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SUBSTRUCTURE COUPLING FOR DYNAMIC
ANALYSIS AND TESTING

Roy R. Craig, Jr.% and Ching-Jone Chang+

The University of Texas at Austin

SUMMARY

Substructure coupling methods may be classified as fixed-interface
methods, free-interface methods, or hybrid methods, depending on whether the
modes used are determined with substructure interfaces fully restrained,
free of restraint, or partially restrained.

In the present report three methods are presented for reducing the
number of interface coordinates required by fixed interface methods. These
are: Ritz reduction, Guyan reduction, and modal reduction. Example solu-
tions are given to illustrate these three methods, and procedures for estima-
ting convergence properties of the methods are described.

Also presented in the report is a study of a class of free-interface
methods. The methods described appear to be significantly more accurate than
the free-interface methods of Hou and Goldman and to be particularly useful
when experimental verification of the analytical model is required. The sub-
structure equations and coupling equations are developed, and example prob-
lems are presented which compare the accuracy of the present methods with
other free-interface methods and with fixed-interface methods.

*Associate Professor, Aerospace Engineering and Engineering Mechanics
tGraduate Student, Engineering Mechanics



INTRODUCTION

Substructure coupling methods may be employed when (1) the number of
coordinates in a dynamic analysis needs to be reduced, or (2) when analysis
or testing of a structure needs to be done separately on different portions
of the structure. Substructure coupling methods generally employ coordinate
transformations where the generalized coordinates of substructures are defined
by Ritz-type modes. In most cases some, or all, of the generalized coordi-
nates are defined by a set of substructure free vibration modes. The sub-
structure coupling methods may be classified as fixed-interface methods, free-
interface methods, or hybrid methods depending on whether the modes are deter-
mined with the substructure interfaces fully restrained, free of restraint,
or partially restrained.

The primary focus of the research described in the present report is
on methods for reducing the number of interface coordinates required by
fixed-interface substructure coupling methods. The fixed-interface method
developed by Hurty (ref. 1) and refined by Craig and Bampton (ref. 2) requires
that all of the original interface displacement coordinates be retained in
the final coupled structure. Benfield, Bodley, and Morosow (ref. 3) conducted
a study comparing the accuracy of several substructure coupling procedures.
Figure 1 shows some of the results obtained in reference 3. Although the
various methods were only applied to one structure, the results of this
1imited study indicated that the fixed interface method of Hurty and the
equivalent Craig-Bampton method generally produced the most accurate solutions

for a given number of degrees of freedom. Slightly better accuracy was



achieved by methods introduced by Benfield and Hruda (ref. 4) but these

Tatter methods suffer the disadvantage that the substructure modes of one
substructure are not independent of the other substructures. Benfield, et. al.
(ref. 3) suggest that a drawback to the Hurty method (and Craig-Bampton
method) is the requirement that all interface displacement coordinates, i.e.,
constraint modes, must be retained in the final coupled structure. It is
suggested that this might restrict the number of component, or subsfructure,
normal modes retained in the coupled structure. It is the purpose of this
report, therefore, to describe three methods for reducing the number of inter-
face coordinates in the final system model. Reference 5 presents additional
information concerning these three methods.

A secondary purpose of this report is concerned with improving the
accuracy obtainable from free-interface substructure coupling methods. Figure
1, taken from reference 3, indicates that the two free-interface methods,
Hou's method and Goldman's method, produce frequencies much less accurate
than those produced by fixed-interface methods for a comparable number of
system degrees of freedom.

Subsequent to the appearance of reference 3, Rubin (ref. 6) presented a
paper describing a class of free-interface methods similar to ones described
previously by MacNeal (ref. 7) and Klosterman (ref. 8). Although Rubin went
into considerable detail to describe how to represent individual unconstrained
(i.e., possessing rigid-body freedom) substructures, he did not fully develop
the substructure coupling procedures or present any examples of multi-sub-
structure systems.

Rubin (ref. 6) stressed the fact that, when experimental verification
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of analytical models is required, the class of free-interface substructure
methods which he presented are much more attractive than are fixed-interface
substructure methods.

Since the methods presented by Rubin appeared to have the potential for
producing substructure coupling results of acceptable accuracy and appeared
to be compatible with state-of-the-art dynamic testing procedures, it was
decided that the initial effort along the lines of improving free-interface
methods should be directed toward further development of the methods suggested
by Rubin. Rubin's own work (ref. 6) treats only unconstrained substructures.
The only example presented is for a single substructure represented by a con-
tinuous (i.e., partial differential equation) modei. In the present report
the theory is presented first for constrained substructures, in order that
the concepts may be presented first in the simplest form possible. Also, in
the present report only discrete models (i.e., matrix ordinary differential
equations) are employed, since these are the ones employed to model practical
structures. Finally, the present report presents detailed equations for
coupling substructures and presents example problems in which results obtained
by Rubin-type methods are compared with results obtained by other methods

(Hou, Craig-Bampton).



FIXED INTERFACE METHODS WITH REDUCTION
OF INTERFACE COORDINATES

In this part of the report three methods are derived for reducing the
number of interface coordinates required for fixed-interface substructure
methods. Examples are also presented to assess the accuracy of the derived

methods.

Substructure Equations

For a typical substructure, the equations of motion, assuming linear

viscous damping, may be written

mX + cx + kx = f (1)
For undamped, free vibration, the equations reduce to

mx + kx = f (2)

where f contains forces at junction (interface) coordinates in the coupled
structure.

In most substructure coupling methods the original substructure physi-
cal coordinates are expressed, after the manner of Ritz, in terms of a set
of substructure generalized coordinates. In the method of Craig and Bampton
(ref. 2) these substructure generalized coordinates consist of a set of junc-
tion, or interface, coordinates and a set of normal mode coordinates. These

normal modes are obtained with all junction coordinates fully restrained.



Equation (2) may be partitioned to give

hY
. . X s y .
i M X5 STRERSE i 0

"MK ST I
where X; contains the "interior", or non-interface, physical coordinates and
X5 contains the "junction", or interface coordinates. Figure 2 shows interior
nodes and junction nodes of two adjacent substructures.

Since the normal modes are to be obtained with xj = 0, Eq. (3) reduces
to
m.. X: + ki: X: =0 . (4)

The mode shapes, ¢, c€an be assumed to be normalized so that

T
by M ¢ =1 (5)
T _ .2

o K op = A (6)

and the mode shapes collected to form the respective columns of a modal
matrix P The substructure "frequency" has been designated A to distin-
guish it from the system frequency w. Later, the modal matrix will be parti-
tioned so that some of the modes are kept in the final analysis while other
modes are reduced out.

If there were no loads (including inertia loads) at the interior

coordinates of the substructure, the static displacement would be given by



= (7)

Displacements xj of the junction coordinates would produce displacements of

the interior coordinates as given by the upper partition of Eq. (7), namely

. = (- kel Kes) x, o (8)
or

X: = d.. X. (9)

The components of the transformation matrix ¢ij can be obtained by solving

the equation

Kii %55 = - ki3 (10)

x
L]
o
-

X = = (171)

x
o
It
hel

or

X = op (12)

The equations of motion may be transformed to the new substructure generalized

coordinate system as follows:

mp+cp+rkp = g (13)



where

mo= oo me

g = o co

Kk = @T k ¢ (4)
g = ¢T f

The transformed matrices may be written in more explicit form through

the use of Eqs. (11) and (14). Thus,

r- - -
i Mg My
m =

~S

_mJ" JJ |
i Cii  C4j
c = (15)

%5 %95
X kiz O
k =

IR N

The null partitions of k result from the transformation imposed by Eq. (10).

The remaining submatrices are given by



=
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Coupled System Equations

In discussing the coupled system, we will consider two substructures,
"A" and "B". Extension to more substructures is straightforward. The total

set of system generalized coordinates is

q = (17)

9

where qy is a collection of all substructure (interior) normal mode coordi-
nates and qj is a set of all junction coordinates. Although it is common
practice at this point to reduce the number of coordinates by including only
selected modes from each substructure, we will assume that all modes are
retained for the time being and will treat the reduction of coordinates
question in a later section.

The substructure coordinates are related to the system coordinates by
"label" submatrices, which simply identify substructure coordinates with the
appropriate system coordinates. This is a formal expression of the "direct

stiffness" procedure for assembling system matrices from element matrices.

Thus,
f -
| [t 00 F
95A
Pi 0 0 Lin
p = { b= 1 a5 > (18)
Pip 0 Lig O
9
\ "B ) _O ’ LJB-
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or

p = Lg . (19)

The system matrices are obtained by direct stiffness assembly procedures
using the Tabelling information of Eq. (18). The resulting system equations

may be written
Mg+Cq+Kq = F . (20)

In partitioned form the equations of motion for free vibration of the

undamped coupled system are

— = r" 3
MmO Mija 9
| y
0 Miig | MijB 1 9% |
JiA MJ1B | JJA MJJB %
L I - \
(21)
_ 4 .
iiA 0 |0 9 1 0
|
+ 0 K”BIO 4qu$=40r
..+ K. .
0 0 | Kjin* Kisp a; 0

For the undamped free vibration problem we can take

q(t) = Q cos (wt) (22)



where Q is a vector of amplitudes only. The resulting eigenvalue problem

has the form

- w = (23)

where the substructure normal mode coordinates have been combined into a

single vector q, = Qi cos (wt).

i
In the following sections we will discuss the effect of reducing out
some of the substructure normal mode coordinates and/or some of the junction

coordinates.

