General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Unclas
G3/91 14927

THE MORPHOLOGY AND ORIGIN OF HADLEY RIILLE, THE MOON

> A final report on the work carried out under NASA contract no, ngr. $22-004-027$.

THOMAS BREWER
Principal Investigator Department of Geology, Boston University Deparment of Regional Studies, Boston State College

August, 1976

ABSTRACT

This study is an investigation of the morphology of Hadley Rille and its relationship to surrounding structures.

Hadley Rille is wholly contained within mare basalts and appears to have been deflected by pre-mare material. The rille is cut by post-mare cratere but cuts no post-mare crater. Irregular depressions at either end of the rille appear volcanic in origin. Thus, rille formation appears contemporaneous with mare filling. Rille wall outrrop probably represents a series of lava flows. Some debris accumulations in the rille are zoned resembling slides on quarry slopes. Others, without zonation, have an unclear mode of emplacement. Two boulder categories are present - light colored, rounded, partly buried boulders and dark colored, angular, exposed boulders. The former may be pre-mare talus into which the rille has been incised. Boulders in the rille are filleted above and undercut below. Thermal creep from intergranular adjustments during cyclic solar exposure may produce this effect.

Twenty-eight trensverse profiles of the rille indicate that the southern section of the rille has a V-shaped profile with mildly concave limbs and no natural levees. U-shaped or asymmetric profiles have resulted from post-rilie alteration. Asymetry suggesting slipoff slopes is present on small radius corners. The mare surface slope is not consistently toward or away from the rille. The high side of the mare is not consistently on one side. Although not profiled, the
indistinct northern section of the rille appears U-shaped or flat bottomed. Volume calculations from profiles adjacent to mountains suggest a lunar slope erosion rate less than 35 meters/billion years.

Structures surrounding the rille are examined to determine their effect. Lineament strike directions are compared to computer simu lated directions radial and circumferential to adjacent basins from structure locations. Structures in the Imbrium Basin appear related to the Serenitatis or Vaporum events. One such structure is the depression at the south end of the rille. A statistical comparison of structure and rillemsegment azimuth frequency distributions indicates that structures and rille-segments are related in the north but unrelated in the south. A fracture density map indicates exceptionally high densities in significant locations.

The length and width of Hadley Rille place it with the largest 20% of sinuous rilles. Its channel volume of $20 \mathrm{~km}^{3}$. corresponds to a block 40 km . x 50 km . x 10 meters. The absence of a depositional form is therefore significant. The power spectrum and meander wavelength are similar to values characteristic of terrestrial rivers,

Non-parametric statistical tests show that rille width decreases northward; that width and depth are directly correlated; that width shows abrupt increases followed by gradual tapering to the north; that limited segments show a width-azimuth relationship; and that increasing curvature of the rille may correlate with increasing rille width 2 kn . northward.

Hadley Rille is directly related to the emplacement of mare basalts in Palus Putredinis. Existing hypotheses of sinuous rille origin are in discord with the cooling behavior of deep lava flows and the strength of materials. It is proposed that Hadley Rille is a channel which returned lava to the southern vent from which it initially extruded and that the channel persisted through many episodes of volcanism. This view is supported by available topographic information and is in accord with the observations of this study.

ACKNOHLEDGEMENTS

In the course of this study, several people and organizations have provided considerable support. The author particularly wishes to mention and thank the following: Prof. Mohamed A. Gheith of Boston University was instrumental in proposing this study and his continuing review throughout the work has been extremely perceptive. Prof. Dabney W. Caldwell of Boston University made many useful suggestions both before and during the writing phase of the work. Dr. Farouk EI-Baz of the Smithsonian Institute opened many doors and provided the author with a rapid introduction to lunar research at the outset of the study. The personnel of the U.S.G.S. Experimental Cartographic Laboratory, McClean Va. were extremely cooperative in helping the author to use the facility's Kern PG-2 cartographic plotter on several occasions. Similar cooperation was extended by the personnel of the Lockheed Electronics Corp., MSC, Huston Texas, who educated the authur in the use of the Bendix ASIlA-1 analytical plotter at their laboratory. Data reduction was carried out at the Boston University Computer Center and at the Boston State College Computer Center. The personnel of both centers have provided much cheerful advice. Mr. Richard Gelpke drafted the majority of the line drawings and his skill is self-evident. This work was carried out during the author's graduate study at Boston University in connection with NASA grant no. ngr 22-004-027
Page
ABSTRACT ii
ACKNOWLEDGEMENTS V
LIST OF TABLES ix
LIST OF FIGURES x
I. INTRODUCTION I
Preliminary Discussion 1
Early observation of lunar rilles I
Definition of Sinuous Lunar Rilles 4
The Problem of Sinuous Lunar Rilles 5
The Purpose of this Study 7
II. PRIOR WORK IN THE APENNINE-HADLEY REGION 8
Location of the Study Area 8
Lwar Stratigraphic Nomenclature 8
Pre-space Flight Geological Studies 13
Post-space Flight Geological Studies 14
Regional Setting 16
Structure 16
Major craters 17
Rock samples 18
Radiometric ages 20
Geologic History of the Region 21
Previous Work Goncerning the Morphology of Lunar Rilles 23
Previous Geomorphic Investigations of Hadlyy Rillf 25
III. EQUIPMENT AND METHODS 27
Lunar Photography 27
Lunar Orbiter photography 27
Apollo-15 photography 27
Equipment and Procedures 30
Large format stereo viewer 30
Measurement of Iength 32
The Mann 1200-3 stellar comparator 33
Topographic measurements 34
The AS-11A Analytical Plotter 35
Selection of photographs for photogrametric analysis 39
Mathematical Methods 40
Fourier series 40
Spencer's formula 41
Miscellaneous mathematical methods 42
IV. DETAILED DESCRIPTION OF HADLEY RILLE 44
Description of Hadley Rille from Small Scale photographs 44
The southern section 46
The northern section 48
Detailed Observations within the Rille from Command Module Photography 49
The southern cleft 66
The southern section 68
The northern section 73
Observations from Large Scale Ground-based Photographs 76
Features visible on the upper rille wall section 79
Recent cratering in the rille 86
Features visible on the central rille wall section 88
Characteristics of the Profiles 90
Calculation of Lunar Erosion Rate 93
V. THE STRUCTURAL SETTINO OF HADLEY RILLE 95
Structural Data Preparation 95
Relationship of Structures to Adjacent Basins 102
Basin related directions 104
Classification of structures according to azimuth 105
Results of structural calculations 108
Histograms 108
Interpretive structure maps 111
Conclusions 116
Comparison of Rille Directions With Structural Directions 118
Structural azimuths 119
Rille azimuths 120
Statistical comparison of the data 121
Sumnary of statistical tests 125
Graphical comparisons 130
Fractures Associated With the Rille 133
Summary of Structural Relationships 136
VI. NUMERICAL DESCRIPTION OF HADLEY RILLE 137
Physical Dimensions of the Rille 137
Gross lengths along the rille 137
Average width of the rille 140
Depth of the rille 147
Length of channel 151
Area of the channel cross-section 151
Curvature 151
Volume of the rille channel 153
Summary of basic parameters 155
Derived Parameters 155
Sinuosity 155
Width/depth ratio 156
Harmonic analysis 158
Choice of meander wavelength 166
Hadley Rille compared to other lunar rilles 170
Relationships Between Rille Parameters 171
Relation between width of rille and distance along channel 177
Relationship between width and depth 181
Relationship between rille width and direction of channel 185
Relationship between width and curvature 189
Summary 192
VII. THE ORIGIN OF HADLEY RILLE 193
Review of Rille Forming Mechanisms 193
Mechanisms dependent on geologic structure 193
Mechanisms which require fluid motion 195
Ash flow 195
Water 196
Lava 197
Examination of Hypotheses 200
Water-dependent hypotheses 200
Hypotheses dependent on structure 202
Ash flow hypothesis 203
Lava tube hypothesis 204
Geomoxphic: objections 204
Objections based on cooling history 207
Proposed Origin of Hadley Rille 214
Fluid flow mechanism 214
Probatle fluid 215
Direction of flow 216
Postulated origin 217
Volumetric considerations 222
Morphology of the rille constriction 224
Origin of the rille constriction 227
Terrestrial-lunar comparison 229
Other lunar rilles 233
APPENDIX 1. Derivation of the azimuth equation 235
APPENDIX 2. Data and results from Chapter V 242
APPENDIX 3.' Data and results from Chapter VI 252
APPENDIX 4. Computer frograms 259
BIBLIOGRAPHY 273

LIST OF TABLES

Page
2-1 Abridged scheme of Iunar stratigraphic nomenclature $13 a$
3-I Specific photographs used in this study 29
3-2 Programs developed for this study 43
4-1 Ground-based stereo models described in the text 79
4-2 Observed profile characteristics 92
4-3 Results of channel cross-section calculations 93
5-1 Ranges of computed directions from structural 105
elements to basins
5-2 Results of representative statistical tests 128
6-1 Gross lengths of the rille 139
6-2 Basic rille parameters 148
6-3 Sumary of curvatures measured on Hadley Rille 153
6-4 Wave numbers with peak-forming spectral intensities 165
6-5 Calculation of meander wavelength 169
6-6 Ratio of length of channel showing width increase to 179 length showing width decrease
7-1 Calculated magma chamber sizes 223

LIST OF FIGURES

Page
1-1 Apollo-15 metric photograph 15-415: Hadley Rille early 2 in the lunar day
1-2 Sketch reproduced from Pickering's early work 3
2-1 Location of study area: Lmar position 9
2-2 Location of study area: Large features in region 10
2-3 Features surrounding Hadley Rille; Overlay map to 11 photograph 15-415
2-4 Map: vicinity of the Apollo-15 landing site 12
2-5 Classification scheme for the Apollo-15 rocks 19
2-6 Relative sequence of events around Hadley Rille 22
3-1 Large format stereoviewer 31
3-2 Cross-feed milling table set up to extract coordinate 31 information from a lunar photograph
4-1 Apollo-15 metric photograph 15=415 45
4-2 Apollo-15 metric photograph 15-416 45
4-3 Apollo-15 panoramic photograph 15-9795 50
4-4 Apol10-15 panoramic photograph 15-9800 50
4-5 Location map for profiles in figures 4-6 to 4-17 53
4-6 Profiles: numbers 1 to 3 54
4-7 Profile: number 4 55
4-8 Profiles: numbers 5 to 6a 56
4-9 Profiles: numbers $7+y$ 57
4-10 Profiles: numbers 10 to 12 58
4-II Profiles: numbers 13 to 15 59
4-12 Profiles: numbers 16 to 18 60
4-13 Profiles: numbers 19 to 21 61
4-14 Profiles: numbers 22 to 24 62
4-15 Profiles: numbers 25 to 27 63
4-16 Profiles: numbers 28 and 29 64
4-17 Profiles: numbers 30 and 30 a 65
4-18 Map to indicate location of stereo models 80
4-19 Groundbased photo 15-12023 84
4-20 Groundbased photo 15-12104 84
4-21 Groundbased photo 15-12107 84
4-22 Groundbased photo 15-12058 85
4-23 Groundbased photo 15-12125 85
4-24 Groundbased photo 15-12056 85
4-25 Groundbased photo 15-121.56 85
4-26 Photograph to illustrate zonation of debris according 84 to size in a talus accumulation
5-1 Mosaic used for structural interpretation 99
5-2 Map i玉zustrating structures surrounding Hadley Rille 100
5-3 Basin-related directions for structure classification 106
5-4 Frequency distribution of structural data 109
5-5 Imbrium related structures 112
5-6 Serenitatis related structures 114
5-7 Histograms: structure length and rille channel length 122
5-8 Histograms: Chamnel length, north and south half of rille 123
5-9 Scatter diagram: \% length of rille azimuth in a 10° interval 126 vs. number of structure azimuths in the same interval
5-10 Contour map of fracture pattern based on the relative 133 length density of lineaments
6-I Location of length measurements 139
6-2 Locations of Mann comparator measurements 141
6-3 Histogram of wicths measured across Hadley Rille 144
6-4 Width and curvature as function of distance 146
6-5 Histogram of depths from Hadley Rille profiles 150
6-6 Geometric construction to find width/depth ratic 157
6-7 Power spectra of north and south rille segments 162
6-8 Power spectrum of a river 163
6-9 Cumulative frequency: length of lunar rilles 172
6-10 Cumulative frequency: width of lunar rilles 173
6-11 Cumulative frequency: width/length ratio of lunar rilles 174
6-12 Cumulative frequency: Meander wavelength of lunar rilles 175
6-13 Cumulative frequency: Meander wavelength/width ratio 176
6-14 Smoothed curve: width vs measurement location 182
6-15 Scatter diagram: rille depth vs rille width 184
6-16 Scatter diagram: width vs. channel azimuth 186
6-17 Scatter djagram: width vs. azimuth, selected segments 187
7-1 Spot elevations in the Hadley rille channel bottom 218
7-2 Interpretative map of the rille constriction 225
7-3 Profile across the rille at the constriction 228
7-4 Longitudinal profile of the rille channel bottom 230 through the constriction
7-5 Longitudinal profile of the rille channel bottom 231 west of the constriction
Al-1 Vector construction used to prove azimuth equation 236

CHAPTER I

INTRODUCTICN

Prelitinary Discussion:

Lunar rilles are long, narrow furrows on the Iunar surface. Based on their appearance, they can be classed into groups which in reality tend to grade into one another. One distinct group has been called the sinuous lunar rilles. These have a serpentine aspect in map view which is a pattern similar to terrestrial stream channels. Their presence in the Iunar environment has consequently been a matter of speculation since their discovery. Hadley Rille (fig. 1-1) is perhaps the freshest appearing sinuous lunar rille. Its proximity to the Apollo-15 landing site has made it the most photographed rille at all scales. This report is a study in detail of the geomorphology of this spectacular form and a discussion of the question of its origin.

Early observation of lunar rilles. The presence of valley-like features on the moon has been known for about 200 years. The first observation of lunar rilles was reported by Schroeter (1787) who identified a total of 11 rilles in the period 1787-1801. Subsequent early discoveries inciuded Lohrman's observations of 75 rilles between 1832 and 1841. Schmidt, who himself discovered 243 rilles between 1842 and 1865, catalogued a total of 425 rilles. He was evidently the first to record Hadley Rille. By 1900, over 1000 Iunax rilles had been described.

These discoverers did not note the sinuous nature of any of the

REPRUDUCBBLLITY OF
ORIOLNE PAGE IS POOK

Fig. 1-1. Apollo-15 metric photograph 15-415: Hadley 3ille early in the lunar day
rilles, however. Most furrows on the lunar surface, particularly those large enough for telescopic observation, are straight or gently curving. The photographs of lmar models prepared by Nasmyth and Carpenter (1874) show a slight sinuous aspect to the rilles on the Aristarchus Plateau. These authors believed the rilles to be structural in origin and did not mention the sinuous appearance. In 1893, Pickering made detailed observation of the Palus Putredinis region which resulted in an accurate sketch (fig. 1-2) of Hadley Rille. This is considerably more detailed than some sketches which have sollowed (for example, Goodacre, 1931). Pickering subsequently observed a number of sinuous rilles and was able to make important generalizations about their morphology and occurance. Due to limitations emposed by diffraction and air turbulance, Pickering's observations represent about the highest resolution visible from earth.

[^0]IN
w

E
S

Definition of Sinuous Lunar Rilles:

Although space flight has enormously imporved the quality of data concerning lunar rilles, Pickering's initial characterization still serves as an adequate general description. He ascribes the following characteristics:

1. The sinuous rilles are wider at one end than the other.
2. The wide end originates in a pear-shaped depression.
3. The forms are composed of joined, short radius curves which impart to them the appearance of river channels.
4. One end appears higher than the other and the wide end (unlike rivers) appears to be the high end.

Hedley Rille departs from this characterization in that the depression at the wide end is arcuate, and that it is on a very nearly level surface.

Greeley (1971) has summarized the characteristics of the sinuous rilles as we know them from Lunar Orbiter photography as follows:

1. They appear to originate in irregularly shaped craters or depressions.
2. They generally trend down slope.
3. They have discontinuous channels and cut-off branches.
4. They are fairly uniform in width or occasionally taper toward the terminus.
5. They are restricted to mare surfaces and appear to be controlled by highland or pre-mare topography.
6. They form topographic highs along the rille axis.

Hadley Rille seems to conform to these criteria except for number 6 . One must also question the use of "origin" and "terminus" to describe the ends of the rille.

Other authors have suggested definition on a quantitative basis. E1-Baz, F. (1968) suggests that there are four major classes of rilleslinear, arcuate, sinuous and complex-and that they can be subclassified even further. He suggests that the subclasses can be distinguished by determining the sinuosity index, the percentage of curved portions of a rilie compared to its total length.

Oberbeck, V. R. et al. (1971) have suggested that harmonic analysis, specifically, the coefficients of a Fourier sine series, might suffice to distinguish different classes of rilles.

The Problem of Simuous Lunar Rilles:

The discovery of the sinuous rilles presented Pickering with the yet unanswered problem of how these large river-like features could form in an environment with little or no atmosphere. Until 1965, the resolution of observations was such that few astronomers were motivated to investigate the issue as relatively few of these forms could be recognized ${ }^{1}$, and their sinuous nature is barely perceptable on telescopic photographs ${ }^{2}$. The general trend of thought seems to have been that the
${ }^{1}$ The state of knowiedge just prior to Lunar Orbiter flights is summarized in Cameron, W.S. (1964) An interpretation of Schroeter's Valley and other Lunar Sinuous Rilles: J.G.R., Vol.69, p. 2423.
${ }^{2}$ A good telescopephoto of this region is found in Alter, D. (1967) Pictorial Guide to the Moon, Crowell, New York, p. 98. On p. 142 of this volume, a telescopic enlargement of the Alpine Valley illustrates the in yisibility of its central rille which is so obvious on L.O. photos.
sinuous rilles are varieties of linear rilles and are structural in origin.

With the advent of Space flight, the realization hase come about that the sinuous rilles are both numerous and strikingly serpentine. A few investigators have made general observations on the geomorphology of the rilles (se ch. 2 of this report). A large number of writers have authored hypotheses concerning the origin of the rilles which are discussed in detail (see ch. 7 of this report). It is sufficient to note here that the hypotheses fall into categories classed according to mode of genesis as follows:

1. Tectonic movement
2. Ash flow following a volcanic eruption
3. Fluid flow
a. Water
b. Water and ice
c. Water under ice
d. Lava on the surface
e. Lava in lava tubes followed by roof collapse
4. Fluidization of regolith over a gas fissure

The most pertinent work concerning the morphology of the Hadley Rille and its surroundings is found in the post-mission Apo110-15 preliminary science report and in the pre-mission planning for the flight. Prior to this report, there has evidently been no detailed geomorphic study of a specific iunar rille and its relation to its surroundings, and the problem of the origin of these forms remains unresolved.

The Purpose of this Study:

The selection of Palus Putredinis for the Apollo-15 landing site has provided a first hawd observation of Hadley Rille. Excellent groundbased stereo coverage of several kilometers of the rille is twailable. In addition, this mission was the first to fly with metric mapping and panoramic cameras. The metric mapping camera has provided an undistorted view of the rille and surroundings as well as topographic control. The panoramic camera has produced oblique photographs of the surface with a resolution of two meters and less.

The purpose of this study is $=0$:

1. Conduct a close qualitative examination of satellite and groundbased lunar photographs of Hadley Rille and its surroundings.
2. Make a precise and detailed quantitative examination of the rille and associated forms.
3. Establish statistical, algebraic and graphical relationships between measured parameters.
4. Discuss the genesis of the rille in terms of the relationships and observations and establish a most probable mode of origin for this sinuous rille.

CHAPTER II

PRIOR WORK IN THE APENNINE-HADLFY REGION

Location of the Study Area:

The location of Hadley Rille is decailed on the four maps, figures 2-1 to 2-4, which also serve to name various features of the region. These maps will serve as a useful reference for the lunar names used in this and subsequent chapters.

Due to the inverting nature of astronomical telescopes, there has been some confusion concerning the definition of lunar compass points. The most recent trend and the one which will be followed here is as follows: The north lunar pole is at the apparent top of the lunar disk as seen by an observer (unaided eye) standing in the earth's northern hemisphere. The east 1 imb is then to the right and the west 1 imb to the left, Zero degrees longitude bisects the visible side and otherwise, the coordinate system is identical to earth's.

Lunar Stratigraphic Nomenclature:

In the last 15 years, considerafle effort on the part of a number of photogeologists has been devoted to developing a scheme of Junar stratigraphy. One apparent advantage on the moon is that impact events are essentially instantaneous and form widespread deposits, thus providing key beds. Significantly, the first attempt at establishing a lunar stratigraphy (Shoemaker and Hackman, 1962) was tied to impact events.

Fig. 2-1. Location of study area. Map indicating position on the moon.

Fig. 2-2. Location of study area. Map indicating large features in the region.

Fig. 2-3. Features surrounding Hadley Rille. Overlay to photograph 15-415 (fig. 1-1)

Fig. 2-4. Vicinity of the Apolio-15 landing site.

Difficulties in moon-wide correllation arise when units are sufficiently distant from type areas that no cross-cutting or superposed relationships are inferable with units in the type areas, a problem frequently recognized on earth. In this situation in lunar stratigraphy, secondary criteria such as morphology of superimposed cra+ers (Soderbloom and Lebofsky, 1972) crater density or general surface appearance are used for correllation. In the current application of stratigraphic reasoning to lunar problems, the secondary criteria seem to have become primary and time stratigraphic designatinns based on surface appearance have been assigned in many studies. This is obviously an uncertain procedure, and many rock stratigraphic units displayed on lunar geologic maps have been assigned dual time stratigrapnic designations reflecting the uncertainty (for example, Wilhelms and McCauley, 1971). Table 2-1 is a summary of pertinent lunar stratigraphic units and some of the criteria used to assign them.

Fortunately, the Imbrium event as represented by its assunied ejecta blanket, the Fra Maur) Formation, represents a fundamental time plane in lunar stratigraphy. This places Palus Putredinis, the rille location, in a very favorable geographic location for stratigraphic interpretation and its history can be related to the lunar stratigraphic sequence with some confidence.

Pre-Space Flight Geological Studies of the Palus Putredinis Region:

This region has been favored by most observers, probably because it lends itself to favcrable undistorted telescopic viewing, and because of the complexity and variety of forms visible in a small sketchable area.

Most 19th and 20th century books on lunar studies have maps, sketches or at least physiographic descriptions of the features in this region. At least two studies, Spurr (1944) and Shaler (1903) are caried out from a geological view point. Both of these authors believed that most lunar features are volcanic in origin and interpreted Palus Putredinis in this way. It is interesting that although extremely detailed physiographic maps of the moon were produced prior to space flight, little effort was devoted to interpreting geology on a regional baisis. Most authors have described classes of lunar features and have illustrated their classifications with specific examples.

Post-Space Flight Geological Studies of the Palus Putredinis Region:

Because of the selection of the Apol10-15 landing site adjacent to Hadley Rille, considerable interest developed in interpreting the regional structure and stratigraphy. What follows are brief notes on the most significant studies of the regional geology. The regional setting itself is the subject of the next section.

Hackmann (1960) differentiates the mare material from the pre-mare material and illustrates the large scale structural elements on a $1 ; 3,800,000$ map.

Hackmann (1966) subdivides the area into several formations and establishes a stratigraphic sequence. This differentiates Imbrium material, post-Imbrium event basin filling material in two stages and several crater forming evisodes on a $1: 1,000 ; 000$ map.

Carr and El-Baz considerably redefine the boundaries given on Hackmann's 1966 map and add several stratigraphic units to account for erosional processes and secondary cratering. Some rock units on this $1: 250,000$ scale map receive a significently different interpretation than on Hackmann's 1966 map. For example, Hackmann mapped a large exposure of Apennine Bench Formation south of Hadley Rille which was interpreted as early mare filling basalt. This was reinterpreted by Carr and El-Baz as a post-Tmbrium event slump deposit. These changes may reflect the improved resolution of Lunar Orbiter photography.

Howard (1971) has mapped the region surrounding the Apo110-15 landing site to provide a detailed $: 50,000$ scale map which is substantially in agreement with and was published simultaneously with the Carr and El-Baz map. There is considerably more detail concerining small craters, and the precise location of some of the boundaries of small units on the mare surface is modified.

Swann et al. (1y7l) have discussed the Apollo-15 landing site in their detailed post-Apollo-15 preliminary report. The authors make pertinent observations and interpretations from the ground-based photographs and discuss sample locations and observations station by station.

Swann et al. (1972) in an abriged version of the preceding paper have included a map of the landing site area at a scale of $1: 32,000$. This map which was drawn with the additional insight provided by Apollo-15 confirms the interpretation of Howard (1971).

Gast et al. (1972) have presented thin sections of the major rock types found during Apollo-15 and have classed the rocks according to
mineralogy and texture. The genesis of the most prominent rocks is also discussed.

Regional Setting:

Hadley Rille is located in the Palus Putredinis (figs. 2-1, 2, 3, 4) an embayment of mare material just within the southeastern edge of the Imbrium Basin. The apennine Mountains form an arc which is the southeast edge of Mare Imbrium and are regarded as fault-bounded, rectilinear, upthrust blocks resulting from the basin-forming impact (Carr and E1-Baz, 1971). The rille is adjacent to and apparently in places deflected by the prominent escarpement at the edge of the mountain block. The lunar coordinates of a point close to the center of the rille are: North $26^{\circ} 00^{\circ}$, East $3^{\circ} 30^{\prime}$.

The Imbrium Basin (fig. 2-1) is generally regarded as a large impact feature formed toward the end of the moon's early history. It is thus an old lunar form, but it and its ejecta blanket cross-cut several older features (Wilhelms and NcCauley, 1972). Adjacent to, and cross-cut by the Imbrium Basin are two other older basins - Serenetatis on the east and Vaporum on the southeast. The geologic complexity of the Hadley region is due in part to its Imbrium Basin marginal position. From a broad view, the bed ock geology and structure must have been affected by the . Serenitatis and Vaporum events as well.

Structure. There are numerous linear or arcuate structural elements in this region which are for the most part circumferential or radial to the Inbrium Basin (Howard and Head, 1972). These lineaments are also
aligned in the same directions as the well known Lunar Grid (Elston et al., 1971). It appears that the three nearby basin forming events and the overall lunar structural pattern have joined to produce the structures so well displayed at this site. Some structures, even structures within the Imbrium Basin, seem to be related to the formation of the Serenetatis Basin in pre-Imbrium time (see ch. 5 of this report). All the tectonism which produced the faults represented by some of these structures did not occur inmediately after the Imbrium event. Some faults cut the low-lying Apennine Bench Formation which seems to be an early mare filling basalt (Carr and E1-Baz, 1971).

Palus Putredinis, illustrated on figure 2-2, is bounded by faults to the northeast and southeast, bounded by humocky hills of questionable origin (mapped by Carr and El-Baz (1971) as post-Imbrium slump deposits) to the southwest, by the rim deposits of the crater Archemedes to the northwest, and by ejecta from the craters Aristillus and Autolycus to the north. It seems to be topographically isolated from the adjacent floor of Mare Imbrium which implies that the basalts which fill it are of local origin. It is possible howev́er.; that at the time of mare filling that Rima Fresnell to the north was a local channel or that one existed under the present ejecta blanket of Autolycus.

Major craters. Large craters which have scattered ejecta throughout this region are Archemedes, Aristillus and Autolycus (fig. 2-2). Ejecta from the latter two have formed secondary impact features on the surface of Palus Putredinis indicating their recent age. Thr former, which is flooded with late mare basalt, has secondary structures remaining on the Apennine Bench Formation indicating an impact after the early stages of mare filling (Carr and El-Baz, 1971).
ick samples. Samples frcm Apoilo-15 come from two distinct geological environments - the mare plains and the base of the mountain Hadley Delta (Swann et al., 1972). The rocks from the mare plains are predominantly basalt and those from the mountain are breccias and metaigneous rocks. These rocks have been further subdivided into groups which are simply reptrsented in the diagram (fig. 2-5), drawn for this report but based on the conclusions in the papers by Gast et a1. (1972) and Swann et al. (1972). These two articles also discuss the genesis of the various rock types and come to the following conclusions:

1. The mare basalt samples are evidently related to the underlying mare filling material. The type 2 basalt was sampled directly from apparent outcrop at the rille 1ip, and was also found as a boulder in Dune Crater at the other extremity of the sampled area (fig. 2-4). The type 1 basalt was found as boulders throughout the mare area and is thought to consitiute the uppermost rock unit underlying most of the regolith at the site. The types 3 and 4 basalts were found at the rille lip (station 9 a, fig. 2-4) and their origin is not clear. In the context of this investigation, it appears possible that these have been ejected by relatively recent impacts from early formed rock units exposed toward the bottom of the stratigraphic section in the rille.

- 2. Most of tne non-basalt samples are regarded as being related to the Imbrium impact either as impact-related breccias or as deep seated rocks brought up by the event.

3. Those breccias which contain mare basalts are though to have originated with local impacts on the mare.
4. The non-mare basalts which were found in rake samples at Spur

Figure 2-5. Classification of the suite of rocks from the Apollo-15 mission.

Crater (fig, 2-4) and in breccias from the Appennine Front, may have been transported from distant pre-mare te-rains after impacts.

Radiometric ages: In addition to the extensive petrologic work which has been reported on lunar rocks, radiometric ages have been reported for many samples. In particular, Husain (1972) has pubiished a compilation of ${ }^{40} \mathrm{Ar}-{ }^{39} \mathrm{Ar}$ ages on five samples of mare basalt and eleven Apollo-14 samples from the Fra Mauro Fomation. I have examined these values statistically to ascertain the elapsed time between the Imbriun event and the mare filling.

The five mare basalt values range from 3.15 to $3.32 \times 10^{9} Y B P$ and have an average value of 3.26×10^{9} years. The standard deviation is 0.064×10^{9} indicating a 90% probability that another value from the same population would fall in the range $3.26 \pm 0.11 \times 10^{9}$ years. The standard error is 0.03×10^{9} years which after calculating the t-statistic indicates that the average value has a 90% probability of being within $\pm 0.06 \times 10^{9}$ years of the 'true' value of this population.

The Fra Mauro Formation samples show dates ranging from 3.50 to $3.92 \times 10^{9} \mathrm{YBP}$. The average value is 3.78×10^{9} years with a standard deviation of 0.11×10^{9} years indicating that another value from the same population would have a 90% probability of falling in the range 3.78 ± 0.18 $\times 10^{9}$ years. The standard error is 0.054×10^{9} years indicating that the average value has a 90% probability of being within $\pm 0.10 \times 10^{9}$ years of the 'true' value.

By subtracting these two averages and calculating the pooled 90% confidence limit for the difference, the time difference between the

Imbrium event and the mare filling can be estimated. This value is $0.52 \pm 0.10 \times 10^{9}$ years. Thus, at the 90% confidence level, 400 to 600 million years elapsed between the Imbrium event and mare filling. It should be noted that the confidence limits for these averages are about the same magnitude as the estimated experimental errors reported by the various investigators sumarized by Husain. Therefore, this statistical treatment seems reasonable.

Geologic History of the Region:

The geologic history of the Hadley region has been discussed to some extent by most of the authors noted in the preceding section. A general statement is found in Carr and El-Baz (1971). The diversity of crosscutting and overlapping relationships at the Imbriun Basin edge makes a detailed relative chronology of events possible. The discussion which follows and the chart (fig, 2-6) are based on interpretations in the previously discussed papers and my own observations of the Hadley region.

Events can be classed into three major time intervals in the order of decreasing age as follows:

1. Events preceding and including the Imbrim Basin forming event.
2. Events which occured between the time of the basin formation and the end of mare filling.
3. Events which occurred after mare filling.

These basic intervals are chosen because the breaks are represented by widespread rock units. The basin forming event is represented by the Imbrium Basin and its ejecta blanket. The mare filling is represented by the mare basalt surface. The regional history is discerned by ob-

Fig. 2-6. Chart indicating relative sequence of events arounc Hadivy Rille (craters and features inlustrated on maps, Figs. 2-1 to $2-4$).

Assumed ev	Lunar time period				Ivicience
(youngest at top)	PI	I	라	C	
Small primary craters				()	玉jecta and boulder trails in rille
Aristillus svent				()	Craters and ejecta
Autolycus event				()	Craters and ejecte
Hacley 0 impact			($?$	Crater and ejecta
Second generation of rille Cepositis			($?$	Trosed boulcers in riTle
Fauliins			$?$	$?$	Iineaments near Mill 305
Rille deposits		,			Buried Boulders
Rille Formation		()		Haclay 2ille
Adjustment of lava surface			$?$		Formation of mere volcanic maphology
Second secuence of mare filling		$($)		Kare surface basalte amplaced
Archemecies event		()			Rim ceposits and structures on Apennine Sench Fm.
Fauling		$?$)			Rima Bracley, Rime Fresnell and associated structures
Early Mare fillins		()			Apennire Barch Fr.
Slunioing into Imbrium Besin		()			Slump deposits
Imbrium Impact		()			Fra Mauro Fm, , Ayeninine ifts., Imbriuna Bn.
Serenetatis Impact					Serenetietis Easin and rim
Vaporum Impact	()				Vaporur Basin
Accretion of Moon	(?				Dock fregments in some breccias

() - indicates that the event took place within the inciestec interval but not necessarily throughout the interval.
? - indicates that the lifit is questionable.
serving how smaller features are related to these major features and to each other. Figure $2-6$ is a chart which summarizes the major events and their inferred chronology. Most of the events have been mentioned in the preceding sections. The remainder are discussed in chapter 4 of this report:

Previous Work Concerning the Morphology of Lunax Rilles:

Several authors have written papers which include significant observations concerning the appearance of lunar rilles and how the rilles relate to their surroundings. The following fall into this category:

Pickering's (1903) initial and important characterization of the general properties of lunar sinuous rilles has already been discussed in chapter 1.

Murray (1971) has noted that some sinuous rilles are linear for part of their length and that in some cases, the land surface is higher on one side of the straight section than on the other. He also noted that rilles tend to be topographically controlled and to avoid topographic highs. He reports that sinuous rilles tend to be associated with established volcanic features. This paper also includes a map of the location of rilles and it is pointed out that 85% of the rilles lie in the maria.

Oberbeck et aI. (1969) note the similarity between the sinuous rilles and a cratered sinuous ridge north of the Harbinger Mountains.

McCall (1970) points out that many sinuous rilles have apparent obstructions in them to lateral flow of fluids. He notes that some rilles have craters associated with them spaced along the length of the rille.

Strom (1968) makes careful observations of the cross-cutting relationship of the inner rille in Schroeter's Valley.

Schumn (1969) notes that several of the rilles in the vicinity of the crater Aristarchus seem to cut through topographic highs.

Hapke and Greenspan (1970) feel that an abnormally high number of craters occur in the bottoms of some sinuous rilles.

Cruikshank and Wood (1972) note that some rilles have distinctly flat bottoms while others have V-shaped profiles.

Greeley (1971) gives the geomorphic characteristics of several rilles in the Marius Hills region of the moon.

Other authors have investigated the rilles using numerical measures to group and compare them. These papers include the following:

Schubert et al. (1970) have performed a set of quantitative measurements on about 130 sinuous rilles and have reported histograms of length, width width/length ratio, meander wave iength, and meander wave length/ width ratio. They have also plotted the location of these rilles on a map of the nearside disk and have therby illustrated that there is a strong tendency for rilles to occur at the edge of the circular mare basins within mare material. The histograms presented in Schubert's report have been recast as cumulative frequency diagrams in chapter 6 of this report and the position of Hadley Rille is indicated on each.

Oberbeck, et al. (1971) have pub1ished a catalog of lunar rilles with varying sinuosity. This is intended as a working regerence for other investigators. They also develop the equations for writing a Fourier sine
series to represent the rilles and apply the method to a specific example. The use of a Fourier series to characterize rilles was also proposed in 1969 by this author in the original porposal for this report. Such an aralysis has been carried out for Hadley Rille and forms a section of chapter 6 to follow.

Previous Geomorphic Investigations of Hadley Rille:

Pickering (1903) described Hadley Rille as the second largest sinuous rille visible on the moon (schroeter's Valley is larger). He was able to observe 50 miles of the rille's channel from the earth (end to end distance) and calculated that it had a sinuous length of 65 miles. (Lunar Orbiter imagery has shown the rille to be considerably longer and has also indicated a number of rilles which are even longer than Hadley Rille but less distinct.) Pickering also noted that the general course is slightly east of north (modern convention) and that the rille is about 2000 feet (600 meters) wide at the southern extremity narrowing to about 500 to 1000 feet (150 to 300 meters) in places. He noted that the southern end coincides with a crater on the south flank of Hill 8 in the Hadley range of the Apennine Mountains (fig. 2-2)

Cameron (1964) also noted the crater at the south end of the rille and compared it the terrestrial volcanic features.

