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SUBSTRUCTURE COUPLING FOR DYNAMIC

ANALYSIS AND TESTING

Roy R. Craig, Jr._ and Ching-Jone Changt

The University of Texas at Austin

SUMMARY

Substructure coupling methods may be classified as fixed-interface

methods, free-interface methods, or hybrid methods, depending on whether the

modes used are determined with substructure interfaces fully restrained,

free of restraint, or partially restrained.

In the present report three methods are presented for reducing the

number of interface coordinates required by fixed interface methods. These

are: Ritz reduction, Guyan reduction, and modal reduction. Example solu-

tions are given to illustrate these three methods, and procedures for estima-

ting convergence properties of the methods are described.

Also presented in the report is a study of a class of free-interface

methods. The methods described appear to be significantly more accurate than

the free-interface methods of Hou and Goldman and to be particularly useful

when experimental verification of the analytical model is required. The sub-

structure equations and coupling equations are developed, and example prob-

lems are presented which compare the accuracy of the present methods with

other free-interface methods and with fixed-interface methods.

_AAssociate Professor, Aerospace Engineering and Engineering Mechanics
tGraduate Student, Engineering Mechanics



INTRODUCTION

Substructure coupling methods maybe employedwhen (I) the numberof

coordinates in a dynamic analysis needs to be reduced, or (2) whenanalysis

or testing of a structure needs to be done separately on different portions

of the structure. Substructure coupling methods generally employ coordinate

transformations where the generalized coordinates of substructures are defined

by Ritz-type modes. In most cases some, or all, of the generalized coordi-

nates are defined by a set of substructure free vibration modes. The sub-

structure coupling methods maybe classified as fixed-interface methods, free-

interface methods, or hybrid methods depending on whether the modesare deter-

mined with the substructure interfaces fully restrained, free of restraint,

or partially restrained.

The primary focus of the research described in the present report is

on methods for reducing the numberof interface coordinates required by

fixed-interface substructure coupling methods. The fixed-interface method

developed by Hurty (ref. I) and refined by Craig and Bampton(ref. 2) requires

that all of the original interface displacement coordinates be retained in

the final coupled structure. Benfield, Bodley, and Morosow(ref. 3) conducted

a study comparing the accuracy of several substructure coupling procedures.

Figure 1 shows someof the results obtained in reference 3. Although the

various methods were only applied to one structure, the results of this

limited study indicated that the fixed interface method of Hurty and the

equivalent Craig-Bampton method generally produced the most accurate solutions

for a given numberof degrees of freedom. Slightly better accuracy was

k
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achieved by methods introduced by Benfield and Hruda (ref. 4) but these

latter methods suffer the disadvantage that the substructure modesof one

substructure are not independent of the other substructures. Benfield, et. al.

(ref. 3) suggest that a drawback to the Hurty method (and Craig-Bampton

method) is the requirement that all interface displacement coordinates, i.e.,

constraint modes, must be retained in the final coupled structure. It is

suggested that this might restrict the numberof component, or substructure,

normal modesretained in the coupled structure. It is the purpose of this

report, therefore, to describe three methods for reducing the numberof inter-

face coordinates in the final system model. Reference 5 presents additional

information concerning these three methods.

A secondary purpose of this report is concerned with improving the

accuracy obtainable from free-interface substructure coupling methods. Figure

I, taken from reference 3, indicates that the two free-interface methods,

Hou's method and Goldman's method, produce frequencies much less accurate

than those produced by fixed-interface methods for a comparable numberof

system degrees of freedom.

Subsequent to the appearance of reference 3, Rubin (ref. 6) presented a

paper describing a class of free-interface methods similar to ones described

previously by MacNeal (ref. 7) and Klosterman (ref. 8). Although Rubin went

into considerable detail to describe howto represent individual unconstrained

(i.e., possessing rigid-body freedom) substructures, he did not fully develop

the substructure coupling procedures or present any examples of multi-sub-

structure systems.

Rubin (ref. 6) stressed the fact that, whenexperimental verification



of analytical models is required, the class of free-interface substructure

methods which h_ presented are much more attractive than are fixed-interface

substructure methods.

Since the methods presented by Rubin appeared to have the potential for

producing substructure coupling results of acceptable accuracy and appeared

to be compatible with state-of-the-art dynamic testing procedures, it was

decided that the initial effort along the lines of improving free-interface

methods should be directed toward further development of the methods suggested

by Rubin. Rubin's own work (ref. 6) treats only unconstrained substructures.

The only example presented is for a single substructure represented by a con-

tinuous (i.e., partial differential equation) model. In the present report

the theory is presented first for constrained substructures, in order that

the concepts may be presented first in the simplest form possible. Also, in

the present report only discrete models (i.e., matrix ordinary differential

equations) are employed, since these are the ones employed to model practical

structures. Finally, the present report presents detailed equations for

coupling substructures and presents example problems in which results obtained

by Rubin-type methods are compared with results obtained by other methods

(Hou, Craig-Bampton).
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FIXED INTERFACE METHODS WITH REDUCTION

OF INTERFACE COORDINATES

In this part of the report three methods are derived for reducing the

number of interface coordinates required for fixed-interface substructure

methods. Examples are also presented to assess the accuracy of the derived

methods.

Substructure Equations

For a typical substructure, the equations of motion, assuming linear

viscous damping, may be written

m_ + cx + kx : f (1)

For undamped, free vibration, the equations reduce to

mx + kx : f (2)

where f contains forces at junction (interface) coordinates in the coupled

structure.

In most substructure coupling methods the original substructure physi-

cal coordinates are expressed, after the manner of Ritz, in terms of a set

of substructure generalized coordinates. In the method of Craig and Bampton

(ref. 2) these substructure generalized coordinates consist of a set of junc-

tion, or interface, coordinates and a set of normal mode coordinates. These

normal modes are obtained with all junction coordinates fully restrained.



Equation (2) may be partitioned to give

LmiimiI{il IkikiJIIxi
mj i mj j xj kj i kj j xj fj

(3)

where x i contains the "interior", or non-interface, physical coordinates and

xj contains the "junction", or interface coordinates. Figure 2 shows interior

nodes and junction nodes of two adjacent substructures.

Since the normal modes are to be obtained with xj = O, Eq. (3) reduces

to

mii xi + kii xi = 0

The mode shapes, @n' can be assumed to be normalized so that

(4)

T
Tmnm @n : 1 (5)

T k @n _2 (6)_n = n

and the mode shapes collected to form the respective columns of a modal

matrix @ii" The substructure "frequency" has been designated _ to distin-

guish it from the system frequency m. Later, the modal matrix will be parti-

tioned so that some of the modes are kept in the final analysis while other

modes are reduced out.

If there were no loads (including inertia loads) at the interior

coordinates of the substructure, the static displacement would be given by

--~.



Ekiik JIIxi}{°}=kj i kj j xj fj

(7)

Displacements xj of the junction coordinates would produce displacements of

the interior coordinates as given by the upper partition of Eq. (7), namely

-i (8)xi = (- kii kij) xj

or

xi = @ij xj (9)

The components of the transformation matrix @ij can be obtained by solving

the equation

kii @ij = - kij (I0)

or

A substructure coordinate transformation may be defined now by

X - xjXi}E ii=o ij]{pill(ll)
x = @p (12)

The equations of motion may be transformed to the new substructure generalized

coordinate system as follows:

_ p + E p _-k p : g (13)



where

= @Tm¢

E = _Tc_

m

k = @Tk@

T
g = @ f

(14)

The transformed matrices may be written in more explicit form through

the use of Eqs. (ll) and (14). Thus,

r j_ii _ij

L_j i _jj

I_ii Eij I

E : (15)

Eji Ejj

ii 0

w

kjj

The null partitions of E result from the transformation imposed by Eq. (lO).

The remaining submatrices are given by

8
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m, = I °

1 l

m°

i,] _T : CT. (mii_ij + )= mji 11 mij

T
mjj : mjj + ¢ij (mii@ij + mij) + mji¢ij

Ei : [_2]

m

kjj : kjj + kji_ij

- = @T.c. ¢iCil ll li i

- -T = @T.
cij = cji Ii (cii@ij + cij)

- T

cjj : cjj + @ij (cii@ij + cij) + cji¢ij

(16)



Coupled System Equations

In discussing the coupled system, we will consider two substructures,

"A" and "B". Extension to more substructures is straightforward. The total

set of system generalized coordinates is

q e (17)

qj

where qi is a collection of all substructure (interior) normal mode coordi-

nates and qj is a set of all junction coordinates. Although it is common

practice at this point to reduce the number of coordinates _ including only

selected modes from each substructure, we will assume that all modes are

retained for the time being and will treat the reduction of coordinates

question in a later section.

The substructure coordinates are related to the system coordinates by

"label" submatrices, which simply identi_ substructure coordinates with the

appropriate system coordinates. This is a formal expression of the "direct

stiffness" procedure for assembling system matrices from element matrices.

Thus,

PiA

PjA

p - . =

PiB

PjB

LiA 0 0

0 0

0 LiB

0 0

LjA

0

LjB

qiA

qiB

qj

(18)
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or

p : L q . (19)

The system matrices are obtained by direct stiffness assembly procedures

using the labelling information of Eq. (18), The resulting system equations

may be written

M q + C q + Kq : F (20)

In partitioned form the equations of motion for free vibration of the

undamped coupled system are

Mi iA 0 I Mij A

I
0 Mii B Mij B
....... ......