12



Reduction of Coordinates

One of the primary reasons for adopting a substructure method for solv-

ing structural dynamics problems is to reduce the number of degrees of freedom

which must be employed in the dynamic analysis.

The truncation of substruc-

ture normal modes in a fixed-interface substructure coupling analysis has been

Studied by Hurty (ref. 9), Benfield, Bodley, and Morosow (ref. 3), and others.

For completeness, this procedure is described below.

The reduction of junc-

tion (interface) coordinates has apparently not been considered previously.

Three possible methods for reducing junction coordinates are introduced in

succeeding sections.

These are referred to as modal reduction, Guyan reduc-

tion, and Ritz reduction.

Reduction of substructure normal mode coordinates. - For considering

reduction of normal mode coordinates we can partition Qi in Eq. (23), giving

[

aa

0

Kbb

—

0

33

r N

-

~

Maa

ja

Mob

Mjb

]

Mbj

My

.

(24)

where coordinates Qa will be retained and coordinates Qb will be reduced out.

The second row-partition of Eq. (24) may be written

or

(Kpp

2

Q

2

Moy 9

(25)
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o = L a-Lktu T ke g (26)
b bb "'bb bb "bj ~j
Consider the eigenvalue problem
(Ko, =22 M. )Q = 0 (27)
bb bb’ ~b

i.e., the eigenvalue problem associated with the substructure modes to be
reduced out. The frequencies of these substructure modes are called An to
distinguish them from frequencies w of the coupled system. Recall that the

modes are normalized so that Mbb = I and Kbb is a diagonal matrix containing

Aﬁ‘s. Thus, Eq. (26) takes the form
Q Lo’ 0 (28)
b 1 (w/a )2 | D

Let A be the Towest frequency among the eigenvalues of Eq. (27), i.e.,
the Towest frequency of a mode which is to be reduced out. If the range of

system frequencies, w, of interest is such that

w/ry << 1 (29)
the zeroth-order approximation to Qb is

Qb = 0 (30)

i.e., the modes associated with Qb can just be eliminated. The reduced

eigenvalue problem is simply

14



a aa aj

1
€
]

i3 j o My 3
(31)

An iterative procedure for improving frequencies and mode shapes of the
system could be based on using the zero-order approximate values of  in
Eq. (28). Kuhar and Stahle (ref. 10) proposed a "dynamic transformation"
procedure which essentially consists of defining Qb in terms of Qj through
Eq. (28) using a pre-selected transformation frequency, p, instead of the
(unknown) system frequency w. However, Mbj involves mode shapes of the
deleted modes, and hence this procedure requires that such modes be obtained
in the original substructure eigensolutions.

Examples will be presented in a later section to compare the effective-
ness of reducing out substructure normal modes with the effectiveness of

reducing out junction coordinates.

Modal reduction of junction coordinates. - This section will introduce

the technique of modal reduction of junction coordinates. Consider the
eigenvalue problem that would be obtained from Eq. (23) by constraining
the substructure normal mode coordinates and allowing motion of junction

coordinates, i.e.,

2 -
-3 ij) Q; = 0 (32)

(K, 3

3d
It may be noted that this corresponds to using Guyan reduction to reduce out

all interior coordinates. The frequencies of these "junction modes" will be

15



called 6 to distinguish them from system frequencies, w, and substructure

frequencies, x. Let the junction modes form a modal matrix Wj’ which has

the form

wj = [ch wjd] (33)

where the modes ch will be kept and modes Wjd will be reduced out. Assume

that the modes are normalized with respect to Mj. in the usual fashion.

J
Now let
Qc
0; = [¥je viql (34)
d
Then, . ey
Q;
Qi I 0 0
Qj 0 ch de 6
. d)
or
Q = vQ (36)
Transformations of the form
K = ¥ Ky (37)

transform Eq. (23) to the form

16



dd

(38)

The zeros in the c-d coupling terms are due to orthogonality of the Jjunction

modes. The submatrices in Eq. (38) are

ii

ccC

I

dd

ii

ic

id

cC

dd

Ki

T

T

I

T

M.
ci

_T
M

K

Yic K35 Yie

ii Yid

N

Mij

]
O
e nN
[ S,

Jjc

obtained from the equations

(39)
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Let Eq. (38) be written as two equations, namely

Kiy O Qs ii Ml 1Y id 0
- - "(1)2 - - - "'U)Z Qd—
0 cc Qc ci cc Qc 0 0
(40)
and
(K- o2 M) Q= of My Q (41)
dd = ¥ "dd’/ “d R L

Since, according to Eqs. (39), Rdd and ﬁdd are diagonal, Eq. (41) may be

written
Q = Wgq Mai O (42)
where
Weq = rwnJ (43)
is a diagonal matrix whose elements are given by
2
w
§ - w

When Eq. (42) is substituted into Eq. (40) the resulting equation may be

written

+
[
=

s

s
~——
=
fan]

o

o
O
O
Ot
O
(g)
-
O
O
O
O
o
Pamy
=
()]
g
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where

] - T
Mis 7 Mg Wag Mg5 = g Mo Mig Y Un My (46)

. . . . . . 2
in which P, 18 the junction mode corresponding to Gn .

The derivation of "modal participation factors," which provide an
estimate of the contribution of each junction mode to the solution of Eq. (45)
proceeds along lines similar to the procedure employed by Hurty in reference

9 for discussing truncation of substructure normal modes.

First a "base problem" is defined by setting AMii = 0 in Eq. (45) or,

equivalently, setting éd = 0 in Eq. (40), giving

The exact solution of Eq. (38) and the solution of Eq. (47) are related by

2 2 2

W Wy + Aw (48)
and
Q = Q,+AQ (49)
where
Qio
Q, =1 Qp ! (50)
0
L J




When Eqs. (47), (48), and (49) are substituted into Eqg. (45) and "higher

order terms" in Au? are neglected, there results

— i — S — Coa .
Kij O | A0y Mis Mic | | 2% Mis Mic || %o
2 2
- u)o -Aw
0 ch AQC Mci Mcc AQc Mci Mcc Qco
— P § L) . — e -
2 AM11(wo) 0 Qo 0
"W i = (51)
0 0 QCO 0

T T . .
io Qco]’ AQ is expanded in terms of the

eigenvectors, 60, and proper account is taken of Eq. (47) and orthogonality,

If Eq. (51) is premultiplied by [Q

there results

-T -
s’ - Qo My5lag) Q4 (52)
w2 Tr- y =
0 %, Mis  Mic | | Qo
Qco Mci ccC Qco

If the solution vectors of the base problem are normalized relative to the
mass matrix of the base problem the denominator of Eg. (52) becomes unity,

so the eigenvalue error is given by

8’ L () (53)
u)2 jio “ii\%e’ Mo
0

20



But, since AM.; can be written as a sum, as shown in Eq. (46), Eq. (53)

may be written

2 =T 2
2 w. (Q: M..y.)
Aw” 7 0 ‘%io ij ¥n (54)
2 n 62 2
ol n " Y%

From Eq. (54) it is clear that modal participation factors can be defined by

2 2 =T 2
A w wo (Qi Moow )
Pn = n___ _ o ‘o §ij *n (55)
2 2.2
0 n "~ %

Two factors are of interest in determining the value of the modal
participation factor: (a) the frequency ratio, wo/én » and (b) the mass
coupling. If wo/an << 1 the nth junction mode should have little contribu-
tion to the frequency of a given system mode. On the other hand, Eq. (55)
shows that the coupling of the interior portion of the base problem mode,
i.e., aio’ with the nth junction mode through the original coupling mass
matrix Mij is also important. Hence, the modal participation factor given by
Eq. (55) should, where possible, be used as a basis for selecting junction
modes to be retained.

It is clear from Eq. (55) that the concept of modal participation factor
has meaning only in reference to choosing modes which would lead to a maximum
improvement upon a given base solution. The question arises, then, as to
what should constitute the base problem, i.e., what junction modes belong to
¥:. in Eq. (34). It would seem that the only rational approach to this prob-

jc
Tem would be to select a specified number of Jjunction modes using junction

21



frequency alone as the criterion, i.e., order the junction modes according to
frequency and use the modes from the lower end of the frequency spectrum.
If there are any rigid-body junction modes, these must be included in the base
problem.

In a later section, an example will be presented to illustrate the

calculation of modal participation factors.

Guyan reduction of junction coordinates. - In reference 11, Anderson,

et. al., applied the method of Guyan reduction to a plate vibration problem
and showed that acceptable accuracy of frequencies was maintained even when

a large percentage of the coordinates were reduced out. In this section, a
similar Guyan reduction will be applied. However, in this case only selected
junction coordinates will be reduced out.

Consider again Eq. (23) and partition Qj into

Q. = (56)

where the Qf coordinates are to be reduced out by a Guyan-type reduction.

Thus, Eq. (23) may be written

— T 7 3 — T ¢ 3 r 3
K3 00 Y Mis Mo Mie || % 0
T 0 T T VA T P I O N R

ee ef e ® ei ee ef e
10 Ko Kee | | O Mo Mee Mer | (%) [0

22



Guyan reduction is based on neglecting inertia terms in the third row-parti-

tion of Eq. (57) to obtain

O = Yee Qe (58)
where
LA
fre T 7 Ker Kre (59)

Although there is no established procedure for selecting coordinates to
be retained and coordinates to be deleted, i.e., for ordering the Qj coordi-
nates in Eq. (56), a possible procedure for selecting the coordinates to be
retained might be based on magnitudes of the quotient of terms on the diagonal
of ij divided by corresponding terms on the diagonal of ij, with the coordi-
nates having the smaller k/m values being retained.

