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SUMMARY

A design criterion for input functions in laboratory tracking
tasks resulting in efficient parameter estimation is formulated.
The criterion is that the statistical correlations between pairs
of parameters be reduced in order to minimize the problem of non-
uniqueness in the extraction process. The effectiveness of the
method .is demonstrated for a lower order dynamic system,

INTRODUCTION

The art of human operator modeling has progressed consider-
ably since the pioneering work of Sheridan (ref. 1), Elkind et.
al. (ref. 2), and McRuer et. al. (ref. 3). Many of the accepted
transfer functions for the human operator in compensatory track-
ing tasks are given in reference L, The model structure for the
human operator is not known as precisely for such systems as
the alrcraft, for example. There are large variations from one
subject to another and from run to run. In most cases, the pilot
model includes such physical parameters as a static gain, an
effective time delay made up of transport delays, and high frequency
neuromuscular lags or leads and turns which represent the low fre-
quency characteristics of the neuromuscular system dynamics. In
addition, a remnant function is generally included in the model
to account for pilot anomalies dand unsteady behavior. It has been
pointed out by various authors (refs. 5-6) that large remnants and
the quasi-predictable nature of the inputs cause difficulties in
the extraction of the physical parameters in the pilot model.

Early attempts to determine the best set of parameters, in particu-
lar pilot models utilizing pilot response data, relied upon analog
matching techniques (ref. 7). More recent techniques have applied
Kalman filtering methods (ref. 8), maximum likelihood methods

(ref. 9), or Newton-Raphson methods (ref. 9) to the system identifi-
cation problem.
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One of the practical difficulties in the extraction of system
parameters from experimental data is the non-uniqueness in the
solution for the parameter values (ref. 10). In the case of
human operator dynamiecs, the non-uniqueness problem is amplified
by the high correlations which can exist between the pilot's effec-
tive time delay and the time lags associated with the equalization
characteristics discussed by McRuer et. al. (ref. 3). Normally,
the time delay is either assumed known or represented by a Pade
form which places it in the role of either lead or Jag constants
(ref. 9).

This paper addresses the task of reducing the non-uniqueness
and possibly the effect of the remnant by proper design of the
forcing function or disturbance used 1n laboratory designed track-
ing tasks.

MODELS

The performance of a human operator in many tracking tasks
can be modeled adequately by a quasi-linear describing function.
The describing function model consists of a transfer function
Yp(s) and a remnant n(t) as shown in figure 1 by the block dia-

gram of a typical compensatory tracking task.
One of the more generalized transfer functions for the com-

pensatory control tasks is discussed in reference L4 and is writ-
ten as

(T_s+1)
Y (s) = K e~ %" b
D o) (TIs+1)
+
x (T s+1) (1)
s )2 2
(Tr's+1)(T . s+1)[ (=) + s+1]
k Nl wN wN
In such a model, the parameters Kp’ T, TL’ TI, Tk' Tﬁ, TN v Wy

and & _ are generally poorly determined and are improved upon by
using either analog matching techniques or parameter estimation
methods in conjunction with pilot response data.

Depending upon the plant to be controclled, some of the para-

meters in equation (1) can be eliminated from consideration.
For purposes of illustration of how the problem can be put into
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2 state space formulation for which the methods of modern estima~
tion algorithms can be utilized, the following special case will
be considered:

= K _
Y. (s) = _ (2)
-sT
Y (s) Kl(T35+l) e _

In addition, it is assumed that the remnant function is the re-
sult of white noise w (t) filtered through a second-order linear
filter according to

n(t) + wy n(e) + a, n(t) = w (¢) (1)

From the block diagram

TUT, u(t) + (T T )a(t) + u(t) = K [T, &(t-1) + e(t-t)] (5)

c(t) = K&(t) (6)
Equations (L)-(5) can be written in terms of the state variables
Y)Y =y oYy sV at¥ 1T ey )T
l’ 2’ 3’ )4’ 5' 6

K. T

= Te(t),e(t) ult), === r(t) + ult+r) + T ult+7),
n(t),n(e) 1t ' (7)
as
F(£) = P y(t) +F, y(t=1) + b(t) + a(t) (8)
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where

and
b(t)

a(t)
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The measurements used in the estimation procedure are gener-
ally such quantities as the plant output c(t), the stick output
§(t), ete. These quantities are written as a vector

z(t) = hiy) + v(t) (13)

where v(t) is assumed to be a white noise process with known
statistics.

DESIGN METHOD

The design of optimal inputs for non-time delay differential
systems has been investigated by numerous authors. Goodwin
(ref. 11) designed an input which minimized the covariance of
the error estimate. Mehra (ref. 12) designed an input to maxi-
mize the sensitivity of the system ocutput to the system para-
meters. The philosophy adopted in the present work is to design
an input to minimize directly the correlation between certain
pairs of parameters.