Mji A Mji B I Mjj A +Mjj B

- I -

r
°,

qiA

qiB

qj

"iiA 0 I 0 |

I 0 /
0 KiiB I I

0 0 I Kjj A + Kjj B I

- I I

qiA

qiB =
I ....

qj

0

0

(21)

0

For the undamped free vibration problem we can take

q(t) : Q cos (mt) (22)

II



where Q is a vector of amplitudes only. The resulting eigenvalue problem

has the form

EKiioii0il2 MijIi0
0 Kjj Qj L Mji Mjj Qj

I°0 (23)

where the substructure normal mode coordinates have been combined into a

single vector qi = Qi cos (mt).

In the following sections we will discuss the effect of reducing out

some of the substructure normal mode coordinates and/or some of the junction

coordinates.

12



Reduction of Coordinates

Oneof the primary reasons for adoptinga substructure method for solv-

ing structural dynamics problems is to reduce the numberof degrees of freedom

which must be employed in the dynamic analysis. The truncation of substruc-

ture normal modesin a fixed-interface substructure coupling analysis has been

studied by Hurty (ref. 9), Benfield, Bodley, and Morosow(ref. 3), and others.

For completeness, this procedure is described below. The reduction of junc-

tion (interface) coordinates has apparently not been considered previously.

Three possible methods for reducing junction coordinates are introduced in

succeeding sections. These are referred to as modal reduction, Guyanreduc-

tion, and Ritz reduction.

Reduction of substructure normal mode coordinates. - For considering

reduction of normal mode coordinates we can partition Qi in Eq. (23), giving

K 0 0
aa

0 Kbb 0

0 0 Kjj

_L

QB

Qb . 2

Qj

Maa

Mja

O Maj

Mbb Mbj

Mjb Mjj

QB

Qb =

Qj

o[
0

o[
(24)

where coordinates Qa will be retained and coordinates Qb will be reduced out.

The second row-partition of Eq. (24) may be written

2 Mbb) Qb 2(Kbb - m = m Mbj Qj (25)

or

13



Qb = 2 (I - 2 Kb_ Mbb) (26)

Consider the eigenvalue problem

. _2
(Kbb Mbb) Qb = 0 (27)

i.e., the eigenvalue problem associated with the substructure modes to be

reduced out. The frequencies of these substructure modes are called _ to
n

distinguish them from frequencies m of the coupled system. Recall that the

modes are normalized so that Mbb = I and Kbb is a diagonal matrix containing

_2's. Thus, Eq. (26) takes the form
n

I (_/_n)2 I
Qb = (28)

1 - (m/_n)2 Mbj Qj

Let _I be the lowest frequency among the eigenvalues of Eq. (27), i.e.,

the lowest frequency of a mode which is to be reduced out. If the range of

system frequencies, m, of interest is such that

_/;t 1 << 1 (29)

the zeroth-order approximation to Qb is

Qb = 0 (30)

i.e., the modes associated with Qb can just be eliminated. The reduced

eigenvalue problem is simply

14



Kaa 0 I
0 Kjj

I IIQa Maa Maj Qa
2

- CO

Qj LMja Mjj Qj
I °0

(31)

An iterative procedure for improving frequencies and mode shapes of the

system could be based on using the zero-order approximate values of _ in

Eq. (28). Kuhar and Stable (ref. I0) proposed a "dynamic transformation"

procedure which essentially consists of defining Qb in terms of Qj through

Eq. (28) using a pre-selected transformation frequency, p, instead of the

(unknown) system frequency m. However, Mbj involves mode shapes of the

deleted modes, and hence this procedure requires that such modes be obtained

in the original substructure eigensolutions.

Examples will be presented in a later section to compare the effective-

ness of reducing out substructure normal modes with the effectiveness of

reducing out junction coordinates.

Modal reduction of junction coordinates. - This section will introduce

the technique of modal reduction of junction coordinates. Consider the

eigenvalue problem that would be obtained from Eq. (23) by constraining

the substructure normal mode coordinates and allowing motion of junction

coordinates, i.e.,

_ 62
(Kjj Mj j) Qj = 0 (32)

It may be noted that this corresponds to using Guyan reduction to reduce out

all interior coordinates. The frequencies of these "junction modes" will be



called 6 to distinguish them from system frequencies, _, and substructure

frequencies, _.

the form

Let the junction modes form a modal matrix _j, which has

_j = [_jc _jd ]

where the modes _jc will be kept and modes _jd will be reduced out.

that the modes are normaliz.ed with respect to Mjj in the usual fashion.

Now let

Qj = [_jc _jd ]

ed

(33)

Assume

(34)

Then,

Q - foilEIoOI
qj 0 _jc _j

Qc

Qd

(35)

or

Q : '_Q (36)

Transformations of the form

K : T K_ (37)

transform Eq. (23) to the form

16



J

K.. 0 0
ll

o P, o
CC

m

0 0 Kdd

m

Qi

Qc

ed

2

m m

Mii Mic

o

Mci Mcc

w

Mdi 0

m

m

Mid

0

Mdd

- F6i

Qc

Qd

0

0

(38)

The zeros in the c-d coupling terms are due to orthogonality of the junction

modes. The submatrices in Eq. (38) are obtained from the equations

Kii =

R =
CC

Y'dd :

Mii =

M. =
lC

Mid =

CC

Mdd =

Kii

_T = F_c2jJc Kjj _jc

T = rad2j_jd Kjj _jd

Ii

T

Mci = Mij _jc

MTi : Mij _jd

I
C

Id

(39)

17



Let Eq. (38) be written as two equations, namely

and
(40)

- 2 - : 2 - Qi (41)(Kdd - m Mdd)Qd m Mdi

Since, according to Eqs. (39), Kdd and Mdd are diagonal, Eq. (41) may be

written

Qd : Wdd Mdi Qi (42)

where

Wdd: FWnJ (43)

is a diagonal matrix whose elements are given by

_2

wn - 62 _ w2
n

(44)

When Eq. (42) is substituted into Eq. (40) the resulting equation may be

written

2
- W

(Mii + AMii) Mic IMci Mcc Qc =I°0
(45)

18



where

- T
AMii = mid Wdd Mdi : _ Wn Mij _n #n Mji

n

2
in which @n is the junction mode corresponding to 6n

The derivation of "modal participation factors," which provide an

(46)

estimate of the contribution of each junction mode to the solution of Eq. (45)

proceeds along lines similar to the procedure employed by Hurty in reference

9 for discussing truncation of substructure normal modes.

First a "base problem" is defined by setting AMii = 0 in Eq. (45) or,

equivalently, setting Qd = 0 in Eq. (40), giving

FIoIi0 o}02ri icI{0oI o}Rcc Qco LMci Mcc Qco o
(47)

The exact solution of Eq. (38) and the solution of Eq. (47) are related by

and

2 2
= mo + Am2 (48)

= Go + AQ (49)

where
r

Qio

Qo = "i Qco

0

(5O)

19



When Eqs. (47), (48), and (49) are substituted into Eq. (45) and "higher

2
order terms" in A_ are neglected, there results

Kii 0

o
CC

AQi

AQc

l_ii Mic

Mci Mcc

AQi

_Qc

-A_ 2

_lii Mic

m B

Mci Mcc

Qio

Qco

I j{IIf_M i (mo) 0 Qio 0
2 i

- _o = (51)

o o Qco o

T -TIf Eq. (51) is premultiplied by [(_o Qco ]' AQ is expanded in terms of the

eigenvectors, Qo' and proper account is taken of Eq. (47) and orthogonality,

there results

2
o)
O

-T
- Qio aMii(mo) Qio

Qco

(52)

If the solution vectors of the base problem are normalized relative to the

mass matrix of the base problem the denominator of Eq. (52) becomes unity,

so the eigenvalue error is given by

2
m O

-T
Qio AMii(mo) Qio (53)

20



But, since aMii can be written as a sum, as shownin Eq. (46), Eq. (53)

maybe written

2 (QTo Mij_ _. _o _n )2Am2

2 n 62 2°mo n -

(54)

From Eq. (54) it is clear that modal participation factors can be defined by

2 2 2A % ( %)
P z n = _ o Mij (55)

n 2 62 _ 2°mO n

Two factors are of interest in determining the value of the modal

participation factor: (a) the frequency ratio, mo/6n , and (b) the mass

coupling. If mo/6n << l the nth junction mode should have little contribu-

tion to the frequency of a given system mode. On the other hand, Eq. (55)

shows that the coupling of the interior portion of the base problem mode,

i.e., Qio' with the nth junction mode through the original coupling mass

matrix Mij is also important. Hence, the modal participation factor given by

Eq. (55) should, where possible, be used as a basis for selecting junction

modes to be retained.

It is clear from Eq. (55) that the concept of modal participation factor

has meaning only in reference to choosing modes which would lead to a maximum

improvement upon a given base solution. The question arises, then, as to

what should constitute the base problem, i.e., what junction modes belong to

_jc in Eq. (34). It would seem that the only rational approach to this prob-

lem would be to select a specified number of junction modes using junction

21



frequency alone as the criterion, i.e., order the junction modesaccording to

frequency and use the modesfrom the lower end of the frequency spectrum.

If there are any rigid-body junction modes, these must be included in the base

problem.

In a later section, an examplewill be presented to illustrate the

calculation of modal participation factors.

Guyan reduction of junction coordinates. - In reference II, Anderson,

et. al., applied the method of Guyan reduction to a plate vibration problem

and showed that acceptable accuracy of frequencies was maintained even when

a large percentage of the coordinates were reduced out. In this section, a

similar Guyan reduction will be applied. However, in this case only selected

junction coordinates will be reduced out.

Consider again Eq. (23) and partition Qj into

Qj : (56)

Qf

where the Qf coordinates are to be reduced out by a Guyan-type reduction.

