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SUMMARY

Supercritical wing technology is expected to have a signifi-
cant influence on the next generation of commercial aircraft.
Computational fluid dynamics is playing a central role in the
development of new supercritical wing sections. One of the prin-
cipal tools is a fast and reliable code that simulates two-
dimensional wind tunnel data for transonic flow at high Reynolds
numbers. This is used widely by industry to assess drag creep and
drag rise. Codes for the design of shockless airfoils by the
hodograph method have not been so well received because they
usually require a lot of trial and error. However, a more advanc-—
ed mathematical approach makes it possible to assign the pressure
as a function of the arc length and then obtain a shockless air-
foil that nearly achieves the given distribution of pressure.
This tool should enable engineers to design families of transonic
airfoils more easily both for airplane wings and for compressor
blades in cascade.

INTRODUCTION

There are plans to use the supercritical wing on the next
generation of commercial aircraft so as to economize on fuel
consumption by reducing drag. Computer codes have served well in
meeting the consequent demand for new wing sections. One of the
most widely adopted codes was developed at the Courant Institute
to simulate two-dimensional transonic flow over an airfoil at high
Reynolds numbers (ref.l). This work is an example of the possibil-
ity of replacing wind tunnel tests by computational fluid
dynamics. Another approach to the supercritical wing is through
shockless airfoils. Here a novel boundary value problem in the
hodograph plane will be discussed that enables one to design a
shockless airfoil so that its pressure distribution very nearly
takes on data that have been prescribed. An advanced design code
of this kind has been written recently by David Korn and is turning
out to be so successful that it may ultimately gain the same
acceptance as the better established analysis code.

*Work supported by NASA under Grants NGR 33-016-167 and
NGR 33-016-201 and by ERDA under Contract AT(11-1)-3077.
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Physically realistic transonic flow computations can be based
on a potential equation that presupposes conservation of entropy
across shock waves, but permits a jump in the normal component of
momentum. However, to treat either the problem of design or of
analysis for transonic airfoils in a satisfactory way from the
engineering point of view, it is necessary to take into account
the effect of the turbulent boundary layer. The simplest proce-
dure is to calculate the displacement thickness of the boundary
layer from the inviscid pressure distribution by a momentum inte-
gral method of Nash and Macdonald (ref.2). For analysis one adds
the displacement thickness to the profile at each cycle of an
iterative scheme determining the flow. In the case of design a
corresponding quantity is subtracted from the airfoil coordinates,
which therefore have to be provided with a slightly open trailing
edge to begin with.

It is important to eliminate separation entirely in the prob-
lem of design if there is to be no loss of 1lift in practice. This
can be accomplished by imposing a pressure distribution at the
rear of the upper surface that just avoids separation according to
a criterion of Stratford (ref. 3). The boundary layer correction
has been found to give satisfactory results even when its imple-
mentation only involves a primitive model of the wake in which
pressure forces balance across a parallel pair of trailing stream
lines. Extensive wind tunnel tests from laboratories all over
the world confirm that the analysis code agrees well with experi-
mental data when the boundary layer correction is made. Prelimin-
ary test data on a cascade airfoil that was heavily aft-loaded
also inspire confidence in the concept of using a Stratford pres-
sure distribution to avoid loss of lift in design by the hodograph
method.

The transonic flow codes developed at the Courant Institute
have been distributed to industry by the Langley Research Center.
In the future they will also become available through the Argonne
Code Center of the Argonne National Laboratory.

THE METHOD OF COMPLEX CHARACTERISTICS

The partial differential equations for the velocity potential
¢ and stream function y-of two-dimensional irrotational flow of a
compressible fluid can be written in terms of characteristic
coordinates £ and n in tke canonical form

6y = A4y /0 0, = -i/1-M%_ /o,

where the local Mach number M and the density p are functions of
the speed g defined by Bernoulli's law. A fast and flexible
numerical scheme for the construction of smooth transonic flows in
the hodograph plane has been developed by continuing these equa-
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tions analytically into the domain of complex values of the two

independent variables £ and n (ref. 4). The coordinates § and n
can be specified in terms of the speed g and the flow angle 6 by
the formulas

log £(£) = f y1-M2 9% - ie , log £(n) = f /1-M2 9% + i6 ,

where f is any complex analytic function. Prescription of a sec-
ond arbitrary analytic function g serves to determine ¢ and ¢y as
solutions of the characteristic initial wvalue problem

P(Emg) = g(g) , v(Eg/m) = gl(m) ,

where £57 = np is a fixed point in the complex plane. With these
0 0

conventions it turns out that Vy(£,n) = $(n,&), whence for sub-
sonic flow the real hodograph plane corresponds to points in the
complex domain where & = 1.