Greeley (1971) described the rille as being $135 \mathrm{~km} .10 \mathrm{~g}, 1.2 \mathrm{~km}$. wide, and 370 meters deep. He noted that the northern section is considerably different than the southern part. This difference is discussed in chapter 4 of this report. Greeley also reports that the rille is situated on a topographic high (an observation not confirmed here), notes the lack of tributaries, and discusses the obstruction in the channel near
the Apollo-i5 landing site.

Howard et al. (1972) have written a post Apollo-15 report on the geology and morphology of Hadley Rille with particularly emphasis on the landing site area. Using Apollo-15 photographs and maps prepared from them, they have reported that:

1. The southern half of the rille does not appear to be structurally controlled, wheras segments of the northern half do.
2. Around the landing site, the mare surface on the northwest side of the rille is higher than the surface on the southeast side.
3. The width and depth of the rilie are in direct proportion.
4. The rille wall exhibits a distinct sequence of talus, outcrop and regolith with approptiate ledges and benches.
5. The materials within the rille can be attributed to mass wasting from the outcrop along the edge.

Wu et al. (1972) have published a map of the Apollo-15 landing site based on Apollo-15 aetric and panoramic photographs. Their report also includes eight topographic profiles of the rille at the landing site produced on a Bendix AS-11 Analytical Plotter, using panoramic photographs. About thinty such profiles covering most of the southern part of the rille have been prepared for this report (see ch. 4).

CHAPTER TII

EQUIPMENT AND METHODS

This chapter describes the photographs and physical equipment used for data aquisition and the methods used for data reduction and analysis.

Lunar Photography:

The two programs which have had exceptional significance in this study are the Lunar Orbiter program and the Apollo-15 mission.

Lunar Orbiter photography. A general description of the Lunar Orbiter camera system can be found in the volume by Bowker and Hughes (1971) or the volume by Kosofsky and El-Baz (1970). Briefly, the Lunar Orbiter spacecraft was equipped to expose and process film during flight. The resulting photographs were transmitted to earth by an optical scanning and transmission system. This approach allows much better resolution than a television camera permits. The photographic camera was equipped with short and long focal length lenses which allowed the transmission of medium and high resolution photographs during each flight. These pictures have good to excellent resolution (to one meter), but the metric fidelity is probably correct to only a few percent. Therefore, they are primarily useful for observation rather than measurement.

Apollo-15 photography. A general description of the Apollo camera systems is found in the report by Dietrich and Clanton (19.2). The photographs which have been most relevant are the Apollo-15 metric, panoramic and ground-based Hasselblad photographs. The metric and panoramic photographs are individually described in the report by Lockheed Electronics
(1972). A report by Batson et al. (1971) describes the individual groundbased photographs. A technical summary of all the Apollo-15 photography is found in a report by Cameron and Niksch (1972).

A brief description of the three relevant camera systems follows:

1. The netric camera is primarily designed to take medium resolution photographs (to about ten meters depending on sun angle) with very high metric fidelity (or low point to point distortion). The camera has a 76 mm focal length which at the flight altitude of 100 km . yielded photos with a scale of about $1: 1,300,000$. These are usually supplied at an enlargement of about $1.66 x$ yielding a scale of $1: 800,000$. Most of the metric photographs were taken with a vertical camera axis, although some oblique exposures were made.
2. The panoramic camera is designed to take high resolution (to one meter from orbit) photographs with low metric fidelity. In operation, the camera exposes the film serially as the optical system sweeps from horizon to horizon. The film simultaneously moves in a direction contrary to the lens motion. During the Apollo-15 mission, the optic axis was oriented oblique to the surface, and was shifted between a fore and aft orientation for successive exposures. This sequence provided stereo coverage because the exposure intervals were timed to have the aft exposure cover the same area as a preceding fore exposure. These can be successfully viewed in a conventional stereo viewer if only a small section is observed at a time.

Table 3-1. Specific photographs used in this study.

1. General monoscope observation of the Palus Futredinis resion with some stereoscopic overlap.

Small scale- Lunar Orbiter IV, 102 $H_{3}, 109 H_{3}$
Intermediate scale - Lunar Orbiter 7 , 1044 to 106 m
2. Stereo, vertical, intermediate scale photos of the rille.

Low sun - Apollo-15 Ketric, 4,11 to 4,19
Intermediate surn - Apollom15 Metric, 583 to 590
Intsmilediate sun - Apol10-15 Metric, 990-995 (no shecow from adjacent mountains in this series)
High sun - Apollo-15 Metric 2304-2306 (coverage of south half only)
3. Sterao, oblicue, intermediate scale, hift resolution coveraze of the rille (listed as stereo pairs),

Low sun - Apolio-15 Pan (9374 Enc 9379, 9376 and 9381)
Intermediate sun - Apollo-15 Pan (9795 anc 9800, 9797 anc 9802 , 9801 and 9806,9503 and 980 $)$
4. hish metric ficelity coverage with appropriate shadowing for use on the kann comperator.

Apollo-15 Metric, 4, 16
5. Used to construct stereo models or the AE-11A plotter.

Ketric model - Apollo-15 Ketric, 992 and 994
Pan model - Apolio-15 Pan', 9795 and 900
6. Ground-based photographs which cen be usec to construct panoramas of the rille (60 mm . Hasselblac),

Apol10-15, 11166, $11168,11170,11172,11174,11176,11178$, 11180, 111882, 11184 (taken from station 10)
Apol10-15, 11111, 13112, 11121, 11123, 17125, 11127 (station 9a)
7. Grounc-based photographs which illustrate specific rille features near the landing site (500 mm . Hasselblad).

Apo110-15, 12023 and 12104, 12058 and 12125, 12056 and 12156
8. Used to construct a photomosaic for structural interpretation.

Apollo-15 Metric, 99I-995
9. Large scale vertical monoscipic coverage of the Apollo-15 lancing site.

Apollo-15 Rectified Pan, 9377 (4x enlargement)
3. The ground-based Hasselblad photographs were taken with handheld cameras by astronauts during surface traverses. The cameras have focal lengths of 60 mm . and 500 mm . Which provide normal and telephoto coverage. Many stereo pairs exist because objects were intentionally photographed from two or more traverse stations.

Table 3-1 specifically lists the numbers of photographs which were used for different purposes in this study.

Equipment and Procedures:

Large format stereo viewer. Several unusual problems associated with lunar photography make stereoviewing with a conventional stereoscope difficult.

1. Many of the photos are large (up to 70 cm diagonal dimension). These are too big to manipulate under a conventional mirror stereoscope.
2. The field of view of conventional stereoscopes is too small to see whole forms on photograph this size.
3. The ground-based Hasselblad photographs were taken from arbitrary positions tnat produced stereo coverage but with photographs of different scales. This makes stereo fusion in a conventional viewer difficult because each eye sees a different size image.
. 4. Many of the photographs are provided with a glossy surface. Rear lighting of these photographs is desireable for optimur and continuous viewing.
4. For purposes of analysis, it was desired to take azimuthal and Iength measurements of features while viewing photographs in stereo. This requires several inches of working space under the stereoscope.
5. A conventional mirror stereoscope is throughly uncomfortable

Pig. 3-1. Large Format Stereo Viewer

$$
\begin{aligned}
& \text { REPRODUCIBILITY OF } \\
& \text { ORIGNAL PAGE IS POOR }
\end{aligned}
$$

when used for continuous viewing.

In order to cope with these constraints a special stereo viewer was designed and built for this study (fig. 3-1). This instrument which has proven very usefui has the following attributes:

1. It can sit on either an illuminated drawing table for rear lit viewing, or on a conventional 5^{\prime} drawing table.
2. It has simple adjustments for eyebase, neck inclination, distance between photographs, and relative scale of photographs.
3. Extra large objective mirrors $17.1 \times 12.4 \mathrm{~cm}$. give a large field.
4. There is sufficient room beneath the mirrors to manipulate a drafting machine for accurate angular and distance measurements.

Cost of the optical parts (first surface mirrors were used) was about $\$ 20.00$ (Edmund Scientific Co., Great Barrington, N.J., 1970). The remaining parts were salvage.

Measurement of length. The most accurate and detailed length measurements were made using the Mann 1200-3 comparator described below. For purposes requiring less precision, conventional drafting scales were at times used. Two instruments which provided relatively high precision at moderate cost are:

1. A Sears G Roebuck co. metric vernier caliper (Sears no. 40161) with a range of 13.5 cm . and vernier scale divisions to $\pm 0.05 \mathrm{~mm}$.
2. An Edmund Scientific Co. optical comparator (Edmund no. 30325 with reticle no. 30584). This is a flat field large diameter 10 x hand lens which is arranged to view a recicle which contains several angular,

Iinear and circular scales. One linear scale is 2. cm long and can be read to $\pm 0.05 \mathrm{~mm}$.

The primary constraint on the use of these instruments is that although they provide precise information of specific features, they do not provide good information about the location of different features relative to each other. Size and relative location can be determined together if the $x-y$ coordinates of points outlining features can be read on an arbitrary grid. An inaccurate, although simple way to accomplish this is to overlay a sheet of graph paper over the field being studied (for example-a photograph) and read $x-y$ coordinates from the graph paper. A more accurate approach which was used for some preliminary analysis of profiles is carried out by placing the field to be surveyed on the table of a vertical milling machine (Bridgeport model no. 9BRM). The precision lead screws which normally drive the milling table can be turned to position different points of interest under a stylus held in the stationary jaws of the milling head chuck. After each location is positioned, its x and y coordinates are read from the lead screw dials. If the milling table is in good condition, this will provide coordinate data to an accuracy better than $\pm 0.025 \mathrm{~mm}$. over a field 23 cm . by 50 cm . This potentially useful technique was not developed to is uItimate extent because the Mann 1200-3 comparator became available (fig. 3-2).

The Mann 1200-3 Stellar Comparator. The Mann 1200-3 stellar comparator (GCA/David W. Mann Co., Burlington, Mass.) was purchased by the Lockheed Corporation at the Manned Spacecraft Center, Houston, Texas to measure
the relative positions of stars on astral photographs. These measurements are needed to determine camera orientation in the Apollo mapping camera system. Conceptually, the mechanism is similar to the milling table described above with the following additions

1. The field is placed on a rear illuminated glass platform so that light is transmitted through the field.
2. The viewer looks through an optical system and locates coorddinate positions under cross hairs.
3. Coordinate positions are electronically displayed and measurement numbers are electronically assigned.
4. The output can be directiy punched on cards for subsequant data processing

- 5. The precision of the system is to within $\pm 0.001 \mathrm{~mm}$. Which corresponds to a ground distance of 10 meters at the scale used.

This system allowed the rapid compilation of several important data sets described in chapters 5 and 6.

Topographic measurements. Several methods were tried in an effort to obtain accurate topographic information about the rilie and its surroundings. Preliminary information was extracted from NASA Lunar Topographic Photo Map Rima Hadley sheets A and B published by the U. S. Army Topographic Command. This map was printed as part of the pre-mission planning for Apolio-15 and is based on Lunar Orbiter photography. The vertical accuracy is ± 250 meters at the 90% probability level. This is adequate to describe the mountains bordering Palus Putredinis, but reveals little about Hadley Rille.

Initially, it was hoped that topographic information could be derived from stereo pairs of Apollo-15 metric photographs using conventional cartographic plotting equipment. An attempt was made to use the Kern PG-2 cartographic plotter at the U.S.G.S. experimental cartographic laboratory in McClean Va . There were severe difficulties with this machine in accomodating it to the lunar radius and in leveling the metric photos. A more basic problem appears to be that the rille can only be expanded to a scale width of a few millimeters with these photos in this machine. This fact combined with unfavorable sun angles produces inadequate resolution within the rillefor adequate elevation readings. Thus, to determine accurate topographic information, it was necessary to use Apollo-15 panoramic photographs. As detailed below, these can only be analyzed with an anaiytical plotter.

The AS-11A Analytical Plotter. The fundamental photogrammetric problem is to relate an object's position on a photograph to its true position on the ground, and thence to its proper position on a map. If the position and orientation of the cameras is simple and well controlled, cartographic data can be extracted very simply with primitive equipment. Thus, stereo pairs of vertical axis frame camera photographs taken from equal altitudes can be analyzed using only a good scale (Advertising Displays, Inc., 1970). Unfortunately, flight altitudes vary and camera axes general:y deviate from vertical. If either the camera orientations with respert iv the planetary radius is known, or if the exact threedimensional ground coordinates of several common points in the overlap area of the two photographs are known, then it is possible to determine a set of unique three dimensional map coordinates for all the common
points on the two photographs. An analysis of the stereo geometry results in a matrix equation (Tewinkel, 1966) with the form:

$$
\left[\begin{array}{l}
x \tag{3-1}\\
y \\
z
\end{array}\right]=M\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

which relates the photo coordinates of points $x, y, z(=-$ Focal length $)$ to ground coordinates $(X, Y, Z) . M$ is a 3×3 matrix involving the cosines of angles between axes in the two coordinate systems. When multiplied, (3-1) becones the equations of colinearity which represent the relationship between photos and the ground.

Historically, these equations have be en resolved mechanically by setting up the photographs in projectors with orientations similar to the camera orientations with which the photographs were exposed. This results in a stereo-projected image called a stereo model which is an analog of the real ground surface. This can actually be contoured to produce a map. The geometry of these machines is straight forward in the case of double projection direct viewing plotters, and more complex in mechanical machines with optical trains such as the previously mentioned Kern PG-2 (Schermerhorn, 1966). It is conventiona1 to regard machines in the latter class as mechanical analog computers which solve the colinearity equations to maintain the correct stereo model as different parts of it are scanned by the machine operator. The analog elements in the machine are rod lengths and cam profiles which maintain the correct relative geometry of the photographs, stereo model and drawing pen which sketches contour lines on the map. These machines are designed to solve the geometry of frame camera photographs which are those in which the entire film surface is exposed simultaneously and the photo geometry
is symmetric about the optic axis. Apollo metric photographs are this type. The panoramic photographs which are exposed serially as the oblique camera axis sweeps from horizon to horizon have a much more complex geometry (Doyle, 1972).

The difference between mechanical plotters and the AS-11A analytical plotter is that the mechanical machines solve the equations of colinearity by adjusting angles and lengths within the machine, wheras the analytical plotter solves the equations by continuous computation in a digital computer. When the operator scans different portions of the stereo model, the photographs are adjusted by positioning servos to maintain the correct orientation. In other words, as the operator moves the index mark of the viewer from one point to the next across the stereoscopic model, the computer continuously computes new positioning parameters for the photo plate holders to give a geometrically correct stereomodel at the position being viewed. This means that the same set of calculations must be repeated very quickly to keep up with the operator's movement of the index. In the $A S-11 A$, the repetition rate for some equations is 200 times per second (Bendix Corp., 1968).

When the $A S-11 A$ is operated, severo. nutually related things happen:

1. The operator moves the viewing field across the stereomodel which he observes through the viewer. As he does so, the model geometry is adjusted into a correct orientation by real time computation of the colinearity squations. This solution depends upon what part of the model the operator is viewing.
2. Interwoven with these calculations are other calculations which determine cartographic coordinate information. These depend upon the continually updated model geometry and the viewer index position on the model. The cartographic information is used to drive an electromechanical plotter to directly produce topographic maps or profiles at any desired scale.

The electronic rather than mechanical connections between different parts of this system give much more flexibility than previously possible. For example, the system can accomodate any pair of photographs for which colinearity equations can be programmed. Any analytically describable aberration such as lens distortion, uneven motion of the panoramic camer: system, film shrinkage, or non-linear motion of mechanical elements of the machine can be programed as corrections to the colinearity equations. Furthermore, if redundant ground control information is available, a least squares technique can be used to provide the best possible model parameters during the initial orientation procedures. Thus, the photogrammetric use of high resolution panoramic photographs with their low inherent metric fidelity is made possible.

The system operation for the purpose of producing profiles such as are illustrated in chapter 4 of this report can be divided into three steps:

1. Metric photographs are oriented in the system using known ground control information. For this study, five ground control points were used for absolute orientation of the model. A minimum of three points is required, so the use of redundart information permitted a leastsquares fit. The ground control information was derived from Apollo-15
stellar photography and laser altimetry and was provided by Lockheed Electronics Corp.
2. Panoramic photographs are oriented in the machine by relating known positions on the panoramic photographs to the same points on the metric photographs. In this process, the colinearity equations for the panoramic photographs are established but with constants derived from the metrix̀ c photographs.
3. The machine is switched to an operational mode and contour or profile information can be plotted at will. This is accomplished as in most photogrammetric equipment by moving an optical index across the stereomodel so that the index appears to touch the land surface.

Selection of photographs for photogrammetric analysis. The following criteria were considered in selecting photographs for use with the AS1l-A analytical plotter:

1. The metric photos used for the metric control must be well documented. The laser altimeter ceased to operate during the 33 rd revolution (Roberson and Kaula, 1972) which dictated the use of metric photos taken earlier in the flight.
2. The visual process used in positioning the index in the stereo comparator requires that the photos have a well-defined ground surface for comparison. A low sun angle gives the best contrast. Fortunately, the low sun exposure of the Apennine-Hadley region occured early in the flight.
3. The sun must be high enough to prevent shadows from obscuring features of interest.
4. Time limitations dictated that only one panoramic model could be set up. It was therefore necessary to select a pair of pan photos which covered as much of the rille as pr:ible. Because of its relatively fresh appearance, the southern section of the rille was given preference. The photos chosen for the study (table 3-1) appear to best meet these constraints.

Mathematical Methods:

Fourier sexies: Any function which is defined throughout an interval of width 2 L , is bounded within the interval, and has a finite number of discontinuities, and maxima and minima within the interval can be approximated by a series of the form (Skolnikoff and Redheffer, 1958):

$$
f(x)=a_{0} / 2+{ }_{n=1}\left(a_{n} \cos (n \quad x / L)=b_{n} \sin (n x / L)\right)
$$

where $f(x)$ is the approximate value of the function, x is the independent variable, a_{n}, b_{n} are coefficients which must be determined, and L is one half the interval being approximated. Such an approximation is called the Fourier series corresponding to the function.

The Fourier series is being used in this study to approximate the function represented by a specific set of data. From a practical point of view, any data set (assumed to meet the above conditions) can be approxinated by one of several forms of the Fourier series. The differences between the forms governs the behavior of periodic extensions of the series outside the approximated interval (Gaskell 1958). An appropriate fomfor use here appears to be the Fourier cosine series which is given by:

$$
f(x)=a_{0} / 2+n_{n=1} a_{n} \cos \left(\begin{array}{ll}
n & x / L)
\end{array}\right.
$$

This series is suitable because it can represent non-zero values of the function at the point $x=0$. Data for the Fourier series was acquired using the Mann comparator, and it is not convenient to initiate the data set at x and y equal to zero with this instrument. The coefficients of the cosine series are given by the equation:

$$
a_{n}=2 / k_{i=1}^{k-1} f_{i} \cos \left(\begin{array}{ll}
n & x_{i} / L
\end{array}\right)
$$

where the values f_{i} are the data values at the x_{i} locations and k is the number of data points.

Spencer's formula. This formula is one of a family of curve smoothing formulas which have been developed for extracting significant trends in the data from random fluctuations. The formula calculates a moving average over an interval which includes ten data points on either side of the central roint, but a moving average in which points close to the central point are given more weight than points which are distant. The equation for the smoothed y-value (y_{k}^{\prime}) for a point x_{k} when values of data $\left(y_{1}, y_{2}, \ldots . y_{k}, \ldots y_{n}\right)$ exist for equally spaced x-values (x_{1} to x_{n}) is given by the squation (Harbaugh and Merriam, 1968)

$$
\begin{aligned}
& \quad y_{k}^{\prime}=1 / 350\left(60 y_{k}+57\left(y_{k+1}+y_{k-1}\right) \div 47\left(y_{k+2}+y_{k-2}\right)+33\left(y_{k+3}+y_{k-3}\right)\right. \\
& + \\
& 18\left(y_{k+4}+y_{k-4}\right)+6\left(y_{k+5}+y_{k-5}\right)-2\left(y_{k+6}+y_{k-6}\right)-5\left(y_{k+7}+y_{k-7}\right) \\
& -5\left(y_{k+8}+y_{k-8}\right)-3\left(y_{k+9}+y_{k-9}\right)-\left(y_{k+10}+y_{k-10}\right)
\end{aligned}
$$

When a list of data is smoothed using this formula, the first ten and last ten x-values cannot have smoothed y-values calculated for them. This follows because the form of the equation for the first smoothed value (y_{o}^{\prime} or y_{k}^{\prime} at $k=0$) requires ten y-values (unsmoothed data values y_{-1}, y_{-2} $\ldots . ., y_{-10}$) which correspond to x_{-1} to $x_{-10} y_{-10}$ is the first y value in the data set. However, if circular data is smoothed, a smoothed y-value can be calculated for all x-values if ten values are duplicated from each end of the data set and attached to the opposite end. For example, if a histogram of strike data is being smoothed, the first ten class intervals can be attached after the last lass interval because strike data is repetitive with a 180° period. This allows the calculation of smoothed frequency values for intervals up to and including the last class interval. Similarly, by attaching the last ten values to the first end of the histogram, the first and succeeding frequencies can be smoothed.

Miscellaneous mathematical methods. Vector algebra is used in appendix 1 to solve a problem in spherical trigometry. A good discussion of vectors is found in the book by Thomas (1953). It appears that vector techniques could be much more extensively used in solving structural geology problems.

Several statistical testṣ are used in chapters 5 and 6 . It seems impossible to divorce the test from the statistics being compared, so the tests are discussed and referenced in those chapters. A number of short special purpose programs were written for numerical processing of data in this study. These are listed in table $3-2$ and unique programs are included in appendix 4.

Table 3-2. Programs developed for this stuad.

Name of Usec in propran chepter

\#FORSER	6	Compuies the Fourier coeificients for a full Fourien series and optionelly, a cosine series, Also computes the power spectrum, value of the series approximation at each x-valua anc the residual value ($J_{\text {data }}-\bar{J}_{\text {Fourier appror. }}$).
\#SELEGT	5	Compares numericelly coded information with a usersuppliec binary array to sort the cosed data into groups.
\#SPatica	5,0	Computes smoothec values accorcing to Spencer's formule. The smoothed curve is plotiec graphically by the line printar. If the data is circuler, the program fills in ten spaces at each and of the cata set.
\#2III	2,5	Computes, using the prthagorean thecrem anc the trapazoicijel role, various rille parameters from and length of charnel for rịie locations anc segments anc avirage volue for tine rinle. Also prints and punches frequency isistricutions of relevent factors.
F3a	5	Groups catưa into distributions of frequenc , percent frecuancy, cumulative fnocusncy anc percent cumulative frequency. Prints result anc optionaily punches resułt.
DIT	5	Computes difference of ti:o percent cumulative fresuency cistributions for the Smimov test.
*EASITH	5	Computes the azimuth Erom any location to basin central locetions and comparas the computec èrection with observed structure esrections at the first location.

* - These five programs have been incorporated as appendes 4 .

CHAPTIER IV

METATLBD DESCRTETTON OF HADLEY BTLIX

This chapter is a detailed discussion of Harlley Fille and the large and smail scale features observed in and adjacent to it. The chapter is anranged so tiat features visible on small scale photographs are described first followed by descriptions of those seen at larger scales. Appropriate Apol10-15 photo references have been given in each section.

Description of Hadley Rinle From Small Scale Photogrephs:

This section sumarizes the features which can be seen monoscopically on small scale photographs of the Palus Putredinis region. Some appropriate photographs illustraing these features are Apollo-15 metric 414 (fig. 4-1) or 914, or Lunar Orbiter 7 , 105 M and 106 M .

Viewed as a whole, the rille is seen to cut through the mare surface in a series of curves which ere smoothly sinuous in places Fet orthogonally joined in others. The south end of the rille connects to an arcuate depression which is incised into both mare and pre-mare material. The north end of the riile adjoins a triangular depression one edge of which coincides with the contact between mare material and older rocks. Between these points the rinle is continuous, although a constriction occurs east of Hill 305 (fig. 2-3) and the rille becomes indistinct in the plain northwest of the hill.

The southern section. The southern part of the rille has a considerably dreferent appearance than the northern part, and thus, it is convenient to separate the rille into two sections for description. The southern section is that part southeast of Hill 305; the norihern section is the portion adjacent to and northwest of the hill. For purposes of numerical treatment, point 84 on figure 6-2 is the dividing point.

The southem section of the rille is a deeply incised, clearly sinuous furrow which stands out in high optical relief. The walls of the rille in this section show a remarkable parallelism. Any small fluctuation in the direction of one wall is matched by a corresponding deviation on the opposite side. In profile view, the usual crosssection is a symetric ∇-shape, although variations are present. Where appropriately illuminated, outcrop is observed along most of the southern section except perhaps the first two or three kilometers adjacent to the cleft-like depression. Pan photographs indicate that outcrop is found from the lip of the rille down, and thet at several locations, it occupies the upper one-third of the rille wall. There appears to be a correllation between obvious outcrop and boulders on the rille bottom indicating that the outcrop is the source of the boulders. There are some locations, however, where boulders have obviously been ejected into the rille from nearby craters. There are no locations where outcrop is unequivocally exposed in the bottom of
the rille. There appears to be a relative absence of small craters in the rille compared to the adjacent mare surface. The variable lighting of the rille wall makes a formal crater count of questionable value, but a spot check of the mare surface and favorably illuminated parts of the rinle wall using the Edmunds lox comparator (ch. 3) indicates considerabIy fewer craters in the rille. Several craters intersect the rille and have resulted in prominent ejecta deposits in it. The converse situation, subdued craters which are cut by the rille, would indicate some elapsed time between mare filling and rille formation. No such craters have been observed. The lowland occupied by this segment of the rille has a northeast trend which is circumferential to the Imbrium Basin, However, this direction is not selectively adopted by individual segments of the rille.

The small mare surface features surrounding the southern section can be interpreted and ranked in order of visual importance as follows:

1. Small, cup-shaped symmetrical craters with raised rims probably due to primary impacts and secondary impacts after Crater Hadley C.
2. Irregalar depressions with little or no raised rims that probably are volcanic collapse features of different types.
3. Irregilar, low hills of probable pre-mare material which have been left as islands after mare filling.

The reflectivity of the adjacent mare suxface is more uniform than in other parts of Palus Putredinis, although two or three places are noticably brighter than the remainder.

The northern section. There are important qualitative and quantitative differences between the norihern and southern sections. The general trend of the northem section is radial to the Imbrium Basin ratker than circumferential. It will be shown quantitatively in subsequent chapters that the northern section of the chamel is on the average straighter and that a closer relationship exists between the azinuth of individual rille segments and the regional structure. The channel width and depth are smaller and the profile is U-shaped or even flat-bottomed at the northern extreme. The previously noted indistinct section of the channel can only be well observed in 10w sun photography. In contrast to the southern section, the northern section shows little or no outcrop and the cratered surface within the rille looks identical to the cratered mare surroundings. As in the south, this section of the rille is not observed to crozs-cut ary other structures of the mare surface, but one of the plumose structures from the cratering events to the north does appear to cut the rille.

The surface surrounding the northern section has more relies features then that to the south. These can be ranked in order of visual importance and interpreted as follows:

1. Seconidary plumose structures associated with cratering events to the nortin.
2. Smell, cup-shaped craters trith raised lips which are of probable primary or secondary impact origin.
3. Irregalar depressions with small or no raised rims which may be either rolcanic collapse features or imperfectly developed plumose structures.
4. Lineaments which probably represent post-mare filling tectonism.
5. Hills which probably represent islends of pre-mare materiel which were isolated during mare filling.

The reflectivity of this surface is highly variable from point to point. Much of the bright material correlates with the surface disturbance of the plumose structures, so much so that a bright halo probably serves to differentiate an irregular secondary crater from a volcanic depression.

Detailed Observations Within the Rille from Command Module Photography:

This section is concerned with specific features in the rille which can be observed on metric and panoramic photography. Appropriate photo references are the stereo pairs Apollo-15 metric 414-416 (fig. 4-1, 4-2) and pan photographs 9795-9800 (fig. 4-3, 4-4) and 9797-9802. Stereo

Fig. 4-3. Apollo-15-9795 Pan photograph (lower), Fig. 4-4. Apollo-15-9800 Pan photograph (upper). These copies do not retain the extraordinary resolution of the originals.

observation or the use of 10 K magnification is necessary for many of the observations. The order of observation described here is as though an observer started at the southern extremity of the rille and progressed along the chamel to the northern end. For convenience in description, features on the observer's left are referred to as being on the mare side of the rinle since most of the Imbrium Basin lies on that side. Features to his right are designated as being to the mountain side because of the presence of the Apennine Front.

Many of the described features have been profiled using the AS-11A analytical plotter (ch. 3). Readers who have used this machine with pancramic photographs will question how profile lines directly across the rille can be established on the distorted panoramic model. This was accomplished by the following method:

1. The location of the panoramic stereo model was located on a metric photograph of the rille,
2. The desired profilile lines were laid out on the metric photograph. In most cases, the profile lines were perpendicular to the rille direction at the point of intersection between the profile line and the rimle.
3. Photo-idenififiable objects (for the most part-craters) were located at each end of the profile lines.
4. These objects were then Iocated on the panoramic model in the machine. The machine sndex was then traversed back and forth across the rille and adjustments were made to the profile direction. This was repeated until by trial and error, a psofile line was established between the two photo-identifiable points. Then, the actual profile was plotted.

The profiles are reproduced in figures 4 -6 to 4 - 17 Tach profile is mumered and carries identifying letters which are keyed to a location map (fig. 4-5). Above each profile is a horizontal line for reference. The position of this line is the profile line indicated on the location map, and the ends of the line on both the profile drawings and the location map fall ai the two photomidentifiable objects used to locate the profile direction. In two cases, profiles 6a and 30a, it was not possible to find photo-identiliable objects on the profile lines. Their locations and orientaitions are therefore lesc controlled than the other profilies which is the reason they were assigned special profile numbers.

In some places, there is difficulty in observing detail in the rijle walls because of unfavorable illumination. 411 detail is lost in shadow or under direct illuminaion, whereas an oblique or arazing sun angle is n rost favorable. An examination of most of the available imagery and photographs of the region has shown that about one thind of the rille wall is visually inaccessible. The remaining two thirds

Fig. 4-5. Location map for profiles in figures 4-6 to 4-17.

is the basis of the discussion to be presented forthwith.

The southern cleft. The southern end of the rille connects to an arcuate depression with an approximate northmsouth orientation, with a lengih of about ten kilometers and a width of about two kilometers at its widest. Under the stereoscope, this is seen to be one of three connected depressions which resemble dissimilar canoes tied end to end, the southemmost two being progressively shorter than the first. Owing to the curvatore of the forms, the chain of depressions crosses the Apenaine Front and assumes a southwest azimuth. The final depression grades into the set of lineaments which borders the mountain biock. Although the depressions are clearly connected, there is a distinct topographic barrier between them.

Concentric with and immediately adjacent to the northern depression is an additional similar depression with corresponding shape but with dimensions about one half as large. The north-south abimuth displayed by the two concentric depressions is visually and analytically (ch. 5) in discord with regional structures, although an extension of them may curve northeast along the edge of Bennett Hill. Such an extension would match the regional patterm of lineaments.

These forms cut both the mare surface and hilly material. It is not completely clear how the depressions actually cut the Apennine

Massif, Cami and E1-Baz (1971) place them at the contact between the Block Mountains and post-uplift slump deposits. The walls show little outcrop which is notable considering the large amount of outcrop exposed in the rille. There is a distinct change of texture at the bottom of the northern depression which may represent an accumulation of transported debris. If so, the size of the accumbation indicates that there has not been much erosion from adjacent slopes.

The cross-sections of different depressions vary in that the concentric pair both appear V-shaped, the central one has a humocky, flat bottom, and the southeramost appears somewhat U-sheped. The flat bottom in the central depression may represent the original bottom profile because talus deposits in other parts of the rille have not produced a flat botiom. There is no linear relationship between elevation and width along these depressions. Consequently, they cannot be interpreted as grabens as have certain other linear furrows on the moon (Baldwin 1971) •

The southem section. The rille emerges from the cleft-like depression in a tight S-curve which is the oniy segnent or the rille which distinctly cuts pre-mare material. There is a peculiar mottled appearance to the rille wall where the rille appears to cui what has been mapped as Imbxium impact breccia (Carr and EI-Baz, 1971). Measurements with the Kern PG-2 plotter ${ }^{I}$ indicate that the channel cross-mection here has the most asymetric form found in the rille. The steepest slope of the transverse profile occurs on the outside of the curye.

Profile number 3 (fig. 4-6) is drawn across the channel about ten kilometers norith of the cleft. At this location, a subdued crater about 800 meters in diameter intersects and cross-cuts the rille on the mountain side. A nomber of similar craters intersect at different places along the rinle and their ejfcta may be partially responsible for undulations in the rille bottom.

At the location of profile number 6a (fig. 4-8), there is a large
$I_{\text {This }}$ location was not included in the model used in the AS-ITA plotter for reasons tiscussed in chapter 3.
(one kilometer long) block of material, visible only on panoramic photographs, which forms a dowamard step on the mare edge of the mille. The 50-neter-high escarpment between the block and the mare sumface is obvious on the profile. This appears to be a slump or fault block which hes truncated the bend in the rille. The strike of the escarpment corresponds to the siructural trends in the region and the face of the escarpment aligns well with the fault which is assumed to bound the Apennine Front, There is a hint of a slight displacement on an extension of the same slip suriace to the northeast across the rille. This feature may have resulted from remobilization of Imbrium event fanlits by the event which produced the nearby Grater Hadley C (fig. 2-3).

The Grater Hadley C on the bare side of the rille is the largest post-mare canter in Palns Putredinis being 5.6 km . in diameter. Its obvious overlap of the rille establishes its post-rilie age without doubt. Although the rille is almost totaliy obscured next to the crater (profile 9, fig. 4-9) , the ejecta hes only covered the rille to a distance of about one half a crator diameter from the crater rim (profile 10, fig. 4-10). Many of the small craters on the mare surface here are assumed to be the result of secondary impacts after this event. It is notable that there is no pronounced increase in the number of craters in adjacent sections of the rille. Profile number 4 (fig. 4-7) is directily across Hadley C and emphasizes its flat bottom.

Frofille number 14 (fig. 4-11) passes through a Iocation where the wall of the rille is orer-steepened in comparison with the other profiles, and the floor is abnormelly flat. This has resulted in an asymmetric profile in a relatively straght section of the rifle. This feature can be adequately viewed only in stereo under high magnification on Pilm-based panoramic photographs. About three kilometers north of the profille number 14 location, there is a small, dark area in the rille bottom containing several well-defined craters. The appearance is similar to the pooled lava observed lying in the crater walls of some large craters ${ }^{1}$.

Frofile number 17 (fig. 4-12) is directly across a small radius curve which is comiarable to the curves at the south end of the rille. This profile was plotted several times to check for asymmetric chanmel shape. The outside slope or the curre is concave in contrast to the opposite slope thich is convex. This results in a steeper slope oin the outside of the curve. These contrasting slopes could be interpreved as indicating either a cut bank on the outside of the curve or evicience of more effective meteorite erosion on the promontory which is present on
$I_{\text {For example, the Crater Arisiarchus as seen on Iunar Orbiter } \nabla}$ 199H.
the inside of the curve. Profiles numbers 22 and 23 (fig, 4-14) are across a straight section of the rille with particularly favorable illumination. This segment contains the most observable outcrop of any segment. The outcrop occurs on both sides of the rijle with more on the mountain side, and extends one fourth to one third of the way dow the rille wall for a distance of three lilometers along the channel. This contributes a distinct cliff and bench appearance to the mare side of the poofiles and results in concaye slopes on both sides of the rille. In the film-base versions of the pan photography, the rille walls in this section have a distinct fish bone or tartan appearence. It is difificult to pick out any particular jineament from the overell pattem, and the pattem may be an effect of illumination geometry. This problem is ditwussed in chapter 5.