Thus, Eq. (23) may be written

m

Kii 0 0

0 Kee Kef

0 Kfe Kff

°il
Qe I 2

_ - CO

I

Qfj

Mii Mie Mif

Mei Mee Mef

Mfi Mfe Mff

Qi 0

, Q = , 0
e

Qf o

22



Guyan reduction is based on neglecting inertia terms in the third row-parti-

tion of Eq. (57) to obtain

Qf : _fe Qe (58)

where

-I
_fe = - Kff Kfe (59)

Although there is no established procedure for selecting coordinates to

be retained and coordinates to be deleted, i.e., for ordering the Qj coordi-

nates in Eq. (56), a possible procedure for selecting the coordinates to be

retained might be based on magnitudes of the quotient of terms on the diagonal

of Kjj divided by corresponding terms on the diagonal of Mjj, with the coordi-

nates having the smaller k/m values being retained.

The junction coordinate reduction equation, Eq. (59), has the same form

as a substructure equation, Eq. (8). The system displacement transformation,

based on Eq. (58), is

Qi

Qe

Qf

0 I

0 _fe

(60)

Note that the coordinates Qf are reduced out, i.e., approximated by Eq. (58).

They are not simply eliminated as were Qb' Eq. (30), and Qd' Eq. (47).

23



Transformation of Eq. (57) to the reduced set of coordinates

defined by Eq. (60) gives

Ei 01{0i}2 iieII0i} o}
0 _'ee Qe LMei Mee Qe 0

(61)

where
m

Kii : Kii

= ÷Kee Kee Kef _fe

_ii = Mii = li

Mie = MTei = Mie + Mif _fe

ee

T
Mee + Mef _fe + _fe (Mfe + Mff _fe )

(62)

Note the similarity of the above expressions to those in Eq. (16).

An example of the use of Guyan reduction will be presented in the

section on example problems.

Ritz reduction of junction coordinates. - The modal reduction and Guyan

reduction of junction coordinates which were presented in the preceeding

sections are both special cases of Ritz representation of junction coordinates.

There are cases where the nature of the problem might suggest a direct

approach of Ritz at either the substructure level or the coupled system level.

24



We will employ the latter approach, beginning with Eq. (23), repeated here

for convenience.

I{}E 1{IKii 0 Qi Mi Qi 0
_ 2 i Mij

0 Kjj Qj Mj i Mjj Qj 0

(23)

Let the junction coordinates be expanded in terms of a set of Ritz

vectors according to the equation

Qj = _jg Qg (63)

where notation similar to that of the preceding sections is employed. The

matrix _jg is rectangular, (nj >ng), since the number of coordinates is to

be reduced by this Ritz expansion. The columns of _jg represent the displace-

ment of junction coordinates in each of the Ritz "modes".

(64)

As before, this can be represented by

Q = _Q (65)

and the stiffness matrix becomes

= _T K (66)

25
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Then the system equation, Eq. (23), is transformed into

Mgg Qg

(67)

where

_ii = Kii

= T _jKgg Jg Kjj g

M.. = M.. = I.
ll ll 1

_T

Mig = Mgi = Mij _jg

: _T _jMgg Jg Mjj g

where Kii and Mii are diagonal.

The use of Eq. (67) for reduction of junction coordinates will be

illustrated in the section on example problems.

It is possible to write expressions for error analysis, or for modal

participation factor analysis, for the general case of Ritz representation

(68)

of junction coordinates. First, Eq. (63) will be expanded by assuming that

one or more Ritz vectors (or modes) are to be added in Eq. (63), with the

set _jg forming the "base problem" and _jh being the added vectors. Thus,

(69)
Qj : [_jg _jh ]

26



This gives a base problem similar to Eq. (67), namely

ii ii JI1ii 0 Qi) F-- - Qio
_ 2 r Mii Mig

_ _,_J°L_ _ _o

l

I°

I° (70)

and an "augmented problem" of the form

Kii 0 0

0 Kgg Kgh

0 Khg Khh Qh

_ 2

Mii Mig

Mgi Mgg

Mhi Mhg

where, in addition to terms defined by Eq. (68),

Mi h

Mgh

Mhh _ LQh

r

0

0

! 0

(71)

- -T
Kgh = Khg = _Izg Kjj _jh

- : _T
Khh jh Kjj _jh

Mih = M_i = Mij _jh

- = _T = _ _JMgh hg vg Mjj h

- = _T _JMhh jh Kjj h

(72)

27
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Equation (71) can be written

- 0 Qi -]I0 l,I +E i{}(O-w 2 Mih ) 0

Qh:

(K'gh 2 -- _ Mg h 0

(73)

together with

{0i}- - (74)

Qh = -[Khh m2Mhh]-l [(- m2Mhi)(Khg _2Mhg)] Qg

There might be instances where the matrix to be inverted in Eq. (74) is

singular, but this would simply mean that the Ritz vector causing the singu-

larity is very important at the given frequency m, since this would imply a

very large Qh" The matrix inversion in Eq. (74) leads to the definition of

wn in Eq. (44) when junction modes are used as the Ritz vectors.

Equations (73) and (74) may be combined to give

[iiio]{0iI 2r ii i ]i0i}
Kgg Qg LMgi Mgg Qg

(Kgh 2 --m Mgh)
(O - m2Mih )I T
(Kgh - m2Mgh)

={°Io
(75)
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To simplify notation, let Eq. (75) be written

Elioi{0 }_ 2 g

Kgg Qg LMgi Mgg
_I Sii

Sgi

Sig Qi

(76)

where

4 MiSii = m h Shh Mhi

- - _ 2 _hg ) (77)2 Mih Shh (Khg
T

Sig = Sg i

Sgg = (Kgh - co2 _gh) Shh (Khg - 2 _hg )

where

- 2 -l
Shh = (Khh - m Mhh) (78)

Let the solution of th_ "augmented problem," Eq. (71), and the solution

of the "base problem," Eq. (70), be related by

2 2
co = coo + Am 2

: go+ Q
(79)

and assume that the eigenvectors of the base problem are normalized on the

mass matrix of that problem.

For the case of modal junction coordinates it is easy to simplify the

expressions given in Eq. (77) above. Certain assumptions on the expansion of

2
Eq. (77) in powers of co allow the same to be done here. For purposes of
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error analysis, i.e., determining modal participation factors, let it be

assumed that the S matrices in Eq. (76) can be approximated by S(coo) giving

i i 0 AQi

Kgg AQg
F I

2 Mi i Mij

wO

LMgi Mgg

AQi )

_Qg j

Isii, o,sig, o,l- Z_2 L'_g_ Mgg Qgo Sgi(coo) Sgg(_o) Qio } =Qgo

(80)

Equation (80) is analogous to Eq. (51). Equations (70) and (79) were employed

-T AQin converting Eq. (76) to Eq. (80). If Eq. (80) is premultiplied by Qo '

is expanded in terms of the eigenvectors of the base problem, and proper

account is taken of Eq. (70) and orthonormality of the eigenvectors of the

base problem, then Eq. (80) reduces to

A(_2

2

12{ 0i°C°o l_g°

(81)

Equation (81) reduces to Eq. (53) for the case of modal junction coordinates.
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If a single Ritz vector is used in _jh in Eqs. (72), then Eq. (81) becomes a

"modal participation factor" determining the approximate error produced by

omission of that vector from the base problem, or, conversely, the approximate

improvement of the base problem solution which could be achieved by augmenting

the solution by that Ritz vector.
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Examples

A limited numberof example problems have been solved to illustrate

methods for reducing junction coordinates. Three structures were employed in

the studies: the two-substructure truss of reference 3, a nine-substructure

ring, and a two-substructure grid. The first two structures possess rigid-

body freedom; the third is a cantilever structure.

Dimensions have not been given in the example problems of this report

since the purpose of the report is to comparerelative accuracies of various

methods of solving given problems.

Truss examples - modal reduction and Guyan reduction of junction

coordinates. - The truss shown in Figure 3 was used by Benfield, et. al.

(ref. 3) in their comparison study of substructure coupling methods. Results

will be presented for both modal reduction of junction coordinates and Guyan

reduction of junction coordinates of this truss.

Table l gives results for frequencies of the above truss obtained

by the use of modal reduction of junction coordinates. The column headed

"Exact" gives results for the coupled structure with all of its original

degrees of freedom retained. The remaining results were obtained using

substructure coupling with 5 normal modes retained for each substructure,

i.e., NA = NB = 5. The columns headed with Nj = 6 give results based on the

original Craig-Bampton method, since Nj = 6 is the total number of junction

coordinates. Since the truss as a whole is free to execute 3 degrees of

rigid-body motion, the columns headed Nj = 3 give results based on assuming

the junction to be rigid, i.e., the 6 junction coordinates must move as a
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rigid body. Nj = 3 is the smallest number of junction coordinates that may

be retained, since it is essential to allow at least rigid-body motion of the

junction. The columns headed Nj = 5 and Nj = 4 give results based on the

modal reduction procedure. Note, for example, the frequencies for elastic

mode 3. The accuracy of the frequency is not seriously degraded by reduction

of junction coordinates until the last stage (Nj = 3), but mode 3 does require

more than rigid-body behavior from the junction coordinates. The choice of

junction modes to be retained was based on junction mode frequency alone.

In Table 1 it may also be noted that the errors in some modes, e.g.,

elastic modes 7 and 8, are due to truncation of substructure normal modes.

The large errors persist even when all six junction coordinates are retained.

Table 2 presents data on substructure normal mode frequencies and

junction frequencies. It may be noted that the junction frequencies are the

same order of magnitude as the higher-frequency substructure normal modes

(e.g., 5th through lOth modes).

It was previously noted that junction mode 4 (62 = 0.0182248) makes a

significant contribution to system elastic mode 3 ( 2 = 0.0030508). Table 3

presents modal participation factor data for this mode so that an assessment

may be made of the relative importance of frequency ratio, mo/an, and the mass

coupling term as they appear in Eq. (55).