The problem is stated in terms of a differential-difference
equation as given in equation (8) restateg as

y(t) = £(t, y(t), y(t=t), p) + ult) + w(t) (1k)
with initial wvalues

vy(t) = Oyt _-Tstst

o}

T is the constant time delay and p is the unknown parameter
vector. The vector u(t) is to be chosen optimally based on

a design criterion and w(t) is the white noise process related
to the remnant.

The system measurement from which p is estimated 1s taken as
the system state vector y(t). The noise in the measurement is
assumed a Gaussian white noise process with zero mean and co-
variance R.

In addition to the state equation expressed by equation (1k4)
it will prove useful to introduce additional state variables
defined by the elements of the sensitivity matrix A(t) and the
time dependent covariance matrix of the error in the estimate
C(t) defined respectively saccording to

A(t) = »of A(t) + df A(t-T) + af (15)

x(t) x(t-1) P
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A(t) = o, to-Tt2t

and

1

c(t) = -c(t) aT(t) =Y A(s) co(¢) (16)

c(t

t
2= LT 2T (e) Y ace)as? (17)
o]

With these additional equations, it is possible to incorporate
equations (14)-(16) into one differential equation of the form

F(t, X(t), X(t-1), X(t),X(t-hult), wi(t), p) = 0 (18)

where the augmented state vector X is defined as

x(t) = [«T(6) ¢ MT(e) Lo Ty aDT(yy L a(m)T )T
and

¢ 6y = T (), o), o (6)]7

c®e) = o, (8), Cpple),niiy | (0)1F

1m
A(l)(t) _ [Bxl(t), axl(t),... axl(t)]T
Bpl 8p2 apm
T
sy o 2 258 B ()
Bpl 9P, 9P

The optimal input is designed to minimize the averagg value
of a performance index representing a weighted sum of the squares
of the correlation coefficlent plus an arbitrary function in the
control variable+ The correlation coefficient between parameters

p. and P . is defined as
i: t C..(t C t -1 < . <
pij = ij( f) / il( f) jj( f) 2 — pjj —

The performance index can then be written in conventional
form as
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J(w) = B L¥(x(s,)) + [0 n(x(s), uls),p)at) (19)

where the first term represents the weighted sum of the squares
of the correlation coefficients, The second term can be chosen
according to whatever physical requirement is desired between the
state and control vectors.

EXAMPLE WITH LOW ORDER DYNAMICS

As an example of the design concept, consider the scalar
system

¥x(t) + 1L x(t-1) = ul(t) + w(t), o<tsh (20)

oy

x(t) = o, -tstso0
where £ and T are the system parameters to be estimated and u and
w are the input and white noise funtions respectively. The in-
put or control is constrained according to
|u] =2

and is assumed zero prior to time zero.

The performance index, which is the square of the correlation
coefficient between parameters £ and T is

[, a1(t)ay(t)at)

(J2 e P(e)ae) (J) a2 (e)at)

J(u) =

(21)

The form of the optimal control is a bang-bang control expressed
as

u(t) = 2sgn g(;(t,T),t) (22)

where g is the switching function which can be computed from the
maximum principle. The optimal estimate of x(t-1t) denoted

~

x(t,T) has been shown by Kwskernaak (ref. 13) to be of the form
x(t,T) = fz K°(t,1,0) z(o)da (23)

where the Kernel function K° is a function of the state equation
and noise source.

To continue, a further simplification to the deterministic

case will be made. For this case, the sensitivity matrix is the
two component row vector
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A(t) = [ax(t), ax(t) ]

L 30 (2k)
which satisfy the equations |
ay(t) + la;(t-1) = —;;(t)
3 £ (25)

ay(t) = 1x (t-1)
g

By use of Laplace transform techniques, the solutions to
equations (20) and (25) are written as

x(t) = [T n(t-0) u(o)do (26)

a1(t) = -x(t) + L 7 n(t-0)x(0)do (27):
. |

a2(t) = h(o)x(t-1) + [¥ n(t-ox(o-1)do (28)

where h(t) is the unit impulse response

. e Mgt -X;
h(t)y = z e [l—Tée ] (29)

and Xk is the kxth eight value of the characteristic equation
AT
Ex + € = o0 (30)

The effectiveness of the design technique for £ = 1 = 1/2
is shown in figure 2. The correlation Peg is reduced from a value

of 0.60 to 0.09 by means of the design technique.

CONCLUDING REMARKS

An optimal design technigue for disturbance functlions used in
laboratory tracking tasks has been developed. The objective is
to reduce statistical correlations between various parameter
pairs to effect a more efficient parameter extraction from noisy
experimental data. Preliminary calculations indicate the design

methods to be effective.
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