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SUMMARY

A new incompressible liftring-surface theory is developed for thin rectan-
gular wings. The solution requires the downwash equation to be in the form of
Cauchy-type integrals. Lan's method is employed for the chordwise integrals
since it properly accounts for the leading-edge singularity, Cauchy singularity
and Kutta condition. The Cauchy singularity in the spanwise integral is also
accounted for by using the midpoint trapezoidal rule and theory of Chebychev
polynomials. The resulting matrix equation, formed by satisfying the boundary
condition at control points, is simplier and quicker to compute than other lift-
ing surface theories. Solutions were found to converge with only a small num-
ber of control points and to compare favorably with results from other methods.

INTRODUCTION

Numerous subsonic lifting surface theories have been developed for thin
wings over the past thirty years. A comparison of three of the more prominent
numerical methods in 1968 is given in reference 1. Although all these methods
give essentially the same results, they require tedious integration techniques
and consume considerable computational time. Vortex lattice methods are sim-
pler and can be applied to more complex configurations; however, they are gen-
erally less accurate than 1lifting surface methods. This author developed a
lifting surface method for thin rectangular wings (ref. 2) which can also be
interpreted as a vortex lattice method. The present paper examines the conver-
gence of solutions and compares results with those of the NRL (National Aero-
space Laboratory, Netherlands) method given in reference 1.

SYMBOLS
A aspect ratio
b wing span
c wing chord

* This research is supported by the U. S. Army Research Office, Research Tri-
angle Park, N. C., under Grant Number DAAG29-76-G-0045.
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ac ac
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sectional 1ift coefficient
sectional drag coefficient

far-field induced-drag coefficient
near-field induced-drag coefficient

wing lift coefficient
wing pitching-moment coefficient, about leading edge
leading-edge suction parameter, see eq. (13)

parameter defined by eq. (10)

parameter defined by eq. (15)

number of spanwise control points over whole span
number of chordwise control points

Nat%onal Aerospace Laboratory, Netherlands

wing planform area

freestream velocity

non—-dimensional downwash velocity, referred to V, and positive up-
wards

chordwise coordinate measured from leading edge in direction of V.
sectional and wing aerodynamic-center locations, respectively

spanwise coordinate, positive to the right
angle of attack

non—-dimensional circulation per unit chord
circulation

transformed chordwise coordinate, see eq. (7)




¢ transformed spanwise coordinate, see eq. (8)

Subscripts:

i chordwise control point, see eq. (5)

j spanwise control point, see eq. (17)

k chordwise integration point, see eq. (4)
£ spanwise integration point, see eq. (16)
) evaluated at spanwise position ¢p = pm/M

ANALYSIS

For simplicity, the present method is developed for rectangular
wings. The downwash equation fror lifting surface theory is usually given by
one of the two following forms (ref. 3):

Y(x,5 v,) (x ~ x)
w(x,y) =7’1;J J—l—-l—z 1+ 1 ax, dy; (1)
S & - yl) /Qk - xl)2 + (v - yl)2
or
2 2
»/(x—x) + (y - y;)
_ 1 oy 1 1 1
wx,y) = - e J J 3y1 G = yl) 1+ x = Xl) dxl dyl (2)

S

Equation (1) is the form used by the three methods compared in reference 1. It
contains the Mangler-type integral due to the term (y - yl)2 in the denominator.
Equation (2), however, contains Cauchy-type integrals since the terms (y - yj)
and (x - x3) in the denominator are linear. The present method requires the
downwash to be in the form of equation (2).

In order to understand the development of the present method, con-
sider the two-dimensional problem first. Lan (ref. 4) developed an ingenious
method for thin airfoils by using the midpoint trapezoidal rule and the theory
of Chebychev polynomials to reduce the two-dimensional downwash integral
(Cauchy-type integral) to a finite sum. The remarkable accuracy of this tech-
nique is due to the following summational result:

. . -2 (1= o) |
5 s—={ 0 (1# 0,N) (3)
k=1 cos k - COs i \
N2 (i=n)
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where

- 2k - 1) '
ek —-———Tﬁ§—4ﬁ (k =1, eee, N) (4)

are the integration points and

6, =dm/n  (i=1, ..., N) (5)

are the control points (positions where the boundary condition is applied).
Note the similarity of equation (3) to the integral result

m

a8
J 1 0 (6)
[a]

cos 61 - cos O =

Lan used these equations to develop the two-dimensional downwash summation which
properly accounts for the Cauchy singularity, the leading~edge square-root sin-
gularity, and the Kutta condition at the trailing edge.