The results presented in Table 3 illustrate the fact that both the

junction frequency ratio and the mass coupling factor are important in deter-

mining the modal participation factor. In the present example it is the low

value of the mass coupling factor for junction mode 5 that renders it unimpor-

tant in the solution for this particular system mode. The estimated error
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2

(m6)o

-T

Qio Mij _n

An (m6)2

Pn =
(_6)20

n=4

0.2268

0.7121

-O.ll50

Junction Modes in MPF

n=5

0.I098

5.8 x lO-14

-3.7 x lO-28

n=6

O.0856

0.1450

-1.8 x lO-3

Table 3. Modal Participation Factor Data for Mode 6

(Elastic Mode 3) of Benfield Truss -

Base Solution: Nj = 3, NA = NB = 5;

2 0.0033692 , 2 =
(_6)o = " (_6)exact 0.0030508
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due to omission of junction mode 4 from the base solution is 11.50%; the

actual error was 10.44% (see Table I).

The Benfield truss was also used to illustrate the Guyan reduction

method. The numbering of the six junction coordinates is shown on Fig. 3.

The solution obtained by retaining coordinates I, 2, and 3 is the same as the

N. = 3 solution by the modal reduction method, since this case consists of
J

modelling the interface as a rigid-body. Guyan reduction was employed by

first reducing out coordinate 6 (leaving Nj = 5), and then reducing out both

5 and 6 (Nj = 4). Had other choices been made of coordinates to reduce out,

the results would probably have been different from those shown in Table 4.

The results of Tables 1 and 4 are summarized in Fig. 4, which shows a

comparison of the number of modes having an accuracy of 0.5% or better.

Although modal reduction of interface coordinates yielded slightly better

results than Guyan reduction, the present example is too small for any general

conclusions to be drawn from it.

Grid examples - modal reduction of substructure normal mode coordinates

and junction coordinates. - Figure 5 shows a cantilever grid structure used

to illustrate further the modal reduction of junction coordinates. A total

of 12 junction coordinates couple the two substructures together.

This grid structure was used to provide an example having more junction

coordinates than the truss previously discussed and having no rigid-body

freedoms. Studies were made to compare the effect of reducing junction mode

coordinates with the effect of reducing substructure normal mode coordinates.
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Table 5 gives the frequencies obtained using various combinations of

substructure normal modes and junction modes. In all cases, the modes to be

retained were selected on the basis of frequency alone. Figure 6 shows a

comparison of the number of modes having an accuracy of 0.5% or better.

Figure 6 seems to indicate that modal reduction of junction coordinates and

reduction of substructure normal mode coordinates produce similar decreases

in the number of modes accurate to within 0.5%. Again, the example problem

is too small to permit generalizations concerning the effect of modal reduc-

tion of junction coordinates, but the results shown in Fig. 6 suggest that,

within limits, modal reduction of junction coordinates is feasible.

Since there are only 4 translational coordinates along the junction, it

might appear that 4 junction mode coordinates would be adequate to represent

junction behavior in a good many, if not all, modes. Case 3 (N A = 12,

NB = 8, Nj = 4) indicates that this is not so. Note that Mode 9 has a large

frequency error (12.03%) in Case 3 but only 0.3 % error in Case 2. It was

discovered that the 5th junction mode, i.e., the last one eliminated in going

from Case 2 (Nj = 8) to Case 3 (Nj = 4) is predominantly torsion of the

junction line, and that this mode contributes significantly to both 9th and

lOth system elastic modes.

The above discussion serves to caution against reducing out junction

modes using a frequency criterion alone. Modal participation factors, as

previously described, should, if possible, be used in choosing which modes to

retain. Also, whereas previous studies of Guyan reduction of system coordi-

nates have indicated that most, if not all, rotation coordinates could be

reduced out, it is clear from the present example that junction modes in
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1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Case 3

EXACT

72 d.o.f.

Case l Case 2

NA=I2 , NB=8 NA:12 , NB =8

Nj = 12 Nj = 8

% %

NA=I2 , NB'8

Nj = 4

%

=2 x IOs =2 x I0 s _2 x I0a

.00006210

.00025109

.00163979

.00238797

.00394372

.00819127

.00862821

.01806006

.01991494

.02254916

.02744331

.03262871

.04493968

.05150864

.06174304

.06664190

.06963443

.08534059

.08680764

.08914933

.I1610254

.13869278

.16186275

.22210384

.37412949

,42607786

.45121738

.45215748

.50738107

.55621118

.57430761

.61043891

.00006210

.ooo25io9

.00163989

.00238814

.00394381

.00819336

.00863058

.01806936

.01992609

.02255262

.02746586

.03265385

.04498599

.05157714

.06186679

.06694378

.06967930

.08547908

.08694733

.08962024

.11642648

.13978448

.16221708

.22437005

.54848664

.68464932

.81363654

.99798215

I.I1532496

1.20968364

2.64433441

5.77733431

Table 5.

error error m2 x IOB

0.00 .00006210 0.00 .00006210

0.00 .00025109 0.00 .00025109

0.00 •00164196 0.13 .00164338

0.00 .00238868 0.03 .002389]4

0. O0 .00394410 O.O] .00394562

O. 02 .00819782 O.08 .00820075

0.02 .00867480 O.54 .0088] 666

O. 05 .01808240 O. 12 .02002345

0.05 .01999119 0.38 .02231127

0.01 .02255666 0.03 .02739305

0.08 .02746796 0.09 .02884310

O. 07 .03281643 O. 58 .04300392

O.lO .04501865 0.18 •05081456

O. 13 .05188925 O. 74 .06694802

0.18 .06199213 0.40 .06874477

O.45 .06695656 O. 47 .07799772

0.06 .06970706 O,lO .08176796

0.16 .08552822 0.22 .09683511

0.16 .08802157 1.40 .I0838887

0.52 .08985521 0.79 .12193065

0.28 .I1674719 0.56 .17152633

0.79 .14089915 l .60 .19322336

0.22 .16348153 l .00 .68624299

1.02 .22687256 2.15 .83847870

.68470672 ---

•81364585 -'-

.99749775 ---

l.19928682 ---

Frequencies of Cantile.er Grid Structure

error

0.00

0.00

0.21

0.05

0.05

0.12

2.18

10.87

12.03

21.48

5.10

31.80

13.07

29.97

II .34

17.04

17.43

13.47

24.86

36.77

47.74

39.32

40



ORIGINAL PAGE IS

OF POOg QUALITY

Case 4 Case 5 Case 6

NA=lO , NB=6 NA =7 , NB =5 NA=5 , NB =3

Nj : 12 Nj : 12 Nj : 12

% % %
_2 x lO B error _2 x lOB error _2 x 10 B error

1 .00006210

2 .00025109

3 .00163996

4 .00238879

5 .00394429

6 .00819481

7 .008636]7

8 .01822469

9 .01995132

lO .02267161

l] .02748344

12 .03313560

13 .04505185

14 .05672962

15 .06272867

16 .06695281

17 .07023630

18 .08792538

19 .08987727

20 .12568251

21 .29256023

22 .54288243

23 .61782701

24 .70712486

25 .83876447

26 I.]0079821

27 2.59004208

28 5.58769127

29 ---

30 ---

31 ---

32 ---

Table 5 (cont.).

0.00

0.00

O.Ol

0.03

O.Ol

0.04

0.09

0.9l

0.18

0.54

0.14

1.55

0.24

I0.14

1.58

0.46

0.86

3.02

3.53

40.97

x

x

x

x

x

x

x

x

.00006210

.00025109

.00164019

.00239012

.00394433

.00819496

.00867873

.01825831

.01997539

.02267290

.02750874

.03320131

.05276010

.05686502

.06696988

.08138276

.27636744

.35125316

.39979778

.53601805

.70526557

1.07483996

2.55507900

5.43404880

0.00

0.00

0.02

0.09

0.01

0.04

0.58

1.09

0.30

0.54

0.23

1.75

17.40

10.39

8.44

22.]I

x

x

x

x

x

x

x

x

.00006211

,00025115

.00164660

.00239788

.00395306

.00871273

.00881859

.01857390

.02188961

.02271096

.03865739

.06218932

.08120924

.12613476

.20728453

.36264343

.53033012

1.05181024

2.45246230

5.23913299

O.Ol

0.02

0.41

0.41

0.23

6.36

2.20

2.84

9.91

0.71

40.82

x

x

x

x

x

x

x

x

x

Frequencies of Cantilever Grid Structure
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which "twist" of the junction line is significant may be important to the

accuracy of system frequencies obtained through the use of modal reduction of

junction coordinates.

Ring exampTes - Ritz reduction of junction coordinates. - Figure 7 shows

a ring structure which was used to provide examples of Ritz reduction of junc-

tion coordinates. The ring was divided into nine substructures, with each

substructure having eight elements. Since each element subtends an arc of only

five degrees, a straight beam element was used, with the translational coordi-

nates transformed to the radial and circumferential orientation at the nodes.

Although they participated very little in the solution for the first ten

system modes, two substructure normal modes were included for each substruc-

ture in generating the substructure coordinates qi in Eq. (17).

Two cases are presented: (I) a uniform ring, which possesses symmetry

properties and for which an analytical solution is available, and (2) a non-

axisymmetric stiffened ring. In each case solutions employing a Ritz approxi-

mation of junction coordinates based on Eqs. (63) and (67) are compared with

solutions employing all 27 junction coordinates plus 18 substructure normal

modes, as noted above.