At the end of this straight reach, the rille makes a series of tight inum which seem to be controlijed by the Apennine Front. This is the most obvious example of topographic control of the rille, although control is evident at several other locations. It oan be noted that the three sharpest tirns in the riłle occur where the channel is in contact with pre-nare material in the southern section.

On film-base panormic photography, there are notably few boulders visible in the rille where it passes the Grater St. George, and outcrop if present at all is found only on the mare side. Evidently; there is a deposit of material in the rille here thich has been eroded from the
adjacent mountain block. Simple deposition does not explain the relative lack of outcrop on the mare side, however, especially considering that an obvious post-rille crater is present in the rille wall. A crater such as this produced abundent boulders at the Apollo-15 landing site (discossed below in detaii).

The final bend of this sequence is a sharp turn to the northwest which becomes the general trend of the rille direction for the northern half of its length. The Agollo-15 landing site is located on the mountain side of the rille about one kilometer norih of the turn, The high resclution ground-based photographs of this area will be discussed belon.

To the northwest of the landing site, there is a cryptic feature which is not duplicated elsewhere along the channel. In a series of elongated forms of decreasing kidth, the rille tapers northward over a distance of aboui ten kilometers unill the channel is almost completely closed. The rille then widens abriupily and assumes an unobstructed configuration. Some material has been thrown out of a recent brightmhaloed crater on the mountain side at the sharp bend ia the rille. The resultant ejecta blanket has obscured the original rille geometry someWhat and has also produced a few boulder trails on the rille walls. An expianation for this constriction is essential to an adequate kypothosis for rille genesis, and it is considered in some detail in chapter 7. Profiles number 26 (fig. 4-15) and number 29 (fig. 4-16) are across
significant constrictions in this tapered section. Frofiles number 27 (fig. $4-15$) and number 28 (fig. 4-16) are along the rille bottom through the constriction.

The northern section. Just at the point where the rille assumes a nomal configuration above the constriction, there occurs the first of four lineameme which intersect the rille within a 20 bilometer length of channel. These have been interpreted as tributary rilles (Greeley 1971) but were laier mapped as faults (Carr and El-Baz, 1972) . Profile number 26 (iig. 4-15) is drawn perpendicular to and across the lineament and also intercepts Hadley Rille obliquely at the constriction. Viewed in profile, the lineament is seen to be an escarpment with a height of about 15 neters. The appearance in cross-section and the obvious aligrment with other local structures supports the view thet this is a high-angle fault. This structore may have considerable significance in its relation to the constriction.

About three kilometers to the northwest from its intersection with the first escarpment, the rille encounters a second escarpment with a strike direction approximately perpendicular to the first. This northeast facing escarpment is in approximate alignment with the southwest face of Hill 305. At additional distances of four and then five kilometers along the rille, two more lineaments intersect the chennel with orientations perpendicular to the rille and to Hill 305. Their crosscutting relationship with the mare surface indicates post-mare filling tectonic activity.

In the vicinity of Hill 305 , the rille traverses a stricture between two embayments of Palus Putredinis. Where the rille is adjacent to the hill slope, it becomes subdued and irregular in appearance. In profile (profiles mumbers 30 and 30a, fig. 4-17), the bottom of the rille flattens, the width diminishes, and little outcrop is visible. The change in character on the rille where it abuts premare mountains has been attributed by other authors (Howard and Head, 1972) to mass wasting from the moantains. This interpretation has been expanded at the end of this chapter to calculate a maximum rate of erosion from Hill 305,
and a maximm erosion rate of 106 meters is indicated. The position of the rille relative to Hill 305 and the unusual linearity of the section of channel adjacent to the hill indjcate topographic or structural control of the rille by the hill. At several places around the edge of Hill 305, there are benches of probable mare material clingins to the edge of the hill. These may represent high lave marks formed during mare filiting. Swam et aI. (1972) have reported similar marks at a height of 90 meters above the mare surface around the base of Mount Hadley.

North of Hill 305, the rijle is positioned across one corner of Palus Putredinis. It oltimately ends about 25 kilometers northwest of the hill. This length is further from the 'shore' of premare filling bedrock than any other rille segment. North of the straight section under Hill 305, the rille patitern becomes clearly sinuous for a channel length of ten kilometers, then abnorwally straight for about eight kilometers, and finally continues in a sinuous patiern to the end. Inmediately to the north of Hili 305, the rinle assumes a subdued appearance and nearly disappears for a disiance or about eight kilo-
meters. Further north, the channel becomes more distiract, and the relief continuelly increases to the northern end.

The northem end of the rille intersects some of the segments of the arcuate system of furrows called the Fresnell Rille System. These are believed by mosi authors (ch. 5) to be surface expressions of the circum-Imbrium fault systen. One prominent furrow about one kilometer wide ends abruptly at the rille and sereral other lineaments appear to intersect it less distinctly. An adequate hypothesis for rille origin should explain this association.

At its airreme northern end, the rille widens into a triangular depression about Pour kilometers long and three kilometers wide at its widest. The north edge of this depression is coincident with the contact between mare filling material and premare hilly material. One irregular furrow which intersects the rille on the mare side is out of accord with the other structural directions and is surrounded with brighter matemial than the general mare suriace. This appears to be a plamose structure from Autolycus or Aristillus rather than some feature related to the bedrock or mare surface structure. This indicates that at least one of the craters must post-date the rille.

Observations From Large Scale Ground-based Photographs:

During the Apollo-15 traverses, numerous ground-based photographs were taken of foatures around the landing site. Two focal lengths were
used, 60 mm . Lor normal scale photo coverage, and 500 mm . for telephoto photographs. The photo stations were chosen to provide stereo coverage of many featores and photographs of both scales can be assembled into mosaics, some of wizich are detailed in chapier 3. This section is a description of cextain small scale features in the rille based on observaitions from those photographs.

The material visible within the rille at the landing site includes both outcrop and framented material which ranges in size from 30 meter boulders to probable clay size. Both the outcrop and the loose materials are quite variabie in their appearance.

Swann et a7. (1972) have discussed individual outcrops in some detail and have made a number of significant observations. This paragraph is a summary of their observations. The outcrop along the rille is discontinuous and it is difficult to trace a particular stratigraphic horizon from one outcrop to the next with certainty. The marimum depth of visible outcrop is 60 meters, but rocks collected from Dune Grater (fig. 2-4) suggest at least 100 meters of basaltic rock. Individual outcrops are clearly leyered; all feature a massive layer, and many have
thinner section above and/or below the massive one. It is possible to distinguish the different layers because different physical properties such as reflectance, appearance after weathering, resistance to weathering and mode of fracture give them different optical relief. There is a prominent near-vertical joint set, and this frequently cuts more than one layer. Other joint directions are observed locally but not as a general rule. A few places show possible columar jointing. The layers in this vicinity have an apparent dip to the southwest suggesting that older materials are exposed north along the rille. The lower exposure of the outcrop seems to be associated with a slight topographic bench of problematical origin. These authors think that the evidence is insufficient to demonstrate that a series of separate lava flows are exposed in the rille wall. A comparison of these photographs with outcrops which I have observed in Iceland and northwest Canada suggests that the evidence for at least two flow units on photograph Apollo-15-12023 (fig. 4-19, discussion to follow) is compelling These authors also discuss the possibility that the rille is incised into the pre-mare surface, but find no direct evidence in the nature of a nonconformity.

In order to illustrate several additional important features of the rille wa-l, three sets of stereo photographs will be described here in detail (figures 4-19 to 4-25) These three sets have been chosen as being representative of the features visible on the entire set of 500 mm . photographs of the rille. The coverage of each pair is illustrated on figure 4-18, and identifying information for the stereo models is given in table

4-1. Some of the features to be described can only be discerned stereoscopically.

Table 4-1 Ground-based stereo models described in the text.

Stereo Model	Apol10-15 photographs	Camera location- ground station	Figure number
12023	$9 a$	$4-19$	
	12104 $0 r$	10	$4-20$
	12107	10	$4-21$
2	12058	$9 a$	$4-22$
	12125	10	$4-23$
	12056	$9 a$	$4-24$
	12156	10	$4-25$

Features visible on the upper rille wall section. Stereo model number 1 (table 4-1) illustrates a typical upper section of the rille wall. This model includes extensive outcrop and debris. To the rear of the outcrop on the mare surface is a subdued crater about 50 meters in diameter with virtualln no boulder debris present on its rim. The mare surface behind the rille seems to be veneered with fine material with only an occasional nearly buried boulder visible. The rille wall has two obvious zones, an upper region containing well-displayed outcrop, and a lower section containing unconsolidated material ranging in dia-

Fig. 4-18. Map to indicate the location of stereo models discussed in the text. The models are described in table 4-1.
meter from ten-meter boulders to fine material. Overlying the outcrop is a layer of regolith several meters in thickness which is a depth in agreement with regolith depths precizcted from studies of crater worphology (Oberbeck and Quaide, 1967)'.

The outcrop has tifo clearly different zones. The upper unit is massive, Iight-colored material cat by oblique and vertical joints, the most obvious set being the oblique set. The joint spacing is irregular and relatively wide. The outcrop surface has both rounded and angular areas, but is predominently rounded.

The Iower outcrop by contrast is more closely jointed. There are two prominemt joint sets which have no correspondence to those in the overlying unit. There is a promineni sub-horizontal estand a welldeveloped, subsidiary near-vertical set. The horizontal joints divide the unit into yery well-defined layers which closely resemple terrestrial depositional units. The vertical joint set suggests columar jointing Fiewed from the edge. The lower unit is darker than the upper, has a more blocky sarface appearance, but has a swoother face as a whole. The considerable difference in appearance, joint direction and joint spacing suggests that these two rock rnits have been emplaced at different times. Both outcrops have ofernanging blocks jutting out from the surface a distance of several meters. There is parbially developed clify and bench topography on the upper part of the rille wail, presumably cue to different characteristics of rock units. Debris has collected on a
bench on top of the second mit, and a second accumblation has formed on a bench below this unit. The upper unit is cut by two notiches which appear to have acted as conduits for tains fans on the bench below. These notches have an appearance similer to trails cut by soil movement which the author hes observed in terrestrial alpine topography. However, the lmar trails are less pronounced than the terrestrial trails.

Poised on the rinle lip above the highest rock unit is a collection of large-tomoderate-sized boulders. It is not clear how they achieved this stratigraphic position. They may have been ejecied with regolith from the crater beyond the rille lip on the left side and now are a lag deposit after micro-meteroite erosion (or thermal creep-a mechanism to be postulated). It is not clear how material could be removed from beneath the rocks so as to leave them so precariously positioned. They might have been ejected from some other fresher crater in the vicinity although no such source is evident on the pan photography. There are several such places along the rinle lip where boulders stand above outcrop, but in most cases, the boulders are partially buried and not free-standing as these are.

In order to compare the debris accumulations within the rille with similer featares on the earth, observations and photographs were made at the B8M crushed stone quarry in Ashland, Mass. This site was chosen beause the quarry stone is a greenschist which breaks into angular iragments similar to the lunar debris. The quarry slope accumulation in
figure $4-25$ is zoned so that the large fragments are at the dommslope side of the pile and fines have accumplated above. These accumilations form when a few large rocks slide or roll down the slope and siop to form a dam across the flow path and are followed by a flow of finer material to a position behind the dam. If more large fragnents follow the fine material, they way have enough momentum to roll over the fine accumulation and thus come to rest toward the front of or even ahead of the heap. Eridenily, this process can happen as a single event or as a succession of smaller events. This process requires no atmosphere or water. Several of the debris accumutations on the Iunar photographs have a similarly zoned aspect. This is especially true oi the boulders on the bench below the layered outcrop. Thus, a similar slope transm port process is assumed to be responsible for this accumalation although it is not possible to specnlate on the time rate.

There are a number of other debris accumulations which do not show a clear zonation. One such accumation is on the left side or photo 12023 and is best viewed in stereo on the pair 12023-12107. It is not clear if these boulders are in their approximate original poci. tions or if they were transported by some mechanism which did not ca:se zonation, They seen to overlie a layer of fine material which suggests transport to this locality. Perhaps the entire accumilation arrived in one ballistic event.

MODEL 3 R
$15-12056$

On the bottom one third of the stereo model, the slope takes on 4 different appearance which is characteristic of most of the photographed portions of the lower rille wall. At, this level, there is no outcrop present and the talus contains fewer boulders in proportion to Jine materials. The boulders which are present can be divided into two groups. One group consists of relatively dark-colored rocks which are angular and which rest on the surface with litile or no fijleting with fine material (Horwis and Shoemaker, 1968) ${ }^{1}$. The other boulders are Ifght in color, subdued or rounded in surface appearance, and are relatively buried or fillesed. There seems to be a relative lack of parifially buried boulders. This effect is more follly displayed on stereo pair 12056-12156 which corstitute stereo model number 3 (takie 4-1).

Recent cratering in the rille. The first stereo model (above) illustrates a general section of the rille wall. Siereo model number 2 (table 4-I) contrasts debris which is obviously recently generated with other materials on the slope.
$I_{\text {These }}$ authors have defined fillets as embankments of fine-grained material partially or entirely surrounding larger fragments in a repore: Morris, E. C. and Shoemeker, E. M. (1968) Fragmental debris., Geology, Television observations from surveyor: Part II of Survevor Project Final Report, JPL Tech. Rept. 32-1265, p. 69.

The crater in the center of the field of this stereo model is about 100 meters in diameter, fresh in appearance and has an obvious raised rim of ejecta. The floor of the crater is filled with angular boulders which are as large as twelye meters across. These wers undoubledily excavated by the cratering event. The present author has seen few boulders tim natural situations as clearly angular as the large, pyramidal boulder on the rim of the crater on the uppper left side.

On the rim of the crater, there are many angular boulders, but in addition, there are many which are noticably less angular. The rim deposit is probably a mixture of newly excavated material with meterial from the pre-crater surface. Outside of the ejecta blanket, particularly well displayed on the left, there are accumulations of unzoned debris similar to those noted on the first stereo model. Above this accumulation, there is a section oi the slope which contains nearly buried, subdued appearing boulders also similar to those noted on the prior model.

Three discrete stages of slope development seem to be represented by this debris. During the first stage, the relatively rounded, nearly buried boulders were formed and they were incorporated in a matrix of fines. During the second stage, the slightly rounded, unburied boulder accumulations fomed. Finally, the oratering event produced the extremely angular, excavated boulders in and around the crater. It is not clear if the three boulder types result from distinct time-separated
processes or in the three types represent a continuous process of slope evolution. The apparent absence of partially buried boulders and the dissimilar degree of rounding represented by each boulder type suggests that three distinct processes have operated at widely separated times.

Features qisible on the central rille vall section. Stereo madel number 3 illustrates a portion of the mia-slope section of the rille wall. At this level, there is no outcrop. There are few zoned debris accumbations although a small one is observed on the right sice of the model. These photogrephs particularly inlustrate the two oldest boulder categories. There are many thoroughly buried boulders, but many stand out on the slope. The number of one-hali buried boulders is minimal.

It should be realized that the boulders in these photographs are comparable to the largest glacially transported boulders on earth. It is puzzling as to how they arrived at their present positions without breakage assuming they have been significantly moyed at all. Some of the boulders on the rille slopes (sizes ap to 30 meters across) are larger than the joint blocks in the outcrops in the outcrops above. A joint spacing this large in terrestrial volcanic rocks is certainly exceptionaz.

As illustrated by this photograph, most boulders within the rille have no well-defined boulder trails leading to their present positions.

There are a few boulder trails visible on panoramic photographs (example discussed previously in this chapter): but all are easily associated with recent cratering events. Evidentiy, most boulders have been emplaced by a process with one of the following characteristics:

1. The process dia not form trails initially.
2. The emplacement took place so long ago that the irails have been erased by subsequent erosion.
3. The bonlders are in continual movement in some process which is so slow that the rate of eresure of boulder trails exceeds the rate of boulder motion.

The rovement of material down lunar slopes has usualiy been assumed to result from small inpact events causing the saltation of surface particles. If the results of many impacts are considered, net movement of particles in a down-slope direction is the most probable result. dicrometeorites appear to be an important agent of weathering and erosion of the rille wall. For example, the banded boulder at the top of the tailus accumalation on stereo model number 3 has evidently been differentially weathered to a relief of several decimeters by this mechanism. Another mechanism proposed by Gold (1960) assumes that
particles which attain an electric charge on the lunar surface maintain the charge for a long period in the absence of an atmosphere. The resulting electrostatie attractions and repulsions may result in down-slope movement. This process has not been directly documented.

I would like to propose another possible mechanism for Innar slope transport which can be called thermal creep. Thermal expansion and contraction in response to cyclic solar exposure probably causes continual slight intergranviar readjustmens in the mass of regolith. On sioped surfaces, this would cause downill movemeni with a slow time rate. Such a process would be paricularly active below boulders because reflection of sun light by the rock to the surface in an area adjacent to the shadow of the rock would produce a high temperature gradient there, and thus, be more apt to result in differential movement. This could be largely responsible for the unexplained excavation which has been noted below rocks on lunar slopes and which is apparent on many buried rocks in this stereo model.

Characteristics of the Profiles:

In order that unusual profiles could be identified, several characteristics of each profile were examined to determine rordinary? appearance. These observations are summarized in table 4-2. The following general statements are based on the observed profile characteristics and an examination of each profile location using panoramic photographs.

1. The usual proffle shape is a symuetric ∇-shape with a rounded bottom and mildiy concare limbs.
2. U-shaped profiles are related to craters or adjacent mountain slopes which have probably contributed material to the rille,
3. There is no consistant evidence indicating natural Ieevees.
4. Asymatiry of profiles can be explained by various post-rille formation processes such as infilling by cratering or erosion from adjacent slopes. Some curved sections have distinct asymmetry suggestive of slip-ofi slopes and cut banks in stream channels. This conld be equally well explained by more extreme weathering after rille formation on the sharp inside comer of the curre.
5. On the other hand, weathering and erosion may have destroyed asymmetries which existed after rille formaion.
6. Huch of the cliff and bench appearance is related to visible outcrop.
7. The mare surface slopes toward the mountain side in the southern extremity of the rille, toward the mare side around the landing site, butboth sides of the mare slope in toward the rille in the mid-section of the southern rille segment.
8. The mare surface at the rille edge is higher on the mare side

Table 4-2. Observed protile characteristics.

Frofile shape (based on appearance
of bottom curve joining the two
V-shape (ex.: profile 6)
U-shape (ex.: profile 23)
(the examples are borderline
cases)
Cliff and bench tepography

Mare slopes to the side

Both sides slope to rille.

7

Characteristic

Profile location
Straight channel
Gentile curve
Sharp curve
Very sharp curve
Profile symetry
Symuetric
Asymatric opposite slopes) Present on
Possibly present on

Mountain

Mare

High side of milie
Mare
Mountain
Even
I11-defined
元

Number of profilles with characteristic

Brewer ${ }^{\text {² }} \mathrm{Wa}^{2}$ Total

14	4	18
7	2	9
6	0	6
1	1	2

19
5
24
3
II
on southern profiles but higher on the mountain side around the landing site. The high side tends to be the mowntain side at intermediate locations, but this is variable.

Galculation of Funar Frosion Heqe:

The probable infilling of the rille with material eroded from Hill 305 has been noted in this chapter. If one assumes that the channel in this section vas originally similar to the remsinder of the southem section of the rille, the amount of deposition can be calculated. This provides an estimate of the amount of erosion from Hill 305.

In ordier to accomplish this, the crossmsectional area of the rille was estabIished for each profile location without an obvious disruption using a polar planimeter. These values were averaged to give the statistics in table 4-3.

Table 4-3. Results of chanel cross-section calculations.
Profile numbert used in average: 1-85, 10-24 (24 in total)
Average cross-sectionel area:
(square meters)
Standard deviation
$18.4 \times 10^{4} \mathrm{~m}^{2}$

Standard error
$3.8 \times 10^{4} \mathrm{~m}^{2}$

$$
.8 \times 10^{4} \mathrm{~m}^{2}
$$

By comparison, the two profiles across the rille under Hill 305 (Profilles number 30 and number 30a, Fig. 4-17) have values of $5.73 \times 10^{4} \mathrm{~m}^{2}$ and $8.21 \times 10^{4} \mathrm{~m}^{2}$ which when averaged, give $6.97 \times 10^{4} \mathrm{~m}^{2}$.

Subtracting these two average valnes and computing pooled confidence limits, the amount of in-filling is calculated to be $11.3 x$ $10^{4} \mathrm{~m}^{2} \pm 6.5 \times 10^{4} \mathrm{~m}^{2}$. Over the 7.2 kilometer length of channel which profiles 26 axd 31 seem to represent, this amounts to a volume of $8.1 \times 10^{8} M^{3} \pm 4.7 \times 10^{8} \mathrm{~m}^{3}$. This volume has been shed from an area (orthogonally projected on metric photo without slope correction) of about $1 \times 2 \times 10^{7} \mathrm{H}^{2}$. If the material in the rille is assumed to represent all the meterial which has been shed from the hill slope, this figure implies that at the 90% confidence level, there has been between 28 and 706 meters of erosion from the south slope of Hill 305. If a three billion year date is assumed for the age of rille formation (a data consistent with the mare basalt dates discussed in chapter 2), the maximum rate of arosion is found to be about 35 meters per billion years. There are obvious objections to this argument, bui it suffices to establish an order of magnitude for the lunar erosion rate on an equilibrima slope during Eratosthemian and Copernican time.

CHAPTER V

THE STRUGTURAL SETMING OF HADIEY RTLTS

On metric photos of the Apennine-Hadley region (iig. 5-1), numerous linear and sub-innear structural elements can be observed in map view. The question naturaly arises as to the connection between these structures and Hadley Rille itselis. A careful examination of metric photos indicates that a few structures (perhaps two) in highland areas can be exiended to correspond with individual rille segments, but that no such correspondence is evident for most rille segments. It is necessary, therefore, to examine the region for more subtle relationships.

Structural Data Preparation:

In order to assemble a structural map and to acquire data for numerical analysis of structural trends, the following technique was adopted. A photomosaic of strips from metric photos 15-0991 to 15-0995 was assembled and glued to a hard baching (fig. 5-1). The mosaic was then examined strip by strip under the large for:at stereo viewer (described in ch. 3) using the appropxiate stereo companion for each strip in tum. After a preliminary examination of the mosaic, a sheet of matte surface mular, upon which the structures could be taaced, was taped over the mosaic. Then, with the stereo viewer sijill in position, the structures were located, plotted on the nylar; and an identifying number was assigned to each. The matte surface nylar transmitted
enough of the image from the mosaic that good stereo fusion was possible during the plotting. This allowed relief to be used as a primary criterion in distinguishing structures in acdibion to tone and textural differences.

This technique was developed by the author after reviewing reports descrioing difficulities in interpreting lineaments visible on Apol10-15 photography. In particular; Howard and Larsen (1972) have concluded after laboratory experiments involving the photography of random surfaces that inlusionary lineament patierns may exist on much Iunar photography. Characteristically, these patterns are most observable at low sum angle and appear to form a grid which is symmetrically disposed about the direction to the sum. The angle between the grid pattern and the surface projection of the sun vector varied from 15° to 55° increasing with the sun engle. The authors conclude that serious difficalty may be encountered distinguishing real and inaginary lineamenis on low sum photography. Swam et al. (1972) have specificalify studied the numerous small scale lineaments that appear on the

Apol10-15 groundmased photography and have published rose diagrams of the result. Nost of the rose diagrams show a symmetry about the sun vector. They have concluded that it is not possible to definitively distinguish true lineaments from artifacts of lighting.

By using relief as a key factor in distinguishing Iineaments, this bias is probably minimized. The photographs which were chosen are taken at intermediate sun angles of 21° (0995) to $26^{\circ}(0991)^{1}$. These give adequate stereo relief and contrast but should exhibit fewer lighting aritifacts than low sun photos. An additional advantage is that lineaments are not obscured by the relatively small shedows on these photographs.

A total of 181 structures were plotted. As the structures fere being mapped, they wers documentedas follows:

1. The azimath of each of the elements was measured using the vernier anglehead of a K\&F drafting machine. This method of accumulating angular data from graphics is rapid, accurate ($\ddagger \frac{1}{4}$ degree) and therefore has mach to recommend it. It must be noted that no correction was attempted for the distortion of the structure azimaths due to relief of the terrain through which they pass. Long structures probably
$I_{\text {Lockheed Electronics Co., Inc. (1972) Apol10-15 Index of Mapping }}$ Gamera and Panoramic Camera Photographs, NASA, Housion.
average to an approximately correct value and the most mearingful of the subsequent statistical tests emphasize the long-length structures.
2. The type of structure was noted and an appropriate map symbol was plotted. In addition, a numerical code was recorded to identify the structure type for each structure in the data set. The seven structure types into which all observed structures could be classed and the number of observations in each class are:
a. Apparent grabens (17 or 9.4\%).
b. Edges of mountain blocks (22 or 12.5\%).
c. Undifferentiated lineaments (97 or 53.6%).
d. Crater chains (17 or 9.4\%).
e. Apparent volcanic relief features (1_{4} or $7 \cdot 7 \%$).
f. Small local systems of fractures (11 or 6.2\%).
g. The generel trend of simus rilles (3 or 1. 7) .
3. The relative relief of each structure was classed as follows:
a. Obvious relief features (e.g., Fresnell Rille system) .
b. Easily seen on metric photos (southeast segment of Bradley Ritile).
c. Can be found on monoscopic photo after a search (many

fig. 5-1. Mosaic of photographs, Apollo-15 metric 991 to 995 used for structural interpretation. Compare with fig. 5-2.
```
工二脌 APPARENT GRABENS
r r EDGE OF MOUNTAIN BLOCKS
——— UNDIFFERENTIATED LINEAMENTS
0-\cdots-0 CRATERS a CRATER CHAINS
~O}\mathrm{ APPARENT VOLCANIC RELIEF
            FEATURES (DEPRESSIONS)
    F SMALL LOCAL FRACTURE SYSTEMS
&NMUOUS RILLES
..... ASSUMED ELEMENTS
~- GENERAL.IZED EASIN BOUNDARY
```

Fig．5－2．Map illustrating structures surrounding Hadley Rille

1ineaments).
d. Only evident in stereoscopic model (no. 16).
4. The length of each structure was measured.
5. The linearity of each structure was indicated with a code number.

The map which resulted from these observations is reproduced as figure 5-2.

To complete the structural data, the position of the mid-puint of each structural element was determined and recorded. This was accomplished by overlaying a metric grid on the map (fig. 5-2) to establish a reference system. The position of the grid relative to the lunar coordinate system was recorded so that the metric measurements could be transformed into lunar latitudes and longitudes. The completed structural data set is listed in appendix two.

Relationship of Structures to Adjacent Besins:

In chapter too, iv was noted that the structures in the ApennineHadley region eppear to be generally circumferential or radial to the Imbrium Basin, but that the preceding Serenitatis and Vaporum Basinforming events must have affected the region as well. One use of the structural data is to examine the relationship between basins and structures.

Several authors have discussed the structures which are circumferential and radial to lunar basins:

Hartuann and Kuiper have published a series of papers discussing the gross stmucture of lunas basins. Harimann and Kuiper (1962) is a repori detailing the positions of concentric ring structures around 211 the telescopicelly observable lunar basins. Hamtamen (1963) pubIished a detailed study of the radial stimctures suryoundins the Imbrium Basin. This paper also cuntains an extensive bibliography on the Imbrium Besin structures. The papers by Hartmenn and Kuiper establisin the axistance of the concentric and radial patterns without doubt.

Garr and El -Baz (1971) consider the northwest facing scarpe of the Apennine Mounteins to be a major structural boundary delimiting the edge of basin-iill deposits. They also suggest that basinasadial faulis are to be found in the mountains outside the basin.

Mutch (1972) discusses the presence of concentric rilles surrounding the Humorum Basin.

Basin related directions. The present author decided to investigate the question of the relationship of these structures to the adjacent basins using a direct approach. A general equation was written which gives the azimuth from any point on a planetary surface to any other point given the latitule and longitude of the pair of points. The analysis of this problem which is given in appendix one fields the following result:

$$
\operatorname{Cos}(A Z)=\frac{\operatorname{Sin}\left(I_{2}\right)-S \times \operatorname{Sin}\left(I_{1}\right)}{\operatorname{Cos}\left(I_{1}\right) \times\left(I-S^{2}\right)^{\frac{T}{2}}}
$$

where

$$
S=\left[\cos \left(I_{1}\right) \times \operatorname{Cos}\left(I_{2}\right)\right] \times\left[\operatorname{Cos}\left(W_{2}-W_{1}\right)+\operatorname{Sin}\left(I_{2}\right)+\operatorname{Sin}\left(I_{1}\right)\right]
$$

AZ is the desired azinuth from point I to point 2 (note that on a spherical suriace thei the azimuth is not the same as the back azimith. Thus, some care musi be taken to substitnte variables correctly.)
I_{1} and I_{2} are the Latitures of points I and 2 respectively.
W_{1} and W_{2} are the longitudes of points 1 and 2 respectively.

Upon the completion of this analysis, a progran was written to use this equation and the position data taken for the mid-point of each of the measured structures to compute:

1. The direction to the center of the Imbrium Basin from each structure.
2. The direction to the center of the Serenitatis Basin from each structure.
3. The directions at each structure location circumerential to each basin; that is, azimuths at 90° io the radial azinuths described in 1. and 2.

For purposes of this numerical experiment, the coordinates of the basin centers were estimated from the map by Filhelms and McOauley (7971) . The overall results of these calculations are listed in table 5-1 and displeyed graphically in fisure 5-3.

Table 5-1. Ranges of computed directions from structural elementis in the Apennine-tidaley region radial and circumferential to the Imbrium and Serenitatis Basins.

Direction

Range of Values in the Resion
Radial to the Imbrium Basin N55.6ik to N64.91

Circumferential to the Imbrifum Basin
$\mathrm{N} 26 . \mathrm{OE}$ to N 34.4 E
Radial to Serenitatis Basir
N76. IE to N89.5E
Gircumperential to Serenitatis Basin NO. 5 H to NI 3.9 M

Blassification of structures according to azinuth. It can be seen that there is a considerable angular difference between these values;

Fig. 5-3. Basin-related directions which form the basis of the structure classification by azimuth.
that is, Serenitatis-related directions do not correspond to Imbxiumrelated directions. This fact is presented graphically in fig. 5-3. Thus, the possibilitty arises that the measured structural azimuths might be classed and discussed in terms of which computed basin-related direction the measurements most closely approximate. If the Serenitatis radial directions through this region were similar, for example, to the Imbrium radial directions, such a classification would be impossible.

Accordingly, the computed azimuths from the center of each structure radial and tangential to each basin wers compared to the azimuths which were actually measured for each structure. Then, the individual structures were grouped according to the basin direction with which they were most closely associated. The overall results are as follows:

1. Forty-eight (48) of the measured structure azimuths or 26.5% fall closest to the Imbrium radial direction (within $\pm 22^{\circ}$).
2. Fifty-five (55) of the structure azimuths or 30.4 fot fall closest to the Imbrium circumferential direction (within $\pm 25^{\circ}$).
3. Thirty (30) of the structure azimuths or 16.6% fall closest to the Serenitatis radial direction (within $\pm 24^{\circ}$).
4. Forty-eight (48) of the structure azimuths or 26.5% fall closest to the Serenitatis circumferential direction (within $\pm 24^{\circ}$).

Results of structural calculations. The numerical results of these calculations are presented in appendix two. In order to allow inverpretation, the results have been sumarized and presented in two formats. The firsi is graphical and the second is cartogrtphic.

Histograns. Figure 5-4 contains three graphical displays of the set of structure azimuths. The bottom graph is a histogram with a 1° class width of the number of measured structures falling in each interval. Plotted above this is a second histogram of the same data grouped with a class width of 10°. Plotted at the top of the diragram is a graph which represents the I° class width histogram except that the 1° frequency values heve been smoothed according to Spencer's curve-smoothing technique. (The use of this formula is detailed in ch. 3.) It can be noted that the smoothed curve gives a much bettex representation of the oscillations in the frequency distribution than does the 10° class width histogram.

In order to display the results of the preceding numerical experiment, the ranges of the calculated basin-radial and basin-circumferential azimuths have been superimposed as vartical lines on the graphs. In addition, figure $5-4$ indicates the range of measured structune azimaths which is associated with each of the four basin-related structural directions.

On the histograms (fig. 5-4), several sigmificant factors are evident:

FIG. 5-4

1. The Imiorium circumerential and the Serenitatis radial directions are represented by nell-qefined peaks. The siructures with east-west azimuths are musual in tine lunar structural patienn. E1ston et a7. (1971) have noted a moon-wide absence of structures with an east-west strike,
2. The Inbrim racial direction is representec by a welldefinnec peak which is not as Iarge as might be expected.
3. The Serenitatis circuraferential direction seems to be represented by a trough, but an examination of the 1° class interval histogrem indicates that several structures with a north-south strike constitute a peat.
4. A somewhat pugzing observation is that the largest peak on the smoothec curve, as well as both histograms, falls at the division between the Imbrima radial and the Serenitatis circunferential expented ranges at an aximuih of 714°.

These frequency distribations indicate only the number of points falling in each azimuthal class interval with no indication of the relative importance of tine different structures. In order to give weight to the major structures, a smoothed curve showing the percentage
of structure length falling in each azimuthal intervai has also been prepared (fig. 5-7). Gomparison of the two smoothed curves (figs. 5-7 and 5-4) illustrates the following points:

1. With one exception, 217 the major peaks are still present. The exception is at 12°.
2. The Imbrium-related peaks have become higher at the expense of the Serenitainis-related peaks. The east-nesi Serenitatis radial peak has become very small.
3. The peak at the boundary between Imbrium radial and Serenitam tis circumferential ranges has constiderably dintinished.

Thus, in comparison, the structures which have azimuths associated with the Imbrium circumferential and radial directions are the structures with the most surface expression. This is what one sould expect from the chronology of the region.

Interpretive structure maps. These graphs, while giving a good indication of the distribution of measured azinuths relative to basinrelated directions, iail to illustrate individual relationships. In order to display which specisic fractures appear to relate to each basin, two additional maps (figs. 5-5 and 5-6) have been dram. The information for these figures was optained with a program segment which listed for each structure the basin-related direction which its azimath most closely approximates. (This is not to imply that all structures are basin-related-only that they have been so classed.)

```
I工 APPARENT GRABENS
r redge of mOUNTAIN Blocks
--- undifferentiated lineaments
O..o-* CRATERS a CRATER CHAINS
ASPGPARENT VOLCANIC RELIEF
            FEATURES (DEPRESSIONS)
    ₹ SmALL LOCAL FRACTURE SYSTEMS
SINUOUS RILLES
..... ASSUMED ELEMENTS
~GENERALIZED BASIN BOUNDARY
```

Fig. 5-5. Structures apparently related to the Imbrium Besin.

ITS	APPARENT GRABENS
$r \sim$	EDGE OF MOUNTAIN BLOCKS
- - -	UNDIFFERENTIATED LINEAMENTS
-0.0-0*	CRATERS E CRATER CHAINS
0	APPARENT VOLCANIC RELIEF FEATURES (DEPRESSIONS)
$<^{\circ}$	SMALL LOCAL FRACTURE SYSTEMS
\cdots	SINUOUS RILLES
....	ASSUMED ELEMENTS
\cdots	GENERALIZED GASIN BOUNDARY

Fig, 5w. Struetures apparentiy related to the Serenitatis Basin

The maps were then prepared by tracing the structures related to each basin on separate sheets. Examination of these maps indicates the following:

1. Most of the major structures in the region appear to be Imbrium-related (fig. 5-5). Struciure numbers 72, 80, 9, 158, 131, 132, and 90 on the Serenitatis map (ing. 5-6) are important exceptions to this rule.
2. However, there are signisicant Serenitatis-releted structures even within the Imbrium Basin; for example, 158, 179, 169, 9 (Iig. 5-6).
3. There is an important group of structures related to the Serenitatis radial direction which strike noriheasi across the Apennine-fladley region. These include structure numbers $158,80,9,79$, 91, 99, 39, 38, 18 and othes smaller structures (fig. 5-6).
4. The arcuate depression at the south end of Hadley Rille appears to be closely related by victue of its orientation to the Seremitatis circurierential direction, both with respect to its strike and its concavity (fig. 5-6).
5. Post-mare filling fractures around Hill 305 (nos. 24, 27, 29 and 30) appear to be related to Serenitatis directions.