Since equation (2) contains Cauchy-type integrals, Lan's approach
will be applied to both the chordwise and spanwise integrals. First, transform
the chordwise coordinate by

2x/c =1 - cos B (7N

and the spanwise coordinate by

2y/b = - cos ¢ (8)
Then, use Multhopp's interpolation formula to represent the circulation per
unit chord by the trigonometric sum

2 Mil Mil
Y(0,¢) = = v_(8) sin nd_ sin né (9)
M p=1 P n=1 P

where the subscript 'p" refers to the spanwise position bp = pn/M and (M - 1)
represents the number of spanwise control points. Substitute equations (7),
(8), and (9) into equation (2) and consider the chordwise integral first. With

G(6,61,¢,¢1) = /Qcos 91 - cos 6)2 + Az(sin ¢1 - sin ¢)2 (10)

the chordwise integrals are

m m ,
(6,) sin 0, |1 + G w0, = op, [0 =in © €48 (11)
Yp 1’ S Y1 cos 61 -cos 6771 eV cos 61 - cos 6
) - o
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The integral on the right side can be reduced to a finite sum by the midpoint
trapezoidal rule; and equations (3) and (6) can be used to account for the
leading—edge singularity, Cauchy singularity, and Kutta condition (Yp(ﬂ) = 0) as
shown below:

i ™

[ yp(el) sin 8, G do, _ [ [yp(el) sin 0, G - yp(e) sin 6 Alcos ¢, - cos ¢|]d61
o]

cos B, - cos O

cos 61 - cos O 1

(o]

4ﬂNCSpA|cos %:—cos¢|(i=0)
+ (12)

0 {1#0)

YP (ek) sin ek Gik((b’cbl)
cos B, ~ cos 0O,
k i

~
N =1

where 0 are the chordwise integration points given by equation (4) and 64 are
the chordwise control points given by equation (5). The leading-edge suction
parameter is defined as

4CS = 1lim v _(8) sin O (13)
P >0 P

Now substitute equation (12) into equation (2) and perform the spanwise inte-
gration in a somewhat similar manner, accounting for the Cauchy singularity, to
obtain the final form of the downwash as

-2NCg  (1=0)
- _ . , i
_ me M N M-1 M-1 n sin nép cos n¢2 Kijkl sin Gk
"3 ey zzl o Z1 Yook 12y (cos g = cos ¢,) ' o
P J 0 (i#o)
where
/Qcos 6, - cos 8.)2 + Az(cos ¢, — cos ¢.)2
K =1+ k = g . (15)
ijk& cos ek - cos O,
i
The spanwise integration points are
- (22 - Dm -
dy = 252 (g=1, ..., M) (16)
and the spanwise control points are
b5 = dm/M (3 =1, ..., M-1) a7
The tangent~flow boundary condition for flat wings requires that w, = - 0.

i,3
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The N(M - 1) values of Y, i are calculated by solving the matrix equation formed
by applying equation (l4§’for i # 0 at the chordwise and spanwise control points
given by equations (5) and (17). Then after the Yp,k are calculated, the (M -1)
leading-edge suction parameters Cg: can be computed by successively applying
equation (14) with i = 0 (control point at the leading edge) at the spanwise
positions j =1, ..., M - 1. Regardless of the number (N) of chordwise control
points used, there is always a control point at the trailing edge which accounts
for the Kutta condition, and another control point at the leading edge which
gives the leading-edge suction parameter, if desired.

The sectional and wing aerodynamic characteristics may now be cal-
culated by using the midpoint trapezoidal rule to reduce the integrals to fi-

nite sums, as illustrated below:

C

ZFE 2 1 g
(c,) = = —-J Yo(x,) dx, = = Y sin 8
L7p cV_ ¢ pT1 1 N kel sk k
o
b/2 . M-1
CL = c, ¢ dy/s = o gl (le)p sin ¢p
~b/2 P
ci M-1 M—z-l 2 Mil 2
C. =—= n ' sin n¢ I' sin ¢
Dy TA 21 |p=1 P P p=1 P P
Tr2 M-1
CD,, = CL o - vl .Z CS, sin ¢j
ii i=1 ]

The spanwise loading can be made continuous by equation (9), and the chordwise
loading can also be made continuous by fitting Csj and Yi,k to the chordwise
loading functions for thin airfoil theory.

