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SUMMARY 

The  purpose of  this  paper  is  to  explore  several  possible 
methods of solving  the  small  separation  problem  at  high  Reynolds 
number.  In  addition  to  using  analytical  methods,  there  ,are  sev- 
eral  numerical  approaches  which  can  be  used  and  in  addition  there 
is the  possibility  of  using  approximate  integral  methods.  We  will 
restrict  ourselves  to  high  Reynolds  number.laminar  two-dimensional 
problems  for  simplicity.  Presumably,  the  same  techniques  can  be 
extended  to  more  complicated  flow  fields.  Only  a  brief  discussion 
will  be  given of  the  finite  difference  methods  since  these  methods 
are  discussed  in  detail  by  Davis  and  Werle  (ref. 3 ) .  Most of the 
emphasis  will  be  placed on developing  an  approximate  integral  meth- 
od. As a-model problem  we  will  choose  the  supersonic  compression 
ramp  problem  since  several  numerical  solutions  along  with  experi- 
mental  data  are  available  for  this  case.  The  techniques  discussed 
can  be  modified  and  applied  to  other  simiiar  type  wall  geometries. 

INTRODUCTION 

It has  been  recognized  for  many  years  that  the  problem  of 
computing  high  Reynolds  number  separated  flows is extremely  diffi- 
cult.  The  reason  for  the  difficulty  becomes  clear  if one  examines 
the  results of the  asymptotic  theory, see Stewartson  (ref. 2). 
Davis  and  Werle  (ref. 1) have  discussed  the  implications of these 
results  and  suggested  how  one  might  use  the  results of  the  asymp- 
totic  analysis  in  order to do  efficient  numerical  computations. 

Briefly,  the  asymptotic  theory  reveals  that  at  high  Reynolds 
number  severe  scaling  problems  exist  around  and  downstream of sep- 
aration.  In  addition  the  asymptotic  theory  for  the  small  separa- 
tion  problem  reveals  a  mechanism  for  upstream  propagation  through 
boundary-layer  interaction,  even  if  the  external  flow  is  super- 
sonic.  These  two  features  require  that  an  efficient  numerical 
scheme  use  properly  scaled  independent  variables  for  resolution 
and  in  addition  require  that  the  boundary-layer  interaction  be 
handled  in  a  manner  appropriate to boundary  value  problems.  These 
features  should  be  accounted  for  even  in  the  solution of the full 
Navier-Stokes  equations. 

t This  research  was  supported by the  Office  of  Naval  Rese-arch  under 
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The  asymptotic  theory  is  partially  complete  for  some  massive 
separation  problems,  see  Messiter  (ref. 3 )  for example, and the 
results  indicate  that  numerical  solutions  will  be  extremely  dif- 
ficult  to  perform  for  this  type of problem. On the  other  hand, 
the  theory  for  the  small  separation  problem is essentially  com- 
plete,  see  Stewartson (ref. 21, and we can now begin  to  compute 
flows of this  type  with  confidence.  For  the  remainder  of  this 
paper we will  therefore  concentrate on the  type  of  problem  where 
separation  is  of  limited  extent  and  can  be  handled  within  the 
framework of boundary-layer  theory. 

According  to  the  asymptotic  theory, we may  define  a  small 
separation  problem  to  be  one  such  that  the  scales of a  bump or 
depression on a  flat  plate  are  the  same  as  the  length  scales  of 
the  lower  deck  in  the  triple  deck  analysis,  see  Stewartson  (ref. 
2 ) .  This  requires  that  the  length of the  bump or depression 
generating  the  separation  scale  as  Re-318  while  the  height  must 
scale as Re-518.  If  this  is true,  the  separated  region  will  be 
entirely  confined  to  the  lower  (fundamental)  deck  and  the  high , 

Reynolds  number  separation  problem  can  be  attacked  entirely  with 
the  lower  deck  equations  coupled  with  an  interaction  law  for  the 
outer  inviscid  flow.  This  is  the  approach  taken  by  Jenson, 
Burggraf,  and  Rizzetta  (ref. 4 )  and  Rizzetta  (ref.  5)  in  consider- 
ing  supersonic  ramp  type  separations.  Smith  (ref. 6) has  in 
addition  solved  the  linear  version of the  small  separation  problem 
for  flow  over  protuberances. 

