

William T. Eckert, Kenneth W. Mort, and Jean Jope

Ames Research Center and U.S. Army Air Mobility RED Laboratory Moffett Field, Calif. 94035

national aeronautics and space administration - Washington, d. c. . october 1976

[^0]Page
NOTATION (Engineering Symbols) v
SUMMARY 1
INTRODUCTION 1
CAUTIONARY DESIGN GUIDELINES 2
Diffusers 2
Contractions 3
Corners 3
Non-Return Wind Tunnels 4
PERFORMANCE ESTIMATION 4
General Approach 4
Problem Restrictions 5
Computation Formulas 5
Flow-state parameters 5
Local conditions 5
Section pressure losses 6
COMPUTER PROGRAM DESCRIPTION 11
Method of Solution 11
Computing Equipment Required 12
Hardware and machine components 12
Software 13
Programming Techniques 14
Source Code 15
Operating Instructions 15
Input 15
Output 16
Computer system restrictions 17
Optional inputs 18
Diagnostic messages 18
Test Case 21
DISCUSSION AND APPLICATIONS 22
Results 23
Evaluation 24
APPENDIX A - NON-STANDARD FUNCTIONAL FORMS 26
Local Flow-State Parameters 26
Mach number 26
Reynolds number 27
Friction coefficient 27
Section Pressure Losses 27
Corners (constant area) 27
Corners (diffusing) 28
Diffusers 29
Exit 30
Flow straighteners: airfoil members (thick) 31
Internal flow obstruction: drag item 32
Vaned diffusers 32
Loss value transferred to reference location 32
Wall pressure differential 33
Input power required 34
Page
APPENDIX B - NUMERICAL FUNCTION-APPROXIMATIONS 35
Corners 35
Diffusers 35
Mesh Screen 38
Vaned Diffusers 38
APPENDIX C - COMPUTER PROGRAM FØRTRAN CODES 39
Notation (FøRTRAN) 40
PERFØRM 52
DATACK 79
SPEED 97
FRICTN 98
øUTPUT 99
PL \varnothing TIT 104
APPENDIX D - INPUT.AND OUTPUT FOR SAMPLE CASES 107
REFERENCES 142
TABLES 144
FIGURES 153
(Engineering Symbols)

Symbol	FøRTRAN ${ }^{1}$ name	Description
A	A	cross-sectional area of local section, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
A_{F}		total cross-sectional flow area at drive fan(s), $m^{2}\left(f t^{2}\right)$
AFLOW	AL	cross-sectional area of local flow, m^{2} (ft ${ }^{2}$)
A_{0}	A0	cross-sectional flow area of test section at upstream end, $m^{2}\left(f t^{2}\right)$
A_{1}	A1	cross-sectional flow area of section at upstream end, $m^{2}\left(f t^{2}\right)$
A_{2}	A2	cross-sectional flow area of section at is downstream end, $m^{2}\left(f t^{2}\right)$
A_{*}	ASTAR	cross-sectional area for sonic flow at specified flow conditions, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
AR	AR	cross-sectional flow area ratio of upstream and downstream ends of section
a_{T}	AT	speed of sound in still gas, computed at total (stagnation) conditions, $\mathrm{m} / \mathrm{sec}$ (ft/sec)
a_{0}	ASO	speed of sound in moving flow at upstream end of test section, $\mathrm{m} / \mathrm{sec}$ ($\mathrm{ft} / \mathrm{sec}$)
B		dummy constraint used in defining the friction term of turning vane loss function
$C_{\text {D }}$	CD	```drag coefficient of flow obstructions: drag/qS```
c_{v}	CHøRD	chord of turning vanes, m ($f t$)
D	D	```cross-sectional diameter of circular duct, m (ft)```
De_{1}		cross-section diameter at the upstream end of an equivalent circular duct with equal area, m (ft)

[^1]| Symbol | FøRTRAN
 name | Description |
| :---: | :---: | :---: |
| D_{2} | | cross-section diameter at the downstream end of an equivalent circular duct with equal area, m (ft) |
| D_{h} | DH | $\begin{aligned} & \text { hydraulic diameter: } \frac{4 \times(\text { cross-sectional area })}{\text { perimeter }}, \\ & m(f t) \end{aligned}$ |
| ER | ER | energy ratio: ratio of energy of flow at the test section to the output energy of the fans |
| $f(\emptyset)$ | $\begin{aligned} & \text { FKTV1 } \\ & \text { FKTV2 } \end{aligned}$ | function defining turning vane loss parameter K_{TV} |
| K | EK | local total pressure loss coefficient of section: $\frac{\Delta p_{T}}{q}$ |
| K CONTRACTION | EKCNTR | local total pressure loss coefficient from contracting portion of thick-airfoil flow straighteners |
| KDIFFUSION | EKD | local total pressure loss coefficient from diffusing portion of multi-loss-type sections |
| $\mathrm{K}_{\text {EXP }}$ | EKEXP | net expansion loss coefficient for diffusers |
| $\mathrm{K}_{\text {EXP }}{ }_{\text {Additional }}$ | EKADD | additional diffuser expansion loss coefficient due only to more diffusion in one plane than the other |
| $\mathrm{K}_{\text {EXP }}{ }_{\text {Basic }}$ | EKBASE | basic diffuser expansion loss factor coefficient for three-dimensional diffusion |
| $\mathrm{K}_{\text {EXP }}{ }_{\text {Circular }}$ | EKC | expansion loss coefficient for conical diffusers |
| $\mathrm{K}_{\text {EXP }}{ }_{\text {Rectangular }}$ | EK2DR | expansion loss coefficient for a twodimensional, rectangular cross-section diffuser |
| $\mathrm{K}_{\text {EXP }}{ }_{\text {Square }}$ | EKS | expansion loss coefficient for threedimensional expansion in square cross-section diffusers |
| $\mathrm{K}_{\text {EXP }_{2 \mathrm{D}_{\text {Average }}}}$ | EK2DCS | estimated expansion loss value for a twodimensional diffuser (one with expansion in only one plane) with cross-section shape of some square/circular hybrid |

Symbol
$\mathrm{KEXP}_{\text {2D }}$ Circular
$\mathrm{K}_{\mathrm{EXP}}^{3 \mathrm{D}_{\text {Average }}}{ }$

Kexpansion

Krriction

K FRICTION (CONICAL)
$\mathrm{K}_{\text {MESH }}$
$K_{\text {Ref. }} 9$
$K_{\text {RN }}$
KROTATION
K_{TV}
$\mathrm{K}_{\mathrm{TV}}{ }_{90}$
K_{v}
$K_{\text {VANED DIFFUSER }}$
K_{o}

EK2DC

EKCSAV

EKMESH

EKTV
EKTV90

EKV

EKO
estimated expansion loss value for a hypothetical two-dimensional diffuser with circular sides:
$\mathrm{K}_{\text {EXP }}{ }_{2 D_{\text {Rectangular }}}\left(\frac{\mathrm{K}_{\text {EXP }}{ }_{\text {Circular }}}{\mathrm{K}_{\text {EXP }} \text { Square }}\right)$
estimated expansion loss coefficient for threedimensional, combination circular and square cross-section diffuser
diffuser loss coefficient due to expansion:
$K_{\operatorname{EXP}}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}$
turning vane loss due to friction
diffuser loss due to friction for the equivalent conical diffuser
mesh screen-type loss parameter
diffuser loss factor presented in reference 9: $\Delta p / q$
$\overline{[(A R-1) / A R]^{2}}$
mesh screen Reynolds number sensitivity factor turning vane loss coefficient due to rotation
turning vane loss coefficient
turning vane loss parameter for given vanes at a 90° turn
local total pressure loss coefficient for vaned diffusers
local total pressure loss coefficient for vaned diffuser, $\mathrm{K}_{\mathrm{v}}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}$
section total pressure loss coefficient referred to test section conditions: $\frac{\Delta \mathrm{p}_{\mathrm{T}}}{\mathrm{q}_{\mathrm{o}}}$

Symbol	$\begin{array}{c}\text { FøRTRAN } \\ \text { name }\end{array}$	Description
$\mathrm{K}_{\text {O }_{\text {DRAG }}}$		flow obstruction (drag item) total pressure loss coefficient referred to test section conditions
L	EL	centerline length of section, m (ft)
ℓ		characteristic dimension on which Reynolds number is based
M	AMACH	local Mach number
M_{0}	EMO	Mach number at upstream end of test section
N	N	section assigned sequence number for order of occurrence in circuit
${ }^{\text {P DRAG }}$		power loss due to drag of flow obstruction, W (hp)
$\mathrm{P}_{\text {INPUT }}$	PWRIP	tunnel drive power required to be input to flow by the fans, W (hp)
$\mathrm{P}_{\text {INPUT }}{ }_{\text {DRAG }}$		power input required to overcome drag of flow obstruction, W (hp)
$\mathrm{P}_{\text {REQUIRED }}$	PWR \varnothing P	total fan motor output power required to drive wind tunnel at specified speed, W (hp)
P		local static pressure, $\mathrm{N} / \mathrm{m}^{2}\left(1 \mathrm{~b} / \mathrm{ft}^{2}\right)$
${ }^{p}$ T	PT	```tunnel total (stagnation) pressure, N/m (1b/ft }\mp@subsup{}{}{2}\mathrm{)```
${ }^{P} \mathrm{~T}_{\text {ATM }}$	PATM	$\begin{aligned} & \text { atmospheric (barometric) pressure, } \mathrm{N} / \mathrm{m}^{2} \\ & \left(\mathrm{lb} / \mathrm{ft}^{2}\right) \end{aligned}$
${ }^{\mathrm{P}} \mathrm{T}_{\text {SC }}$		total (stagnation) pressure in the circuit settling chamber, $\mathrm{N} / \mathrm{m}^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
q		local dynamic pressure: $\frac{\rho V^{2}}{2}, \mathrm{~N} / \mathrm{m}^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
q_{0}	Q0	test section dynamic pressure: $\frac{\rho_{\mathrm{O}} \mathrm{V}_{\mathrm{O}}{ }^{2}}{2}, \mathrm{~N} / \mathrm{m}^{2}$ (lb/ft ${ }^{2}$)
R	R	gas constant, $\mathrm{m}^{2} / \mathrm{sec}^{2}{ }^{\circ} \mathrm{K}\left(\mathrm{ft}{ }^{2} / \mathrm{sec}^{2}{ }^{\circ} \mathrm{R}\right)$
R_{e}		equivalent radius: $\sqrt{\mathrm{A} / \pi}, \mathrm{m}$ (ft)

Symbol	FøRTRAN name	Description
RN	RN	Reyno1ds number: $\frac{\rho V \ell}{\mu}$
$\mathrm{RN}_{\text {REF }}$	RNREF	reference Reynolds number at which turning vane 90° loss parameter, $\mathrm{K}_{\mathrm{TV}_{90}}$, was determined
S		drag area of flow obstruction (i.e., area for which C_{D} is determined), $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$.
s		distance along diffuser wall, m (ft)
s_{2}		length of diffuser, taken along wall, m (ft)
T		tunnel temperature in moving flow, ${ }^{\circ} \mathrm{K}\left({ }^{\circ} \mathrm{R}\right)$
T_{T}	TT	tunnel total (stagnation) temperature, ${ }^{\circ} \mathrm{K}\left({ }^{\circ} \mathrm{R}\right)$
V	V	local flow velocity, m/sec (ft/sec) $\quad \vdots$
V_{F}		flow velocity at the drive fan(s), $\mathrm{m} / \mathrm{sec}$ (ft/sec)
$\mathrm{v}_{\text {SYSTEM }}$		```flow velocity in a multiple-duct section, m/sec (ft/sec)```
V_{o}	vo	```test section upstream-end flow velocity, m/sec (ft/sec)```
X		location of inflection point in contraction wall (distance from upstream end), m (ft)
γ	G	specific heat ratio of gas
Δ	RUFNES	surface roughness in honeycomb cells, m (ft)
$\triangle E R$		difference between estimated and true circuit energy ratios; i.e., error in energy ratio estimate
$\Delta \mathrm{P}_{\mathrm{F}}$		static pressure rise across the fan(s), N / m^{2} ($1 \dot{\mathrm{~b}} / \mathrm{ft}^{2}$)
$\Delta \mathrm{P}_{\mathrm{T}}$		$\begin{aligned} & \text { total pressure drop through a section, } \mathrm{N} / \mathrm{m}^{2} \\ & \left(1 \mathrm{~b} / \mathrm{ft}^{2}\right) \end{aligned}$
$\Delta \mathrm{p}_{\text {TDUCT }}$		total pressure drop through a single duct of a multiple-duct section, $\mathrm{N} / \mathrm{m}^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
${ }^{\Delta \mathrm{P}_{\mathrm{T}}}{ }_{\mathrm{F}}$		total pressure rise across the $f\left(\mathrm{fan}(\mathrm{s}), \mathrm{N} / \mathrm{m}^{2}\right.$ ($\mathrm{lb} / \mathrm{ft}^{2}$)

Symbol
$\Delta \mathrm{p}_{\mathrm{T}_{\text {DUCT }}}$
$\Delta \mathrm{p}_{\mathrm{T}_{\text {SYSTEM }}}$
$\Delta \mathrm{p}_{\mathrm{T}_{\text {TOTAL }}}$
$\Delta \mathrm{p}_{\mathrm{W}_{\mathrm{i}}}$
$\Delta \mathrm{P}_{\text {REQUIRED }}$
ΔV_{0}
$\Delta \varepsilon$
δ_{s}
ε
η_{E}

η_{F}	ETAFAN
θ	TH
λ	SLAMDA
μ	EMU
$\mu_{\text {std }}$	EMUSTD

${ }^{\mu} T$
\qquad
average total pressure rise across a single fan, $\mathrm{N} / \mathrm{m}^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
total pressure drop through a multiple-duct section, $N / m^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
summation of all total pressure drops through the wind tunnel circuit, $N / \mathrm{m}^{2}\left(1 \mathrm{~b} / \mathrm{ft}^{2}\right)$
local pressure difference across wind tunnel wall, $N / \mathrm{m}^{2}\left(1 \mathrm{~b} / \mathrm{ft}^{2}\right)$
difference between true and estimated required drive power levels for given levels of operating velocity and fan efficiency; i.e., error in required power estimate, W (hp)
difference between estimated and true test section operating velocity for given power and fan efficiency levels; i.e., error in operating velocity estimate, $\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec}$)
increment of flow-obstruction downstream influence factor greater than unity: $\varepsilon-1$ (greater than or equal to zero)
diffuser side length ratio: ratio of change in height to change in width from upstream to downstream end, or its inverse, whichever is less than or equal to unity
flow-obstruction downstream influence coefficient (greater than or equal to unity)
drive motor electrical efficiency, percent
fan aerodynamic efficiency, percent
diffuser half-angle, rad
friction coefficient for smooth pipes flow viscosity, $N \mathrm{sec} / \mathrm{m}^{2}\left(\mathrm{lb} \mathrm{sec} / \mathrm{ft}^{2}\right)$
standard-day value of viscosity, $\mathrm{N} \sec / \mathrm{m}^{2}$ (lb sec/ft ${ }^{2}$)
reference viscosity at a known temperature, computed for still gas (stagnation conditions), $\mathrm{N} \sec / \mathrm{m}^{2}\left(\mathrm{lb} \mathrm{sec} / \mathrm{ft}^{2}\right)$

Symbol	FgRTRAN name	Description
v	ENU	kinetic viscosity of gas, $\mathrm{m}^{2} / \mathrm{sec}\left(\mathrm{ft}^{2} / \mathrm{sec}\right)$
ρ	RHøS	local static density, $\mathrm{N} \mathrm{sec}^{2} / \mathrm{m}^{4}$ ($1 \mathrm{~b} \mathrm{sec}^{2} / \mathrm{ft}^{4}$)
ρ_{F}	RHØSF	static density at the fan(s), $N \sec ^{2} / \mathrm{m}^{4}$ (1b $\sec ^{2} / f t^{4}$)
ρ_{T}	RHめT	density computed for total (stagnation) conditions, $N \sec ^{2} / \mathrm{m}^{4}\left(1 \mathrm{~b} \mathrm{sec}{ }^{2} / \mathrm{ft}^{4}\right)$
ρ_{0}	RHøSO	static density at upstream end of test section, $\mathrm{N} \sec ^{2} / \mathrm{m}^{4}\left(\mathrm{lb} \sec ^{2} / \mathrm{ft}^{4}\right)$
$\sum_{i=1}^{N} k_{o_{i}}$	SUMEKO	summation of section total pressure losses referenced to test section conditions
$\sum_{i=1}^{N} L_{i}$	SUMEL	summation of section centerline lengths, m (ft)
ϕ	PHI	corner flow turning angle, deg
2θ	TH2	diffuser equivalent cone angle:
		$2 \tan ^{-1}\left(\frac{\sqrt{A_{2}}-\sqrt{A_{1}}}{L \sqrt{\pi}}\right), \operatorname{deg}$

OF SUBSONIC WIND TUNNEL PERFORMANCE
William T. Eckert, Kenneth W. Mort, and Jean Jope
Ames Research Center
and
Ames Directorate, U.S. Army Air Mobility R\&D Laboratory

SUMMARY

This report brings together and refines the previously scattered and oversimplified techniques for the aerodynamic design and loss prediction of the components of subsonic wind tunnels. General guidelines are given for the design of diffusers, contractions, corners, and the inlets and exits of nonreturn tunnels. A system of equations, reflecting the current technology, has been compiled and assembled into a computer program (a user's manual for this program is included) for determining the total pressure losses. The formulation presented is applicable to compressible flow through most closed- or openthroat, single-, double-, or non-return wind tunnels. A comparison of estimated performance with that actually achieved by several existing facilities produced generally good agreement.

INTRODUCTION

In the past, most of the work on the design of ducts and wind tunnels and on the determination of their pressure (and power) losses has been either highly specialized, considering only one type of component, or over-simplified, covering several types of components but giving only a superficial idea of what parameters are important. However, for the recent NASA studies directed toward new and modified wind tunnel facilities, it has been necessary to do a careful job of estimating, easily and quickly, the performance of all circuit components. This report brings together, revises, and updates the techniques for the aerodynamic design and performance prediction of subsonic wind tunnels.

The basic procedures and guidelines for the aerodynamic design of critical wind tunnel components, as presented in references 1 through 3, have been revised and updated, as required. The diffuser and contraction design curves developed and suggested herein show the relative design points for several existing facilities. Also provided are recommendations derived from recent NASA studies on end treatments for non-return wind tunnels.

The method of loss analysis presented is a synthesis of theoretical and empirical techniques. Generally, the algorithms used were those substantiated by experimental results. The methods of references 4 through 11 for predicting component losses have been refined and incorporated. The performance
calculations, based on user-selected flow conditions at the test section, assume that the circuit geometry has been predetermined.

The comparison of the actual and predicted performance for several existing wind tunnel facilities shows generally good agreement.

CAUTIONARY DESIGN GUIDELINES

This report presents the means for rapidly estimating the performance of a wind tunnel circuit after its geometry has been determined. However, an improper design of any of its several components (diffusers, contractions, or corners, for example) could result in performance penalties caused by interaction with the flow in other components; such penalties cannot be predicted. In addition, improper design could cause poor test-section flow quality which would not be indicated by the performance analysis. Therefore, the purposes of this section are to point out critical areas of concern in wind tunnel design and to attempt to establish proper design criteria.

Diffusers

Diffusers, especially those just downstream of high-speed sections, are very sensitive to design errors which may cause flow separation. The equivalent cone angle and area ratio must be properly selected to avoid steady-state or intermittent separation of the flow from the diffuser walls. (This separation can cause vibration, oscillatory fan loading, oscillations in test section velocity, and higher losses in downstream components.) Generally, proper diffuser design requires that, for a given area ratio, the equivalent cone angle be constrained below a certain value. ("Equivalent" denotes an imaginary conical section with length and with inlet and exit areas identical to the actual section.) This cone angle should probably be held 0.5° to 1° lower for diffusers with sharp corners than for those with a rounded cross section.

Since the portion of the wind tunnel between the test section and the fans is usually the higher-loss segment, it is the most critical in affecting circuit performance. Therefore, it was used as a basis for establishing recommended design limits as a guide to diffuser selection. It was assumed that the fans serve to reenergize the boundary layer of downstream sections and that the fans and the upstream and downstream components have no interaction that affects their losses; this may or may not be true (see ref. 12). The overall area ratio and cone angle between the test section and fan contraction were examined for several wind tunnels. This analysis used the centerline lengths of all intervening components, including corners. (The actual effect of corners is unknown: they may alter the onset of separation somewhat.) Figure 1(a) compares curves for the first appreciable stall for flows with thin inlet boundary layers, from references 1 and 2 , with the design points of selected existing wind tunnels. These curves were used to aid in defining the separation trend; good correlation with the symbols is not necessarily expected. Figure $l(a)$ shows that most of these wind tunnels were designed beyond (above) the two-dimensional stall curve but below the conical stall
curve. (Some of these diffusers are far from conical.) The recommended design region, shown in figure $l(\mathrm{~b})$, was positioned with the prior knowledge that the NASA-Ames 7 - by 10 -Foot Wind Tunnel has a partially separated diffuser just downstream of the test section, and that the NASA-Ames 40 - by 80 -Foot Wind Tunnel has some local separation in the corners of the primary diffuser. The upper portion of the design region is recommended for diffusers with rounded corners, and the lower portion for diffusers with sharp corners.

Contractions

Contracting sections are subject to separation in the same manner as diffusers; however, the penalties are usually much less severe in the contracting sections. Separation of the flow can occur if the contraction is too short for the amount of area reduction. Figure 2(a) presents the general wall shapes suggested in reference 3 and figure 2 (b) shows the design boundary for these shapes in comparison with the designs of several selected wind tunnel facilities.

From this comparison it is evident that, while some facilities were designed more conservatively than others, no design severely exceeds the design boundary. Since none of the facilities considered has shown significant contraction-caused flow problems, the design boundary may be considered empirically reasonable. Further, reference 13 generally tends to support the positioning of the suggested design curve. However, the criteria of reference 13 are more conservative due to consideration of viscous effects which were neglected in the study of reference 3 .

Corners

The corner losses in a wind tunnel can be large. To minimize them, turning vanes should be used for more efficient turning. Also, as with any other high-loss item corners should, where possible, be located in a large-area section where the flow speed is low. Corner vane losses can be minimized in two additional ways: (1) by selecting an efficient vane cross-sectional shape and adjusting it for proper alignment with the flow, and (2) by choosing the best chord-to-gap spacing.

With reference to item (1), turning vane shapes can vary from bent plates to highly-cambered airfoils. Some sources favor airfoil vanes as being more efficient (ref. 4, p. 63) while others claim that thin vanes can have lower losses (ref. 5, p. 93). But airfoil vanes with blunted leading edges may be more forgiving of misalignment with the flow. The thicker vanes may, therefore, hold some advantage.

When considering item (2), the best chord-to-gap ratio depends on the vane type. For thick vanes, a ratio of about $2.5-$ to-1 is recommended (ref. 4, p. 62) and for thin vanes a ratio of about 4 -to-1 is suggested (ref. 5, p. 92).

Non-return wind tunnels have presented some interesting problems in tunnel design. This type of wind tunnel has the advantages of less structure (and therefore lower construction costs) and of no exhaust-gas-purging or airexchange requirement. Careful design can make the non-return circuit operating power competitive with that of closed-return wind tunnels (the corner losses can be traded for inlet and exit losses). However, an area of concern for the non-return tunnel is its potential sensitivity to external winds which could affect both the required power and the test section flow quality.

A recent series of NASA studies, which dealt with wind s.nsitivity problems, showed that a non-return wind tunnel should have three eatures: (1) a vertical exit system, (2) a horizontal inlet, and (3) an enclused area of protection, with a solid roof, at the inlet. References 14 and 15 detail the development work for the end treatment considered in those studies.

Reference 16 describes an inlet geometry that was developed to reduce the effects of wind. (This reference also presents a set of test-section flowquality requirements by which the characteristics of any inlet treatment may be evaluated.) Although the end treatment designs shown in references 14 through 16 could be revised or refined for additional wind protection, any additional inlet treatment would increase the structural cost and could increase the power requirement.

PERFORMANCE ESTIMATION

Although the performance analysis presented in this report was systematized and automated for rapid calculation of numerous cases or iterations (by the computer program described in the following sections), the equations presented are equally amenable to manual calculation methods.

General Approach

The equations were derived in forms that use the most common and convenient defining parameters. The equations are 1 isted and explained below and may be used for component after component, each in turn.

The total pressure losses (proportional to power losses) of each component are calculated and summed to give the total circuit loss and operating power required. The computation technique is applicable to either closed- or non-return circuit types made up of any combination of standard wind tunnel components in any order. The flow conditions in the test section (velocity, and stagnation temperature and pressure) and the external atmospheric pressure are variable as required.

Problem Restrictions

Three restrictions were found to be necessary in order to allow rapid solution of most cases with a minimum amount of effort. First, the crosssectional geometries were limited to the most common shapes: circular, rectangular, and flat-oval (semi-circular side walls with flat floor and ceiling). Second, air exchangers were omitted from this analysis due to lack of uniformity of configuration and a lack of definition as to the proper method of computing the losses. Finally, the drive system was assumed to be located in one or more parallel, annular ducts.

\therefore
 Computation Formulas

The equations used in this performance analysis were synthesized from various sources. Some were used in their original (source) form and others were modified to make them more convenient for use in this analysis. The equations used are presented below.

Flow-state parameters- The basic flow-state parameters were determined from input information about the reference control station and the test section. These parameters were derived from standard relationships for compressible flow.

$$
\begin{array}{cc}
\rho_{T}=\frac{P_{T}}{R T_{T}} & \text { (ref. 17, p. 8) } \\
a_{T}=\sqrt{\gamma R T_{T}} & \text { (ref. 17, p. 51) } \\
\mu_{T}=\frac{\mu_{S T D}\left(\frac{T_{T}}{T_{S T D}}\right)^{0.76}}{\sqrt{1+\left(\frac{\gamma-1}{2} M_{o}^{2}\right)}} & \text { (ref. 18, p. 19) } \\
\rho_{0}=\frac{\rho_{T}}{\left[1+\left(\frac{\gamma-1}{2} M_{o}^{2}\right)\right]^{\frac{l}{\gamma-1}}} & \text { (ref. 18, p. 4) } \\
A_{*}=M_{o} A_{o}\left\{\frac{\gamma+1}{\left.2\left[1+\left(\frac{\gamma-1}{2} M_{o}^{2}\right)\right]\right\}}\right\}^{\frac{\gamma+1}{2(\gamma-1)}} & \text { (ref. 18, p. 4) }
\end{array}
$$

Local conditions- The local flow conditions were determined for each end of each section.