The junction coordinate reduction equation, Eq. (59), has the same form
as a substructure equation, Eq. (8). The system displacement transformation,

based on Eq. (58), is

( Qi ) PI 0 1 i
Q.
;
4 Q b= |0 I i (60)
Qe
| i ) _0 Yfe |

Note that the coordinates Qf are reduced out, i.e., approximated by Eq. (58).

They are not simply eliminated as were Q,, Eq. (30), and 6 » Eq. (47).
b d
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Transformation of Eq. (57) to the reduced set of coordinates Q

defined by Eq. (60) gives

!
]
1
]

ii O Q ) Mg Mie | | 9 0
- w = (61)
0 ee Qe ei ee Qe 0
where
ii T Ky
Kee - Kee * Kef wfe
i T Myt L (62)
Moo= M. o= M. +M
je = Mei T 4o T Mif Yre
ee - Mee * Mef er * er (Mfe * Mff wfe)

Note the similarity of the above expressions to those in Eq. (16).

An example of the use of Guyan reduction will be presented in the

section on example problems.

Ritz reduction of junction coordinates. - The modal reduction and Guyan

reduction of junction coordinates which were presented in the preceeding
sections are both special cases of Ritz representation of junction coordinates.
There are cases where the nature of the problem might suggest a direct

approach of Ritz at either the substructure level or the coupled system level.

24



We will employ the latter approach, beginning with Eq. (23), repeated here

for convenience.

Let the junction coordinates be expanded in terms of a set of Ritz

vectors according to the equation
Q. = v, Q (63)

where notation similar to that of the preceding sections is employed. The
matrix wjg is rectangular, (nj > ng), since the number of coordinates is to
be reduced by this Ritz expansion. The columns of ng represent the displace-

ment of junction coordinates in each of the Ritz "modes".

Q1 I 0 Qi
= (64)
QJ 0 Yig Qg
As before, this can be represented by
Q = vQ (65)
and the stiffness matrix becomes
K = v Ky (66)

25



Then the system equation, Eq. (23), is transformed into

Kii 0 Q1 2 Mii ig Q1 0
- W = (67)
MM
0 a3 | | % gi  'gg Q 0
where
ii - K4
-7
Keg = Yig K33 g
i - My 7 4 (68)
i T
Mig = Mgi = Mij ¥ig
Moo= oyl

99~ *ia "33 Yig
where Rii and ﬁii are diagonal.

The use of Eq. (67) for reduction of junction coordinates will be
illustrated in the section on example problems.

It is possible to write expressions for error analysis, or for modal
participation factor analysis, for the general case of Ritz representation
of junction coordinates. First, Eq. (63) will be expanded by assuming that
one or more Ritz vectors (or modes) are to be added in Eq. (63), with the

set ng forming the "base problem" and th being the added vectors. Thus,

Q. = [wjg th] (69)

26



This gives a base problem similar to Eq. (67), namely

ii O Qo Mis Mig | | Qo
-w -
0 99 ng Mgi 99 ng
and an "augmented problem" of the form
- (_ - - - —(
Koo o | 0 | Mis Mg Mip
0 k. Ry |dd b-u R, R
q9g gh g f gi 99 gh
9 Kng Kpn | | % Mhi Mhg Man

where, in addition to terms defined by Eq. (68),

- T T

oh = Kng = Yig Kj5 ¥
Koh = 5 Ki5 ¥n

Mip = Moo = Mis ¥5n

Moh = Mhg - Vig M55 Yih
R

—_— . e ek

(70)

(72)
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Equation (71) can be written

- - - - - 2—
ij 0 Q; o | M Mg | | Y (0-w” Myp) | 0
- w + Qh=
- - - - - - 2_
0 Kgq Q gi M | % (Kgp = w” Mgp) 0
(73)
together with
Q
Q = - [K, - oM 177 [(- oM .) (K. - oM )] (74)
h hh = “ "hp ® "hi hg hg .
Qg

There might be instances where the matrix to be inverted in Eq. (74) is
singular, but this would simply mean that the Ritz vector causing the singu-
larity is very important at the given frequency w, since this would imply a
very large 6h. The matrix inversion in Eq. (74) leads to the definition of
w_ in Eq. (44) when junction modes are used as the Ritz vectors.

n
Equations (73) and (74) may be combined to give

i 0 G, M Mg | | Y
]
0 99 | | % gi Mg | | Y
:
2 2 .
(0 Tw 'Ih) _ 2- -] (0 W M'Ih) Q'I 0
i [Khh'“’Mm] ., I
(th e Mgh) (th Tw Mgh) Qg 0
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To simplify notation, let Eq. (75) be written

ij O Q; 2 My Mig Q; Sij S'ig Q; 0
- ) -
0 ag Qg gi a9 Qg 591 Sgg Qg 0
(76)
where
S Sh e
Sis T e My Sy hi
_ T 2 o - 2 =
Sig = Sgi o Min Shn(Kpg = o™ Myg) (77)
- (v 2 - - 2 =
Sgg = (th - w Mgh) Shh (th -w th)
where
- (% 2 2 7 ‘
Sph = (Kpp = 0™ M) (78)

Let the solution of the "augmented problem," Eq. (71), and the solution
of the "base problem," Eq. (70), be related by

w2 = wg + Aw2
] (79)
Q = Q,+ Q

and assume that the eigenvectors of the base problem are normalized on the
mass matrix of that problem.

For the case of modal junction coordinates it is easy to simplify the
expressions given in Eq. (77) above. Certain assumptions on the expansion of

Eq. (77) in powers of w2 allow the same to be done here. For purposes of
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error analysis, i.e., determining modal participation factors, let it be

assumed that the S matrices in Eq. (76) can be approximated by S(wo) giving

- - - )
ii O [ 8Q; > iq ij AQ; }
_ T % | _ }
0 g | | % gi Mog | | %%
) M11 ig Qo Sii(wo) Sig(wo) Qio 0
- Aw _ _ _ - _ =

S S

Mgi Mg Q. gi (o) agt¥o) %, 0

(80)

Equation (80) is analogous to Eq. (51). Equations (70) and (79) were employed
in converting Eq. (76) to Eq. (80). If Eq. (80) is premultiplied by 63 , AQ
is expanded in terms of the eigenvectors of the base problem, and proper
account is taken of Eq. (70) and orthonormality of the eigenvectors of the

base problem, then Eq. (80) reduces to

2 Qg Siilug)  Sigleg) | | &

Ao 1
2 2 - -
Yo “o Qg S (w.) S () Q

Q
[{=]
i}
o
(=]
({a]
(@)
[{e]
o

Equation (81) reduces to Eq. (53) for the case of modal junction coordinates.
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If a single Ritz vector is used in th in Eqs. (72), then Eq. (81) becomes a
"modal participation factor" determining the approximate error produced by
omission of that vector from the base problem, or, conversely, the approximate
improvement of the base problem solution which could be achieved by augmenting

the solution by that Ritz vector.
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Examples

A 1imited number of example prob]ems have been solved to illustrate
methods for reducing junction coordinates. Three structures were employed in
the studies: the two-substructure truss of reference 3, a nine-substructure
ring, and a two-substructure grid. The first two structures possess rigid-
body freedom; the third is a cantilever structure.

Dimensions have not been given in the example problems of this report
since the purpose of the report is to compare relative accuracies of various

methods of solving given problems.

Truss examples - modal reduction and Guyan reduction of junction

coordinates. - The truss shown in Figuré 3 was used by Benfield, et. al.
(ref. 3) in their comparison study of substructure coupling methods. Results
will be presented for both modal reduction of junction coordinates and Guyan
reduction of junction coordinates of this truss.

Table 1 gives results for frequencies of the above truss obtained
by the use of modal reduction of junction coordinates. The column headed
"Exact" gives results for the coupled structure with all of its original
degrees of freedom retained. The remaining results were obtained using
substructure coupling with 5 normal modes retained for each substructure,
i.e., NA = NB = 5. The columns headed with Nj = 6 give results based on the
original Craig-Bampton method, since Nj = 6 is the total number of junction
coordinates. Since the truss as a whole is free to execute 3 degrees of
. = 3 give results based on assuming

J
the junction to be rigid, i.e., the 6 junction coordinates must move as a

rigid-body motion, the columns headed N
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rigid body. Nj = 3 is the smallest number of junction coordinates that may
be retained, since it is essential to allow at least rigid-body motion of the
Jjunction. The columns headed Nj = 5 and Nj = 4 give results based on the
modal reduction procedure. Note, for example, the frequencies for elastic
mode 3. The accuracy of the frequency is not seriously degraded by reduction
of junction coordinates until the last stage (Nj = 3), but mode 3 does require
more than rigid-body behavior from the junction coordinates. The choice of
junction modes to be retained was based on junction mode frequency alone.

In Table 1 it may also be noted that the errors in some modes, e.g.,
elastic modes 7 and 8, are due to truncation of substructure normal modes.
The large errors persist even when all six junction coordinates are retained.