As  an  alternative,  for  the  same  type of separation  problems, 
one may  solve  the  ordinary  Prandtl  boundary-layer  equations  in- 
cluding  interaction  with  the  outer  inviscid  flow. It. can  be  shown 
that  these  equations  contain  all  of  the  terms  in  the  triple  deck 
equations  plus  some  additional  ones.  The  extra  terns  in  fact  pro- 
vide  some  corrections  which  allow  better  agreement  with  experiment 
at  moderately  high  Reynolds  numbers.  This is the  approach  taken 
by  Werle  and  Vatsa  (ref. 7) and  Vatsa  (ref. 8) in  considering 
supersonic  ramp  type  separations. 

The  supersonic  ramp  separation  problem  has  also  been  solved 
by  Carter  (ref. 9) and  others  using  the  full  Navier-Stokes  equa- 
tions.  These  calculations  provide  a  basis  for  comparison  with 
other  less  exact  models  of  separation. 

The  high  Reynolds  number  small  separation  problem  may  there- 
fore  be  approached  in  a  variety  of  ways.  The  most  complicated 
method  would  involve  the  solution  of  the  full  Navier-Stokes  equa- 
tions.  Next  in  complexity  would  be to solve  interacting  boundary- 
layer  like  equations  or one of the  sets of so-called  parabolized 
Navier-Stokes  equations.  The  simplest  set of  equations  one  could 
solve  and  retain  all of the  features of the  flow  would  be  the 
triple  deck  equations. 
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If one wishes to do  for  example  a  full  Navier-Stokes  calcula- 
tion  for  flow  over  a  complicated  configuration  one  may  not  wish  to 
provide  the  mesh  refinements  in  small  separated  regions as is 
indicated  as  being  necessary  by  the  asymptotic  theory.  These 
regions  can  be  excluded  from  the  overall  calculation  and  accounted 
for  by  a  local  calculation.  This  local  calculation can  then  pro- 
vide  a  slip  type  boundary  condition on the  edge of the  small  sep- 
arated  region. Thus by  excluding  the  small  separation  bubble  and 
replacing  it  with  a  slip  type  boundary  condition,  the  overall 
calculation  can  be  made  accurately  with  a  much  larger  mesh  size 
than  wouid  be  required  if  the  separated  bubble  were  included. 

One  important  application  of  triple  deck  theory  could  thus  be 
to  provide  local  solutions  in  small  separated  regions  to  match 
into  an  overall  calculation. It therefore  seems  important  that  we 
be  able  to  solve  the  triple  deck  equations  in  as  efficient  a 
manner  as  possible. 

The  simplest  and  therefore  fastest  type of approximate  solu- 
tions  to  the  boundary-layer  equations  are  obtained  with  integral 
methods.  To  test  the  applicability  of  the  integral  technique  to 
triple  deck  theory, we will  develop  an  integral  method  for  solving 
the  iower  deck  equations  and  compare  solutions  obtained  from  this 
method  with  more  exact  solutions.  This  is  perhaps  the  fastest 
method  for  solving  the  small  separation  problem  if  one  is  willing 
to  accept  the  inaccuracies  associated  with  an  approximate  integral 
method.  The  method  is  attractive  for  doing  local  calculations, 
especially  if  one  considers  that  the  errors  obtained  from  the 
integral  method  would  probably  be  much  smaller  than  those  which 
would  exist  from  a  course  mesh  finite  difference  calculation 
which  might  be  used  as  an  alternative. 

