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SUMMARY 

One-dimensional small-amplitude wave motion i n  a two-phase system consist-  
ing of an inviscid gas and a cloud of suspended p a r t i c l e s  is analyzed using a 
continuum theory of suspensions. 
several  approximate solutions.  From these solutions a re  inferred some of the 
in te res t ing  propert ies  of acoustic wave motion i n  par t icu la te  suspensions. 

Laplace transform methods are used t o  obtain 

/- 

INTRODUCTION 

This paper is concerned with small-amplitude wave propagation i n  a particu- 
la te  suspension contained within a semi-infinite tube. Small-amplitude wave 
propagation i n  par t icu la te  suspensions ‘is of i n t e r e s t  because of applications 
t o  problems involving sound attenuation i n  fogs, flow visual izat ion,  nuclear 
reactor  cooling systems, and combustion i n s t a b i l i t i e s  i n  rocket motors. Most 
previous work is devoted t o  various aspects of the problem of harmonic wave 
propagation i n  a suspension of i n f i n i t e  extent.  Representative of ear ly  papers 
on t h i s  subject are  those by Sewell  ( r e f .  I), Epstein (ref.  21, and Epstein and 
Carhart (ref.  3 ) .  
i n  d e t a i l ,  a t  least i n  pr inciple .  
phase continuum models of suspension behavior. In  general, these models are 
appropriate when a representative volume element of the  suspension, which is 
small compared t.0 the cha rac t e r i s t i c  dimensions of the flow f i e l d ,  contains an 
amount of f l u i d  and an amount of pa r t i c l e s  su f f i c i en t ly  large t o  allow the  for-  
mation of meaningful averages of the properties of the two phases within the 
volume element. Then the  volume is t rea ted  as a d i f f e r e n t i a l  element ( a  point)  
and the averages are t rea ted  as continuous variables.  
approach t o  problems of small-amplitude wave propagation i n  suspensions are  the  
work of Temkin and Dobbins ( r e f .  41, Morfey ( r e f .  51, Schmitt von Sehubert (ref. 
6 ) ,  Marble and Wooten ( r e f .  71, Goldman ( r e f .  81, Mecredy and Hamilton (ref.  91, 
and the review articles by Marble ( r e f .  lo), and Rudinger ( r e f .  11). Marble 
( r e f .  10) points out t h a t  comparison of the predictions of continuum theories  
with the more de ta i led  analysis  given by Epstein and Carhart ( r e f .  3 )  shows t h a t  
the  continuum approach is completely adequate f o r  wavelengths t h a t  are iong com- 
pared t o  the  p a r t i c l e  dimensions. 

In  these papers the  flow past  each p a r t i c l e  w a s  considered 
More recent  calculat ions have employed two- 

Representative of t h i s  

In  the present paper a simple continuum theory of par t icu la te  suspension 
behavior is  applied t o  the problem of small-amplitude wave motion of a suspen- 
sion i n  a semi-infinite tube. In  contrast  t o  the  la rge  amount of work on 
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harmonic wave propagation, there  appears t o  be l i t t l e  ( i f  any) work avai lable  
on the  propagation of non-harmonic waves. In  order t o  focus a t ten t ion  on the  
basic  re laxat ion mechanism inherent i n  such two-phase flows, several  simplify- 
ing assumptions are made. the motion is one-dimensional, the f l u i d  
phase can be modeled as an inviscid gas obeying a l i n e a r  pressure-density rela- 
t ionship,  the interphase force is d i r ec t ly  proportional t o  the  vector difference 
between the  ve loc i t ies  of the  two phases ( thus,  contributions due t o  added m a s s ,  
h i s tory ,  etc. are neglected), and the  volume f rac t ion  of the  p a r t i c l e  phase is  
small. 
solved by the Laplace transform method €or a s tep  input of veloci ty  a t  the end 
of the  tube. 