For the Ritz approximation using 15 Ritz vectors, the junction displace-

ments were assumed to have the form
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vv_

vi : L 1 c°s(Bi)sin(_3i)c°s(2_i)sin(2Bi)J ' vj

IV_

(82)

and similarly for wi and ei" Thus, the number of junction coordinates was

reduced from 27 to 15. In this problem the junction coordinates are far more

important than the substructure normal mode coordinates, and it would have

been better to retain all 27 junction coordinates and to delete all substruc-

ture modal coordinates. However, the present example should serve to emphasize

that reduction of junction coordinates, by any strategy, requires careful

consideration of the particular problem at hand.

For the uniform ring an analytical solution is available (ref. 12).

There are three rigid-body modes. These may be given by:

n

Mode I: 8 i = O, wi = cos Bi, vi = - sin Bi

Mode 2: _i = O, wi = sin Bi' vi = cos 6i

Mode 3: wi = O, vi = I, _i = " IIR

The first two are translation modes; the third represents rotation about the

axis of the ring. Of course, any linear combination of the above rigid-body

modes is also a rigid-body mode.

The elastic in-plane bending modes can be expressed in terms of a trigo-

nometric series in Bi. A simple solution is obtained if it is assumed that,
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for flexural vibration, the ring is inextensional (ref. 12). In this case,

the eigenvalues of the ring are given by

2 El n2(l - n2)2

wn = n2 (83)p AR4(I + )

where n = 2 corresponds to the lowest flexural elastic mode.

Table 6 gives the frequencies obtained for the uniform ring. The

solutions based on Eq. (23) and on Eq. (67) are compared with the analytical

solution given in Eq. (83).

___._thod

Elastic
Mode

5

6

All 27 Junction

Coordinates

Eq. (23)

2.6558 x 103

2.6558 x lO3

2.1249 x 104

2.1249 x lO4

15 Ritz Junction

Coordinates

E.q. (67)

2.6558 x lO3

2.6558 x lO3

8.3493 x lO5

8.3493 x lO5

Analytical

Eq. (83)

2.6541 x 103

2.6541 x lO3

2.1233 x 104

2.1233 x lO4

7.8145 x lO4

7.8145 x lO4

2.0450 x lO5

1.4456 x lO6

1.4456 x lO6

2.3357 x lO6

7.8061 x lO4

7.8061 x 104

2.0416 x lO5

Table 6. Eigenvalues (2) oF a Uniform Ring
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FromTable 6 it can be seen that the coupled system solution that

includes all 27 junction coordinates produces accurate frequencies, while only

the first two elastic modefrequencies are computedaccurately by the Ritz

representation of junction coordinates. This occurs, of course, since the

exact modeshapes of higher-frequency modesare orthogonal to the Ritz vectors

included in Eq. (82). As would be expected, the modeshapes of elastic modes

l and 2 of the Ritz solution are composedalmost entirely of cos(2Bi) and sin

sin(2B i) terms. Other terms are negligible in these modes.

Table 7 gives the frequencies of the non-symmetric ring. A solution of

Eq. (23) containing all 27 junction coordinates is comparedwith results

obtained using the Ritz approximation of Eq. (67) with 15 Ritz vectors (as in

Eq. (82)) and 21 Ritz vectors. The latter solution included cos(3Bi) and

sin(3Bi) terms for vi' wi' and ei"

Note first, from Table 7, that the coupled solution in column one

reflects a slight raising of frequencies due to the stiffening of the ring

and that the frequencies no longer occur in pairs. Secondly, note that neither

of the Ritz approximations of junction coordinates is any good even though,

in column three, the numberof Ritz coordinates is almost 80%of the total

numberof physical junction coordinates. Perhaps for the ring it would be

possible to choosemore"efficient" Ritz vectors than those represented in

Eq. (82). However, it can be argued that these are certainly logical for the

present problem.
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Method

Elastic
Mode

2

All 27 Junction
Coordinates

Eq. (23)

3.3127 x 103

3.8962 x 103

2.8204 x 104

3.4333 x 104

1.0854 x 105

1.2269 x 105

2.8513 x 105

15 Ritz Vectors

Eq. (67)

5.6348 x 103

6.0030 x 103

1.2210 x 106

1.2488 x 106

2.2502 x 106

2.2889 x 106

3.5847 x 106

21 Ritz Vectors

Eq. (67)

4.1139 x 103

5.4910 x 103

3.7653 x 104

4.1730 x 104

6.1599 x 105

6.9169 x 105

1.2342 x 106

Table 7. Eigenvalues (2) of Non-axisymmetric Ring

Equation (81) was applied to determine whether the addition of a

cos(3Bi) contribution to the radial displacements, wi' would produce a signi-

ficant change in the frequency of the third elastic mode considering the solu-

2 2
tion with 15 Ritz vectors to be the base problem. A value of (Am /mo ) of order

104 was obtained, indicating that this contribution would be very significant.

A numerical value this high obviously violates any "small perturbation" assump-

2 2
tion on Am /m o, but it does signify that the base problem solution for this

mode would be too inaccurate to be useful. As a matter of fact, the solution
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based on 21 Ritz vectors shows the cos(3B i) and sin(3B i) contributions to

vi' wi' and _i to be dominant in the third elastic mode.

47



IMPROVEMENTOFFREE-INTERFACEMETHODS

In this part of the report attention is directed toward ways of improving

the accuracy of free-interface methods. Exampleproblems are solved and the

results are comparedwith those of a fixed-interface method and a commonly

used free-interface method.

Substructure Equations

As in Eq. (3) the substructure equation of motion may be written in

partitioned form as

mii mij I
mji mjj

iIEkiikiJI{xi
_j kji kjj xj

_{o
fj

(84)

The free-interface modes of the substructure are obtained by setting fj = 0

in Eq. (84) and solving the resulting equation

mx + kx : 0 (85)

The modes, @n' may be normalized so that

T
_n m_n = 1 (86)

T 2
¢n k@n = _n (87)
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The modes are assembled to form the modal matrix, ¢, which defines substruc-

ture generalized coordinates through the equation

x = ¢ p (88)

The modal matrix may be partitioned as follows:

I¢ik @ia I

: (89)

¢jk ¢ja

where "k" stands for kept and "a" stands for approximated. That is, the full

modal information of the "k" modes will be kept, but the "a" modes will be

approximated.

When Eq. (88) is substituted into Eq. (84), there results a set of

uncoupled equations of the form

Pn + _2n Pn = gn (t) (90)

where

T
gn (t) = Cjn fj (91)

where ¢jn is the partition of the nth substructure mode associated with junc-

tion coordinates (since, for free vibration the only external forcing of a

substructure is through its interface).

Consider now harmonic motion, as would be present in free vibration.

Let a bar over a symbol indicate the magnitude, e.g.,
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Pn (t) = Pn cos (wt) (92)

Equations (90) and (92) lead to

gn

Pn - _2 _ 2 (93)
n

The physical displacements under harmonic motion can be obtained by combining

Eqs. (88) and (93) to obtain

N

Z
n=l

gn
@n (94)

where @n is the nth mode shape and N is the total number of modes of the

substructure.

Equation (94) may be written in a form which suggests the basis for the

approximation methods of MacNeal (ref. 7) and Rubin (ref. 6), namely

S

n=l

gn N

@n +
n=S+l

gn

#n (95)

If the second series in Eq. (95) corresponds to modes for which An >> _,

this series may be approximated by the static effects only, and Eq. (95)

becomes

S

n=l

gn
N

@n + _
n=S+l

in

-%
An

_n (96)
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This corresponds to the concept of "residual flexibility" discussed by

Klosterman (ref. 8). The point stressed by Rubin (ref. 6) is that the modes

and frequencies indicated in the second series of Eq. (96) do not need to be

obtained explicitly. This will be explained in the following paragraphs.

The discussion will be restricted to harmonic motion of undampedstructures

since this is the situation encountered in the determination of modesand

frequencies of a system.

If the "dynamics" were neglected in Eq. (84), a "pseudo-static response,"

xf, could be obtained by solving the equation

k xf = f (97)

If the substructure has rigid-body freedom, k will be singular and the solu-

tion of Eq. (97) for xf requires special consideration of this fact. Thus,

the first and second-order approximation methodswill be described first for

constrained substructures, for which k is non-singular, and then the approxi-

mation methods will be developed for free substructures.

Constrained substructures - first-order method. - For harmonic forcing,

f = f cos(_t), Eq. (97) gives

or

k R(_) : f (98)

-f_x'I' = G f (99)f

where G is the flexibility matrix and the superscript (I) identifies this as

the first-order response. Since, for free vibration of a substructure,
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external forces act only at junction coordinates, only the columns of G

associated with junction coordinates are required.

In Eq. (96) the second series represents the pseudo-static response of

the higher-frequency modes (n _S + l), whereas x(_) in Eq. (99) contains

contributions from all modes. It is assumed that the modes to be kept,

together with their natural frequencies, are available. Let Eq. (89) be

written

= [ @k ¢a ] (I00)

then the pseudo-static response, based on Eq. (88) is

i(I)f : @k d(_ ) + ¢a d(1)a (lOl)

or

_(1)f = _(_) + R(1)a (I02)

where

and

_(1)k : ¢k d(1)k (I03)

R(1) = @a d(1) (104)
a a

Since the modes in _a are not, in general, available, it is necessary

to use Eqs (99) and (I02) to obtain _(1) To that end let Eq. (lOl) be
• a '

substituted into Eq. (98) and let the resulting equation be premultiplied

by @T, giving
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E TI{ ' 'IETI°k• [k] [O k Ca] : { f }

T d(1) _la@a a

(IO5)

Since all of the modes are mutually orthogonal with respect to k,

T = T k @k : 0 (I06)@ k @a ¢a

Also, from Eq. (87)

_ k ¢k : Ak (107)

and

T k @a : Aa (108)@a

where Ak and Aa are diagonal matrices composed of the respective values of

_2 Thus, from Eq. (105) is obtained a set of uncoupled equations expressed
n

collectively by

Ak d(1)k : @T _ (I09)

Thus,

Equations (103) and (II0) may be combined to give

(Ill)
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where

AklG(1)k = °k okT (112)

From Eqs. (99), (102), and (III) is obtained an expression for the contribution

oftheapproximated modes to the pseudo-static response, namely

_(I) : G(1) _ (113)
a a

where

G(I) = G - G(_ ) (114)a

Equation (113) expresses what Rubin calls the first-order contribution of the

residual, or approximated, modes.