1. Mach number: The local Mach number was found from a Newton's-method solution of the relationship

$$
M^{2}-\left[\frac{\gamma+1}{\gamma-1}\left(\frac{A}{A_{*}} M\right)^{\frac{2(\gamma-1)}{\gamma+1}}\right]+\frac{2}{\gamma-1}=0
$$

(appendix A)
2. Reynolds number: The Reynolds number based on the characteristic length ℓ, usually the local hydraulic diameter, was determined from

$$
\mathrm{RN}=\frac{\rho_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}} \ell}{\mu_{\mathrm{T}}}\left(\frac{\mathrm{~A}_{\mathrm{O}}}{\mathrm{~A}}\right)\left[1+\left(\frac{\gamma-1}{2} \mathrm{M}^{2}\right)\right]^{0.76}
$$

3. Friction coefficient: A Newton's-method solution was used to determine the friction coefficient for smooth walls from the expression

$$
\left[\log _{10}\left(\lambda \mathrm{RN}^{2}\right)-0.8\right]^{-2}-\lambda=0
$$

Section pressure Zosses- The loss in total pressure caused by each section was calculated in a form non-dimensionalized by local dynamic pressure: $\mathrm{K}=\Delta \mathrm{p}_{\mathrm{T}} / \mathrm{q}$. (In this study the smallest-area end of each section was used as the local reference position.) The individual losses were based on the nature of the section, local flow conditions, and input geometry and parameter information. The most appropriate loss forms for typical wind tunnel sections are catalogued on the following pages. The nonstandard formulas, those which are not directly attributable to the literature, are developed in appendix A. The precise equations, which were developed from various curve-fitting and interpolation techniques based on the plots presented in certain figures, are given in appendix B.

1. Constant-area ducts: For closed, constant-area sections the pressure loss due to friction is given by

$$
\mathrm{K}=\frac{\lambda \mathrm{L}}{\mathrm{D}_{\mathrm{h}}}
$$

(ref. 7, p. 53)
2. Open-throat duct: The losses from an open-throat test section may be found from the expression

$$
\begin{equation*}
\mathrm{K}=0.0845 \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{h}}}-0.0053\left(\frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{h}}}\right)^{2} \tag{ref.7,p.150}
\end{equation*}
$$

3. Contractions: In contracting sections, where the major part of the losses is due to friction, the local loss may be approximated as

$$
K=0.32 \frac{\lambda L}{D_{h}}
$$

(ref. 6, p. 528)
4. Corners with no net area change ("constant area"): A duct can change direction with or without the aid of flow guide vanes. For a constant-area turn employing turning vanes for efficiency, with a "normal" number of vanes (ref. 7, p. 241), and with chord-to-gap ratios between $2-$ to-1 and 4-to-1, the losses resulting from friction and rotation caused by the vanes are

$$
\mathrm{K}=\frac{\mathrm{K}_{\mathrm{TV}}}{3}\left[2+\left(\frac{\log _{10} \mathrm{RN}_{\mathrm{REF}}}{\log _{10} \mathrm{RN}}\right)^{2.58}\right]
$$

The Reynolds number used for the turning vane loss should be based on vane chord. The turning vane loss parameter K_{TV} is plotted as a function of turning angle in figure $3(\mathrm{a})$, with the assumption that $\mathrm{K}_{\mathrm{TV}}=0.15$ is a reasonable value for a 90° corner. Corners without turning vanes are less efficient and the loss function may be approximated by a sixth-order polynomial as shown in figure 3(b):

$$
\begin{aligned}
K= & 4.313761 \times 10^{-5}-6.021515 \times 10^{-4} \phi+1.693778 \times 10^{-4} \phi^{2}-2.755078 \times 10^{-6} \phi^{3} \\
& +2.323170 \times 10^{-7} \phi^{4}-3.775568 \times 10^{-9} \phi^{5}+1.796817 \times 10^{-11} \phi^{6}
\end{aligned}
$$

(appendix B)
This function assumes a loss value of about $K=1.8$ for a 90° turn. The foregoing losses are those associated with the turning of the flow only. The losses for a corner system (with or without vanes), with the walls of the duct to be considered as well, requires an additional term for the frictional loss of the constant-area duct based on the centerline length.
5. Corners (diffusing): Corners with diffusion may well employ longer vanes in order to improve the efficiency of the diffusion process. For this reason they were treated as vaned diffusers with the addition of the rotational loss term of the turning vane function:

$$
\mathrm{K}=\left\{0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right) \mathrm{u}\left(2 \theta-21.5^{\circ}\right)\right]\right\}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}+\frac{2}{3} \mathrm{~K}_{\mathrm{TV}}
$$

(appendix A)
where $u\left(2 \theta-21.5^{\circ}\right)$ is the unit step function and the turning vane loss parameter is defined as for a constant-area corner. This loss function includes the effects of friction.
6. Diffusers: Diffusion produces both expansion and friction losses in the duct given by

$$
K=\left[K_{E X P}+\left(\frac{\lambda}{8 \sin \theta} \frac{A R+1}{A R-1}\right)\right]\left(\frac{A R-1}{A R}\right)^{2}
$$

where the expansion parameter values, $K_{E X P}$, are plotted against equivalent cone angle in figure 4 and the technique used for estimating the $K_{E X P}$ values is described in appendix A.
(It should be noted that there are more sophisticated techniques for estimating diffuser performance than the one presented here. However, they require boundary-layer calculations; for example, see reference 19. Experience with both the simple technique described herein and more complex techniques indicates that the two produce comparable results. Generally, little is gained by the significant additional effort required to use the more complex approaches.)
7. Exit: The total pressure loss at the exit of a non-return wind tunnel, or of any expelled flow, is due to the loss of the kinetic energy of the exiting flow. This is given by

$$
K=\frac{2\left\{\left[1+\left(\frac{\gamma-1}{2} M^{2}\right)\right]^{\frac{\gamma}{\gamma-1}}-1\right\}}{\gamma M^{2}}
$$

(appendix A)
8. Fan (power) section: Fan drive sections are commonly made up of contractions, constant-area annular ducts, and diffusers. Analysis should be handled by dividing the fan section into these three component parts.
9. Flow straighteners - honeycomb (thin walls): The loss through thin flow-straightener or honeycomb systems may be expressed as

$$
K=\lambda\left(3+\frac{L}{D_{h}}\right)\left(\frac{A}{A_{\text {FLOW }}}\right)^{2}+\left(\frac{A}{A_{\text {FLOW }}}-1\right)^{2} \quad(\text { ref. 7, p. 478) }
$$

where the hydraulic diameter is that of the honeycomb cell. The friction coefficient is determined from a Reynolds number based on the surface roughness of the honeycomb:
for $R N \leq 275$,

$$
\begin{aligned}
& \lambda=0.375 \mathrm{RN}^{-0.1}\left(\frac{\Delta}{D_{\mathrm{h}}}\right)^{0.4} \\
& \lambda=0.214\left(\frac{\Delta}{\mathrm{D}_{\mathrm{h}}}\right)^{0.4}
\end{aligned}
$$

10. Flow straighteners - airfoil members (thick walls): Flow through adjacent airfoils will first contract and then diffuse. It was assumed that the point of minimum distance between parallel members would be at 30 percent of the straightener length back from the leading edge. The forward 30 percent was treated as a contraction and the aft 70 percent as a vaned diffuser. Thus,

$$
\mathrm{K}=0.096 \frac{\lambda \mathrm{~L}}{\mathrm{D}_{\mathrm{h}}}+\left\{0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right) \mathrm{u}\left(2 \theta-21.5^{\circ}\right)\right]\right\}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}
$$

(appendix A)
where the hydraulic diameter is that of each cell of the flow straightener, the friction coefficient is determined from a Reynolds number based on that hydraulic diameter, the area ratio and equivalent cone angle are based on the exit and minimum flow areas, and $u\left(2 \theta-21.5^{\circ}\right)$ is the unit step function.
11. Internal flow obstruction - drag item: The loss due to the drag of internal structure such as struts or models has the form

$$
K=C_{D} \frac{S}{A_{F L O W}} \varepsilon
$$

(appendix A)
12. Perforated plate: Perforated plate with sharp-edged orifices, used as protection screen or as screen around the inlet of a non-return tunnel, produces losses given by

$$
K=\left\{\left[\sqrt{\frac{1}{2}\left(1-\frac{A_{F L O W}}{A}\right)}+\left(1-\frac{A_{F L O W}}{A}\right)\right] \frac{A}{A_{F L O W}}\right\}^{2} \quad(\text { ref. } 7, \text { p. 321) }
$$

13. Mesh screen: The losses produced by a mesh screen may be expressed as

$$
K=K_{R N} K_{\text {MESH }}\left(1-\frac{A_{F L O W}}{A}\right)+\left(\frac{A}{A_{F L O W}}-1\right)^{2} \quad \text { (ref. 7, p. 308) }
$$

where the Reynolds number influence factor, K_{RN}, is plotted against Reynolds number (based on mesh diameter) in figure 5, and the mesh constant, $\mathrm{K}_{\text {MESH }}$, is 1.3 for average circular metal wire, 1.0 for new metal wire, and 2.1 for silk thread.
14. Sudden expansion: For a sudden expansion with ducting downstream (to allow reattachment of the flow and maximize the pressure recovery) the loss is

$$
\mathrm{K}=\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}
$$

(ref. 7, p. 128)
15. Vaned diffusers: The pressure loss of a vaned diffuser, one in which splitter vanes are used to improve the performance of a short diffuser by decreasing the effective equivalent cone angle of each chamber, may be determined from

$$
\mathrm{K}=\left\{0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right) \mathrm{u}\left(2 \theta-21.5^{\circ}\right)\right]\right\}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}
$$

(appendix A)
where $u\left(2 \theta-21.5^{\circ}\right)$ is the unit step function. (See fig. 6.)
16. Fixed, known loss: For a fixed loss item where the pressure loss value is known, that value may be used directly by definition:

$$
\mathrm{K}=\frac{\Delta \mathrm{p}_{\mathrm{T}}}{\mathrm{q}}
$$

17. Multiple ducts: In a system of multiple ducts, where the local flow passes through two or more separate, identical passages at the same time, the losses have the same value as those for the same type of single duct. Some of the pertinent parameters, such as hydraulic diameter and equivalent cone angle, should be based on the geometry of one of the individual ducts. The loss for the system of ducts may then be determined from the loss for a single duct:

$$
\mathrm{K}=\frac{\Delta \mathrm{p}_{\mathrm{T}_{\text {SYSTEM }}}}{\mathrm{q}}=\frac{\Delta \mathrm{p}_{\mathrm{T}_{\text {DUCT }}}}{\mathrm{q}}
$$

18. Loss value transferred to reference location: Each local loss parameter is calculated basel on local conditions at the smallest-area end of each section and may then be referenced to the test section conditions by the formula

$$
K_{o}=K\left[\frac{A_{O} M}{A M_{O}} \sqrt{\frac{1+\left(\frac{\gamma-1}{2} M_{o}^{2}\right)}{1+\left(\frac{\gamma-1}{2} M^{2}\right)}}\right]
$$

(appendix A)
19. Overa11 and summary performance: The energy ratio of the wind tunnel under consideration is given by

$$
E R=\frac{1}{\sum_{i=1}^{N} K_{o_{i}}}
$$

(ref. 4, p. 69)

The pressure difference across the wind tunnel walls, determining the minimum required structural strength for each section, is given by

$$
\Delta \mathrm{P}_{\mathrm{W}_{\mathbf{i}}}=\mathrm{p}_{\mathrm{T}_{\mathrm{ATM}}}-\left\{\frac{\mathrm{P}_{\mathrm{SC}}-\left(\mathrm{q}_{\mathrm{o}} \sum_{j=1}^{i} \mathrm{~K}_{\mathrm{o}_{j}}\right)}{\left[1+\left(\frac{\gamma-1}{2} \mathrm{M}_{\mathrm{i}}^{2}\right)\right]^{\frac{\gamma}{\gamma-1}}}\right\}
$$

The power required to be input into the flow in order to drive the flow through the wind tunnel at a specified test section speed is expressed as

$$
\mathrm{P}_{\text {INPUT }}=\frac{\left(\sum_{i=1}^{N} \mathrm{~K}_{\mathrm{o}_{i}}\right) \rho_{o}{ }^{2} \mathrm{~A}_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}}{ }^{3}}{2 \rho_{\mathrm{F}}}
$$

The actual drive power required is dependent on the efficiency of the fan/motor system:

$$
\mathrm{P}_{\text {REQUIRED }}=\frac{\mathrm{P}_{\text {INPUT }}}{\eta_{F}}
$$

COMPUTER PROGRAM DESCRIPTION

The computer program was written in FøRTRAN IV language. It consists of a main program which calls five subroutines and/or six library routines, as required. Two of the subroutines are optional and may be abbreviated and simulated in order to save execution time and/or memory storage space.

Method of Solution

The general technique used is outlined in the computer program functional flow chart in figure 7. The program was developed in six functional units: a main program and five specialized subroutines. The main program retains general control over the computational flow and calls the subprograms as required.

In the main portion (designated PERFøRM), at first entry into the program, various section-shape geometry relationships and certain semi-empirical diffuser, turning vane, and honeycomb loss functions are defined. The case title card is read and checked for validity by specified code. The tunnel master data control card is then read, checked for validity, and checked for content of pertinent data by the data-checking subroutine. If any errors are found in either of these two preliminary cards, error messages will be printed. Although detected errors will not abort the computer run (unless a card of improper format is encountered where not expected), the case under current consideration will not be computed - only the checking of input errors will then be performed on each section card. Prior to reading the section cards, the units of measure (International System or U.S. Customary System) to be used for the particular case are read. These units of measure are used as the basis for the development of the appropriate flow parameters and test section conditions.

The section cards are read and operated on one at a time. They are checked for validity and input errors by the data-checking subroutine (called DATACK) and the input information, if sufficiently complete, is then used in the computation of the section upstream- and downstream-end geometries. Adjustments to these geometry calculations are made for any multiple-ducted sections. For diffusing sections where the expansion loss parameter was not input by the user, that parameter is generated from predefined functions. Branching of the computational flow then transfers control to the appropriate block of instructions for the remainder of the calculations which are peculiar to the particular section under consideration.

After all section cards have been read in and operated on, each in turn, a case termination card is encountered. The termination card specifies the optional summary operations to be performed. The encounter of this card
signals the end of a case and triggers the final calculations. The codes contained on this card determine the printing of velocity-optimizing and circuit summary information, the plottirg of the summary information, and the return to the beginning for another case.

The data-checking subroutine evaluates the master and section input cards for completeness of data (based on the requirements for the type of section). Then, if any error was detected during computation of a case or if the appropriate termination code was specified by the user, the complete set of input data is tabulated. Messages about errors, omissions, or superfluous information are included.

The subroutine SPEED computes the local Mach number based on local crosssectional area and determines the local flow velocity.

The subroutine FRICTN calculates the local Reynolds number, usually based on the local duct hydraulic diameter, and the local friction coefficient for smooth pipes.

The subroutine ØUTPUT accepts the calculated section parameters along with the section type codes describing the types of information to be output and prints the section information according to the appropriate format.

The subroutine PLøTIT plots the summary information (cummulative total pressure losses and/or wall pressure differential) versus circuit centerline length if requested. The plot is scaled for centimeter or inch plot paper, determined by whether International or U.S. Customary units are used for computation.

The program is terminated after the last operations on a case for which a no-return instruction on the termination card was given by the user.

Computing Equipment Required

Hardware and machine components- Although this program was written for use on an IBM $360 / 67$ with TSS Monitor, batch mode, an attempt was made to keep it compatible with any system that uses FøRTRAN IV. No magnetic tapes were used. In this version, input is made by cards and the data to be plotted are stored on a disc file for plotting at a later time in an off-line mode. However, it is possible to use a typewriter-type terminal for conversational or real-time computation, typing the data by card-image format, and plotting immediately after the computation has been completed for a case.

The total core required for compilation on the IBM $360 / 67$ was approximately 82000 (decimal) bytes. If necessary this figure can be reduced by eliminating two subroutines, DATACK and PLDTIT. The sizes of the main program and of each subroutine were approximately as follows:

PERFøRM	38800 bytes
DATACK	25700
SPEED	800
FRICTN	900
ØUTPUT	12900
PLDTIT	2900

The program was executed on an IBM 360/67, writing plot data on a disc, logical unit 10. Later the data file was accessed from a 14.8 character-persecond binary-coded-decimal terminal and plotted on a Zeta plotter with $0.005-i n$. step increments. The plot page size was programmed not to exceed 25 by 38 cm (or 10 by 15 in.$)$.

Software- This program was written for use on any computer with sufficient core and with a standard FøRTRAN IV compiler.

The Zeta plotter routines, with minor exceptions, are compatible with the Calcomp routines. The subroutines AXIS, FACT \emptyset R, LINE, PL \emptyset T, SCALE and SYMB $\emptyset \mathrm{L}$ are alike in both Calcomp and Zeta plotting.

CALL AXIS - draws the axis line and annotates the divisions at every two centimeters or each inch (depending on the units of measure specified).

CALL FACTøR - enables the user to produce normal size drawings with plotters which have either 0.01 - or 0.005 -in. increment size. The variable FACT must be set to 1.0 for 0.01 -in. increments and to 2.0 for $0.005-\mathrm{in}$. increment plotters.

CALL LINE - plots centered squares connected by straight 1ines through the coordinate pairs of data values.

CALL PLDT - is used to establish a new point of origin for the pen and paper movements. Before plotting commences, the pen must be positioned where desired along the X-axis. The program will position it along the Y-axis. The plot-page size is defined by the values of YLEN and XLEN which are equated to 25 and 38 cm or 10 and $15 \mathrm{in.}$, as required.

CALL PLøTF - is an alternate plotting initialization routine which is available in the Zeta but not Calcomp plot package. It is used in place of PLDTS whenever deferred plotting is desired. The first argument in the call statement indicates the speed of the terminal with which the plotter is interfaced. The second argument is the logical-device number of the plot file.

CALL SCALE - examines the data and determines the proper scaling for the given dimensions of the plotter paper, 25 by 38 cm or 10 by 15 in .

CALL SMøDE - is available only in the Zeta plot package. It permits the user to choose from extensive capabilities which affect several of the plotter routines. In this program the options have been set equal to the usage found in the Calcomp routines, and therefore, if Zeta plotter routines are not available, the call to SMøDE should be eliminated.

CALL SYMBøL - prints the input case title at the top left of each plot page as it appears in columns 2 through 80 of the title card. For reference purposes, it also draws a small plus sign at the origin of the plot.

The library routines used are standard F \emptyset RTRAN routines:
ABS - Absolute value
ALØG10 - Common logarithm, base ten
ATAN - Arctangent (result in radians)
EXP - Exponential of the natural number e
IFIX - Convert from real number to integer
SIN - Trigonometric sine (argument in radians)
SQRT - Square root

Programming Techniques

It was intended that this program be usable on as many different computer systems as possible. Therefore, in order to make them applicable to some machines, certain statements were forced into particular forms which would be less efficient on other systems (e.g., Hollerith instead of literals in format statements).
$C \emptyset M M \emptyset$ and $D A T A$ statements were used as much as possible to simplify the definition of parameter values. In the main program, arithmetic statement functions were used for three purposes: (1) for the definition of section hydraulic diameter, area, and equivalent cone angle geometry functions; (2) for the conversion function from local to reference-section pressure losses; and (3) for the definition of the least-squares-polynomial-curve-fit functions. The last group of functions includes: (1) the corner turning-loss parameters as functions of turning angle (see fig. 3); (2) the diffuser expansion loss parameters for the different cross-section shapes as functions of equivalent cone angle (see fig. 4); and (3) the mesh screen Reynolds number sensitivity factor as a function of mesh-diameter-based Reynolds number (see fig. 5).

Certain functions not easily solvable in closed form were solved iteratively (some by Newton's method) to 0.01 percent accuracy. These functions include test section Mach number, local section Mach number, and local section friction coefficient.

Numeric codes were used for specifying such things as section type, section end-shape types, and system of computational units; for decisions on requirements for inputs to each section type; and for case-termination procedures and outputs desired. The various important input codes are listed in tables 1 and 4. All sections of the multiple-ducted type were assigned high code numbers for simplicity in selecting them for special handling. The
various section types were grouped in code decades for reasonable association of section code and component function. Where possible, the second digit of the code (if that second digit is not zero) reflects the basic characteristic of the section: constant area, contracting, or diffusing.

The information input fields on the master data and section cards were arranged in three basic groups: (1) qualitative information (type and shape); (2) quantitative geometry information (number of ducts, cross-sectional end dimensions, and length); and (3) loss-related parameters. The case termination card employs the same format as the section cards so that it may be encountered at random intervals without causing a program crash. For the tabulation of the input data (for error-location and record-keeping purposes), objecttime formatting was used to compile the combination input and annotation data set for a convenient output.

Much of the output of the program was set up on a demand (i.e., optional) basis. A section-by-section performance analysis is automatically provided. A brief summary of the variation of selected parameters through the circuit, and plots of those parameters, may be selected if desired. An annotated listing of the inputs may be requested or, if errors are detected, the listing is internally forced in order to provide a simple means of error-detection and correction and/or simplified record-keeping of case data.

Source Code

A source code listing of the performance estimation program is provided in appendix C along with the associated notation definitions. The source code includes the use of comment cards throughout the program for identification of the operations carried out by each set of instructions.

Operating Instructions

The basic source program deck arrangement is shown in figure 8.
Input- Sample coding forms for the four types of input cards required are presented in figure 9. The special symbols required in the first columns of the title and master data cards are included.

1. Title card: For the title labeling card, with the exception of the first column which must contain an asterisk (*), the entire card may be used as desired. This title was programmed to appear at the top of each page of the case to which the title refers, including the plots. Only one title card per case may be used.
2. Master card: The tunnel master control data card provides sufficient information for defining conditions in the test section (which is the reference section for all calculations) and conditions of the surrounding external atmosphere. Table 2 details the inputs included on the master data card. The first column must contain a minus sign in order to identify the card as a valid master card. The remainder of the inputs should be positive, with
columns 2 through 6 containing five fields of integers only (no decimal points). Columns 7 through 10 were not used on this card and should be left blank. Columns 11 through 50 should contain floating-point numbers. These columns were divided into eight parameters of five columns each, including decimal point.
3. Section cards: The individual section information cards were based on the same format as the master card, except that the section cards require no special identifying code. Table 3 details the inputs contained on the section cards. The first six columns, containing four data fields, require integer inputs. The remaining 74 columns were divided into two real number fields of two columns each (with the assumed default decimal points to the right of the second columns), and 14 real number fields of five columns each (with the assumed default decimal point between the third and fourth columns of each field).

Although the input parameter requirements vary from section to section, certain requirements are basic to all sections. These items include: (1) the section type code, (2) the section end shape codes, and (3) the section dimensions (end height(s) and width(s) and/or diameter(s) and usually length). A detailed list of the additional, specialized requirements for each section is presented in table 4.

Although not mandatory in order to obtain a correct total power estimation, it is advisable to input the section data cards in the actual section order so that the summary calculations and plots have relevance to the actual circuit.
4. Termination card: The case termination card, which signals the end of the section inputs for a particular case, is identified by the constraint of blanks in card columns 3 and 4. The numbers contained on this card are used strictly as task codes; table 5 shows the details of these codes. In the event of a request for plotted information, the code determines the type(s) of information to be presented. For all other tasks the codes dictate a simple yes/no decision.

As many cases as desired may be input in a single job submission. The same system of units need not be used in all cases. Any parameters may be changed as desired from case-to-case since there are no forced carry-overs (except the specific heat ratio, γ, which is fixed at the time of program compilation).

Output- Based on the foregoing input information the results may be calculated and tabulated in five different types of information groups.

1. Section performance analysis: The section performance tabulation fully describes the performance-related parameters of the wind tunnel circuit. Atmospheric and test section flow reference conditions are stated at the top of the first page. The various parameters are tabulated for each section in the order of computation with the upstream end information on the first and the downstream information on the second of the two lines for each section. The section sequence number and type (a translation of the code) and the end
shapes are given first. The geometry and local velocity information are presented next, followed by the section length and calculated total pressure loss values.
2. Overall performance: If no input errors are encountered during the analysis of a case, overall performance values are presented at the end of the section performance tabulation. This includes the total circuit length, the total pressure losses and energy ratio for the circuit, and the total operating power required.
3. Summary characteristics: If requested on the termination card and barring any errors, a summary of the circuit characteristics is tabulated on a separate page. This tabulation includes section sequence numbers, Mach numbers, cumulative pressure losses, and local wall pressures, all as functions of distance through the circuit.
4. Plots: Under proper condition codes, the cumulative pressure losses and/or the wall pressure differentials will be plotted as functions of distance through the circuit (centerline length). The straight lines that appear on the plots connecting the points are for reference only and do not represent the actual distribution in a component.
5. Input data tabulation: Finally, if an input error was encountered during the analysis of the circuit, or if such information was requested by the user, the input cards are tabulated with annotations regarding missing or superfluous inputs. A careful look at this section should allow the user to discover why a given set of input data did not produce the expected type of results.

A11 of the foregoing types of output are shown for the test case.
Computer system restrictions- Certain restrictions and/or assumptions had to be imposed on the computer system and its methods and abilities in order to perform the performance analysis within reasonable time, effort, and money constraints.

1. Hardware: This analysis was programmed for a moderate-sized system with common components. No special hardware is required with the exception of a plotter if the plotting option is used. The output printing device is assumed to have available a minimum capacity of 120 characters per line, but the number of lines per page may be set by means of the LINEMX parameter in the main program. (Barring any special requirements, 45 lines for an 8.5-in. page or 60 lines for an $11-i n$. page are recommended.)
2. Software: Certain software restrictions were imposed simply as a starting point to the problem solution. The input card formats were fixed as shown in figure 9. The specific heat ratio (γ) and the number of lines per output page were fixed for each compilation of the source deck, although changes can be made by altering the values of G and/or LINEMX, respectively, near the beginning of the main program.

For reasons of possible memory limitations on smaller systems, the number of wind tunnel components in each circuit case was limited to 30 sections. This limit may be changed by assigning a new value to LMTSEC in the main program and by re-dimensioning the following variables as denoted by "XX": in the main program (PERFØRM), DELP(XX+2), SEKO(XX), SEL(XX), SMACH(XX), SSUMEL (XX+2) and SSUMKO (XX+2) ; in the data-checking subroutine (DATACK), ENDATA(XX,20), NCHECK (XX, 20) and NDATA(XX,4); and in the plotting subroutine (PLØTIT), DELP(XX+2), SSUMEL(XX+2) and SSUMKO (XX+2). If memory limitations are a severe problem and/or if computer-controlled plotting facilities are not available to the user, the data-checking and/or plotting subroutines may be "removed" by inserting dummy, one-card subroutines with the same arguments which would have no effect on the calculations. This would decrease the utility and power of the program, but would retain the basic performance estimation capabilities without crippling them altogether.

The plotting routines were written according to the requirements for a plotter with $0.005-i n$. increments.

Optional inputs- Certain of the parameter inputs are designated as optional and have built-in assumed default values in the event that the user knows no better values than the ones provided in the sources referenced herein. These optional parameters are shown in tables 2 through 4.

On the master card (see table 2), the units of measure should be specified and an error message will be given if they are specified erroneously (other than as type 1 or 2). However, the units code will default to 1 (the International System) and case execution will continue. The test section and atmospheric total pressures will default to one atmosphere if not specified.