Conclusions. Ont the basis of thesé graphical and cartographic anelyses, the following conclasions are postulated:

1. Although the major structures are Imbrium-related, meny of the linear features in the Apennine-Hadley region are fractures related to the older Serenitatis event.
2. In particular, the arcuate depression at the south end of Hadley Rille is probably related to an old Serenitatis circumferential fracture which was subsequently obscured by Imbrium ejecta or the upthrusting of the Apennines.
3. Some of the post-mare filling structures around Hill 305 appear to be related to Serenitatis fracturing and therefore may represent much more extensive fractures than their limited surface expression implies.
4. If the Serenitatis event is sifill structurally evident in this region, the Vaporum event may be too. The Vaporum Basin has been thoroughly obscured by subsequent events so that it is not possible to accurately locate its center. It appears to be somewhat east of due south of Hadley Rille (fig. 2-1). If so, the Wepormm circumferential direction would roughly correspond to the Serenitatis radial direction and the Vaporum radial direction would correspond to the Serenitatis circumferential direction in the Hadley region. Thus, fractures on the Serenitatis-related map (fig. 5-6) could well be old Vapomm fractures which have subsequently been remobilized twice; once, by the Serenitatis event and finally, by the Imbrium event. Such a sequence of events could explain the frequency peak falling beiween the Imbrium radial and Serenitatis circumferential intervals on figure 5-4. The fractures
represented by this peak might never have been mobilized by the Serenitatis and Imbrium events if they had not been initiated by the Vaporum event.

Thus far, this chapter has discussed relationships betwe, il structures and the surrounding basins. The relationship of the Hadley Rille to the stiructural setting remains to be discussed. This subject will be approached in two ways. First, the directions taken by various segments of the rille are compared with the structural azimuths measured in the region. Second, the density of structures in the region is investigated to show how the rille is related to the amount of assumed fracturing.

Comparison of Pille Directions With Structural Directions:

The author is aware of one detailed investigation of the relationship between the rinle and surrounding structures. This was performed by Howard et al. (1972) who have published rose diagrams of predominant azimuths observed in the southern and northern section of the rille and compared these to the directions from the center of the Apennine-nadley region radial and circumferential to the Imbrium Basin. They have concluded thet in the southern section the rille shows no structural control; whereas there mey be some control by Imbrium radial structures
in the northern segment.

As should be evident from the preceding discussion, the structural situation in the region is more complex than a simple grid of Imbrium madial and circumferential azimuths. Therefore, a more detajled comparison seemed necessary. In the present study, the comparison has been carmied out through the use of statistical tests on actual numerical data. Frequency distributions have also been plotted for visual comparison. Comparisons have been made between several classes of data which are described below.

Structural azimuths. Various sub-sets were extracted from the main set of structural data described earlier in this chapter. The exiraction was accomplished by mechine using the following technique:

1. Punched cards were prepared with a numerical code which detailed the characteristics (azimuth, length, structure type, relief, regularity) for each of the 181 measured structures.
2. A program was written to converit the descriptive parts of this data (structure type, relief, regularity) intuo a 20-digit binary number.
3. Selection cards were prepared, each of which also contained a 20-digit binary number. The number on each of these cards represents a combination of characteristics which characterizes a sub-set of the main structural data.
4. The binary numbers on the selection cards were read, compared for correspondnece with the internally generated binary numbers, and the azinuth and length of structures with characteristics which fit the specifications on the selection cards were stored for subsequent punching onto new cards. In this fashion, the lengtins and azinuths of all the structures with any desired characteristics could be grouped as a data set for subsequent statistical comperison.

Rille azimuths. A set of agimuths and their associated lengths which characterizes the directions taken by the rille channel was obtained from a set of $x-y$ coordinates of the rille obtained with the Mann comparator. This data is fully described in chapter six. The azimuths were computed by considering the rille to be a graph in $x-y$ space and then compuing the slope of lines comecting adjacent measured $x-y$ points. These slopes were then converted to angles relative to north. There are 152 measured $x-y$ coordinates which characterize the rille so that 151 azimuths were Jound between adjacent points. In addition to the azimuths, the distances between adjacent points wers also tablulated. The resultant azimuth and length data sets were punched on cards for subsequent processing. Once the main set of rille azimuths was formed, two additional sub-sets were punched to characterize the northern and southern section of the rille separately. The southern azinuths and lengths are those between points 1 and 84 (fig. 6-2) and the northern sets rum from points 84 to 152. This data is listed in appendix two.

Statistical comparisons of the data. The obvious non-normal distributions displeyed by these data sets (figs. 5-7 and 5-8) makes the comparison of them meaningless if most simple classical parametric statistical tests are used. After some experimentation, the following approaches hate been developed.

1. Comparison of Irequency distributions. Frequency distributions have been formed from the various data sub-sets described above. The frequency distributions record the percentage of length of observed structures which fall into each 10° class interval; that is, the percent lengths are grouped into 18 azimuthal intervals between 0° and 180°. The 10° class width is greater then the irregulstity in strike direction displayed by most individual structures. Some of these Irequency distribuitions form the basis of the histograms (figs. 5-7 and 5-8).

Different frequency distributions have then been compared for:
a. Linear correlation.
b. Rank correlation.
using the Pearson product moment comrelation coefficient and the Spearman rank correlation coefficient respectively. These two tests each yield a numerical correlation coefficient which allows the determination of the probability of a direct or inverse correlation between the frequency distributions. A positive results of these tests indicates that at a certain level of confidence, a correlation exists between the frequency distributions.

FIG: 5-7

FIG. 5-8
2. Comparison of cumulative frequency distributions. Percent cumulative frequency distributions of the number of structures in each 1° azimuthal interval have been fomed for the various data sub-sets. Difierent distributions have then been compared to find the mexinum difference in cumulaivive srequency which occurs throughout the 0° to 180° aximuthal interval. This difference which is called the maximum deviation can be compared with theoretical distributions to determine the probability of finding the observed difference in two sanples drawn from the same population. A positive result of. this test indicates a small probability of observing the observed disference and thus can be taken as an indication of tack of correlation between the two samples. This test which is called Smirnov's maximum deviation test for identical popilations has the following attribute according to Bradley $(1968)^{1}$.
"The present test is appropriate when the experimenter wishes to tesi the $H_{0}{ }^{2}$ of identity against general alternatives of nonidentity and does not wish the sensitivity of the test to be concentrated upon one aspect of nonidentity (for example, different median value or

Bradley, J. V. (1968) Distribution-Free Statistical Tests: Frentice Hall, Englewood Clifis, Hew Jersey, p. 288.
${ }^{2} \mathrm{H}_{\mathrm{O}}$ is the null hypothesis-a postulate conceming the data which the experimenter can confinm or reject by statistical test.
unequal location - my nowe) at the expense of most others."

Thus, this appears to be a general test to detect dissimilarities in the overall characteristics of samples.

The essential difference between the correlation approach and the maximum dificerence approach is that the first assumes that no comrelation exists and seeks to show the contrary, whereas, the second assumes a similarity between the two distributions and then expresses the probability of a difference. Thus, the two methods are complimentary: The finss of the two tests is probably the most significant because of the emphasis placed on major structures by the accunulation of lengih values in the frequency distributions.

Sumary of statistical tests. Table 5-2 is a summary of the significant testis which have been periormed and an indication of the results. The table indicates the following generalizations:
I. No statistically significant direct or inverse correlation exists between the set of rithe agimuihs and any set of structure elements. The negative correlation coefficients obtained indicate that any correlation which does exist tends to be inverse; that is, rille azimuths have some tendency to follow directions not assumed by structures. Figures 5-9 is a scatter diagram illusirating the lack of comrelation betwen the rille azimuths and the set of all structure azinuths.

Fig. 5-9. Scatter diagram: \% length of rille azimath in a 10° azimathel interval va. $\%$ lengila of structure azimuths in the saive interval.
2. Although there is no significant linear or rank correlation between the Irequency distributions, the Smirnov test does not show a significant difference between the cumulatiye frequency distributions. An attempt was made to resolve the parador of no correlation bat also no significant diefference by comparing cumulative frequencies of structure lengit rather than data points, thus weighting the effect of the major structures. Such tests gave significant differences at the If confidence level, but this approach may be inconsistent with the basic assumptions supporting the Smirnov tesi.
3. No correlation exists between either the norith or south sections of the rille and any set of structural elements.
4. The Smirnop tests indicate that the north and south sections of the rille to have cumilative frequencies considerably different than the structure sets, in agreement with 3. above.
5. Azimuths displayed by the south hale of the rille show a strong inverse correlation to those in the north. The Smirnov test indicates a yery significant difference.

Thus, the statistics appear to indicate a general lack of correlation between the rille and surrounding structures. If the frequency distributions being compared were simple uni-model distribuitions, this could be riewed as clear evidence of lack of structural control. However, the bi-modeI structural distribution evidenced here (fig. 5-4) adds another degree of freedom to the situation which leads to two possibilities:

Table 5-2. Results of Representative Statistical Teste.

Comparison
Whole rille compared with all structures

North $\frac{1}{2}$ of rille compared with all structures

South $\frac{1}{2}$ of rille compared with all structures

Whole rille compared with well-defined structures (total of 129, small, irregular, or indistinct excluded)

North $\frac{1}{2}$ of rille compared with welldefined structures

South $\frac{1}{2}$ of rille compared with welldefined structures

Whole rinle comparer. with all lineaments

Result ${ }^{1}$
I.C.G. $=-.319$ Inverse tendency, not significant
R.C.C. $=-.256$ Inverse tendency, not significent
D
I.G.G. $=-.027$ Not sigmificant R.C.C. $=.091$ Not Bi.gnificant $\mathrm{D}=.208$ Significant at $5 \%^{2}$
J.C.G. $=-.205$ Inverse tendency, not significant R.C.C. $=\mathbf{- a} .257$ Inverse tendency, not significant $D=.248$ Significant at $1 \% \%^{2}$
I.C.C. $=-.424$ Inverse tendency, not significant R. $\mathrm{C}_{8} \mathrm{C}_{4}=-\mathbf{- 2 6 3}$. Inverse tendency, not significant $D=.120$ Not significant
I.C.C. $=-.162$ Not significant
R. $\mathrm{C}_{8} \mathrm{C}_{4}=.048$ Not sigmificant $\mathrm{D}=.262$ Sigmificant at $1 \%^{2}$
L.G.C. $=-125$ Not significant
R.G.C. $=$. 048 Not significant D $=.215$ Significant at $2 \not y^{2}$
I. C.C. $=-.183$ Not significant R.C.C. $=-.126$ Not significant $\mathrm{D}=.089$ Not significant
 maximum deviation.
${ }^{2}$ Koch, G. S. and Link, R. F. (1970) Statistical Analysis of Geological Data, Vol. 1, Wiley, New York, appear to suggest that a 10% risk level is significant for geologic probleme.

Table 5-2. Results of Representative Statistical Tests, conerd.

Comparison
North $\frac{1}{2}$ of rille compared with all Iineaments

South $\frac{1}{2}$ of rilile compared with 971 lineaments

North $\frac{1}{8}$ of rille compared with south责 of rille

Ibid.
${ }^{2}$ Ibid.

Result ${ }^{1}$

L.G.C. $=-.128$ Not significant R.C.C. $=-.192$ Not significent
$\mathrm{D}=.265$ Significant at $7 \%^{2}$
L.C.C. $=.012$ Not significant
R.C.G. $=.123$ Not significant
$\mathrm{D}=.211$ Signifícant $\operatorname{at} 5 \%^{2}$
L.C.C. :-.774 Inverse correlation probable at $1 \% \%_{2}^{2}$
R.O.C. $=-.809$ Inverse correlatign probable at $7 \%^{2}$
$0=.423$ Significant at 1%
2. There may be no structural control over the rille in which case the statistical result is taken at face value.
2. One structure direction may give a predominating structural control to the extent that the other structure direction which appears as a hump in a structure Irequency distribution has no correlative hump in a particular distribution of rille azimuths. This lack of correlation for one structure direction may yield a nonsignificant correlation coenificient even if total structural control existed in the other structure direction.

The next section is an examination of the graphical displays of the frequency distributions which allows some discrimination between these altermatives.

Graphical comparisons. Figures 5-7 and 5-8 are frequency distributions of the most sigrificant data sub-sets. Two graphs have been prepared for each sub-set; one is a histogram with a 10° class interval and the other is a 1° histogram smoothed by Spencerts formula. In order to emphasize the major structures, these diagrams represent the percent of structure or rijle segment lengih which is found in each azimuthal class. This is in contrast to fig. 5-4 which indicates the number of observaitions in each class. The histograms serve to give a gross comparison and the smoothed curves show more detail. This type of graphicel display is used in preference to rose diagrans because Gartesian coordinates avoid the distortion of the wedge-shaped segments of a rose diagram (discussed in Harbugh and Merriam,
1968) ${ }^{1}$. Also, the use of Spencer's formula is facilitated, and comparison between diagrams can be made easily by projecting vertically from one curve to the next.

An examination of these figures indicates the following points:

1. Peaks on the whole rille smoothed curve tend to correspond to troughs on the curve of all structures. This explains the tendency toward negative correlation observed between the whole rille and different structure sub-sets.
2. The whole xille distribution is far more diffuse than the clearly bi-modal distribution of structures.
3. The inverse correlation between the north and south sections is obvious.
4. The north segment of the rille displays a moll-iefined peak (70° wide, 100° to 170°) which grossly compares to the wider (100° wide, 80° to 180°) peak which represents sontheast striking structures.
5. The southern segrent displays a peak $\left[110^{\circ}\right.$ wide or $350^{\circ}\left(=170^{\circ}\right)$ to 100°] which corresponds to the peak of nowtheast striking structures (60° wide, 10° to 70°), but the rille's histogram peak is about twice the width of the structure peak.

I Harbaugh, J. T. and Merriam, D. F. (1968) Computer Applications in Stratigraphic Anatysis, Wiley, New York.

Examination of the photomosaic of the region (fig. 5-1) indicates a pinsical basis for these observations. The southern hall of the rille occupies a valley which strikes northeast in the Imbrium circumferential direction. Because the rille occupies a longitudinal position in the valley, it is necessary that azinuths measured for this section should cluster in a diffuse group about the northeast direction. Because the structure azimuths appear so much more concentrated than the rille azimuths, it is felt that individual rille segments are not directed by bedrock structure in the southern section.

By contrast, the northem section does not occupy a well-defined valley. The fact that the northwest stribing rille azinuths form a tighter cluster than the northwest grouping of the structure azimuths is therefore significant. An examination of the photonosaic indicates that Hill 305 is one structure element which effects obrious control over the rille. The segment adjacent to the Apollom 15 landing site (fig. 2-3) is a similariy directed sub-1inear segment, but without obvious structrarel control. Because of this obvious control of one rille segment and the relatively tight grouping of rille azinnths about the Imbrium radial direction, it is felt that significent control of individual rille sesments exists in the northern section of the rille. In the nexi chapter, it will be shown that the sinuosity of this section is less than that of the southern section. The relative straightness of the northern section is further evidence of some linear controlling factor. The possibility of structural control of the linear segment adjacent to the Apollo-15 Ianding site has some
significance in interpreting the constriction in that section of the rille (ch. 7).

In sumary, it appears thet the diffuse distribution of rille azimuths representing the whole rille results from the sumation of two more concentrated groupings corresponding to the noxthern and southern sections. The southern section is influenced by no direct structural control, but its azimuthal distribution as a whole is influenced by the rillers valley-central position. The tight grouping of the northern rille azimuins indicaies control of individual segments by Imbrium radial elements. The strong inverse correlation between the azintuths of the two sections is a result of these two factors. This interpretation is consistent mith the statistical and graphic evidence.

Fractures Associated With the Rille:

Although the course of the rille is for the most part not directed by prewexisting sinuciures, such structures may in some way have been involved in the formation of the rille. In order to investigate the overall association of the rille with structures, a fracture density map (fig. 5-70) was prepared. This map is predicated on the assumption that all the observed structures with the exception of sinuous rilles represent fractures in the basement material. The map was drawn by overleying a metric sampling grid on the original $19 \times 37 \mathrm{~cm}$. structure map (fig. 5-2). Then the total length of structures measured in millimeters in each $2 \times 2 \mathrm{~cm}$. block was measured and
the result was recorded at the center of the block. The result was an arrey of numbers at 1 cm . veritical and horiosntal intervals (since overlapping blocks were used) which was suitable for contouring. The resulting map (fig. 5-10) has contour lines which represent the length of observable fracture in the sumounding area. Because of the arbitrary scale of the metric photos which form the basis of the original map, the units of fracture densiby are arbitrary, but a value of 20 (indicating a Iength of 20 mm . in a $2 \times 2 \mathrm{~cm}$. square at map scale) indicates that on the ground, 16 kilometers of structure

These observations have been made concerning this map:

1. Only visible structures are mapped. Several processes have conspired to obscure structures-the most prominent of which is mare filling. This explains the major areas with zero structure density.
2. The highest structure densities are associated with the Bradley and Fresnell Rille systems.
3. A high density extends east from the Fresnell Rille system across Fresnell Fitge.

- 4. The constriction at the midsection on the rille is associated with the extreme structure density around Hill 305.

5. The arcuate depression at the south end of the rille is in a region of high structure density.

FIg. 5-10. Contour map of fracture pattarn based on the relative length density of Iineamente

Sunmary of Structural Relationships:

The preceding analysis indicates several peritinent relationships between the rille and its surroundings. The immediate vicinity has a complex set of iractures which are apparently related to at least two basin-iorming events. The Iocation of the rille itself is constrained by major structures, such as the faulis bounding the Apennine Mountains. Some segmints in the northern section seem to be directed hy pre-existing structures. Some parts of the rille are associated with areas of high structure density. Particularly notable in this regard are the arcuate depression at the south end and the interruption northwest of the Apollo-15 landing site.

GHAPTIER VI

NOMERICAI DESCRIPITON OF HADLEY RIITE

This chapter is intended to provide a numerical description of Hadley Rille. The first sections of the chapter discuss the determination of basic rille parameters: lengths, widths, depths, etc. This is followed by a discussion of derived relationships such as sinuosity, meander wave length, and width/depth ratios. These values are then compared with those found by other observers for other rilles. The final sections of the chapter discuss statistical relations and between parameters. Most of these relationships are presented graphically as well. Throughout this chapter, there is considerable emphasis on achieving a known degree of confidence; confidence limits are specified whenever possible, and a dual approach is used for deriving several conclusions. Data and calculated values not listed in the text will be found in appendix three.

Physical Dimensions of the Rinle:

Several techniques have been used to measure lengths of rille segments, the width and depth at specific cross-sections and other numerical characteristics of the sille. This section is a summary of these results and techniques.

Gross lengths along the ritie. The tip-to-tip extent of the rille and the length of several sub-sections have been established by direct
measurement on meiric photos m15-414 and N15-586. These are straight line map distances indicated on figure 6-1 and reporived in table 6-1 Which are intended to establish the gross size of the rille. These values were obtained by measuring the photo distances between point on paper base metric photos using a vernier caliper and converting to ground distances using the focal length and flight altitudes published by Lockheed Eilectronics (1972) . On an undistorted vertical photiograph,

$$
\frac{\text { Ground distance }}{\text { Photo distance }}=\frac{\text { Flight height }}{\text { Focal length }}
$$

which allows the determination of ground distances (Tewinkel, 1966) . The photos were scaled by measuring the edges and computing the enlargement compared to the original metric format. The corresponcins ground distances obtained from the two different photos agree to within ± 200 meters which probably represents the precision of the measurements. The accuracy, estimated to be about $Z \not \approx$, is probably limited by differential shrinkage of the paper, uncertainty in the flight heighi, possible tilt in the camera system and slight parallax due to the unevenness of the mare surface.

Table 6-1. Gross lengths of the rille.

$\begin{aligned} & \text { Length } \\ & \text { (ing. 6-1) } \end{aligned}$	Bistance$(\operatorname{ASI5-414)}$		$\begin{aligned} & \text { Distance } \\ & \text { (ASI.5-586) } \end{aligned}$		Average value(km.)
	(mm. photo)	(kn. gad.)	(mm. photo)	(km. gnd.)	-
$a-b$	95.80	76.5	95.0	76.6	76.6
2-c	90.80	72.5	90.0	72.6	72.6
$\mathrm{b}-\mathrm{c}$	5.60	4.5	5.55	4.5	4.5
d-e	10.20	8.1	10.10	8.1	8.1
f-g	shadon		18.3	14.8	
a-h	60.40	48.2	59.55	48.0	48.1
$\mathrm{h}-\mathrm{c}$	63.00	50.3	62.60	50.5	50.4
h-b	68.70	54.9	67.65	54.6	54.8
j-b	33.45	26.7	j poorly	fined	-

Figure 6-1. Location of length measurements reported in table 6-1.

Average width of the rille. To determine the average width of the rille and examine the relationship between width and other parameters, a set of measurements was made of $x-y$ coordinates of pairs of points directly opposed across the rille at 152 locations along the rille. Figure 6-2 indicates the locations of these measurements. Since this data set is used for a number of calculations, its acquisition will be discussed in some detain.

Measurements were made on the Mann 1200-3 comparator (described in ch. 3) on film base photographs. The shherent accuracy of the Mann comparator is . 001 man. which corresponds to a ground distance of 10 meters. This is the same order as the resolution of the photographs so that no information is lost. The Mann comparator is not a stereoscopic instrument so the location of the edge of the rille was established by observing differences in texture, albedo, and tone. The photograph chosen for measurement was number 15-476 winch displays the following characteristics:

1. It provides maximum contrast between the light reflected from the rille walls and that from the adjacent mare surface.
2. It minimizes the proportion of rille length which is obscured by shadows cast by the Apenrines.
3. It provides adequate contrast in the relatityly obscure northem portion of the rille where the east-west chanel oxientation results in peorer contrast than present in other segments.

The measurement locations were neither randomly chosen nor equally spaced. In order to give the best graphic portrayal of the rille (fig. $6-4$), the measurement Iocations were selected so that changes in the rille width could be accurately represented in the data. This data set leads to a valid widith-distance graph of the rille, but it was necessary to extract randomily determined width measurements from these before calculating the average width.

This data set was resolved using an IBM 1330 computer. The program is a straightforward list of calculations besed on the Pythagorean theorem which determines the distance between two points in $x-y$ space. The calculations yielded the following information:

1. The width of the rille was calculated at each of the 152 measurement locations.
2. The distances along the rille chamel between the locations of the 152 width measurements was calculated.
3. The cumulative distance along the chamel from the south end of the rille to each measurement location was celculated.
4. Separate sumations were made of the length of channel along which rille width increased and the length aiong which width decreased.
5. A calculation was perfoumed to detemine the azimuths of the channel center between successive width locations. These are the rille azimuths used for structural interpretation in chapter five.

The first of these items is used to compute the average width of the rille and the others are discussed subsequently.

The measured rille widths have values between 0.22 to 3.20 km . The largest values are observed at each end of the rille and apgear to be due to the association of the rille with the arcuete fracture to the south and the angular depression to the north. If two kilometer segments are excluded from either end of the rille, the maximum width is found to be under 1.7 km . In the histogran of measured rille widths (fig. 6-3), all extreme values on the high side are at the ends of the rijle. The minimom width of 0.22 km . occors at the constriction near the Apollo-15 landing site. If this 8 km . Iength of unusually narrow section is excluded, the minimum width is found to be 0.52 km . The average of all measured widths (including extremes) is 1.11 km . The median value is 0.96 km . and the mode is 1.00 km . The standard deviation is 0.37 kn . and the standard elror is 0.03 km . A Listing of all values is foond in appendix three.

As discussed above, these measurements are not at randomly selected locations, and therefore, the simple arithmetic ayerage is suspect: In order to find a 'true' average to characterize the rille, two approaches were used and the results are in substantial agreement, although slightly less than the arithmeitic average reporied above.

1. The map area of the rille was computed using the 152 computed widths and the 151 intervening lengtins as tactors in the trapazoidial rule. The average width was computed by dividing the area thus derived

Fig. 6-3. Histogram of widths measured across Hadley Rille.
by the total chennel length. The effect of this process is to weight the width measurements by the channel length which they represent. This gives an average width of 1.081 km . The same standard error of 0.03 probably applies indicating a 90% probability that the "true" average width fails in the range $1.08 \pm 0.05 \mathrm{~km}$.
2. A graph or rille width $V s$. distance along the chamel was constructed (fig. 6-4) . Forty random numbers were drawn from a random number table (Koch and Link, 1970) ${ }^{\text {I }}$ and multiplied by an appropriate constant to give a randomly determined abscissa with which to enter the graph. Three gaps in the data set due to shadowing and the crater, Hadley 0 , were assigned to a width value equal to the average of 10 values, 5 on either side of the gap. Finaly, all the ordinates corresponding to the random numbers were averaged for an average width. The average obtained from this approach is 1.084 kn. with standard deviation 0.26 and standara error 0.04 yielding a ${ }^{2}$ true' average width $1.08 \pm 0.07 \mathrm{~km}$, at the 90% confidence level. ${ }^{2}$

In addition to the width calculatioss for the whole rille, the
$I_{\text {Koch, G. S. and Link, R. F. (1970) Stetistical Analysis of Geo- }}$ logical Data, Vol. 1, Wiley, New York, p. 3 39.

It must be mentioned that these two approaches are not independent since the graph (fig. 6-4) is a graphical solution of the trapazoidial rile. The second serves to establish a confidence limit more securely than the first, however.

FIG. 6-4

first method of avereging was employed to find average widths for several sub-segments of the rille. These are reporied in table 6-2, which is keyed to figure 6-2.

Depth of the rille. The depth detemination for the rille is less direct than the determination of other parameters because the whole rille could not be covered by the pan photography used with the AS-17A plotter. In the southern portion of the rille, the depth could be measured directly from profiles, but in the north, it has been estimeted from the width measurements and the width to depith ratio, determined for the southern section.

For purposes of definition, the depth of the rille in the profiled section is taken as the depth below the surrounding mare surface. For most profiles, this is defined by laying a straight edge across the profile so that it touches the mare surface on either side. The depth is the vertical distance from the bottom of the rille to the straight edge. On a few profilles, one side does not exhibit a well-defined mare surface and best judgment prevailed. The measurement accuracy is judged at $\pm 2 \mathrm{~mm}$. or ± 10 meters at the $1: 5000$ vertical proilile scale. This is about the same $2 s$ the standard error of the measurements and nuch less than the variability of the data which suggests that tine method is adequate. The profile locations are semi-random (aithough dependent on sun vector directions) so the depth data set was considered to be unbiased. Deptih values range from 363 meters to 200 meters, although these two values appear to be outliers. The average depth

Table 6-2. Basic rille parameters. Location numbers and letters specified in the left column are keyed to figures 6-2 and 6-1 respectively. All distances are in hilometers. Confidence limits are specified where possible and are at the 90% level.

Location	Point-mo-Point Ground Distance	Average Width	Average Depth	Length of Ghannel	Sinuogity	$\begin{aligned} & \text { Channel } \\ & \text { Volume }(\mathrm{km} .3) \end{aligned}$
1-152, a-b	$76.5+0.8$	1.08 ± 0.07	$0.25+0.04$	129.7	1.68	17.6 $\pm 16 \%$
1-151, a-c	72.6 ± 0.7			128.8		
1-84, a-h	$48.1+0.5$	1.23	0.29 ± 0.04	62.6	1.28	17.0
84-151, h-c	50.4 ± 0.5			66.3		7.0
84-152, h-b	54.8 ± 0.5	0.95	0.22 ± 0.04	67.2	1.23	
117-151, $3-\mathrm{b}$	26.7 ± 0.3			31.6		
1-45		1.39		29.3		
46 mb 4		1.08		27.5		
84-117		0.93		34.7		
117-132		0.94		15.3		
$\begin{aligned} & \text { 34-88 } \\ & \text { (profiled section) } \end{aligned}$		1.13	0.273 ± 0.13	44.0		6.8 $+6 \%$
Northern depression				4.5 ± 0.2		
Southern depression ${ }^{\text {. }}$				10.1 ± 0.2		

of the rimle in the proiniled region is 273 meters with a standard deviation of 37 meters and a standard error of 7 meters. By applicafion of the t-statistic, the 90% confidence interval is found to range ± 13 meters from the mean. A listing of all the depih values is found in appendix three. Figure 6-5 is a histogram of the measured depth values, and figure $4-5$ indicates the profille locations.

The northern section of the rifle is so obviously different from the southem section that it would doubtlessly be in error to assign to it the same average depth calcalated for the profiled section. If we assume that the same width/depth ratio is assumed to hold for the northern section as for the south, an approximate average can be calculated because:

$$
\text { average depth }=\frac{\text { average width (from Nann comparator data) }}{\text { average width/depth ratio (Irom profiles) }}
$$

-The bottom oi' the rille in the norih appears flat which implies then width/depth is probably greater than in a V-shaped section. Thus, this scheme will probably give a maximum value.

The average width in the northern section is seen in table 6-2 to be 0.93 km . The average width/depth ratio for the southern section is 4.30 ± 0.75 at the 90% confidence level (see width/depih ratio to follow). Thus, the average depth in the northern section is estimated to be 220 meters with an uncertainty of about ± 40 meters. This diminished depth is in accord with stereo observations of the section. Using the same technique, the whole southern section (not limited to the profiled

Fig.6-5. Histogram of depths measured from Hedley Rille profiles.
section) has an average depth of 286 ± 40 meters, and the rille as a whole 251 ± 40 meters.

Length of channel. By suitable manipulation of the Mann comparator coordinate data, the total length of rille channel was calculated. Specifically, the center of the rille is found at each measurement Iocation by averaging the coordinate locations on either side. Then the distance between adjacent center positions is calculated using the Pythagorean theorem. Finally, these distances are summed to provide the total Iengith of channel. Using this technique, the total length of channel is found to be 129.7 km . The lengths of several shorter segments are detailed in table 6-2. A listing of the cumulative lengths is found in appendir three.

Area of the channel cross-section. The crossmectional area of the channel at unintexrupted profile locations was measured directly using a polar planimeter. This essentially straightforward procedure yielded an average area of $.184 \mathrm{~km}{ }^{2}$ Profille numbers I to 24 excluding number 9 (ch. 4) were used for this average. The standard deviation of this data set is $.038 \mathrm{~km}^{2}$ and the standard error is $0.008 \mathrm{~km}{ }^{2}{ }^{2}$ indicam ting a 90% confidence interval of $+0.013 \mathrm{~km} .^{2}$ about the mean or 7.2%. Appendix three contains a listing of all measured values.

Curvature. Several attenpts were directed tonard measuring the curvature of the rille at different locations. Most of these were inadequate because the resolution of the method was poor; the location where the curvature was being measured was ill-defined, or complici-
tions in mathematical analysis made the result meaningless. Finally, the following technique evolved:

1. The $x-y$ coordinates of the Mann comparator data were drawn up as a map of the rille (fig. 6-2) at an original scale of 1 cm . to 1 km .
2. A plexiglass template was constructued containing concentric circles. The radius of the circles increased geometrically according to the arbitrayy equations
radius (class n) $=2 \times 2^{(n-1) / 2}$ expressed in milimeters
that is, a class 1 circle has a radius of 2 mm ., class 2 is $2 \times 2^{1 / 2}=$ 2.82 mm. , etc. A total of 11 circles were drawn with radius from 2 mm . ($n=1$) to 64 mm . ($n=11$) although the smaflest class subsequently utilized was class 4.
3. The template was overlain successively on each of the numbered points on the map in such a way that each of the adjacent points fall on or within a circle, the circumference of which was touching the central point.
4. The template was translated until the maximum diameter circle was found in which this condition prevailed. The central point was then assigned the curvature class represented by that circle.

The spacing of the points on the $x-y$ plot (fig. 6-2) is sufin ciently close that this technique appears adequate to characterize the curvature. A few points have long gaps separating them and these were
deleted from the analysis, as were the end points on the plot. The deleted points are obvious on the graph or curvature ys. distance along the rille (fig. 6-4). The resulits of this experiment are shown in table 6-3.

Table 6-3. Sumary of curvatures measured on Hadley Rille.

Ourvature class (n)
$Y n=2 \times 2^{(n-1) / 2}$

3

4
5
7
8
9
10
11
12

Radius of maxinum
circle (kmber on the points ground)

.4	0 (class 3 and
.57	2
$.80 w e r)$	
.8	8
1.13	14
1.60	17
2.26	25
3.20	14
4.53	13
6.40	15
a11 Iarger to	33
straight line	

The distribution is clearly bi-model with centers at class 8 and class 12. The grouping above the class 8 curvatures represents the loops in the sinuous rille, and the class 12 peak probably represents the inflection points between curves. The median value of radius of curvature (which is an estimate of the average) excluding the straight values falls at 2.02 km .

Volume of the rille channel. The volume of the rille channel can be estimated by calculating the volume of the triangular prism with the width, depth and length of channel measured for the rilie. This is given by:

Volume $=$ Average Width x Average Depth x Iength of Channel

Friracting the appropriate measurements from table 6-2, the wolume of the rille as a whole is found to be:

$$
\text { VoIume }=\frac{1.08 \times 0.251 \times 1.29 .7}{2}=17.6 \mathrm{~km} .^{3}
$$

The greatest uncertainty is in the value of the average depth. This unceriainty is estimated to be $\pm 16 \%$ which stands as the uncertainty in the value of the volume.

As a partially independent check on the volume calculation, the rolume of chanel in the profiled section of the rille was calculated directly from the average channel cross-sectional area. This value compares with the volume calculated for the same section using the triangular approximation as follows:

Method	Profiled Section Calculated Volume

Triangular approximation of crossmsectional area
$6.8 \mathrm{~km} .^{3}$
Cross-sectional area measured on profiles $8.1 \mathrm{km}.{ }^{3}$ 5

An examination of the profiles (ch. 4) shows that the crossmsection is not precisely triangular because of concavity of the rille walls. If it is assumed that the cross-sectional area approximation of the volume in the profiled section is correct and that the triangilar approximation yields the same proportionate exror in the whole rille calculation as in the profiled section, a corrected whole rille volume
may be calculated. This is accomplished by scaling the rolume calculated by the triangular method as follows:

$$
\begin{aligned}
& \text { Volume } \\
& \text { corrected } \\
& \text { value }
\end{aligned}=\frac{8.1 \mathrm{~km} *^{3}}{6.8 \mathrm{~km}^{3}} \begin{aligned}
& \text { values from } \\
& \text { above check }
\end{aligned} \times 17.6 \mathrm{~km}^{3} \begin{aligned}
& \text { value from } \\
& \text { triangular } \\
& \text { approximation }
\end{aligned}
$$

This increases the calculated rille volume to $20.1 \mathrm{~km}{ }^{3}$. This polume which just falls within the 16% uncertainty reporited above is the best value which can be calculated from the present data.

Summary of basic parameters. Hadley Fille is seen in table 6-2 to be a major land form. It is comparable in width (1 km.) to a large terrestrial river, although its length is shorter than terrestrial rivers of this width. The estimated $20 \mathrm{~km}{ }^{3}$ volume of the channel could be represented by a sphere of 3.4 km . dianeter or by a block $50 \mathrm{~km} . x 50 \mathrm{~km} . \times 10$ meters deep. One of the most puzzling aspects of Hadley Rille and lunar rilles in general is the lack of an associated depositional form such as an alluvial fan or flow-lobe representing material removed from the channel.

Derived Parameters:

Using the characteristics reported above as a base, it is possible to derive several other values which also charactuerize the rille.

Sinuosity. The sinuosity of a'river channel is best derined as the length of the talweg divided by the straight line distance between
end points (Scheidegger, 1970) . Thus, for the rille the sinuosity is defined:

Sinuosity $=\frac{\text { length of channel segment }}{\text { straight line distance between end points }}$

For purposes of this calculation, both the lengths were calculated from the Mann comparator data (app. 3). The sinuosity for the rille as a whole is 1.68 but the individual values for the northern and Southern segwents (dividing the rille at point 84, fig. 6-2) are 1. 28 and 1.23 respectively. This indicates that the bend at point 84 foreshortens the end-to-end distance and results in an uncharacteristically high overall sinuosity.

Width/depth ratio, An injtial attempt was made to compute width to depth ratios for each proinile location by using the widih and depth data previously described. Finally, it was decided that a more accurate value could be calculated in the following manner:

1. An accurate tracing was made of each profile at the original 2 x vertical exaggeration.
2. Each tracing was set up in a level orientation on a drawing board. A 30° triangle was placed over each slope on each profile to
determine the point on the rille wall where the slope angle first exceeded 30° (at $2 x$ vertical exaggeration). This is a point near the rille lip on most profiles.
3. The rijle width is then arbitrarily defined as the distance between the two so defined points on each profile, and the depth is the vertical distance from the bottom point on the profile to the line comnecting the tiro points. This construction is illustrated on figure $6-6$.
4. The width/depth ratio, correcting for the $2 x$ vertical exaggeration, is found:

$$
\frac{\text { Wicth }}{\text { Depth }}=\frac{\text { Measured width }}{\text { Measured depth }} \times 2
$$

Figure 6-6. Geometric construction used to find width/depth ratio.