Table 2 presents data on substructure normal mode frequencies and
junction frequencies. It may be noted that the junction frequencies are the
same order of magnitude as the higher-frequency substructure normal modes
(e.g., 5th through 10th modes).

It was previously noted that junction mode 4 (62 = 0.0182248) makes a
significant contribution to system elastic mode 3 (w2 = 0.0030508). Table 3
presents modal participation factor data for this mode so that an assessment
may be made of the relative importance of frequency ratio, wo/sn, and the mass
coupling term as they appear in Eq. (55).

The results presented in Table 3 illustrate the fact that both the
junction frequency ratio and the mass coupling factor are important in deter-
mining the modal participation factor. In the present example it is the Tow

value of the mass coupling factor for junction mode 5 that renders it unimpor-

tant in the solution for this particular system mode. The estimated error
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Junction Modes in MPF

36

n=4 n=>5 n==~s
2
()
5 5 0.2268 0.1098 0.0856
Gn - (w6)o
=T -14
Qio ij vy 0.7121 5.8 x 10 0.1450
2
A (wg) . -
p =18 -0.1150 23.7 x 10728 1.8 x 10
(WG)O
Table 3. Modal Participation Factor Data for Mode 6

(Elastic Mode 3) of Benfield Truss -
Base Solution: Nj

)2 = 0.0033692

(wﬁ 0

=3, N

. 2
’ (w5)exac
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:NB=5;
t = 0.0030508
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due to omission of junction mode 4 from the base solution is 11.50%; the
actual error was 10.44% (see Table 1). |

The Benfield truss was also used to illustrate the Guyan reduction
method. The numbering of the six junction coordinates is shown on Fig. 3.
The solution obtained by retaining coordinates 1, 2, and 3 is the same as the
Nj = 3 solution by the modal reduction method, since this case consists of
mode11ing the interface as a rigid-body. Guyan reduction was employed by
first reducing out coordinate 6 (leaving Nj = 5), and then reducing out both
5 and 6 (Nj = 4). Had other choices been made of coordinates to reduce out,
the results would probably have been different from those shown in Table 4.

The results of Tables 1 and 4 are summarized in Fig. 4, which shows a
comparison of the number of modes having an accuracy of 0.5% or better.
Although modal reduction of interface coordinates yielded slightly better

results than Guyan reduction, the present example is too small for any general

conclusions to be drawn from it.

Grid examples - modal reduction of substructure normal mode coordinates

and junction coordinates. - Figure 5 shows a cantilever grid structure used

to illustrate further the modal reduction of junction coordinates. A total
of 12 junction coordinates couple the two substructures together.

This grid structure was used to provide an example having more junction
coordinates than the truss previously discussed and having no rigid-body
freedoms. Studies were made to compare the effect of reducing junction mode

coordinates with the effect of reducing substructure normal mode coordinates.
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Table 5 gives the frequencies obtained using various combinations of
substructure normal modes and junction modes. In all cases, the modes to be
retained were selected on the basis of frequency alone. Figure 6 shows a
comparison of the number of modes having an accuracy of 0.5% or better.
Figure 6 seems to indicate that modal reduction of junction coordinates and
reduction of substructure normal mode coordinates produce similar decreases
in the number of modes accurate to within 0.5%. Again, the example problem
is too small to permit generalizations concerning the effect of modal reduc-
tion of junction coordinates, but the results shown in Fig. 6 suggest that,
within Timits, modal reduction of‘junction coordinates is feasible.

Since there are only 4 translational coordinates along the junction, it
might appear that 4 junction mode coordinates would be adequate to represent
junction behavior in a good many, if not all, modes. Case 3 (NA =12,

NB = 8, Nj = 4) indicates that this is not so. Note that Mode 9 has a large
frequency error (12.03%) in Case 3 but only 0.3 % error in Case 2. It was
discovered that the 5th junction mode, i.e., the last one eliminated in going
from Case 2 (Nj = 8) to Case 3 (Nj = 4) is predominantly torsion of the
Junction line, and that this mode contributes significantly to both 9th and
10th systeni elastic modes.

The above discussion serves to caution against reducing out junction
modes using a frequency criterion alone. Modal participation factors, as
previously described, should, if possible, be used in choosing which modes to
retain. Also, whereas previous studies of Guyan reduction of system coordi-
nates have indicated that most, if not all, rotation coordinates could be

reduced out, it is clear from the present example that junction modes in
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Case 1 Case 2 Case 3
EXACT
72 d.o.f. NA=12 ,NB=8 NA=]2 ,NB=8 NA=]2 ,NB=8
Ny =12 Nj =8 Ny =4
% % %
w? x 108 w? x 108 |error | w? x 108 | error!| w? x 108 | error
1 .00006210 .00006210 0.00 .00006210 0.00 | .00006210 0.00
2 | .00025109 .00025109 0.00 .00025109 0.00 | .00025109 0.00
3| .00163979 .00163989 0.00 .00164196 0.13] .00164338 0.21
4 | .00238797 .00238814 0.00 .00238868 0.03 | .00238914 0.05
5 1 .00394372 .00394381 0.00 .00394410 0.01 .00394562 0.05
6 | .00819127 .00819336 0.02 .00819782 0.08 | .00820075 0.12
7 | .00862821 .00863058 0.02 .00867480 0.54 | .00881666 2.18
8 | .01806006 .01806936 0.05 .01808240 0.12 | .02002345 | 10.87
9 | .071991494 .01992609 0.05 .01999119 0.38 | .02231127 | 12.03
10 | .02254916 .02255262 0.01 .02255666 0.03 | .02739305 | 21.48
1 .02744331 . 02746586 0.08 .02746796 0.09 | .02884310 5.10
12 .03262871 .03265385 0.07 .03281643 0.58 | .04300392 | 31.80
13 | .04493968 . 04498599 0.10 .04501865 0.18 | .05081456 | 13.07
14 | .05150864 .05157714 0.13 .05188925 0.74 | .06694802 | 29.97
15 | .06174304 .06186679 0.18 .06199213 0.40 | .06874477 | 11.34
16 | .06664190 .06694378 0.45 .06695656 0.47 | .07799772 | 17.04
17 .06963443 .06967930 0.06 .06970706 0.10 | .08176796 | 17.43
18 | .08534059 .08547908 0.16 .08552822 0.22 .09683511 13.47
19 .08680764 .08694733 0.16 .08802157 1.40 | .10838887 | 24.86
20 | .08914933 .08962024 0.52 .08985521 0.79 | .12193065 | 36.77
21 .11610254 .11642648 0.28 .11674719 0.56 | .17152633 | 47.74
22 | .13869278 .13978448 0.79 . 14089915 1.60 | .19322336 | 39.32
23 | .16186275 .16221708 0.22 .16348153 1.00 | .68624299
24 | .22210384 .22437005 1.02 .22687256 2.15 | .83847870
25 | .37412949 .54848664 .68470672 -
26 | .42607786 .68464932 .81364585 -
27 | .45121738 .81363654 .99749775 ==
28 | .45215748 .99798215 1.19928682 -—--
29 | .50738107 |[1.11532496 --- .=
30 | .55621118 11.20968364 --- ---
31 .57430761 |2.64433441 .- -
32 | .61043891 [5.77733431 -=- -
Table 5. Frequencies of Cantilever Grid Structure
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Case 4 Case 5 Case 6
NA=]0,NB=6 NA=7.NB=5 NA=5, B‘-‘3
Nj =12 Nj =12 Nj =12
4 4 %
w? x 108 error w? x 108 error w? x 108 error
1 .00006210 0.00 .00006210 0.00 .00006211 0.01
2 .00025109 0.00 .00025109 0.00 .00025115 0.02
3 .00163996 0.01 .00164019 0.02 .00164660 0.41
4 .00238879 0.03 .00239012 0.09 .00239788 0.4
5 .00394429 0.01 .00394433 0.07 .00395306 0.23
6 .00819481 0.04 .00819496 0.04 .00871273 6.36
7 .00863617 0.09 .00867873 0.58 .00881859 2.20
8 .01822469 0.91 .01825831 1.09 .01857390 2.84
9 .01995132 0.18 .01997539 0.30 .02188961 9.91
10 .02267161 0.54 .02267290 0.54 .02271096 0.71
n .02748344 0.14 .02750874 0.23 .03865739 40.82
12 .03313560 1.55 .0332013 1.75 .06218932 X
13 .04505185 0.24 .05276010 17.40 .08120924 X
14 .05672962 10.14 .05686502 10.39 .12613476 X
15 .06272867 1.58 .06696988 8.44 .20728453 X
16 .06695281 0.46 .08138276 22.11 .36264343 X
17 .07023630 0.86 .27636744 X .53033012 X
18 .08792538 3.02 .35125316 X 1.05181024 X
19 .08987727 3.53 .39979778 X 2.45246230 X
20 . 12568251 40.97 .53601805 X 5.23913299 X
21 .29256023 X .70526557 X -—-
22 .54288243 X 1.07483996 X -—-
23 .61782701 X 2.55507900 X -—-
24 .70712486 X 5.43404880 X ---
25 .83876447 X -—- -—-
26 1.10079821 X -e- -
27 2.59004208 X --- -——
28 5.58769127 X --- -—-
29 -—-- --- -
30 - --- ---
31 -—-- - -—--
32 -—— -—- ---

Table 5 (cont.).