GOVERNING EQUATIONS FOR SMALL SEPARATIONS 

The  small  separation  problem is by definition  a  separation 
generated  by  a bump or depression on a  flat  plate  such  that  the 
scaling  of  the  bump or depression  is  the  same  as  that  given by 
the  lower  deck  analysis of Stewartson  (ref. 2 ) .  Thus  such a bump 
or  depression  scales as ~3 in the  streamwise  direction  and ~5 in 
the  normal  direction,  as E + 0, where E = Re'lI8. Such a  bump  or 
depression  generates  an  interaction  which  falls  within  the  frame- 
work  of  triple  deck  analysis  and  the  problem  can  thus  be  handled 
by  solving the  lower  deck  equations  coupled  with  an  interaction 
law. 

In the  lower  deck  variables  defined  by  equations ( 4 - 4 )  in 
Stewartson  (ref. 21, the  small  separation  problem is governed  by 
the  following  equations, see figure 1 

- au  av - 
ax ay f-" I 
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and -I 

with  boundary  and  matching  conditions 

u = v = 0 at y = f(x) , ( 3 )  

and 
6 ( +  m )  = 0 . 

According  to  linear  theory  the  interaction  law  is  given by 
1 I 

P = f  (x) + 6 (x) for  supersonic  flow (6) 
or 

00 f (x,)+ 6 I (x,) 
p = - -  l J  dxl for  subsonic  flow. (7) 

7r -OD 
x - x1 

The  quantity  f(x)  denotes  the  dimensionless  surface  measured 
from  the  Cartesian  coordinate  system  on  the  flat  plate  surface  and 
6 is  the  dimensionless  displacement  thickness.  Both  of  these 
quantities  are  nondimensionalized  in  the  same  manner  as  the  y 
coordinate. 

In  order  to  solve  the  lower  deck  equations,  it  is  convenient 
to  shift  the  coordinate  system  such  that  the  body  surface  lies 
along  a  constant  coordinate  curve.  This  can  be  accomplished  with 
the  use  of  Prandtl's  transposition theoremt  see  Jenson,  Burggraf, 
and  Rizzetta  (ref. 4 )  for  example. 

With  the  change  of  variables 

z = y - f(x) 
and 

w = v - -  
dx df u 

and  all  other  variables  remaining  unchanged we obtain  from  equa- 
tions (1) - ( 4 )  

u = w = o  at z = O  I 

The  remaining  equations (5147) are  unchanged  by  the  transformations. 
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INTEGRAL FORMULATION  FOR  THE LOWER DECK EQUATIONS 

The  lower  deck  equations (10)- (13) and ( 5 ) -  (7) can be put 
into  a  form  similar  to  the  von  Karman  momentum  integral  equation 
for  two-dimensional  boundary  layers.  The  advantage  in  doing  this 
is  that  a  simple  approximate  solution  technique can be developed 
for the lower  deck  equations  along  the  same  lines  as  approximate 
solution  methods  for  non-interacting  boundary  layers. 

First  let z -+ - in  the  momentum  equation (11) and  substitute 
the  outer  .edge  condition for u  given  by  equation (13). This 
results  in 

Next  integrate  the  continuity  equation (10) with  respect  to 
z to  find  another  expression  for  v as z -+ -. Thus  results  in 

where  we  have  defined  Ue  as 

u e = z -  6 

Equating  the  two  expressions  f0r.v  as z -+ - from  equations (14) 
and (15) we  find 

Integrating  this  expression  with  respect  to  x  and  using  the  con- 
dition  that  all  quantities  in  the  equation d i e  out  as  x -+ -- 
we  obtain 

2 OD 

- 
2 

We  next  integrate  the  momentum  equation (11) with  respect  to 

+ P = J (U - Ue)dz . C18 1 
0 

z from z equals  zero  to  infinity.  After  some  fairly  straight- 
forward  algebra,  this  results  in 

- d - 2  2 
dx 0 

1 (U - Ue)dz + 6 dD = 1 - U,(X,O) . 
We therefore  have  three  integral  quantities  which  must  be 

evaluated.  The  displacement  thickness 6, from  equation (13) can 
be  written  as 
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dD - d M + 6 =  = 1 - T w  
dx 

where 

The  simplest  possible  approximate  solution  method  to  the 
integral  equations  (23)  and ( 2 4 )  is to  assume  a  linear  shear  pro- 
file of the  following  form 

and 

for 

C2 6 )- 

where R(x) is the  boundary-layer  thickness  function.  Substituting 
the  above  equations  into  equation ( 2 0 )  results  in 

6 =  R z 
Integrating  equation  (26)  results  in  a  parabolic  velocity 

profile of the  form 
2 

U = T +(I - Tw) x + c(X) z for z < R 
W - 

and 
u = U e = z - 6  for z > R . 

