IMPROVED COMPUTATIONAL TREATMENT OF TRANSONIC FLOW
ABOUT SWEPT WINGS

*
W. F. Ballhaus , F. R. BaileyT, and J. Frick*
NASA Ames Research Center

INTRODUCTION

Transonic small-disturbance theory is attractive in practical engineering
design and analysis primarily because of the flexibility it offers in the treat-
ment of boundary conditions. The theory can provide an understanding of the
physics of complex, three—dimensional transonic flows, without the need of
complicating features such as airfoil surface-oriented coordinate transformations,
which are generally used in less approximate theories. However, as with any
other asymptotic theory, problems can arise when the theory is applied to cases
that differ from the assumptions under which it is derived.

Relaxation solutions to classical three-dimensional small-disturbance (CSD)
theory for transonic flow about lifting swept wings were first reported in
references 1 and 2. A deficiency in the treatment of wings with moderate-to-
large sweep angles soon became apparent. For such wings, the CSD theory was
found to be a poor approximation to the full potential equation in regions of
the flow field that are essentially two-dimensional in a plane normal to the
sweep direction. This was pointed out in reference 3, which emphasized
determination of the effect of this deficiency on the capture of embedded
shock waves in terms of (1) the conditions under which shock waves can exist
and (2) the relations they must satisfy when they do exist. A modified small-
disturbance (MSD) equation, derived by retaining two previously neglected terms,
was proposed and shown to be a consistent approximation to the full potential
equation over a wider range of sweep angles. The purpose of this paper is to
demonstrate the important effect of these extra terms by comparing CSD, MSD,
and experimental wing surface pressures.

THE EXISTENCE OF SHOCK WAVES ON AN INFINITE ASPECT
RATIO SWEPT WING

Consider an infinite aspect ratio wing with sweep angle A. TFor a vertical
shock wave to exist, the flow must be supercritical in a direction normal to
the sweep. Since the derivatives of all flow quantities with respect to the
span direction are zero, it can be shown that ¢y + ¢4 tan A = 0, where
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¢ and ¢X are perturbation velocities parallel to the wing plane in the free-
sgreamrnormal and free-stream directions, respectively. The condition from the
full potential formulation for sonic flow normal to the sweep direction is

¢x*(X) = —cos? A [i —‘V& -3 i 1 (1 - (M&f cos? K)—lil (L)

where the velocity in the free-stream direction is given by Um(l + ¢X), and
the asterisk denotes critical (sonic) conditions in a direction normal to the
shock. A shock with sweep A can exist whenever ¢ *(}) < b < (¢ )MAX’ where
(¢X)MAX corresponds to zero sound speed. x X

For classical small-disturbance theory, the governing equation written in
conservation form is

' 2 (y+1) ,n , 2 _
[(1 -u2) ¢ - ¢X]X 0, + (4, =0 (2)
and the equivalent expression for (1) is
. sec? ) - M;)oz
65N = ————— (3)
(y + 1) M

The exponent n will be specified subsequently. Equations (1) and (3) are
compared in figure 1. Note the increasing disparity as the sweep increases. At
other than small sweep angles, the CSD equation does not permit the existence of
shocks for values of ¢, for which they can exist according to the full poten-
tial equation.

This situation can be improved by the use of the MSD equation (ref. 3),
written here in conservation form

M2 fy +1 n o 1. P, 2
[(1 e - (L3 )Mm 0,2 + 3¢y - ¢y]x “
_ _ p _
oy - r-1ned N BRI

The corresponding sonic condition, also plotted in figure 1, is

. sec?)\ - sz
¢_"(N) = - (3)
* (v + DM+ (v + DM tan® A

The MSD equation satisfies two-dimensional sweep theoryj; i.e., it is as consis-
tent with the full potential equation as the two-dimensional transonic small
disturbance theory taken in a plane normal to the sweep. The approximation
improves as Mh = M_ cos A approaches unity.

Values of n,p 1in equation (4) can be selected to improve the approxima-
tion for values of M that are not close to unity. For example, n,p, can be
determined, for a givgn M _, to better approximate either the full potential
¢X*(A) (the shock existence condition) or its shock Jump condition. This is
illustrated in figure 1, where equation (5) is plotted for two sets of n and p:
(1) n = 1.75, p = 2, used for the calculations presented in this paper,

(2) n = 1.558, p = -0.162, for which the MSD and full potential ¢Xx(A) agree
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very well for 0° < A < 50°. We have not yet computed wing surface pressures for
this set of values. Other MSD equations of the same form but with different
coefficients have recently been proposed, such as the NLR equation (ref. 5);

* . . . . .
¢X (A) for this equation is also plotted in figure 1.