These are: 

The l i n e a r  acoustic equations which follow from these assumptions are 

GOVERNING EQUATIONS 

L e t  po be the i n i t i a l  gas-phase density,  yo be the  i n i t i a l  par t ic le -  
phase density,  
M = U/a be a Mach number, and 
Marble, reference 10). If the usual acoust ic  l inear iza t ions  are made, the bal- 
ance equations f o r  m a s s  and l i nea r  momentum and t h e  equation of state t ake  the  
dimensionless forms 

a be the clean-gas speed of sound, U be the i n l e t  gas veloci ty ,  
-c be the relaxat ion t i m e  of the  suspension (see 

a p + aXu = o, a u = -a p + K(v-u), p = p (1) t t X 

f o r  the  gas phase, and 

a y + a v = o ,  ~ V = U - V  ( 2 )  t ' X  t 

f o r  the  pa r t i c l e  phase. In  equations (1) and (2)  a-cx is the  a x i a l  coordinate, 
T t  is  t i m e ,  Uu is the gas-phase veloci ty ,  Uv 
poMp is the  difference between the current and i n i t i a l  gas dens i t ies ,  yoMy is  
the difference between the  current  and i n i t i a l  particle-phase dens i t ies ,  poUaP 
i s  the difference between the  current and i n i t i a l  pressures, and K = yo/po. It 
can be seen t h a t  equations (1) and ( 2 )  are  f ive  equations involving five 
unknowns. Thus it i s  not necessary t o  consider the balance-of-energy equations 
f o r  the two phases i n  order t o  determine the mechanical behavior. This is the  
reason f o r  the second simplifying assumption discussed i n  the previous section. 

is the  particle-phase veloci ty ,  

Equations ( l a ) ,  (a), and ( IC)  can be combined t o  y ie ld  the modified wave 
equation 

- u + K(a v - atu) (3) attu - axx t 

Equations (2b) and (3 )  can be solved simultaneously f o r  u and v .  Then equa- 
t i o n  ( l a )  can be solved f o r  p and equation (2a) can be solved fo r  y.  

I t  should be noted t h a t  t he  dimensional form of the equation of state i s  
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Thus the dimensional clean-gas speed of sound is 

d(poUap)/d(poMp 1 = a2 ( 5 )  

as originally stated. Because of the way a was used in the nondimensionaliza- 
tion process it can be seen from equation (IC) that the dimensionless clean-gas 
speed of sound is 

dp/dp = 1 (6 )  

LAPLACE TRANSFORM OF SOLUTION 

The suspension is contained in a semi-infinite pipe beginning at x = 0 and 
extending along the positive x axis. The suspension is at rest until t = 0 
when a constant gas inlet velocity is suddenly created. Thus 

where the symbol A(6) is used to denote a unit step function. That is 

0 ,  E < O  

1, 5 > 0  ( 8 )  
A ( S )  = 

Taking the Laplace transforms of equations (la), (lb), (2a), (2b), (31, and (7 )  
one obtains 

sp f U' = 0, sy -t 3' = 0 

where s 
transform, and a prime denotes differentiation with respect to x. 
(9~) and (9d) can be combined to yield 

is the Laplace transform parameter, a superposed bar denotes a Laplace 
Equations 

Solving equation (11) subject to equation (10) and the condition that ;(XI 
should remain bounded for all x > 0, and substituting this solution into equa- 
tions (sa), (9b), and (9d) leads to 

- u = exp(-sbx)/s, 

' 6 = b exp(-sbx)/s, 

v = exp(-sbx)/(s(l + s ) )  

7 = b exp(-sbx)/(s(l + s ) )  (13) 
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It appears t h a t  no exact inversions of equations (13) can be obtained i n  t e r m s  
of elementary functions. In subsequent sections several  simple approximate 
inversions w i l l  be found and used t o  i l l u s t r a t e  some of the  properties of the 
solut ion t o  t h i s  problem. 

INVERSION FOR SMALL TIMES 

Approximate solutions f o r  t << 1 can be obtained by expanding various func- 
t ions  appearing i n  equation (13) f o r  s >> 1. 
and re ta in ing  the  first two terms leads t o  

Expanding b (eq. (12)) i n  t h i s  way 

b 1 + K/(2S) (14) 

If only the  first t e r m  i n  equation (14) is retained the  corresponding 
inversions of equations (13)  are (see Roberts and Kaufman, reference 12) 

u A p f A ( t  - X )  

v y 5 (1 - exp(-(t  -x) ) )A( t  - x) (15) 

Equations (15a) and (15b) represent the  solut ion f o r  a clean gas. Thus immedi- 
a t e ly  after the  beginning of the  motion,the motion is  independent of the pres- 
ence of the  pa r t i c l e s .  