We  choose  to  satisfy  the  conditions  that  u = 0 and z = 0 and u = 
Ue  at z = R. The  first  condition  results  in C(x) = 0 and  the 
second  reproduces  equation  (27).  Thus  the  velocity  profile is 
given  by 2 

W 2R U = T  z +  ( l - T w )  - . z  for z < R - 
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and (29) 

u = z - 6  for z > R . 
This  profile  satisfies  the  no  slip  condition,  is  continuous  and 
has  a  continuous  first  derivative  at z = R. 

Using  the  above  velocity  profile,  the  expression (21) for D 
gives 

D =  2 6  
3 

while  the  expression (22) for M gives 

Substituting  these  expressions  into  the  integral  equations (18) 
and (19) gives 

R6 
3 2 

p = " -  

In  order  to  close  the  problem,  equation (6) or  equation ( 7 )  
for P is  used  depending  upon  whether  the  flow  is  supersonic or 
subsonic.  Initial  and  downstream  boundary  conditions  are  pre- 
scribed  in  the  form  of  equation ( 5 ) .  

The  integral  formulation  therefore  results  in  the  solution of 
two  nonlinear  first-order  ordinary  differential  equations  for R 
and 6 for  the  supersonic  case  and  the  solution  of  one  nonlinear 
integral  equation  and  one  nonlinear  first-order  ordinary  differ- 
ential  equation  for  the  subsonic  case. 

The  present  choice  of  profile  shapes  is  the  simplest  possible. 
However,  more  complicated  profiles  can  easily  be  cho.sen.  The  pur- 
pose of  the  present  analysis  is  to  show  how  an  integral  method 
may  be  formulated  without  paying  attention  at  this  point  in  time 
to  accuracy of the  method. 

We  can  easily  find  an  approximate  solution  corresponding  to 
Lighthill's  (ref. 10) analysis  of  the  initiation  of  a  free  inter- 
action  process  in  supersonic  flow.  If  we  consider  the  possible 
emergence of a  sublayer  at  a  point  x* on a  flat  plate,  see  Ste- 
wartson  (ref. 2), we can  study  the ihtiation of  the  sublayer 
using  the  linearized  version of equations (32) and ( 3 3 ) .  For 
supersonic  flow,  if we consider 6 to  be  small,  these  equations 
result  in 

d6 R6 (34) 
dx=3 
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Dividing  the  first  equation  by  the  second  and  integrating, it is 
easy  to  show  that  the  approximate  solution  corresponding to 
Lighthill's  exact  solution  is 

a = & - -  
and 

6 = 6,e kx 

where 

k =  -3" '' - 0.8165 . 
The  approximate  value of k  given  by  this  analysis  compares  favor- 
ably  with  the  exact  value of 0.8272  given  by  Lighthill's  analysis. 
From  the  expression  (27)  and  the  linear  version  of (321,  assuming 
R = , 6 can  be  eliminated  to  give 

T = 1 - P  W (39) 
which  also  compares  favorably  with T = 1 - 1.209P  given  by 
Lighthill's  analysis. W 

Next  we  consider  the  case  of  compressive  free  interactions, 
see  Stewartson  and  Williams  (refs. 11 and  12),  Stewartson  (ref.  2) 
and  Williams  (ref.  13).  The  full  approximate  equations (32) and 
( 3 3 )  for  supersonic  flow,  i.e. P = d6/dx, were  integrated  numeri- 
cally  using  a  fourth-order  Runge  Kutta  method.*  The  results  were 
adjusted  such  that  the  zero  shear  point  occurs  \at x = 0 in  order 
to  compare  with  Stewartson  and  William's  results,  see  Stewartson 
(ref.  2)  and  Williams  (ref. 13). 