Frequencies of Cantilever Grid Structure




which "twist" of the junction line is significant may be important to the
accuracy of system frequencies obtained through the use of modal reduction of

junction coordinates.

Ring examples - Ritz reduction of junction coordinates. - Figure 7 shows

a ring structure which was used to provide examples of Ritz reduction of junc-
tion coordinates. The ring was divided into nine substructures, with each
substructure having eight elements. Since each element subtends an arc of only
five degrees, a straight beam element was used, with the translational coordi-
nates transformed to the radial and circumferential orientation at the nodes.
Although they participated very Tittle in the solution for the first ten
system modes, two substructure normal modes were included for each substruc-
ture in generating the substructure coordinates Q in Eq. (17).

Two cases are presented: (1) a uniform ring, which possesses symmetry
properties and for which an analytical solution is available, and (2) a non-
axisymmetric stiffened ring. In each case solutions employing a Ritz approxi-
mation of junction coordinates based on Egs. (63) and (67) are compared with
solutions employing all 27 junction coordinates plus 18 substructure normal
modes, as noted above.

For the Ritz approximation using 15 Ritz vectors, the junction displace-

ments were assumed to have the form
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91 = [_] cos(Bi) sin(si) cos(Zsi) sin(ZBi{J { V3 (82)

and similarly for Qi and 51. Thus, the number of junction coordinates was
reduced from 27 to 15. In this problem the junction coordinates are far more
important than the substructure normal mode coordinates, and it would have
been better to retain all 27 junction coordinates and to delete all substruc-
ture modal coordinates. However, the present example should serve to emphasize
that reduction of junction coordinates, by any strategy, requires careful
consideration of the particular problem at hand.

For the uniform ring an analytical solution is available (ref. 12).

There are three rigid-body modes. These may be given by:

Mode 1: ei = 0, wi = coS Bi’ Vi = - sin Bi
Mode 2: ei =0, wi = sin Bi’ Vi = cosS 61

The first two are translation modes; the third represents rotation about the
axis of the ring. Of course, any linear combination of the above rigid-body
modes is also a rigid-body mode.

The elastic in-plane bending modes can be expressed in terms of a trigo-

nometric series in B;- A simple solution is obtained if it is assumed that,
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for flexural vibration, the ring is inextensional (ref. 12).

the eigenvalues of the ring are given by

2 _ ElIn
p AR

where n = 2 corresponds to the lowest flexural elastic mode.

In this case,

Table 6 gives the frequencies obtained for the uniform ringQ The

(83)

solutions based on Eq. (23) and on Eq. (67) are compared with the analytical

solution given in Eq. (83).

Method A11 27 Junction 15 Ritz Junction Analytical
Coordinates Coordinates Eq. (83)
Elastic Eq. (23) Eq. (67)
Mode
1 2.6558 x 10° 2.6558 x 10° 26561 x 10°
3 3 3
2 2.6558 x 10 2.6558 x 10 2.6541 x 10
4 5 4
3 2.1249 x 10 8.3493 x 10 2.1233 x 10
4 2.1249 x 10% 8.3493 x 10° 2.1233 x 10°
4 6 4
5 7.8145 x 10 1.4456 x 10 7.8061 x 10
6 7.8145 x 10° 1.4456 x 10° 7.8061 x 10%
5 6 5
7 2.0450 x 10 2.3357 x 10 2.0416 x 10

Table 6. Eigenvalues (wz) of a Uniform Ring
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From Table 6 it can be seen that the coupled system solution that
includes all 27 junction coordinates produces accurate frequencies, while only
the first two elastic mode frequencies are computed accurately by the Ritz
representation of junction coordinates. This occurs, of course, since the
exact mode shapes of higher-frequency modes are orthogonal to the Ritz vectors
included in Eq. (82). As would be expected, the mode shapes of elastic modes
1 and 2 of the Ritz solution are composed almost entirely of cos(ZBi) and sin
sin(ZBi) terms. Other terms are negligible fn these modes.

Table 7 gives the frequencies of the non-symmetric ring. A solution of
Eq. (23) containing al1 27 Junction coordinates is compared with results
obtained using the Ritz approximation of Eq. (67) with 15 Ritz vectors (as in
Eq. (82)) and 21 Ritz vectors. The latter solution included cos(3si) and
sin(3si) terms for ;i’ ﬁi, and 51.

Note first, from Table 7, that the coupled solution in column one
reflects a slight raising of frequencies due to the stiffening of the ring
and that the frequencies no Tonger occur in pairs. Secondly, note that neither
of the Ritz approximations of junction coordinates is any good even though,
in column three, the number of Ritz coordinates is almost 80% of the total
number of physical junction coordinates. Perhaps for the ring it would be
possible to choose more "efficient" Ritz vectors than those represented in
Eq. (82). However, it can be argued that these are certainly logical for the

present problem.
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Method A1 27 Jdunction 15 Ritz Vectors 21 Ritz Vectors
Coordinates .
Elastic Eq. (23) Eq. (67) Eq. (67)
Mode
3 3 3
1 3.3127 x 10 5.6348 x 10 4.1139 x 10
3 3 3
2 3.8962 x 10 6.0030 x 10 5.4910 x 10
4 6 4
3 2.8204 x 10 1.2210 x 10 3.7653 x 10
4 3.4333 x 10° 1.2488 x 10° 4.1730 x 10°
5 6 5
5 1.0854 x 10 2.2502 x 10 6.1599 x 10
6 1.2269 x 10° 2.2889 x 10° 6.9169 x 10°
7 2.8513 x 10° 3.5847 x 10° 1.2382 x 10°

Table 7. Eigenvalues (wz) of Non-axisymmetric Ring

Equation (81) was applied to determine whether the addition of a
cos(3Bi) contribution to the radial displacements, ﬁi, would produce a signi-
ficant change in the frequency of the third elastic mode considering the solu-
tion with 15 Ritz vectors to be the base problem. A value of (sz/wg) of order
104 was obtained, indicating that this contribution would be very significant.
A numerical value this high obviously violates any "small perturbation" assump-
tion on sz/wg, but it does signify that the base problem solution for this

mode would be too inaccurate to be useful. As a matter of fact, the solution
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based on 21 Ritz vectors shows the cos(381) and sin(33i) contributions to

Gi’ Wi’ and 61 to be dominant in the third elastic mode.



IMPROVEMENT OF FREE-INTERFACE METHODS

In this part of the report attention is directed toward ways of improving
the accuracy of free-interface methods. Example problems are solved and the
results are compared with those of a fixed-interface method and a commonly

used free-interface method.

Substructure Equations

As in Eq. (3) the substructure equation of motion may be written in

partitioned form as

My M X3 STy X5 0

.- .. X. . k.. . )
M5 M5 j Kii Ky X3 f

The free-interface modes of the substructure are obtained by setting fj =0

in Eq. (84) and solving the resulting equation
mx + kx = 0 (85)

The modes, ¢, May be normalized so that

.
b My = 1 (86)
T 2

on kop = A (87)
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The modes are assembled to form the modal matrix, ¢, which defines substruc-

ture generalized coordinates through the equation
X = op (88)

The modal matrix may be partitioned as follows:

o = (89)

where "k" stands for kept and "a" stands for approximated. That is, the full
modal information of the "k" modes will be kept, but the "a" modes will be
approximated.

When Eq. (88) is substituted into Eq. (84), there results a set of

uncoupled equations of the form

where

f. (91)

where ¢jn is the partition of the nth substructure mode associated with junc-
tion coordinates (since, for free vibration the only external forcing of a
substructure is through its interface).

Consider now harmonic motion, as would be present in free vibration.

Let a bar over a symbol indicate the magnitude, e.g.,
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Ph T 72 (93)

The physical displacements under harmonic motion can be obtained by combining

Egs. (88) and (93) to obtain
_ N
A v B (94)

where on is the nth mode shape and N is the total number of modes of the

substructure.

Equation (94) may be written in a form which suggests the basis for the

approximation methods of MacNeal (ref. 7) and Rubin (ref. 6), namely

N
R e S . T T v e I (95)

If the second series in Eq. (95) corresponds to modes for which Ay 2> ws
this series may be approximated by the static effects only, and Eq. (95)

becomes

> (=]
=3 NS
-
=
—
O
(o))
~—
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This corresponds to the concept of "residual flexibility" discussed by
Klosterman (ref. 8). The point stressed by Rubin (ref. 6) is that the modes
and frequencies indicated in the second series of Eq. (96) do not need to be
obtained explicitly. This will be explained in the following paragraphs.
The discussion will be restricted to harmonic motion of undamped structures
since this is the situation encountered in the determination of modes and
frequencies of a system.

If the "dynamics" were neglected in Eq. (84), a "pseudo-static response,"

X could be obtained by solving the equation
k x, = f (97)

If the substructure has rigid-body freedom, k will be singular and the solu-
tion of Eq. (97) for Xe requires special consideration of this fact. Thus,

the first and second-order approximation methods will be described first for
constrained substructures, for which k is non-singular, and then the approxi-

mation methods will be developed for free substructures.

Constrained substructures - first-order method. - For harmonic forcing,

f=f cos(wt), Eq. (97) gives

SR (98)
or
1 = af (99)

where G is the flexibility matrix and the superscript (1) identifies this as

the first-order response. Since, for free vibration of a substructure,
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external forces act only at junction coordinates, only the columns of G
associated with junction coordinates are required.