On the section cards (see table 3), the number of items in the duct will default to unity if not specified. The expansion loss parameter for diffusers defaults to a value based on figure 4. (It is computed by determining the shape of each end, the extent to which the diffuser is two-dimensional in nature (i.e., changing cross-sectional size in height or width only), and the equivalent cone angle, and then interpolating between the curves of figure 4. See appendix A.) The mesh screen loss constant defaults to 1.3 , the value for an average-condition metal mesh screen (ref. 6, p. 527), and the reference Reynolds number for turning vanes defaults to 0.5 million (ref. 6, p. 527). The surface roughness for honeycombs defaults to the appropriate equivalent of 0.00001 m , the value for new, commercially smooth, non-steel pipe (ref. 7, p. 62). The factor for the additional influence of a blockage on downstream sections ($\Delta \varepsilon$) defaults to zero.

Diagnostic messages- There are a limited number of error diagnostic messages which were built in to handle many, but not all, of the potential user errors. The causes and appropriate corrections of these errors should be evident in each message.

1. Title card: If a card is in the position of a title card and does not begin with an asterisk as required, the following message will appear:

TITLE ('...(invalid title)...') IS INCORRECT OR IMPROPER AS IT EXISTS. THE FIRST CARD COLUMN MUST CONTAIN AN ASTERISK (*) TO BE IDENTIFIED AS A VALID TITLE CARD.
2. Master card: An invalid master card is denoted by:

MASTER CONTROL DATA ('...(card image)...') IS INCORRECT OR IMPROPER AS IT EXISTS. THE FIRST TWO CARD COLUMNS MUST CONTAIN A NEGATIVE NUMBER (-1 TO -9) TO BE IDENTIFIED AS A VALID MASTER CARD. THIS CASE WILL BE SKIPPED.

A general omission from the master card of required information produces:
CRITICAL OMISSION(S) IN TUNNEL MASTER CONTROL DATA PREVENT EXECUTION OF THIS CASE. ANY SUCCEEDING CASES WILL NOT BE AFFECTED.

Two master cards, back-to-back, for a given case are identified by:
MORE THAN ONE MASTER CONTROL CARD EXISTS FOR THIS CASE OR INPUT CARDS ARE OUT OF ORDER. CHECK DECK SET-UP. THE LAST MASTER CARD ENCOUNTERED WILL BE ASSUMED AS THE CORRECT MASTER CARD FOR THE SECTION CARDS WHICH FOLLOW.

Encountering a master card where not expected (generally indicating missing case termination and title cards) causes this message:

MASTER CONTROL CARD HAS BEEN ENCOUNTERED BEFORE CASE TERMINATION AND TITLE CARDS. CHECK DECK SET-UP. ERROR-MESSAGE TITLE WILL BE GENERATED AND SUMMARY OUTPUT, NO-PLOT, INPUT DATA TABULATION, AND NEXT-CASE RETURN TERMINATION PARAMETERS WILL BE ASSUMED.

If an invalid test section upstream end shape geometry is specified, one which the program cannot handle, an error results:
**ERROR -- INVALID TEST SECTION UPSTREAM END SHAPE CODE WAS SPECIFIED AS (code used) (SHOULD BE 1, 2 OR 3). THIS CASE CANNOT BE EXECUTED.

If an invalid units code is specified the message is:
THE UNITS OF MEASURE CODE IS IMPROPERLY SPECIFIED AS (code used), (SHOULD BE 1 OR 2). CHECK MASTER CARD (COLUMN 4). SEE THE DATA TABULATION AT THE END OF THIS CASE. THE INTERNATIONAL SYSTEM OF UNITS WILL BE ASSUMED FOR THIS CASE.

If the termination code requests power-matching but the input power value is such that the calculation would be meaningless, a diagnostic of the following form is printed:
**ALTHOUGH VELOCITY-OPTIMIZING WAS REQUESTED BY TERMINATION CODE, THE INPUT POWER VALUE IS ILLEGAL (LESS THAN OR EQUAL TO ZERO). THEREFORE, NO VELOCITY-OPTIMIZING IS POSSIBLE. RECHECK INPUT VALUE ON MASTER DATA CARD.
3. Section card: A general omission of required data from a section card will cause this message:

```
**ERROR -- CRITICAL OMISSION(S) IN SECTION INPUT DATA. SEE DATA
TABULATION AT END OF OUTPUT FOR THIS CASE.**
```

If an invalid section shape code is specified it is not possible for the program to properly compute section end geometries; as a result an error occurs:

```
**ERROR -- INVALID SECTION SHAPE CODE WAS SPECIFIED AS (input code)
(SHOULD BE 1, 2 OR 3). THIS SECTION WILL BE SKIPPED.
```

An error which arises during computation and causes a non-positive total pressure loss for a given section prevents completion of the case analysis and gives rise to an error message:
**ERROR -- SOME INCORRECT COMBINATION OF INPUTS OR UNANTICIPATED SITUATION HAS CAUSED AN INVALID (NON-POSITIVE) TOTAL LOSS LEVEL. RECHECK SECTION (section number) INPUT DATA.

If the maximum allowable number of circuit sections written into the program is exceeded by placing too many section cards together in one case, or without termination, title, and master cards between cases, this diagnostic will appear:

MAXIMUM LIMIT ON THE NUMBER OF SECTIONS (... (maximum allowable number of section)...) HAS BEEN REACHED. EITHER A CASE TERMINATION CARD HAS been omitted (along with title and master cards to begin a new case) OR THIS CASE IS TOO LONG FOR THE PROGRAMMED ALLOWABLE NUMBER OF SECTIONS. THE CASE HAS BEEN TERMINATED AT THIS POINT.

In this instance, the inputs from the group of sections for which the limit was exceeded will be tabulated and the remaining section inputs will be evaluated and tabulated. If the user fails to cause the test section blockage amounts specified on the master control card to coincide with that of the test section card, erroneous analysis may result since inconsistent flow areas would be calculated. The section card value will be used (since the discrepancy may be desired) and this notice is given:
**NOTE -- TEST SECTION BLOCKAGE FROM SECTION CARD INPUT (... (section input value)... PERCENT) DOES NOT EQUAL THAT OF THE MASTER CARD INPUT (...(master input value)... PERCENT). CHECK DATA DECK. SECTION CARD VAlUE WILL BE ASSUMED AS CORRECT AND EXECUTION WILL CONTINUE.

An invalid section type code will cause a section to be skipped and a message to be printed:
*ERROR -- INPUT SECTION TYPE CODE (CARD COLUMNS 3 AND 4) CALLS INVALID SECTION TYPE. DATA CARD IGNORED.**

Any input errors were deemed justifiable cause for judgment as an incomplete case. As a result, reliable overall and summary information cannot be calculated. To assist the user in locating the error(s), the input values will be forced to be tabulated and the following explanation appears:

***DUE TO ERROR(S) IN INPUT CARD(S), VALID SUMMARY INFORMATION IS NOT AVAILABLE. REFER TO THE TABULATION OF INPUT DATA ON THE FOLLOWING PAGES. CORRECT THE ERROR(S) AND RESUBMIT THIS CASE. SUBSEQUENT CASES WILL NOT BE AFFECTED.

4. Possible errors lacking diagnostics: Certain potential problem areas remain unprotected by diagnostic and error-recovery systems.

No special provision was made for two test sections in the same circuit case. As long as the blockage values for both test sections match the one from the master card, no message will be printed. In any event, the execution will not be terminated. The test section shapes and dimensions from the master card are not checked against those of the test section card. Although a mismatch of these values could cause a mass-flow error, including and enforcing such a check could inhibit any meaningful tandem-test section cases. These problems could be avoided, however, by naming only one working section as a test section and referring to the other by general type.

Also, there was no provision for checking the specified tunnel type against the types of sections actually used (e.g., checking a non-return, or open-test-section tunnel for exit or open-throat test section input cards). This check is not critical and was left to the user.

One error-check was not included due to the program complications which would have resulted. If a case termination card is omitted at the end of a case and a computer-system control card or a title card is encountered, the error will be disastrous due to mismatched format types. Execution and calculations will be immediately aborted by the computer.

Test Case
The NASA-Ames Research Center 40- by 80 -Foot Wind Tunnel was used as an example of a typical wind tunnel. This tunnel, illustrated in figure 10, is of the single-return, closed-test-section, continuous-running type. It has a flat-oval test section 12.2 m (40 ft) high by 24.4 m (80 ft) wide and is powered by six $12.2-\mathrm{m}$ (40 ft) diameter, six-bladed fans. It has an eight-toone overall contraction ratio and uses multiple-circular-arc type turning vanes in each of the four 90° corners.

A complete list of the test case inputs and computed information outputs are presented in figure 11. The machine computing time for this test case (without plots) was about 7 sec on an IBM 360/67.

Although this test case was not an exhaustive exercise of all possible tunnel components, it does include most of the basic section types: diffusing test section, single-duct contraction and diffuser, constant-area single duct,
constant-area corner with turning vanes, and multiple-duct fan sections (contraction, constant-area annulus, and diffuser). Examples of other types of components are shown in the sample cases which follow.

DISCUSSION AND APPLICATIONS

Wind tunnel energy ratio, required power, and operating velocity are interdependent. The energy ratio is affected by velocity through the effect of velocity on the Reynolds number. The required drive power, influenced directly by operating velocity and inversely by energy ratio, is also controlled by the fan system efficiency which is often only an estimated quantity. Any estimate of operating velocity for a given power level is, then, dependent on the basic efficiency of the circuit (energy ratio) and drive system efficiency, assuming the best power estimate available to be that delivered to the fans. This interdependency means that an error in the prediction of energy ratio (and/or in the estimation of fan efficiency) will cause corresponding errors in power and velocity estimates.

These errors resulting from an erroneous prediction of the circuit energy ratio can be found from the relationship governing required power, test section velocity, and energy ratio, assuming given motor electrical and fan efficiencies. For a fixed test section velocity,

$$
\frac{\Delta \mathrm{P}_{\text {REQUIRED }}}{\mathrm{P}_{\text {REQUIRED }}}=\frac{1}{1-\frac{\Delta E R}{\mathrm{ER}}}-1
$$

and, for constant power, an error in energy ratio yields the performance penalty

$$
\frac{\Delta \mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{O}}}=1-\left(1-\frac{\Delta \mathrm{ER}}{\mathrm{ER}}\right)^{1 / 3}
$$

The expected true power and velocity levels can thus be obtained from the performance estimate:

$$
P_{\text {REQUIRED }}=\left(\frac{1}{1-\frac{\Delta E R}{E R}}\right) P_{\text {REQUIRED }}^{\text {Estimate }} \text { }
$$

for a given set of test section conditions, and from

$$
\mathrm{V}_{\mathrm{O}} \approx\left(1-\frac{\Delta E R}{E R}\right)^{1 / 3} \mathrm{~V}_{\text {Ostimate }}
$$

for a given level of required power.

This adjustment of the estimated performance values is pointless for a known, existing wind tunnel, but necessary for new, or proposed facilities. Before the adjustment can be made the probable error in the energy ratio estimate must be determined. It is desirable, therefore, to consider several existing facilities of different circuit types in order to gain a degree of confidence in the performance estimation routine.

Results

The input parameters and output performance values for the several sample cases, other than the test case shown in figure 11, are compiled in appendix D. The estimated energy ratios for the seven sample wind tunnels are presented in table 6. The corresponding sketches for all these sample tunnel circuits are shown in figures 10 and 12.

The actual energy ratios for the first three wind tunnels presented in table 6 were estimated from the best available information on fan and electrical efficiencies from known input power levels. The actual performance of the other four facilities was taken from measured data.

The test case and first sample case was the circuit of the NASA-Ames Research Center 40- by 80-Foot Wind Tunnel as described previously in the test case discussion. The predicted energy ratio for this rather conventional tunnel was only 1 percent higher than the actual value when new.

The performance of the NASA-Ames 7- by 10-Foot Tunnel was predicted at a slightly optimistic level. However, this tunnel is one with several known problems which complicate the prediction process. With the air exchanger operating, the primary diffuser is known to have some local flow separation, having been designed at a 6° equivalent cone angle, an angle too great for its cross-sectional shape and length (see fig. 1). Also, the drive fan is stalled from the centerbody out to about 45 percent of the fan radius, causing some back-flow along the nacelle centerbody. (The impact of the stall on the fan efficiency has only been estimated; it was assumed that the fan efficiency would suffer by about an additional 10 percent.) In spite of these things, the predicted energy ratio was only about 3 percent too high relative to the original value of approximately 7.85 , both values taken in the zero-airexchange configuration. This agreement may indicate that much of the abovementioned off-design performance is triggered by the air exchanger operation and is not as significant with the air exchanger closed. Although insufficient data are available to resolve this question, the fact remains that the prediction accuracy, for the stated conditions, was good.

The Lockheed-Georgia Low-Speed Wind Tunnel employs a tandem test section design. For this analysis, the larger, V/STOL test section was used as the only reference station. Because of the two area restrictions to cross sections smaller than that of the reference area (those of the smaller test section and of the fan), the tunnel efficiency would be expected to be low. (This in no way reflects on the tunnel's usefulness as a research tool or on its design or capabilities. The "low efficiency" value results only from the point of reference used in the calculations.) In other than these features
the facility is basically of conventional design. The computerized performance prediction was in error by less than 2 percent from the true value of about 1.10 .

The Indian Institute of Science 14- by 9-Foot Tunnel at Bangalore stands out among non-return wind tunnels as a facility with an unusually high energy ratio. Although the determination of circuit dimensions for the program input was somewhat hampered by the limitations of small drawings, the estimated energy ratio was within 1 percent of the true facility value of 6.85 . It is interesting to note that the fan performance data of reference 23 would indicate a fan design efficiency of about 69 percent. The power requirement calculations based on energy ratio and test section maximum velocity, however, show that the fan efficiency must be higher than was expected; in fact, greater than 90 percent.

The Hawker Siddeley 15-Foot V/STOL Tunnel at Hatfield, England was constructed under economy constraints and is a compact, cost-effective facility. The estimated performance was about 1.6 energy ratios higher (i.e., more optimistic) than the actual value of 2.38 . This is an error of about 67 percent. The primary performance difference was probably caused by the fan system. The losses of the ducting in this area are difficult to predict because the area changes are not gradual and are even difficult to define.

The University of Washington 8- by 12-Foot Double-Return Tunnel has a surprisingly high measured energy ratio of 8.3. This would indicate a very carefully designed circuit powered by carefully designed fans. The performance estimate produced by the computer program is lower than the actual energy ratio by about 13 percent, showing that the achieved performance level is higher than would normally be expected.

The NASA-Langley Research Center 30 - by 60 -Foot Open-Throat Tunnel is unusual in configuration, having a double-return system with the twin fans located less than two fan-diameters downstream of the test section. The location of the data point for this tunnel on the diffuser design curves of figure 1 would not indicate that any diffuser-related problems should be expected forward of the fans. The diffuser between the fans and the first corner, however, does have a rather large equivalent cone angle (more than 8°). If the fans cause or contribute to diffuser flow problems (see the Cautionary Design Guidelines for Diffusers) and if those problems lead to corner flow inefficiency in a region critical to overall performance, then the circuit energy ratio may be well below the normal estimated level. Although it is not clear whether this is the case in the NASA-Langley 30 - by 60 -Foot Tunnel, the performance estimate was about 27 percent higher than the actual value of about 3.71.

Evaluation

To summarize what may be learned from the sample cases:

1. The Ames 40 - by 80 -Foot and 7 - by 10 -Foot Tunnels and the LockheedGeorgia Low-Speed Tunnel, although at opposite ends of the energy ratio
spectrum, are all basically standard, single return, closed-test-section facilities; the computer program estimates of actual performance were good.
2. The Indian Institute of Science Bangalore tunnel, being of the nonreturn variety, is a different and less common type of facility; the computer program closely estimated its actual performance.
3. The University of Washington double-return tunnel is a third major circuit type; the program produced a reasonably accurate prediction of its performance.
4. The Hawker Siddeley V/STOL and Langley 30 - by 60 -Foot Tunnels are examples of facilities which may have flow problems due to too-rapid area changes and, as a result, lower than optimum performance levels for their respective circuit types. For these tunnels, because of their flow quality and not because of their circuit types, the program provided a poor estimate of actual performance.

Based on these results one thing is immediately clear: the performance of a wind tunnel of conventional, conservative design can be evaluated accurately. On the other hand, the performance of a tunnel whose design generates or contributes to flow problems (separation or grossly non-uniform) will be overestimated by the loss equations and computer program.

Flow peculiarities and off-optimum designs, even though seemingly only slight, can cause operational performance to fall significantly below the predicted levels. Such problems can be expensive whether considered in terms of modifying the facility or in such terms as reduced testing capability and increased power costs. Judicious, iterative use of the estimation techniques presented in this report, simplified by computerized automation, can lead to the improvement of an existing facility through guidance of design changes or to the optimization of a proposed new wind tunnel design.

Ames Research Center
National Aeronautics and Space Administration Moffett Field, California 94035, January 8, 1976

APPENDIX A

NON-STANDARD FUNCTIONAL FORMS

Due to the nature of this analysis, certain of the local flow-state, section loss, and summary parameter formulas were used in a form more convenient than that usually found in the literature. The relationships which were altered or derived are outlined on the following pages.

Local Flow-State Parameters

The calculation of several local parameters was based on the local Mach number, determined from the relationship between the local area and the area for choked flow:

$$
\frac{A_{ \pm}}{A^{\prime}}=\left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}} M\left[1+\left(\frac{\gamma-1}{2} M^{2}\right)\right]^{-\frac{\gamma+1}{2(\gamma-1)}}
$$

(ref. 18, p. 6)

Solving for the area for choked flow, knowing the test section area and Mach number,

$$
A_{*}=M_{o} A_{0}\left\{\frac{\gamma+1}{2\left[1+\left(\frac{\gamma-1}{2} M_{o}^{2}\right)\right]}\right\}^{\frac{\gamma+1}{2(\gamma-1)}}
$$

Mach number- Another form of the same area relationship,

$$
\begin{equation*}
\left(\frac{A}{A_{*}}\right)^{2}=\frac{1}{M^{2}}\left\{\frac{2}{\gamma+1}\left[1+\left(\frac{\gamma-1}{2} M^{2}\right)\right]\right\}^{\frac{\gamma+1}{\gamma-1}} \tag{ref.17,p.126}
\end{equation*}
$$

can be rewritten to produce a polynomial equation in Mach number which may be solved by Newton's method if the areas are known:

$$
\begin{aligned}
& {\left[\left(\frac{A}{A_{*}}\right)^{2} M^{2}\right]^{\frac{\gamma-1}{\gamma+1}}=\frac{2}{\gamma+1}\left[1+\left(\frac{\gamma-1}{2} M^{2}\right)\right]} \\
& =\frac{2}{\gamma+1}+\left(\frac{\gamma-1}{\gamma+1} M^{2}\right) \\
& M^{2}-\left[\frac{\gamma+1}{\gamma-1}\left(\frac{A}{A_{*}} M\right)^{\frac{2(\gamma-1)}{\gamma+1}}\right]+\frac{2}{\gamma-1}=0
\end{aligned}
$$

Reynolds number- The local Reynolds number was calculated based on other, known, local conditions and from basic principles:

$$
\begin{align*}
& \mathrm{RN}=\frac{\rho \mathrm{V} \ell}{\mu} \\
& \rho \mathrm{VA}=\rho_{\mathrm{o}} \mathrm{~A}_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}} \text { (conservation of mass) } \\
& \mu=\mu_{\mathrm{T}}\left(\frac{T}{T_{T}}\right)^{0.76} \text { (ref. 18, p. 19) } \tag{ref.18,p.19}\\
& \frac{T}{T_{T}}=\left[1+\left(\frac{\gamma-1}{2} M^{2}\right)\right]^{-1} \text { (ref. 18, p. 4) } \\
& \mathrm{RN}=\frac{\rho_{0} V_{0} \ell}{\mu_{T}} \frac{A_{0}}{\mathrm{~A}}\left[1+\left(\frac{\gamma-1}{2} M^{2}\right)\right]^{0.76}
\end{align*}
$$

Friction coefficient- The Reynolds number-friction coefficient function used was

$$
\begin{equation*}
\frac{1}{\sqrt{\lambda}}=2 \log _{10}(\operatorname{RN} \sqrt{\lambda})-0.8 \tag{ref.6,p.70}
\end{equation*}
$$

A Newton's method solution was performed on a rewritten form of the equation:

$$
\left[\log _{10}\left(\lambda R N^{2}\right)-0.8\right]^{-2}-\lambda=0
$$

Section Pressure Losses

The losses for some types of sections were derived in forms not found in the literature. For others, a curve-fit of data points or a simplification of analysis was performed.

Corners (constant area)- The frictional and rotational losses through turning vanes are additive: $K=K_{\text {FRICTION }}+\mathrm{K}_{\text {ROTATION }}$. Also,

$$
K_{\text {FRICTION }}=\frac{1}{3} \mathrm{~K}_{\mathrm{TV}} \text { and } \mathrm{K}_{\text {ROTATION }}=\frac{2}{3} \mathrm{~K}_{\mathrm{TV}} \quad \text { (ref. 6, p. 527) }
$$

Assuming that the frictional loss value has a form similar to that for a flat plate, then at 90° :

$$
\begin{equation*}
\mathrm{K}_{\text {FRICTION }}=\frac{1}{3} \mathrm{~K}_{\mathrm{TV}}^{90} 10=\frac{0.455 \mathrm{~B}}{\left(\log _{10} \mathrm{RN}\right)^{2.58}} \tag{ref.6,p.527}
\end{equation*}
$$

Thus, the constant B is dependent on the turning vane loss constant and the reference Reynolds number at which that constant was determined:

$$
B=\frac{\frac{1}{3} K_{T V_{90}}\left(\log _{10} \mathrm{RN}_{\mathrm{REF}}\right)^{2.58}}{0.455}
$$

Therefore,

$$
\mathrm{K}_{\text {FRICTION }}=\frac{1}{3} \mathrm{~K}_{\mathrm{TV}}^{90} \text { }\left(\frac{\log _{10} \mathrm{RN}_{\mathrm{REF}}}{\log _{10} \mathrm{RN}}\right)^{2.58}
$$

Since the rotational term is assumed independent of Reynolds number, $K_{\text {ROTATION }}=(2 / 3) \mathrm{K}_{\mathrm{TV}}^{90^{\circ}}$. The additional complication of loss parameter variation with turning angle is presented in figure 3 for a loss parameter at 90° equal to 0.15 . It was assumed that the relationship between the actual and reference loss constants is 1inear:

$$
\mathrm{K}_{\mathrm{TV}}=\mathrm{K}_{\mathrm{TV}}^{90} \text { }\left[\frac{\mathrm{f}(\phi)}{0.15}\right]
$$

where $f(\phi)$ is the functional relationship plotted in figure 3. The complete turning vane loss function then becomes

$$
\mathrm{K}=\mathrm{K}_{\mathrm{TV}}\left\{\frac{2}{3}+\left[\frac{1}{3}\left(\frac{\log _{10} \mathrm{RN}_{\mathrm{REF}}}{\log _{10} \mathrm{RN}}\right)^{2.58}\right]\right\}
$$

Corners (diffusing)- Diffusing corners were treated as vaned diffusers with the addition of rotational losses dependent on the turning angle. The expansion and frictional losses used were those for a vaned diffuser:

$$
\mathrm{K}_{\text {VANED DIFFUSER }}=\left\{0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right) \mathrm{u}\left(2 \theta-21.5^{\circ}\right)\right]\right\}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}
$$

The rotational loss is as for a constant-area corner where

$$
\mathrm{K}_{\text {ROTATION }}=\frac{2}{3} \mathrm{~K}_{\mathrm{TV}}=\frac{2}{3} \mathrm{~K}_{\mathrm{TV}}^{90} 1\left[\frac{\mathrm{f}(\phi)}{0.15}\right]
$$

The diffusing corner loss function is then

$$
\mathrm{K}=\left\{0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right) \mathrm{u}\left(2 \theta-21.5^{\circ}\right)\right]\right\}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}+\frac{2}{3} \mathrm{~K}_{\mathrm{TV}}
$$

where $u\left(2 \theta-21.5^{\circ}\right)$ is the unit step function.

