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SUMMARY 

New  flux-corrected  transport  algorithms  are  described  for solvhg gener- 
alized  continuity  equations.  These  techniques  were  developed  by  requiring 
that  the  finite-difference  formulae  used  ensure  pos.itivity  for  an  initially 
positive  convected  quantity.  Thus FCT is  particularly  valuable for.fluid-like 
problems  with  strong  gradients  or  shocks.  Repeated  application  of  the  same 
subroutine  to  mass,  momentum,  and  energy  conservation  equations  gives a  simple 
solution  of  the  coupled  time-dependent  equations  of  ideal  compressible  fluid 
dynamics  without  introducing  an  artificial  viscosity. FCT algorithms  span 
Eulerian,  sliding-rezone,  and  Lagrangian  finite-difference  grids  in  several 
coordinate  systems.  The  latest FCT techniques  are  fully  vectorized  for 
parallel/pipeline  processing  and  are  being  used on the  Texas  Instruments  ASC 
at  NRL. 

INTRODUCTION 

This  paper  reviews  the  Flux-Correct  Transport  (FCT)  techniques  which  have 
been  developed  to  solve  the  continuity  equation 

Q Q =  - 3  - p x  (conservation form). 
bt (la> 

In  addition  to  (ia),  there  are two other  ways to  write  the  continuity  equation 
which  get  reflected  in  some  of  the  numerical  solution  techniques: 

convection  compression 
(convection  form) 

and 

region  region  boundary 
(integral  form) 

The  convective  term 1 - p ~  displayed  explicity  in  Eq.  (lb)  gives  (la-c)  its 
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intrinsically  hyperbolic  form  and  causes  really  severe  problems  numerically. 
The  compression  term - p p v  'is sometimes  absent,  as  in  the  Liouville 
Equation, in which  case  it  is  often  called  the  convection  or  the  advection 
equation. 

Continuity  equations  underlay  compressible  and  incompressible  fluid 
dynamics,  hydrodynamics,  plasma  physics  (Vlasov  Equation  and MHD moment 
equations)  and  even  quantum  mechanics.  They  appear in most  descriptions of 
dynamic  physical  systems  simply  because  they  express two of  the  more  general 
principles  in  physics,  conservation  and  causality.  Continuity  equations also 
display  the  positivity  property:  a  quantity  being  transported will  never  turn 
negative  anywhere  in  a  reasonable  flow  field  if  that  quantity  was  everwhere 
positive  to  start  with.  This  positivity  property  expresses  in  a  continuum 
way the  intrinsic  corpuscular  nature  of  matter.  Thus  matter  cannot  be re- 
moved  from  a  region  which  is  devoid  of  matter  to  begin  with.  This  duality, 
in  which  matter  obeys  both  particle  and  fluid-like  equations  on  microscopic 
and  macroscopic  scales  respectively,  has  its  ramifications  for  numerical 
solution  techniques  as  well.  The  first  three  of  the  possible  solution  tech- 
niques  listed  below  take  advantage of the  underlying  discrete  basis  of  the 
continuity  equation  while  the  last  three  aim  more  directly  at  solving  the 
partial  differential  equation  itself. 

TABLE 1 - 
Quasiparticle  Methods 
1. Collisionless  particles,  stars  and  plasmas 
2. Collisional  particles  for  fluids 

Characteristic  Methods 

- Lagrangian  Finite  Difference  Methods 

Eulerian  Finite  Difference  Methods 
1. Explicit  vs  implicit 
2. Order  vs  accuracy 

The  Finite  Element  Method 

. The  Spectral  Method 

Because  of  their  speed  and  simplicity,  finite-difference  solutions  of 
the  continuity  equation  must  always  be  considered  carefully  as  the  most  likely 
of the  six  candidate  methods  (ref 1). Quoting  three  conclusions  in  a  similar 
context  from  another  source  (ref 2): 

The  spectral  method  has  no  stability  problems  but  is  much  more 
complicated  and  slower  than  generalized  difference  methods. 