In Eq. (96) the second series represents the pseudo-static response of
the higher-frequency modes (n > S + 1), whereas i(}) in Eq. (99) contains
contributions from all modes. It is assumed that the modes to be kept,
together with their natural frequencies, are available. Let Eq. (89) be

written
o = [ o 0, ] (100)

then the pseudo-static response, based on Eq. (88) is

1 = g a4 oll) (101)
or

;(}) - ;(l) + ;(;) (102)
where

= e al]) (103)
and

;(;) = o, d(;) (104)

Since the modes in @a are not, in general, available, it is necessary
to use Eqs. (99) and (102) to obtain i(;) . To that end, let Eq. (101) be
substituted into Eq. (98) and let the resulting equation be premultiplied

by @T, giving
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- x|

o=

Since all of the modes are mutually orthogonal with respect to k,

[K] [¢, ¢,]

T
Qk k 2,

Also, from Eq. (87)

and

where A, and Aa are

k
2

n
collectively by

Thus,

Equations (103) and

A~ . Thus, from Eq.

o k 9

—

)

T
0y k -0

(1) = o7 ¢
NdY = g f
(1) . ,-1,7:

0

(105)

(106)

(107)

(108)

diagonal matrices composed of the respective values of

(105) is obtained a set of uncoupled equations expressed

(109)

(110)

(mmn)
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where

(112)

From Eqs. (99), (102), and (111) is obtained an expression for the contribution

of the approximated modes to the pseudo-static response, namely

;((;) - G(;)? (113)
where
1 1
G(a) = G - G(k) (114)

Equation (113) expresses what Rubin calls the first-order contribution of the
residual, or approximated, modes.
The first-order method, which will also be referred to as the MacNeal

method, may be summarized by the following equations:

2 (115)

(-w- T + Ak) Py = 25 fj

which is obtained from Eq. (90) for harmonic motion. Equation (96) may be

written in matrix form as

- (1)

k Pk + G a f (116)
This equation will be needed when substructures are coupled to form the com-
plete structure. In that case, the physical displacements of junction

coordinates are required. These are given by the appropriate partition of

Eq. (116), namely
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s e p ) (117)

. = 9. .
*j ik Pk i

where G(;g is taken from the appropriate rows and columns of G(;). Thus,

Egs. (115) and (117) are the relevant substructure equations.

Constrained substructures - second-order method. - For harmonic motion,

Eq. (84) can be written
kx = f+o mx (118)

Rubin (ref. 6) obtains the second approximation by putting the pseudo-static
first approximation, i(l) » On the right had side of Eq. (118) and solving
for the x on the left hand side. Thus, the pseudo-static second approximation

is given by

2 - gF+ i(})) (119)

(2= e 42y 42) (120)
or

Equations (99) and (119) can be combined to give

i(i) = 6(I+4°m6) f (122)

By analogy with the previous derivation of Eq. (111)

x(2) . G(l) (F+olm i(}) ) (123)
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or
2 - 6l 14 e ¥ (123)

Thus, the second-order approximation of the residual (approximated) modes is

given by

;(2) - ;(i) - ;(i) (124)
or

x2) - g2) ¢ (125)
where

62 = (e-caDy (14w (126)

This can be simplified as follows:

(6-6¢1 )y (1+fme) =

But,

from Eq. (112). Due to orthogonality, the above vanishes. Hence,

6(2) - G(;) (1+2m G(;) ) (127)
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or

2) _ 1 2 (1)
6l?) - all) 4y il (128)
where
H(;) - G(;) m G(;) (129)

The second-order approximation may be summarized by the following

equations:

I+, ) B, = o f. (130)

which is the same as Eq. (115), is the primary equation for determining 5k

To effect coupling, the physical displacement equation is required, namely

x(2) % Py + G(g) f (131)

The corresponding junction point displacements are given by

z(2) _ (2)
X = Jk pk + G Y f (132)
where G(gg is the appropriate partition of G(g).
Unconstrained substructures. - If a substructure possesses one or more

rigid-body degrees of freedom it will be referred to as an unconstrained sub-
structure. Since k is singular, the flexibility matrix, G, used in the
preceding analysis does not exist. On the other hand, since aerospace struc-
tures by nature possess rigid-body freedom, it is important that methods be

developed to analyze such structures by substructure methods similar to the
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foregoing ones. Rubin's paper (ref. 6) was devoted to this case.
For a substructure possessing rigid-body freedom, let the displacement

be given by
X = Xt Xg (133)

where X is rigid-body motion and X ¢ is (relative) flexible motion. Also,
let the modes of the structure be separated into rigid-body and flexible

modes such that
X = o Pt o Pg (134)

In the notation of preceding sections all of the rigid-body modes, i.e., s
would be kept as would a lTimited number of flexible-body modes. The remaining
flexible-body modes would be approximated. Since Xg cannot be obtained by
inverting k, as was done in going from Eq. (98) to Eq. (99), it is necessary
to "remove" the rigid-body motion.

Let Eq. (134) be substituted into Eq. (84) and the resulting equation

be pre-multiplied by ¢T to give the uncoupled equations

p. = o f (135)
and

Pe thpPe = 0 f (136)

where the orthogonality of modes is employed and it is assumed that modes are

normalized so that

o . mao = 1 (137)
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and

ormo, = 1 (138)

From Eq. (135) it is seen that, as far as rigid-body motion is concerned,
the external forces are reacted by rigid-body inertia forces. Hence, if
these rigid-body inertia forces are subtracted from the applied force, f,
there will be no excitation of rigid-body modes. The physical displacement

due to rigid-body modes is
X. = ©.p (139)

so the (reversed) inertia force vector is given by

_ . - T
fioo=-m X, = me. o f (140)

Thus, the net force producing flexible-body motion is given by

fe = f+ fi = Af (147)
where

A = I-nm o, o, (142)

To determine the flexible-body motion resulting from ff it is necessary
to impose temporary constraints on the substructure so that rigid-body motion
is prevented. Let GC be the flexibility matrix of the structure which has
been subjected to arbitrary statically-determinate constraints. GC may be
obtained by taking k (which is singular), deleting rows and columns correspond-
ing to the constrained degrees of freedom, inverting to get a flexibility

matrix, and expanding the flexibility matrix by inserting zeros in rows and
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columns corresponding to the constraints. The resulting augmented flexibility
matrix is called Gc'

The flexible-body displacement relative to the imposed constraints 1is
given by

= e (F+ £y
(143)

(1)

To obtain the flexible-body displacement, x £ o rigid-body motion is removed

from x(l) by making x(l) orthogonal to all rigid-body modes, i.e.,

ol m x(}) - 0 (144)
where

x(l) = x(l) te.c, (145)
Thus,

x(}) - X(l) . ¢I m X(l) (146)

or

x(}) - A x(l) (147)
From Eqs. (143) and (147)

x(}) = (AT A)f (148)

Equation (148) and Eq. (99) serve the same purpose for free substructures and
constrained substructures respectively. Thus, let the symbol G be defined,

for free substructures, by
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G = A G A (149)

With this definition of G for free substructures, the remainder of the deriva-
tion of first and second-order methods proceeds as before, beginning with

Eq. (99).

Coupling of Substructures

In the preceding sections the substructure equations have been obtained
for both constrained and free substructures. In the present section equations
will be developed for coupling substructures. Figure 8 shows two substruc-
tures, together with the junction coordinates at which compatibility must
be enforced. Since there are differences in the substructure equations of

the first-order and second-order methods, these will be treated separately.

Coupling for the first-order approximation. - Equations (115) and (117)

are the pertinent substructure equations for the first-order approximation.

For substructure A they can be written

=(1)  _ - (1)
X iA PikA Pk T G jiA fjA (150)
and

- _ T -
P ) Py T %5 T (151)

—

For substructure B
-(1) _ = (1)
X'iB *5k8 Pxe * G358 T8 (152)
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and
2

T (153)

(-w kB ) 5k8

The junction coordinates of A and B must coincide. However, the number of

"kept" modes of A and "kept" modes of B may be different.

The coupling equations are

Xip Xip

(154)

and

fip == f (155)

jB
where it is assumed that any required coordinate transformations have been made
so that the junction coordinates of A coincide with the junction coordinates

of B as given by the compatibility equation, Eq. (154). Equations (150),

(152) and (155) may be substituted into Eq. (154) to give

SR B R e
fia = (6550 % 6558 ) (%58 Pug = 25ka Pa ) (156)

Equation (156) may now be substituted into Eq. (151) to give

2 - T L) (1) -1 5 5
(-w” I+ S5k (8550 8558 ) (250 Pkp = 25kaPra)

(157)
Similarly, Egs. (155) and (156) may be substituted into Eq. (153) to give

2 5= el e 4 g(1) ! - -
I+ 568 (6 35a" 65580 (%58 Pug = 25¢a Pra)

(158)
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Equations (157) and (158) may then be combined to form the equation

Kaa  Kag | | Pka , | Pka
. (159)
Kea  Kgg PyB PkB
where
_ T (1)
Kaa = Ma * %5 KT 250
_ T (1)
Kag T %5ka KT %5
() (160)
_ T 1
Kea = = %k K7 25
_ T (1)
Keg = Mg * %5k K7 5B
where
() = o), a1 7]
K (el + el (161)

Equation (159) thus forms the primary eigenvalue problem for determining the
modes and frequencies of the coupled structure. It may be noted that its
size is equal to the sum of the kept substructure modes in substructures

A and B.