Diffusers- The diffuser losses are due to both friction and expansion. The friction term may be derived theoretically from

$$
\mathrm{K}_{\text {FRICTION }}=\left.\frac{\Delta \mathrm{p}_{\mathrm{T}}}{\mathrm{q}}\right|_{\text {FRICTION }}=\int_{0}^{\mathrm{s}_{2}} \frac{\lambda \rho \mathrm{~V}^{2}}{\rho_{1} \mathrm{v}_{1}{ }^{2} \mathrm{D}_{\mathrm{h}}} \mathrm{ds}
$$

Making the simplifying assumptions that the density and the friction coefficlent are approximately constant and applying conservation of mass,

$$
K_{\text {FRICTION }}=\lambda \mathrm{A}_{1}{ }^{2} \int_{0}^{s_{2}} \frac{\mathrm{ds}}{\mathrm{D}_{\mathrm{h}} \mathrm{~A}^{2}}
$$

which, for a conical diffuser, becomes

$$
\mathrm{K}_{\text {FRICTION }}=\frac{16 \mathrm{~A}_{1}{ }^{2} \lambda}{\pi^{2}} \int_{0}^{\mathrm{s}_{2}} \frac{\mathrm{ds}}{\mathrm{D}^{5}}
$$

and transforming variables from surface to centerline distances,

$$
K_{\text {FRICTION }}=\frac{16 A_{1}^{2} \lambda}{\pi^{2} \cos \theta} \int_{0}^{L} \frac{d x}{\left(D_{1}+2 x \tan \theta\right)^{5}}
$$

Completing this integration the friction loss becomes

$$
\mathrm{K}_{\text {FRICTION }}=\frac{\lambda}{8 \sin \theta}\left(1-\frac{1}{\mathrm{AR}^{2}}\right)
$$

The influence of the expansion term is given by

$$
\mathrm{K}=\mathrm{K}_{\text {EXPANSION }}+\mathrm{K}_{\text {FRICTION }}
$$

Thus, it may be rewritten:

$$
\begin{aligned}
& \mathrm{K}=\frac{\mathrm{K}_{\text {EXPANSION }}+\mathrm{K}_{\text {FRICTION }}}{\left(1-\frac{1}{\mathrm{AR}}\right)^{2}}\left(1-\frac{1}{\mathrm{AR}}\right)^{2} \\
& \mathrm{~K}=\left\{\mathrm{K}_{\mathrm{EXP}}+\left[\frac{\lambda}{8 \sin \theta} \frac{\frac{\mathrm{AR}^{2}-1}{A R^{2}}}{\left(\frac{A R-1}{A R}\right)^{2}}\right]\right\}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2} \\
& \mathrm{~K}=\left\{\mathrm{K}_{\mathrm{EXP}}+\left[\frac{\lambda}{8 \sin \theta}\left(\frac{\mathrm{AR}+1}{\mathrm{AR}-1}\right)\right]\right\}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{EXP}}=\frac{\mathrm{K}_{\text {EXPANSION }}}{\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}} \\
& \mathrm{~K}_{\mathrm{EXP}}=\frac{\mathrm{K}-\mathrm{K}_{\mathrm{FRICTION}}}{\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}}
\end{aligned}
$$

The expansion loss parameter curves shown in figure 4 were determined using the approximation

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{EXP}}=\frac{\mathrm{K}-\mathrm{K}_{\text {FRICTION (CONICAL) }}}{\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}} \\
& \mathrm{~K}_{\mathrm{EXP}}=\frac{\mathrm{K}-\left[\frac{\lambda}{8 \sin \theta}\left(1-\frac{1}{\mathrm{AR}^{2}}\right)\right]}{\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}}
\end{aligned}
$$

and figure 5(a) of reference 9, which shows complete diffuser losses plotted as functions of equivalent cone angle and independent of area ratio for circular, square and rectangular, and two-dimensional diffusers. (This implies an assumption that the expansion part of the losses is dependent only on crosssectional shape, the extent to which the diffusion takes place in only one direction, and the equivalent cone angle.) Thus, the complete loss for diffusers is given as

$$
K=\left\{K_{E X P}+\left[\frac{\lambda}{8 \sin \theta}\left(\frac{A R+1}{A R-1}\right)\right]\right\}\left(\frac{A R-1}{A R}\right)^{2}
$$

using $K_{E X P}$ from figure 4.
Exit- The kinetic energy loss at an exit of a non-return wind tunnel was derived from basic compressibility relationships and with the assumptions that the exit flow static pressure is equal to the atmospheric pressure and that the exit velocity is uniform.

$$
\frac{p_{T}}{p}=\left[1-\left(\frac{\gamma-1}{2} M^{2}\right)\right]^{\frac{\gamma}{\gamma-1}}
$$

Rewriting, the local total pressure is

$$
p_{T}=p\left[1-\left(\frac{\gamma-1}{2} M^{2}\right)\right]^{\frac{\gamma}{\gamma-1}}
$$

Also, since $\Delta \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{T}}-\mathrm{P}_{\mathrm{T}_{\mathrm{ATM}}}=\mathrm{P}_{\mathrm{T}}-\mathrm{p}$, the total loss parameter is

$$
K=\frac{\Delta p_{T}}{q}=\frac{p\left\{\left[1+\left(\frac{\gamma-1}{2} M^{2}\right)\right]^{\frac{\gamma}{\gamma-1}}-1\right\}}{\frac{1}{2} \gamma \mathrm{pM}^{2}}
$$

since

$$
\begin{equation*}
q=\frac{1}{2} \rho V^{2}=\frac{1}{2} \gamma p M^{2} \tag{ref.17,p.55}
\end{equation*}
$$

Simplifying, the exit loss becomes

$$
K=\frac{2}{\gamma M^{2}}\left\{\left[1+\left(\frac{\gamma-1}{2} M^{2}\right)\right]^{\frac{\gamma}{\gamma-1}}-1\right\}
$$

Flow straighteners: airfoil members (thick)- Thick flow straightener losses were assumed to be made up of two parts: contraction and subsequent diffusion:

$$
\mathrm{K}=\mathrm{K}_{\text {CONTRACTION }}+\mathrm{K}_{\text {DIFFUSION }}
$$

The contraction was estimated as being about 30 percent of the length of the straighteners:

$$
\begin{aligned}
& \mathrm{K}_{\text {CONTRACTION }}=\frac{0.32 \lambda(0.30 \mathrm{~L})}{\mathrm{D}_{\mathrm{h}}} \\
& \mathrm{~K}_{\text {CONTRACTION }}=\frac{0.096 \lambda \mathrm{~L}}{\mathrm{D}_{\mathrm{h}}}
\end{aligned}
$$

The diffusion portion was based on the aft 70 percent of the length and on the exit and minimum areas for the computation of the area ratio and equivalent cone angle. As for a vaned diffuser,

$$
\text { K DIFFUSION }=\left\{0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right) \mathrm{u}\left(2 \theta-21.5^{\circ}\right)\right]\right\}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}
$$

Hence the loss for thick flow straighteners becomes

$$
\mathrm{K}=0.096 \frac{\lambda \mathrm{~L}}{\mathrm{D}_{\mathrm{h}}}+\left\{0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right) \mathrm{u}\left(2 \theta-21.5^{\circ}\right)\right]\right\}\left(\frac{\mathrm{AR}-1}{\mathrm{AR}}\right)^{2}
$$

Internal flow obstruction: drag item- The loss due to internal structure may be derived from the relationships governing power losses:
and $P_{D R A G}=D V \varepsilon=(1 / 2) \rho V^{3} S_{D} \varepsilon$, where ε is the factor accounting for additional effects on downstream sections. Since $P_{\text {INPUT }}^{\text {DRAG }}$ $=P_{\text {DRAG }}$, the loss becomes

$$
K_{o}=\frac{q}{q_{o}} \frac{S}{A_{o}} C_{D} \varepsilon \frac{\rho_{F} V}{\rho_{o} V_{o}}
$$

and therefore

$$
\begin{aligned}
& K=C_{D} \frac{S}{A} \varepsilon \frac{\rho_{F}}{\rho} \frac{\rho V A}{\rho_{o} V_{o} A_{O}} \\
& K=C_{D} \frac{S}{A} \varepsilon \frac{\rho_{F}}{\rho}
\end{aligned}
$$

Since in general the flow density at the fans is unknown at the time a given section loss is calculated, and since for incompressible flow the density ratio is unity, the ratio of the densities at the fan and the local station was assumed as unity for the analysis. (If the user prefers not to make such an assumption, an approximation of the ratio may be made by way of a change in the downstream influence factor ε.) The loss due to a flow obstruction is

$$
K=C_{D} \frac{S}{A} \varepsilon
$$

Vaned diffusers- The expansion and friction losses for vaned diffusers were combined into one parameter which is reasonably independent of area ratio and is presented in figure 6. The loss curves shown were approximated by a two-segment, straight-line curve fit so that, for vaned diffusers

$$
K=K_{V}\left(\frac{A R-1}{A R}\right)^{2}
$$

and

$$
K=\left\{0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right) u\left(2 \theta-21.5^{\circ}\right)\right]\right\}\left(\frac{A R-1}{A R}\right)^{2}
$$

where $u\left(2 \theta-21.5^{\circ}\right)$ is the unit step function.
Loss value transferred to reference location- The change of reference for loss values is defined as

$$
K_{0}=\frac{\Delta p_{T}}{q}\left(\frac{q}{q_{0}}\right)=K\left(\frac{q}{q_{0}}\right)
$$

Using the law of conservation of mass, this may be rewritten in terms of areas and Mach numbers:

$$
\begin{gathered}
\rho V A=\rho_{0} V_{0} A_{O} \\
\frac{q}{q_{0}}=\frac{\frac{1}{2} \rho V^{2}}{\frac{1}{2} \rho_{0} V_{o}^{2}}=\frac{A_{0} V}{A V_{O}} \\
\frac{q}{q_{O}}=\frac{A_{O}}{A} \frac{M}{M_{O}} \sqrt{\frac{1+\left(\frac{Y-1}{2} M_{o}^{2}\right)}{1+\left(\frac{Y-1}{2} M^{2}\right)}}
\end{gathered}
$$

and

$$
K_{o}=K\left[\frac{A_{0}}{A} \frac{M}{M_{0}} \sqrt{\frac{1+\left(\frac{Y-1}{2} M_{o}^{2}\right)}{1+\left(\frac{Y-1}{2} M^{2}\right)}}\right]
$$

Wall pressure differential- The pressure across a section of wall was determined from the exterior atmospheric pressure, internal static pressure, and cumulative pressure losses through the circuit. Since the wall pressure differential for a given section is $\Delta \mathrm{P}_{\mathrm{W}_{\mathbf{i}}}=\mathrm{p}_{\mathrm{T}_{\mathrm{ATM}}}-\mathrm{P}_{\mathrm{i}}$ and

$$
\mathrm{p}_{\mathrm{i}}=\frac{\mathrm{p}_{\mathrm{T}_{\mathrm{i}}}}{\left[1+\left(\frac{\gamma-1}{2} \mathrm{M}_{\mathrm{i}}{ }^{2}\right)\right]^{\frac{\gamma}{\gamma-1}}}
$$

and, using the test section as the reference location,

$$
\mathrm{P}_{\mathrm{T}_{i}}=\mathrm{P}_{\mathrm{T}_{\mathrm{SC}}}-\sum_{j=1}^{i} \mathrm{~K}_{\mathrm{o}_{j}}
$$

The wall pressure differential may be written as

Input power required- The power input to the flow required for operation of a wind tunnel circuit having predetermined losses was calculated from the pressure rise required at the fans, with the simplifying assumption that the static and total pressure rises across the fan are equal.

$$
\begin{aligned}
& \mathrm{P}_{\text {INPUT }}=\Delta \mathrm{P}_{\mathrm{F}} \mathrm{~A}_{\mathrm{F}} \mathrm{~V}_{\mathrm{F}} \\
& P_{\text {INPUT }}=\Delta p_{T_{F}} A_{F} V_{F} \frac{\rho_{F} \rho_{o} A_{O} V_{O}}{\rho_{F} \rho_{o} A_{o} V_{O}}
\end{aligned}
$$

Considering conservation of mass,

$$
\mathrm{P}_{\text {INPUT }}=\Delta \mathrm{p}_{\mathrm{T}} A_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}} \frac{\rho_{\mathrm{O}}}{\rho_{\mathrm{F}}}
$$

Also,

$$
\Delta \mathrm{p}_{\mathrm{T}_{\mathrm{F}}}=\Delta \mathrm{p}_{\mathrm{T}}=\mathrm{q}_{\mathrm{o}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~K}_{\mathrm{o}_{\mathrm{i}}}
$$

Thus,

$$
\begin{aligned}
& P_{\text {INPUT }}=\left(\sum_{i=1}^{N} K_{o_{i}}\right) \frac{1}{2} \rho_{o} A_{o} V_{o}^{3} \frac{\rho_{0}}{\rho_{F}} \\
& P_{\text {INPUT }}=\frac{\left(\sum_{i=1}^{N} K_{o_{i}}\right) \rho_{o}{ }^{2} A_{o} V_{o}^{3}}{2 \rho_{F}}
\end{aligned}
$$

APPENDIX B

NUMERICAL FUNCTION-APPROXIMATIONS

The formulas that follow resulted from curve-fitting and/or interpolation techniques applied to certain functions arising from the loss analysis.

Corners

The corner loss parameters for corners with and without turning vanes are shown in figure 3. For a corner with vanes, using least-squares polynomial curve-fitting techniques, the turning vane loss function of figure 3(a) becomes, for $0^{\circ} \leq \emptyset \leq 30^{\circ}$:

$$
\begin{align*}
\mathrm{K}_{\mathrm{TV}}= & 1.395066 \times 10^{-2}+5.672649 \times 10^{-4} \emptyset \\
& +7.081591 \times 10^{-5} \emptyset^{2}+1.394685 \times 10^{-6} \emptyset^{3} \\
& -4.885101 \times 10^{-8} \not \emptyset^{4} \tag{B1}
\end{align*}
$$

and for $30^{\circ}<\emptyset \leq 90^{\circ}$:

$$
\begin{align*}
\mathrm{K}_{\mathrm{TV}}= & -1.605670 \times 10^{-1}+1.446753 \times 10^{-2} \phi \\
& -2.570748 \times 10^{-4} \phi^{2}+2.066207 \times 10^{-6} \phi^{3} \\
& -6.335764 \times 10^{-9} \phi^{4} \tag{B2}
\end{align*}
$$

For a corner without turning vanes the local loss function of figure 3(b) was found using a least-squares polynomial technique and is given by

$$
\begin{align*}
\mathrm{K}= & 4.313761 \times 10^{-5}-6.021515 \times 10^{-4} \phi \\
& +1.693778 \times 10^{-4} \phi^{2}-2.755078 \times 10^{-6} \phi^{3} \\
& +2.323170 \times 10^{-7} \phi^{4}-3.775568 \times 10^{-9} \phi^{5} \\
& +1.796817 \times 10^{-11} \phi^{6} \tag{B3}
\end{align*}
$$

For all the above equations, \varnothing is the flow turning angle in degrees.

Diffusers

The determination of the diffuser loss parameter is a complex operation. It depends on the cross-sectional shape and equivalent cone angle of the section. For a conical diffuser the expansion functions are, for $3^{\circ} \leq 2 \theta \leq 10^{\circ}$:

$$
\left.\begin{array}{rl}
\mathrm{K}_{\text {EXP }}^{\text {Circular }}
\end{array}=1.70925 \times 10^{-1}-5.84932 \times 10^{-2}(2 \theta), ~(2 \theta)^{3}+1.34777 \times 10^{-4}(2 \theta)^{3}\right)
$$

for $0^{\circ}<2 \theta<3^{\circ}$:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{EXP}}^{\text {Circular }}=1.033395 \times 10^{-1}-1.19465 \times 10^{-2}(2 \theta) \tag{B5}
\end{equation*}
$$

and for $2 \theta>10^{\circ}$:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{EXP}}^{\text {Circular }}=-9.66135 \times 10^{-2}+2.336135 \times 10^{-2}(2 \theta) \tag{B6}
\end{equation*}
$$

For a square cross-section diffuser the expressions are, for $3^{\circ} \leq 2 \theta \leq 10^{\circ}$:

$$
\left.\begin{array}{rl}
\mathrm{K}_{\text {EXP }}^{\text {Square }}
\end{array}=1.22156 \times 10^{-1}-2.29480 \times 10^{-2}(2 \theta), ~(2 \theta)^{2}-4.08644 \times 10^{-4}(2 \theta)^{3}\right)
$$

for $0^{\circ}<2 \theta<3^{\circ}$:

$$
\begin{equation*}
\mathrm{K}_{\text {EXP }}^{\text {Square }}=9.62274 \times 10^{-2}-2.07582 \times 10^{-3}(2 \theta) \tag{B8}
\end{equation*}
$$

and for $2 \theta>10^{\circ}$:

$$
\begin{equation*}
\mathrm{K}_{\text {EXP }}^{\text {Square }}=-1.321685 \times 10^{-1}+2.93315 \times 10^{-2}(2 \theta) \tag{B9}
\end{equation*}
$$

For a two-dimensional diffuser with a square upstream-end cross section the expansion loss functions are, for $3^{\circ} \leq 2 \theta \leq 9^{\circ}$:

$$
\begin{align*}
& \mathrm{K}_{\mathrm{EXP}_{2 \mathrm{D}_{\text {Rectangular }}=}}=3.23334 \times 10^{-1}-5.82939 \times 10^{-2}(2 \theta) \\
&-4.97151 \times 10^{-2}(2 \theta)^{2}+1.99093 \times 10^{-2}(2 \theta)^{3} \\
&-1.98630 \times 10^{-3}(2 \theta)^{4}+2.06857 \times 10^{-5}(2 \theta)^{5} \\
&+3.81387 \times 10^{-6}(2 \theta)^{6} \tag{B10}
\end{align*}
$$

for $9^{\circ} \leq 2 \theta \leq 10^{\circ}$:

$$
\begin{align*}
\mathrm{K}_{\mathrm{EXP}}^{2 \mathrm{D}}{ }_{\text {Rectangular }}= & 5.72853-1.21832(2 \theta) \\
& +7.08483 \times 10^{-2}(2 \theta)^{2} \tag{B11}
\end{align*}
$$

for $0^{\circ}<2 \theta<3^{\circ}$:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{EXP}_{2 \mathrm{D}}^{\text {Rectangular }}}=1.0 \times 10^{-1}-5.333333 \times 10^{-3}(2 \theta) \tag{B12}
\end{equation*}
$$

and for $2 \theta>10^{\circ}$:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{EXP}}^{2 \mathrm{D}_{\text {Rectangular }}}{ }=-1.36146+1.986460 \times 10^{-1} \tag{20}
\end{equation*}
$$

Since the expansion function for a two-dimensional diffuser with circular sides was not given (and is not defined), it was assumed for computational purposes that this value would be the same fraction of that for a twodimensional rectargular diffuser as the loss of a conical is of that for a three-dimensional square diffuser:

$$
\left.\mathrm{KEXP}_{2 \mathrm{D}_{\text {Circular }}}=\mathrm{K}_{\mathrm{EXP}_{2 \mathrm{D}_{\text {Rectangular }}}\left(\frac{\mathrm{K}_{\text {EXP }} \text { Circular }}{}\right.}^{\mathrm{K}_{\mathrm{EXP}}^{\text {Square }}} \text { }\right)
$$

For cross-section shapes somewhere between rectangular and circular, such as flat oval (flat ceiling and floor with semi-circular sidewalls), or for diffusers which have one end rectangular and one end either circular or flat oval, a loss value between that for circular and rectangular may be more appropriate; thus,

$$
\mathrm{K}_{\text {EXP }}^{2 \mathrm{D}_{\text {Average }}} \boldsymbol{=} \frac{\mathrm{K}_{\mathrm{EXP}}^{2 \mathrm{D}_{\text {Rectangular }}}{ }+\mathrm{K}_{\text {EXP }}^{2 \mathrm{D}_{\text {Circular }}}}{}
$$

and

The extent to which a diffuser is planar in nature was computed from the ratio of the changes in size of the two characteristic dimensions from end to end:

$$
\delta_{s}=\text { smaller of } \frac{h_{2}-h_{1}}{w_{2}-w_{1}} \text { or } \frac{w_{2}-w_{1}}{h_{2}-h_{1}}
$$

or if the ratio is negative,

$$
\delta_{s} \equiv 0
$$

Then, based on the geometries of each end, the basic loss constant, $K_{E X P}{ }_{\text {Basic }}$, may be selected from $\mathrm{K}_{\mathrm{EXP}}$ Circular, $\mathrm{K}_{\mathrm{EXP}}^{3 \mathrm{D}_{\text {Average }}}$ or $\mathrm{K}_{\mathrm{EXP}}$ Square and the additional loss fact. $K_{E X P}$ Additional, may be selected from the corresponding
$\mathrm{K}_{\mathrm{EXP}}^{2 \mathrm{D}}$ Circular , $\mathrm{K}_{\mathrm{EXP}}^{2 \mathrm{D}_{\text {Average }}}$ or $\mathrm{K}_{\mathrm{EXP}}^{2 \mathrm{D}_{\text {Rectangular }} \text {. Finally, the applicable }}$ diffuser expansion loss coefficient is given by

$$
\begin{equation*}
\mathrm{K}_{\mathrm{EXP}}=\mathrm{K}_{\mathrm{EXP}}^{\text {Basic }} \text { }+\left(1-\delta_{\mathrm{s}}\right)\left(\mathrm{K}_{\mathrm{EXP}}^{\text {Additional }} 1-\mathrm{K}_{\mathrm{EXP}}^{\text {Basic }} \text { }\right) \tag{B14}
\end{equation*}
$$

Mesh Screen

The mesh screen Reynolds number sensitivity factor plotted in figure 5 can be expressed in functional form as, for $0 \leq \mathrm{RN}<400$:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{RN}}=\frac{78.5\left(1-\frac{\mathrm{RN}}{354}\right)}{100}+1.01 \tag{B15}
\end{equation*}
$$

and for $\mathrm{RN} \geq 400$:

$$
\mathrm{K}_{\mathrm{RN}} \equiv 1.0
$$

Vaned Diffusers

The vaned diffuser loss coefficient functions plotted in figure 6 were approximated by two line segments; for $2 \theta<21.5^{\circ}$:

$$
K_{v}=0.3
$$

and for $21.5^{\circ} \leq 2 \theta \leq 90^{\circ}$:

$$
K_{v}=0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right)\right]
$$

Thus, over the entire range of equivalent cone angles of interest,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{V}}=0.3+\left[0.006\left(2 \theta-21.5^{\circ}\right) \mathrm{u}\left(2 \theta-21.5^{\circ}\right)\right] \tag{B16}
\end{equation*}
$$

where $u\left(2 \theta-21.5^{\circ}\right)$ is the unit step function.

APPENDIX C

COMPUTER PROGRAM FØRTRAN CODES

The following pages contain the FøRTRAN codes developed to implement the wind tunnel performance analysis techniques presented in this report.

The Notation section explains the variable names used in the program. (Note that in the notation sections, as throughout this report, all letter 0's occurring in F \emptyset RTRAN names are shown with slashes, as \emptyset; all number zeros are shown unslashed.) This notation section is similar to that for engineering symbols presented in the main body of the report, but this section was changed in two respects. First, it was rearranged alphabetically by FøRTRAN variable name. Second, it was expanded to include many variable names which were not used elsewhere and which have significance only in the context of the computer program. The "titles" shown in parentheses in the first column of this notation section are column heading titles which appear on the program output pages.

Immediately following the Notation are the listings of the six actual FøRTRAN program codes: the main program (PERFøRM) and the five subroutines
 titled and numbered for clarity. The last seven columns of each line on each page contain a two-letter program routine name abbreviation and a line sequence number (in ten-count increments). Thus, the user can know at a glance to which routine (and where within that routine) any given line or instruction belongs. Each instruction line in the program is uniquely identified.

FøRTRAN name and/or (title)	$\begin{gathered} \text { Engineering } \\ \text { symbol } \end{gathered}$	Description
A	A	```cross-sectional area of local section, m```
AII		cross-sectional area of individual duct at upstream end, $m^{2}\left(\mathrm{ft}^{2}\right)$
AI2		```cross-sectional area of individual duct at downstream end, m}\mp@subsup{}{}{2}(f\mp@subsup{t}{}{2}```
AL	AFLOW	```cross-sectional area of local flow, m}\mp@subsup{}{}{2 (ft')```
AMACH	M	local Mach number
AMACHI (MACH1)		Mach number at section upstream end
AMACH2 (MACH2)		Mach number at section downstream end
$\begin{aligned} & \mathrm{AR} \\ & (\mathrm{AR}, \mathrm{CR}) \end{aligned}$	AR	ratio of cross-sectional areas at upstream and downstream ends of section
ASL		speed of sound in moving flow at local section, $\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$
ASTAR	A_{*}	cross-sectional area for sonic flow at specified flow conditions, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
ASO	a_{0}	speed of sound in moving flow at upstream end of test section, $m / s e c$ ($f t / s e c$)
AT	${ }^{\text {a }}$ T	speed of sound in still gas, computed at total (stagnation) conditions, $\mathrm{m} / \mathrm{sec}$ (ft/sec)
AVGPWR		average power consumed by each drive fan at specified conditions: PWRøP/ENFAN, W (hp)
AO	A_{0}	cross-sectional flow area of test section at upstream end, m^{2} (ft^{2})
A1 (AREA1)	A_{1}	cross-sectional flow area of section at upstream end, $m^{2}\left(f t^{2}\right)$

FøRTRAN name and/or (title)	$\begin{gathered} \text { Engineering } \\ \text { symbol } \end{gathered}$	Description
$\begin{aligned} & \mathrm{A} 1 \emptyset \mathrm{AO} \\ & (\mathrm{~A} 1 / \mathrm{AO}) \end{aligned}$		ratio of local section upstream area to test section area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$\begin{aligned} & \text { A2 } \\ & \text { (AREA2) } \end{aligned}$	A_{2}	cross-sectional flow area of section at downstream end, $m^{2}\left(f t^{2}\right)$
$\begin{aligned} & \mathrm{A} 2 \emptyset \mathrm{AO} \\ & (\mathrm{~A} 2 / \mathrm{AO}) \end{aligned}$		ratio of local section downstream area to test section area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
BLKAGE		blockage to flow in local section (at upstream end for all applicable sections except fan contraction, for which it is at downstream end), fraction of local area
(BLKGE)		blockage to flow in local section (at upstream end for all applicable sections except fan contraction, for which it is at downstream end), percent of local area
CD	$\mathrm{C}_{\text {D }}$	drag coefficient of flow obstruction, $\frac{\mathrm{drag}}{\mathrm{q} S}$
CHøRD	c_{v}	chord of turning vanes, m (ft)
D	D	diameter of circular duct, m (ft)
DATA		data array of master, section, and termination card floating-point inputs
DELP	$\Delta \mathrm{p}_{\mathrm{W}_{\mathrm{i}}}$	local pressure difference across wind tunnel wall, $\mathrm{N} / \mathrm{m}^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
(D EPS)	$\Delta \varepsilon$	increment of flow-obstruction downstream influence factor greater than unity: $\varepsilon-1$, (greater than or equal to zero)
DFAN		drive fan diameter, m (ft)
DH	D_{h}	$\begin{aligned} & \text { hydraulic diameter: } \\ & \frac{4 \times(\text { cross-sectional area })}{\text { perimeter }}, \mathrm{m}(\mathrm{ft}) \end{aligned}$
DHL		hydraulic diameter of single cell in flow straightener, m (ft)

FøRTRAN name and/or (title)	Engineering symbol	Description
DHUB		```diameter of drive fan hub and/or spinner, m (ft)```
DHO		```hydraulic diameter of test section, m (ft)```
DH1		hydraulic diameter of upstream end of local section, m (ft)
DH2		hydraulic diameter of downstream end of local section, m (ft)
DMESH		```diameter of mesh element in woven-mesh screen, m (ft)```
D1		diameter of upstream end of circular section, m (ft)
D2		diameter of downstream end of circular section, m (ft)
$\begin{aligned} & \text { EK } \\ & \text { (DP/QL) } \end{aligned}$	K	```local total pressure loss of section: \Delta\mp@subsup{p}{T}{}```
EKADD	$\mathrm{K}_{\text {EXP }}{ }_{\text {Additional }}$	additional diffuser expansion loss factor due to more diffusion in one plane than in another (i.e., partially twodimensional diffusion)
EKBASE	$\mathrm{K}_{\text {EXP }}{ }_{\text {Basic }}$	basic diffuser expansion loss factor for purely three-dimensional diffusion
EKC	$\mathrm{K}_{\text {EXP }}{ }_{\text {Circular }}$	expansion loss value for conical diffusers
EKCNTR	$\mathrm{K}_{\text {CONTRACTION }}$	local total pressure loss from contracting portion of thick-airfoil flow straighteners
EKCSAV	$\mathrm{K}_{\mathrm{EXP}}^{3{ }_{3 D}}{ }_{\text {Average }}$	estimated expansion loss coefficient for three-dimensional, combination circular and square cross-section diffuser
EKD	K DIFFUSION	local total pressure loss from diffusing portion of multi-loss-type sections
$\begin{aligned} & \text { EKEXP } \\ & \text { (KEXP) } \end{aligned}$		net expansion loss coefficient for diffusers

FØRTRAN name and/or (title)	Engineering symbols
EKMESH (KMESH)	$\mathrm{K}_{\text {MESH }}$
EKS	$\mathrm{K}_{\text {EXP }}$ Square
EKSTRT	
EKTE	
$\begin{aligned} & \text { EKTE90 } \\ & \text { (KT 90) } \end{aligned}$	
EKTV	K_{TV}
$\begin{aligned} & \text { EKTV90 } \\ & \text { (KT 90) } \end{aligned}$	$\mathrm{K}_{\mathrm{TV}}^{90}$
EKV	K_{v}
$\begin{aligned} & \text { EKO } \\ & \text { (DP/QO) } \end{aligned}$	K_{0}