The advantage of this method is that whereas the width and depth so defined may be inaccurate, the geometry of the construction indicates that they are inaccurate in proportion. Therefore, the resuliting ratio is an adequate characterization. The average ratio is 4.30 with standard deviation 0.44 and standard error 0.09 . This indicates the 'true' average value to be in the range 4.30 ± 0.15 at the 90% conifidence level. Individual values are listed in appendix three.

The width to depth ratio (with a $2 x$ vertical exaggeration) is numerically equal to twice the cotangent of the depression angle from the rille lip to the bottom, These angles are an approximation of the wall slope angles, although the concave aspect oí the profiles makes the maximum slope angles somewhat greater than these. The depression angles are found to range from 19.2° to 28.2°. The angle corresponding to the average width/depth ratio is 22.8°. At a $2 x$ vertical exaggeration, the angles are roughly twice these values so the 30° triangle used as described provides a good definition of the rille lip as illustrated in figure 6-6.

Harmonic analysis. The wave-like character of the sinuous rilles suggests an examination using harmonic analysis. Such an examination has been completed for Hadley Rille using a Fourier cosine series. The purpose of this numerical experiment is:

1. To determine the spectral distribution of the irregutar line which represents the rille so that it can be compared to the spectral curve for a terrestrial river.
2. To determine a suitable length to use for the 'meander have Iength' of the rille.

The mechanics of this method of function approximation are discussed in chapter three.

Harmonic analysis approximates the rille pattern with a function which is composed of the sum of simple cosine waves of varying frecuency and amplitude (Gaskell, 1958) . The rille pattem can be decomposed into its constituent cosine waves by Iisting the square root of the power spectrum (deined in ch. 3) for the series. In the case of the cosine series, this is merely the absolute value or the Fourier coefficients. Thus, each value in the root power spectrum equals the amplituce of one of the constituent cosine waves. These values can then be exanined to determine which particular frequencies are important in the composition of the rille pattern.

It is analytically possible to calculate as many terms for the series as there are data points in the data set. In this case, the shoriest wave length examined would be I / n_{0} where L is twice the length of the rille segment being examined, and n_{0} is the number of data points.

Hovever, the data set cannot represent oscillations with a wave length similar to the data spacing. This problen is known as eliasing (Blackman and Tukey, 1959) . By Himiting the number of terms in the series to $n_{0} / 2$, it is assured thai there are à̀ least two data points on each hump of the shortest wave length spectral component being examined. This is the cosine term with wave lengith equal to $2 \mathrm{~L} / \mathrm{n}_{\mathrm{o}}$ which in the case of the rille is about the same as the rille width. Secondy, in the shori wave length terms are examined, they are found to have amplitudes less than the resolution of the data. This appears to be true for terms with a wave lensth shower than $4 \pm / n_{0}$. Thus, the spectral analysis has been limited here to the firsi $n_{0} / 4$ terms' since there seens litile point in requiring the Fourier analysis to search for components not reliably represented in the data. The shoriest wave length (which corresponds to the $n_{0} / 4$ th term) is about $2 \frac{1}{4}$ hilometers long, or about twice the rille width.

The data set for the harmonic analysis was acquired using the Man comparator. The method was similar to that described earlier in this chapter with a $\overline{\text { iew }}$ important exceptions. The writing of a Fourier series requires data which is equally spaced along the x-axis. Therefore, the x-coordinate of the comparator was incrementally advanced
and the associated y-values were read. The value of the x-increment was 0.250 mm . which corresponds to a ground distance of 0.28 km . The Fourier cosine series can only approximate single valued functions. Therefore, it was necessary to use separate data sets for the north and south sections and compute a separate series for each. x and y values were read for the center of the rille in the north section and both the center and the mare edge were read in the south. Both of the southern sets give substantially the same spectral components. The rille center spectral curve is reported here so that the curves reported for the north and south sections of the rille have a common basis. There were 159 data points in the northern section and 153 points in the south.

The root power spectrum for the two rille sections is listed in appendix three along with other calculated parameters and data for the harmonic analysis. Figure 6-7 is a semi-log graph of the power spectrum as a function of wave number (n) for both rille sections. The graph displays obvious peaks corresponding to the important cosine texms of different wave lengths and there is a good correspondence between the wave lengths of important terms in the two different sections. This correspondence is inlostrated in table 6-4 which 1ists the peak-forming wave lengths for each section of the rille.

Figure 6-8 is a third graph which is the result of the spectral

FIG. 6-7

Fig. 6-8. Power spectrum of a terrestrial river.
anelysis of a terrestrial river by ju. G. Speight (1965) . This is a stuqu of the Angebunga River in the Territory of Papua New Guinea. This particurar river "was chosen for siug because of itis lonc, unobstructed and undisturbed alluvial plains course and its highly developed, rapidly changing meander pattern" (p.2). Speight's analysis was carried out by an autocorrelation method (discussed in Scheidegger, 1970) which is different from the approach reported here. The autocorrelation method provides a more accurate spectral curve, pariticularly at the long wave lengith end of the spectrum, and gives a much smoother curve. However, it requires larger data sets than are available here, and the measurements are of a much different sont. Because the tro methods are signiaicantly ditiferent and because ail the physicel paremeters or the two geologic situations are so completely separate, it appears fimossible to make a meaningitul direct comparison between the two studies. However, certain qualitative simiarities can be menioned.

1. All three spectral curves have several important long wave length peaks. The importance of peaks diminishes rapidly as wave length increases (figs. 6-7 and 6-8).

Table 6-4. Wave numbers with peak-forming spectral intensities. These are peaks which are graphically displayed on figure 6-7. There is a clear similarity between the long wave length intensities.

Have Number

South Section
Points 1-84,
Fig. 6m
North Section
$\begin{array}{llllllllll}\text { Points } 84-152 ; & X & X & X & X & X & X & X & X\end{array}$

X X X

Fig. 6-2
2. The broad, smooth peaks in Speight's curve appear somewhat similar to the broad, irregular peaks from the cosine semias. The scaling difficulties make it impossible to postulate a direct peak-topeak correlation.

Choice of meander wave Iength. An examination of the metric photography (ije. 4-I) does not allow a satisfactory determination of the 'meander wave length' of the rille. This follows irom three factors:

1. The meander wave length of a river is an ill-defined quantity, the value of which has in the past depenced upon the observer's suibjective interpretation of the river pattern.
2. There is a legitimate question as to whether the rille should be deinned as 'meandering' at all because the value of its simusity is relatively low. One discussion of a meandering river (Leopold, Wolman and Milier, 1964) seems to suggest thet the sinuosity on meandering rivers ought to be greater than 1.5 aithough some variation about this value is allowed. The sinuosity of the rille as a whole was seen to be well in excess of this (1.63), but the individual north and south sections had values which were substantially less (about 1.25).
3. The northern section of the rille has a pattern which is not smoothly sinuous, perhaps as a restit of the strucuural control discussed in chapier five. Thus, it is not obvious how to include this section in an estimate of the meander wave length. Although the southern section is sinuous, a visual estimate gives between three and five full meander cycles depending on interpretabion.

Thus, an examination of the spectral peaks is suggested to objectively find an appropriate meandex wave length with a value which fits between three to five cycles in the southem section of the rille. The southem section (as viewed by the harmonic analysis) is 42.6 km . Iong. This means that spectral components with wave lengths between 8.5 kn . ($n=10$, or 5 cycles in the interval) and 14.2 km . ($n=6$, or 3 cycles in the interval) must be examined. Table $6-5$ lists the wave numbers (n), wave lengths and spectral intensities ${ }^{1}$ of all the speciral components with wave lengins in this range. Two possible values for the meander wave lengith have been estimated by the following methods; the results are in substantian agreement:

1. It is seen that wave numbers 8 and 9 in the southern section and wave number 8 in the noxthern section have spectral inwensities
$I_{\text {The }}$ value of the root power spectrum corresponding to a given wave length is here called the spectral intensity of the wave length.
about twice as high as the other components in the range. An average of the corresponding three wave length values gives an estimated meander wave length of 10.8 kn.
2. A second estimated value has been calculated by weighting each wave length in the range by its spectral intensity and calculating the weighted average. This gives a value of 10.5 km in close agreement with the simple average above. Both the north and souin data sets were used in the weighted average. This average seems to make best use of the data and it is therefore accepted as the meander wave length.

Leopold and Wolman (1960) have investisated the relationship between river meander wave lorfths and channel widths and also meancer wave lengtbs and radius of curvature of the meanders. They have reported that the following equations hold for terrestrial stream channels:

$$
\begin{aligned}
& \text { Meander wave length }=10.9 \times \text { tioth } 1.01 \\
& \text { Meander wave } \text { length }=4.7 \times \text { (}^{\text {fadius of curvature })} 0.98
\end{aligned}
$$

If these equations are solved using the average rille width (1.08 km .)

Table 6-5. Calculation of meander wave length - weighted average.

SOUTH SECTION

Wave Number (n)	Wave length (lan.)	Intensity (relative)	Product
6	14.18	32	453.76
7	12.16	23	279.68
8	10.64	58	617.12
9	9.46	60	567.60
10	8.51	35	297.85
11	Outside range of consideration		

NORTH SEGTTON
$\underset{\substack{\text { Wave length } \\(\text { km. })}}{\substack{\text { Intensityr } \\ \text { (relative) }}} \quad$ Product

Outside range of consideration

12.64	21	265.44
17.06	63	696.78
9.33	37	363.71
8.85	23	203.55
8.04	20	160.80
Sum	164	$1,690.28$

Totals for both rille sections:

$$
\begin{aligned}
\text { Total of intensities } & =372 \\
\text { Total of products } & =3,906.29
\end{aligned}
$$

$\begin{gathered}\text { Weighted average } \\ \text { Wave Iength }\end{gathered}=\frac{\text { Product total }}{\text { Intensity total }}=\frac{3,906.29}{372}=10.5 \mathrm{~km}$.
and the estimated median radius of curvature $(2.02 \mathrm{~km}$. , estimated from table 6-3), the calculated meander wave lengths are found to be:

From widith equation, wave length $=11.78 \mathrm{~km}$.
Frora radius equation, wave length $=9.36 \mathrm{~km}$.

Both these values seem remarkably close to the rille value of 10.5 km . and are well within the spread of the data reporied by Leopold and Wolmen (I960) .

Hadiey Rille compared to other Iumar rilles. It is now possible to compare the overall characteristics of Hadley Rille with other lunar rilles. Schubert, Lingenfelter and Peale (1970) ${ }^{2}$ have published histogsans of length, width, widith/ 1 ength ra亡io, meander wave length and meander wave length/width ratio based on a sample or about 130 rilles. In order that Hadley Rille can be best compared with other rilles, these ditagrams have been recast as cumulabive frequency diagrams. The position of Hadley Rille was then plotied on each. This alions the position of Hadley Rille relative to other rilles to be easily examined. The five cumulative frequency diagrams
are shown in figures 6-9 to 6-13. The following observations can be made:
I. The width and length oì Hadley Rille are exceeded by only about 16% of the rilles so it is a relatively large rille.
2. Its width/length ratio falls close to the medien value, so the rille is 'average' in this sense.
3. Its meander wave lengit is longer than any found in the Shubert et al. (1970) ${ }^{1}$ report in which a maximum meander wave length of 7 kmo is mentioned. The meander wave length/width ratio is also an extreme value.

Thus, the meander wave length of this rille appears to be an anomolous characteristic in comperison with other rilles.

Relationships Between Rille Parameters:

Thus far, the gross numerical characteristics of the rille have been investigated, The remainder of this chapter is devoted to describing several relationships which appear to exist between parameters.

FIG. 6-9

FIG. 6-10

FIG. 6-1I

FIG. 6-12

FIG. 6-13

Relation between width of rille and distance elong channel.
Figure 6-4 is a graph of the rille width as a function of distance along the chamel. It is based on the same data set that was used to determine the average width of the rille. It is reasonably evident on this figure that rille width is a northward, decreasing function of length along the chanmel. For example, if one chooses the maximum and minimum peaks in 15 kilometer segments of the rille, these seem to diminish systematically beiween one 15 kilometer segment and the adjacent one to the north. This rule holds except for the northwestern 15 kilometers of the rille where the width appears to increase again.

In order to statistically test the conclusion that such a width decrease exists, the following experiment was performed: 38 pairs of 3-digit, random numbers were drawn from a random number table (Koch and Link, 1970) . These were multiplied by a scale factor to give new figures which could be used as distances along the rille channel with which to enter the width distance graph. In this manner, randomly selected pairs of widths were located on the width distance graph, and it was noted in the northernmost width or the southermost width was the largest. In 38 triels, the southern width was the largest in 28 trials
while the northern wiath was largest in only 10 trials. By application of the 50% probability test (Langley, 1970), it is found that this outcome coulci occur less than 1% of the time if there is an equal probability of the largest value occurring to the north. Therefore, it is concluded that there is a well-displayed and statistically significant tendency for the rille width to decrease to the north.

The general aspect of the width-length curve (fig. 6-4) appears similar to the tooth pattern of a carpenter's rip saw which has an abrupt increase in amplitude followed by a gradual decrease and then another abrupt increase. In the case of the rille patiern, the abrupt increases appear to take place about every 15 kilometers. In order to indicate this sort of asymmetry, the program which resolved the widith data incIuded a segment which summed:
I. The length of channel along which a north-bound observer would note increasing width.
2. The length of channel along which a north-bound observer would - note decreasing wiath.
3. The lengti along which no measurable change (according to the data) takes place.

The results of these calculations for the rille as a whole are as follows:

1. Width increases northward for 54.I km.
2. Width decreases northward for $74+9 \mathrm{~km}$.
3. No change occurs for 0.7 km . (considered negligible)

The ratio of the first two parameters is found:
$\frac{\text { Length along which northward decrease occurs }}{\text { Length along which northward increase occurs }}=1.38$

In addition to the calculation for the whole riyie, this ratio was calculated for several sub-sections of the rille with the results indicated in table 6-6,

Table 6-6. Ratio of length of channel showing width increase to the length showing width decrease as viewed by a north-bound ooserver in the rille. Point location numbers in the lasi column correspond to figure 6-2.

Between points	Ratio
$1-152$	1.38
$1-84$	1.81
$84-152$	1.09
$1-108$	1.65
$108-152$	1.94
$1-124$	0.42

Thus, it is seen that the described asymmetry is evidently quite characteristic of the southern 100 kilometers of the rille, but may not be characteristic of the northern 28 kilometers.

In order to assure that the observed ratios were not the result of the fortuitous selection of the end points, another experiment was performed. In this experiment, 亡wenty segments, each of 15 kilometers lengih were selected using random numbers, and the ratio described above was calculated for each segment. Some statistics of the resulis follow:
Arithmetic averase ratio
(m) -1.63
Standarà deviation
(s) -0.78
Standerd error
(s / n) -0.175 ($\mathrm{n}=$ number of data points)

By computing the t-statistic, the probability that the 'true' average value of this ratio might be less than any specified value (M) can be assessed. If the true value has a significant probability of being less than I., the supposed rip-saw appearance of the curve cannot be assumed. The t-statistic is computed from the preliminary statistics as follows:

$$
t=\frac{\mathrm{nXM}-\mathrm{m}}{\mathrm{~s}}=\frac{20 \mathrm{x} 1-1.63}{0.78}=3.61
$$

Compering this value with those in a table of t-statistics (Crow et al., 1970), the probabilitity that the ratio is less or equal to i. i.
seen to be Iess than 0.2F. Therefore, there is a high probability that the average is greater than l., and the asymetry described above is assumed to be characteristic of the rille.

In order to informally illustrate the cyclic behavior of the widthlength data set, a smoothed curve (fig. 6-14) of width vs. location number was generated using Spencer's formula (described in ch. 3 and ch. 5). It was not possible to plot a width-distance curve (thet is, a swoothed version of fig. 6-4; using this method because Spencerts formula requires data which is equally spaced along one awis. Therefore, ground distance has been approximated by measurement location number to provide equally spaced data for the horizontal axis of the smoothed curve (fig. 6-14). Spencer's formula uses ten data points at either end of the data set which are not reproduced on the smoothed curve (discussed in ch. 3). This explains why there are only 132 data points preseat on the smoothed curve (fig. 6-14) compared to the 152 points present in the original data set and on figure 6-4.

Sir peaks appear on the smoothed curve and they are remarkably evenly spaced. The smoothed curve gives a good impression of the general decrease of widith with distance northward along the rille, and of the rip-saw pattern described above.

Relationship between width and depth. The relationship between width and depth of Hadley Rille has been studied graphically by Howard

Fig. 6-14 Graph: width of rille vs. measurement location muber amoothed by Spencer 's formala.
et al. (1972) . They conclude that width and depth are directiy cormelated from measurements taken from a central segment oỉ the rille near the Apolilo-15 landins site. The lensth of channel which they examined was 47.9 km . A similar study has been completed here using the width and depth measurements taken to compute the width/depth ratio.

Figure 6-15 is a graph of rille depih ve. rille width for 24 profile locations (profile numbers l-24 excluaing number 9 which is in a location obscured by crater, Hadley c). There is an obvious tendency for depth to increase with width. In order to chenk this relationship statisticality, a rank correlation test (discussed in ch. 5) was performed on this data. The sum or the sauared rank differences for the 24 data proints was 604. Check of a squared-difference table (Iangley, 297]) indicates correlation at better then the I\% level in agreement with Howard's study. The high degree of correlation indicates that when other factors shof a relationship with rille width, they also probably show a similar relations'mip with mille depth.

FIg. 6-15. Scatter diagram of r111e depth ve. rille width at a location. Data from profiles, ch. 4.

Relationship beiween rifle width and direction of channel. In order to investigate a possible relationship between the width of Hadley Rille and the direction of its chemel, figure 6-16 was prepared. The widths on this scaiter diagram are those calculated for the width-distance graph (fig. 6-4). The azimuths used here were measured directly from figure 6-2 using a Koill drafting machine. The straight edge of the drafting mechine was placed tangent to the curve of the rille at each of the width locations, and the channel azimuth relative to north was read directly on the machine's proiractor head. The azimuth readings thus obtained are probably correct within $\pm 3^{\circ}$ except in small radius cormers where the location of the tangent is difficult to define. In these places, the values are probably $\pm 10^{\circ}$. The compilation of this set of azimuths was necessary to find the channel direction at each measurement location. This is a different value than those calculated from one location to the next and used for structural interpretation in chapter five.

The disperse appearance of the scatter diagram (fig. 6-16) indicates that no comelation is present between rille width and chanmel azimuth for the rille as a whole. However, there are several sequences of points along the channel which do seem to demonstiate an inverse correlation between increasing azimuth and channel widih. These points have been replotted on tigure 6-17. These sequences were selected after searching for related sequences of figure 6-16. In order to check for correlation, the Spearman rank correlation test (discussed in ch. 5) was applied with the following resulis:

Fig. 6-16. Scatter diagram of rille wiath vs. azimuth of channel at the width measurement location. This diagram is for all the Mann comparator data locations, fig. 6-2.

Fig. 6-17. Scatter diagram of rille wiath vs, azinutih of channel for selected rille segments. The specific locations of the three series which are plotted above can be determined from fig. 6-2.

Sequence (location numbers, Fig. 6-2) Result
24-32 The probability of finding this sequence in a set of unrelated figures is between 1\% and 5\%. Therefore, the result is probably significant.

65-89 The probability of finding this sequence in a set also of unrelated figures is less than 1\%. Therefore, 47-62 the results are statistically significant.

Two other sets of numbers fere checked for correlation, one chosen from the scatter diagram and one selected at random. These results are as foillows:

Sequence
13-22 This set is a set of 10 points selected at random. The probability of finding this sequence in a set of pairs of unrelated figures is greater than 10\%; therefore, the resolt is statistically insigmificant.

118-143 This set was chosen from examination of the scatter diagram as a group which has a possible direct correlation. The probability of finding this sequence in a set of unrelated figures is greater than 10f; therefore, the result is statistically insignificant.

Several observations can be made concerning these apparent relationshi̇ps:
I. AII the statistically significant sequences occur. in the southerm part of the rille, The general appearance of the rille in the south is much sharper and well defined than the northern section. The general appearance of the north section suggests that it has been filled either as the finel event in the rille formation, or in some subsequent event. Either occurrence would probably obliterate any pre-existing
width-azimuth relationship.
2. The three sequences of points over which these correlations hold afl encompass at least one curve in the rille (Iig. 6-2) and each sequence contains a local maximum and minimum point on the widthdistance curve (fig. 6-4). Thus, a wide range of widhs and azimuths are present in these figures.
3. The sequence of locations 65-89 occurs in a segment of the rille which contains four separate curves and which contains two local maxima and one minimum point on the width distance curve. This 15kilometer segment of rille channel is also in the section of the rille with the best preserved appearance. Thus, the excellent correlation obtained here is the most significant of the three.

Relationship between width and curvature. A number of attempts to relate width and curvature at a point in the rille were undertalcen with no positive result. Finally, a graph representing the curvature class at each point was added to the miouth distance graph (fig. 6-4) to display any possible relationship. It is reasonably epperent on this figure that there is no direct correlation at a point. The two graphs were then examined for correspondence in shape rather than for corresponding peaks. It appeared possible that a less obvious similarity does exist. This is the possibility that slopes of the two graphs correspond in sign but that slopes on the width graph are displaced about two kilometers to the north along the rille from the corresponding slopes on the curvature graph.

In order to test such a relationship, the following approach was devised. Approximately 100 rancom numbers were extracted from a random number table (Koch and Link, 1970). These were multiplied by an appropriate constant to yield a number which could be used to enter the curvature-distance graph at a point betreen the south end of the graph and a point two hilometers shori of the extreme northem end of the graph. The sign (positive, negative or zero) of the slope of the currature-itstance graph was noted. The sign of the slope of the width-distance graph at a point two kilometers north along the rille was similarly noteci. The signs of the slopes of the two curves mast match in one of the three following ways:
I. Both slopes conld heve a similer sign.
2. Both slopes could rave oppositte sign.
3. The resulit is indeterminate if one slope has a zero slope or if the randonly chosen ordinate occurs at a break in one of the curves.

The results of this experiment were treated using the 50% probab-位殀 test. This test assumes that there is an equal probability of
observing either similar or dissimilar signs in the parent population from which the semple was drawn and calculates the probability of finding the observed numbers if the assumption is true. If the test Fields a low probability, it is an indication that width and curvature tend to increase together with a two kilometer offset along the rille. In performing this test, it is acceptable to discard data falling into the thirr category; the rationale behind this and behind the test as a whole is discussed in a book by Langley (1971) . The test has Fielded the Following result:

Number of matched signs	Number of opposite signs	21

The probability of this result is between 1% and 5% so in a statistical sense, the proposed relationship is probably significant.

From a physical point or view, this result may be importent. A relationship between chanmel geometry at one channel location and the geometry at a location displaced along the channel suggests flow in the rille as a causual mechanism.

Summery:

The numerical and statistical characteristics of Hadley Rille have been explored in this chapter in some detail. For the most part, the results in this chapter have been lerit as numbers which characterize the rille without further discussion. The conclusions which can be drawn from these results and the resulits of chapters four and five are the subject of chapter seven.

GHAPTER VII

THE ORICIN OF HADLEY RIIIE

This chapter is a discussion of the origin of Hadley Rille. The first section is a review of mechanisms which have been proposed for rille formation. This is followed by a sumary of the primary objections to each, both in general terms and with regard to the neracteristics of Hadley Rille. Finally, a mode of origin is proposed for Hadley Rille which appears to conform well with the observations carried out in this study.

Review of Rille Forming Mechanisms:

Mechanisms dependent on geologic structure. Structurally dependent hypotheses for rille Formation fall into two groups. One group supposes that the rille are actual structural features and the second. requires the presence of an underiying fracture system.

Flger (1895) ${ }^{1}$ and Goodacre (1931) ${ }^{2}$ suggested that all Iunar rilles (not only the sinuous rilles) are shrinkage cacks associated
$I_{\text {Elger, }}$ T. G. (1895) The Moon, George Phillips \& Son, London.
${ }^{2}$ Goodacre, W. (1931) The Moon With a Description of Its Suriace Formations, Pardy \& Son, Bornemouth, England.

With the cooling or lava. Nasuyith and Carpenter $(1874)^{1}$ periormed an interesting set of experiments with hollow glass spheres and concluded that all lunar filles are tension fractures from internal pressures. Shaler (1903) ${ }^{2}$ concluded that all lunar rilles are tectonic and not of fluid flow origin. These authors do not specifically mention sinuous rilles, and it is not clear if they were aware of them. Fielder $(1960)^{3}$ suggested that the straight Iuner rilles are faults which have been subsequentily intruded by dikes. The intrusion is assumed to be accompanied by the formation of a depression over the dike due to tension and thinning in overlying material. Quaide (1965$)^{4}$ suggested that the sinuous rilles are sinuous tension fractures, although in subsequent articles (below) he has abandoned this wiew.

Schumm (1970) ${ }^{5}$, prompted by Mills ${ }^{4}(1969)^{6}$ experiments and several
$I_{\text {Nasmyth, J. and Carpenier, J. (1874) The Moon Considered as a }}$ Planet, a World and a Satellite, 2nd ed.; John Murrary, London.
${ }^{2}$ Shaler, N. S. (1903) A Comparison of the Features of the Earth and Moon: Smithsonian contributions to knowledge, Vol. Kixiv, Washington.
$3_{\text {Fielder }}$, G. (1960) A theory of the origin of lunar rilles: Sky and Telescope, vol. 19, p. 334-337.

4Ouaide, W. (1965) Ridges, rilles and domes, clues to maria history: Icarus, Vol. 4, p. 374.
$5_{\text {Schumm }}$ S. A. (1970) Experimental studies on the formation of Iunar surface features by iluidization: G.S.A. Bull, Vol. 81, p. 2539.
$6_{\text {Mills }}$, A. A. (1969) Fluidigation phenomena and possible implications for the origin of lunar craters: Nature, Vol. 224, p. 863-866.
earlier investigations, performed a series of experimenis exploring the behavior of powdered materials when they are fluidized by gas emitied from a sub-surface slit. Based on these studies, he postulated that sinuous rilles could be formed by gases passing up fractures in the lunar crust through a mantle or regolith. This view is supporied by MCCa17 (1970) ${ }^{1}$ who bases his arguments on field exemination or terrestrial volconic blow holes. It is also probably supported by Hapke and Greenspan (1970) ${ }^{2}$ who have observed anomolously high creter densities in the bottoms of some rilles.

Mechanisms which require fluid motion. The remaining hypotheses all depend on flind flow, The difference between different proposals depends on the nature on the fluid, its source, and precisely how it flows.
A. Ash flow. Cameron (1964) ${ }^{3}$ proposed that the fluid medium is a fluidized ash in the form of a nuée ardente. She based this conclusion on a comparison of telescopic photos of rilles filth nuee ardente channels formed on earth.

McGall, G. f. H. (1970) Lunar rilles and a possible terrestrial analogue: Nature, Vol. 225, p. 714.

2Hapke, B. and Greenspen, B. (1970) Grater densities in the vicinity of lunar sinuous rililes: $\operatorname{Tos} 51$, p. 346.
${ }^{3}$ Cameron, W. S. (1964) An interpretation of Schroeters Valley and other sinuous rijles: J.G.R., Vol. 69, p. 2423.
B. Water. Some older studies concluded thet rilles are fluyial erosion channels. Pickering (1903) ${ }^{1}$, who is credited with the discovery of the sinuous ritiles, felt that they are drainage channels from hot springs associated with rolcaric activity. He also suggested the presence of ice and snow on the moon although he realized that the Imar atmosphemic pressure is near zero. Pickering was precedec by Neison (1876) ${ }^{2}$ who did not recognize sinuous rijlles, but felt that all Iunar pilles are abandoned river yalleys. One moderm selenologist (Gilvarry, 1969) ${ }^{3}$ has steadiastly believed in the presence of an ancient hydrosphere with a depth or up to two miles, but has argued that Iunar hydranlic chamels would be verw shallow. This conclusion is based cn a dimensional analysis of terrestrial hyciratic geometry to determine the efrect or the lower lumar gravity on chanel form.

Although the past existence of lunar suriace water is presenily viewed as improbable by most selenologists, a number of recent arguments are based on suriace or near-surface ice. Urey (1967) ${ }^{4}$ suggests

I Pickering, W. H. (1903) The Moon, Doubleday Page \& Co., New York.
$\sum_{\text {Neison, E. (1876) The Moon and the Condition and Configuration }}$ of its Surface, Longmans, Green \& Co. 1 London.
$3_{\text {Gilvarry }}$, J. J. (1969) Geomietric and physical scaling of river dimensions on the earth and moon: Nature, Vol. 221, p. 533.

UTrey, H. C. (1967) Water on the moon: Nature, Vol. 216, p. 1094 .
that the lunar maria are underlain by ice and that the rilles were eroded by ice streams. This idea may be based on the suggestion by Gold (196I) that if water was initially present on the moon, a permafrost layer must now exist at depth. Smoluchowsici (1968) ${ }^{2}$ performed detailed calculations to show that water could be retained on Mars, even at low atmospheric pressure, because a protective ice cover would form on the surface. This possibility was extended to the lunar environment by Shubert, Lingenfelter and Peale (1970) ${ }^{3}$ who calculated that sublimation of the lunar ice would cease after a sufficientiy thick accumulation ois rock debris collected on the ice surface. They concluded that the rilles were formed when an impact event shatiered the ice layer and underlying water flowed to the surface. The water then was supposed to have flowed in an ice-capped stream to form the rille. These authors have also performed calculations to indicate that a reasonable amount of water could erode a rille-size channel in a reasonable amount oi time. In terms of analytical justification, Shubert's paper is one of the most persuasive to date.
C. Lava. Another group of recent hypotheses are based on lava
$I_{\text {Gold, T. (1961) Permafrosi }}$ on the moon: J.G.R., Vol. 66, p. 2531. ${ }^{2}$ Smoluchowski, R. (1968) Mars: retention of ice: Science, Vol. 159, p. 1348.
${ }^{3}$ Schubert, G., Lingenfelter, R. E. and Peale, S. J. (1970) The morphology, distribution and origin of lunar sinuous rilles: Rev. of Geophy, and Spa., Vol. ह, p. 199.
as the fluid medium. The best supported of these is the argument by Oberbeck, Quaide and Greeley (1969) ${ }^{\text {I }}$ which proposes that the rilles are collapsed lava wobes which fomed oxiginaliy in the mare basalt flows. This argument is based on terrestrial analogues and calculations which show the dimensions of the roof span possible under Iunar gravity. The leva tube hypothesis is supporied by Nurray $(1977)^{2}$ in an article which compares lunar and terrestrial forms. Cruikshank and Wood $(1972)^{3}$ compare the Imar rilites with Hawainan volcanic features and conclude that the lava tube origin is likely. Greeley $(1971)^{4}$ compares features in the Marius Hillis of the moon with terrestrial forms and concludes that these specific xilles are collapsed lava tubes. Hathewry and Herring (1970) ${ }^{5}$ have completed a detailed geomorphic study of lava tubes in New Mexico specifically for comparison with Iunar rilles. They have reported the basic characteristics of the lava tubes, bui are unwilling to assign a lava

Toberoeck, V. R., Quaide, W. T, and Greeley, R. (1969) On the origin of lunar sinuous rilles: Modern Geology, VoI. 1, p. 75.
${ }^{2}$ tumay, J. B. (1971) Sintous rillles: in Geology and Physics of the Moon, Fielder, G., ed., Elsevier, New York, p. 27.
${ }^{3}$ Cruikshank, D. P. and Wood, C. A. (I972) Lunar rilles and Hawaician volcanic features: possible analogues: Moon, Vol. 3, p. 412.

4reeley, R. (1971) Lava tubes and channels in the lunar Marius Hills: Moon, Vol. 3, p. 289.
$5_{\text {Hatheway, A. W. and Herring; A. K. (I970) Bandera lava tubes of }}$ New Mexico and Iunar implications: C.I.P.I. I52, Vol. 5, p. 299.
tube origin to the Iunar rilles without further investigation. Green $(1969)^{1}$ with considerable optimism suggests that uncollapsed lava tubes would be suitable lunar shelters.

Most of the above authors feel that flow may have alternated between the closed lava tubes and open chamels depending on the width of the flow and the thickess of the roof support. Tumer (1973) ${ }^{2}$ has prepared a model of the easterm segment of Schroeter's Valley and concluded that the valley may be an open channel. This study is based on lunar orbiten inagery. fatch (1972) ${ }^{3}$ also suggests that flaw in open channels is a possible origin, and further suggests that the direction of flow cannot be established a priori.

Two additional papers by Leonardi (1971) ${ }^{4}$ and by Burke, Brereton and Wuller (1970) ${ }^{5}$ have given overall reviews of the problem and have concluded that present evidence is insurisicient to provide a mique solution, if indeed there is a mique origin for all sinuous rilles.
$I_{\text {Green, }}$ Jack (1909) Terrestrial analogs: water on the moon, Presentation at the North American Rockwell Science Center, Jen. I6, 1969.

Thrner, R. (1973) A model of the eastern portion of Schroeterts Valley: C.L.P. I., VoI. IO., No. 195, p. 81.
$3_{\text {Mutch, T. A. (1972) Geology of the Moon, Princeton University }}$ Press, New Jersey, p. 301.

4Leonardi: P. (1972) Finding and meandering furrows on the lmar surface: Modern Geology, Vol. 31, p. 151.
$5_{\text {Burke, J. D., Brereton, R. G., and Muller, P. M. (1970) Desert }}$ stream chanels resembling lunar sinuous rilles: Mature, Vol. 225, p. 1234.

It hes been strongly suggested by Mather (1971) that the sinuous rilles may have several diverse modes of origin.

Eramination or Hypotheses:

The above hypotheses may now be assessed with regard to both the lunar geologic environment and the geomorphic characterization of Hadley Rille presented in chapters four, five and sir.

Hater-dependent hypotheses. Hypotheses requir ng the presence of water appear the least mlausable, Experimental studies (Adler and Salifsbury, 7969$)^{2}$ indicate that water in a vacumm flows across the surface rather than flowing in channels, and produces a hommocky topography. Anders $(1970)^{3}$ has shom analyitically that water on the moon is incompaitible with an accretionary origin. 0:Keefe (1969) ${ }^{4}$ has shown that large craters mould rapidly be obliterated by plastic flow in large amounts of ice exist at depth within the moon. Gilvarry (I969) ${ }^{5}$
$1_{\text {Mather, K. F. (197I) Personal commication. }}$
$2_{\text {Adler, J. ㅍ. M. and Sallisbury, J. W. (1069) Behavior of water in }}$ a vacuum: implicaiions for "Iunar xivers": Science; Vol. 164, p. 589.
$3_{\text {Anders; }}$ E. (1970) Water on the moon?: Science, Vol. 1ó9; p. 1309.
40rkeefe, J. A. (1969) Water on the moon and a new non-dimensional number: Science, Vol. 163 p p. 669.
${ }^{5}$ Ibid. P. 533.
has calculated theis open channels containing flowing water would be shallow and wide rather than deep as is the rille. The mosi serious objection to lunar water is the lack of any evidence of it in lunar samples, No hydraied silicates have been found in any of the lunar samples (Keil, et al., 1970) ${ }^{2}$; Mason and Melson, 1970^{2} and numerous studies published in the proceedings of the first, second, third and fourth lunar science conferences ${ }^{3}$). In fact, Apollo-1óo samples contain Lawrencite (FeCl_{2}) which is highly unstable in a hydrous environment (Taylor, Mao and Bell, 1974) ${ }^{4}$. The absence of hydrated minerals in porphyritic or phaneritic rocks suggesis that no water was present during crystallization at depath within the moon.

With specific reierence to Jadley Rille, the absence of any associated depositional form is unexplained. Urey's (1967) ${ }^{5}$ unique suggestion that the rille was formed totally by fce which has since sublimed
$I_{\text {Keil, }}$., et al. (1970) Mineral chemistry of lunar samples: Science, Vol. 167, p. 597.