The first-order method, which will also be referred to as the MacNeal

method, may be summarized by the following equations:

( 2 1 + Ak) Pk = _T _j (115)-_ jk

which is obtained from Eq. (90) for harmonic motion. Equation (96) may be

written in matrix form as

: (I) _ (116)_(I) Ok Pk + G a

This equation will be needed when substructures are coupled to form the com-

plete structure. In that case, the physical displacements of junction

coordinates are required. These are given by the appropriate partition of

Eq. (116), namely
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) = @ Pk + r_(1) fjx(] jk u jj

where G':<f1_is taken from the appropriate rows and columns of G_l'f_
jj a

Eqs. (llS) and (ll7) are the relevant substructure equations.

(ll7)

Thus,

Constrained substructures - second-order method. - For harmonic motion,

Eq. (84) can be written

- 2
k x = f + m m x (ll8)

Rubin (ref. 6) obtains the second approximation by putting the pseudo-static

first approximation, x(_) , on the right had side of Eq. (liB) and solving

for the x on the left hand side. Thus, the pseudo-static second approximation

is given by

R(2) G(f + oJ m x()) (119)
f

As in Eqs. (I01) and (102)

_(2) = @k d(_ ) + _ d(2) (120)f a a

or

_(2)f = R(_) + _(2)a (121)

Equations (99) and (llg) can be combined to give

_(2) = G (I + 2f mG) f (122)

By analogy with the previous derivation of Eq. (Ill)

_(2)k = G(_ )(T_+ °J2 m _(If) ) (123)
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or

_(2)k : G(_ ) (I + 2 m G) f (123)

Thus, the second-order approximation of the residual (approximated) modes is

given by

_(2) = _(2) _ R(2)a k (124)

or

_(2) : G(2) } (125)
a a

where

G(2)a : (G- G(_ ) ) ( I + 2 m G ) (126)

This can be simplified as follows:

( G - G(_ ) ) ( I + 2 m G ) =

G(1)a [ I + 2 m ( G(1)a + G(_ ) ) ] :

2 G(1) (1)G(1) + 2 G(1) m G(1) + m m G
a a a a k

But,

G(I) m G(I) :
a k a Aal @a m

from Eq. (ll2). Due to orthogonality, the above vanishes. Hence,

2 G(1)G(2) = G(1)( I + m m ) (127)
a a a
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or

where

G(2) : G(1) +,,2 H(1)
a a a

H(1) ,.(I) m G(I)
a : b a a

(128)

(129)

The second-order approximation may be summarized by the following

equations:

( _ 2 I + Ak ) Pk : @T _jjh
(130)

which is the same as Eq. (ll5), is the primary equation for determining Pk

To effect coupling, the physical displacement equation is required, namely

2(2) = @k Pk + G(2)a _ (131)

The corresponding junction point displacements are given by

R(2) : @jk Pk + G(2! ?j
JJ

where G(2) is the appropriate partition of G (2)
jj a"

(132)

Unconstrained substructures. - If a substructure possesses one or more

rigid-body degrees of freedom it will be referred to as an unconstrained sub-

structure. Since k is singular, the flexibility matrix, G, used in the

preceding analysis does not exist. On the other hand, since aerospace struc-

tures by nature possess rigid-body freedom, it is important that methods be

developed to analyze such structures by substructure methods similar to the
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foregoing ones. Rubin's paper (ref. 6) was devoted to this case.

For a substructure possessing rigid-body freedom, let the displacement

be given by

= + xfX X r
(133)

where x r is rigid-body motion and xf is (relative) flexible motion. Also,

let the modes of the structure be separated into rigid-body and flexible

modes such that

x = _r Pr ÷ _f Pf (134)

In the notation of preceding sections all of the rigid-body modes, i.e., _r'

would be kept as would a limited number of flexible-body modes. The remaining

flexible-body modes would be approximated. Since xf cannot be obtained by

inverting k, as was done in going from Eq. (98) to Eq. (99), it is necessary

to "remove" the rigid-body motion.

Let Eq. (134) be substituted into Eq. (84) and the resulting equation

be pre-multiplied by _T to give the uncoupled equations

Pr = _Tr f (135)

and

+ Af pf = _ f (136)

where the orthogonality of modes is employed and it is assumed that modes are

normalized so that

T m @r = I (137)@r
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and

T m _f : I (138)

From Eq. (135) it is seen that, as far as rigid-body motion is concerned,

the external forces are reacted by rigid-body inertia forces. Hence, if

these rigid-body inertia forces are subtracted from the applied force, f,

there will be no excitation of rigid-body modes. The physical displacement

due to rigid-body modes is

Xr = @r Pr (139)

so the (reversed) inertia force vector is given by

•. T f (140)
fi =-m xr = - m @r @r

Thus, the net force producing flexible-body motion is given by

where

ff = f + fi : A f (141)

T (142)A : I - m @r @r

To determine the flexible-body motion resulting from ff it is necessary

to impose temporary constraints on the substructure so that rigid-body motion

is prevented. Let Gc be the flexibility matrix of the structure which has

been subjected to arbitrary statically-determinate constraints. Gc may be

obtained by taking k (which is singular), deleting rows and columns correspond-

ing to the constrained degrees of freedom, inverting to get a flexibility

matrix, and expanding the flexibility matrix by inserting zeros in rows and
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columns corresponding to the constraints. The resulting augmented flexibility

matrix is called Gc.

The flexible-body displacement relative to the imposed constraints is

given by

x(1) = G (f + fi)
C C

= G Af
C

(143)

To obtain the flexible-body displacement, x(_ ) , rigid-body motion is removed

from x (1) by making x(_ ) orthogonal to all rigid-body modes, i.e.,
C

_T m x (I) = 0 (144)
r f

where

Thus,

or

x(1) = x(1) + @r c (145)f c r

x(1) = x(1) - @r @T m x (1) (146)
f c r c

x(_ ) = AT x(I) (147)
C

From Eqs. (143) and (147)

x(1) = (AT G A) f (148)
f c

Equation (148) and Eq. (99) serve the same purpose for free substructures and

constrained substructures respectively. Thus, let the symbol G be defined,

for free substructures, by
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G = AT Gc A (149)

With this definition of G for free substructures, the remainder of the deriva-

tion of first and second-order methods proceeds as before, beginning with

Eq. (99).

Coupling of Substructures

In the preceding sections the substructure equations have been obtained

for both constrained and free substructures. In the present section equations

will be developed for coupling substructures. Figure 8 shows two substruc-

tures, together with the junction coordinates at which compatibility must

be enforced. Since there are differences in the substructure equations of

the first-order and second-order methods, these will be treated separately.

Coupling for the first-order approximation. - Equations (If5) and (If7)

are the pertinent substructure equations for the first-order approximation.

For substructure A they can be written

and

For substructure B

R(1) + G(1) - (150)
jA = @jkA PkA jjA fjA

( _ 2 I + AkA ) PkA = @T -jkA fjA (151)

R(1) = Cj + G(1) " (152)jB kB PkB jjB fjB
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and

2 - T -

( - m I + AkB ) PkB = @jkB fjB (153)

The junction coordinates of A and B must coincide. However, the number of

"kept" modes of A and "kept" modes of B may be different.

The coupling equations are

and

XjA = XjB (154)

D

fjA = - fjB (155)

where it is assumed that any required coordinate transformations have been made

so that the junction coordinates of A coincide with the junction coordinates

of B as given by the compatibility equation, Eq. (154). Equations (150),

(152) and (155) may be substituted into Eq. (154) to give

- ^(I) G(1) -I
fjA : ( UjjA + jjB ) (¢jkB PkB - @jkA PkA ) (156)

Equation (156) may now be substituted into Eq. (151) to give

- = _T (1) + G(1) -I
(_(2 1 + AkA)PkA jkA(G jjA jjB) (_jkBPkB - @jkAPkA)

Similarly, Eqs. (155) and (156) may be substituted into Eq. (153) to give

T (I) + -(1) )-l
(-_o2 1 + AkB)PkB = -@jkB(G jjA G jj_ ('_jkB PkB - @jkA PkA)

(157)

(158)
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Equations (157) and (158) may then be combined to form the equation

I i{KAA KAB PkA

KBA KBB PkB

(159)

where

where

KAA Ak A + @T k (I)= j kA _j kA

= _ @T k(1)
KAB jkA {jkB

_ _T k(1)
KBA jkB @jkA

KBB = Ak B + {T (I)jkB k @jkB

(160)

k(1) (G(1) + G(IJ -I= jjA j B ) (161)

Equation (159) thus forms the primary eigenvalue problem for determining the

modes and frequencies of the coupled structure. It may be noted that its

size is equal to the sum of the kept substructure modes in substructures

A and B.