EKI

EK2

EK2DC

EK2DCS
$\mathrm{K}_{\mathrm{EXP}}^{2 \mathrm{D}_{\text {Circular }}}{ }$
$\mathrm{K}_{\mathrm{EXP}}^{2 \mathrm{D}_{\text {Average }}}{ }$
mesh screen-type loss constant
expansion loss value for threedimensional expansion in square crosssection diffusers
local total pressure loss coefficient due to strut drag in fan section
local total pressure loss parameter for corners without turning vanes
vaneless-corner loss parameter for given corner at a 90° turn
turning vane loss coefficient
turning vane loss parameter for given vanes at a 90° turn
local total pressure loss coefficient for vaned diffusers
section total pressure loss referred to test section conditions: $\frac{\Delta \mathrm{P}_{\mathrm{T}}}{\mathrm{q}_{\mathrm{o}}}$
local total pressure loss coefficient due to diffusion and vanes in a diffusing corner
local total pressure loss coefficient due to rotational flow in a diffusiing corner
estimated expansion loss coefficient for hypothetical, two-dimensional diffusion with circular sides:
$\mathrm{K}_{\text {EXP }_{2 D_{\text {Rectangular }}}}\left(\frac{\mathrm{K}_{\text {EXP }} \text { Circular }}{}\right)$
estimated expansion loss coefficient for two-dimensional diffuser with crosssection shape of some square/circular hybrid

FøRTRAN name and/or (title)	Engineering symbol	Description
EK2DR	$\mathrm{K}_{\mathrm{EXP}_{2} \mathrm{D}_{\text {Rectangular }}}$	expansion loss coefficient for twodimensional rectangular cross-section diffusers
EL (L)	L	centerline length of section, m (ft)
ELC		length of contracting portion of thickairfoil flow straighteners, m (ft)
ELD		length of diffusing portion of thickairfoil flow straighteners, m (ft)
$\begin{aligned} & \text { EL } \varnothing \mathrm{DH} \\ & \text { (L/DH) } \end{aligned}$		length-to-hydraulic-diameter ratio of flow straightener cell
EMDATA		data array containing master-card floating-point inputs
EMF		Mach number at the fan section
EMU	μ	flow viscosity, $\mathrm{N} \mathrm{sec} / \mathrm{m}^{2}\left(1 \mathrm{~b} \mathrm{sec} / \mathrm{ft}^{2}\right)$
EMUSTD	$\mu_{\text {std }}$	```standard-day value of viscosity, N sec/m```
EMUT	${ }^{\text {T }}$	reference viscosity at a known temperature, computed for a still gas (stagnation conditions), $\mathrm{N} \sec / \mathrm{m}^{2}$ ($\mathrm{lb} \mathrm{sec} / \mathrm{ft}^{2}$)
EMWRIT		master card output array containing data and/or annotation(s)
EMO	M	Mach number at upstream end of test section
ENDATA		data array containing section-card floating-point input
ENDUCT		number of ducts in multiple-duct sections
ENFAN		number of fans in fan drive section
ENITEM		number of drag or blockage items in each local duct
ENU	v	kinematic viscosity of gas, $\mathrm{m}^{2} / \mathrm{sec}$ ($\mathrm{ft}{ }^{2} / \mathrm{sec}$)

FøRTRAN name and/or (title)	Engineering system	Description
ENWRIT		section-card output array containing data and/or annotation(s)
EPS	ε	flow-obstruction downstream influence factor (greater than or equal to unity)
ER	ER	energy ratio: ratio of energy of flow at test section to the output energy of the fans
ETAFAN (ETA)	${ }^{n}$ F	fan aerodynamic efficiency, percent
ETWRIT		case termination-card output array containing termination request de-codings
FAC		function defining the area of sections with circular cross sections
FACT		scaling factor for plot size
FAFø		function defining the area of sections with flat-oval cross sections (flat floor and ceiling, semi-circular walls)
FAR		function defining the area of sections with rectangular cross sections
FDHC		function defining the hydraulic diameter of sections with circular cross sections
FDHFD		function defining the hydraulic diameter of sections with flat-oval cross sections
FDHR		function defining the hydraulic diameter of sections with rectangular cross sections
FEKC		function defining the diffuser expansion loss for three-dimensional, circular cross-section diffusers
FEKCH		function defining the diffuser expansion loss for three-dimensional, circular cross-section diffusers at high diffusion angles (TH2 > 10°)

FøRTRAN name and/or (title) FEKCS

FEKS

FEKSH

FEKSS

FEKO

FEK2DL

FEK2DU

FKTE

FKTV1

FKTV2
$f(\phi)$
$\mathrm{f}(\phi)$

FTH
function defining the diffuser expansion loss for three-dimensional, circular cross-section diffusers at small diffusion angles (TH2 < 3°)
function defining the diffuser expansion loss for three-dimensional, square cross-section diffusers
function defining the diffuser expansion loss for three-dimensional, crosssection diffusers at high diffusion angles (TH2 > 10°)
function defining the diffuser expansion loss for three-dimensional, square cross-section diffusers at small diffusion angles (TH2 < 3°)
function defining the change-of-reference station for total pressure losses from local section to test section
function defining "two-dimensional" (rectangular) diffuser expansion loss for low diffuser angle range (TH2 < 9°)
function defining "two-dimensional" (rectangular) diffuser expansion loss for high diffuser angle range (TH2 29°)
function defining corner turning loss parameter EKTE for corners without turning vanes (based on a value of EKTE $=1.80$ at $\mathrm{PHI}=90^{\circ}$)
function defining turning vane loss parameter EKTV (based on a value of EKTV $=0.15$ at PHI $=90^{\circ}$) for lower turning angle range ($\mathrm{PHI} \leq 30^{\circ}$)
function defining turning vane loss parameter EKTV (based on a value of EKTV $=0.15$ at PHI $=90^{\circ}$) for upper turning angle range ($30^{\circ}<\mathrm{PHI} \leq 90^{\circ}$)
function converting diffuser equivalent cone angle, TH2, in degrees to halfangle, TH , in radians

FøRTRAN name and/or (title)	Engineering symbol	Description
FTH2		function defining diffuser equivalent cone angle, TH2
G	γ	specific heat ratio of gas
H1	h_{1}	height at the upstream end of a noncircular section
H2	h_{2}	height at the downstream end of a noncircular section
IFLAG		parameter indicating the sequence number assigned to the fan section
IPL \emptyset T		decision parameter for selecting which (if any) plots are to be plotted
IPRINT		decision parameter for requesting or omitting output of summary characteristics page
ISEC		section type-description code
ISEQ		input section sequence number
ISHAP1		```section upstream-end cross-sectional shape code```
ISHAP2		```section downstream-end cross-sectional shape code```
Ititla		assumed case-title array in the event the title card is omitted
ITITLE		input case-title array
ITUNNL		wind tunnel circuit-type code
ITYPE		code for type of output format required for printing section information
IU		units-of-measure type code
LINEMX		maximum number of output lines per page
LMTSEC		limit for maximum number of sections in any given case

FøRTRAN name and/or (title)	Engineering system	Description
MCHECK		```master-card input-requirement checking code array```
MDATA		master-card integer input data array
MFøRMT		master-card output format array
MWRITE		master-card output array containing data and/or annotation(s)
N	N	section assigned sequence number for order of occurrence in circuit
NCHECK		```section-card input-requirement checking code array```
NDATA		section-card integer input data array
NFøRMT		section-card output format array
NN		section type number for printing proper section title
NWRITE		section-card output array containing data and/or annotation(s)
P		input tunnel total (stagnation) pressure, standard atmospheres
PA		input atmospheric (barometric) pressure, standard atmospheres
PATM (P ATM)	${ }^{\mathrm{P}} \mathrm{T}_{\text {ATM }}$	$\begin{aligned} & \text { atmospheric (barometric) pressure, } \\ & \mathrm{N} / \mathrm{m}^{2}\left(1 \mathrm{~b} / \mathrm{ft}^{2}\right) \end{aligned}$
PHI	ϕ	corner flow turning angle, deg
PI	π	ratio of the area of a circle to the square of its radius
PRSTY		porosity of certain non-solid flow obstructions: AL/A
PT	p_{T}	```tunnel total (stagnation) pressure, N/m (1b/ft }\mp@subsup{}{}{2}\mathrm{)```
PWRI		decision parameter for requesting or omitting the matching of power consumption with given input value

FØRTRAN name and/or (title)	Engineering system	Description
PWRIP		power required to be input to flow in order to drive wind tunnel at specified speed, W (hp)
PWRMCH		total power value for which the maximum test section velocity is to be determined (if requested), W (hp)
PWR P $^{\text {P }}$	$\mathrm{P}_{\text {REQUIRED }}$	total fan motor output power required to drive wind tunnel at specified speed, W (hp)
Q0	q_{0}	$\begin{aligned} & \text { test section upstream-end dynamic } \\ & \text { pressure: } \frac{\rho_{0} V_{0}{ }^{2}}{2}, N / m^{2}\left(1 b / f t^{2}\right) \end{aligned}$
R	R	gas constant, $\mathrm{m}^{2} / \mathrm{sec}^{2}{ }^{\circ} \mathrm{K}\left(\mathrm{ft}^{2} / \mathrm{sec}^{2}{ }^{\circ} \mathrm{R}\right)$
RHøS	ρ	$\begin{aligned} & \text { local static density, } N \sec ^{2} / m^{4} \\ & \left(1 b \sec ^{2} / f t^{4}\right) \end{aligned}$
RHøSF	ρ_{F}	static density at the fans, $N \sec ^{2} / \mathrm{m}^{4}$ (lb $\sec ^{2} / f t^{4}$)
RHøS0	ρ_{0}	static density at upstream end of test section, $N \sec ^{2} / \mathrm{m}^{4}\left(1 b \sec ^{2} / \mathrm{ft}^{4}\right)$
RHø ${ }^{\text {P }}$	${ }^{\rho}$ T	density computed for total (stagnation) conditions, $N \sec ^{2} / \mathrm{m}^{4}\left(1 \mathrm{~b} \mathrm{sec}{ }^{2} / \mathrm{ft}^{4}\right)$
RN	RN	Reyno1ds number: $\frac{\rho V \ell}{\mu}$
RNREF	$\mathrm{RN}_{\text {REF }}$	reference Reynolds number at which turning vane 90°-loss constant, EKTV90, was determined
RNV		Reynolds number for turning vanes based on vane chord: $\frac{\rho V c_{V}}{\mu}$
RUFNES	Δ	```surface roughness in honeycomb cells, m (ft)```
(RUFNES)		$\begin{aligned} & \text { surface roughness in honeycomb cells, } \\ & 10^{-6} \mathrm{~m}\left(10^{-6} \mathrm{ft}\right) \end{aligned}$
SEKO		section total pressure loss array (referenced to test section conditions) used in summary calculations

FøRTRAN name and/or (title)	Engineering symbol	Description
SEL		section centerline length array used in summary calculations, m (ft)
SERR \emptyset R		section input error occurrence code
Slamda		friction coefficient for smooth pipes
SLmDAE		calculated friction coefficient in test section at the requested power-matching condition
SLMDA1		friction coefficient at section upstream end
SLMDA2		friction coefficient at section downstream end
SLR	δ_{s}	diffuser side length ratio: ratio of change in height to change in width from upstream to downstream end, or its inverse, whichever is less than or equal to unity
SMACH		section downstream-end Mach number array used in summary calculations
SøA (S/AL)		ratio of flow-obstruction drag area to local flow area
SSUMEL		summation array of total centerline length from start of circuit to end of local section
SSUMKO		summation array of total pressure losses from start of circuit to end of local section
SUMEKO	$\sum_{i=1}^{N} K_{o_{i}}$	summation of all section total pressure losses referenced to test section conditions
SUMEL	$\sum_{i=1}^{N} L_{i}$	```summation of all section centerline lengths (total circuit flow length), m (ft)```
T		```tunnel total (stagnation) temperature, * C (}\mp@subsup{}{}{\circ}\textrm{F}\mathrm{)```
TH	θ	diffuser half-angle, rad

FøRTRAN name and/or (title)	Engineering symbol	Description
$\begin{aligned} & \text { TH2 } \\ & (2 \text { THETA) } \end{aligned}$	2θ	diffuser equivalent cone angle, deg
TLIST		case-fatal error occurrence code
TLISTI		decision parameter for requesting or omitting tabulation of input data
TRETRN		decision parameter for requesting return for additional case or final termination
TSBLKG		test section blockage used for computation of basic test section conditions, percent of test section cross-sectional area
TT	T_{T}	```tunnel total (stagnation) temperature, 0}\textrm{K}(\mp@subsup{}{}{\circ}\textrm{R}```
V	V	local flow velocity, m/sec (ft/sec)
Voc		calculated test section velocity at adjusted power level, $\mathrm{m} / \mathrm{sec}$ (ft/sec)
VOK		test section flow velocity at input conditions, knots
V1		```section upstream-end flow velocity, m/sec (ft/sec)```
V2		```section downstream-end flow velocity, m/sec (ft/sec)```
W1	${ }^{\mathbf{w}} 1$	width of upstream end of non-circular section, m (ft)
W2	w_{2}	width of downstream end of non-circular section, m (ft)

C............ Cobepressure hoss repergneestation iranger function	$\begin{aligned} & \rho M \\ & \rho M \end{aligned}$	$\begin{array}{r} 510 \\ 520 \end{array}$	
C.e. PKKOREM	PM	530	
	PM	540	
13 SORT (EMOSO/(1.t(0-1.)/2.\#AMACH**2))	PM	550	
	P1	500	
C.P. 6088 PARAMETER CURVEOFTT PUNCTIONS	PM	570	
	PM	880	
	PM	590	
		600	
	OM	610 620	
	PM	630	
	PM	600	
	PM	650	
	PM	660	
	PM	670	
	PM	680	
PEKCE(TH2) - $10333950.119465 E \\|$ IH2	PM	690	
PEKgs(TH2) - 962274E-10,207382Ew2apHz	PM	700	
FEK208(THE) dE.3333333E-2,TH2	PM	710	
	PM	720	
FEKSH(TH2) - 1321685*.293315Ea1*TH2	PM	730	
	PM	140	
	PM	750	
	PM	760	
2	PM	770	
	PM	780	
	PM	790	
	PM	800	
	PM	810	
	PM	820	
C.E.COMPILE-TIME ARMMETER DEFINITION8	PM	830	
	PM	840	
C.e.es	PM	850	
EAR PIXED PARAMETER DEPINITIDNA	PM	060	
C.	PM	870	
Pi matapanelal	PM	880	
PLOTON 0.0	PM	890	
C-SORO-	PM	000	
	PM	910	
	PM	020	
	PM	930	
GNEMX -	PM	920	
LMTEEC 3n	PM	950	
	PM	260.	
C. THERE IS NO RETURN PO PHE PREIOUS INsTRUCTIONS.	F	970	
C.O.		280	
		990	
		1000	

C.OAO- InPERNATIONAL SYSTEM OF UNITS (SI)	$\begin{array}{ll} \text { PM } & 1510 \\ \text { PM } & 1520 \end{array}$
C.	PM 1530
	RM 1540.
PT E P 101325.	PM 1550
PAIM PA, 101325.	PM 1560
R = 280.79	PM 1570
TT $=$ It 273,15	PM 1580
EMUT EMUSTD* (TT/288,0)**,76	PM 1590
PWRMCE DAPA $71+1$-E6	PM 1600
6010104	PM 1610
	PM 1620
C.: U.3. CUSTOMARY UNIT8	PM 1630
	PM 1640
103 EMUSTD a 3.719 E -7	PM 1650
PT Pe2116.217	PM 16.60
-ATM - ${ }^{\text {PA*2116.217 }}$	PM 8670
0.17150	PM 1680
TT- 74459.6	PM 1690
EmuT E EmUSTO*(TT1518.4)**.76	PM 1700
PWAMCH DATA(7)*1,E3	PM 1710
Crencerene	PM 1720
C.E.GENERALEFORM DIMENEIONAL PARAMETERS	PM 1730
Cees	PM 1740
104 AT SORT(GAR*TY)	PM 1790
RHAT PT/(R⿴TI)	PM 1760
	PM 1770 PM 1780
C...	PM 1790
YO OAPA(b)	PM 1800
1n5 IF (IU eEO, iJ Vok Vowis9438	PM 1810
IF IU EGA 21 VOK VOL 59248	PM 1820
EMO VOAAT	PM 1830
	PM 1840
EM VO/ASO	PM 1850
	PM 1860
EMO EM	PM 1870
60 ro 106	PM 1880
107 EMO EM	PM 1890
C-cenerenes	Pm 1900
C.... MACHANUMBEq=DEPENDENT PARAMETERS	PM 1910
	PM 1920
	PM 1930
	PM 1940
QO RHOSO. VOME2/2.	PM 1950
C-apesperse	PM 1060
C.E.ETEST SECTION THROAT SLZE AND TMROAT-AREA DEPENDENT PARAMETERS	PM 1970
C.O.	PM 1980
T886KG D DAFA(5)	PM 1990
	PM 2000

A1 : PI*(DFAN**2-DHUB**2)/4.*(1. $=$ BLKAGE/800.) *ENDUET AII A1/ENDUCI	$\begin{aligned} & \text { PM } 4010 \\ & \text { PH } 4020 . \end{aligned}$
	PM 4030
	PM 4040
C. 0	PM 4050
C2is Al010 - A1/40	PM 4060
A2040 AR/AO	PM 4070
AR AR/A1	PM 4080
	PM 4090
Call speEdialimachav)	PM.4100
CALL FRICTN(OHL, A1, AMACH, SLAMDA)	PM 4110
AMACHI AmACH	PM. 4120
V1.V	PM 4130
SLMOAI - SLAMOA	PM 4140
CALL SPEED(AZ,AMACH, V)	PM 4150
CALL FRIGINCDH2,A2,AMACM, SIAMDAI	RM 4160
AMACHE AMACH	PM 4170
SMACHPN) S AMACH2	PM 4180
	PM 4190
SLMDAZ SLAMDA	PM 4200
IF IISEC NE 3 , ANO, ISEC NE, 4 AND, ISEC NE. 40 , AND.	PM 4210
	PM 4220
2 , AND. ISEC.NE, 94, GO PO 224	PM 4230
	PM.4240
C.O.DEFINİION OF DIPFUSER.ONLY PARAMETERS	PM 4250
	PM 4200
TH2 FTH2 (AZ,A1,EL)	PM 4270
	PM 4280.
TH FTH(TH2)	PM 4290
EKEXP = DATA(12)	PM 4300
IP (EKEXP, GT. 1.E06) G0 T0 224	PM 4310
Cesens	PM 4320
C.: DEFAULT-CAUSED DEPERMINATIUN OF DIFFUSER EXPANSION LO88	PM 4330
CRS PARAYEIER	DM 4340
C. ${ }^{\text {c }}$	Pm 4350
C.EKC FEKG(TH2)	PM 4360
IF (THZ . 7.3.$)$ EKC FEKCS(TH2)	PM 4370
IF (TH2 GT: 10, EKC PEKCHETH2)	PM 4380
EKS FEKS (TH2)	PM 4390
IF (THE LT, 3, EKS E FEKSS(TH2)	PM 4400
IF (TH2 GT, 10, EKS EEKSH(TH2)	PM 4410
EK20R FEK2OLPH2)	PM 4420
IF (TH2 .6T. 3, EK2DR EFEKZOS (THZ)	PM 4430
TF (TH2 GE Q E EKZDR EEK2OU(TH2)	PM 4440
IF TTH2 GF. 10.) EKZDR (FEK2DH(TH2)	PM 4450
EKCSAVE (EKC+EK8)/3.	PM 4460
EK2DC EK2DR,EKC/EKS	PM 4470
$E K 2 D C S$ (EK2DR+EK2DC7/2.	PM 4480
IF (ISHAPI .NE, 1 OR, ISHAPZ .NE, 1) GO TO 216	PM 4400
C.E	PM 4500

C.0.	$\begin{aligned} & \text { PM } 5510 \\ & Q_{M} \quad S 520 \end{aligned}$
C.: TEST SECTIONS	PM 5530
c	PM 5540
C. ${ }^{\text {co }}$	PM 5550
Cen CLOSED, CONETANTEAREA IEST SECTION	Pr. 5560
C.O	PM 5570
1010 EK SLMPAILELIOHI	PM 5580
EKO EEKO (EK, AO, A1, EMO, AMACH\&, EMOSO, 6)	PM 5590
SEKO(N) EKKO	PM 5600
GUMEKO SUMEKO\#EKO	PM 5610
C-CALL OUTPUY(1,1)	PM 5620
LINECT LINECT+3	PM 5630
IF (ISEC, E0, 1) 60 10 200	PM 5640
C):	PM 5650
Con MOnEL IN THE IESLEECLION	PM. 5660
	PM 5670
$820 \mathrm{gOA}=\mathrm{DATA}(8)$	PM 5680
CD DATA (13)	PM 5690
$E P_{s}$ - $1 .+D A T A(16) / 100$.	PM 5900
EK = CD*SOA*EPS	PM 5710
	PM 5120
SEKO (N) E SEKO (N) QEKO	PM 5730
SUMEKO EUMEKOtEKO	PM 5740
CALL OUTPUT(2,3)	PM 5750
LINECT LINECT+3	PM 5760
60 TO 200	PM 5770
Ces	PM 3780
C.O CLOgED, OLFFUgING TEST gECTION	PM 5790
	PM 5800
	PM 5810
IF EK LT. CSLMDALHELTOHIJLEK SMOAIEELOHI	Pm 5820
EKO FEKO EK, AO, $12, E M O, A M A C H 1, E M O S U, ~ O) ~$	PM 5830
8EKOSND EKO	PM 5840
SUMEKO EUMEKO EKO	PM 5850
CALL OUTPUT(3,2)	PM 5860
LINECT LINECT*3	PM 5870
IF (IsEC.E日. 3) 60 TO 200	PM 5880
60101020	PM 5890
Cen	PM 5900
C.O OPEN=THROAT PE8T SECTION	PM 5910
	PM 5920
1050 EK .0y45*EL/OH10.0053*(EL/DH1)**2	Pr 5930
$\text { EKO EEKQ(EK,AO,AI,EMO,AMACMI,EMOSQ, } 6$	PM 5940
SEKOR \% EKO	PM 5950
SUIAEKO SUMEKCEKO	PM 5900
TH2 = FTH2 (A2,A1, EL)	PM 5970
CALL QUTPUT(3,4)	PM 5980
LINECT E LINECT+3	PM 5990
IF (ISEC.E日, 5) 60.10200	PM 6000

$1330 \text { NN NH: ABSCOATA(11) }$	PM 6510 PM 6520
EKTE90 OATA (12)	PM PM P OS
	PM 6540
EKTE FKTE (PHI)*EKTE9011.80	PM 0550
EK CEKTE\&BLMDAL*EL/OHL	pm 6560
EKO FEKO (EK, AO, AL, EMO, AMACHI, EMOSG, 0)	PM 6570
ITYPE 1	PM 6580
00102000	PM 6590
C.	PM 6600
C.: DIFFUSING CORNER WITH TURNING VANEg AND WALLS	PM 6610
	PM 6620
NN 10 CHORD : DATACO	PM 6630 PM 6640
PH m AS (DATA (li))	PM 6650
EKTV90 E Datallej	PM 6660
RNREF OATA (14)*10***6	PM 6670
IF (EKTV90. 1 T. 1.EOU) EKTVOO -. 15	PM 6680
	PM 6690
IF (PHI LEE - 30.1 EKTV E FKTVI(PHI) *EKTV901. 15	PM 6700
	Pmi 6710
	PM 6720
RNV: RNOC*CHORU/A1*(1.*(G.1.)/2,*AMACH1**2)***96	PM 6730
$E K V=3$	pm 6740
	PM 0750
Ex - EKV* ($A R=1.1 / A R) * * 2$.	PM 6760
EK2 EKKTV ${ }^{\text {c }}$, ${ }^{3}$	PM 6770
CALL FHICTNSCHORD, A, AMACHI, SLAMDAI	Pm 6780
EK EK EK ${ }^{\text {EK2 }}$	PM 6790
EKO = FEKOREK, AO, A1, EMO, AMACHL, EMQSO,G)	PM 6800
1TYPE 3	PM 6810
60903000	PM 6820
C.E...	PM 0830
	PM 0840
c.	PM 6850
C.O OFFUSER	PM 6860 PM 6870
	PM 6880
400 NN $=11$	PM. 6890
	PM 6900
	PM 0980
	PM 0921
ITYPE ${ }^{\text {a }} 3$	PM 6930
GU TO 2000	PM 6440
C.: EXIT KINETIC ENERGY FRO	PN 6950
	PM 6900 PM 6970
$1450 \mathrm{NN}=12$	PM 6980
	PM 6990
EKO EEKOEE,AO, A1, EMO, AMACH1, EMQSE,G)	PM 1000

$\begin{aligned} & \text { EKCNTR : }{ }^{32 \star E L C / O H L \star S L A M O A} \\ & \text { IHZ FYH2(AZ,AL,ELD) } \end{aligned}$	$\begin{aligned} & \text { PM } 7510 \\ & \text { PM } 7520 \end{aligned}$
$\text { Exy }=3$	PM 7530
	PM 7540
EKD EKV*((AR-1,)/AR)**2 EK EKCNTR\&EKD	PM 7550 PM 7560
EKO FEKO (EK, AO, A1, EMO, AMACHI, EMOSO, G)	PM 7570
ITYPE E 3	PM 7580
60102000	PM 7590
C-0-_-	PM 7600
C:\% PERFORATED PLATE WITM SHARPDEDGED DRIFICES	PM 7610
c	Pm 7620
$1530 \mathrm{NN}=16$	on 7630
PRSTY DATH(10)	PM 7640
	om 7650
EKO FEKOCEKAARALEEMR.AMACMLEEMOSQ.G1	PM 7660
ITYpE 2	PM 7670
69102000	PM 7680
C.:	PM 7690
Ce. WOVEN MESM SCREEN	PM 7700
	pr 7710
1540 NN E 17	PM 7720
UMESH E DATA(9)	PM 7730
ORSTY = DATA1101	Pm 7740
EKMESH DATA(12)	PM 7750
IF (EKMESH LT 1, E00] EKMESH $=1.3$	PM 7760
	PM 7770
	PM 7780
ENU EMU/AHOS	PM 7790
KN V1. DNESH/ENU	PM 7800
EK EKMESH* (1.0PRSTY/100, + (100, /PRSTY-1.) **2	PM 7810
IF 1 RN LT, $400.4 N D$	PM 7820
	PM 7630
	PM 7840
EKOEFEKO (EK, AO, A1, EMO, AMACHI, EMOSG,G)	PM 7850
$I T Y E=2$	PM 7860
GO 10 2000	PM 7870
	PM 7880
C.. INTERNAL STRUCTURE (DRAG ITEM(S)) AT UPSTREAM END OFA	Pr 7890
CAM-_- SEETION	PM 7900
C:	pr 7910
-1560 NN $=18$	Pm 1920
ENITEM E OATA(2)	PM 7930
SOA E OAIA (B)	PM 7940
$C D=O A T A(13)$	PM 7950
EPS	PM 7960
IF (ABS(ENITEM) , LT, 1,E®6) ENITEM a d,	PM 7970
EK ED.SOA,EPSHENITEM	PM 7980
EKO FEKDIEK, AO, AL, EMO, AMACHI, EMOSO, G)	PM 9990
	PM 8000


```
    AVGPWR PWROP/ENFAN PM11010
    NRITE(O,9303) SUMEKOEER,OWRIP,PWROP,AVGOWR,EIAFAN,ENFAN
    LINECT E GINECT+5
```



```
    PM11020
    Pm&1030
```



```
C....PUWER VALUE - DETERMINES APPROXIMATE MAXIMUM TEAT SECYION VELOCPY
C.,#FGR THE SPECIFIED POWER LEVEL
C...
    CALL FRICTNIOMORADEMD,SLMDACI
    vOC v vo
```



```
    EMF E EMF WO/VOC
    Em0 GMOLYO/VOC PM11140
    RHOSF RHOT/(1.+(G-1.)/12.#EMF**2)**(1./(G-1.)) PM11150
```



```
    RNINE RHOSO*VO*AO/EMUT FM11170
```



```
    1 RMOSFIETAFAN
```



```
    IF (ABS((PWRMCH-PNROP)/PWRMCH),GT, 1,E~6) 60 TO 2009 PM11230
```



```
    IF (IJ.FW, 2) VOK = VO*.5924B PM11250
```



```
    IF (LINEET LY, (LINEMX-10)) GO TO 2010 PM&&270
```



```
    WRITEPG,9001, ITITLE,IPAGE PMI1290
```



```
    2011 IF IPRINI,EQ. Q1 GOTD 2014 _
```



```
CB:RGIRGILSUMMARY GHARACIERISILCS PAGE OLIPUI__ PMII350
```



```
    D02n13 I & I,N 0M1/370
    IF ITINECT ITTEINEMXI_GO TO 2012 _ PM11380
    IPAGE IPAGE+! PM11390
```



```
    WRITE(0,9401)
    IF (IU.ER. 1) NRITE(6,9402) PM11420
    IF IIU EG. 2) WRITE(0,9403) PM11430
    B1ECT:15 PM11440
    20IZ WRITE(6,9400,I,SSUMEL(I),SMACH(I),SSUMKO(I),DELP(I) PM&1450
```



```
    2013 CONTINUE
    2013 conTINUE
    PM11470
```



```
C.O.......' PM18490
```