It  is  doubtful  whether  the  finite-element  method,  based  on  piece- 
wise  polynomials,  can  compete  with  the  above  methods. 
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If difference  methods  are  used,  they  should  be  at  least  fourth- 
order  accurate. 

While I agree  basically with these  remarks,  they do  not  really  encompass  the 
quasiparticle  schemes  nor  do  they  adequately  reflect  a  very  important  piece 
of  personal  experience.  Whenever  a  theory  is  to  be  tested,  or  an  algorithm, 
or  a  new  mathematical  technique,  attention  rather  quickly  turns  to  the  crucial 
yet  simple  conservation  equations  of  ideal  compressible  flow. 

Finite-difference  methods  have  solved  the  transient  Rankine-Hugoniot 
shock  problem  adequately.  For  that  matter,  various  flavors  of  quasiparticle 
methods  can  do  the  same  vical  problem  creditably  if  enough  particles  are  used. 
I do not  know of any  calculation,  even  in  one  spatial  dimension,  using  either 
a  finite-element  or  a  spectral  method  which  has  correctly  solved  for  an  ideal 
gas  compressible  shock.  Until  such  calculations  become  common  place  com- 
putationally  attractive,  finite-difference  methods  would  seem  to  have  the 
inside  track. 

IMPROVING  FINITE-DIFFERENCE  TECHNIQUES 

There  is  undoubtedly  some  merit  in  trying  to  boost  the  performance  of 
quasiparticle  methods  on  the  one  hand  and  the  basis-function  expansion  methods 
on the  other  toward  the  performance  obtained  from  finite  differences.  But 
it  is a low  risk-high  return  investment to  patch  up  the  obvious  failings  of 
the  front  runners,  finite  differences. In the  case  of  Lagrangian  finite- 
difference  methods,  the  major  outstanding  problems  arise  from  secularly  un- 
attractive  distortions of the  grid  which  wreck  calculations of interesting 
flows  quite  quickly  (refs. 3,4,5) .  In the  case  of  Eulerian  methods,  the  major 
outstanding  weakness  in  a  hugh  class  of  problems  of  real  interest  is  the  need 
for a large  artificial  damping  (numerical  diffusion)  to  fill  in  what  would 
otherwise be pits of "negative  density"  in  the  calculated  profiles.  Since  the 
"Eulerian"  positivity  problem  is  encountered  even  in  Lagrangian  calculations 
for  many  situations, it demands  the  greater  share  of  attention. 

The  Flux-Corrected  Transport  techniques  (FCT)  which  are  the  subject  of 
this  paper  have  been  designed  carefully  to  satisfy  the  following  six  require- 
ments  of  an  "ideal"  algorithm  for  solving  the  continuity  equation  (ref. 6-9). 
An  ideal  algorithm  shorlld: 

1. 

2 .  

3 -  

4. 

5-  

6 .  

Be  linearly  stable  for  all  cases  of  interest, 

Mirror  conservation  properties  of  the  physics, 

Ensure  the  positivity  property  when  appropriate, 

Be  reasonably  accurate, 

Be  computationally  efficient,  and 

Be  independent  of  specific  properties  of  one  application. 
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FCT algorithms  arise  naturally  (ref 6) as  a  result  of  trying  to  satisfy 
requirement 3. Most  work  in  the  past  has  centered  on  trying  to  increase  the 
mathematical  order  of  accuracy  of  a  scheme  while  ignoring  the  physical 
positivity  property  which  the  fluids  display  prominently. 

Consider  the  rather  general  three-point  approximation  to E q .  (la) 

where e j+1/2 S'j+1/2 bt/hxj+1/2 and 
Equation (2) is  in  finite-difference  conservative  form  with  whole  indices 
representing  cell  centers  and  half  indices  indicating  cell  interfaces.  The 
additional  numerical  diffusion  terms  with  diffusion  coefficients v 

have to  be  added  to  ensure  positivity.  The  stability  of E q .  (2 )  is  ensured, 
at  least  roughly, when 

'j 
is  the  density  at  mesh  point j. 

j+1/2 

The  upper  limit  arises from the  explicit  diffusion  time-step  condition  while 
the  lower  limit  is  the  Lax-Wendroff  damping.  Unfortunately  positivity  is 
only  ensured  linearly when 

the first-order,upstream-centered scheme  result. 