MODIFICATIONS TO THE CLASSICAL SMALL-DISTURBANCE PROCEDURE
AND DIFFERENCING TECHNIQUES FOR THE SUPERSONIC REGION

Use of an improved form of the governing equation does not, in itself,
guarantee that shock waves will be properly captured by the computational method.
The finite difference scheme used to solve the equation must: (1) enforce shock
conditions consistent with the governing equation (this is guaranteed, in the
limit of vanishing mesh spacing, by differencing the equation in conservation
form), (2) be adaptable to a stable relaxation algorithm, and (3) avoid excessive
dispersive or dissipative distortion of the shock profile.

In transonic flow relaxation methods, the mixed subsonic-supersonic charac-
ter of the flow field is accounted for by the use of central differencing in sub-
sonic regions and upwind differencing in supersonic regions. For the CSD equa-
tion the x-coordinate is the axis of the characteristic cone in supersonic
regions. Thus, upwind differencing of the x derivatives and central differ-
encing of the y and z derivatives leads to a numerical domain of dependence
that always includes the mathematical domain of dependence; consequently, a
necessary condition for stability is maintained. However, the characteristic
cone axis for the MSD equation lies in a direction that corresponds to the
local flow direction wvector, which generally is not coincident with the
x—direction. Differencing the MSD equation in supersonic regions in the same
manner as the CSD equation can violate the domain of dependence restriction,
thereby producing instabilities. We have investigated five supersonic difference
schemes for modified equations in an attempt to find one with suitable stabil-
ity and shock capturing properties. As in reéference 3, only additional terms
in the x and y directions are retained.

Scheme 1

In this scheme the CSD terms in the MSD equation are differenced in the
same manner as for the CSD equation; the remaining terms are approximated by
central differences. Thus, no account is taken of the local orientation of the
stream direction vector. This procedure has the advantage that the equation can
easily be differenced in conservation form. However, convergence. properties
of the relaxation process were found to be relatively poor. Furthermore, large
overshoots at shock waves were observed in some cases.

Scheme 2

The principal part of equation (4) can be expressed in the canonical form
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(3.2 - q2)¢)SS + azd)nn + a2'q)ZZ =0 (6)

where q and a are particle and sound speeds, and s and n are the local stream
and stream-normal directions in the x-y plane. According to Jameson's (noncon-
servative) rotated differencing procedure (ref. 6), the byxs Pxys @ compo-
nents of ¢ and ¢nn should be upwind and central differenced, respectively, to
maintain proper domains of dependence. An exact rotation of the MSD equation is
unwieldy, so only an approximate rotation, such as the one in reference 5, is
used for Scheme 2. Neglecting products of perturbation velocities gives for the

terms in equation (6) (with n = p = 2)

(a2 - ¢®)/a 2 =1-M2 - (v + l)MooquX (7a)
Pog = Pux T 2¢y¢xy (7b)

az/am2 =1 - (y - l)Moozcbx (7¢)

b = _2¢y¢xy + ¢yy (7d)

Substituting equations (7) in equation (6) and again neglecting products of per-
turbation velocities gives the MSD equation in the split form

L-w2-Grome o, +2a-1m200 -208 +[1-G-Dul2e Jo +s,, =0
(8

where the underlined terms are upwind differenced in supersonic regions, defined
approximately by [l - Mm2 - (y + 1)M®2¢XJ < 0. The conservation form of equation

(8) is

+1) 2, 2 w2 2]
[(1—Mm2)¢x— 5o M 20 2+ (1- M )¢y y

| PG, 2] 2 [ = (v = 2 -
{[ e IR L R W
Equation (9) is equivalent to the splitting given in reference-S. The conver-

gence properties of this scheme were found to be even worse than those of Scheme
1, and no computed results from either of these schemes are presented in this

report.

