7% trip fuel 17,030
2. Missed approach . 10,420
3. 260 N. Mi. to alternate airport 24,540
4. 30 min . holding at 15000 feet $\underline{14,960}$

Total Reserve 66,950

Initial Cruise Conditions:
Lift Coefficinnt . 09644
Drag Coefficient . 01129
Lift/Drag 8.54
TSFC - lbs/hr/lb 1.312
Altitude - ft. 62,500

MISSION PERFORMANCE

MISSION: ALL SUPERSONIC CRUISE (MACH $=2.7$) WITH MAX FUEL (OVERLOADED GROSS WEIGHT)

Model No. REFERENCE CONFIGURATION
Aircraft Characteristics
Take off gross weight - lbs. 870,000
Operating weight empty - lbs. 351,140
Payload - No. passengers 292
Lbs. - cargo 0
Total weight - lbs. 61,030
Wing area - ft^{2} - reference 9,969

- actual 10,996
S.L. static thrust per engine - lbs. 77,610
Initial thrust to weight ratio36,
Initial wing loading - 1bs/ft ${ }^{2}$ - reference 87.3
- actual 79.1

Design Mission

	Operating Weight(lbs.)	Δ Fuel lbs.	Δ Range N. Mi.	Δ Time min.
Take off	870,000			
		9,360	0	11
Start climb	860,640			
		75,940	321	22
Start cruise	784,700			
		290,070	4,699	182
End cruise	494,630			
End descent	488,780	5,850	200	20
Taxi-in		2,080	0	5
Block fuel and time		383,300		240
Trip range			5,220	
NOTES: 1. Taxi-in fuel taken out of reserves on landing at destination. 2. C.A.B. range corresponding to block time and fuel equals trip range minus traffic allowances as will be specified for supersonic aircraft.				

TABLE VI-6-XIV

MISSION PERFORMANCE (Continued)

Model No. REFERENCE CONFIGURATION
Reserve Fuel Breakdown:

1. 7% trip fuet 26,690
2. Missed approach . 10,420
3. 260 N. Mi. to alternate airport 24,540
4. 30 min. holding at 15000 feet $\underline{14,960}$

Total Reserve $\quad 76,610$

Initial Cruise Conditions:	
Lift Coefficient	.10213
Drag Coefficient	.01179
Lift/Drag	8.66
TSFC - 1bs/hr/lb	1.317
Altitude - ft.	60,000

[^0]: 2 design goal is 4000 nautical miles