Coupling for the second-order approximation. - The coupling equations

for the second-order approximation can be obtained from Eqs. (157) and (158)

by replacing G(I) by G(2) for the substructure. The complication arises due
JJ JJ

fact that G_2)"" is a submatrix of G(_)- which is given by Eq. (128) asto the
jj
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Thus,

2 (I)G(2) : G(I) + m H
a a a

(128)

G(2) = G(1) + 2 (1)
jjA jjA H jjA

(162)

and

G(2) = G(!! + 2 H(1)
jjB JJB jjB

(163)

Let

G(1) + G(1) (1)
jjA jjB = G jj

(164)

and

H(1) + H(1) (I)
jjA jjB = H J3""

(165)

Then,

2 H(1)G (2) + G(2! = G(1) +m ..
jjA jiB jj jj

(166)

From Eqs. (157)and (158) the system equations for the second-

order method may be deduced to be

- + @T (2) k(2) - " -
AkA jkA k @jkA - @jkA @jkB PkA

- ¢T k(2)
jkB @jkA

m

k(2) ¢T
AkB + @jkB jkB PkB

_kA

2

PkB

(167)
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where

k(2) (G(2) G(2) -I G(1) 2 H(l_ -ljjA + ) = ( + _ ) (168): jjB jj j

Since, from Eqs. (166), 2 appears on both the left and right-hand sides

of Eq. (167) this system equation cannot be solved conveniently in its present

form. Two methods may be used to circumvent this difficulty: (1) an iteration

2
method may be used, with the _ on the left-hand side of Eq. (167) being taken,

in the first iteration, as the 2 obtained by using the first-order method,

or (2) a Maclaurin series expansion may be employed to obtain an approximation

to the inverse matrix required on the left-hand side of the system equation.

The Maclaurin series method will be described more fully now. Let

= 2 H(1) -Ik(2) ( G(!! + _ .. )
JJ JJ

: ( G(I) [ I + 2 (G(1))'I H(1) ] )-l
jj - jj JJ

: [ I + 2 k(1) H(!! ]-I k(1)
JJ

(169)

From Eq. (169) it can be seen that the second term in the square bracket dis-

tinguishes the second-order method from the first-order method. If the correc-

tions are "small" k(2) can be approximated by

k (2) : ( I - 2 k(1) H(I! ) k(1) (170)
m jj
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FromEqs. (167) and (170) the following second-order system equation is

obtained

KAA KAB

KBA KBB

PkA

_ PkB

-- -T

MAA MABi

_ MBA MBB 1

m

PkA

_kB

(171)

where

MAA =
I + _T m(1)

j kA _j kA

MAB =

MBA -

_ CT m(1)
j kA _j kB

_T m(1)
jkB _jkA

(172)

MBB = I + _T m(1) _jjkB kB

where

m(I) : k (I) H(I) k (I)
JJ

(173)
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Examples

Several exampleproblems were solved by the free-interface methods

described in the preceding sections. The purpose of these examples is to

illustrate the results obtainable by the first-order and second-order methods

and to comparethese results with those obtained by using a fixed-interface

method (method of Craig and Bampton)and another free-interface method

(Hou's method),

Beam examples - first and second-order methods versus Hou method. -

Frequencies of a two-substructure uniform beam were obtained for three sepa-

rate sets of boundary conditions: clamped-clamped, clamped-free, and free-free.

Thus, the theory _or both constrained and free substructures was employed in

these examples. Figure 9 shows the configuration of the two substructures for

each of the three support conditions. Substructure A consists of four elements,

while substructure B consists of three elements. Consistent mass matrices

were employed for element mass matrices.

In Table 8 are shown the system frequencies obtained for the clamped-

clamped beam by Hou's method and by the first and second-order methods. To

obtain each frequency by the second-order method, the iteration procedure

was employed, wherein the corresponding frequency obtained by the first-order

method was used in determining the k(2) of Eq. (168).

Note that the first-order (MacNeal) method is much more accurate than

Hou's method, and that further improvement is obtained by use of the second-

order (Rubin) method. On the other hand, increasing the number of substruc-

ture modes while using the first-order method also produces significant
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improvement.

The "exact" values in Table 8 were obtained by retaining all original

physical coordinates.

Table 9 shows a more limited set of results for the clamped-free beam.

The accuracy of the first-order method is not as good as it was for the

clamped-clamped beam; but the first-order method is still far superior to

Hou's method.

Table I0 gives results obtained for the free-free beam. Note that the

results obtained by the first-order method are virtually identical to those

•obtained for the clamped-clamped beam. Of course, the free-free beam has two

zero-frequency rigid-body modes which are not listed in the table. Again

Hou's method does not produce acceptable accuracy.
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Elastic
Mode

Number

1

2

3

4

5

6

7

8

NA = 4 ,

I st order

(MacNeal)

.0000052

.0002069

.0016227

.0061338

.0177475

.0385308

.0828725

.5902060

NB=4

%
error

0.00

2.27

2.15

0.01

4.73

0.21

10.58

NA = 4

Hou

.0000053

.0002624

.0017612

.0072102

.0228454

.0418527

, NB=4

%
error

1.92

29.71

10.86

17.56

34.81

8.85

-m

Exact

.0000052

.0002023

.0015886

.0061330

.0169463

.0384504

.0749409

.1602931

Table 9. Frequencies of a Two-Substructure Clamped-Free Beam

Elastic
Mode

Number

1

2

3

4

5

6

7

NA=5 , NB=4

I st order
(MacNeal)

.0002086

.0015875

.0061381

.0170057

%
error

0.05

0.02

0.14

0.55

NA=5 , NB=4

Hou

.0002807

.0017529

.0072018

.0228352

%
error

34.63

10.44

17.49

35.02

Exact

.0002085

.0015872

.0061297

.0169130

.0385203

.0783702

.3928161

0.69

5.52

X

.O415545 8.62 .0382562

.0742702

.1573651

7O

Table I0. Frequencies of a Two-Substructure Free-Free Beam
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Truss examples - MacNeal method versus Craig-Bampton method. - The

Benfield truss of Fig. 3 was used in a study comparing the results obtainable

by the first-order method with results obtained by use of the Craig-Bampton

method. The results are shown in Table II. The exact frequencies are the

same as those given in Table I, and were obtained using all of the original

physical coordinates of the coupled system.

Since the Craig-Bampton method employs junction coordinates as well as

substructure normal mode coordinates, the first-order method and Craig-

Bampton method are compared on the basis of total number of system modes

(Nto t = 16). Since no convergence studies were carried out, no strong con-

clusions can be reached about the comparison of MacNeal's method with the

Craig-Bampton method, but Table II suggests that the MacNeal method produces

results of accuracy comparable to those produced by the Craig-Bampton method.

The Craig-Bampton method produces the best results for the low-frequency

modes. The MacNeal method is not quite as accurate for these modes, but

does better for the modes in the middle range of frequencies.

71



Elastic
Mode

Number

4

8

I0

II

12

13

NA

Ist order
(MacNeal)

0.004402

O. O18377

0.030997

0.04174O

0.069022

0.099727

0.116246

0.125738

0.151118

0.160644

0.231554

0.352010

1.524661

NB = 8

%
error

0.25

0.26

1.60

O. 36

0.64

0.97

2.01

2.76

0.28

3.54

33.04

75.15

NA = NB = 5,Nj = 6

Craig-
Bampton

0.004391

0.018331

0.030527

0.041664

0.068734

0.098938

0.126051

0.144412

0.161327

0.247411

O. 361008

0.506162

X 1.030503

%
error

0.00

0.01

0.06

0.18

0.22

0.17

10.61

18.02

7.05

Exact

0.004391

0.018329

O.O3O508

0.041589

0.068585

0.098770

0.113959

58.82

0.122362

0.150701

0.155147

0.174052

0.200979

0.215105

Table II. Frequencies of Two-Substructure Benfield Truss by
MacNeal Method and by Craig-Bampton Method
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Grid examples - MacNeal method versus Craig-Bampton method for

cantilever and free-free 9rid structures. - The grid structure shown in

Fig. 5 was used for further comparison of the MacNeal method and the Craig-

Bampton method. A similar free-free grid was also analyzed. In these studies

a consistent mass matrix was employed.

Table ]2 shows the results obtained for the first twenty modes of the

cantilever grid. The column labelled "exact" is for the 72 d.o.f, original

structure. For smaller numbers of total modes, the MacNeal method produces

considerably better results than the Craig-Bampton method.

Figure lO shows the number of modes accurate to within 0.5% as computed

by each of the two methods. (The results shown in Fig. lO include all the

"0.5% modes" among the total number of modes calculated, i.e., 20, 24, 28,

32, even though only twenty modes are tabulated in Table 12.)

Table 13 shows the results obtained for the first twenty frequencies

of a free-free grid structure as obtained by the MacNeal method and by the

Craig-Bampton method. No exact values are available because of limitations

on the size problem which could be handled by the eigensolver being used.