Coupling for the second-order approximation. - The coupling equations

for the second-order approximation can be obtained from Eqs. (157) and (158)

, (1) (2)
by replacing G ij by G j

J
(gg is a submatrix of G(g), which is given by Eq. (128) as

for the substructure. The complication arises due

to the fact that G
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s(2) . G(;) ¥ 2 H(l) (128)

a
Thus,
(2) _ (1) 2 (1)
61y = Gl retHY | (162)
and
(2) . A1), 2 .(1)
614l = elg et il (163)
Let
1 L, 0
G5nt Sy = Oy (164)
and
(1) (1) - 41
Wi Mim T S (165)
Then,
(2) . a2) . (1), 2.(1)
G55a T Gyip = g5 tut By (166)

From Egs. (157) and (158) the system equations for the second-

order method may be deduced to be

(167)
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where
. - -1
@) - (6@ L@ Tl ), 2 (1) 168
k (G55a* 855p ) (85 *e” Hy; ) (168)
Since, from Eqs. (166), w2 appears on both the left and right-hand sides
of Eq. (167) this system equation cannot be solved conveniently in its present
form. Two methods may be used to circumvent this difficulty: (1) an iteration
method may be used, with the w2 on the left-hand side of Eq. (167) being taken,
in the first iteration, as the wz obtained by using the first-order method,
or (2) a Maclaurin series expansion may be employed to obtain an approximation
to the inverse matrix required on the left-hand side of the system equation.

The Maclaurin series method will be described more fully now. Let

(2= el 2 1) )

(1) 2 (171 (1) 7 47]
(645 [T+u" (8555 W45 1)

[1+ o2 k(M) 77 () (169)

JJ

From Eq. (169) it can be seen that the second term in the square bracket dis-
tinguishes the second-order method from the first-order method. If the correc-

tions are "small" k(z) can be approximated by

K2 oo 2 () H(}g ) k(1) (170)
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From Egs. (167) and (170) the following second-order system equation is

obtained
—K K INE: —M M s
A “AB PrA AR TAB L Pra
= P ﬁ (171)
Ken fgs | | Pxe | Maa Mgs | | P
where
_ T (1)
MAA = I + ijA m ijA
. T (1)
MB T T %ka ™ %5ks
(172)
_ T (1)
Mo = - %™ %5kA
- T (1)
Meg T+oas ™ %5
where
nt1 = ) (173)
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Examples

Several example problems were solved by the free-interface methods
described in the preceding sections. The purpose of these examples is to
illustrate the results obtainable by the first-order and second-order methods
and to compare these results with those obtained by using a fixed-interface
method (method of Craig and Bampton) and another free-interface method

(Hou's method).

Beam examples - first and second-order methods versus Hou method. -

Frequencies of a two-substructure uniform beam were obtained for three sepa-
rate sets of boundary conditions: clamped-clamped, clamped-free, and free-free.
Thus, the theory for both constrained and free substructures was employed in
these examples. Figure 9 shows the configuration of the two substructures for
each of the three support conditions. Substructure A consists of four elements,
while substructure B consists of three elements. Consistent mass matrices
were employed for element mass matrices.

In Table 8 are shown the system frequencies obtained for the clamped-
clamped beamby Hou's method and by the first and second-order methods. To
obtain each frequency by the second-order method, the iteration procedure
was employed, wherein the corresponding frequency obtained by the first-order
method was used in determining the k(z) of Eq. (168).

Note that the first-order (MacNeal) method is much more accurate than
Hou's method, and that further improvement is obtained by use of the second-
order (Rubin) method. On the other hand, increasing the number of substruc-

ture modes while using the first-order method also produces significant
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improvement.

The “"exact" values in Table 8 were obtained by retaining all original
physical coordinates.

Table 9 shows a more limited set of results for the clamped-free beam.
The accuracy of the first-order method is not as good as it was for the
clamped-clamped beam; but the first-order method is still far superior to

Hou's method.

Table 10 gives results obtained for the free-free beam. Note that the
results obtained by the first-order method are virtually identical to those
-obtained for the clamped-clamped beam. Of course, the free-free beam has two
zero-frequency rigid-body modes which are not listed in the table. Again

Hou's method does not produce acceptable accuracy.
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E;qizzic NA=4 s NB=4 NA=4 R NB=4 Exact
Number 1st order % Hou %
(MacNeal) error error
1 .0000052 0.00 .0000053 1.92 .0000052
2 .0002069 2.27 .0002624 29.71 .0002023
3 .0016227 2.15 .0017612 10.86 .0015886
4 .0061338 0.01 .0072102 17.56 .0061330
5 .0177475 4.73 .0228454 34.81 .0169463
6 .0385308 0.21 .0418527 8.85 .0384504
7 .0828725 10.58 -—- -- .0749409
8 .5902060 X --- -- .1602931
Table 9. Frequencies of a Two-Substructure Clamped-Free Beam
E;‘gzgic NA=5 s NB=4 NA=5 R NB=4 Eract
Number 1st order % Hou %
(MacNeal) error error
1 .0002086 0.05 .0002807 34.63 .0002085
2 .0015875 0.02 .0017529 10.44 .0015872
3 .0061381 0.14 .0072018 17.49 .0061297
4 .0170057 0.55 .0228352 35.02 .0169130
5 .0385203 0.69 .0415545 8.62 .0382562
6 .0783702 5.52 --- -- .0742702
7 .3928161 X --- -- .1573651
Table 10. Frequencies of a Two-Substructure Free-Free Beam




Truss examples - MacNeal method versus Craig-Bampton method. - The

Benfield truss of Fig. 3 was used in a study comparing the results obtainable
by the first-order method with results obtained by use of the Craig-Bampton
method. The results are shown in Table 11. The exact frequencies are the
same as those given in Table 1, and were obtained using all of the original
physical coordinates of the coupled system.

Since the Craig-Bampton method employs junction coordinates as well as
substructure normal mode coordinates, the first-order method and Craig-
Bampton method are compared on the basis of total number of system modes

(N = 16). Since no convergence studies were carried out, no strong con-

tot
clusions can be reached about the comparison of MacNeal's method with the
Craig-Bampton method, but Table 11 suggests that the MacNeal method produces
results of accuracy comparable to those produced by the Craig-Bampton method.
The Craig-Bampton method produces the best results for the low-frequency

modes. The MacNeal method is not quite as accurate for these modes, but

does better for the modes in the middle range of frequencies.

71



E;gzzic K T O Tl ,Nj _ Exact
Number 1st order % Craig- %
(MacNeal) error Bampton error
1 0.004402 0.25 0.004391 0.00 .004391
2 0.018377 0.26 0.018331 0.01 .018329
3 0.030997 1.60 0.030527 0.06 .030508
4 0.041740 0.36 0.041664 0.18 .041589
5 0.069022 0.64 0.068734 0.22 .068585
6 0.099727 0.97 0.098938 0.17 .098770
7 0.116246 2.01 0.126051 10.61 .113959
8 0.125738 2.76 0.144412 18.02 .122362
9 0.151118 0.28 0.161327 7.05 . 150701
10 0.160644 3.54 0.247411 58.82 .155147
1 0.231554 33.04 0.361008 X . 174052
12 0.352010 75.15 0.506162 X .200979
13 1.524661 X 1.030503 X .215105
Table 11. Frequencies of Two-Substructure Benfield Truss by

MacNeal Method and by Craig-Bampton Method
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Grid examples - MacNeal method versus Craig-Bampton method for

cantilever and free-free grid structures. - The grid structure shown in

Fig. 5 was used for further comparison of the MacNeal method and the Craig-
Bampton method. A similar free-free grid was also analyzed. In these studies
a consistent mass matrix was employed.

Table 12 shows the results obtained for the first twenty modes of the
cantilever grid. The column labelled "exact" is for the 72 d.o.f. original
structure. For smaller numbers of total modés, the MacNeal method produces
considerably better results than the Craig-Bampton method.

Figure 10 shows the number of modes accurate to within 0.5% as computed
by each of the two methods. (The results shown in Fig. 10 include all the
"0.5% modes" among the total number of modes calculated, i.e., 20, 24, 28,
32, even though only twenty modes are tabulated in Table 12.)

Table 13 shows the results obtained for the first twenty frequencies
of a free-free grid structure as obtained by the MacNeal method and by the
Craig-Bampton method. No exact values are available because of limitations
on the size problem which could be handled by the eigensolver being used.