Consider the nonlinear boundary value problem of designing
an airfoil on which the speed g has been assigned as a function
of the arc length s. To construct a solution it is helpful to
view f as a function mapping the region of flow onto the unit
circle |g| < 1. There both log £ and g have natural expansions
as power series in £ after appropriate singularities accounting
for the flow at infinity have been subtracted off. The coeffici-
ents of truncations of these series can be determined by inter-
polating to meet boundary conditions on q and Yy at equally
spaced points of the circumference [£| = 1. Such a numerical
solution is easily calculated because the matrix of the system of
linear equations for the coefficients is well conditioned. This
analytical procedure has the advantage that its formulation can
be extended to the case of transonic flow so as to yield a shock-
less airfoil nearly fitting the prescribed data even when an
exact solution. of the physical problem does not exist.

To calculate transonic flows by the method that has been
proposed, it is necessary to circumvent the sonic locus M = 1,
which becomes a singularity of the partial differential equations
for ¢ and ¥ in canonical form. In the plane & = n this locus _
separates the region of subsonic flow from a domain where Y(£&,Z)
is no longer real. 1In the latter domain it is necessary to
extend in some empirical fashion the relationship between ¢ and
s that is imposed by assigning g as a function of s. A formula-
tion of the boundary conditions that applies to both the subsonic
and the supersonic flow regimes is given by the formulas

Re {log £(£)} = h , Re {¢(£,8)} + k Im {Y(§,8)} = 0
on |&£| = 1, where k is a real constant and h is a function of

1351



Re {$(£,E)} obtained from the known relationships among s, g and
¢. The nonlinearity of the problem makes it necessary to iterate
on this relationship in finding a numerical solution.

Empirical data on the condition number of the matrix for the
linear equations determining the power series coefficients of the
analytic function g indicate that the boundary value problem for
¢ that has been formulated is well posed even in the transonic
case. In contrast with the Tricomi problem, boundary values are
assigned around the whole circumference of the unit circle. The
success of the procedure can be attributed to the fact that data
are assigned in a suitable complex extension of the real plane.

In general limiting lines may appear in the physical plane,
but it has been found that these can be suppressed by appropriate
selection of the rules defining the function h and the real para-
meter k that occur in the specification of the boundary condi-
tions. Thus a tool becomes available for the construction of
supercritical wing sections from their pressure distributions.
Figure 1 shows an example of a shockless airfoil that was obtained
this way, together with its Mach lines. Observe that the input
pressure coefficient Cp differs somewhat from the values
calculated as output of the flow in the supersonic zone, which is
rather large. The data that were assigned are based on a modifi-
cation of the experimental pressure distribution on Whitcomb's
original supercritical wing (ref. 5) shown in Figure 2.

The design code has been written to include the case of tran-
sonic airfoils in cascade. This model seems to offer consider-
able promise for improvement in the efficiency of certain stages
of high speed compressors. However, to handle cascades of high
solidity with adequate resolution it is desirable to replace a
conformal mapping onto the unit circle [£| < 1 by the mapping
onto an ellipse, where the Tchebycheff polynomials become prefer-
able to powers of £ for expansion of the analytic functions
log £ and g. Likewise, to achieve adequate resolution at the
trailing edge in cases of heavy aft-loading it is helpful to
insert a special term at the tail in the representation of the map
function £f.

The new code represents a major advance over what was
achieved in earlier versions, whose use required excessive trial
and error (ref. 4). A typical run takes about six minutes on the
CDC 6600 computer. Closure of the airfoil is readily attained by
adjusting the pressure at the trailing edge and the relative
lengths of arc over the upper and lower surfaces bketween the
stagnation point and the trailing edge. A general principle to
be observed when using shockless airfoils to design supercritical
wing sections 1is that drag creep can be reduced by diminishing the
size of the supersonic zone of flow, especially toward the rear of
the profile. 1In practice the best way to assess the performance
of a new design is to run it through the analysis code, which will
be discussed next.
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ESTIMATION OF THE DRAG

Analysis of the transonic flow past an airfoil can be based
on a partial differential equation for the velocity potential ¢.
Weak solutions modelling shock waves are calculated by adding
artificial viscosity. This can be accomplished with a full con-
servation form (FCF) of the equation, but a simpler version not
in conservation form (NCF) is sometimes more useful (ref. 1). To
handle the boundary conditions it is convenient to map the region
of flow conformally onto the exterior of the unit circle. If r
and 0 stand for polar coordinates there, the quasilinear equation
for ¢ can be written as

a ¢gg + 2D b+ cC o +d=0

when artificial viscosity is omitted. The simplest way of
introducing artificial viscosity numerically, suggested first by
Murman and Cole in a fundamental paper (ref. 6), is to use finite
difference approximations that are retarded in the direction of
the flow, which for practical purposes can be taken as the direc-
tion of 6. This does not perturb the Neumann boundary condition
on ¢.