We appear  to  be  caught  between  a  rock  and  a  hard  place  here  but  the 
escape  route  is  signaled  in  the  preceding  sentence  by  the  word  "linearly". 
By  relaxing  the  linearity  implied  by E q .  ( 2 )  and  letting  the  diffusion 
coefficients  be  nonlinear  functionals  of  the  flow  velocities 

we can  hope  to  reduce  the  integrated  dissipation  below  the  rat  er  gh  stly 
limit (3b) and  yet  retain  sufficient  dissipation  near  steep  gradients  to 
ensure  positivity. A literature  is  beginning  to form  about  these  "monotonic" 
difference  schemes  (refs. 6-9, 10, 11) since  the  dilemma  of  accuracy  versus 
positivity  in  Eulerian  difference  schemes  can  be  resolved in  no  other  way. 

tj+l/ea 3 
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FLUX-CORRECTED  TRANSPORT ALGORITHMS 

The  first,  and so far the  most  developed  and  used,  of  the  monotonic 
schemes  is  Flux-Corrected  Transport.  The  calculation in Fig. 1 was performed 
by  the  first FCT Algorithm  SHASTA  (ref. 7) and  had an  error  about  four  or 
five  times  smaller  than  the  simple  linear  methods  also  shown.  The  damping 
was second  order  as  were  the  relative  phase  errors.  Figure 1 shows  a 
comparison  of  four  common  difference  schemes  solving  the  standard  square  wave 
problem.  The  effects  of  excess  numerical  damping in the  donor-cell  treatment 
(upstream-centered  first-order),  and  of  excess  dispersion in the  leap  frog 
and  Lax-Wendroff  treatments  are  clearly  visible.  Dispersion  manifests  itself 
as  a  trail  or  projection  of  oscillations  in  the  computed  solution  near  dis- 
continuities  and  sharp  gradients  of  the  "correct"  solution. 

The  basic FCT technique  shown in Figure 1 was  quickly  generalized  to 
cylindrical  and  spherical  systems,  to  Lagrangian as'well' as  fixed  Eulerian 
grids,  and  was  applied  to  a  number  of  one-, two-, and  three-dimensional 
problems.  More  recent work  has  been devoted  toward  extending  the  basic non- 
linear  flux-correction  techniques  to  convection  algorithms  other  than  SHASTA 
and  toward  discovering  an  "optimum" FCT algorithm. 

Since  the  latest FCT algorithms  have  eliminated  roughly 95% of  the 
removable  error  and  the  removable  error  that  remains  is  barely  half  of  the 
irreducible  error,  it  is  natural  to  have  turned  next  toward  optimization 
in speed,  flexibility,  and  generality  (ref. 12). In Flux-Corrected  Transport 
algorithms,  the  basic  convective  transport  algorithm  is  augmented  with  a 
strong  enough  linear  diffusion  to  ensure  positivity  at  the  expense  of  excess 
smoothing.  Since  the  amount  of  diffusion  which  has  been  added  is  known, FCT 
then  performs  a  conservative  antidiffusion  step  to  remove  the  diffusion  in 
excess  of  the  stability  limit.  However,  the  antidiffusive  fluxes  are 
effectively  multiplied  by  a  coefficient  which  ranges  from  zero  to  unity  to 
preserve  monotonicity.  The  criterion  for  choosing  the  reduction  factors  of 
the  antidiffusive  fluxes  is  that  the  antidiffused  solution will  exhibit  no  new 
maxima  or  minima  where  the  diffused  solution  had  none. 