C.". CALG PLOTITEPAELDESSUMEL,SSUMKU,IUAIPLOTAITITLE, IRETRN, PLOTON) C.A.ABMUFATER TAUULATIUN OF INPUT DATA EAYOS FUR CURREAT CASE

PM11510
PM11520
Pッ11530
PMi1540
PM11550

PMI 1560
PM11570

C... PM11590

WHITE(0,9007) ITIILE
IF (TGETRN,GT. G E=6) GOTO 100 OM11010
IF THETRN.LT. .5, GQ 10.102
STOF 1060
Pm1 1630
c
C***
 PM11640
C. INOUT REAU FARMATS

Cfiñ furmat (a1,19A4,a3)

7 JOL FUKMAT (212,211.2f2.0.14F5.2)
c, equegengectuses.
C. oduput formats
C.:

PM11650
PM11650
PM11060
PM11670
PM11680
PM11690
PM11700
PM11710

PM11750
C.EAEKRFORMANCE INFORMATIUN LABELLING ANO OUTPUT FORMATS

PM11720
0M11730
P411740
PM11760
Cgigo plormat flHf/f2OX,A1,19A4,A3,13X,4MPAGE,I3//
1 20x:944,24m $\times 1 N D=T U^{9 N N E L ~ P E R F O M A N C E /, ~}$
PMII 1770
PM11760
PM11790
PM11800
PM11610
PM11820
prilis30
Pwil1840
Pmil1850
PM11800
PM11870
PM11880
PM11890
PM11900
P411910
Pm11920
Pul1930

ATERMINATION CODE, THE INDUT POWER VALUE IS ILLEGAL (LESS THAN OR/ PMI3OIO B $120 H$ EQUAL TO ZEROS. IHEREFORE, NO VELOCIIYOOPTIMIZING IS PO PMIBOZQ CSSIBLE, RECHECK INPUT VALUE ON MASTER DATA CARD, PM13030 Q509 FORMAT L/L15H t ERROR E SOAE INCOREEGT COMBINAYION OF INPUIS OR PMI 3040 AUNANTICIPATED SITUATION HAS CAUSED AN INVALID (NON-POSITIVE) 1 PM\& 3050 Q 39H TOTAL LOSS LEVEL RECHECX SECIION, IJ. 12H INPUT DATA.LI PMI306O EN

PM13070

$\begin{aligned} & \text { DOR2001 : } 5,20 \\ & \text { ENDATA(N,I) DATA(IG4) } \end{aligned}$	$\begin{gathered} \text { OK } 1510 \\ \text { OK } \\ 1520 \end{gathered}$
2001 CONTINUE	OK 1530
Comer	OK 1540
C.G.GENERAL INPUT REQUIREMENT DEFINITIONS	ok 1550
C.a	OK 1560
DO 2002 1 1,20	DK 1570
NCHECK(NaI) 0	OK 1580
2002 CONTINUE	OK 1590
NCHECK(N, 1) ?	Ok 1600
NCHECK(N, 2) 1	DK 1010
NCMECK $(N, 3)=1$	OK 1620
NCHECK (N, 4) E1 NCHECK	OK 1630
IF (1SHAP1, NE, 1) NCHECK (N, 7) \&	OK 1640
NCHECK ${ }^{\text {N, }}$, 8) 1	DK 1650
NCHECK(Ne 2$)$	OK 1660
IF (ISHAP2 ${ }^{\text {NE, }}$ (1) NCHECK(N,10) = 1	DK 1670
NCHECK(N,11) :	$\begin{array}{ll}\text { DK } & 1680 \\ \text { OK } & 1090\end{array}$
C.A.ASECYION.TYPE BRANCHING	OK 1700
	DK 1710
IF CISEC IES, 1) 60 T0 3000	OK 1720
IF (18EC.E日, 2) 60102020	ok 1730
If (ISEC EQ 3) 60102030	DK 1740
IF (ISEC , En, 4) 60902040	ok 1750
If PI8EC, EQ, 5, 60103000	OK 1760
IF (ISEC Ed, 0) 60102000	OK 1770
IF CISER, EEQ - 10) 60 T0 3000	- DK 1780
If (ISEC.Eq. 20) 60 T0 3000	OK 1790
IF-18EC.EQ 30, 60 102300	ak 1800
IF (18EC EEQ, 32) G0 102300	DK 1810
IF 1SEC,EQ, 33, 60 T0 2330	DK 1820
IF (1SEC .EQ, 34) 60102340	OK 1830
IF CI8EC EEQ 40, 60 T0 2400	DK 1840
IF (IsEC .E®, 45) 60 T0 2450	OK 1850
IF (ISEC EQ, 40) 60 T0 2460	OK 1800
IF (ISEC .ED. 51) 60 TO 2510	DK 1870
IF fSEC, EQ 52, 60 T0 2520	DK 1880
IF (1SEC .ED, 53, 60102530	OK 1890
IF (15EC.E日, 54) 60 10 2540	OK 1900.
IF (IGEC , EQ, 50) 60 O 2500	Ok 1910
1F (ISEC.EQ, 57, 60 to 2590	OK 1920
NCHECK(N, 5) 1	DK 1930
IF (ISEC, EQ 61, 60 103000	OK 1940
IF (I8EC.EQ. 62) 60103000	OK 1950
IF CISEC, EQ: 10 LG0 10 2700	EK 1.960
IF (IsEC , EQ, 71) 60 TO 2700	DK 1970
IF (SSEC,E0, 72) 60.102700	DK 1980
IF (ISEC .EG, 73) 60 10 2730	OK 1990
IF (ISEC.EQ. 14) 60 102740	OK 2000

$\begin{gathered} \text { 8EAROR -2. } \\ 3002^{\text {BCONTINUE }} \end{gathered}$	$\begin{aligned} & \hline \text { OK } 4510 \\ & \text { OK } 4520 \\ & \hline \end{aligned}$
c..... INVALID SECTION SHAPE CHECK AND MESSAGE	DK 4530
Con InYaLid secilon shape check and MEssage	Or 4540
${ }^{\text {cjojos }}$	$\begin{aligned} & \text { OK } 4550 \\ & \text { ok } 45 \mathrm{hog} \end{aligned}$
	OK 4590
IPAGE LPAGE+1	OK 4580.
WRITE(6,0111) ITITLE,IPAGE	OK 4390
WRITE 6,8007)	-0x 4 eno
If (IU ,EQ, 1) WRITE(0,8008)	OK 4010
IF IU .ER, 2) WRIIE(0,8009)	OK 4620
WINECT 3 a	OK 4030
3004 WR1TE 6.8003$) \mathrm{N}, 18 \mathrm{HAPI}$	OK 4640
LINECT - LINECT+3	OK 4650
8ERROR ${ }^{\text {a }}$-2,	OK 4660
	DK 4670
IF SLINECT LT, (LINEMX-2) 60 90 3006	OK 4880
IPAGE IPAGE	OK 4690
WRITE(6,8111) ITIFLE, IPAGE	OK 4700
WRITE (6,8007)	OK 4710
IF (IU CEQ. () WRITE $6,800 \mathrm{~B})$	OK 4220
IF (IU -EG. 2) WRITE (0,8009)	OK 4730
LINECT ${ }^{\text {a }}$ -	DK 4740
3000 WRITE (6, 0003) NOISHAP2	OK 4750
LINECT: LINECT+3	DK 4760
SERROR -2.	OK 4770
3007 IF (8ERROR GT, - - 10.60 IO 3009	0K 4780
IF (LINEC .LT, (LINEMX=3)) 60103000	DK 4790
IPAGE - IPAGE ${ }^{\text {P }}$ I	DK 4800
WRITE (b,AIII) IPIPLE,IPAGE	OK 4810
WRIIE 6,0007)	DK 4820
${ }_{\text {IF }}$ (IU EEO. !) WRITE $(6,8008)$	OK 4830
IF (IU EEC. 2) WRIE (6,B00.9)	DK 4840
LINEC 0	OK 4850
300日 WRITE (0.8005) N	OK 4800
LINECT - LINECT 3	nk 4890
3009 IF (TLIST. GTR SERROR) TLIET E SEROR	DK 4880
RETURN	DK 4890
C	DK 4900
	OK 4910
	OK 4920 OK 4930
	DK 4940
c....isidelina	OK 4950
C.AR.RALELGING OF MABTER ANO TERMINATION DAIA Page	OK 4960
4000 IPAGE - IPAGE+1	DK 4980
WRITE(6,8100) ITITLE,IPAGE	DK 4990
* *RIE (0,0101)	Or 5000

0040141 I 6,131F (MCHECK(I), NE, O) 00 10 4008			$\begin{array}{r} 5510 \\ 5520 \\ \hline \end{array}$
	EMWRIT (IOV) RBLNK2	DK	5530
	EMWRII(IOY +1) RELNK4	OK	5540
IF (AES (EMDAPA(I)EMWRIT LOV) LT, 1,EDG) OO YO 4012		OK	5550
		OK	5560
EMWRIP(IOV+1) RMSG2		DK	5570
00104012			5580
			5590
		OK	3600
c. IOV IOV+1			5610
		OK	5620
C.e- OATAMMAGNITUDE =CONTROLGED FORMATTINO		OK	5630
c.		OK	5640
	MFURMY(IOF) I IFFLDO		5650
IF (EMDATACI) LLT 1000. MFORMTCIOF) IFFLDI OK 5460			
IF (EMDATA(I) 1FT. 100.) MFORMT(IOF) EIFFLDZ IF (EMOATA(I) LT 10.) MFORMT IOF) E IFFLDS		OK	5670
			5680
IF (EMOATA(I) , WT. $1:$) MFORMP(IOF) IFPLDU		OK	5690
MFORMI (IOF + 1) [ICOMMA		OK	5700
		OK	5710
EMWRIT(IOV) RMSG3		OK	5730
EMWRIT (IOV 11$)$ RMSO4		OK	5740
	60 10 4012	OK	5750
EMWRII(IOY +1) RMSC6		OK	5780
		DK	5790
		DK	5800
EMWRIY(IOV+1) RMSGO		OK	5810
4012 10V - IOV.2		DK	5820
MFORMP (10F) IAFLDE		OK	5830
		OK.	. 5840
4013 IOF = 10F +2		OK	\$850
4014	CONIINUE	OK	3860
IOV $10 \mathrm{~V}-1$		OK	5870
			5880
C... MEPENATION OF TERMINATION CONPROL CODES		OK	5890 5900
		OK	5910
		DK.	5920
C. SUMMARY INFORMATION PRINT		OK	5930
		OK	5940
ETWRIT(1) TMSGZ IE CIPRINT NE OLETWRIIL IL TMSGL			5950 5960

```
    ETHRIT( 2) = RELNKA OK 0010
    ETWRIT( 32 ETMSG3 _
    ETWRIT( 4) = RBLNK4 OK OO3O
```



```
    4015
    IF (IPLOT NE, I ANO, IPLOT ,NE, 3) 60 TO 4016 OK 6050
```



```
    ETWOIT( 3) =TMSG5 OK 0070
    ETWRITP 4) ETMSGOA
    IF IIPLOT,GT, 2) ETWRIT(4) E TMSGGO OK 6090
```



```
4010
    ETWRIT( 2) TMSG7 OK O1&0
```



```
    ETMRIT(4) ETMSGQ OK 6\30
```



```
    U0 40181 1 10,12 OK 6150
```



```
    GO TO 4020 OK 6170
```



```
    ETWGIT(1L):TMSG8 OK O190
```



```
C..... OK G210
```



```
    C002O ETWFIT( 5) E TMSEL
    ETWRIT(5) EMSG1
    ETWRIT( 0) TMgGL2
        OK 6240
    DN 0250
    ETNRIT( 7) TMSGI3 DK 6270
```



```
    4021 ETWAST(6) # TN$G10 OK O290
```



```
    4O22 ETWRIT( B) FHSG2 DK 6310
C.e.es... OK 6320
C.: POWER_MATCHING AND VELOCITY.OPTIMIZATION REQUEST
DK }633
    IF (PWRI .GT, 1,E=0) ETWRIT, 8) E TMSGI DK. 6340
    ETMQIIGQ) IMSG2 DK 6360
C.0.", OK 6370
CEA NEXT-CASE,RETURN OR TERMINATION REQUEST OK 6380
C.O IF (TRETRN GT. 1-E=6) ETHRITE Q) TMSG, DK 6390
```



```
    WRITE(0,B105) N
    WRIFF(0,8100) ETWRIT
OK 6410
```



```
C....##̈̈g
C.ORHEADINGS FOR LISTING OF SECTION DATA INPUTS OK 6440
C... OK O450
```



```
    WRITE(6,8100) ITITLE,IRAGE OK O470
    WEITS(6.8107)
    IF (IU EG. 1) WRITE (0,8108) OK 0490
```


	10VI - IOV-1	DK	7010
	IOVA	OK	7020
C.....		DK	7030
C.e-	FLOATINGPPOINI INFORMATION	OK	7040
C.		OK	7050
	00 4038 3 : 5,20	OK	7000
	IF (NCHECK(I, J) NE, 0) 60 T0 4031	OK	7070
E	ENWRITIIOV) HBLNK2	DK	7080
		OK	7090
		OK	7100
	ENHRIT (IOV) RMSGI	OK	7110
	ENWRIT (IOV迷) RMSG2	OK	7120
	\%O T0 4036	OK	9130
40311		DK	7140
	go 104033	OK	7150
	ENWRIT(IOV) ENDATA(Lej)		7100
	10V $10 \mathrm{~V}+1$	OK	7170
	IF J , NE, S AND, J, NE, ف, GO PO 4032	DK	7180
	NFORMY (IOF) E IFLDO	DK	7190
	NFORMT (IOF +1$)$ ISPACC	DK	7200
	GOTO 4n3	DK	7210
Corese			1220
C. ${ }^{\text {c }}$	DATA.MAGNITUOE.CONTROLLED FORMATYING	DK	7230
		DK	1240
4032 N	NFORMT (IOF) = IFFLDO	DK	7250
	IF (ENDATA (LeJ) LT. 1000.) NFORMT (TOF) - FFFLOI	DK	7200
	IF (ENDATA(L,J) LT. 100.) NFORMT (IOF) IFFLD	OK	7270
	IF (ENDATA (INS) LIE HRS NFORMY(IOF) - IFFLOS	DK	7280
	IF (ENDATA(I, J) LT, 1, NFORMT (IOF) IFFLDA	OK	7290
			7300
	60 T0 4039	OK	7310
40331		OK	7320
	60904034	OK	7330
	ENWRIT(IOY) ERMSG3		. 7340
	EVWRIY(IOV+1) RM864	OK	7350
	60104036		7360
40341		DK	7370
	O0 T04035 . An	OK	7380
	ENWRIT (IOV) = 9 M 865	OK	7390
	ENWRII (10Y+1) : RMSG6	OK	7800
	G0 104036	OK	7410
4035	ENWRIT (IOV) E RMSGT	OK	7420
	ENWRIT (IOV+1) RMSG8	DK	7430
40361	$10 y-10 y+2$	OK	7440
	NFURMT (IOF) IAFLDE	OK	7450
	NFORMT	OK	7460
403710	IOF - IOF +2	DK	7490
4038	CONTINUE	21	7480
	IOV $10 \mathrm{~V}=1$	OK	7490
	NRITE (Q,NFORMT) (NWRITE(J),	OK	7500

 END OK 8540

SUBROUTINE FRICTN(OH, A, AMACH, SLAMDA)	PN 10
	PN 20
C***	FN 30
C IHIS ROUTINE, SUBROUTINE OF THE MAIN PRORRAM PERFORM, COMPUIES IHE	PN $\quad 40$
C LUCAL REYNOLDS NUMEERS ANO SMOOTHEPIPE FRIETION COEFFICIENTS.	PN 50
	FN 60
C******れ** COMMON/RLOCKC/ ASTAR,AT,G	$\begin{array}{ll} P N & 90 \\ P N & 00 \end{array}$
COMMON/RLOCKD ${ }^{\text {RNOC }}$	FN ${ }^{\text {P }}$
Come	HN 100
C. REYNOLOS NUMBER BASED ON THE CHARACTERISTIC DIMENSION DH CUSUALLY BUT	FN 110
CENOT ALWAYS IME HYORAULIC OIAMETER OF IHE LOCAL DUCTI	N $\mathrm{N}-120$
C...	FN 130
	PN 140
IF (RN, GE, 4,E3) GO TO 1	PN 150
	EN 160
C.ORICTION COEFFICIENT	FN 170
	FN 180
	F $N 190$
CAP PFOR REYNOLDS NUMAERS LESS THAN 4000	FN 200
C. . ${ }^{\text {a }}$	FN 210
	EN 220
C..."EAR'REYNOLOS NUMRE	$\begin{array}{ll}\text { FN } & 230 \\ \text { FN } & 240\end{array}$
C.:	FN 250
	EN-260
60904	PN 270
Ceneshenere	FN 280
C..., NEMTUNIS METHOD ITERATION FOR FRICTION COEFPICIENT AT REYNOLDS	FN 290
C.GOSUMBERS GREATER THAN OR EQUAL TD 4000	PN 300
C...	- N 310
1 SLAMT 005	+N 320
	FN 330
	HN 340
IF (\triangle SS(SLAMN=SLAMT)/SLAMN LT, 1,E由4) 60 ¢0 3	FN 350
SLAMT SLAMN	PN 360
GO TO 2	FN 370
3 SLAMDA SLAMN	FN 180
4 RETURN	FN 390
ENC	FN 400


```
        DATA NSECT( 96)ONSECT( 97),NSECT( 9B)ONSECT( 99),N8ECT(100)/ OT 530
```



```
        DATA NSECT(10!),NSECT(IOZ),NSECT(103),NSECT(104),NSECT(105)/, OT 550
    1. 4MMULI, UH DUC, 4HT CO, UHNTRA, 2HCT/ - OF 560
        UATA NSECT(100),NSECT(107),NSECT(108),NSECT(109),NSECT(110)/ OT S70
```



```
        OATA NSECT(116),NSECT(117),NSECT(118),NSECT(119),NSECT(12V?/ OT b10
        1 4MMUT, 4HO 2, 4HOWA1, 4HL CR, 2HNR, OF 62O
```



```
    1, LHM D &H ERN, 4HR, N, 4HO VA, 2HNE/ 
```



```
    1 GHMULT, 4H DUC, 4HY DI, GHPFUS, 2HER/ 
        CATA NSECT(141),NSECT(142),NSECT(143),NSECT(144),NBECT(14S)/ 0% 710
    L
    i
```



```
        I UHSUD, 4HEXP, 4HM O 4HE SN, 2HGL/ 
    1. HHSUN, 4MEXP, 4HMD,4HEM, 2HD, OT 760
```



```
        DATA NSECT(161),NSECT(162),NSECT(163),NSECT(164),NSECT(105)/, OT 790
```



```
        DATA ASECT(166),ASECT(167),NSECT(168),NSECT(169),NSECT(170)/ OT B&0
    & GHFAN, GHNIFS, 4HR&CN, 4MTR G, 2HDY/
        DATA NSECT(17!),NSECT(172J,NSECT(173),NSECT(174),NSECT(175)/
    1. GWMULT, GM INI, GHENL, UHSIRE, 2HIR/
        UATA NSECT(176),NASET(177),NSECT(178),NSECT(179),NSECT(180)/
        1 4MMULT. UHIPL, 4HFIXE, 4MD LO. 2HSS/
C...."OEOIIOMN END-SHAPE NAME DEFINITIONS
C....OBOCIIONN ENDGSHAPE NAME DEFINITIONS
C...
```



```
        N1 = NN+5=4
        N = U1+4
        IF (ISHAPI ,NE, ( OR, ISHAPZ NE, 1) GOTO &
CHORTTE*SHTATEMENTSGODR SECTIONS WHICH HAVE CIRCULAR CROSSESECTIUNS
C.->AI_BOIM ENDS
C...
        IF (ITYPE,EO.-1.)
        I HRITE(O,OIII) N,(NSECT(I),IONI,NS),NSMAPE(ISHAPI),DI,M1,M1OAU,
    2. Y1,AMACH1,EK,EK,EKO,NSHAPESISHAP2, O2,A2,AZOAO,Y2,AMACH2
Of 820
        AT 840
        or 850
        OT 800
        ता 870
            OT BBO
OT 890
*.0
    0% 900
```



```
NECT(74),NSECT(175)/ of 83
```


$\begin{aligned} & 3 \text { EK, EKO } \\ & 60 \text { To } 4 \end{aligned}$	$\begin{gathered} \text { of } 1510 \\ \text { of } 1522 \end{gathered}$
	of 1530
	OT 1540
C..AT THE UPSTREAM END AND CIRCULAR CROSS.BECTION AT THE DOWNSTREAM	0 OT 1550
	of 1560
	of 1570
1F (ITYOE EQA. 1)	0) 1580
	011590
	011600
IF (ITYPE E0, 2)	OT 1610
	071620
2 A1OAO, V1, AMACH1, EK, EKO,NSHAPE (ISHAP2), D2, A2, A20AO, V2,AMACH2	-1 1630
IF (ITYPE,EO, 3)	or 1640
1 WrITE(6,9221) N, (NSECT(I),IEN, N5), N8HAPE (18HAP1), M1, W1, A1,	
2.ALCAO, AR, TH2, Y1, AMACH1, EL, EK, LKO, NSHAPE (ISHAP2), D2, AR,AZO10, V2,	011660
3 AMACH	DT 1670
IF (JYPE,EQ 4)	of 1680
	Of 1690
	01.1200
3 Ek, EkO	of 1710
REIURN	of 1120
	Of 1730
Ceies SECiIION PERFORMANCE CALCULATION OUTPUT WRITE PORMATS	011740
	Of 1750
	of 17760
	$\begin{gathered} \text { of } 1770 \\ \text { of } 1700 \end{gathered}$
	of 1790
	011800
A $59,2,259,5 / 23 x, A 4,8 x, 59,2, F 11,2, F 7,2,10 \times, 78,1, F 7,3)$	Of 1810
	ot 1820
A F9, 2 /23x, $44,8 \times, F 9,2, F 11,2, F 7,2,16 x, F 8,1,57,3,9 x, 250,5)$	011830
	011640
4 $59,2,279,5 / 23 x, 14, F 8,2, F 9,2, F 11,2, F 7,2,16 x, F 8,1, F 7,3$)	DT 1850
	OT- 1860
	OT 1870
	D1 1880
	DT 8180
	OT 1900
A $79,2123 \times, 44, F 8,2,79,2,511,2,57,2,16 \times 1.58,1,57,3,9 \times, 2 F 9,51$	OT 1910
	OT 1920
A 2F9, 5/23x, A4, F8, $2, F 9,2, F 11,2,57,2,16 x, F 6,1,54,31$	or 1930
	of 1940
A 2F9, $5123 \times, 44,78,2, F 9,2, F 11,2,57,2,16 x, 78,1,57,31$	OT 1950
	-1 1960
A F9, 2, 2F9,5/23x, A4, F8, 2, F9, 2, F11,2,F7, $2,10 \times, F 8,1, F 7,3$)	of 1970
9192 FORMAT $1 / 13,1 \times, 4 A 4,42,1 \times, A 4,8 x, F 9,2, F 11,2,2 F 7,2, F 9,2, F 8,1, F 7,3$,	Of 1980
4 F9, 2/23x, A4, FB, 2, F9, 2, F11, 2, F7, 2, 10x, FE, 1, F7, 3, 9x, 2F9,5,	

```
    AF9,2,2F9,5/23x,44,8x, 10,2,F11,2,F7,2,16x,F8,1,F7,3) OT 2010
```



```
    A 2F9,5/23x,A4, 8x,F9,2,F11,2,F7,2,16x,F8,1,F7,3, 
```



```
    AF9,2,2F9,5/23x,44,8x,F9,2,F11,2,F7,2,16x,FB,1,F7,3)
```



```
    A F9,2/23x,44,8x,F9,2,F1,i,2,F7,2,16x,F8,8,7%,3,9x,2F9,5,
    OT 2070
    END
    01 2080
```

```SUBROUTINE PLOTITCN,DELP,SSUMEL,SSUMKO,IU,IPLOT,ITITLE,TRETRN,```	$\begin{array}{ll}\text { PT } \\ \text { PI } & 10 \\ 20\end{array}$
C**********************************************************************	P1 30
	el 00
C THIS ROUTINE, BUBROUTINE OF THE MAIN PROGRAM PERYORM, PLOT8 WALL	PY 50
C PRESSURE OIFFERENTIAL ANOIOR CUMMULATIVE, NONOIMENSIONAL PRESSURE	P1 60
C LOSSES against cummulative circuit centenline lengit. this plot	P1 70
c SUgROUTINE WA WRITTEN POR - LETA PLOTTER WITH O.OOSEINCH INCREMENTS.	PL 60
C NOPE... WHEN PLOTYING IN SI UNIT8, CENTIMETER SCALES WILL RESULT'.	0
	17
C**********************************************************************	-1 110
OIMENSION OEP P (32).171TLE(21),38UMEL (32),88UMKO(32)	If 120
DIMENSION IX (6),IXN(6), IXNM(6),IY(6),IYN(6),IYNM(6)	-1 130
coene.	ei 140
PLOT AXIS LABELS ARRAYS	PT 150
	P) 160
DAFA IXN(1),IXN(2),IXN(3),IXN(4), IXN(5),IXN(6)/ 4HCIRC,4HUIT	PI 190
1 GHLENG, 4 HTH (CAHFEET, 4 H) ,	PI 180
DATA IXNM (1), IXNM (2), IXNM (3), IXNM (4), IXNM (5),IXNM (6)/ 4HCIRC,	PT 190
	PI 200
	PT 210
	PI 220
DATA IYNM(1),IYNM(2),IYNM(3),IYNM (4) OIYNM(5),IYNM(6)/ UHWALL,	pr 230
1: $4 H$ PRE $4 \mathrm{HSSUR,4HE} \mathrm{(Ne4H/SQ}$,4 HM ) ,	PI 240
	p1 250 pi 200
CaREREADYI ${ }^{\text {c }}$ G Of THE PLOTTER AND ESTABLISHMENT OF PME ORIGIN	
	P1   pf 270   180
	pi 290
CaBCo DEFINITION OF PLOTIER PARAMETERS IN SI	P1   10
	Q1 320
$\mathrm{N}^{2}-\mathrm{N}+2$	PT 330
FACT 2.	RI 340
XLEN 15.	QT 350
YLEN $10^{\circ}$	PT 360
PYLEN YLEN-gS	PT 370
YLAE Y YLEN+ 1	PT 380
XNEXT = 17.	Pt 390
Ymax $=11$.	21. 400
YMARG $=.5$	PT 4:0
Cosese.	P1 420
C.0. DEFINITION OF AXIS LABELS	PT 430
	PI 440
IY(1):IYN(1)	PI 460
$I \times(I)=I \times N(I)$   continue	Pi 470
	-1 490
OCACiĖEİEROR TYPE OE UNITS	PY 1.500