The finite difference equations for transonic flow can be
solved iteratively by a variety of relaxation schemes, all oux
which take the form of marching processes with respect to an arti-
ficial time parameter. Antony Jameson has found that the rate of
convergence can be accelerated by substituting a fast solver over
the subsonic flow region between every few cycles of relaxation
(ref. 7). Such a procedure has been programmed by Frances Bauer
using fast Fourier transform with respect to the periodic variable
©. This reduces the calculation time by a factor of three even
when a boundary layer correction is included in the computation.

A standard run of her airfoil code now takes less than three min-
utes on the CDC 6600 computer.

Detailed comparisons with experimental data show that the
NCF transonic equation gives significantly better simulation of
shock wave-boundary layer interaction than does the FCF equation,
especially in cases with a shock at the rear of the profile where
the turbulent boundary layer is relatively thick. It would appear
that the NCF method leads to less radical gradients in the pres-
sure behind the shock, which is consistent with the observations.
The NCF and experimental speeds both tend to jump down barely
below the speed of sound behind a shock. Figure 2 shows the kind
of agreement between theoretical and test data that is usually
seen. Wall effect is accounted for by running the computer code

at the same 1lift coefficient CL that occurs in the experiment.

Because of erroneous positive terms in the artificial viscos-
ity, the shock jumps defined by the NCF method create mass instead
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of conserving it. However, the amount of mass produced is only of
the order of magnitude of the square of the shock strength for
nearly sonic flow. The resulting errors are therefore negligible
except for their effect on the calculation of the wave drag, which
has the order of 'magnitude of the cube of the shock strength. A
correct estimate of the drag can be obtained from NCF computations
by working with the path-independent momentum integral

p= [ [pay + (8, - c)avd,

where p and c, stand for the pressure and the critical speed,
respectively. The integrand has been arranged so that across a
normal shock wave parallel to the y-axis it jumps by an amount of
the third order in the shock strength. Therefore integration
around the shocks gives a reasonable measure of the wave drag
even when mass is not conserved.

The path of integration can be deformed onto the profile to
define a standard integral of the pressure there, but a correction
term evaluated over a large circle should be added because of a
sink at infinity accounting for the mass generated by the NCF
method. Let £, and q, denote the chord length of the airfoil,
the density at ln?lnlty and the speed at infinity, respectively.
The corrected formula for the wave drag coefficient C becomes

2 €% 90

C B — pdy—z_.______ dlp ’
DW 2 2
20,9 K

where the first integral is extended over the profile and the
second integral is extended over a large circle separating the
profile from infinity. 1In Fiqgure 3 a comparison is presented
between experimental, corrected NCF, uncorrected NCF and FCF
values of the total drag coeff1c1eng C., for a shockless airfoil
tested at Reynolds number R = 20x10 bB Jerzy Kacprzinski at the
National Aeronautical Establishment in Ottawa. The corrected drag
formula is seen to give a fairly reliable assessment of the per-
formance of the airfoil.

There are examples where the results of the NCF code agree
well with experimental data right up to the onset of buffet.
Shock locations are predicted with remarkable accuracy over a wide
range of conditions, although some improvement would be desirable
at lower Reynolds numbers where transition becomes important. Thus
the analysis code has been adequately validated for simulation of
experimental data in two~dimensional flow. In particular, it
models the trailing edge in a satisfactory way even for heavily
aft-loaded airfoils. It is therefore of some interest that the
code predicts no loss of 1lift for airfoils designed by the hodo-
graph method when a Stratford distribution is used to eliminate
separation completely over the whole profile. It would neverthe-
less be desirable to confirm this result experimentally by further
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testing of shockless airfoils such as the one shown in Figure 1.

There is need for more research on computational methods for
transonic flow. The progress in supercritical wing technology
should be extended to cascades of airfoils and flows in turbo-
machinery. For the immediate future, the most challenging problem
is analysis of the flow past wing-body combinations modelling an
airplane in three dimensions. As a first step it would seem that
the NCF equation for a velocity potential furnishes the most
feasible mathematical formulation. Perhaps the Bateman variation-
al principle asserting that the volume integral of the pressure is
a stationary functional of the velocity potential, applied in the
context of the finite element method, offers the best prospect of
deriving convenient difference equations, provided artificial
viscosity can be added successfully.
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Figure 2.- Whitcomb wing at M = 0.78, (j = 0.58.
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Figure 3.- Drag polar for transonic airfoil at M = 0.76.
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