Kason, B. and Melson, W. G. (1970) The Lunar Rocks, Wiley, New York.
$3_{\text {published by Geochimica and Gosmochimica Acta, MIT Press, Cambridge. }}$
${ }^{4}$ raylor, I. A., Mao; H. K. and Bell, P. M. (1974) Identification of the hydrated iron oxide mineral akaganeite in Apollo-16 Iunar rocks: Geology, Vol. 2, p. 429.
${ }^{5}$ Ibia.
is a mechanism which should have lefit some morainal forms. It is difficult to see how any water-related mechanism sould form a channel with a depression at each end. Water provides no explanation for the central constriction. Schubertis (1970) ${ }^{1}$ hypothesis evidentily requires an impact crater at one end of the rille, and no such crater is obsexved on Hadley Rilile. Fluvial chamels in a terrestrial enviroment appear as braided streams in the simusity is as low as Hadley Rille's sinuosity (Ieopold; 1960$)^{2}$ but no braided channels are apparent. It is difficult to explain how such a well established sinuous form as the south section of Hedley fillie crold have had a fluvial origin Without the formation of numerous meander scars and abandoned channel segments.

Eypotheses dependent on structure. Hypotheses requiring a directly controlling geologic structure also have serious objections. The parallelism of the edges on sinuous rilles throughout a tortuous course (ch. 4) evidentiy eliminates simple faulting from consideration. The intrusion oa a sinuous dike is possible only if a yet undescribed mechanism for sinuous crack formation is discovered, The strongest hypothesis which requires structural control appears to be Schumm!s $(1969)^{3}$
${ }^{1}$ Bid.
"Leopold, I. B. and WoIman, M. G. (1957) River chamel patterns: braided, meander and straight: U.S.G.S. Proi゙. Paper 282-E., p. 59. $3_{\text {Ibia. }}$
proposal requiring a fludized regolith.

This mechanism seems malikely in the case of Hadley Rille because of the absence of Iractures in the adjacent highlands which line up directly with rille segments (ch. 4). The overall aiscordance of most rille segment azimuths with regional structures (ch. 5) also suggests lack of control by specific underlying fractures. The partial structural alignment of the northern segments of the rille seems best explained as a diversion of the rille by topography raiher than alignment with a linear vent. The thin mantie of regolith over bedrock (ch. 4) does not seem to allow a thick enough fluidized bed to prom a rille as deep as is Hadley Rille. The raised edges on Schunm's (1970) ${ }^{\text {I }}$ experimental models are noticeably absent on Hadley Rille (fig. 4-7). Furthermore, the textures of the rocks found near the rille ampar to be best explained as lava flows raiher than proclastic debris (ch. 2).

Ash flow hypothesis. The pyroclastic ash rlow hypothesis on Gemeron (1964) ${ }^{2}$ is similarly out of accord with the petrologic evidence. Lavas with the chemisiry of the Hadley Rille rocks have been shown to heve exceptionally low viscosity (Murase and HoBirney, 1970) ${ }^{3}$ whereas nuée ardente flows are typicaliy viscous compositions. Nuée ardente
$I_{\text {Ibid }}$
Ibid.
$3_{\text {Murase, T. Th M McBirney, A. R. (1970) Viscosity of Lunar Lavas: }}$ Science, Vol. 167: p. 1491.
flows are found to contain 55% to 65% silica $(017 i e r, 1969)^{I}$ whereas the luner rocks are typically less than 45% silica, Also, the mechanics of a nuée ardente flow may require an atmosphere (Holmes, 1965) ${ }^{2}$. The nuee ardente channels depicted by Cameron appear to heve a much more disperse and distributive aspect than the Hadley Rille channel.

Lava tube mpothesis. The most widely held hypothesis at present appears to be the collapsed lava tube mechanism, Although the general character of tine rillus and the petrologic evidence seem to fawor this vien, there are as yet important unexplained objections.
A. Geomorphic objections. According to Oberbeck (1969) ${ }^{3}$, the breadth of a lava iube roof arch might reach 500 meters under extremely optimal conditions, and erosion could subsequently widen the rille to twice that width. However, Hadley Rille displays widths considerably in excess of 1 km , throughout much of its southern extent (fig. 6-4). Furthermore, the estimated rate of erosion calculeted in chepter four indicates that 200 meters of additional widening after roor collapse of the lava tube woold be an extreme value. Assuming this much erosion, the rinle, according to Oberbeck's roof span calculation, should noi be more than 700 meters wide. The appearance of the rille wall at

- Zolifer, 0 . (1969) Volcanoes, MIT Press, Cambridge.

ZHoImes, A. (1965) Principles of Physical Geology, 2nd ed., Ronald, New York, p. 306 .
$3^{\text {Ibid. }}$
the Apollo-15 Ianding site strongly suggesis a sequence of lava flows (ch. 4) and the petrology of the Apollo-15 rocks suggests at least four Flows (ch. 2). However, terrestrial lava tubes have a vertical dimension entirely within a single flow (Hatheway and Herring, 1970) ${ }^{\text {I }}$. In Hadley Rille was vercically contained within a single flow, the flow must have been at Ieast 400 meters thick. For comparison, the thickest flow in the Columbia River basalts is only 120 meters thick and the average thickness of these fllows is about 10 meters. A thickaess of 400 mevers for lonar flows is a clear contradiction to the low viscosity of the levas (Murase and McBimey, 1970$)^{2}$, the Iower cooling rate implied by an envirronment withoui atmospheric convection or rain and the absence of coarse grained rocks which should have formed at the Apollo-15 site due to slow cooling in such a massive flow (discussion of cooling history to follow). If the entire rille, vertically and horizontally is contained within one lava flow, the flow dimensions must be about 100 km . by 30 km . by 400 meters deep (suriace area estimated from fig. 4-1). This yields a flow volume of $1200 \mathrm{~km}{ }^{3}$, a truly iremendous outpouring, A listing of large terrestrial lawa flows (Holmes, 1965) ${ }^{3}$ lists a $43 \mathrm{~km}^{3}{ }^{3}$ flow as the largest value which suggests that the $1200 \mathrm{~km} .^{3}$ value is far larger than expected on earth.
$I_{\text {Ibid. }}$
Ibia. $3_{\text {Ibid. }}$

The appearance of Hadley Rille is also in discord with lava tube morphology. Accorciong to Hatheway and Herring (1970) ${ }^{1}$, lava tubes attain a sinuous apparance when diveried by pre-existing topography. Hadley Rillle displays its most sinuous appearance in the southern section where topographic control is evideatily the least. Fublished maps (e. g.: Greeley, 1971) ${ }^{2}$ indicaie that termestrial rilles have a less sinuous appearance than Hadley Rille and lawa tube bends appear more abrupt than the Hadley Rille curves. Also, lava tubes appear to end in a distributary system or a flow lobe, not a depression. In a second arincle, Greeley (1971) ${ }^{3}$ notes that lava tubes occupy topographic highs. Using profiles of Hadley Rille based on Lunar Oxbiter imagery, he indicates that Hadley Rille is so positioned. The profiles drawn for this sưdy (ch, 4) are in strong disagreement with Greeley's profiles in this respect as are the profiles of Wu, et aI. (1972) ${ }^{4}$. The obstruction nortbrest of the Apollo-15 landing site, interpreted as an uncollapsed segment of a lava tube shows no evidence of a cave
${ }^{I}$ bid.
$2_{\text {Greeley, }}$ R. (1971) Lava tubes and channels in the Iunar Marius Hills: Moon, Vol. 3, p. 302.
$3_{\text {Greeley, }}$ R. (1977) Lunar Hadley Rille: considerations of its origin: Science, Vol. 172, p. 722.

HWu, s. et a7. (1972) Photogrammetry of Apollo-15 photography: in Apollo-15 Freliminary Science Report, NASA SP-289, p. 25-36.
entrance and is adjacent to a region of high fracture density (ch. 5) and recent (postminlle) tectonic activity (ch. 4). It thus appears untikely' that this segment of all possible segments is a lifely locetion for an uncollapsed cavern.
B. Objections based on cooling history . The strongest objection to a laya ube origin appears to this author to be an estimate of the cooling historg of the plow. In a flow thick enough to contain Hadley Rille, two possibilities seem to exist for the mode of cooling.

1. Radiation from the top of the flow cools the surface so that dense material iomm and sinks. This situation resulits in the formaition of convection cells in the flow which contually subduct large refts of solidified lava as scon as they form, and fresh, hot liquid material is brought to the surface. This behavior has been obseryed in Iava lakes in Hawaii (Duifield, 1972) ${ }^{\text {I }}$. Under these conditions, the lava mass probably maintains a fairly uniform temperature throughout because or the mixing. An absolute minimum time for cooling under these conditions san be calculated as follows:

Assume:
a. That the only heat Ioss from the lava is radiation to the sky which is at 0° K.
${ }^{1}$ DuFfield, W, A. (1972) Kilauea Volcano provides a model, for plate

b. That the only energy released is from simple cooling of the liquid and that no phase transiormaiions occur. The energy released through crystallization would probably increase the cooling time considerably.
c. The sample cools from 3650 to 1375 degrees Kelvin. These values approximate the cxystailization range of lunar basalts according to the experiments by Murase and McBirney (1970) ${ }^{1}$.
d. That convection in the liquid proceeds until the basalt is completely solid and the melt is a uniform temperature during cooling as a result of the conyection. If conyection ceases, then conduction through the flow becomes the dominant cooling process which slows cooling considerably as seen below.
e. Assume an emissivity of 1.0 or black body radiation. This gives a maximum cooling rate.

Heat radiated from the surface of the flow under these conditions is equaI to: (McAdams, 1954.) ${ }^{2}$
$Q x=T^{\prime 2} 4 d t$
$I_{\text {Ibid. }}$
$2_{\text {McAdans (1954) Heat Transmission, McCrawhill, New York, p. } 59 . ~}^{\text {(1) }}$
where:

```
Qr = Heat radiated (caI)
\(\nabla=\) Boltamen constant \(\left(=4.88 \times 10^{-9} \mathrm{cel} / \mathrm{cm} .^{2} \mathrm{hr} .{ }^{0_{K}}\right)\)
\(T=\) Temperature ( \(\mathrm{O}_{\mathrm{K}}\) )
\(d t=\) Time increment (hr.)
\(A=\) Surinace area on \(\mathfrak{A}\) now
```

The heat lost Irom the flow through cooling is found

$$
Q_{L}=A D G_{D} d P
$$

Where:
$Q_{L}=$ Heat lost
D = Depth of flow (taken as 400 meters)
$A=$ Suriace area of flow (note that $A x B=$ the flow volume)
dT $=$ Incremental temperature change
$C_{p}=$ Specific heat (approximated at $0.35 \mathrm{cal} / \mathrm{gm}$. the value for quartz at $1600^{\circ} \mathrm{C}$)
$\mathrm{p}=$ Density of liquid (estimated to be $3 \mathrm{gm} / \mathrm{cm}^{3}$)

Whed, the heat sadiated $=$-heat lost to flow or

$$
\nabla^{7} T^{4} A d t=-P A D G_{p} d T
$$

which yields upon rearrangement:

Integrating between initial and final temperatures (T_{i} and T_{I} or 1650 K and $1375 K$) and starting and ending times (t_{i} and t_{f}) gives upon rearrangement the elapsed time for cooling between two temperatures:

$$
\text { elapsed time }=\Delta t=\frac{\mathrm{pC}_{p} D}{3 \bar{\eta}}\left[\frac{1}{T_{f}^{3}}-\frac{1}{T_{i}^{3}}\right]
$$

Substituting values to Find the cooling time under the stated assumptions:

$$
\Delta t=\left[\frac{3 \mathrm{~mm} / \mathrm{cm}_{*}{ }^{3} .35 \mathrm{cal} . / \mathrm{gm} \cdot 4 \times 10^{4} \mathrm{~cm} \cdot}{3\left(4.68 \times 10^{-9} \mathrm{cel} . / \mathrm{cm} \cdot{ }^{2} \mathrm{hx}^{0} \mathrm{~K}^{4}\right.}\right]\left[\frac{1}{1375^{0} \mathrm{~K}}-\frac{1}{1650^{\mathrm{O}} \mathrm{~K}}\right]
$$

$=465$ houns or 19 deys minimum
2. If the convection process is initially inoperative, or if cooling by radiation increases the viscosity of the flow to the extent that the rafted material no longer is subducted, then a crust will form. Nurase and MoBirney (1970) ${ }^{1}$ feel on intuitive grounds that a crust accompanied by a still liquid flow beneath is conducive to the formation of leva tubes. However, let us examine the cooling behavior of a 400 -meter-thick illow at a temperature of $1500^{\circ} \mathrm{E}$ (midway in the cooling range) which has accumblated a 20 -meter-thick crust on its surface. This crust thickness is only about $1 / 3$ of the rooit thickess postulated by Oberbeck, et a7. (1969) ${ }^{2}$ as being necessary for large Iunar lava tubes.

Assume:
a. No phase transformation as before.
$I_{\text {Ibid. }}$
${ }^{2}$ Oberbeck, V. R., Quaide, W. L. and Greeley, R. (1969) On the origin of lunar sinuous rilles: Nodern Geology, Vol. I, p. 75.
b. That the surface temperature of the slab is absolute zero. This gives a maximun possible temperature gradient across the slab and the highest possible value for conducted heet.
c. The temperature drop is one Kelvin degree and only temperature chenges in the Iiquid are considered.
d. The specitic heet of the liquit is 0.35 cal ./gm. as before.
e. The heat conductivity of the solid crust is $14.4 \mathrm{cal} . / \mathrm{cm}$. hr. O_{K}. This value is in accord with experimental walues found at high temperatures by Murase and McBirney (1970) ${ }^{\text {I }}$.
f. No temperature gradients exist within the material under. the solid crust, thet is; only the thermal r'sistance of the crust is being considered:
g. The lava sheet is effectively infinite in horizontal dimension compared to thickness, thus, only heat conducted out of the surface is considered.

Then:

$$
Q_{c}=-A K \frac{T_{t}-T_{b}}{d} \Delta t
$$

REPRODUCBBLITY OT THE ORIGNAL PAGE IS PQOR

Murase, T. and McBirney, A. R. (1970) Thermal conductivity of Iunar and terrestrial igneous rocks in their melting range: Science, Tol. 170, p. 165.

Where:
$Q_{c}=$ Conducted heat
A = Surface area
$K=$ Thermal conductivivy
$T_{c}=$ Temperature at surface of crust ($=0^{\circ} \mathrm{K}$)
$\mathrm{T}_{\mathrm{b}}=$ Temperature at base of crust $\left(=1500^{\circ} \mathrm{K}\right)$
$\triangle \dot{t}=$ Elapsed time
$\mathrm{d}=$ Thickness of crust ($=20$ meters)

As before, the heat loss within the liquid mess is given by:

$$
Q_{\mathrm{L}}=A D G_{\mathrm{p}} \Delta \mathrm{Ip}
$$

where
$\Delta I=$ temperature change within the liquid during time Δt (taken as Io Kelvin for discussion)

Setting the heai released to the heat lost:

$$
-A K \frac{\left(T_{t}-T_{b}\right)}{d} \Delta t=A D C \Delta T p
$$

so that

$$
\Delta t=\frac{-d}{K\left(T_{i}{ }^{-M} b\right)} D C_{p} \Delta T p
$$

Substituting values to find the time for a 1° temperature loss, we find:

$$
\begin{aligned}
t= & \frac{-2000 \mathrm{~cm} \cdot \times 4 \times 10^{4} \mathrm{~cm} .}{14 \cdot 4 \mathrm{cal} \cdot / \mathrm{hr} \cdot \mathrm{~cm} \cdot 0_{\mathrm{K}}(0-1500)^{0_{\mathrm{K}}}} \times \cdot 35 \mathrm{cal} \cdot / \mathrm{mm} \cdot \mathrm{o}_{\mathrm{K}} \times \mathrm{I}^{\mathrm{o}_{\mathrm{K}} \times 3 \mathrm{gm} \cdot / \mathrm{cm}^{3} 3} \\
& =3889 \text { hours } / \rho_{\mathrm{K}}=162 \text { days } / \mathrm{o}_{\mathrm{K}}
\end{aligned}
$$

Thus, if' a 400 -meter-thick flow of low yiscosity lava could Porm at all, it would probebly haye the following cooling history:
a. An eruptive phase would be coincidental with lateral flow of lava until the lava became ponded by surrounding topography.
b. The ponded material would develop convection cells and very rapid cooling would proceed for several weeks. Convection apparently goes on for a year or so at Kilauea (Duffield, 1972) ${ }^{1}$; the assumptions in the preceding analysis probably decrease the calculated time considerably.
c. At some point, a solid cmust would rorm with increasing Viscosity of the cooling liquid. Cooling would then be controlled by conduction through the crust and would slow drastically. The remaining material under the crust would remain plasiic for ai leasi 50 years ($100^{\circ} \mathrm{K}$ temperature drop $x \frac{1}{3}$ year per degree drop).

It appears to this author from personal observations of existing Icelandic lave tubes and from the descriptions of other authors (OIlier, 1069 ${ }^{2}$; Greeley, 19713, and Hatheway and Herring, 19704) that
${ }^{I}$ ibid.
2 ibia.
$3_{\text {Greeley, }}$. . (1971) Observations of actively forming lava tubes and associated structures; Hawaii: Modern Geology, Vol. 2, p. 207.

Hatheway, A. W. and Herring, A. K. (1970) Bandera lava tubbes of New Kexico and Imar implications: C.,I.P.I. I52, Vol. 8, p. 299.

Iava tube formation is a short-term dynamic process which takes place in a solidifying lava crust. Both of the above modes of cooling seem incompatible with lava tube formation. The vertical movements in the Liquid during convection esfectively prohibit continuous lateral motion in lava tubes, Atter the solid crust formed, the underlying Iiquid would stigy mobile for years. If any large lava tubes should develop early in the history of the flow, they must ceriainly become closed by lateral movement of plastic material under the crust. Therefore, one is Iorced to the conclusion that Iarge lava tubes in deep x lows or ponded lava are unlikely.

Proposed Origin of Hadley Rille:

What follows appears in the context of this study to be a reasonable explanation for the origin of Hadley Rille. It is ceriainly not regarded as the only possible origin, but it is an explanation which is consistent with the important observations which heve been made in this stuxy.

Fluid flow mechanism. Several lines of evidence point to fluid flow as the originating agent.

1. The parellelism of the channel edges is most easily explained by Fluid flow (ch. 4)
2. The diversion and change in character oi the rille where it encounters topograplic obstructions is chamacteristic of terrestrial stream channels (ch. 4).
3. The meander wave length/width ratio is appropriate for a fluid channel (ch. 6).
4. Where channel asymetry occurs in profile view, it is such as to suggest cut banks and slip-oifi slopes (ch. 4).
5. The width asymetry with distance along the chamel (rip-saw pattern, ch. 6) suggests a lateral flow. This asymmetry appears someWhat analogous to the various types of ripple marks produced by translation flow. This is not to suggest that the mechanism producing the width-length asymetry is necessarily the same as that producing sedimentary structures.
6. The statistically significant relationship between rille width and rille curvature 2 km . further along the channel suggests fluid flow as a possible mechanism to produce this offset (ch. 6).

Probable fluid. Geologic considerations indicaie that lava is the filuic. Palus Putredinis is a closed, or nearly closed, basin (ch. 2). Therefore, a local source for the mare basalts is indicated. The basement structure close to the rille has been shown (ch. 5) to contain iractures which have probably been remobilized by several inpact events, thus many large and deep fractures probably exist. These provide likely conduits for the mare basalts. The fracture density at the south end of the rinle (fig. 5-10) is relatively high which places the arcuate depression which terminates the rille in a likely site for a yolcanic vent. The direction taken by the long dimension of this depression falls very close to the Serenetatis circmiferential direction
(ch. 5) indicating that it may be related to a well developed fracture. There are no evident cross-cuting relationships which divorce the time of rille formation from the emplacement of the mare basalis (ch. 2 and ch. 4) so the events can be presumed to be contemporaneous. The petrology of the Apollo-15 rocks suggest very fluid lavas rather then pyroclastic materials (ch. 2 and previous discussion in this chapter).

The apparent absence of water on the moon leaves few fluid aliernatives t̀ lava.

Direction of flow. It has been generally assumed by authors favoring a fluid mechanism that the flow direction through Hadley Bilie was from south to north. There is litile topographic evidence to support this view. The lunar orbiter camera orientaition information is usually inadequate to establish relative elevation differences on the mare surface because the lunar orbiter maps are estimated to be correct only to ± 250 meters at the 90% confidence level. However, the premission Iunar orbiter-based map (TOPCOM, 1970) ${ }^{2}$ clearly indicates that the rille bottom has a consistent slope to the south and that bottom of the rille at the norihern extremity is as much as 700 meters higher than the rille bottom in the south. This dieference appears to be well outside the error limits of the map. In an attempt to detemine the slope of the channel botiom based on 4pollo-15 metric information,
${ }^{1}$ After the completion of this report, the author obtained NASA Lunar Topographic Orthophotomap HADLEY, sheet LT041B4, scale 1:250000 based on Apollo 15 metric photos, and also NASA Lunar Topophotomaps 41B4S1 APOLLO 15 LANDING AREA, 41B4S2 RIMA HADLEY CENTRAL, and 41B4S3 RIMA HADEEY SOUTH; scale 1:50000 based on Apoilo 15 metric and pan photos. These maps were prepared by the Defense Mapping Agency Topographic Center, Wash. D.C. The magnitude and direction of rille channel slope indicated by these maps is in excellent agreement with the measurements reported here
spot elevations were taken for this siucty on the AS-11A analytical plotier. These are plotied on figgure 7-1. This information must be taken as only an indication of the slope direction and not interpreted numerically. To produce a valid numerical value for the slope and to confirm this geaph, it would be necessary to establish several models in the analyitical plotier and treat the resultant slope data statistically. However, this graph, which is the best available information, also indicates thai the rille bottom has a well defined slope to the south. In terms of rille morphology, this is an entirely reasonable view because the widest end of the rille is then the downstream end in accord with most flusd chanels.

Postulated orisin. On this basis, it is postulated that Hadley Rille is a chamel which has retumed Iava to the vent from which it was originally extruded. In Hawaijan volcanic flows, ponded lava back flows into the vent from which it initially came at a rate which is several times the extrusion rate (Holmes, 1965) ${ }^{1}$. If one assunes a similar process on the moon, it provides a rational explanation for many of the observations which have been made in this study:

1. Material which flowed in the channel has returned below the Iunar surface. The puzzling absence of any Gepositional form at either end of the rille representing the $20 \mathrm{~km}^{3}$ rolume of the rille channel
$I_{\text {Ibid }}$.

Fig. 7-1. Spot, elevations in the bottom of the channel of Haday Rille indicating the direction of channel slope.
(ch. 6) is thus explained.
2. The layered deposits clisplayed in the rille wall represent a series or intous (ch. 4). Outpourings probably came successively from the southern fracture and spread out over the land surface. Aiter each eruption, backilow occupied the rille chamel and drainage into the vent proceeded. Successive flows 'plated' successive layers on the surface of Palus Futredinis, each layes being tens of meters thick, As additional Ilows were deposited, the rille banks became higher and the rille became deeper. Each individual flotivas considerably less than the 1200 km . ${ }^{3}$ required by a lava tube hypothesis. An imporiant feature of this mechanism is that the individual eruptions are relatively smail and represent energy expenditures observed on earth (see Volumetric Consideration belowi).
3. The high lava marks (ch. 4 and Swann, et al., 1972) represeni the maximum level of lava which was ever present. Withdrawal subsequently left the suriace at its present elevation.
4. Underlying the mare basalis adjacent to the Apennine Mountains there mast be a layer of taius which was shed from the mountains during the $500,000,000$-year interval between the Imbrium event and mare filling (ch. 2). Back flow through the rifle could probably erode a channel
${ }^{7}$ Swann, et al. (1972) Preliminary geologic investigation of the Apollo-15 landing site: Apolio-15 Preliminary Science Report, NASA SP-289.
into this unconsolidated material. One might then expect to find premare talus under a thin veneer of laya in the botiom of the rille. Some of the talus mey have been subsequentiy exposed by impact gardering of the rille botiom, and may now be visible as the rounded, haliburied boulders noted in chapter four. Down cutting into unconsolidated material might also explain the V-shaped prosile in the southem section of the rille.
5. With each additional flow, the rille chennel would become more and more permenent because aiter each erupition, the rille would become largex. The Iarger thermal mass in the rinle would make it successityly less probable that the lava nould congeal in the chamel before the back illow process bectane complete. It is quite unlikely that the rille would change its chamel under these conditions to melt down through previously congealed flows. Thus, we see no meander scars or cut-ofifs. Pributaries, if they existed at all, would be associated with single flow units. They would be obscured by successive flows and not survive.
6. The association on the rinle with the Fresnel Rilie systen to the north probably occurred because the Hadley Eille drained Iava which originally filled the pre-existing Fresnel Rille system. Lava in the Fresnel Rille syster would stay liquid long enough for the draining to take place because the ponded lava in the Fresnel Rille was too thick to cool as rapidly as that on the nearby mare. The depression at the norih end of the rille appears to be a lava pond which
thas drained by the rijle. The presence of sources of leva such as these at the upstream end of the rille mighe be an imporient factor in keeping the rille channel open during cooling of the whole flow. If so, the association of the rille with the depression would be inevituble rathex than happenstance.
7. The structural control of the northern section of the rille (ch. 5) appears to have come about because the lava in this location was less deep. This could be due to the distance cf this section from the vent and/or because of a higher elevabion of the pre-mare surface at this end. As a result, the rille appears to have been superimposed over pre-existing topography. As' noted below in the discussion of the rille constriction, similar tepographic control probably occurred around the apol10-15 landing site. The well-defined cut through Hill 305 which aligns with the rille chanel in this segment is a suggestion of this control.
8. Pronounced netural Ievees would noì be expected because ponded lava adjacent to the rille would congeal to maintain a relatively level land surface. This is in accord with the profilles (ch. 4).
9. Once established, the rille would act as an eifective distributary system to move lava to and from the vent. Thus, flow lobes would not be directly associated with the vent. Flow lobes in Palus Putredinis are difficult to define at all.
10. The obscured channel between Hill 305 and the Fresnel Rille
may have developed because the Hadley Rille channel was not adequaie to drain the last flow from this region before the lava congealed. Iave reaching this region would be relatively cool by the time of its emplacement because of its distance from the vent to the south.
17. This hypothesis is attractive from a stratigraphic point of view. The overall aspeci of the rille indicates that its formetion was associated with the end of Volcanic activity in the Palus Puiredinis region. According to this mechanism, the final volcanic event in the region was the withdrawal of lava through the rille.

Wolumetric considerations. In order for this mechanish to be operative, an adequaíely large sub-surface chamber must exisi without roof collapse while the lava is retuming. Otherwise, a caldera would presumably fom around the vent. Oberbeck, Quaide and Greeley (1969) ${ }^{1}$, have investigated the roof support over a lava tube and determined the following equation:

$$
1=\left(\frac{4}{3} x \frac{\mathrm{sd}}{\mathrm{pg}}\right)^{\frac{1}{2}}
$$

where:
$1=$ Iength of span
$1=$ Tength of span
$\mathrm{s}=$ Tensil surength or rock $=6.9 \times 10^{7}$ degrees $/ \mathrm{cm}^{2}$.
$d=$ Roos thickness
$p=$ Mass density of rock
$\mathrm{g}=$ Acceleraijion of grivity

Ibid.

This equation can be used to make an order on magnitude estimate of the diameter of magma chamber which could exist unsupported on the moon without collapse. This calculation should provide a minimum diameter because a spherical form with an arched rooi is considerably stronger than the simple beam for which tinis engineering equation was developed. Table 7-1 shows the resulits of these calculations. The calculated Wolumes are volumes ois spheres with dianeters equal to the calculated rooî spans.

Table 7-I. Calculated magma chamber sizes.

Depith to	Diameter of Roof Span	Implied volume
(km.)	$(\mathrm{km} .)$	volume (km. ${ }^{\text {a }}$)
1	1. 4	1.3
10	4.3	43.
50	9.7	450.
100	13.6	1300.

These values which are based on an over simplified model and which assume no change in material properties with depth can only suggest an order of magnitude for the magma chamber size. However, if the flow units presentiy in Palus Putredinis are 30 km . by 100 km . by 30 meters thick (the first two dimensions seem reasonable from metric photography and the last from the rille wall stratigraphy), the total volume is $90 \mathrm{~km}^{3}$. If Iour times this volume originally erupted, $3 / 4$ of it having returned to the magma chamber, the total erupted volume would be $360 \mathrm{~km} \mathrm{k}^{3}$. It appears irom the above that a chamber to hola this volume could erist without collapse at a depth of less than 50 km .

This appears to be a reasonable depih for lava to originate on earth (Holmes, 1965) ${ }^{\text {I }}$. However, the higher gravity on the earith would presumably cause rooif collapse and the formation of a caldera.

The $360 \mathrm{~km}^{3}$ volume mentioned above is the approximate volume required to form the previously noted high lava marks in Palus Futredinis. This is eight times the volume of the previously noted large Icelandic flow, Approximately the same amount of energy would be required to lift these two Flows from equivalent depths in their respective gravitational fields, so that from a physical point or view, lunar flows this size seem reasonable.

Morphology of the rijle constriction. In the rille channel northwest of the Apollo-15 lenaing site, there is a constriction which is an apparent oostacle to lateral flow (ch. 4). This, therefore, requires a detailed examination. This feature has been interpreted by Greeley $(1971)^{2}$ as an uncollapsed portion of a lava tube. This interpretation is based upon the appearance of part of the constriction which is similar to depressions $\mathfrak{\text { Iormed }}$ by cave and lava tube roor collapse. Figure 7-2 is an interpretive skeich of the construction drawn as an overlay
$I_{\text {Holmes, }}$ A. (1965) Principles of Physical Geology, and ed., Ronald, New York, p. 308.
$2_{\text {Greeley, }}$. (I971) Lunar Hadley Rille: Considerations of itu origin: Science, Vol. 172.

on rectisied pan photograph 15-9377. This illustrates altemative possioilities for the appearance of this section.

The narrowest part of the constriction (fig. 7-2) is not bowlshaped at a71, but is seen to gradually taper over a distance of several kilometers ontil the rille is almost totally closed. A long, narrow breach as suggested by this section is an unlikely mode of cavern roo collapse. When the cavern roof is intact, the roof structure can be approximated as a simple beam (Greeley, 1971) ${ }^{\text {I }}$, However, iñ a small, central portion of the roof were to collapse, the remaining stracture would resemble two cantilever beams, each projecting toward the other from opposing walls. The maximum bending moment in the cantilever is twice the moment in the simple beam and the location of the maximum moment moves from the center (in the simple beam) to the wall (in the cantilever). This occurs even though the cantilever length is only言 the length of the original bean. (Fulier and Johnston, 1919 ${ }^{2}$, or mosi textbooks on engineering mechenics). Thus, the centilever is not apt to remain intuact. The collapse depressions over lava tubes tend to be elliptical in form, and the width of the ellipse is similar to the tube width (ohoto in Murray, 1971) ${ }^{3}$. This form minimizes the
${ }^{I}$ ibid.
$2_{\text {Fonler }}$ C. 卫. and Johnston, H. A. (1919) Applied Mechanics, Vol. 2, Willey, New Yorls, p. 122.
$3^{\text {Ibic. }}$.

Iengith or cantilevered projections from the wall. The tapered section of the constriction (labelled on fig. 7-2) appears in violation of this principle. The obvious posi-rille faults passing close to this location also make this an improbable site for an uncollapsed cave roor.

The bowl-shaped apoearance of other parts of the constriction could also result from mechanisms other than collapse, for example:

1. The minor consiriction in the rille wall at the sharp bend (fig. 7-2) is caused by ejecta from a post-rille cracier. Boulder brails in the rille are clearly related to this event.
2. The bowl nearesi the Apollo-15 landing sitie may have occurred when the rille was superimposed on the pre-mare suriace. The alignment oi this segment with the Imbrium radial direction and with a lineament through Hill 305 suggests control by pre-mare topography. The humps in the rille bottom which form the edges of the bowl are aligned with nearby pre-mare hills. Figure 7-3 is a iransverse profile at one of the humps and over one of the hills. If the present slope of the hill is extended, it passes less than 100 meters under the rille botiom. This suggests that the rille was superimposed on ihis premare hill (fig. 7-3).

Origin of the rille constriction. A possible explanation for this constriction is that it results from a secondary lava drain. The drain itself is postulated at the intersection on the two post-mare fractures (fig. 7-2), Reiezence to the structure density map (fig. 5-i0) suggests that this Iocation is one of the most highly Iractured areas

FIG. 7-3

Fig. 7-3. Profile across the rilie at the constrietion indicating possible bedrock control.
in the region and is thus a likely location for lava conduits. Eruptions of the volcano, Kilauea Iki, in Hawaii have occurred 30 to 40 miles from the main caldera, although land movements indicate that they are associatied with a magme source maderying the caldera (Holmes, 1965) ${ }^{\text {I }}$. Considering ihe low lunar gravity, and the low thermal conductivity of lunar rocks, it seems reasonable that the conduit to a secondary vent could remain open for reverse flow black to the main magme chanber. The rille channel dowastream Irom the drain would carry a diminished flow resuliting in an aliered channel geometry. The depth and shape of the channel domnstream from the drain would be controlled by the pre-mare topographic surface, which is evidently not I^{2} ar below the lava surface. The shellow depih of lava here is indicated by the structural aligment of the rille (ch. 5). Figure 7-4 is a longitudinal prorile along the rille through the constriction. The slope or the channel toward the south end of the rille is in accord with fluid flow to the south toward the main vent. Figure 7-5 is a prozile through the supposed drain and indicates its shape. The profile lines are indicated on figure 7-2 and on figure 4-5.

Terrestrial-lunar comparison. The geologic evidence suggests that Hadley Rille is a fluia thow channel resulting from the flow of lava. It is posivlated that the flow occurred as a back flow into the vent which originally extruded the flow. Because similar large back

$1_{\underline{\text { Tbiad }}}$.

Fig. 7-4. Longitudinal profile of the rille chamel bottom through the oonstriotion.

Fig. 7-5. Longitudinal profile of the rille chamel bottom west of the constriction indiosting location of proposed drain.
flow chamels are not generally recognized on earith, it is necessary to discuss dissimilarities between the two environments. There are several factors which may inhibit the formetion of such channels in the terrestrial environment:

1. A large, flat region is recuired for such a channel to develop. Most present day terrestrial lava flows occur on the continental margins in mountainous regions. This may effectively prevent rille formation.
2. The vent must be at or below the same elevation as the flow surface. Mosi such vents on earth are under water, Visible jerrestrial volcanoes have a raised vent area. This can be explained by the hifh viscosity of terresirial lavas compared to lunar lavas.
3. Calderas and other collanse features which are apt to divert the flow are comon in the terrestrial gravitational field.
4. Cooling of terrestrial lavas is faster because of atmospheric convection and rainfall. Cooling of underwater eruptions is probably so rapid that back flow is neglisille.
5. Erosion ori pre-existing lava flows between eruptions may disect the sursace enough to interrupt the back flow suriace.
6. In the Iunar environment, lavas have the same inertia as terrestrial lavas, but have only $1 / 10$ the viscosity and are subjected to only $1 / 6$ the gravitation force. It is not presently clear what
effect this has on the mechanics of channel formation.

A few observations are Ieft unexplained by this postulated mechanism for rille formainon. The direct linear correlation between width and depth of the rille (ch. 6) is unexpected in a terrestrial fluid flow channel (Howard, Head, and Swann, 1972 ${ }^{1}$. There is no clear explanation for the apparent relationship between width and azimuth in several short seitions of the rilie (ch. 6).

Other Iunar rilles. This stady has concerned only Hadley Rille. The conclusion here should not be applied to other rilles without careinu consideration. However, two points need to be made:

1. Rilles on the Aristarchus Plateau (very evident on photograph Lunar Orbiter \bar{V}-IE\&ti) evidently domncui through pre-mere meterial. Back flow of lava from a large lava lake could superimpose a rille on bighland material. As the lake level dropped, the channel would search for a gap in the terrain through which to fiow. Unconsolidated material would probably be eroded, deepening the valley somevhet.
2. The inner rille in Schroeter's Valley (Lunar Orbiter $150 H_{3}$ and 157 H_{3}) cross-cuts the outer rille. This is easily explained if the inner rille was formed by back flowing lava which originated in Oceanus Procellarum.
$I_{\text {Howard, K. A., Head, J. W. and Swann, G. A. (I972) Geology of }}$ HadIey Rille: Preliminary Report, U.S.C.S. Inveragency Reporit No. 4 .