```
 CAbL PLOF(0,0,=YMAX,=3)
 PT }101
 CALL PLOT(O,OPYMARGRE3)
 CALL PLOT(XNEXT,O,0,03)
C._(OTON_,_
 C.0.01900.0
Cg-gelF NO MORE CISES, CONTRDL PERMANENILY IAKEN PROM PLOITER
D] }102
 PT }103
er b040
C...
```


$\qquad$

```
 RETURN
 pi }105
EI 1000
pT }107
OL1080
ConocosARANETER CONVERSION TO 8I UNITS
C300O CONTINUE
 FACT : 2.15.26999
 XLEN=15,$1.26999
 YLEN e 10;el:26990
 YLAB M YEN+,I
 XNEXT =11,1,20999 _OI 1180
 YMAX = 11.$1,26999
YMARG 5%1 26999
PT1190
 O1 1200
pi 1210
 003500 la I:6
 3500 IY(I) : IXNM(I)
 |1 }122
 P9 1230
 00 10 1000
 END
ei 12:0
p! }125
```

APPENDIX D

INPUT AND OUTPUT FOR SAMPLE CASES

Six wind tunnels were used, in addition to the test case (fig. 11), as . sample cases to establish the reliability and accuracy of the computer program analysis technique for the various types of duct components and wind tunnel circuits. Each case included here is titled with the appropriate wind tunnel name and its pages are numbered. The performance analyses are presented on the first two to three pages of each case. The summary characteristics tabulations and the plotted information were omitted. The annotated tabulations of the input data were included for reference.

The results of the performance analyses are summarized in table 6. They are discussed and critiqued in the Results and Evaluation sections of this report.

$$
i_{i}^{*}
$$



NASA-AMES												$\begin{aligned} & \text { PAGE } 2 \\ & \text { DP } / 00 \end{aligned}$
NQ. SECTION TYPE	SHAPE	H1	W1, D1	AREAI	A1/ 10	$A R, C R$	2 THETA	$V 1$	MACH1	LENGTH	DP/QL	
+4 +----------4	---+	$\begin{aligned} & \text { H2 } \\ & \text { METERS } \end{aligned}$	W2,02 METERS $\qquad$	$\begin{aligned} & \text { AREAZ } \\ & \text { Sin } \\ & +--\infty \end{aligned}$	$42 / 40$ $+--\infty+$		$\begin{aligned} & \text { DEGREFS } \\ & +-\infty+ \end{aligned}$	$\begin{gathered} \mathrm{V} 2 \\ M / S E C \\ +---\infty \end{gathered}$	MACH2   +ー-- +	METERS	+---4	+---+
10 DIFFUSEP.	$\begin{aligned} & \text { RECT } \\ & \text { CIRC } \end{aligned}$	5.68	$\begin{aligned} & 6.60 \\ & 8.71 \end{aligned}$	$\begin{array}{r} 37.47 \\ 59.56 \\ \hline \end{array}$	$\begin{aligned} & 5.76 \\ & 9.16 \\ & \hline \end{aligned}$	1.59	6.01	$\begin{array}{r} 21.4 \\ 13.5 \\ \hline \end{array}$	$\begin{aligned} & 0.063 \\ & 0.040 \\ & \hline \end{aligned}$	17.16	0.02364	0.00066
11 FAN COATRACTIUN	$\begin{aligned} & \text { CIRC } \\ & \text { CIRC } \\ & \hline \end{aligned}$		$\begin{array}{r} 8.71 \\ 8.87 \\ \hline \end{array}$	$\begin{aligned} & 59.56 \\ & 46.04 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.16 \\ & 7.68 \\ & \hline \end{aligned}$	1.29	38.48	$\begin{array}{r} 13.5 \\ 17.4 \\ \hline \end{array}$	$\begin{array}{r} 0.040 \\ 0.051 \\ \hline \end{array}$	1.51	0.00066	0.00001
12 FAN OUCT \& STKUTS	$\begin{aligned} & \text { CIRC } \\ & \text { CIRC } \end{aligned}$		$\begin{aligned} & 8.87 \\ & 8.87 \end{aligned}$	$\begin{array}{r} 46.04 \\ 46.04 \end{array}$	$\begin{aligned} & 7.08 \\ & 7.08 \\ & \hline \end{aligned}$			$\begin{array}{r} 17.4 \\ 17.4 \\ \hline \end{array}$	$\begin{aligned} & 0.051 \\ & 0.051 \\ & \hline \end{aligned}$	0.61	0.00914	0.00017
13 MULT INTRNL STRCTR	$\begin{aligned} & \text { CIRC } \\ & \text { CIRC } \end{aligned}$		$\begin{array}{r} 8.87 \\ 8.87 \\ \hline \end{array}$	$\begin{array}{r} 46.13 \\ 61.75 \\ \hline \end{array}$	$\begin{array}{r} 7.09 \\ 9.49 \\ \hline \end{array}$			$\begin{array}{r} 17.4 \\ 13.0 \\ \hline \end{array}$	$\begin{aligned} & 0.051 \\ & 0.038 \\ & \hline \end{aligned}$		0.01129	0.00021
14 FAN DIFSRECATR BDY	$\begin{aligned} & \text { CIRC } \\ & \text { RECT } \end{aligned}$	9.14	$\begin{array}{r} 8.87 \\ 10.06 \\ \hline \end{array}$	$\begin{aligned} & 55.84 \\ & 91.99 \end{aligned}$	$\begin{array}{r} 8.59 \\ 14.14 \\ \hline \end{array}$	1.65	7.54	$\begin{array}{r} 14.3 \\ 8.7 \\ \hline \end{array}$	$\begin{aligned} & 0.042 \\ & 0.026 \\ & \hline \end{aligned}$	18.14	0.05617	0.00071
15 CONTRACTN, SINGLE	$\begin{aligned} & \text { RECT } \\ & \text { RECT } \end{aligned}$	$\begin{array}{r} 9.14 \\ 8.19 \\ \hline \end{array}$	$\begin{array}{r} 10.06 \\ 9.11 \\ \hline \end{array}$	$\begin{array}{r} 91.99 \\ 74.61 \\ \hline \end{array}$	$\begin{array}{r} 14.14 \\ 11.47 \\ \hline \end{array}$	1.23	11.51	$\begin{array}{r} 8.7 \\ 10.7 \\ \hline \end{array}$	$\begin{aligned} & 0.026 \\ & 0.032 \\ & \hline \end{aligned}$	5.33	0.00171	0.00001
16 DICFUSEF	$\begin{aligned} & \text { RECT } \\ & \text { RECT } \end{aligned}$	$\begin{array}{r} 8.19 \\ 8.52 \\ \hline \end{array}$	$\begin{array}{r} 9.11 \\ 9.43 \\ \hline \end{array}$	$\begin{array}{r} 74.61 \\ 80.37 \\ \hline \end{array}$	$\begin{array}{r} 11.47 \\ 12.36 \\ \hline \end{array}$	1.03	6.93	$\begin{array}{r} 10.7 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 0.032 \\ & 0.029 \\ & \hline \end{aligned}$	3.05	0.00306	0.00002
17 DIFFUSEP	$\begin{aligned} & \text { RECT } \\ & \text { RECT } \end{aligned}$	$\begin{array}{r} 8.52 \\ 9.14 \\ \hline \end{array}$	$\begin{array}{r} 9.43 \\ 10.06 \\ \hline \end{array}$	$\begin{array}{r} 80.37 \\ 91.99 \\ \hline \end{array}$	$\begin{array}{r} 12.36 \\ 14.14 \\ \hline \end{array}$	1.14	7.58	$\begin{array}{r} 10.0 \\ 8.7 \\ \hline \end{array}$	$\begin{aligned} & 0.029 \\ & 0.026 \\ & \hline \end{aligned}$	5.33	0.00565	0.00003
16 CONSTANT AREA DUCT	$\begin{aligned} & \text { RECT } \\ & \text { RECT } \end{aligned}$	$\begin{array}{r} 9.14 \\ 9.14 \\ \hline \end{array}$	$\begin{aligned} & 10.06 \\ & 10.06 \\ & \hline \end{aligned}$	$\begin{array}{r} 91.99 \\ 91.99 \\ \hline \end{array}$	$\begin{aligned} & 14.14 \\ & 14.14 \end{aligned}$			$\begin{aligned} & 8.7 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 0.026 \\ & 0.026 \\ & \hline \end{aligned}$	1.52	0.00140	0.00001
19 CCRAFR WITH VANES	$\begin{aligned} & \text { RECT } \\ & \text { RECT } \end{aligned}$	$\begin{aligned} & 9.14 \\ & 9.14 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.06 \\ & 10.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 91.99 \\ & 91.99 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.14 \\ & 14.14 \\ & \hline \end{aligned}$			$\begin{aligned} & 8.7 \\ & 8.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.026 \\ 0.026 \\ \hline \end{array}$	10.52	0.17085	0.00079
20 COASTANT AREA DUCT	$\begin{aligned} & \text { RECT } \\ & \text { RECT } \end{aligned}$	$\begin{array}{r} 9.14 \\ 9.14 \\ \hline \end{array}$	$\begin{aligned} & 10.06 \\ & 10.06 \\ & \hline \end{aligned}$	$\begin{array}{r} 91.99 \\ 91.90 \\ \hline \end{array}$	$\begin{aligned} & 14.14 \\ & 14.14 \\ & \hline \end{aligned}$			$\begin{aligned} & 8.7 \\ & 8.7 \end{aligned}$	$\begin{array}{r} 0.026 \\ 0.026 \\ \hline \end{array}$	5.38	0.00494	0.00002
21 CORAER WITH VAIVES	$\begin{aligned} & R E C T \\ & R E C T \end{aligned}$	$\begin{aligned} & 9.14 \\ & 9.14 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.06 \\ & 10.06 \\ & \hline \end{aligned}$	$\begin{array}{r} 91.99 \\ 91.99 \\ \hline \end{array}$	$\begin{array}{r} 14.14 \\ 14.14 \\ \hline \end{array}$			$\begin{aligned} & 8.7 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 0.026 \\ & 0.026 \\ & \hline \end{aligned}$	10.29	0.18071	0.00084

PAGE 3

PAGE 4




** '* NASA-AMES RESEARCH CENTER 7- BY 10-FOOT WIND TUNNEL *' CASE COMPLETED OR TERMINATED. **
SINGLE-RETURN, CLOSEC-TEST-SECTION WIND-TUNNEL PERFORMANCE
ATMOSPFEPIC PRESSUKE $=1.000$ ATMOSPHERES $=101325.0 \mathrm{~N} / S Q \mathrm{M}$
TEST SFCTICN CLNDITIUNS E-

$$
\text { MO. SECTICNTYFL SHAPE HI W1,D1 AREAI A1/AO AR ,CR } \angle \text { THETA VI MACHI LENGTH DP/QL DP/QO }
$$

$$
10 \equiv \star
$$

$$
2 \text { CONTRACTN, SINGLE RECT }
$$

$$
4 \text { CONTRACTN, SINGLE }
$$


5 DIFFUSFR
6 CIFFUSER
8 CIFFUSFR

$$
\begin{aligned}
& R E C T \\
& R=C T
\end{aligned}
$$

RECT

$$
\begin{aligned}
& R E C T \\
& R E C T
\end{aligned}
$$

$$
3 \text { TFST SECT, CIFSH }
$$

7 CORNER WITH VAATHS
9 COPAEF WITH VANES

$$
\begin{aligned}
& \text { RECT } \\
& \text { RECT }
\end{aligned}
$$

$$
\begin{aligned}
& R \equiv C T \\
& R \equiv C T
\end{aligned}
$$

$$
\begin{aligned}
& 15.70 \\
& 9.14 \\
& 7.14 \\
& 9.14 \\
& 0.14 \\
& 4.95 \\
& 4.95 \\
& 4.95 \\
& 4.95 \\
& 8.69 \\
& 8.69
\end{aligned}
$$

$$
\begin{aligned}
& 8.69 \\
& 8.69
\end{aligned}
$$

$$
\begin{aligned}
& 3.69 \\
& 9.15
\end{aligned}
$$

$$
\begin{aligned}
& 9.75 \\
& 0.75
\end{aligned}
$$

$$
\begin{array}{r}
15.70 \\
7.92
\end{array}
$$

$$
7.92
$$

$$
\begin{array}{rrrrrrrrr}
8.12 & 74.22 & 1.02 & 2.11 & 24.44 & 51.0 & 0.150 & 7.01 & \\
\hline 7.09 & 35.10 & 0.48 & & & 112.7 & 0.335 & & 0.00254 \\
\hline
\end{array}
$$

$$
\begin{array}{llllllllll}
7.09 & 35.10 & 0.48 & 1.02 & 0.26 & 112.7 & 0.335 & 13.11 & 0.01483 & 0.06602 \\
\hline
\end{array}
$$

$$
\begin{array}{lllllllll}
35.74 & 0.49 & 2.11 & 5.87 & 110.5 & 0.328 & 29.79 & 0.06272 & 0.26884 \\
\hline 75.46 & 1.04 & & & 50.1 & 0.148 & & &
\end{array}
$$

$$
\begin{array}{lllllll}
75.46 & 1.04 & 50.1 & 0.148 & 9.75 & 0.14222 & 0.13102 \\
75.46 & 1.04 & 50.1 & 0.148 & & &
\end{array}
$$

$$
\begin{array}{lllllll}
75.46 & 1.04 & 50.1 & 0.148 & 9.75 & 0.14222 & 0.13102 \\
\hline
\end{array}
$$

$$
8.69
$$

$$
\begin{array}{lll}
9.75 & 95.14 \\
9.75 & 95.14 & \frac{1.31}{1.31}
\end{array}
$$

$$
\begin{array}{lllll}
39.6 & 0.117 & 10.82 & 0.14366 & 0.08292 \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
39.0 & 0.111 \\
\hline 9.6 & 0.117
\end{array}
$$

$$
\begin{gathered}
-5 \\
x 4 \\
x
\end{gathered}
$$

LOCKHEEL-GEORGIA LDW-SPEED WIND TUNNEL, V/STOL TEST SECTIUN * * ...CUNTINULD.... $\quad$ PAGE 2
NO. SECTION TYPE SHAPE H1 W1,D1 AREAI AI/AO AR,CR 2 THETA VI MACHI LENGTH DP/QL DP/QD METERS

$+\cdots+\cdots+\cdots+\cdots$ | 39.6 | 0.117 | 0.06777 | 0.03912 |
| :--- | :--- | :--- | :--- |
| 39.6 | 0.117 |  |  |

$3.83 \quad 0.00327 \quad 0.00189$
$\begin{array}{llllllll}105.32 & 1.45 & 1.51 & 15.75 & 35.7 & 0.105 & 7.83\end{array}$
$69.62 \quad 0.96 \quad \begin{array}{lllll} & 54.5 & 0.161 & 0.00244 & 0.00265\end{array}$
$\begin{array}{lllllll}69.62 & 0.96 & 54.5 & 0.161 & 5.64 & 0.02219 & 0.02407 \\ 69.02 & 0.96 & 54.5 & 0.101 & & & \end{array}$
$\begin{array}{rrrrrrrrr}69.62 & 0.96 & 1.57 & 11.18 & 54.5 & 0.161 & 12.65 & 0.02837 & 0.03077 \\ 111.03 & 1.53\end{array}$
$55.17 \quad 0.03921 \quad 0.01659$
$\begin{array}{lllll}15.2 & 0.045 & 17.53 & 0.14696 & 0.01257 \\ 15.2 & 0.045 & & & \end{array}$

$\begin{array}{lllll}15.2 & 0.045 & 17.53 & 0.14096 & 0.01257\end{array}$
1.960610 .16763
TOTAL CENTERLINE LENGTH $=240.87$ mETERS
PAGE 3



LOCKHEED-GEURGIA LOW-SPEED WIND TUNNEL, V/STO TEST SECTION $\quad$. 5



| PER- | 10(-6) PER- PER- |  |
| :--- | :--- | :--- | :--- | :--- |
| CENT DEG | METERS | CENT CENT |



## SECTION CESCRIPTION DATA

-EMPTY: INOICATES OPTIONAL, NSN-RE QUIRED INPUT PARAMETER HAS BEEN OMITTEO OR PARAMETER MAY BE INTENDED AS $2 E R E$ IE

PAGE 6.






LOCKHEED-GEORGIA LOW-SPEED WIND TUNNEL, V/STOL TEST SECTION *
** ** LUCKHEED-GEURGIA LOW-SPEED WINU TUNNEL, VTSTOL TEST SECTION * CASE COMPLETEU GR TERMINATED. *
PAGE 1
INDIAN INSTITUTE OF SCIENCE 14- BY 9-FGOT WIND TUNNEL AT BANGALORE
non-return, closec-test-section wind-tunnel performance

SHETION TYPE SHAPE HI WI,DI AREAI AI/AO AR,CR 2 THETA VI MACHI LENGTH DP/QL DP/QO AREAZ AZ/AO

$\begin{array}{lllllll}48 & 14.10 & 6.6 & 0.019 & 0.25621 & 0.00124\end{array}$ $\begin{array}{llll}148.62 & 14.10 & 6.6 & 0.019\end{array}$ $\begin{array}{lll}148.62 & 14.10 & 6.6 \quad 0.019\end{array}$ $6.6 \quad 0.019$ $6.6 \quad 0.019$
$0.25621 \quad 0.00124$

$0.25621 \quad 0.00124$ | 6.6 | 0.019 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 6.6 | 0.019 |  | 0.25621 | 0.00124 |
| 6.6 | 0.019 |  |  |  |
| 6.6 | 0.019 | 17.86 |  |  |


6.6	0.019	17.86		
54.3	0.160		0.00941	0.00307


54.3	0.260	5.49		
0.00357	0.00357			

$0.10 \quad 0.01241 \quad 0.01241$
$\begin{array}{llllllllllllllll}11.33 & 1 . C 7 & 3.67 & 5.40 & 89.1 & 0.264 & 36.85 & 0.08077 & 0.06953\end{array}$ $\begin{array}{llll}11.33 & \frac{1.07}{31.53} & 23.5 & 0.069\end{array}$
1.53 3.4


MAXIMUM VELOCITY FOR A SPECIFIED POWER CONSUMPTION
THE MAXIMUM TEST SECTICN FLOW ACHIEVABLE WITH 862800. WATTS OF POWER AVAILABLE IS APPROXIMATELY AS FOLLOWS --

INDIAN INSTITUTE OF SCIENCE 14- BY 9-FOOT WIMD TUWNEL AT BANGALORE



IALIAN INSTITUTE OF SCIENCE 14- BY 9-FUOT WIND TUNNEL AT BANGALQRE *_...CONTINUED.... *__ PAGE 5
** * IADIAN INSTITUTE OF SCIENCE 14- by g-foot wind tunnel at bangalore ** case completed or terminated. **

PA 2

—

PAGE 4
HAWKER SICDELEY AIRCRAFT 15-FDOT V/STOL WIND TUNNEL AT HATFIELD

CASE TERMINATION CONDITIONS DATA



PAGE 6
 ** 1*

UNIVERSITY OF WASHINGTON 8-BY 12-FOOT WIND TUNNEL_ 2



 \begin{tabular}{ccccccccccc|}
5.16 \& 29.8 \& 0.088 \& 6.40 \& 0.01563

 $23.3 \quad 0.069 \quad 10.59 \quad 0.02002 \quad 0.00084$ 

\& 0.069 \& 10.59 \& 0.02002 \& <br>
\hline
\end{tabular} $17.6 \quad 0.052 \quad 0.76 \quad 0.00129 \quad 0.00003$

$17.6 \quad 0.052 \quad 4.50 \quad 0.11603 \quad 0.00277$ $\begin{array}{lllll}17.6 & 0.052 & 4.50 & 0.11603 & 0.0027 \\ 17.6 & 0.052 & & \end{array}$


[^2]...COntinued.... Page 3

UNIVERSITY OF WASHINGTON 8- BY 12-FOCT WIND TUNNEL

ANNOTATED INPUT DATA TABULATION
'EMPTY' INOICATES OPTIONAL, NCN-REGUIRED INPUT PARAMETER HAS BEEN OMITTEO OR PARAMETER MAY BE INTENOED AS ZERO.
'ERROR INCICATES MANOATORY INPUT PARAMETER HAS BEEN OMITTED. THIS MUST BE CORRECTED BEFORE COMPUTATION IS POSSIBLE.
'EXTRA' INOICATES SUPERFLUOUS INPUT PARAMETER HAS BEEN UNNECESSARILY INCLUDED ON INPUT CARD AND MAY BE REMOVED.
-OPT'A' INDICATES OPTIONAL INPUT DATA HAS BEEN OMITTED AND THE PARAMETER WILL DEFAULT TO A PREDETERMINED VALUE.



ANNCTATED INPUT DATA TABULATION

[^3]
UNIVERSITY OF WASHINGTON 8- BY 12-FOOT WIND TUNNEL

[^4]ATMOSPHERIC PRESSURE $=1.000$ ATMOSPHERES $=101325.0$ N/SO M.
TEST SECTICN CCNDITIONS --
TOTAL PRESSURE $=1.000$ ATMOSPHERES $=101325.0 \mathrm{~N} /$ SQ M.
NO. SECTION TYPE SHAPE HI WI,DI AREAL AI/AO AR,CR 2 THETA VI MACHI LENGTH DP/QL DP/QO
METERS METERS SOM METERS M/SEC
$0.00382 \quad 0.00382$


$47.7 \quad 0.141 \quad 0.00073 \quad 0.00060$

4 DIFFUSER	FL 0	9.60	19.20	164.56	1.10	1.16	12.61	47.7	0.141	5.18	0.01578	0.01296
	FL O	10.21	20.96	191.63	1.28			40.9	0.120			
5 FAN CONTRACTION	FL 0	10.21	11.57	191.52	1.28	1.22	6.35	40.9	0.120	9.45		

$50.10 .148 \quad 0.002850 .00258$
$\begin{array}{lllll}50.1 & 0.148 & 3.81 & 0.01708 & 0.01545\end{array}$
$\begin{array}{llllll}160.02 & 1.07 & 1.25 & 11.74 & 49.1 & 0.145\end{array}$
$\begin{array}{lllll}49.1 & 0.145 & 5.77 & 0.02019 & 0.0088\end{array}$
$\begin{array}{lllll}39.2 & 0.115 & 31.55 & 0.03618 & 0.02008\end{array}$
$\begin{array}{lllllllll}393.12 & 2.63 & 1.04 & 1.79 & 19.8 & 0.058 & 15.39 & 0.10037 & 0.01433\end{array}$ $\begin{array}{ll}393.12 & 2.63 \\ 410.23 & 2.75\end{array}$

 | 2.38 | $\begin{array}{lllll}11.1 \\ 10.6 & 0.033 \\ 0.031\end{array}$ | 16.92 | 0.09771 | 0.00436 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TOTAL CENTERLINE LENGTH $=$ |  |  |  |  |


PAGE 3

ANNCTATED INPUT DATA TABULATION
'EMPTY' INCICATES DPTIONAL, NON-REQUIRED INPUT PARAMETER HAS BEEN OMITTFD CR PARAMETER MAY BE INTENDED AS ZERC.
FRRQR' INDICATES MANDATORY INPUT PARAMETER HAS BEEN OMITTED. THIS MUST BF CORRECTED BEFORE COMPUTATION IS POSSIBLE.
'EXTRA' INCICATES SUPERFLUOUS INPUT PARAMETER HAS BEEN UNNECESSARILY INCLUDED ON INPUT CARD AND MAY BE REMOVED.
'OPT'A' INDICATES OPTIONAL INPUT DATA HAS BEEN OMITTED AND THE PARAMETER WILL DEFAULT TO A PREDETERMINED VALUE.

PGE 4
NASA-LANGLEY RESEARCH CENTER 30- BY G0-FOOT WIND TUNNEL


PAGE 5

NASA-LANGLEY RESEARCH CENTER 30- BY 60 -FOOT WIND TUNNEL * CASE COMPLETED OR TERMINATED. *:
7JNNnI ONIM LOOJ-09 A8 $-0 \varepsilon$ \&
$\cdots \cdot \square$

## REFERENCES

1. McDonald, Alan T.; and Fox, Robert W.: Incompressible Flow in Conical Diffusers. Tech. Rep. No. 1, Army Research Office (Durham), Project No. 4332, 1964. (Available from Armed Services Technical Information Agency, U.S. Department of Defense.)
2. Reneau, L. R.; Johnston, J. P.; and Kline, S. J.: Performance and Design of Straight, Two-Dimensional Diffusers. Trans. ASME, Journal of Basic Engineering, Vol. 89, March 1967, pp. 141-150.
3. Rouse, Hunter; and Hassan, M. M.: Cavitation-Free Inlets and Contractions. Mechanical Engineering, Vol. 71, March 1949, pp. 213-216.
4. Pope, Alan; and Harper, John J.: Low-Speed Wind Tunnel Testing. John Wiley \& Sons, Inc., N. Y., 1966.
5. Pankhurst, R. C.; and Holder, D. W.: Wind-Tunnel Technique. Sir Isaac Pitman \& Sons Ltd., 1952.
6. Wattendorf, Frank L.: Factors Influencing the Energy Ratio of Return Flow Wind Tunnels. Fifth International Congress for Applied Mechanics, Cambridge, 1938, pp. 526-530.
7. Idel'chik, I. E.: Handbook of Hydraulic Resistance. AEC-TR-6630, The Israel Program for Scientific Translations Ltd., 1966. (Available from Clearinghouse for Federal Scientific and Technical Information, U.S. Department of Commerce.)
8. Kröber, G.; (translated by Dwight M. Miner): Guide Vanes for Deflecting Fluid Currents With Small Loss of Energy. NACA TM-722, 1933. (Transl. into Engligh of "Schaufelgitter zur Umlenkung von Fluissigkeitsstromungen mit geringem Energieverlust," Ingenieur-Arkiv, Vol. 3, 1932, pp. 516-541.)
9. Henry, John R.; Wood, Charles C.; and Wilbur, Stafford W.: Summary of Subsonic-Diffuser Data. NACA RM I.56F05, 1956.
10. Moore, Carl A., Jr.; and Kline, Stephen J.: Some Effects of Vanes and of Turbulence in Two-Dimensional Wide-Angle Subsonic Diffusers. NACA TN 4080, 1958.
11. Cochran, D. L.; and Kline, S. J.: Use of Short Flat Vanes for Producing Efficient Wide-Angle Two-Dimensional Subsonic Diffusers. NASA TN 4309 , 1958.
12. Wallis, R. A.: Axial Flow Fans. Academic Press, N. Y., 1961.
13. Chmielewski, G. E.: Boundary-Layer Considerations in the Design of Aerodynamic Contractions. J. of Aircraft, Vol. 11, No. 8, Aug. 1974, pp. 435-438.
14. Eckert, William T.; Mort, Kenneth W.; and Piazza, J. E.: WindSensitivity Studies of a Non-Return Wind Tunnel With a 216 - by $432-\mathrm{mm}$ (8.5-by 17.0-in.) Test Section - Phase I. NASA TM X-62,171, 1972.
15. Eckert, William T.; Mort, Kenneth W.; and Piazza, J. E.: WindSensitivity Studies of a Non-Return Wind Tunnel With a 216 - by $432-\mathrm{mm}$ (8.5- by 17.0-in.) Test Section - Phase II. NASA TM X-62,307, 1973.
16. Mort, K. W.; Eckert, W. T.; and Kelly, M. W.: The Steady-State Flow Quality of an Open Return Wind Tunnel Model. Canadian Aeronautics and Space Journal, Vol. 18, No. 9, Nov. 1972, pp. 285-289. (Also NASA TM X-62,170, 1972.)
17. Liepmann, H. W.; and Roshko, A.: Elements of Gasdynamics. John Wiley \& Sons, Inc., N. Y., 1957.
18. Staff of Ames Research Center: Equations, Tables, and Charts for Compressible Flow. NACA Report 1135, 1953.
19. Sovran, Gino; and Klomp, Edward D.: Experimentally Determined Optimum Geometries for Rectilinear Diffusers with Rectangular, Conical or Annular Cross-Section. Fluid Mechanics of Internal Flow, Gino Sovran, ed., Elsevier Publishing Co., Amsterdam, 1967, pp. 270-319.
20. Annon: Low-Speed Wind Tunnel User Manual. Lockheed-Georgia Company, ER-11,000, 1970.
21. Krishnaswamy, T. N.; Ramachandra, S. M.; and Krishnamoorthy, V.: Design and Characteristics of the $14^{\prime} \times 9^{\prime}$ Open Circuit Wind Tunnel. Proc. of the 11th Seminar on Aeronautical Sciences, National Aeronautics Lab., Bangalore, 1961, pp. 417-434.
22. Krishnaswamy, T. N.: Selection of the Electric Drive for the $14^{\prime} \times 9^{\prime}$ Wind Tunnel. Journal of the Aeronautical Society of India, Vol. 7, No. 2, May 1955, pp. 19-28.
23. Krishnaswamy, T. N.; and Ramachandra, S. M.: Fan System of the $14^{\prime} \times 9^{\prime}$ Open Circuit Wind Tunnel of the Indian Institute of Science. Journal of the Aeronautical Society of India, Vol. 18, No. 2, May 1966, pp. 47-61.
24. Kirk, J. A.: Experience With a V/STOL Tunnel. Journal of the Royal Aeronautical Society, Vol. 71, Sept. 1967, pp. 606-622.
25. DeFrance, Smith J.: The N.A.C.A. Full-Scale Wind Tunnel. NACA Report 459, 1933.

TABLE 1.- NUMERIC INPUT CODE DEFINITIONS

Code type	Code value	Description of code meaning
Tunnel type	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Closed test section, single-return tunnel Closed test section, double-return tunnel Closed test section, non-return tunnel Open-throat, single-return tunnel Open-throat, double-return tunnel Open-throat, non-return tunnel
Units of measure $\downarrow$ Section shape	1	International System of Units (SI)
	2	U.S. Customary Units
	1	Circular cross section
	2	Rectangular cross section
Section type	3	Flat oval cross section (ceiling and floor parallel with semicircular sidewalls) (See table 4)
Section type   Plot type	$\leq 0.0$	No plots
	1.0	Cummulative pressure losses vs circuit length
	2.0	Wall pressure differential vs circuit length
	>2.0	Cummulative pressure losses and wall pressure differential vs circuit length (on separate plots)

TABLE 2.- TUNNEL MASTER CONTROL INPUT DATA DESCRIPTIONS

$\begin{gathered} \text { Card } \\ \text { column }(s) \end{gathered}$	$\begin{aligned} & \text { Field } \\ & \text { title(s) } \end{aligned}$	Requirement? ${ }^{\text {a }}$	Input type	Description(s)	Units
1		Required	Minus sign	Master card identifier	-
2	CASE SEQ.	\{optional	Integer	Arbitrary user case number	---
3	TUNNEL TYPE	Optional	Integer	Tunnel type code (see table 1)	---
4	UNITS	Default (1)	Integer	Units of measure code (see table 1)	-
5	SECT. INLET SHAPE	Required	Integer	Test section upstream end shape code (see table 1)	---
6	SECT. EXIT SHAPE	Optional	Integer	Test section downstream end shape code (see table 1)	---
11-15	H1	Geom. Dep.	Real	Height of rectangular or flat oval test section at upstream end	$m$ or ft
16-20	W1, D1	Required	Real	Width of rectangular or flat oval, or diameter of circular test section at upstream end	m or ft
21-25	MODEL BLKGE	Optional	Real	```Blockage factor of the model in the test section (if model is to be included)```	\% of   test   section   area
26-30	V0	Required	Real	Test section velocity for which power calculation is to be made	$\mathrm{m} / \mathrm{sec}$ or
31-35	POWER LEVEL	Optional	Real	Power for which maximum attainable velocity is to be calculated (if velocity-optimizing is requested)	ft/sec   $10^{6} \mathrm{~W}$   or   $10^{3} \mathrm{hp}$
36-40	PT	Default(1.0)	Rea1	Test section total (stagnation) pressure	ATM
41-45	TT	Required	Real	Test section total (stagnation) temperature	${ }^{\circ} \mathrm{C} \text { or }$ ${ }^{\circ} \mathrm{F}$
46-50	P ATM	Default (1.0)	Real	External atmospheric pressure	ATM

[^5]TABLE 3.- SECTION INPUT DATA DESCRIPTIONS

$\begin{gathered} \text { Card } \\ \text { column }(s) \end{gathered}$	$\begin{aligned} & \text { Field } \\ & \text { title(s) } \end{aligned}$	Requirement ${ }^{\text {a }}$	Input type	Description(s)	Units
1-2	SECT. SEQ.	Optional	Integer	Arbitrary section order number	---
3-4	SECT. TYPE	Required	Integer	Section type code (see table 4)	---
5	SECT. INLET SHAPE	Required	Integer	Section upstream end shape code (see table 1)	---
6	SECT. EXIT SHAPE	Required	Integer	Section downstream end shape code (see table 1)	---
7-8	TOTAL NO. DUCTS	Default (1.0)	Rea1	Number of multiple ducts	---
9-10	ITEMS PER DUCT	Default (1.0)	Real	```Number of individual, flow obstruction, drag loss items in local duct```	---
11-15	H1	Geom. Dep.	Real	Height of upstream end of noncircular section	$m$ or ft
16-20	W1, D1	Required	Real	Width of non-circular, or diameter of circular section at upstream end	m or ft
21-25	L	Sect. Dep.	Rea1	Centerline length of section	$m$ or ft
26-30	H2	Geom. Dep.	Real	Height of downstream end of noncircular section	$m$ or ft
31-35	W2, D2	Required	Real	Width of non-circular, or diameter of circular section at downstream end	$m$ or ft
36-40	$\begin{aligned} & \text { L/DH, } \\ & \text { S/AL } \end{aligned}$	Sect. Dep.	Real	Length-to-hydraulic diameter, ratio of flow straightener cells, or drag-area-to-local-duct-flow-area ratio for each flow obstruction drag item	$\mathrm{m} / \mathrm{m}$ or $\mathrm{ft} / \mathrm{ft}$, $\mathrm{m}^{2} / \mathrm{m}^{2}$   or $\mathrm{ft} \mathrm{t}^{2} / \mathrm{ft}^{2}$
41-45	DHUB, CHORD, DMESH	Sect. Dep.	Real	Hub diameter of fan-drive section, or turning vane chord length, or mesh screen wire diameter	m or ft

TABLE 3.- SECTION INPUT DATA DESCRIPTIONS - Concluded.

$\begin{gathered} \text { Card } \\ \text { column(s) } \end{gathered}$	$\begin{aligned} & \text { Field } \\ & \text { title(s) } \end{aligned}$	Requirement? ${ }^{\text {a }}$	Input type	Description(s)	Units
46-50	BLKGE PRSTY	Sect. Dep.	Rea1	Local flow area blockage due to each obstruction in the local duct, or porosity of flow straighteners, screen, perforated plate	\% of local area
51-55	PHI	Sect. Dep.	Real	```Corner flow centerline turning angle, 0```	deg
56-60	KEXP   KMESH	$\begin{aligned} & \text { Default (INT) } \\ & \text { Default }(1.3) \end{aligned}$	Real	Diffuser expansion loss parameter (see fig. 4), or	---
	KT 90	$\left\{\begin{array}{l} \text { Default }(0.15) \\ \text { Default }(1.80) \end{array}\right.$		mesh screen loss constant, or $\left\{\begin{array}{c}\text { turning vane loss parameter at } \\ \phi=90^{\circ} \\ \text { empty corner loss parameter at } \\ \phi=90^{\circ}\end{array}\right.$	
61-65	$\begin{aligned} & \mathrm{CD} \\ & \mathrm{~K} \end{aligned}$	Sect. Dep.	Real	Drag coefficient of flow obstruction, or fixed, known local loss value	$10^{6}$
66-70	RNREF, RUFNESS	$\begin{aligned} & \text { Default }(0.5) \\ & \text { Default }(.0001 \mathrm{~m}) \end{aligned}$	Real	Reference Reynolds number for which $90^{\circ}$ corner loss value is given, or surface roughness of flow straightener material	$\begin{aligned} & 10^{6} \\ & 10^{-6} \mathrm{~m} \\ & \text { or } \\ & 10^{-6} \mathrm{ft} \end{aligned}$
71-75	ETA	Default (100.0)	Real	Efficiency of fan drive system	
76-80	D EPS	Sect. Dep.	Real	Additional (amount over 100\%) downstream influence factor for flow obstruction items	$\begin{aligned} & \% \text { over } \\ & 100 \% \end{aligned}$

[^6]TABLE 4.- ADDITIONAL, SECTION-DEPENDENT INPUT REQUIREMENTS

Section		$\begin{aligned} & \text { Additional } \\ & \text { input } \\ & \text { title(s) } \end{aligned}$	Requirement? ${ }^{\text {a }}$	$\begin{aligned} & \text { Card } \\ & \text { column(s) } \end{aligned}$
Type description	Type code			
Single ducts:				
Test section, closed, constant area, empty	01	---		
Test section, closed, constant area with model	02	S/AL	Required	36-40
		BLKGE	Optional	46-50
		CD	Required	61-65
		D EPS	Optional	76-80
```Test section, closed, diffusing, empty Test section, closed diffusing,with model```	03	KEXP	Default	56-60
	04	S/AL	Required	36-40
		BLKGE	Optional	46-50
		KEXP	Default	56-60
		CD	Required	61-65
		D EPS	Optional	76-80
```Test section, open-throat, empty```	05	---		
Test section, open-throat, with model	06	S/AL	Required	36-40
		BLKGE	Optional	46-50
		CD	Required	61-65
		D EPS	Optional	76-80
Constant-area duct	10	---		
Contraction	20	---		
```Corner, constant-area, turning vanes only```	30	CHORD	Required	41-45
		PHI	Required	51-55
		KT 90	Default	56-60
		RNREF	Default	66-70
Corner, constant-area, with turning vanes and walls	32	CHORD	Required	41-45
		PHI	Required	51-55
		KT 90	Default	56-60
		RNREF	Default	66-70
Corner, constant-area, with walls and without turning vanes	33	PHI	Required	51-55
		KT 90	Default	56-60
Corner, diffusing, with turning vanes and walls	34	CHORD	Required	41-45
		PHI	Required	51-55
		KT 90	Default	56-60
		RNREF	Default	66-70
Diffuser	40	KEXP	Default	56-60
Exit kinetic energy from flow dump	45	-		
Sudden expansion	46	---		