Figure  2  shows  that  the  approximate  results  agree  quite 
favorably  up  to  and  through  the  separation  point. Far  downstream 
of  separation  the  approximate  results  produce  a  shear  which  asymp- 
totically  approaches -1/3 rather  than  zero  from  the  exact  results 
and a pressure  which  goes  to  zero  rather  than  1.800  [see  Williams 
(ref.  13)]  from  the  exact  results.  These  deficiencies  are  due 
to  the  complicated  nature of the  lower  deck  free  interaction solu-  
tion a s  x -t a, see  Williams  (ref.  13). A more  elaborate  and 
physically  meaningful  assumption  for  a  shear  profile  to  handle  the 
region  for  large  x  should  overcome  this  deficiency.  However,  it 
is  important  to  note  that  the  present  approximate  integral  method 
preserves  the  qualitative  features  of  the  exact  results,  except 
when  the  interaction  region is too  long. 

* The  author  wishes  to  express  thanks  to  Mr. S.  Khullar f o r  per- 
forming  these  and  later  calculations  using  the  integral,  method. 
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As a  final  example  of  the  application of the  approximate 
method,  we  consider  flow  past  a'compression  ramp,  Exact  numerical 
solutions  have  been  provided  to  the  lower  deck equationifor this 

Consider  supersonic  flow  along  a  flat  plate  which  abruptly 
encounters  a  wedge  type  compression  ramp.  Jenson,  Burggraf  and 
Rizzetta  (ref. 4 )  have  considered  the  formulation  and  numerical 
solution of this  problem  within  the  framework  of  triple  deck 
analysis. In  terms  of  their  formulation,  the  appropriate  problem 
to  be  solved  with  the  approximate  set  of  equations  is  given  by 
equations (32) and (33) with  the  supersonic  interaction  law (6) 
given  by 

d6 p = -  
dx for x < 0 

and 
P = - + a  d6 - for  x > 0 dx - 

where  is  related  to  the  physical  angle CL through 

The  governing  equations  were  again  integrated  using  a  fourth- 
order  Runge  Kutta  method.  The  initial  conditions  were  applied  at 
x = -20 with R = 6 . A shooting  method  was  used  to  find  the 
correct  initial  condition  on 6 at  x = -20 to  produce  a 6 which 
goes  to  zero as x -f 03. The  solutions  branch  as  downstream  infin- 
ity  is  approached  and  therefore  become  very  sensitive  to  initial 
guess. A more  appropriate way to  solve  the  problem  is to recog- 
nize  that  it is boundary  value  in  nature  and  therefore  solve it 
as  a  time  relaxation  process  using  central  differences on all of 
the  space  variables.  This  type  of  technique  has  been  used  by 
Werle  and  Vatsa  (ref. 7) to solve  the  interacting  boundary-layer 
equations. 

Figures 3 and 4 show  the  results for  pressure  and  wall  shear 
as  a  function  of  the reduced  angle a. Rizzetta  (ref. 5) has  pre- 

a there  is  good  agreement  between  the  present  results  and  those 
of Rizzetta. A direct  comparison  is  given  for a = 2.5. The 
comparison-between  the  present  results  and  Rizzetta's  becomes 
poorer  as a increases.  This  is  at  least  partially  due to the  fact 
that  the  free  interaction  portion  of  the  solution  has  eitended  far 
enough  upstream  for  values  of u greater  than 2.5 that  the  diffi- 
culties of the  present  approximate  method  with  the  free  interac- 
tion  plateau  region  are  beginning  to  appear.  However,  overall 
this  simple  integral  method  gives  the  main  features of the  flow- 
field  and  with  improvements  would  seem  to  be a reasonably  accurate 

- sented  exact  numerical  results  for  the  same  problem.  For  small 
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and  extremely fast  method  for  finding  lower  deck  solutions. 