Although  the  limit (3b) represents  the  minimum  amount  of  diffusion 
needed  for  stability, FCT algorithms  generally  use  a  larger  zero-order 
diffusion  because  it  has  been  found  that  the  correct  choice  of  the 

{ vj+l/*h within  the  monotonic & stable  range  will  reduce  convective  phase 
errors  rom  second  to  fourth  order  as  suggested  by  Kreiss.  Since  the  anti- 
diffusion  can also be chosen correspondingly larger, no  real  price is exacted 
for  this  improvement  in  phase  properties.  The  most  recent  efforts  (ref. 12) 
have  taken  advantage  of  this  fact  to  generate  minimum-operation-count FCT 
algorithms  for  Cartesian,  cylindrical,  and  spherical  coordinate  systems  with 
stationary  (Eulerian)  and  moveable  (Lagrangian)  grid  systems.  Because  these 
algorithms,  and  in  particular  the  nonlinear  flux-correction  formula,  were 
very  carefully  designed,  they  are  fully  "vectorizeable"  for  pipeline  and 
parallel  processing  and  have  been  implemented  in a l l  generality in Fortran  on 
the  Texas  Instruments  Advanced  Scientific  Computer  at  the  Naval  Research 
Laboratory.  The  execution  time  per  continuity  equation  per  grid  point  is 
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roughly 1.3 psec. A complete 2 D  ca lcu la t ion   on  a system  of 200 g r i d   p o i n t s  
X200 g r i d   p o i n t s   r e q u i r e s   r o u g h l y  2 t o  2.5 seconds  per  t imestep  depending on 
ex t r a   phys i c s  and  boundary  conditions  incorporated  in  the  problem. 

Figure 2 shows a 1 D  calculat ion  performed by the  code FASTlD on the .  ASC. 
The problem  chosen i s  t h e  "Lapidus"  problem (ref.  13) i n   c y l i n d r i c a l   c o o r d i -  
n a t e s   w i t h  y = 1.4. The diaphragm i s  o r i g i n a l l y  a t  r - 1.0 i n   F i g  2 and 
b u r s t s  a t  t - 0.0 sec. The d e n s i t y   s o l u t i o n  i s  shown a t  0.6 sec i n   F i g .  2 
j u s t   a f t e r   t he   shock   has   r eached   t he   ax i s  and  rebounded.  Three  different 
r e s o l u t i o n   c a l c u l a t i o n s  are overlapped  to  show the  convergence.  Even  the 
c a l c u l a t i o n   w i t h  50 cells i s  a t  least as accu ra t e  as t h e   o r i g i n a l  Payne  and 
Lapidus   so lu t ions   wi th  200 cells.  The wid th   o f   t he   con tac t   d i scon t inu i ty  
i s  about 3.5 cel ls  while  the  shock i s  smeared  over  only 1.5 cel ls  without  
not iceable   overshoot ing or undershoot ing.   The  calculat ions are performed  without 
any  added a r t i f i c i a l   v i s c o s i t y .  The monotonicity  control  provided by FCT 
on   each   of   the   cont inui ty   equat ions   separa te ly  i s  a d e q u a t e   t o   e n s u r e   s t a b i l i t y  
and  accuracy as shown. 

Figures  3a, b show t h e   e v o l u t i o n   o f   R a y l e i g h - T a y l o r   i n s t a b i l i t y   i n   t h e  
implosion of a laser p e l l e t   s h e l l  30 microns  thick.  The c a l c u l a t i o n  was 
performed  using  the FAST2D code  on t h e  ASC and the  thermal   conduct ivi ty  
was se t  t o   z e r o   t o  show t h e   f u l l   n o n l i n e a r   e v o l u t i o n  of t h e   i n s t a b i l i t y .  An 
Euler ian   "s l id ing- rezone"   g r id  was used  with 200 X 200 g r id   po in t s ,   S t rong  
d e t e r i o r a t i o n  of t h e   s h e l l  i s  apparent by 3.85 nsec  but  breakthrough  has  not 
yet   occurred.  The j e t t i n g  of material o f f  the  backside i s  severe enough by 
t h i s  t i m e  t h a t   g r i d   d i s t o r t i o n  would obvia te   the   usua l   Lagrangian   so lu t ion  
techniques.   Figure 3a shows the   l i nea r   phase  of t h e   i n s t a b i l i t y  and  3b  shows 
the   onse t  of the  nonlinear  regime. 
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