Scheme 3
This scheme is also an approximate rotation of the MSD equation. In this

case, however, the term -2(y + l)Mm2¢x¢y¢xy is not neglected, since 1 - Moo2
and (y + l)Mm2¢X can be of the same order. Thus, the approximation

a2 -9%) _[[_-pm2- 2
¢ = [1 M_ (v + 1)M_ ¢x] [¢XX + 2¢y¢xy] (10)
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is used. Note that this term, in conjunction with

(a2/aw2)¢nn

-2 + - - 1M 2

bybyy * (L= (v = DM 20 00
is not consistent with the MSD equation. However, this new splitting can be
applied as follows. By defining the central difference approximation for the
MSD equation (4) as L(¢) = 0, one can write the rotated equation

L($) + J($) - J($) =0 (11)

where J and J are upwind and central difference approximations to equation
(10), respectively. TUnfortunately, equation (1l1) cannot be expressed in conser-
vation form, and, for the computations presented in the next section, J from
equation (10) was expressed in the form

3@ = fa-wpe, - 5 Puze + - mDe ] - 20 rmaZy 00, (12

Hence, the complete equation is differenced conservatively except for the under-
lined term. The ¢ part of this term in J(¢) was upwind differenced in
both x and y. The other term in equation (12) was upwind differenced only in
X. Scheme 3 improved convergence and reduced shock overshoots relative to
Scheme 1. Also, improved capture of weak swept shocks was observed, although
overshoots occurred for stronger shocks in some cases.

Scheme 4

A less approximate and consistent (in the sense of Scheme 2) rotation can
be accomplished by considering a second modified small-disturbance equation in
the quasi~-linear form

M2 — 2 - 2 _ _ 2 + =
[ -2 - oo 2e e, -, byt 0, L= (oo o, v, <0
(13)
Note that the coefficient of ¢ is precisely that of the full potential equa-

tion and cannot be put into conservation form. In this scheme the rotation
angle is approximated by

¢2
.2 - y
sin< © 1—1—55—
X
cos? 6 =1 _ (14)
1+ 909
sin 6 cos 6 = — 2 F
1 +'2¢x
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resulting in the approximations
2(1 + ¢X)
bss = P T T 20, Hyluy
and
=2(1L + ¢X)
fan =TT 4 20, Oxlxy T fyy

Thus, the split equation becomes

(1+9¢)
1-M2-(v+DM 20 [lo. +2 =52 ¢ 0
o Y o Tx )] xx (l'*2¢x) y Xy

, 2(1+4)
+[1 - (y-1M ¢X] by ——(mx_)‘by‘ﬁxy +94,,70 (15

The less approximate trigonometric forms in equation (14) are necessary for’
equation (15) to be consistent with equation (13). Since the mathematics
involved with equation (15) begins to approach that of the full potential
equation in the =x-y plane, this procedure was not tested but rather was
abandoned in favor of Scheme 5.

Scheme 5

The MSD equation was modified to include all x-y derivitives in the full
potential equation; the only 2z derivative retained was ¢,,. The equation
was solved using Jameson's rotated differencing procedure, and Jameson's rules
for constructing a stable relaxation algorithm were rigidly followed (see
ref. 6 and appendices B and C of ref. 7). The relaxation process converged
more rapidly than for the other schemes, and no shock overshoots were observed.
However, the scheme is nonconservative and highly dissipative and tended to
"smear' supersonic-—to-supersonic shock waves.

The differencing in all schemes is complicated by the use of a transform-
ation that maps the wing planform into a rectangle in the computational domain
(refs. 1, 2, 4, 8). To "empirically correct'" the (supersonic-to-subsonic)
shock jumps for viscosity and thus improve the agreement in comparisons with
experiment (refs. 3, 4, 8), the shock point operator was not used in any of
the computations in this report.

CSD AND MSD COMPUTATIONS FOR THE ROCKWELL HiMAT RPRV

An example that demonstrates the usefulness of small-disturbance theory
and illustrates the effect of the extra terms in the MSD equation is provided
by computations for the HiMAT RPRV (highly maneuverable aircraft technology,
remotely piloted research vehicle). A three view of the original HiMAT
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configuration is shown in figure 2. At the maneuver design point for this con-
figuration, the drag exceeded the design goal by several hundred counts. It
was decided that the design goal could not be achieved, within the specified
budget and calendar time constraints, by modifying the configuration using the
traditional experimental "cut and file'" approach. Rockwell therefore adopted
and developed the following integrated design procedure: (1) establish base-
line comparisons of experimental and computed surface pressures obtained using
the Bailey-Ballhaus Transonic Wing Code (CSD), (2) "cut and file" computation-
ally (rather than experimentally), and (3) verify experimentally.

A sample base-line comparison of CSD and experimental results is shown in
figure 3. (The canard was omitted in both the experiment and the calculatiomns.)
The agreement at mid-semi-span is satisfactory. However, in the outboard region,
where the flow is nearly two-dimensional in a plane normal to the sweep direc-—
tion, the CSD code performed poorly. Consequently, the inboard 70 percent of
the semi-span, where the flow was highly three-dimensional, was redesigned
using the Bailey-Ballhaus code. The outboard 30 percent was analyzed and
modified using the Garabedian-Korn two-dimensional program and sweep theory.