If the  first two terms i n  equation (14) are retained the  corresponding 
inversions a re  found t o  be 

u exp(-~x/2)A(t  - x)  

v 2 exp( -~x /2 ) (1  - exp(-(t - x)))A(t  - x)  

Equations (16) i l l u s t r a t e  the coupling between the  motions of the two phases 
which manifests i tself  as the  t i m e  since the  beginning of the  motion increases. 
T o  i n t e rp re t  these r e s u l t s  most ea s i ly  it is useful  t o  remember t h a t  nonzero 
r e s u l t s  are obtained only f o r  t > x. Thus the  condition t << 1 implies t ha t  
equations (16) are va l id  only f o r  x << 1 and ( t -x)  << 1. Simplifying equations 
(16c) and (16d) for (t-x) << 1 leads t o  

v ~ x P ( - K x / ~ ) ( ~  - x)A(t - X) 

y i exp( -~x /2 ) ( t  - x)A(t - x)  
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Some observations based on equations (17) are as follows. For small t 
a l l  disturbances propagate with the  clean-gas wave speed 1. 
a l l  variables decrease with increasing x. 
loading K t h i s  effect can be s igni f icant .  For a given value of t-x ( the  t i m e  
since the  wave f ront  passed posi t ion x)  the degree of s p a t i a l  attenuation 
increases with x. For a given value of x, the  terms p ,  v, and y are 
increasing functions of the  t i m e  s ince passage of the  wave f ron t .  

The amplitudes of 
For la rge  values of t he  p a r t i c l e  

INVERSION FOR LARGE TIMES 

Approximate solut ions f o r  t >> 1 can be found by expanding the various 
functions appearing i n  equation (13) f o r  s << 1. 
way and re ta in ing  the  first two terms gives 

Expanding b (eq. (12)) i n  t h i s  

b I (1 t K )  - KS (18) 

Retaining only the  first term i n  equation (181, subs t i tu t ing  i n t o  equations (13), 
and invert ing y ie lds  

4 
U A(t - (l+K)%), p A (1+K)'A(t-(ltK)k) 

V 5 (1 - e X p ( - ( t - ( l t K ) 2 x ) ) ) n ( t - ( l + K ) ~ )  
4 5 

4 
(19) y 2 (1+K)  k ( 1 - e X p ( - ( t - ( 1 t K ) " X ) ) ) A ( t - ( 1 + K ) ~ X )  

I t  can be seen fro equations ( 1 9 )  t ha t  f o r  t >> 1 a l l  quant i t ies  propagate 
with wave speed l / ( l tK)  E . For values of x away from the  wave f ront  u and 
v a re  essent ia l ly  equal as are P and y. For values of x near t he  wave 
f ront  differences between the  ve loc i t ies  and dens i t ies  remain f o r  a r b i t r a r i l y  
large values of t. 
the gas veloci ty  has a value of unity f o r  a l l  x. Thus the  amplitude of u a t  
a given x More insight  i n t o  t h i s  matter w i l l  be pro- 
vided by the  r e s u l t s  obtained i n  the next section. 

I n  contrast  t o  equation (17a), equation (19a) predicts  t h a t  

must increase with t i m e .  

It w a s  attempted t o  inver t  equations (13) using the  first two terms of the  
expansion of b .  fo r  s m a l l  s (eq. ( l8)).  No inversion i n  terms of elementary 
functions could be found. 

INVERSION FOR SMALL PARTICLE LOADING 

Expanding equation (12) f o r  K << 1 and re ta in ing  the  first two terms one 
gets  

If equations (13) are inverted using only the  first t e r m  of equation ( 2 0 )  the  
r e s u l t s  are equations (15). For the  important spec ia l  case of negl igible  
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p a r t i c l e  loading equations (15) represent the  exact .solution. 
t i o n  f o r  f i n i t e  values of K two terms of equation (20) must be retained. If 
equation (20) is subst i tuted i n t o  equation (13) no simple inversion of the  
r e su l t i ng  expressions appears possible. Further s implif icat ion is achieved by 
expanding the  exponentials involving b for small K and keeping the  first two 
terms. This r e s u l t s  i n  

To f ind a correc- 

Inverting equations (21) yields  

u (1 - KX exp(-(t  - x))/2)A(t - x )  

p 

v 

(1 + ~ ( l  - (1 + x)exp(-(t - x))) /2)A(t  - x)  

(1 - exp(-(t  - X I )  - Kx(t - x>exp(-(t  - x)) /2)A( t  - x )  