NUMERICAL  FINITE  DIFFERENCE  SOLUTION OF 
THE SMALL SEPARATION  PROBLEM 

Jenson,  Burggraf,  and  Rizzetta (ref. 4 )  have  developed  a 
finite  difference  numerical  scheme  for  solving  the  lower  deck 
equations  for  the  supersonic  case.  As was mentioned  in  the  pre- 
vious  sections,  they  have  applied  their  numerical  method  to  the 
problem of flow  past  a  compression  ramp.  Rizzetta  (ref. 5) gives. 
more  extensive  numerical  results  for  the  same  problem  using 
essentially  the  same  finite  difference  technique. 

It can  easily  be  shown  that  the  ordinary  Prandtl  boundary- 
layer  equations  contain  all of the  terms  indicated  as  being  im- 
portant  in  the  triple  deck  analysis  as  long  as one takes  into 
account  the  interaction  of  the  boundary  layer  with  the  outer  in- 
viscid  flow. It is not a simple  matter  to  solve  the  resulting 
set  of  interacting  boundary-layer  equations  since,  like  the  lower 
deck  equations,  they  are  boundary  value  in  nature. 

A  very  natural  way  to  solve  the  interacting  boundary-layer 
equations  is  by  the  use of an  alternating  direction  implicit  (ADI) 
method.  This  is  the  approach  taken  by  Werle  and  Vatsa  (ref. 7 )  
and  Vatsa  (ref. 8 )  in  their  solution  of  the  same  type  of  compres- 
sion  ramp  problems  as  were  considered  by  Jenson,  Burggraf  and 
Rizzetta. 

Figure 5 shows  a  comparison  of  the  results  for  skin  friction. 
obtained  using  Werle  and  Vatsa's  method  with  those  obtained  from 
the  triple  deck  analysis  by  Rizzetta,  see  also  Burggraf  et  al. 
(ref. 14). The  results  show  that  the  interacting  boundary-layer 
model  slowly  approaches  the  triple  deck  asymptotic  solution  as 
Reynolds  number  goes  to  infinity. 

Because  of  the  slow  approach  to  the  infinite  Reynolds  number 
limit  indicated  in  the  comparison,  the  triple  deck  results  do  not 
tend  to  agree  well  with  experimental  data  at  high  but  finite 
Reynolds  numbers.  On  the  other  hand, interacthg boundary-layer 
results  tend  to  agree  well.  Figure 6 shows  a  comparison  of 
Navier-Stokes  and  interacting  boundary-layer  results  with  the 
experimental  data of Lewis,  Kubota  and  Lees  (ref. 15). 

Tu  and  Weinbaum  (ref. 16) have  suggested  that  the  principle 
cause  of  the  poor  agreement  between  triple  deck  results  and 
experimental  data  lies  in  the  fact  that  triple  deck  analysis 
neglects  streamtube  divergence  in  the  middle  deck  region.  Since 
interacting  boundary-layer  results  contain  this  effect,  they  tend 
to  show  much  better  agreement with experiment. 
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CONCLUSION 

The  idea  of  solving  separation  problems  using  triple  deck 
theory  is  still  relatively  new.  It is anticipated  that  with  time, 
the  theory  will  be  modified  to  incorporate  the  additional  terms 
which  will  allow  better  agreement  with  experimental  data.  Even  if 
this  were  not  done,  the  insight  gained  from  triple  deck  theory 
into  the  mechanism  of  high  Reynolds  number  separation  is  in  itself 
extremely  valuable. 
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Figure 1.- Coordinate  system  and bump i n  lower  deck variables. 
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Figure 3.- Comparison of asymptotic and  approximate 
pressure  distribution. 

Figure 4.- Comparison of asymptotic and  approximate 
shear  distribution. 
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Figure 6.- Comparison  of  supersonic  interacting 
boundary-layer  with  Navier-Stokes so lu t ions  
for a compression  ramp,  after Vatsa (ref. 8). 
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