It is noted that the frequencies are quite close, for the most part, with

the maximum difference being only about 2.5%.
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Elastic

Mode

Number

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

EXACT

Ntot

NA = II

MacNeal

= 20

, NB=9

%
error

Nto t = 20

NA NB ==5 , =3 , Nj 12

Craig-Bampton

%
error

.00006210

.00025109

.00163979

.00238797

.00394372

.00819127

.00862821

.01806006

.01991494

.02254916

.02744331

.03262871

.04493968

.05150864

.06175304

.06664190

.06963443

.08534049

.08680764

.08914933

.00006210

.00025110

.00164073

.00238799

.00394463

.00820367

.00865644

.01808477

.01998109

.02260244

.02752603

.03298812

.05362282

.05581855

.O6373244

.06884813

.17950904

.25447977

.69330843

1.32773903

0.00

0.00

0.05

0.00

0.02

0.15

O. 32

0.13

0.33

0.23

0.30

1 .I0

19.32

8.36

3.20

3.31

X

X

X

X

.O0006211

.O0O25115

.00164660

.00239788

.00395306

.00871273

.00881859

.01857390

.02188961

.02271096

.03864739

.06218932

.08120924

.12613476

.20728453

.36264343

.53033012

1.05181024

2.45246230

5.23913299

0.01

0.02

0.41

0.41

0.23

6.36

2.20

2.84

9.91

0.71

40.82

90.59

X

X

X

X

X

X

X

X
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Table 12. Frequencies of Cantilever Grid Structure
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Elastic

Mode

Number

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

Ntot

NA = 14

MacNeal

.00006210

.00025110

.00164035

.00238799

.00394406

.00820253

.00863702

.01807972

.01996598

.02257782

.02750739

.03289693

.04507813

.05574645

.06250395

.06861338

.07109523

.08733079

.09138064

.10946900

= 24

, NB=IO

%
error

0.00

0,00

0.03

0.00

0.00

0.13

0.I0

0.I0

0.25

0.12

0.23

0.82

0.30

8.22

1.21

2.95

2.09

2.33

5.26

22.79

Nto t = 24

NA = 7, NB = 5, Nj = 12

Craig-Bampton

.00006210

.00025109

.00164019

.00239012

.00394433

.00819496

.O0867873

.01825831

.01997539

.02267290

.O275O874

.03320131

.05276010

.05686502

.06696988

.08138276

.27636744

.35125316

.39979778

.53601805 x

%
error

0.00

0.00

0.02

0.09

0.01

O.04

0.58

1.09

0.30

0.54

0.23

1.75

17.40

10.39

8.44

22.11

X

X

X

Ntot

NA = 16 ,

MacNeal

.0O006210

.00025109

.00164025

.00238797

.00394400

.00819978

.00863315

.01806091

.01993582

.02255448

.02750444

.03266930

.04505674

.05158030

.06177593

.06858598

.06969506

.08557656

.08701777

.09134459

= 28

NB= 12

%
error

O.OC_

0.00

0.02

0.00

0.00

0.I0

0.05

0.00

0.I0

O. 02

0.22

0.12

0.26

0.13

0.03

2.91

0.08

0.27

0.24

2.46

Table 12 (cont.). Frequencies of Cantilever Grid Structure
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Elastic

Mode

Number

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

Ntot = 28

NA = I0, NB=6, Nj = 12
%

Crai g-Bampton error

.00006210

.00025109

.00163996

.00238879

.00394429

.00819481

.00863617

.01822469

.01995132

.02267161

.02748344

.03313560

.04505185

.05672962

.06272967

.06695281

0.00

0.00

0.01

0.03

0.01

0.04

0.09

0.91

0.18

0.54

0.14

l.55

0.24

lO.13

l.58

0.46

.07023630

.08792538

.08987727

.12568251

0.86

3.02

3.53

40.97

Nto t = 32

NA = 18 , NB = 14

MacNeal

.00006210

.00025109

.00163998

.00238797

.00394398

.00819423

.00863294

.O1806079

.01993480

.02255635

.2746659

.03266878

.06505075

.05157360

.06177415

.06735587

.O6967776

.08553947

.08699608

.09114901

%
error

0.00

0.00

0.01

0.00

0.00

0.03

0.05

0.00

O. 09

0.02

0.08

0.12

0.24

0.12

0.03

1.07

0.06

0.23

0.21

2.24

Nto t = 32

NA = 12, NB = 8, Nj = 12

%
Craig-Bampton error

.00006210

.00025109

.00163989

.00238814

.00394381

.00819336

.00863058

.01806936

.01992609

.02255262

.02746586

.03265385

.04498599

.05157714

.06186679

.06694378

.06967930

.08547908

.08694733

.08962024

O. O0

0.00

0.00

O. O0

0.00

0.02

0.02

0.05

0.05

0.01

0.08

0.07

0.I0

0.13

0.18

0.45

0.06

0.16

0.16

O. 52

Table 12 (cont.). Frequencies of Cantilever Grid Structure
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Elastic

Mode

Number

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

NA

MacNeal

= 20, NB = 15

Nto t = 35

.00045914

.00091210

.00197905

.00286973

.00399206

.00680185

.01032129

.01156372

.01462129

.01979609

.02500327

.02542485

.03188867

.03479776

.05306692

.05514919

.05588742

.06206941

.06640768

.08028079

NA

Craig-Bampton

= 12, NB = 8, Nj

Nto t = 35

.00045913

.00091192

.00197929

.00286953

.00399188

.00679642

.01032054

.01156373

.01472953

.01986503

.02500680

.02538976

.03237293

.03476012

.05435942

.05609568

.06071017

.06240902

.06484146

.07861373

=15

Table 13. Frequencies for Two-Substructure Free-Free Grid
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Testing Requirements

The free-interface methods described in this report, in particular the

first-order method, are compatible with dynamic test procedures, as was

pointed out by Rubin (ref. 6). Although considerable work needs to be done

in exploring the relationship of these methods to dynamic test procedures,

several comments may be made on the basis of the equations presented in this

report.

The first-order method requires the substructure information indicated

in Eqs. (115) and (117):

(I) Ak

(2) _k

(3) G(I!
JJ

- square of natural frequencies of substructure free-

interface modes to be kept

- normalized (with respect to the mass matrix) free-inter-

face mode shapes of modes to be kept

- residual flexibility at junction coordinates

Items (I) and (2) are standard items which are determined in mode

survey tests. The only complicating factor is that the modes are to be

normalized with respect to the mass matrix.

The determination of the residual flexibility at junction coordinates

appears to be relatively straightforward for constrained substructures.

However since G(I) is a submatrix of G(I) which is determined as the differ-
' jj a '

ence of two flexibility matrices, Eq. (114), the sensitivity of this matrix

to measurement errors should be thoroughly explored.
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For unconstrained substructures the determination of the residual

flexibility matrix requires a constrained flexibility matrix, Gc, and a trans-

formation matrix A, which, by Eq. (142), involves the massmatrix and rigid-

body modes. Equations (149) defines the flexibility matrix modified to

account for rigid-body modes. Considerable study is needed to determine:

(a) whether Eq. (149) provides the best way to treat rigid-body modes, and

(b) whether Eq. (149) is sensitive to measurementerrors.
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CONCLUSIONSANDRECOMMENDATIONS

The studies of fixed-interface methods indicate that:

(I)

(2)

(3)

Reduction of the number of junction coordinates is feasible since

this produces results of accuracy comparable to that obtained when

substructure normal modes are reduced.

Reduction of junction coordinates may be based on:

(a) Ritz representation of junction coordinates using Ritz

vectors provided by the analyst.

(b) Guxan reduction of junction coordinates using a static

reduction of coordinates, with the retained coordinates

selected by the analyst.

(c) Modal reduction of junction coordinates, using "junction

modes" as Ritz vectors and using frequency ratio or modal

participation factor to determine the coordinates to be

retained.

Although the choice of method for reducing the number of junction

coordinates is dependent, to some extent , on the problem to be

solved, modal reduction has two advantages not offered by the

other two methods:

(a) The calculation of modal participation factors is very simple.

(b) The final equations are of a form that could lead to a very

efficient eigensolution algorithm if advantage were taken of

8O
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(4)

(5)

the fact that the generalized stiffness matrix is diagonal.

A disadvantage is that a preliminary eigensolution for junction

modes is required.

Error analysis, i.e., determination of the frequency "error" intro-

duced by omission of a particular Ritz vector (mode), may be con-

ducted for any of the three proposed methods. The calculations are

somewhat tedious except for the modal reduction method.

Before investing further effort in implementing any of the above-

named methods for reduction of junction coordinates, an attempt

should be made to create an efficient computer program for imple-

menting the original Craig-Bampton equation, Eq. (23). It should

be possible to create an efficient power iteration program, since

Kii is diagonal and Kjj will be narrowly banded or, at worst, banded

with only a few submatrices outside of the band. If such a program

were available, it would be a straightforward matter to provide an

option for modal reduction of junction coordinates.

Free-interface substructure models suggested by MacNeal and Rubin have

been studied. Equations for coupling substructures to form systems have been

presented and a number of example problems involving two substructures have

been solved. On the basis of these studies, it is concluded that:

(i) Only substructure normal mode coordinates are retained in the final

system equations of motion, yet, both first-order (MacNeal) and

second-order (Rubin) free-interface methods produce accuracies
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(2)

(3)

(4)

(5)

comparable to those produced by Hurty-type fixed-interface methods.

The second-order (Rubin) method requires additional calculations,

and further study is required to establish whether the improvement

in results is sufficient to justify the added computational effort.

The first-order method appears to be compatible with dynamic test

procedures, but further study is needed, particularly with respect

to unconstrained substructures.

"Rubin-type" methods appear to give upper bounds to the system

frequencies and to be rapidly convergent. Further study of error

bounds is required, however, to confirm these points.

Mode shape and stress errors should be investigated for "Rubin-

type" methods and should be compared with those produced by Hurty-

type methods.
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• interior coordinates (x/)

o junction coordinates (xj)

FIG. 2. SUBSTRUCTURE COORDINATES

/
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!
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5 equal bays 4 equal bays

substructure A substructure B

2 equal

FIG. 3. TWO SUBSTRUCTURE BENFIELD TRUSS
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FIG. 5 . CANTILEVER GRID STRUCTURE
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r7

tl

Case/ tl: t2 (uniform)

Case2 t2= 2t I
FIG. 7. RING STRUCTURES

A

xj_, fj_ xj_,fj_

B

FIG. 8. TWO SUBSTRUCTURES WITH JUNCTION COORDINATES

AND FORCES SHOWN SYMBOLICALLY
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A

J I I

I I I

t A I B I
I I I ! I

A B
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FIG. 9. BEAM CONFIGURATIONS

b-- Mac Neol

_.- o--Craig- Oampton

I I I I 4 /0L-'V2o 25 30 35
TOTAL NO. MODES USED

FIG. I0. COMPARISON OF MACNEAL AND CRAIG-BAMPTON
METHODS FOR A CANTILEVER GRID STRUCTURE
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