It is noted that the frequencies are quite close, for the most part, with

the maximum difference being only about 2.5%.
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Elastic Vior = 20 tot ~ 20
Mode EXACT Npg=11 , Np=9 Np=5, Ng=3, Nj= 12
Number % %
MacNeal error Craig-Bampton error
1 .00006210 .00006210 0.00 .00006211 0.01
2 .00025109 .00025110 0.00 .00025115 0.02
3 .00163979 .00164073 0.05 .00164660 0.41
4 .00238797 .00238799 0.00 .00239788 0.41
5 .00394372 .00394463 0.02 .00395306 0.23
6 .00819127 .00820367 0.15 .00871273 6.36
7 .00862821 .00865644 0.32 .00881859 2.20
8 .01806006 .01808477 0.13 .01857390 2.84
9 .01991494 .01998109 0.33 .02188961 9.91
10 .02254916 .02260244 0.23 .02271096 0.71
1 .02744331 .02752603 0.30 .03864739 40.82
12 .03262871 .03298812 1.10 .06218932 90.59
13 .04493968 .05362282 19.32 .08120924
14 .05150864 .05581855 8.36 .12613476
15 .06175304 .06373244 3.20 .20728453 X
16 .06664190 .06884813 3.31 .36264343 X
17 .06963443 .17950904 X .53033012
18 .08534049 .25447977 X 1.05181024
19 .08680764 .69330843 X 2.45246230
20 .08914933 | 1.32773903 X 5.23913299
Table 12. Frequencies of Cantilever Grid Structure




Elastic Niot = 24 Nior = 24 Nior = 28

Mode Ny=14 5 Ng=10 NA=7,NB=5,NJ.=]2 Npy=16 , Ng=12

Number 9% 9 %
MacNeal error | Craig-Bampton | error MacNeal error
1 .00006210 0.00 .00006210 0.00 | .00006210 0.0C
2 .00025110 0.00 .00025109 0.00 | .00025109 0.00
3 .00164035 0.03 .00164019 0.02 | .00164025 0.02
4 .00238799 0.00 .00239012 0.09 | .00238797 0.00
5 .00394406 0.00 .00394433 0.01 | .00394400 0.00
6 .00820253 0.13 .00819496 0.04 | .00819978 0.10
7 .00863702 0.10 .00867873 0.58 | .00863315 0.05
8 -01807972 0.10 .01825831 1.09 | .01806091 0.00
9 .01996598 0.25 .01997539 0.30 | .01993582 0.10
10 .02257782 0.12 .02267290 0.54 | .02255448 0.02
11 .02750739 0.23 .02750874 0.23 | .02750444 0.22
12 .03289693 0.82 .03320131 1.75 | .03266930 0.12
13 .04507813 0.30 .05276010 17.40 | .04505674 0.26
14 .05574645 8.22 .05686502 10.39 | .05158030 0.13
15 .06250395 1.21 . 06696988 8.44 | .06177593 0.03
16 .06861338 2.95 .08138276 22.11 | .06858598 2.91
17 .07109523 2.09 .27636744 X .06969506 0.08
18 .08733079 2.33 .35125316 X .08557656 0.27
19 .09138064 5.26 . 39979778 X .08701777 0.24
20 .10946900 | 22.79 .53601805 X .09134459 2.46

Table 12 (cont.).

Frequencies of Cantilever Grid Structure




Elastic Nior = 28 Niot = 32 Nior = 32

Mode NA=10,NB=6,Nj=12 NA=18,NB=14 NA=12,NB=8,NJ.=12

Number A % %
Craig-Bampton| error MacNeal error | Craig-Bampton | error
1 .00006210 0.00 | .00006210 0.00 .00006210 0.00
2 .00025109 0.00 | .00025709 0.00 .00025109 0.00
3 .00163996 0.01 | .00163998 0.01 .00163989 0.00
4 .00238879 0.03 | .00238797 0.00 .00238814 0.00
5 .00394429 0.01 | .00394398 0.00 .00394381 0.00
6 .00819481 0.04 | .00819423 0.03 .00819336 0.02
7 .00863617 0.09 | .00863294 0.05 .00863058 0.02
8 .01822469 0.91 | .01806079 0.00 .01806936 0.05
9 .01995132 0.18 | .01993480 0.09 .01992609 0.05
10 .02267161 0.54 | .02255635 0.02 .02255262 0.01
11 .02748344 0.14 | .2746659 0.08 .02746586 0.08
12 .03313560 1.55 | .03266878 0.12 .03265385 0.07
13 .04505185 0.24 | .06505075 0.24 .04498599 0.10
14 .05672962 10.13 | .05157360 0.12 .05157714 0.13
15 .06272967 1.58 | .06177415 0.03 .06186679 0.18
16 .06695281 0.46 | .06735587 1.07 .06694378 0.45
17 .07023630 0.86 | .06967776 0.06 .06967930 0.06
18 .08792538 3.02 | .08553947 0.23 .08547908 0.16
19 .08987727 3.53 | .08699608 0.21 .08694733 0.16
20 .12568251 40.97 | .09114901 2.24 .08962024 0.52
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Table 12 (cont.).

Frequencies of Cantilever Grid Structure




Elastic MacNeal Crajg-Bampton
Mode _
Number NA=20,NB=15 NA=12,NB=8,NJ.=15
Ntot = 35 Ntot = 35
1 .00045914 .00045913
2 .00091210 .00091192
3 .00197905 .00197929
4 .00286973 .00286953
5 .00399206 .00399188
6 .00680185 .00679642
7 .01032129 .01032054
8 .01156372 .01156373
9 .01462129 .01472953
10 .01979609 .01986503
11 .02500327 .02500680
12 .02542485 .02538976
13 .03188867 .03237293
14 .03479776 .03476012
15 ".05306692 .05435942
16 .05514919 .05609568
17 .05588742 .06071017
18 .06206941 .06240902
19 .06640768 .06484146
20 .08028079 .07861373
Table 13. Frequencies for Two-Substructure Free-Free Grid
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Testing Requirements

The free-interface methods described in this report, in particular the
first-order method, are compatible with dynamic test procedures, as was
pointed out by Rubin (ref. 6). Although considerable work needs to be done
in exploring the relationship of these methods to dynamic test procedures,
several comments may be made on the basis of the equations presented in this
report.

The first-order method requires the substructure information indicated

in Egs. (115) and (117):

(1) Ay - square of natural frequencies of substructure free-
interface modes to be kept

(2) ) - normalized (with respect to the mass matrix) free-inter-
face mode shapes of modes to be kept

3) 61) - residual flexibility at junction coordinates

Items (1) and (2) are standard items which are determined in mode
survey tests. The only complicating factor is that the modes are to be
normalized with respect to the mass matrix.

The determination of the residual flexibility at junction coordinates

appears to be relatively straightforward for constrained substructures.

(1)
JJ
ence of two flexibility matrices, Eq. (114), the sensitivity of this matrix

However, since G is a submatrix of G(;), which is determined as the differ-

to measurement errors should be thoroughly explored.
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For unconstrained substructures the determination of the residual
flexibility matrix requires a constrained flexibility matrix, Gc’ and a trans-
formation matrix A, which, by Eq. (142), involves the mass matrix and rigid-
body modes. Equations (149) defines the flexibility matrix modified to
account for rigid-body modes. Considerable study is needed to determine:

(a) whether Eq. (149) provides the best way to treat rigid-body modes, and

(b) whether Eq. (149) is sensitive to measurement errors.
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CONCLUSIONS AND RECOMMENDATIGONS

The studies of fixed-interface methods indicate that:

(1)

Reduction of the number of junction coordinates is feasible since
this produces results of accuracy comparable to that obtained when

substructure normal modes are reduced.

Reduction of junction coordinates may be based on:

(a) Ritz representation of junction coordinates using Ritz

vectors provided by the analyst.

(b) Guyan reduction of junction coordinates using a static

reduction of coordinates, with the retained coordinates
selected by the analyst.

(c) Modal reduction of junction coordinates, using “junction

modes" as Ritz vectors and using frequency ratio or modal
participation factor to determine the coordinates to be

retained.

Although the choice of method for reducing the number of junction
coordinates is dependent, to some extent , on the problem to be
solved, modal reduction has two advantages not offered by the
other two methods:

(a) The calculation of modal participation factors is very simple.
(b) The final equations are of a form that could lead to a very

efficient eigensolution algorithm if advantage were taken of



the fact that the generalized stiffness matrix is diagonal.
A disadvantage is that a preliminary eigensolution for junction

modes is required.

(4) Error analysis, i.e., determination of the frequency "error" intro-
duced by omission of a particular Ritz vector (mode), may be con-
ducted for any of the three proposed methods. The calculations are

somewhat tedious except for the modal reduction method.

(5) Before investing further effort in implementing any of the above-
named methods for reduction of junction coordinates, an attempt
should be made to create an efficient computer program for imple-
menting the original Craig-Bampton equation, Eq. (23). It should
be possible to create an efficient power iteration program, since
Kii is diagonal and ij will be narrowly banded or, at worst, banded

with only a few submatrices outside of the band. If such a program

were avajlable, it would be a straightforward matter to provide an

option for modal reduction of junction coordinates.

Free-interface substructure models suggested by MacNeal and Rubin have
been studied. Equations for coupling substructures to form systems have been
presented and a number of example problems involving two substructures have

been solved. On the basis of these studies, it is concluded that:

(1) Only substructure normal mode coordinates are retained in the final
system equations of motion, yet, both first-order (MacNeal) and

second-order (Rubin) free-interface methods produce accuracies
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comparable to those produced by Hurty-type fixed-interface methods.

The second-order (Rubin) method requires additional calculations,
and further study is required to establish whether the improvement

in results is sufficient to justify the added computational effort.

The first-order method appears to be compatible with dynamic test
procedures, but further study is needed, particularly with respect

to unconstrained substructures.

"Rubin-type" methods appear to give upper bounds to the system
frequencies and to be rapidly convergent. Further study of error

bounds is required, however, to confirm these points.

Mode shape and stress errors should be investigated for "Rubin-
type" methods and should be compared with those produced by Hurty-

type methods.
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FIG. 7 . RING STRUCTURES
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FiIG. 8. TWO SUBSTRUCTURES WITH JUNCTION COORDINATES
AND FORCES SHOWN SYMBOLICALLY
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