These expressions appear t o  be computationally useful  f o r  s m a l l  x and a l l  t. 
Equation (22a) shows t h a t  f o r  a given x the  value of u a t  the  t i m e  of pas- 
sage of t he  wave f ron t  is 1 - Kx/2. (Note t h a t  t h i s  is the  two-term expansion 
f o r  s m a l l  K of the exp(-~x/2)  appearing i n  equation (16a)). A s  the  t i m e  t -x  
since passage of the wave f ron t  increases,the amplitude of u 
unity. Similarly it can be seen t h a t  the value of v fo r  large t-x is uni ty  
while the  values of both p and y f o r  P r g e  t-x are 1+K/2 which is the  two- 
term expansion f o r  s m a l l  K of the  ( 1 + ~ ) 2  appearing i n  equations (19b) and 
(19d). Thus the  large-time l imit ing values predicted by equations (22) are 
consistent with those predicted by equations (19). Equations (22) do not pre- 
d i c t  the  change i n  wave speed indicated by equations (19). It can be shown 
t h a t  t h i s  is due t o  the  process of expanding the arguments of the  exponentials 
appeying  i n  equations (13)  before inversion. 
(1+~)2 and unity is  s m a l l  so t h i s  i s  not a serious matter. 

increases t o  

For K << 1 the  differencebetween 

DISCUSSION OF RESULTS 

From the  three sets of approximate solut ions developed i n  the previous 

All 
For s m a l l  t i m e s  t h i s  is unity and f o r  

I t  is 

sections (eqs. (161, as?, and (22)) it i s  possible t o  put' together a f a i r l y  complete 
p ic ture  of the wave motion produced by a s t ep  veloci ty  input a t  x = 0. 
waves t r a v e l  with the s q e  wave speed. 
la rge  t i m e s  it is l/(l+~)4. The former is  cal led the  frozen wave speed. 
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t he  wave speed associated with the  clean gas. 
librium wave speed. It  i s  the  wave speed associated with wave motion i n  a gas 
having i n i t i a l  density equal t o  the  i n i t i a l  suspension density. These r e s u l t s  
are t o  be expected on physical grounds. For small t i m e s  the  motion of the gas 
(through which the  waves propagate) is independent of the  presence of the  par- 
t ic les  as indicated by equations (15) .  For  large times the  ve loc i t ies  of both 
phases are e s sen t i a l ly  equal. 
e f fec t ive  dimensionless density 1+#. The exact manner by which the  t r ans i t i on  
from the frozen t o  the equilibrium wave speed is accomplished is  not revealed 
by the approximate solut ions obtained i n  t h i s  work. 

The la t ter  is cal led the  equi- 

Thus the  suspension behaves l i k e  a gas with 

The gas veloci ty  u 
decreases t o  a minimum value a t  the wave front .  The value of u a t  each point 
behind the wave f r o n t  increases with t i m e  and eventually approaches unity. The 
pa r t i c l e  veloci ty  v and the  f luid-  and particle-density perturbations,  P and 
y respectively,  are a l so  decreasing functions of x. Their values for  all 
values of x (including x = 0 )  increase with t i m e .  F inal ly  p approaches a 
constant value throughout the region of motion while v and y approach con- 
s t a n t  values except near the wave f ront .  
veloci ty  must be transmitted t o  the  p a r t i c l e s  through the  interphase-momentum- 
t ransfep mechanism the pa r t i c l e s  i n  the  immediate v i c in i ty  of the wave f ron t  
can never qui te  catch up t o  the  gas. 

has the  prescribed value of unity a t  the  i n l e t  and 

Because the  s tep  increase i n  gas 

I t  should be pointed out t h a t  for t > 0 a par t ic le - f ree  zone e x i s t s  adja- 
cent t o  the  i n l e t .  
t h i s  region is  O ( M ) .  
numbers, and since the  speed of the wave f ront  is  0(1) , the length of the 
par t ic le - f ree  zone is negl igible  compared t o  the length of the region of motion. 
For t h i s  reason the par t ic le - f ree  zone w a s  neglected i n  t h i s  analysis.  For 
waves of f i n i t e  amplitude t h i s  could not be done. 
boundary of the par t ic le - f ree  zone would have t o  be computed as pa r t  of t he  
solution. This would grea t ly  increase the complexity of the  analysis.  

I t  can be shown t h a t  t h e  speed of the  forward boundary o f  
Since the  acoust icequat ionsare  va l id  only f o r  small Mach 

The posi t ion of the  forward 

CONCLUSION 

In t h i s  paper the  problem of small-amplitude wave propagation i n  a particu- 
la te  suspension w a s  analyzed using a continuum theory of suspensions. 
erning equations were solved approximately by the  Laplace transform method. 
Three approximate inversions w e r e  developed and f r o m  these were inferred some 
of the propert ies  of the  wave motion. 

The gov- 
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