TABLE 4:- ADDITIONAL, SECTION-DEPENDENT INPUT REQUIREMENTS - Continued.

Section		```Additional input title(s)```	Requirement? ${ }^{\text {a }}$	$\begin{gathered} \text { Card } \\ \text { column }(s) \end{gathered}$
Type description	Type code			
Flow straighteners, thin honeycomb	51	L/DH	Required	36-40
		PRSTY	Required	46-50
	52	RUFNESS	Default	66-70
Flow straighteners, thick airfoils		L/DH	Default	36-40
		PRSTY	Required	46-50
```Perforated plate with sharp- edged orifices Woven mesh screen```	53	PRSTY	Required	46-50
	54	DMESH	Required	41-45
		PRSTY	Required	46-50
		KMESH	Default	56-60
```Internal structure (drag item(s)) at upstream end of section```	56	ITEMS	Default	9-10
		S/AL	Required	36-40
		BLKGE	Optional	46-50
		CD	Required	61-65
		D EPS	Optional	75-80
Fixed, known local loss item at upstream end of section Multiple ducts:	57	K	Required	61-65
Constant-area ducts	61	DUCTS	Required	7-8
Contractions	62	DUCTS	Required	7-8
Corners, constant-area; turning vanes only	70	DUCTS	Required	7-8
		CHORD	Required	41-45
		PHI	Required	51-55
		KT 90	Default	56-60
		RNREF	Default	66-70
Corners, constant-area, with turning vanes and only one side-wall each	71	DUCTS	Required	7-8
		CHORD	Required	41-45
		PHI	Required	51-55
		KT 90	Default	56-60
		RNREF	Default	66-70
Corners, constant-area, with turning vanes and walls	72	DUCTS	Required	7-8
		CHORD	Required	41-45
		PHI	Required	51-55
		KT 90	Default	56-60
		RNREF	Default	66-70
Corners, constant-area, with walls and without turning vanes Corners, diffusing, with turning vanes and only one side-wall each	73	DUCTS	Required	7-8
		PHI	Required	51-55
		KT $\because 0$	Default	56-60
	74	DUCTS	Required	7-8
		CHORD	Required	41-45
		PHI	Required	51-55
		KT 90	Default	56-60
		RNREF	Default	66-70

TABLE 4.- ADDITIONAL, SECTION-DEPENDENT INPUT REQUIREMENTS - Concluded.

Section		Additional input title(s)	Requirement? ${ }^{\text {a }}$	$\begin{gathered} \text { Card } \\ \text { column(s) } \end{gathered}$
Type description	Type code			
Corners, diffusing, with turning vanes and walls	75	DUCTS	Required	7-8
		CHORD	Required	41-45
		PHI	Required	51-55
		KT 90	Default	56-60
		RNREF	Default	66-70
Diffusers	84	DUCTS	Required	7-8
		KEXP	Default	56-60
Vaned diffuser	85	---		
Sudden expansion from multiple ducts to single duct	86	DUCTS	Required	7-8
Sudden expansion from multiple ducts to multiple ducts	87	Ducts	Required	7-8
Fan, constant-area annular duct(s) with motor-support strut(s)	91	DUCTS	Default	7-8
		ITEMS	Default	9-10
		S/AL	Required	36-40
		DHUB	Required	41-45
		BLKGE	Optional	46-50
		CD	Required	61-65
		ETA	Default	71-75
		D EPS	Optional	75-80
Fan contraction(s) to annular duct(s) with motor-support strut(s)	92	DUCTS	Default	7-8
		ITEMS	Default	9-10
		DHUB	Required	41-45
		BLKGE	Optional	46-50
Fan diffuser(s) from annular duct(s), each with tapering, cone-shaped centerbody	94	DUCTS	Default	7-8
		DHUB	Required	41-45
		BLKGE	Optional	46-50
		KEXP	Default	56-60
Internal structure (drag item(s)) at upstream end of each duct	96	DUCTS	Required	7-8
		ITEMS	Default	9-10
		S/AL	Required	36-40
		BLKGE	Optional	46-50
		CD	Required	61-65
		D EPS	Optional	75-80
Fixed, known local loss item at upstream end of each duct	97	DUCTS	Required	7-8
		K	Required	61-65

a^{\prime} "Default" indicates the input is optional and has a default value if omitted (see table 3).
"Optional" indicates the input may be selected and included as desired.
"Required" indicates the input must be non-zero and included for all sections of the specified type or the section will be skipped and the case not completed due to input error.

TABLE 5.- CASE TERMINATION TASK DESCRIPTIONS

$\begin{aligned} & \text { Card } \\ & \text { column(s) } \end{aligned}$	Input type	Input value	Task description
$\begin{gathered} 3-4 \\ 6 \end{gathered}$	Blanks Integer	B1anks	```Case termination card identification Summary characteristics page(s): Non-print Print```
		$\underset{ }{0}$	
7-8	Real		Plotting of summary information as a function of distance through circuit:
		≤ 0.0	No plots
		1.	Cummulative pressure loss Wall pressure differential
		>2.	Cummulative pressure loss and wall pressure differential
9-10	Real		Complete, annotated tabulation of input values:
		0.0	No print unless internally forced by omission of required inputs
		$\neq 0.0$	"Chosen" tabulation
11-15	Real		Power-matching (optimizing velocity for a specified power level):
		0.0	No velocity optimization
		$\neq 0.0$	Velocity optimization
16-20	Real		Return to beginning for evaluation of another case:
		0.0	No return, program termination
		$\neq 0.0$	

TABLE 6.- COMPARISON OF PREDICTED WITH ACTUAL PERFORMANCE LEVELS FOR SEVERAL EXISTING WIND TUNNEL FACILITIES

Wind tunnel description				Reference condition	Basis of actual energy ratio				Energy ratio		
Facility	Return circuit type/basic cross-section shape	Test section type/shape	Comments	```Test section velocity, m/sec```	Drive power			$\begin{aligned} & \text { Circuit } \\ & \text { losses } \end{aligned}$	Actual ${ }^{\text {a }}$	Estimated by computer program	$\begin{gathered} \text { Error, } \\ \% \end{gathered}$
					Motor input	Motor output (fan input)	Fan output				
NASA-Ames Research Center 40- by 80-Foot	Single, closed/ rectangular	Closed/ flat oval	Conventional tunnel; multiple circular-arc turning vanes	107.3	Measured	Estimated from measured motor losses	Estimated from assumed $n_{F}=97 \%$	---	7.88	7.96	1.0
NASA-Ames Research Center 7 - by 10-Foot	Single, closed/ rectangular	Closed/ rectangular	Some separation in primary diffuser; partial fan stall; multiple-circular-arc turning vanes; air exchanger available	133.0	Measured	Estimated from measured motor losses	Estimated from assumed $n_{F}=85 \%$	---	7.85	8.07	2.8
Lockheed-Georgia LowSpeed (V/STOL Test Section) (ref. 20)	Single, closed/ rectangular	Closed/ rectangular	The larger of two tandem test sections was considered; test section vented	52.3	Measured	Estimated from assumed $n_{E}=95 \%$	Estimated from assumed $n_{F}=95 \%$	---	1.10	1.12	1.8
Indian Institute of Science 14- by 9-Foot (at Bangalore) (refs. 21-23)	Non-return/ flat oval	Closed / rectangular with corner fillets	Some dimensions for the estimate were scaled off of small drawings	96.3	---	---	---	---	$\begin{aligned} & 6.85 \\ & \text { (ref. 21) } \end{aligned}$	6.83	-0.3
Hawker Siddeley Aviation 15-Foot V/STOL (at Hatfleld) (ref. 24)	Non-return/ rectangular and circular	Closed/ rectangular	Basically a costeffective facility; some dimensions for the estimate were scaled off of small drawings	45.7	---	---	---	Measured (ref. 24)	2.38	3.97	66.8
University of Washington 8 - by 12-Foot	Double, closed/ rectangular	Closed/ rectangular with corner fillets	Surprisingly high measured energy ratio	117.7	---	---	---	Measured	8.3	7.20	-13.3
NASA-Langley Research Center 30- by 60-Foot (ref. 25)	Double, closed/ rectangular	Open/flat oval	High diffusion rates in some important components	52.7	Measured	Estimated from assumed $n_{E}=85 \%$	Estimated from assumed $\eta_{F}=90 \%$	--	3.71	4.73	27.4

a The quoted energy ratios are the best available and best achieved for each facility. The energy ratios of some facilities have dropped over the years
due to deterioration, leaks, soot build-up, etc.

(a) Several existing facilities.
Figure 1.- Diffuser design parameters.

(b) Recommended design region.

(a) Contraction geometry definition.
Figure 2.- Contraction design criteria.

(a) Turns with turning guide vanes.
Figure 3.- Local losses for turns as functions of turning angle.

(b) Turns without vanes.
Figure 3.- Concluded.

Figure 4.- Straight-walled diffuser expansion loss parameter variation with equivalent cone angle;

$$
K_{E X P}=K_{\text {Ref. }} 9-\frac{\lambda}{8 \sin \theta}\left(\frac{A R+1}{A R-1}\right)
$$

Main Program (PERFORM)

(a) Main program.

Figure 7.- Basic functional flow chart.

(a) Main program - Concluded.
Figure 7.- Continued.

(b) Data-checking subroutine.

Figure 7.- Continued.

Local Reynolds Number and Friction Coefficient Subroutine (FRICTN)

(c) Local speed and Reynolds number/friction coefficient subroutines.

Figure 7.- Continued.

(d) Section information output and plotting subroutines.

Figure 7.- Concluded.

(a) Complete source and data decks.
Figure 8.- Input deck setup.

(b) Sample data deck for three cases.

Figure 9.- Sample headings for input data sheets.

Figure 10.- Diagram of interior dimensions of NASA-Ames Research Center 40- by 80-Foot Wind Tunnel.

(a) Listing of input data cards.
Figure 11.- Test case information details.
 TUTAL CENTERLINE LENGTH $=588.74$ METERS

Figure 11.- Continued.
...CUNTINUED.... PAGE 3

(d) Section summary characteristics information.
Figure 11.- Continued.

(e) Summary information plots.
Figure 11.- Continued.

Concluded.

Figure 11.- Continued.
5

NASA-AMES RESEARCH CENTER 40- BY 80-FOOT WIND TUNNEL

TUNNEL MASTER CONTROL OATA

CASE TERMINATION CONDITIONS DATA					
AFTER 16 INPUT SECTIONS, AND ACCORDING TO THE FOLLOWING CONDITIONS --					
	SUMMARY	PLOTTING AS	INPUT	VELDCITY-	RETURN
	CHARACTERISTICS OUTPUT	A FUNCTION DF LEAGTH	$\begin{aligned} & \text { GATA } \\ & \text { TABULATION } \end{aligned}$	OPTIMIZATION (FIXED POWER)	$\begin{gathered} \text { FOR NEXT } \\ \text { CASE } \end{gathered}$
TERMINATICA-CCDE					
DATA FIFLD IS CONTAINED IN					
	----------	+---------+	+-------+	+-----------+	+------+
	YES	PRESS. LOSS,	YES (CHOSEN)	YES	NO

(f) Annotated tabulation of input data.
Figure 11.- Continued.

Figure 11.- Continued.
NASA-AMES RES EARCH CENTER 40- BY 80-FOOT WIND TUNNEL
PAGE 7

(f) Annotated tabulation of input data - Concluded.
Figure 11.- Concluded.

$9.144 \times 10.06 \quad \begin{gathered}8.193 \times 9.107 \\ \text { rectangular }\end{gathered}$

(b) Lockheed-Georgia Low-Speed Wind Tunne1.
Figure 12.- Continued.

(c) Indian Institute of Science 14- by 9-Foot Wind Tunnel.
Figure 12.- Continued.
8.781

3) All lengths are along section centerlines.
(d) Hawker-Siddeley Aviation 15-Foot V/STOL Wind Tunnel at Hatfield.
Figure 12.- Continued.

(e) University of Washington 8- by 12-Foot Wind Tunnel.

> Figure 12.- Continued.

(f) NASA-Langley Research Center 30- by 60-Foot Wind Tunne1.
Figure 12.- Concluded.

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

[^1]: ${ }^{1}$ Note that in this section, as throughout the report, all letter o's occurring in FøRTRAN names are shown with slashes, as \emptyset; all number zeros are shown without slashes.

[^2]: PERFORFANCE SUMMARY -- \quad ENERGY RATIO $=7.197$
 TOTAL NUMBER OF FANS
 $\begin{array}{ll} \\ \text { OUTPUT REQUIRED AVERAGE PER FAN } & \text { FAN EFFICIENCY }\end{array}$
 $\begin{array}{rr}\text { OUTPUT REQUIRED } & \text { AVERAGE PER FAN } \\ 1107045 . ~ W A T T S ~ & 553523 . ~ W A T T S\end{array}$

 TOTAL POWER -
 INPUT TC FLUW
 1051693. WATTS

[^3]:

[^4]: dOUBLE-RETURN, DPEN-TEST-SECTION WIND-TUNNEL PERFORMANCE

[^5]: ${ }^{\text {a }}$ Default (X)" indicates the input is optional and defaults to X if omitted. "Geom. Dep." indicates the input requirement is dependent on section geometry.
 "Optional" indicates the input may be selected and included as desired.
 "Required" indicates the input must be non-zero and included for all cases or the case will terminate due to input error.

[^6]: a"Default(INT)" indicates optional input, dependent on section type, which defaults to an internallygenerated, geometry-dependent value if omitted.
 "Default(X)" indicates optional input, dependent on section type, which defaults to X if omitted. "Geom. Dep." indicates the input requirement is dependent on section geometry.
 "Optional indicates the input may be selected and included as desired. Required indicates the input must be non-zero
 skipped and case terminated due to input error.
 "Sect. Dep." indicates the input requirement is dependent on section type.