The redesign weakened and swept embedded shock waves, reducing the extent of
flow separation and reducing the drag to within a few counts of the design goal.

The HiMAT example pointed out the need for the extra terms in the gov-
erning equation for swept wing configurations. These terms were subsequently
added; computed results using Schemes 3 and 5 are compared with the CSD and
experimental results in figure 3. Results computed using Scheme 1 were very
similar to those of Scheme 3 except the shock overshoot was greater. The
more dissipative Scheme 5 shows no such overshoot.

THE DOUBLE SHOCK CONFIGURATION ON THE ONERA M-6 WING

Figure 4 shows a planform view of the ONERA M-6 wing along with the double
shock configuration that occurs for M_ = 0.84, o = 3°. Within the supersonic
region there is a swept (35°), supersonic-to-supersonic shock wave, sometimes
referred to as a "conical shock." Further downstream there is a less highly
swept shock wave that terminates the supersonic region. The two shocks inter-—
sect to form a strong, unswept shock near the tip.

Computed CSD and experimental wing surface pressures for this condition
were compared in reference 8. Satisfactory agreement was obtained except for
the failure of the computations to resolve the relatively weak conical shock.
It was mentioned that the use of the MSD equation should correct this deficiency.
CSD and MSD solutions have been computed on a grid with points clustered in the
vicinity of the conical shock. The results, compared with ONERA experimental
data, are shown in figure 5. Section pressures for the MSD equation (Scheme 3)
indicate the existence of a conical shock; those for the CSD equation do not.
MSD results are also compared (fig. 6) with fine grid computations run by Mr.
Ray Hicks of NASA Ames Research Center using the new full potential wing code
written by Jameson (ref. 6). The Jameson code is based on the nonconservative
rotated difference scheme; the conical shock is badly smeared at n = 0.75 and
is totally smeared at n = 0.8. Scheme 5, which also uses the full potential
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formulation with the nonconservative rotated difference scheme (for the x and

y derivatives), produced the same smearing of the conical shock. Scheme 1 prop-
erly captured the conical shock but produced a large overshoot at the head of

the downstream shock.

CONCLUDING REMARKS

Comparisons of computed and experimental surface pressures for the HiMAT
wing (fig. 3b) and the ONERA M-6 wing (fig. 5) illustrate the importance of
retaining additional terms in the governing equations, as suggested in refer-
ence 3. Inclusion of these terms permitted the capture of shock waves for
both configurations that had been observed experimentally, but were not resolved
by the CSD theory. Five schemes for differencing the small disturbance equa-
tion, modified with additional terms, have been discussed. It was determined
from numerical tests that Scheme 3 performed best in treating cases with mul-
tiple embedded shock waves. Scheme 5 demonstrated the best convergence prop-
erties and produced results nearly indistinguishable (except at the leading
edge) from those obtained from Jameson's code (ref. 6). However, because of
its nonconservative and dissipative properties, this scheme gives relatively
poor resolution of the conical shock wave on the ONERA M-6 wing.
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— —— MSD (n=1.75, p=2}, (eq. 5)
——-— NLR (ref, 5)
——— MSD (n=1.558, p=-0.162), {eq. 5)

CSD {n=1.75)~ /

(Bx)max
(eq. 3)

FULL POTENTIAL
(eq. 1)
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Figure 1.- Shock existence condition
% .
by < Oy < (dJY)“ X] as a function
of sweep angle.

Figure 2.- Hilf{AT RPRV three-view.

o) ROCKWELL EXPERIMENT
—— CSD "
— —— MSD (SCHEME 3)

,0lL ~ —— MODIFIED MSD
(SCHEME 5)

“CONICAL SHOCK

Figure 3.~ Surface pressure coefficients

Figure 4.~ Planform view of the
on the HiMAT RPRV, M_=0.9, o=5°.

ONERA M~6 wing showing -double
(a) 55 percent semi-span station. shock configuration for

M = 0.84, a = 3°.
(b) 85 percent semi-span station.
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r T OO ONERA EXPERIMENT (ref 9)
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Figure 5.- Computed and experimental surface pressures for the
ONERA M-6 wing, M_ = 0.84, o = 3°,
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Figure 6.- Computed and experimental surface pressures for the
ONERA M-6 wing, M_ = 0.84, o = 3°.
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