RESULTS AND DISCUSSION

For one control point (N = 1, M = 2) the present method yields

CL/a = 7mA/(1 + V1 + A2/2) and CD = CE/ﬂA
i
These results give the correct limit as A - 0, but just as Lan found for air-
foils, at least two chordwise control points are needed to get an accurate
pitching moment. Reference 2 showed that the present spanwise integration
method gives the exact classical solution to Prandtl's lifting line equation.
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Table 1 gives a detailed comparison of the present method with the
NLR method (ref. 1) for an A = 2 rectangular wing with N = 4 and M = 16. Al-
though the NLR method used 15 spanwise loading functions, 127 spanwise integra-
tion points were employed. Excellent agreement is obtained between the two
methods for the 1ift, pitching moment, aerodynamic center, far-field drag, and
spanwise 1lift distribution. The spanwise variation of section drag and aero-
dynamic center compares well except near the wing tips, and the near-field drag
values differ. As noted in reference 1, at least 8 chordwise control points
are needed to get convergence of the section drag near the wing tips and the
near—-field drag. The computational time required for the results in Table 1
was 22 minutes for the NLR method on a CDC 3300 computer, whereas the present
method required less than 10 seconds on an IBM 370/165 computer.

The effects of the number of control points on the convergence of
lift and aerodynamic center are shown in figure 1 for rectangular wings with
A 2 and 7. These results indicate that good results are obtained for the
A 7 wing with N = 2 and M = 10, whereas more chordwise and less spanwise con-
trol points are needed for the A = 2 wing. Figure 2 illustrates the conver-
gence of the near~ and far-field induced drag for the same two wings. Note
that the far-field induced drag is insensitive to both M and N for the A = 2
and A = 7 wings. On the other hand, the near-field induced drag depends on both
M and N, particularly for the A = 2 wing.

If

CONCLUDING REMARKS

The present lifting-~surface method for rectangular wings was found
to compare favorably with other methods, but it is simpler and requires smaller
computational times. The number of control points required for convergence of
the aerodynamic characteristics is dependent on both the wing aspect ratio and
the aerodynamic parameter. Convergence is fast for 1lift, pitching moment,
aerodynamic center, far-field drag, and spanwise 1lift distribution. TFor the
A = 7 wing two chordwise and about 10 spanwise control points gave good results,
whereas at least 4 chordwise and 8 spanwise control points are needed for the
A = 2 wing. The far~field induced drag is particularly insensitive to the num-
ber of control points, with good results for N = 2 and M = 4 on both wings.
Convergence is slow for the section drag and aerodynamic center near the wing
tips. The near~field drag converges more slowly than any of the other para-
meters. Other planforms are presently being investigated.
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Overall Values

TABLE 1.

A Quasi-Vortex Lattice Method in Thin Wing Theory.

RESULTS FOR RECTANGULAR PLANFORM, A = 2

Aerodynamics of Wings and Bodies.

Present NLR
(ref. 1)
N=4, M=16 | N=4, M=16
CL/a 2.4732 2.4744
—CM/G 0.5187 0.5182
X /cC 0.2097 0.2094
ac
2
ﬂACD,/CL 1.0007 1.0007
i
TAC /C2 0.9951 1.0108
D..” L
ii
Values of c /CL
2y/b Present NLR
0 1.2543 1.2543
0.1951 1.2331 1.2331
0.3827 1.1692 1.1692
0.5556 1.0625 1.0625
0.7071 0.9137 0.9137
0.8315 0.7257 0.7257
0.9239 0.5045 0.5044
0.9808 0.2588 0.2587

2
Values of cd/CL
2y/b Present NLR

0 0.1847 0.1848
0.1951 0.1832 0.1832
0.3827 0.1784 0.1781
0.5556 0.1693 0.1686
0.7071 0.1548 0.1541
0.8315 0.1331 0.1353
! 0.9239 0.0988 0.1131
0.9808 0.0394 0.0770

Values of x /e

ac
2v/b Present NLR

0 0.2200 0.2199
0.1951 0.2187 0.2187
0.3827 0.2150 0.2149
0.5556 0.2087 0.2085
0.7071 0.1999 0.1996
0.8315 0.1896 0.1886
0.9239 0.1798 0.1773
0.9808 0.1731 0.1685

J. Afr-
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Figure l.- Convergence of 1ift and aerodynamic center on rectangular
wings. A = 2 and 7.
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Figure 2.- Convergence of near- and far-field induced drag on rec-
tangular wings. A = 2 and 7.
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