A number of genaral questions have been raised by this stucy which deserve further attention.

1. It would be desirable to study the measurable geomorphic characteristics which define the direction of filow in fluid flow channels. A possible example is the asymmetric widin-lengih curve discussed in chapter six. Knowledge of such relationships would be of considerable value in interpreting exira-ierrestrial forms and would provide an independent check on photogrametric deteminations of equi-potential surfeces. A large amount of well planned high resolution cata would be required to meke such a study definitive.
2. An investigntion of the relationship of channel form to fluid density should be made. This could be carried out with organic liguidsand salt solutions using a stream table. The eifect of different factors such as density and viscosity could be identified using analysis of variance if sufficient data were available.
3. Model experiments for extra-terrestrial phenomena appear to have limited value because so many parameters are varied at once. However, experimeris using ponded liquid paraffin in a container with a drain might provide some insight into the mechanics of flow channel formation within a semi-liquid medium. A large scale terrestrial analogue to this type of flow is found in the meenders of the Guln Stream (Leopold, Holmen and Miller, 1964) ${ }^{\text {I }}$.
${ }^{1}$ Leopold, L. B., holman, M. G. and Miller, J. P. (1964) Fluvial Processes in Geomorohology, Freeman, San Francisco; pe 296.

APPENDTX 1

DERIVATION OF THE AZIMUTH EQUATION

This is a derivation of the equation used in chapter \forall to compute the azimuth from one point on a planetary surface to another. Figure Al-1 defines the vectors used in this proof, and the following notation has been adopted:
P_{1} - point at which azimuth is desired
P_{2} - point to which azimuth is desired
L_{1}, L_{2} - Latitude angles to points P_{1} and P_{2} (negative if south)
$G_{1}, G_{2}-$ Longitude angles to points P_{1} and P_{2} (negative if west)
$\dot{i} \rightarrow$ unit vector from sphere center to 0° long. and Iat.
$\overline{\mathrm{j}}$ - untt vector from sphere center to 90° long, and 0° lat.
\bar{k} - unit vector from sphere center to north pole.
$\overline{V_{1}}$ - Vector from sphere center to point P_{1}
$\overline{\nabla_{2}}-$ Vector from sphere center to point P_{2}
$\bar{X}_{1}, y_{I}, z_{1}-M a g n i t u d e s$ of components of \bar{V}_{1} along $\bar{i}, \bar{j}, \bar{k}$
$\mathrm{x}_{2}, \mathrm{y}_{2}, z_{2}-$ Magnitudes of components of $\overline{\mathrm{V}}_{2}$ along $\overline{\mathrm{i}}, \overline{\mathrm{J}}, \overrightarrow{\mathrm{k}}$
\vec{N} - Morth azinuth vector at point P_{1}
$\bar{A}-$ azimuth vector $: 2 P_{I}$ tangent to sphere and to great circle through P_{2}
$\overline{E_{1}}$ - projection of \bar{V}_{1} on equatorial plane.
$\overline{\mathrm{M}}$ - (not shown on fig. A1-1) Intemediate vector perpendicular to plane defined by $\overline{\mathrm{M}}=\overline{\mathrm{V}}_{2} \times \overline{\mathrm{V}}_{1}$
$\bar{Q}-$ (not shown on fisg. A1-1) Intermediate vector perpendicular to plane defined by $\bar{Q}=\bar{V}_{2} \times \bar{V}_{1}$
r - planetary radius

FIG. AI-I
VECTORS USED TO DERIVE AZIMUTH EQUATION

Given the latitudes and longitudes of two points on a spherical surface, determine the azimuth relative to north from one point (P_{1}) to the other $\left(P_{2}\right)$.
A. Find x_{1}, y_{1}, and $z_{1} ; x_{2}, y_{2}$, and z_{2} in terms of the planetary radius (r) and the angles $L_{1}, 2$ and $G_{1,2}$

By definition

$$
\overline{\nabla_{1}}=x_{1} \bar{i}+y_{1} \bar{j}+z_{1} \bar{k}
$$

\bar{E}_{1}, the projection of $\overline{V_{1}}$ on the equatorial plane is found:

$$
\overline{E_{1}}=x_{1} \bar{i}+y_{1} \bar{j}
$$

also:

$$
\left|\overline{\nabla_{I}}\right|=\sqrt{x_{I}^{2}+y_{I}^{2}+z_{I}^{2}}=I
$$

and:

$$
\left|\overline{E_{I}}\right|=\sqrt{x_{1}^{2}+y_{I}^{2}}
$$

so:

$$
\begin{aligned}
x_{1} & =\overline{E_{1}} \cdot \bar{i}=\left|\overline{E_{1}}\right||\bar{i}| \cos \left(G_{1}\right)=\sqrt[1]{x_{1}^{2}+y_{1}^{2}} \cos \left(G_{1}\right) \\
y_{1} & =\overline{E_{1}} \cdot \bar{j}=\left|\overline{E_{1}}\right||\bar{j}| \cos \left(90-G_{1}\right)=\left|\bar{E}_{1}\right||\bar{j}| \sin \left(G_{1}\right) \\
& =\sqrt{x_{1}^{2}+\bar{y}_{1}^{2}} \sin \left(G_{1}\right)
\end{aligned}
$$

but:

$$
\overline{E_{1}} \cdot \overline{V_{I}}=\left|\overline{E_{1}}\right|\left|\frac{V_{1}}{\mid}\right| \cos \left(L_{1}\right)=\sqrt{x_{1}^{2}+y_{1}^{2}} r \cos \left(L_{1}\right)=x_{1}^{2}+y_{I}^{2}
$$

so:

$$
\sqrt{x_{1}^{2}+y_{1}^{2}}=r \cos \left(I_{1}\right)
$$

also:

$$
\begin{aligned}
\overline{V_{1}} \cdot \overline{\mathrm{k}} & =\left|\overline{\bar{V}_{1}}\right||\overline{\mathrm{k}}| \cos \left(90-L_{1}\right)=\left|\overline{\nabla_{1}}\right||\overline{\mathrm{k}}| \sin \left(\mathrm{L}_{1}\right) \\
& =\mathrm{r} \sin \left(L_{1}\right)=z_{1}
\end{aligned}
$$

combining results:

$$
\begin{aligned}
& x_{1}=r \cos \left(G_{1}\right) \cos \left(I_{1}\right) \\
& y_{1}=r \sin \left(G_{1}\right) \cos \left(L_{1}\right) \\
& z_{1}=r \sin \left(L_{1}\right) \\
& \text { and } \operatorname{similariy} \\
& x_{2}=r \cos \left(G_{2}\right) \cos \left(L_{2}\right) \\
& y_{2}=r \sin \left(G_{2}\right) \cos \left(L_{2}\right) \\
& z_{2}=r \sin \left(L_{2}\right)
\end{aligned} \quad \begin{aligned}
& \text { (eq. 3) } \\
& \text { (eq. 4) } \\
& \text { (eq. 5) } \\
& \text { (eq. 6) }
\end{aligned}
$$

These are the familiar equations for transforming spherical to rectangular coordinates.
B. Find the north vector \bar{N} tangent to the sphere at P_{I}, and its absolute value $|\bar{N}|:$

$$
\begin{aligned}
& \overline{\mathrm{k}} \times \overline{\mathrm{V}}_{1}=\overline{\mathrm{in}} \quad\left(\bar{M} \text { is an intermediate vactor perpendicular to } \overline{\mathrm{k}} \text { and } \overline{\mathrm{V}}_{1}\right) \\
& \overline{\mathrm{V}}_{1} \times \overline{\mathrm{M}}=\overline{\mathrm{N}}=\overline{\mathrm{V}}_{1} \times \overline{\mathrm{k}} \times \overline{\mathrm{V}}_{1}
\end{aligned}
$$

Then, by virtue of the vector identity:

$$
\bar{A} \times \bar{B} \times \bar{C}=\bar{B}(\bar{A} \cdot \bar{C})-\bar{C}(\bar{A} \cdot \bar{B}) \quad \text { (eq. } 7 \text {) }
$$

it is evident that

$$
\left.\overline{\mathrm{N}}=\overline{\mathrm{k}}\left(\overline{\mathrm{v}_{I}} \cdot \cdot{\overline{\nabla_{1}}}_{1}\right)-{\overline{\nabla_{1}}}^{\left(\bar{v}_{1}\right.} \cdot \overline{\mathrm{k}}\right) \quad \text { (eq. 8) }
$$

The absolute value of $\overrightarrow{\mathrm{N}},|\overline{\mathbb{N}}|$, is found by taking the dot product

$$
\left.|\overline{\mathrm{N}}|^{2}=\overrightarrow{\mathrm{N}} \cdot \overline{\mathrm{~N}}=\left[\stackrel{\rightharpoonup}{\mathrm{k}}\left(\overline{\mathrm{~V}}_{1} \cdot \overline{\mathrm{~V}}_{1}\right)-\overline{\mathrm{v}}_{1}\left(\overline{\mathrm{~V}_{1}} \cdot \overline{\mathrm{k}}\right)\right] \cdot\left[\overrightarrow{\mathrm{k}}^{\left(\overline{\mathrm{V}}_{1}\right.} \cdot \overrightarrow{\mathrm{V}}_{1}\right)-\overline{\mathrm{V}}_{1}\left(\overline{\mathrm{v}}_{1} \cdot \overline{\mathrm{k}}\right)\right]
$$

or after expanding the expression and collecting terms

$$
|\bar{N}|^{2}=(\bar{k} \cdot \bar{k})\left(\bar{v}_{1} \cdot \bar{v}_{1}\right)\left(\bar{v}_{1} \cdot \bar{v}_{1}\right)-\left(\bar{k}_{k} \cdot \bar{v}_{1}\right)\left(\bar{v}_{I} \cdot \bar{k}\right)\left(\bar{v}_{1} \cdot{\overline{v_{1}}}_{1}\right)
$$

This can be simplified because $k, k=1$ and:

$$
\begin{array}{ll}
\left(\overline{v_{1}} \cdot \overline{\mathrm{v}_{1}}\right)=r^{2} & \text { (eq. 9) } \\
\left(\overline{\bar{v}_{1}} \cdot \overline{\mathrm{k}}\right)=z_{1} & \text { (eq. } 10
\end{array}
$$

to the form

$$
|\overline{\mathrm{N}}|^{2}=\mathrm{I}^{4}-z_{I}^{2} x^{2}
$$

so that

$$
|\bar{N}|=\sqrt{I^{4}-z_{1}^{2} r^{2}}
$$

C. Find the vector A tangent to the sphere in the plane of the great circle defined by V_{1} and ∇_{2}. This is the azimuth vector. Also, determine its magnitude.

$$
\begin{aligned}
& \left.\bar{\nabla}_{2} \times \overline{\mathrm{V}}_{1}=\overline{\mathrm{Q}} \text { (Q is an intermediate vector perpendicular to } \nabla_{1} \text { and } \nabla_{2}\right) \\
& \overline{\mathrm{V}}_{1} \times \overline{\mathrm{Q}}=\overline{\mathrm{A}}
\end{aligned}
$$

so that

$$
\bar{A}=\vec{V}_{I} \times \overrightarrow{V_{2}} \times \overline{V_{1}}
$$

which by the identity (eq. 7) is found to be

$$
\bar{A}=\bar{\nabla}_{2}\left(\vec{\nabla}_{I} \cdot \bar{\nabla}_{1}\right)-\overline{\bar{v}_{1}}\left(\overline{\mathrm{~V}}_{2} \cdot \bar{\nabla}_{1}\right) \quad \text { (eq. 11) }
$$

The magnitude is found as in part B by taking the dot product $\bar{A} \cdot \bar{A}$ which gives:

$$
\mid \overline{\mathrm{A}}^{2}=\left(\overline{\mathrm{v}}_{1} \cdot \overline{\mathrm{v}}_{2}\right)\left(\overline{\mathrm{v}}_{1} \cdot \overline{\mathrm{v}}_{1}\right)\left(\overline{\mathrm{v}}_{1} \cdot \overline{\mathrm{v}}_{1}\right)-\left(\overline{\mathrm{v}}_{2} \cdot \overline{\mathrm{v}}_{1}\right)\left(\overline{\mathrm{v}}_{1}, \overline{\mathrm{v}}_{1}\right)\left(\overline{\mathrm{v}}_{2} \cdot \overline{\mathrm{v}}_{1}\right) .
$$

Because of the relationships of equations 9 and 10 and because:

$$
\begin{equation*}
\overline{\mathrm{v}}_{2} \cdot \overline{\bar{v}_{2}}=\mathrm{r}^{2} \tag{eq.12}
\end{equation*}
$$

the expression for $\frac{\underline{A}]^{2}}{}$ can be simplified to:

$$
\bar{A}^{2}=r^{6}-r^{2}\left(\bar{v}_{2} \cdot{\overline{V_{1}}}_{1}\right)^{2}
$$

Furthermore, because:

$$
\bar{v}_{2} \cdot \bar{\nabla}_{I}=\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)
$$

it follows that

$$
|\bar{A}|=\sqrt{r^{6}-r^{2}\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)^{2}}
$$

D. Find the cosine of the azimuth angle, the angle between $\overline{\mathrm{A}}$ and $\overline{\mathrm{N}}$ $\overline{\mathrm{A}} . \overline{\mathrm{N}}=|\overline{\mathrm{A}}| \overline{\mathrm{N}} \mid \cos$ (Azimuth)
by substituting equations 8 and 11:

$$
\begin{aligned}
& \overline{\mathrm{A}} \cdot . \cdot \overline{\mathrm{N}}=\left[\overline{\mathrm{V}}_{2}\left(\overline{\mathrm{~V}}_{1} \cdot \overline{\mathrm{~V}}_{1}\right)-\overline{\mathrm{V}}_{1}\left(\overline{\mathrm{~V}}_{2} \cdot \overline{\mathrm{~V}}_{1}\right)\right] \cdot\left[\overline{\mathrm{k}}\left(\overline{\mathrm{~V}}_{1} \cdot \overline{\mathrm{~V}}_{1}\right)-\overline{\mathrm{V}}_{1}\left(\overline{\mathrm{~V}}_{1} \cdot \overline{\mathrm{k}}\right)\right] \\
& =\left(\bar{v}_{2} \cdot \bar{k}\right)\left(\bar{v}_{1} \cdot \bar{v}_{1}\right)\left(\bar{v}_{1} \cdot \bar{v}_{1}\right)-\left(\bar{v}_{1} \cdot \bar{k}\right)\left(\bar{v}_{2} \cdot \bar{v}_{1}\right)\left(\bar{v}_{1} \cdot \bar{v}_{1}\right) \\
& -\left(\bar{v}_{2} \cdot \bar{v}_{1}\right)\left(\bar{v}_{1},{\overline{v_{1}}}_{1}\right)\left(\bar{v}_{1} \cdot \bar{k}\right)+\left(\bar{v}_{1} \cdot \bar{v}_{1}\right)\left(\bar{v}_{2} \cdot \bar{v}_{1}\right)\left(\bar{v}_{1}, \bar{k}\right)
\end{aligned}
$$

which after combining terms becomes:
$\overline{\mathrm{A}} \cdot \overline{\mathrm{M}}=\left(\overline{\mathrm{V}}_{2} \cdot \overline{\mathrm{k}}\right)\left(\overline{\mathrm{v}}_{1} \cdot \overline{\mathrm{~V}}_{1}\right)^{2}-\left(\overline{\mathrm{v}}_{1} \cdot \overline{\mathrm{k}}\right)\left(\overline{\mathrm{V}}_{2} \cdot \overline{\mathrm{v}}_{1}\right)\left(\overrightarrow{\mathrm{V}}_{1} \cdot \overline{\mathrm{v}}_{1}\right)$
Using equattons 9,10 and 12 , and because $\overline{\mathrm{V}}_{2}, \overline{\mathrm{k}}=z_{2}$, it is found that:
$\bar{A} \cdot \bar{N}=z_{2} r^{4}-\left(X_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right) z_{1} r^{2}$
but by equation 13:
$\cos ($ Azimuth $)=\frac{\overline{\mathrm{A}} \cdot \overline{\mathrm{N}}}{|\overline{\mathrm{A}}| \sqrt{\mathrm{N}} \mid}$
which gives:
$\cos ($ Azimuth $)=\frac{z_{1} x^{4}-\left(x_{1} x_{2}+\bar{y}_{1} \bar{y}_{2}+z_{1} z_{2}\right) z_{1} I^{2}}{\sqrt{x^{6}-r^{2}\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)^{2}}} \sqrt{r^{4}-z_{1}^{2} r^{2}}$
If the transformation values for x, y, z are substituted (equations 1 to 6) it is found that:

$$
\cos (\text { Azimuth })=\frac{r^{5}\left[\sin \left(L_{2}\right)\right]-r^{5} S\left[\sin \left(I_{1}\right)\right]}{\sqrt{r^{6}-r^{6} S^{2}} \sqrt{r^{4}-r^{4} \sin ^{2}\left(L_{1}\right)}}
$$

where

$$
\begin{aligned}
& s=\cos \left(G_{1}\right) \cos \left(L_{1}\right) \cos \left(G_{2}\right) \cos \left(L_{2}\right) \\
&+\sin \left(G_{1}\right) \cos \left(L_{1}\right) \sin \left(G_{2}\right) \cos \left(L_{2}\right) \\
&+\sin \left(L_{1}\right) \sin \left(L_{2}\right)
\end{aligned}
$$

by combining terms it is found that:
$s=\left[\cos \left(L_{I}\right) \cos \left(L_{2}\right)\right]\left[\cos \left(G_{1}-G_{2}\right)+\sin \left(L_{1}\right) \sin \left(L_{2}\right)\right]$
and that
$\cos ($ Azimuth $)=\frac{\sin \left(L_{2}\right)-S \sin \left(L_{1}\right)}{\sqrt{1-s^{2}} \cos \left(L_{1}\right)}$

This appears to be the simplest form of the expression.

APPENDIX 2

DATA AND RESULTS FROM CHAPTER V

Structure map. The following four pages contain a summary of the data which was assembled from the structure map, figure 5-2. The column headings have the following meanings:

Structure Number - the code number used on the map, figure 5-2

Structure lype - the following code applies:

1. Apparent grabens
2. Edges of mountain blocks
3. Undifferentiated lineaments
4. Orater chains
5. Apparent: Volcanic relief features
6. Small local systems of fractures
7. The general trend of sinuous rilles

Azimuth - measured azimuths
Length - measured length of structure on photograph
Relative Importance - The following code applies:

1. Obvious relief feature
2. Easily seen on metric photos
3. Can be found on monoscopic photo after search
4. Only evident in stereoscopic model

A discription of the second and third tables in this appendix is found preceding the tables.

STRUGTURE NUMBER	$\begin{gathered} \text { STRUCTURE } \\ \text { TYYE } \end{gathered}$	AZ EMUTH (Degrees from North)	LENGTH (mm. on shoto)	RELATIVE IMPORTANCE
1	3.	33	12	3
2	3	28	8	2
3	3	167	5	4
4	3	167	5	4
5	4	44	6	2
6	5	34	4	2
7	4	33	6	2
8	2	118	73	2
9	1	69	26	1
20	1	42	43	1
${ }^{2}$	4	189	15	2
1.6	1	32	35	$!$
13	1	123	5	2
14	3	91	7	3
15	1	51	9	2
16	3	32	12	4
17	3	50	32	4
18	4	68	15	3
17	4	145	4	2
20	3	19	18	2
21	3	42	19	2
22	3	128	13	2
23.	2	19	19	2
24	2	65	3	3
25.	2	132	20	2
$26^{\text {: }}$	2	32	2	2
27	2	180	3	2
28	2	162	3	2
29	2	153	7	2
30	2	153	8	2
31	2	43	30	2
32	2	152	32	2
33	3	146	\pm	4
34	3	21	19	3
35	2	121	13	2
36	3	61	40	2
37	3	17	22	3
38	3	58	40	3
39	3	69	30	3
40	3	112	16	3
41	3	135	17	4
42	2	177	22	4
43	3	41	87	4
44	3	108	12	4
45	3	35	18	4
46	4	28	18	4
47	3	22	55	4
48	3	47	19	4
49	3	13	7	3
50	3	25	6	3
51	3	20	6	3
52	2	10	19	3
53	2	159	15	2
54	1	105	90	3
55	1	163	32	2
56	5	112	12	2

-DATA CONGERNING STRUCTURES SURROUNDING HADLEY RILIE (cont.) -

STRUCTJRE NUTHER	STRUGTURE TYPE	AZTMUTH (Desrees from	North)	IENGTH (min. on photo)	RELATTYE IMPORTANCE
57	3	15	-	67	2
54	, 5	147		21.	3
59	5	179		B	2
60	3	175		24	4
61	1	154		30	4
62	4	147		6	3
63	4	66		7	3
64	3	152		19	4
65	3	151.		17	3
65	3	154		11.	3
67	5	123		$3{ }^{*}$	2
68	3	157		4	2
69	3	154		3	2
70	5	145		7	2
71	5	61		22	1
72	1	63		55	3
73	5	25		15	2
74	5	58		9	2
75	5	73		15	2
76	3	145		17	4
77	4	145		17	3
78	4	114		50	3
79	4	58		20	2
80	3	60		57	3
82	4	155		21	2
82	4	155		8	2
83	3	140		20	4
84	3	140		20	4
85	3	248		13	$4=$
85	3	144		65	4
87	3	37		11	2
88	4	51		9	3
89	3	133		42	3
90	3	1		65	4
91	3	62		38	2
92	3	253		21	2
93	2	114		13	1
94.	2	41		28	1
95	2	30		11	1
96	3	139		8	3
97	3	50		9	3
98	3	52		9	2
99	3	73		22	2
100	3	40		23	3
101	3	53		34	3
102	3.	50		27	3
103	3	41		20	4
204	3	165		43	3
105	3	165		19	3
106	3	84		9	2
107	2	93		37.	4
108	4	108		7	3
209	3	132		22	3
110	3	141		5	3
111	3	136		3	4
112	3	145		8	3
113	3	244		1.3	4

-DATA CONGERNING STRUCTURES SURROUNDING HADEEY RILIE (cont.) -

STRUCTURE NUMBER	STRUCTURE MYPE	$\begin{gathered} \text { AZIMUTH } \\ \text { (DeEroes from North) } \end{gathered}$	$\begin{aligned} & \text { EENGMH } \\ & \text { (min. on photo) } \end{aligned}$	$\begin{aligned} & \text { RELATIVE } \\ & \text { SMPORTANGE } \end{aligned}$
114	4	45	15	4
115	3	2	12	2
116	$\because 3$	2	11	2
117	3	2	19	2
118	3	68	10	2
119	3	142	11	4
120	3	141	7	4
121	3	39	7	2
12.2	3	51	6	2
123	3	62	4	2
124	3	80	파를	4
125	3	118	4	4
126	3	134	9	4
127	3	121	4	4
129	3	47	12	3
129	3	32	23	2
130	3	23	23	2
231	5	179	17	1
132	5	178	10	1
133	3	44	14	3
134	3	175	22	2
135	3	176	11	2
136	5	84.	22	2
137	4	132	11	2
136	6.	155	8	2
139	6	83	3	3
140	6	84	6	3
141	6	157	6	3
142	3	11	13	2
143	3	36	7	4
144	3	36	15	2
145	3	42	13	3
146	3	163	5	2
147	3	50	40	4
148	3	38	52	2
149	3	27	32	2
$\underline{150}$	3	128	4	2
151	6	12	?	3
152	1	65	12	2
153	1	52	60	2
154	3	139	4	3
155	3	2	14	3
156	3	45	8	2
157	1	45	56	1
158	1	61	90	1
159	1	117	12	1
150	6	89	7	2
151	6	41	3	2
162	6	148	3	2
163	6	11	3	2
164	6	4	2	2
165	6	129	2	3
166	3	132	9	2
167	1	128	19	2
168	1	130	60	2
169	1	74	11	2
170	2	15.5	13	1

Results of structure classification program. The following two tables list the results of the program which classifies structures according to which basin related direction the structure azimuth most closely approximates.

The following two pages indicate the following directions from the center of each of the structures on fig. 5-2.

1. Direction radial to the Imbrium Basin
2. Direction circumferential to the Imbrium Basin
3. Direction radial to the Serenitatis Basin
4. Direction circumferential to the Serenitatis Basin.

The last two pages are a listing of the differences between these computed basin directions and the actual measured structure azimuths. This allows the determination of Which basinwrelated direction each Iineament most closely approximates. This airection is the one which has a minimum value for the diference. These values have been underlined in each case. The measured structure azimutis used to find this difference are found in the preceding tabulation.
dige mions madial and circumperential to basilf from structure bocatiohs

STR．	IMBRIUM		SEREMITATIS	
${ }^{+1 \mathrm{H}_{1}}$	RhDTAT	CIRCUSE．	Radtaj，	GIRCUM．
1	－64．8703	25．1291	8．8．7133	170．7133
2	－64．5734	25.3265	80．5418	176.5418
3	－64．9280	25.0719	18．8669	178．8669
4	－64，9311	25，0688	88．0754	178．8754
5	－64．1312	25．8667	97．6371	177．8371
6	－64，0639	25．9360	07．7857	177．7857
7	－64，0230	25．9769	97．7438	177.7436
8	－63．9546	26.0453	87．7901	177.7901
9	－63．8434	26.1565	87.6927	177．6927
10	－64，3202	25：6797	80．3317	178.3317
11	－64．5176	75：4823	88.6047	170.3047
12	－63．6504	26．3495	07．4536	177．4536
13	－64，1646	25，6353	98．1478	178．1478
14	－64，0635	25．9344	88，0102	178．0102
15	－6441470	25．8529	88.1448	176．1649
16	－63．8532	26．14．67	87.7584	177，75日4
17	－63：2006	26．7913	86．8585	176．8505
14	－63．6240	26， 3759	07．4253	177．4253
19	－63，5557	26，4442	87．3399	177．3397
30	－62．7085	27．2914	86,1744	175：1744
21	－52．8890	27．1109	86.4189	176．4759
22	－62，4．798	27．5201	85，0602	175，8602
23	－52，5132	27．4967	83，8906	175，0986
24	－62．4250	27．5731	05．7995	175．7995
25	－62．2050	27．7939	85，4961	175．4．761
26	－52．1270	27．8729	85.3830	175．3830
27	－52．0217	27．9780	85．2237	175．2237
28	－62，7036	27．2163	86.2792	176．2782
29	－63．1343	26．8656	88.7598	176．759
30	－63．2342	26：7657	86.9008	176．9009
31	－63．3128	26.6871	87．0148	177．014．81
32	－62．4017	27：5992	65，7027	175，7027
33	－62，5248	27．4751	85，0881	175．8861
34	－63．1932	36.8467	86．7947	176．7847
35	－63．9452	26，4547	67．3561	177．3561
36	－64：1138	25．8861	88．2177	178．2177
37	－62،7121	27．2878	咕：1303	176．1303
3 t	－62．6985	27．3013	86．1144	176.1144
29	-62.3942	27.6057	05.6340	175.6340
40	－63．3516	26．6493	87．0766	177．0766
41	－63．1273	25.8726	85.7329	176．7329
42	－63．6735	25．3264	97．5616	177．5616
43	－62．3425	27．6573	05．5343	175．5343
44	－63，0307	26，9692	85，5862	176．5862
45	－61．5401	28．459日	84.3190	174．3190
46	－63，5486	26.4513	87．3750	177.3750
47	－60．9711	29，028B	83.4097	173．4097
48	-63.1334	26．8665	86.7218	176．7218
49	－64．9025	25．0974	89．9419	179.5419
50	－64．3568	25．6431	88．6830	178．6830
51	－-64.6046	25．3753	89.1085	179.1085
52	－64，6212	25．3767	09．1497	179.1497
53	－64．7565	25，2434	89.3805	179．3005
54	－64＊1116	25．8883	0．6．3095	178.3095
55	-63.9978	26．0021	88.1405	178．1405
56	－63．4272	26．5727	87．1074	177．1074

STR．	IMBRIU ${ }^{\text {d }}$		SERENITATIS	
NO．	RADIAL	cractime	RADIAL，	GIFCUM．
37	－62．1604	27．8395	04.3317	174＊9317
58	－61．6526	28．3473	84.0056	174，0096
59	－60．6777	29，3222	82.0721	172：0721
60	－63．0191	26.9808	a5．4995	176，4995
67	－61．7354	78，2645	84，3136	174．3136
62	－60：0559	29．9440	91．2617	171．2617
69	－60．0307	29．9692	81．2608	171．260日
0.4	－60．3828	29＊5171	82，0272	172.0272
65	－60．1330	2948661	81．639？	171．6397
66	－60．0957	29．9042	91．6352	171．6352
67	－60．1391	29．8508	81，8492	171．8492
68	－59．4732	30，5267	90.7166	170.7166
69	－59，4525	30.5474	00．7167	170．7167
70	－99．3593	30．6408	80.6415	170．6415
71	-59.4563	30．5436	79.9775	169.8775
72	－59．8328	30.3671	80．4699	170.4699
73	－59．0731	30.9268	79．2443	169．2443
74	－59．0022	30，9977	78.9816	168：9816
75	－54．7689	31.2310	76．574	168，5746
76	－57．0013	32，1986	76．9659	165，9659
77	－50．3686	31，6313	78．2316	168．2316
78	－58．7107	31，2892	79．3260	169．3280
79	－54．2890	31．7109	70．6320	168．6320
80.	-37.3162	32.6837	77：4778	167．4779
B1	－57．0644	32.9355	76.3082	166.3076
12	－56．9507	33.0412	76．1570	166．1570
83	－57．1925	32，8074	76.9535	166．9535
64	－57．0679	32：9320	76．8129	186．8129
${ }^{6} 5$	－58．3814	31.8185	79，4649	169，4648
86	－59．0931	30．9086	80，7780	170．7780
87	－50．5501	31.4498	79，6829	169．6829
日	－59．5650	30．4345	91．4916	171．4926
89	－ 80.4875	29，5134	82．7909	172．7909
90	－61：7094	29.2905	04，6918	174，6914
91	－61．1403	23，9596	83.9033	173．9033
92	－60． 7910	29．2089	03.4138	173．4138．
93	－61．6721	28．3278	84.6824	174．6624
94	－61．1120	20．0879	83.923 日	173．9238
85	－ 60.1069	29．8931	82.5450	172．5450
96	－60．5139	29.4860	83．0521	173.0521
97	－60．4578	29．5421	02．9320	172.9320
98	－60．0109	29．9890	8213568	172．3569
99	－55．8760	90．1239	82．0979	172．0979
100	－39．0395	30．9604	81．0351	171，0351
101	－50．6809	31．3190	80．4E26	170．4826
102	－50．6151	31.3840	60．2747	170．2747
103	－58．5123	31．464\％	80．0623	170．0523
104	－58，4026	31．5973	79．7727	149．7727
105	－574．7682	32，2317	78．6718	168．6718
106	－57．7983	32．2116	79．5836	168.5936
107	－50．1498	31.8501	79．6402	169．6402
108	－60，5641	29，4356	83.2944	173．2944
109	－59．2652	$=0.7347$	81．1921	171．1921
110	-56.7565	33：2434	77．9087	167．9087
111	－57．1383	32．8616	78．5475	168.5475
112	\cdots－56＊9942	33．0057	78．1791	168．1798
113	－56．712	33．2873	77，5714	167．6714

DIRECTIONS RADIAL AMD CIRGUMEEGENTIL TO BASIHS FROM STRUGTURE LOCATYONS

DIFPERENCES BETHEEN STRUGTURE AZIMUTMS AND FOUR BASIM RELATED DIRECTIOHS
(Minimum dirferances whlch thararara Indicato clooant ralationohip are underlined)

DIFFERENCES BETHEEU STRUCTURE AZIHUTAS AMD FOYY BASIN RELATED DIRECTIONS
（Minimum diffarances which therafore indieato clogest rolationahfp are underilned）

	STR．	IMBRIUM		SERENITATIS			STR．	IMBrIUM		SEREHITATIS	
	NO．	RADIAL	CIRCUM．	Pabint	GIRGUM．		NO．	RADIAL	GIRCUM	MADIAL	SIRCUK．
	114	71.6035	11．3968	32．5701	57.3302		171	23.9213	67．0782	62.2130	27．7873
	125	50．8767	31.1236	76．3595	1．3． 6400		172	0.3525	69．6479	38，6846	53.3149
	116	58．858日	31.1415	76，3625	13．6370		173	80． 10.1	81．1906	48，2108	41.7887
	117	58．6169	31.3834	76，0974	13.5091		174	19．9473	70.0522	14．7098	75.2897
	118	55.0523	34．8480	10．5009	79.4994		175	10：4230	79，5773	4.4 .3602	43.6393
	119	19．9461	70.0535	62.2801	27．7202		176	4，4091	85，5912	33.4551	56．5392
	120	18．7839	71．2157	61.4845	20．5157		277	82．1748	7．8055	46.5468	43.4527
	121	E2．7096	7.2907	43.6110	45.38 E 5		178	14，8051	75.134^{4}	45．610	44.3 E67
	122	69.7236	20．2759	30.8079	59.3924		179	64．0542	25．9461	24：3653	65.6332
	123	50．8650	31，1353	19， 4.542	70.5353	\checkmark	180	7.0973	82．9030	46.1058	43.6937
	124	42.2183	47.7812	0．2779	89.7323		181	21．8583	6.4 .1412	63.8302	26.1701
	125	3．6038	86． 3965	37，4753	52.5250			－		63．830	26.2702
	126	124340	77．8163	53.7429	36，2574						
	127	0.5337	89.4665	40.2851	49.714 .4						
	128	74.4793	15．5202	33.7220	56.2783						
	129	69．6138	－0，3065	48：4619	41.5376						
	130	11．4．259	6． 6.5444	57.4655	32．5348						
	131	50，0848	31．9155	22，2942	7.7161						
	132	57．0701	32，9302	8こ．2914	6.7189						
	133	78.6838	1113165	35.2582	54.7421						
	134	52.4295	37．5117	94．5092	5.4111						
	135	53．2124	36．7979	63.2620	6． 7303						
	135	39，0620	50.9375	5.1343	84．9660						
0 m	137	9．0595	日0．940E	52.8671	37.1332						
\％	136	41.8154	48.1841	85.1946	3．E056						
\cdots	139	40，0501	49.9494	＋3：9971	26．0031						
\square	140	30.9579	51.0416	4， 4665	85.133 a						
\square	141	33.7980	56.2023	78.1930	12， 80073						
\pm	142	67.0120	22．9875	67.0467	22．0528						
E	143	88，3728	－146275	41.6728	48.3267					．	
\square	144	87.9934	－20069	42.1186	47.8909						
\％ 0	145	82．2435	74．756	35.9403	54.0600						
	146	40.0463	49.9532	83．7348	6.2655						
$Q E$	147	73．1612		29.1390	60.8613						
E10	148 149	81．4316		45.3361	44.6634						
\cdots	150	0.642	－ 3.2556	54.8576	35.1327						
	151	71.7555	10.0463	70.6668	43.1593						
Tris	152	57.0264	32：9718	$15.42 E 9$	74.5836						
0	153	71．4958	18．5038	$2 \mathrm{~S}, 952 \mathrm{~F}$	63，0475						
0 m	154	16．5994	73．4001	58．9718	31.0285						
\％	155	62.3477	27.6526	81．1012	8．8991						
$\underline{\square}$	156	74，3125	15，6870	38.5852	51.4133						
	157	75．7653	14：2342	3603515	53.1488						
－	158	61．8356	28.1647	10．7587	71.2409						
	159	4.0038	85.9965	35．3669	54.6334						
	160	30.7216	59.2787	－5．8601	84．14，02						
	161	79.6400	11，3603	42.2305	47.7790						
	162	20.3172	61.6831	64，8384	25．1611						
	163	71，2247	28．7749	72.0374	17.9631						
	164	64.2317	25.7686	79：0410	20．9593						
	165	9.1952	80，8050	46.0159	43.9836						
	166	－11．3279	78．6724	＋9．9782	40.0213						
	167	7．7419	82．2584	45.3918	44.6077						
	168	10．5997	79.4006	46.2796	43.7199						
	169	42．9491	47，0504	8.2270	日1．7733						
	170	33.6229	56．3774	73.7142	16，2853						

APPENDIX

DATA AND RESULTS FROM CHAPTER VI

Mann comparator data reduction. The following three pages contain a listing of the basic rille parameters obtained from the Mann comparator data for each measurement location. The measurement locations are specified on figure 6-2.

The distance along the rille channel between any two measurement locations may be computed by subtracting the cumulative distance value for the southern-most location from the value for the northern-most location.

The azimuths reported here are the azimuths used for the structure-rille comparisons reported in chapter V. The azimuths have arbitrarily been placed in the two eastern quadrants.

Profile data. The second tabulation in this appendix is a listing of the data and calculated values obtain by direct measurement from profiles.

Fourier analysis: The third tabulation in this appendix is a listing of the Fourier analysis results for the nowthem and southern rille sections.
-DETERMINATLON OF BASIO RILLE PARAMETERS RROM MANN COMPARATOR DATA-

$\begin{aligned} & \text { MEASUREMENT } \\ & \text { LOCATION } \\ & \text { (rig: } 6-2 \text {) } \end{aligned}$	- HIDTH	DISTANGE BETWEEN HOCATTONS	CUMULATIVE DIS'PAHCE	$\begin{gathered} \text { ARIMUPH } \\ \text { BETAEEN } \\ \text { LOCATIONS } \end{gathered}$
1	3.221	0.000	0.000	0.0
2	2.234	1.432	1.432	134.4
${ }^{3}$	1.591	1.023	2.456	79.9
4	1.692	0.551	3.007	98. ${ }^{\text {发 }}$
5	1.639	0.702	3.709	54.7
6	1.556	0.964	4.674	51.3
7	1.350	0.797	2.4.71	46.0
8	1.343	0.620	6.091	26.9
9	1.391	0.353	6.444	24.4
10	1.372	0.405	6. 8.80	7.8
11	1.380	0.251	7.101	163.3
12	1.321	0.625	7.727	154.0
13	1.295	0.872	B. 599	177.4
14	1.237	1,00.4	7.604	5.0
15	1.317	0.293	9.897	22.6
15	1.156	0.714	10.611	20.1
17	1.230	0.768	11.380	13.5
18	1.250	0.542	11.923	37.9
19	1.2 BE	0.217	12.140	24.日
20	1.221	0.426	12.567	173.5
21	1.122	0.408	12.975	255.1
22	1.135	0.420	13.396	163.2
23	1.147	0.379	13.775	11.2
24 25	1.161	0.397	14.073	49.2
25 26	1.078 1.037	0.780	14.453	74.4
27	1.037 1.033	0.7897 0.785	12.751 16.537	74.4
28	1.290	0.552	17.090	69.1
29	1.451	0.454,	17.545	33.7
30	1.497	0.315^{\prime}	17.860	3.9
31	1.457	0.427	18.287	[7T:
32	1.451	0.644	10.932	21,2
33	1.418	1.190	20.122	55.2
34	1.423	1.091	21.214	78.4
35	1.435	0.978	22.192	89.1
36 37	1.432	0.504	22:697	74.0
37 38	1.7 .84 1.157	0.761	23.458	48.9
38 39	1.1197 1.1057	0.7613 0.774	24.351 25.125	71.0
40	1.022	0.441	25, 566	71.5 53.4
41	1.085	0.817	26.384	46.5
42	1.040	0.930	27.315	31.7
43	1.273	0.575	27,890	23.7
44	1.236	0.529	28.420	173.4
45	1.249 1.003	0.884	29.304	173.1
48	1.003	5.766	32.071	176.3
40	1.077	0.612	3 3 .603	19.3
49	1.124	0.464	36.783	13.7
50	1.076	0.414	37.197	21.6
51	1.033	0.428	37.627	43.9
52	0.963	1.008	38.715	61.4
53	0.890	0.472	39.188	72.2
54	1.072	0.477	19.665	79.4
55 56	0.946	0.587	40.253	46.7
56	0.841	0.362	40.635	59.7

-DETERMINATION OF BASIC RILLE PARAMETERS FROM MAN comparator data (cont.) -

HEASUREMENT LOCATION (112. 6-2)	HIDTH	$\begin{aligned} & \text { DISTAHCE } \\ & \text { BETAEEN } \\ & \text { LOCATYOHS } \end{aligned}$	CUMULATIVE DISTANCE	$\begin{aligned} & \text { AZIHUTH } \\ & \text { BETHEEN } \\ & \text { LOCATITOHS } \end{aligned}$
57	0.902	0.452	44.4097	- 0.7
58	. 0.900	0.376	41.476	83.1
59	- 0.982	0.548	42*025	119.3
60	0.972	0.551	42.506	110.6
61	1.389	0.997	43.484	72.2
62	1.136	0.381	43*865	169.1
63	1.056	0.498	44.364	156.6
64	1.106	0.681	45.046	9.5
65	1.239	0.758	431834	12,7
86	1.298	0.750	46.585	19.4
67	1.366	0.677	47.263	13.0
6 6	1.286	0.826	48.089	159.2
69	1.184	1.100	49.277	22.4
70	1.092	1.046	50.324	33.3
71	0.989	1.216	51.541	66.6
72	1.172	0.961	52.502	97.0
73	0.945	0.999	53.502	93.1
74	0.865	0.743	54.246	95.0
75	0.833	0.824	5\%.070	93.8
76	1.054	0.774	56.944	114.9
77	1.259	1.520	57,365	51.7
78	1.060	0.654	58.050	179.9
79	1.044	0.365	50.415	3.0
80	1.050	1.146	59.562	54:6
81	1.102	7.14 +	60.710	87.6
82	1.005	0.702	61.493	90.3
83	1.344	0.463	61.957	76.8
84	1.336	0.617	62,574	24.2
85	1.234	0.404	62.978	169.3
46	1.252	0.701	63.690	14日.2
87	1.322	0.751	64.432	145.2
188 89	1.341	0.763	65.194	150.0
90	1.1843	0.763 0.820	66.15 B	167.4
9	1.016	1.033	68.021	16,6.4
92	1.205	1.011	69,032	155.7
83	1.172	0.726	69.759	122.0
94	1.117	0.949	70.709	130.4
95	0.912	0.667	71.376	134:8
96	1*029	0.550	71.927	127.9
97	O. 0285	1.128	73.056	126.4
98 99	0.1060	0.772	73.829	125.5
$\begin{array}{r}99 \\ 100 \\ \hline 101\end{array}$	1.014 0.809	0.626	74.455	113.2
101	0.928	0.268	79,020	89.4
102	0.686	0.731	76.027	62.0
103	0.417	0.631	76.678	58.7
104	0.216	0.872	77.551	70.8
105	1.097	1.157	78.709	94.0
106	0.863	0.861	79.570	49.2
107 108	1.165	1.029	80.600	55.4
108	1.002	0.868	81.469	83.5
109	0.880	0.435	81.904	91.5
110	¢-159	2.575	84+479	117.3
1112	0.255 1.007	0.730	03.209	142.0
113	- 0.823	0.895 0.795	86.105 86.900	130.8

- -netermination of basic rille parameters from mand comparator data (oont.)-

ORIGINAI PACE IS POOR

MEASUREMENT LDCATION (Ifik. 6-2)	HIDTH	DISTANEE EETTNEEN LOGATIONS	CUMDIATIVE	AZIMUTH
$\frac{114}{11}$	0.948	Localytors	DISTATEE	LOCATIONS
115	0.831		97.805	136.9
116	- 1.159	0.68 E	93.140	131.7
117	0.849	3.413	97.242	161.4
118	0.793	0.58.4	97.827	27.8
129	0.809	0.360	98.195	10.4
120	0.592	0.417	98.1812	197.2
121	0.653	0.650	99.26 ${ }^{\text {c }}$	143.2
122	0.608	0.428	99.691	179.3
123	0.534	0.383	100.075	91.6
134	0.523	0.516	100.592	7.8
125	0.649	0.666	101.359	151.2
126	0.649	0.727	101.905	226.5
127	0.644	0.657	102.643	128.0
128	0.714	6.345	108,908	107.2
129	0.708	0.636	109.624	155.1
130	0.618	1.088	110.712	159.7
131	0.713	0.716	111.629	161.3
132	0.680	0.937	112:567	167.0
133	0.814	1.233	113.801	166,7
134	0.025	0.1859	114:660	34.5
135	0.987	0.396	112.057	83.0
436	0.877	0.455	115.512	10.3
137	0.827	0.500	116.012	6.3
13 B	0.909	0.654	116.667	5.4
139	0.977	0.555	117.222	0.2
140	1.031	0.296	117.518	268.5
141	0.892	1. 8.43	119.362	13.5
142	1.048	1.307	120,669	38.5
143	0.937	0.455	121.125	9,5
144	1.199	0.952	122.077	8,9
145	1.355	0.872	122.950	161.6
146	0.958	0.943	123.994	144.5
147	0.880	0.935	124.949	117.5
148	1.092	0.433	125.4日3	144.日
149	1.126	1.2e2	126.765	152.0
$\frac{150}{151}$	1.781	1.031	127.797	150.1
151 152	2.600 2.725	1.040 0.082	128.838	${ }^{125.4}$
152	2,725	0.882	1.29 .720	125.6

This table is a listing of the data which was measured directly from profiles. The profiles are found in chapter 4.

$\begin{aligned} & \text { PROFILE } \\ & \text { NOMBER } \end{aligned}$	$\begin{aligned} & \text { DEPTH } \\ & \text { (meters) } \end{aligned}$	$\begin{gathered} W / D \\ \text { ratio } \end{gathered}$	CROSS-SECTIONAL AREA (Planimeter measurement10^{4} meters)
1	350	3.99	29.0
2	321	4.29	24.7
3	265	4.37	17.8
4	277	4.06	18.1
5	228	4.50	15.4
6	231	4.63	16.1
6 a	226	4.69	15.5
7	228	5.20	12.5
8	242	5.74	20.2
9	Rille obscured	by Hadley 0	
10	241	4.30	16.2
11	280	3.79	$17 . ?$
12	228	4.07	14.3
13	267	4.06	1.6 .8
14	- 245	3.73	14.0
15	287	3.73	13.7
16	217	4.56	13.5
17	259	4.87	23.9
18	304	3.86	- 21.9
19	303	4.16	20.6
20	274	4.19	18.9
21	265	4.18	16.3
22	305	3.87	21.2
23	264	3.73	15.2
24	217	4.34	19.8
25	238.	4.53	12.4
26	116	6.26	not used in average
27 not a transwerse protille			
29	\cdots *	-	
30	120	6.17	5.72
30 a	195	4.72	8.21

Results of Fourier Analysis: South $1 / 2$ of Rille This pace lists the coefficient for the first 35 terms of the Fourier cosine series, the power spectrum and the root power spectrum for the south section of Hadley rille. The units are ariotrary values.

THERE ARE 153 DATA POINTS IN THE DATA DECX THE X SPACING IS 0.2500000 $L=38,0000001 \times$ ZERO $=0.0000000$ $A O=1.0539224$

ROOT
POWER SPECTRUM

N	COS. COEF.	POHER SPECTRUM	POWER SPECTRUM
1	-0.3565786	0.1271483	0.3565783
2	-0.6115021	0.3739348	0.6112020
3	0.7864050	0.6184343	0.7864059
4	0.0 .7050439	0.4970867	0.7050437
5	-0.7818020	0.6112142	0.7818019
6	-0.3242842	0.1051602	0.3242841
7	0.2291058.	0.0524899	0.2291068
8	0.5789175	0.3351453	0.5789173
9	-0.0.5986967	0.3584376	0.5986965
10	0.3529534	0.1245761	0.3529534
11	0.1025809	0.0105433	0.1026808
12	0.0734645	0.0053970	0.0734645
13	0.1744639	0.0304376	0.1744639
14	0.1366625	0.0186766	0.2366625
15	-0.1311192	0.0171922	0.1311191
16	0.1482985	0.0219924	0.1482985
17	-0.1425915	0.0203323	0.142 2915
18.	0.2168260	0.04870135	0.2163259
19	-0.0951713	0.0090575	0.0951713
20	0.2785028	0.0776195	0.2786028
21	-0.1130992	0.0127914	0.1130992
22	0.1291523	0.0166803	0.1291523
23	-0.0982401	0.0096511	0.0982402
24	-0.0811495	0.0065852	0.0911493
25	-0.0820659	0.0038521	0.0620659
26	0.0257561	0.0007158	0.0267561
27	0.0196858	0.0003875	0.0196858
28	0.0343103	0.0011771	0.0343103
29	0.0621966	0.0038884	0.0822963
30	-0.0055420	0.0000307	0.0055480
31	0.0078379	0.0000614	0.0078379
32	0.0250242	0.0006292	0.0250842
33	-0.0484400	0.0023464	0.0484400
34	0.0388301	0.0014922	0.0386301
35	0.0459434	0.0021107	0.0459434

APPENDIX 4

COMPUTER PROGRAMS

This appendix is a listing of the important programs which have been developed for this study. The programs are described in chapter III. Their order in the appendix is:

1. FORIER
2. SELECT
3. SPENCR
4. RILLE
5. BASIN
```
                                    -PROGRAM FORIER-
Page 1
// Јов T
\begin{tabular}{cccc} 
LOG DRIVE GART SPEG CART AVAIL PHY DRIVE \\
OOQO. & 0051 & 0051 & 0000
\end{tabular}
VZ MIO ACTUAL gK CONFIG BK
// FOR
*LI5T SOURCE PROGRAM
*IOCS(CARD:1132 PRINTER)
-ONE WORD INTEGERS
            REAL L. INCRE
                DIMEMSION DATA (400) , ACOEF {200) , BCOEF ( 200)
C THIS PROGRAM GENERATES A FOURIER SERIES FROM EQUALLY SPACED DATA,
G THE INPUT SEGMENT TAKES DATA WHICH IS NOT DISTRIBUTED OVER PLUS
    plus and minus l and GHanges the origin to do so after computing
    L: IT ALSO COUNTS THE DATA TO FIND K. A CARD HITH DATUM GREATER
    ThAN 1,000,000: muST bE PLACED AT THE END OF THE DECX TO TERMINATE
    THE INPUTI: XZERO IS THE SMALLEST X VALUE, INGRE IS THE VALUE EY
    WHICH X IS INCREMENTED
    S!gl INDICATES-THAT A COSINE SERIES IS TO bE COMPUTED.
    READ (2,IO) IMCRE, XZERO , PLAGE , SIGI
10 FORMAT ( 4FIO.0)
G THIS SEGMENT CHECKS TO SEE IF A MULTIPLICATION FAGTOR HAS BEEN
G ASSIGNED TO THE INPUT DATA, AND IF NOT, ASSIGNS A VALUE OF i.
    IF (PLACE) 800, B0I, 800
801 PLACE = 1.0
800 CONTINUE
C GHECK P IS USED SELOW TO GHECK X DATA
        CHE KP = XZERO * INCRE
        x = 0
        DO 19 Ib = 1: 200
        READ (2, 12) XCO RD, DATUM
12 FORMAT I F16.0: FIO.0.I
C THIS CHECKS FOR THE EMD OF THE DECX
        IF TDATUM - 1000000. J 13, 20; 20
    13 CONTINUE
    C K IS THE NUMEER OF DATA POINTS
        K=k+1
    C ChECK to assure that each x value as read is OHE INGREmENt FROM THE
    c PRECEEDINGX VALUE: THIS GHECKS FOR ERRORS IN THE DIGITIIER QR GARDS IN
    c THE WRONG ORDER.
        CHECK = YCO RD - EHE KP
        IF (ABS (CHECK - INCRE ) - .00001 ) 26, 17, 17
    17 CONTINUE
        CHE KI * CHE KP + INCRE
        WRITE (3, 18) K, XCO RO, CHE XI
    1a FORMAT I ' XGOORDINATES LOUSED UP, DATA GARDI I4 1 READS AN
    xx value OF: F 15.7 ' WHIGH SHOULD EE'F15.7,
    go TO 52
16 CONTINUE
    CHE KP = XGO RD
c this chEcks to SEE If NEGATIVE yaluES OF y ARE EQUAL TO 1,000,000
C PLUS Y SINGE THE MSE COMPARATOR PRINTS GAROS THIS WAY.
    IF SO, A CORRECTION IS MADE:
```

```
PAGE 2
    IF(OATUM = 100000.) 810, 811, 811
811 DATUM = DATUM - 1000000.
810 CONTINUE
        DATA (K) = DATUM * PLACE
        CONTINUE
20 CONTINUE
        INCRE x INCRE * PLACE
C JUMP AROUND THIS SEGMENT IF COSINE SERIES IS TO SE COMPUTED
        1F (SIE1 ) 905,905,30
go5 GONTINUE
C IS K EVEN OR ODD IF EVEN: THE LAST DATA POINT IS HENGEFORTH IGNORED
C 3Y SUBTRACTING I FROM K, AND A MESSAGE IS PPINTED
C NKK/2
C isk ODD
    HTHIC = 2*N
    IF IHTMIC-K , 30, 22, 22
22 CONTINUE
    WRITE ( 3, 25 J K, INCRE
    FORMAT !1 thERE ARE 1 I4 * DATA POINTS IN THE OATA DECKO! /I
    XTHE LAST ONE. HAS BEEN DELETED IN THE ANALYSIS SINGE AN ODD NUMBER
    XIS REQUIRED,: ( + THE X SPACING IS' FiO.7,
        K=K-1
        N=K/2
        GO TO 34
        contINuE
        WRITE (3,27) K, IMCRE
        FORMAT ! ' THERE ARETI4' DATA POINTS IN THE DATA DECK'/* THE X SPA
        XCING IS' F1O.7 ,
        contimue
        FIND 2L, THUS L, AND CHANGE XZERO TO MINUS L
        Ax:41 = K - 1
        TWOL * AKMI * ImCRE
        L = THOL / 2"
        XZERO = - L
C SKIP THIS SEGMENT IF A COSINE SERIES IS TO BE COMPUTED
    IF (SIGI) 907,907,906
906 L = TWOL
    XZERO = 0,
907 'CONTINUE
    WRITE (3,31) L , XZERO
    FORMAT !LLXIF10.7 & ZERO='F10.7 ,
31 FORMAT !'LKI F10.7 & X ZERO =' F10.7
    COMPUTE THE FOURIER COEFFICIENTS.
    KMI = K = I
    S\M = 0,
    DO 40 I = 2, KM1
    SUM = SUM + DATA II)
40 CONTINUE
    ACO FO ={2:/AKMI ) *(CDATA (I) + DATA (K)) / 2a + SUM f
    WRITE(3,41) ACO FO
    FORMAT I' AO * I FIO=7//9X 'AN' 1BX 'EN' L2X 'POWER SPEGTRUM'
        X 9% IROOT PAS:' C
C THIS FORMAT GIVES 4 COLUMMS 2O SPAGES WIDE WITH GENTERED HEADINGS
C THE SAME FORMAT IS USED BELOW.
    PI n 3.1415926
C THIS SEGMENT GIVES AN APPROPRIATE VALUE TO N IF A GOSINE SERIES IS to
```

```
PAGE 3 -
G BE COMPUTED.
    IF {51G1} 925: 925: 926
925 N=K-1
9%F CONTINUE
        DO43 IA = I% N
        COSUM =0:
        REALN = IA
        0044 I * 2, KM1
C. GENERATE & yaluES- THIS aVOIDS STORAGE
    SI = t-I
    XI = XZERO * 8I * INCRE
G FIND COEFFICIENTS RN, SM
COSUM = COSUM + DATA (I) * cos |\ P! * REALN * XI )/L, 
C SKIP THIS SEGMEMT IF A COSINE SERIES IS TO 位 COMPUTED
    IF (51G1) 935, 935, 936
935 CONTINLE
    SINSU =SINSU + DATA (I) * SIN (| PI * REALN* XI) /L (
936 CONTINUE
44 CONTINUE
    ACOEF(IA) = (2./AKMI)*((DATA(1)+DATA(K))*COS(REALN*PI) 12. +COSUM)
    BCOEF (IA) * {2./AKM1) * SINSU
    POWER = ACOEF {IA\ ** 2 + BCOEF (IA) ** 2
    SQRTP = SORT (POWER I
    #RITE(3.% 49) ACOEF (IA), BCOEF (IA) , PQYER , SQRTP
    FORMAT [4(F15.7, 8K 1)
    CONTINUE
    WRITE (3.51)
    FORMAT ( 7X * XYALUE' IIX 'INPUT DATA' 13X'FOURIER APPROX.' 13K
    x iresidual'
    DO 50 I = 11X
    TOTAL = O*
    REALI = I- - I
    XI = XZERO + REALI * INCRE
    DO45 」=1,N
    REALSJ * 」
    TOTAL * TOTAL + ACOEF {J} * COS (REALJ * PI * XI /L)
    x + ECOEF(J) * SIN (REALJ * PI * KL/L )
    CONTINUE
    FX = ACO FO/2.O + TOTAL
    D= DATA(I) - FX
    WRITE (3, 60) XI, DATA {I|, FX, D
    FORMAT (4 (F15.7, 8X1)
60 FORMAT 14
C DATA FORMAT IS XCOORD, DATUM, 2FIE:10
5z CONTINUE
    CALL EXIT
    END
FEATURES SUPPORTED
    10c5
CORE REQUIREMENTS FOR
    COMMON O VARIABLES 2678 PROGRAM 94%
```

```
PAGE 1
// JOB T
LOG DRIVE GART SPEC CART AVAIL PHY DRIVE
    0000
    0051
    0051
    0 0 0 0
VZ MIO ACTUAL BK CONFIG BK
// FOR
*IOCS(CAPD,1132 PRINTER)
*LIST SOLRCE PROGRAM
        DIMEMSION ISEL(20): IDATA (20), ALENG (200), AZ(200): FREQ(120)
C THIS PROGRAM IS TO SELECT GARDS ACCOROING TO GRITERIA SUGH AS
C LENGTH: AZMMTH: GURVATURE: POSITION ETC AND PUNCH A DECK OF THE
C SELEGTED DATA
GO TO 47
46 CONTINUE
PAUSE
47 CONTINUE
    N = O
    DO 1000 IA = 1: 180
2000 FREQ IIA) = 0:
    READ (2,10) {IFEL(I), I m l,20)
    READ (2,11) LOWL
20 FORMAT(z0:1 )
11 FORMAT {131
9 0 ~ C O N T I N U E '
    00 95 II = 1920
    IDATA (II) = 0
    READ(z,301 IREG; IMB, IPOS; LINE , IDISG, IMAG, ILENG, IAZ
    FORHAT {311,113, 2I1, 2[3)
    fF IIAZ = 1801 60: 62,61
    61 IAZ x IAZ - 180
60 CONTINUE
    IF (ILENG) 900, 900,901
901 CONTINUE
    IREG * LREG + 1
    IMB = IMB + 1
    IDATA (IREG) * 1
    IDATA (IME + 4)=2
    IDATA (IPOS + b;*2
    IDATA (IDISC.+ 9) = 2
    IDATA (IMAG + IG)=1
    00 100 J = 1,20
    IF l ISEL(N)-IDATA(J)! 105:106.106
105 GO TO 90
10G COMTINUE
2OO CONTINUE
    IF IILENG- LOWL.\ 115, 116, 116
125 GO TO 90
ilG CONTINUE
    FREQ ( IAZ) = FREQ (IAZ) + \o
    N=N+1
    AZ(N)* 1AZ
    ALENG (M) = ILENG
    go TO &o
```

```
PAGE z
900 CONTINUE
    WRITE (3,502) N
502 FORMAT (1 1, 13)
        WRITE (3,501) (AZ(I): 1 = 1,N ,
        WRITE(3,501) \ALENG(I), I = INN)
501 FORMAT 112F5.0/1
        WRITE(3. 1070)
2070 FORMAT & // 'FREQUENCY DISTRIBUTION'/ 2X 'N', 2X IFREQ' I
        D0 1050 IA = 1:180
        WRITE(3, 1055) 1A; FREQ(IA)
3055 FORMAT ( IX , 13 ; 2X , F 4.0 1
1050 CONTINUE
        pause }1
89% CONTINUE
    WRITE {2,500} N
500 FORMAT. (13)
    pAUSE
    WRITE {2.503 ) (FREQ(IZ) (IZ = 1.180)
    pauSE
    WRITE (2,503). (AZ(1), I = 1:N|
    PAUSE
    WRITE(2,503) (ALENG(I), I * L,N!
    FORMAT (12FG:O)
    G0 TO 46
48 CONTINUE
    CALLL EXIT
    END
```



```
PAGE 2
2200 FORMAT 112F6.0 l
2203 CONTINUE
G THIS FILLS IN THE EXTRA SLOTS AT EACH END OF THE ARRAY WHIGH ARE
G NEEDEO FOR THE AYERAGING TECHMIGUES
    0030 I = 1,19
    x (1 + 199)= < ( 5 + 191
    LK = 20-1
    JJ=200-1
    X (KK) a x ( JJ )
    continuE
    wRItE {3,34} {品I),I = 2,220)
    FORMAT {10Fg, 2}
G GHEGK IWIOTH IJ SEE IF A SMOOTHEO CURVE OR A MOVING SUM IS TO BE COMPUTED
    IF {IWIDT\ 40,40,50
40 CONTINUE
    HRITE (3.45) SCALE
45 FORMAT i '1SMOOTHED OATA ACCORDIMG TO SPEMCERS FORMULA'//
    X'MID, SX 'F(X)' 25X'GRAPH OF F(X) VS INTERVAL MID POINT'
    Y 1, SCALE FACTOR =1 FG.1 /
    X ' POINT' 10x'0' gx 'IO'ax'ga' Ex'30' 8x'40' Ex '50' Bx '60' 8x
    x '70' ax'80' 6x 190: 7x 1100'
    DOLE I = 20:200
    0047 J = 1:21
        LL = 1-J - 11
        U(J) = x(LL)
47 CONTINGE
G THIS STATEMENT IS BROXEN IMTO THO FARTS TO LIMIT THE MUMBER OF
    SUESGRIPTED VARIABLES TO AN ACCEPTABLE NUMSER
        AVEA= 50.* 4(11)
    X + 57. * (u(10) + U(12)) + 47: * {U(9) + U(13))
    x + 33. * (U(8) + U(14)) + 15.* *(U(7) + U(I5))
    x+6a* (U{6) + U(1%)) - 2: * (U(5) + U(17))
    AYEE =
    x-5. * (U(4) + U(18)) E 5: * {U(3) т U(19))
    x-3. * (U(2) + U(20)) -1&* (U\1) + U(2I1)
    AVE =(AVEA + AVEB) * (1./350.1
    JLMP = 1
3001 continue
    10:G = I - 20
    DO 12 IT = 1,121
12 GRAPH(II) = ELANK
    IF ((I/10) * (10)-I ) 1110. 1100, 1100
1100 CONTINUE
    DO 2115 JJ = I. 121:10
    GRAPH (JJ) = POINT
1115 CONTINUE
1110 CONTINUE
    IP = SCALE * AVE + 0.5
    SYME = PLUS
    IF (1P) 1120. 1130. 1130
1120 SYMB = MINUS
    IP = AES (IP) + 2
1130 GRAPH (IP + 1) * SYMB
    WRITE (3,49) IDEG, AVE,(GRAPH (IK) (IK = 1:101)
4 9
```

```
PAGE 3
    GOTO(48,3000): JUMP
4a continue
    GO TO 200
50 CONTINUE
|HWID zIWIDT/2
C THIS SEGMENT COMPUTES A MOVING SUM OVER THE INTERVAL IMIDTH
    WRITE (3,99) IHW\D
g9 FORMAT ' ' MOVING SUM OF DATA POENTS WITHIN PLUS OR MIMUS' I3' DEG
    WRITE (3, 3005) SCALE
3005 FORMAT (' MID' 6X 'F(X)' 25X 'GRAPH OF SUM VS INTERVAL MID POINT'
    x i, ECALE FACTOR =1 FG:1
```



```
    x 170: 8,'30: 8x 190: 7x 1100: (
        JUMP = 2
        DO 59 I = 20, 200
        ISLOT * I - IHWID
        JSLOT = ISLOT + IWIOT
        SUM = O.
        DO 52 J = ISLOT, JSLOT
        SUM = x(J) + SUM
52 continje
        AVE = SUM
3000 CONTINUE
        GO TO 3001
    59 GONTIMUE
zod continue
        IF (NODEG. LT. NOECK) GO TO 400I
        CALL EXIT
        ENO
```

LOG DRIVE CART SPES CART AVAIL PHY DRIVE			
0000	0051	0051	0000

VZ MIO ACTUAL EX CONFIG. BX
$/ /$ FOR
*LIST SOURCE PROGRAM
*IOCSICARD.1132 PRINTERI
-ONE HORD INTEGERS
INTEGER N
DIMENSION XO (4), X(4), WI(152), DGAZ (152), DO(152)
(THIS PROGRAM PRODUCES (I) DISTANCE-WIDTH RELATIONSHIP DATA (2)
C CEHTER OF RILLE K=Y COORDINATES: (3) WEIGHTED AVERAGE HIDTH DATAA
TO FIND THE WEIGHTED AVERAGE WIDTH ALONG ANY REACH IN THE FIGLE,
FIND (WT CUMW (END) - WT CUMW (START))/ (DIFFERENCE IN CUMD)
GUMO $=0$.
CUMW = 0 .
WTCUM $=0$.
HOLD $=0$.
UPD $=0$.
$A D=0:$
DOWNO : 0.
$N=0$
READ (2,40) ALT, FOCAL, FACTR
FORHATI3F 10:5 ,
FOGAL F FACTR * FOCAL
SCALE = ALT / FOCAL
READ (2,50) $\{\times 0(1)$: $\pm \pm 1,4\}$
FORMAT 1 10X FGEO 0 , $4 x$ FG. 0
Do $771=2,4$
IF (XO(I) $=100000,175,76,75$
$75 \times 0(1)=x 011)-1000000$.
76 CONTINUE
XO(I) * XO(I) * SCALE
77 CONTINUE
$x(1)=X 0(1)$
$x(2)=x 0(2)$
X(3) $=X 0(3)$.
$x(4)=x 0(4)$
WRITE (3.149) FOCAL, ALT, SCALE
149. FORMAT I SCALE OF PHOTOGRAPH TAKEN WITH ANI FA 2 HM LENSE AT XAR ALTITUDE OF FFE. 2 : KILOMETERS IS I FIO*5/f , WRITE (3 " 150)
250 FORMAT 1 WIDTH OF RILLE AS FUNCTION OF DISTANCE ALONG CENTER LI

 x IDOWMO:
20 CONTINUE
$\mathrm{H}=\mathrm{N}+2$
CENXO $=(x 0\{1)+X 0\{3\}) \quad / 2$.
CENYO = $\{X 0\{2\}+X 0(4)\}, 2$.
CENX $=(x(1)+x(3))$ an
CEMY $=\{X(2)+X(4)\} / 2 a$

PAGE 2

```
        0 = SQRT ({ GENXO - CENX **2 + {CENYO = CENY)**2)
        CLMM * CUMMD + D
        DD(N) = D
        W= SQRT ({X(3) = X(2)}**2 + (X(4) = X(2)) **2)
        WTW = (W + WOLD) *D / 2.
        WTCUM = WTH + WTCUM
        IF (W-HOLD) 504, 501, 502
50% UPD = UPD + D
    GO tc 503
s01 AD =AD + D
    GO FO 503
502 DOWND = DOWND + D
503 CONTINUE
    WOLO =H
    WI (N) = WTW
    W! (N) =W
    CUMW = CUMW & W
    AZ = ATAN {! CENXO - CENX 1/f ICENYO - CENY })
    DEGAZ = 360. * A.2/12. * 3.14159 )
C THIS STEP CHANGES THE AZIMUTH RELATIVE TO PHOTO LCORDINATES TO ONE
c relative to nomjh. THE CONSTANT MUST bE REASSIGNED FOR EACH DECK
    DEGAZ = DEGAZ = 54.7
    IF (DEGAZ) 350: 3.70:370
360 DEGAZ = DEGAZ + 180:
370 CONTINUE
    DGAZ(N)= DEGAz
    G0 TO 2222
2223 CONTINUE
2222 CONTINUE
    IF (N. EG:1) DEGAZ =0
    WRITE (3,500)N:CUMD,H, GENX, GENY, D, DEGAZ, CUMW, WTGUM :
    X UPO , DOWND
500 FORMAT G:I3, F12.3, F10.3, F12.4, F12.4 ,F12.4:F12.2
    X,F12.4, F12.5 , F10.5, F10.5 )
    xO(1) = x(1)
    xO(2) = x(2)
    xO(3) = " 3)
    x0$4)=r(4)
    READ (2,50) {X(I), I = 2,4 1
    IFtx(11) . 200, 201, 201
201 CONTINUE
    po 87. I = 1,4
    IF(x(5) - 100000.) 86, 86, 85
    X(I) = X(I) - 1000000.
BG CONTINUE
    X(I) = X(I) * 5CALE
    CONTINUE
    GO TO 20
2OO CONTINUE
    AN = N
    HAVE = CUWW/AN
    WTAVE = WTCUM/CUMD
    WRITE (3,293) WAVE, WTAVE , WPD, DOWND , AD
    FORMAT | / 1 AVERAGE WIDTH =1 FB.& ' WEIGHTED AVERAGE WIDTH = :
        KFG.4 /L WIOTH INCREASES FOR ' FG.4 'KM., DECREASES FOR I FE.4IKM
```

```
PagE 3
    X.: Fa.4' XM SHOW NO CHANGE:' ,
    G THESE STATEMENTS MOVE ALL THE DATA IN THE ARRAY UP ONE VALUE
    G SINCE THE FIRST VALUE IS ZERO OR MEANINGLESS IM THESE TWO ARRAYS
        DO 2002 KLM = 1,151
        KLMP1 = KLM + I
        DO {KLM ) = DD \KLHP2 ,
        DGAZ (KLM) = DGAZ (KLMPI),
2002 CONTIMUE
        MM1 = N-1
        pause
        WEITE (2,301) DGAZ
        PAUSE
        HRITE (2.301) DO
301 FDPMAT̈ 122FG:2)
        GAL.L EMIT
        ENO
```


Page
 1

```
// J08 T
LOG DRIVE CART SPEN CART AVAIL PHY DRIVE
    0000 0051 0051 0000
VZ MIO ACTUAL EK CONFIG BK
// FOR
*IOCS{CARD;1132 PRINTER}
*LIST SOURCE PROGRAH
*EXTENDED FRECISION
REAL LONGI: LONGS; LATI, LATS* LONG; LAT
DIMENSION RADIM(153), RADSE\183), CIRIM(183):CIRSE (I83):
X DEL{4); [O{183); DELAZ (183;4); KOUNT(4)
    EOUIVALENCE (DELAZ(IFI):RADIH(I)|:(DELAZ (1,2);RADSE(1)]:
    X (DELAZ (I.3), CIRIMII)|: {DELAZ (I.4): CIRSE(I)|
    RAD (D)* (D* Z.* 3.1415927/ 360: )
    DEG (R) = { 360.* R / (2.*3.1415927 ) \
    READ (2,10) LCNGI, LONGS. LATI, LATS. N
    FORMAT (4F10.0.I3)
    LONGI=RAD(LONGI)
        LONGS=RAD(LONGS)
        LATI=RAD(LATI)
        LATS=RAD(LATS)
        DO 100 J=1 NN
        READ (2,12 ) [P{J}, LONG; LAT
        FORMAT {I4: IX, 2F11,0) )
        LONG=RAD(LONG)
        LAT=RAD(LAT)
        SI=COS(LAT)* COS(LATI) * COS (LONG-LONGI) + SIN(LAT) * SIN
        x (LATI))
        SS = COS(L゙AT) * COS(LATS) * (COS (LONG-LONGS) + SIN(LAT) * SIN
        X(LATS)
        RADIH(J) = {SIN(LATII-SI*SIN(LAT)|/(COS\LAT) * SQRTII* -5I**2 !)
        RADSE(J) = (SIN(LATSI-SS*SIN(LAT))/(COS{LAT) * SQBT\I* - SS**2)\
        IF \J.GT. 10) GO TO 1715
        WRITE (3,56) LONGI;LCNGS* LATI,LATS,SI:S54RADIM!J),RADSE(ل)
        FORMAT ( EFI0.41
1725 CONTINUE
        RADIH(J)xDEG{ACOS(RADIM(N)))
        RADSE(J)#DEG{ACOS(RADSE(J)J)
        IF (J.GT. 10) GD TO 1716
        WRITE (3,55) RADIM(J)* RADSE\J)
    55 FORHAT l 2 F15.5 J
1716 COMTINUE
        IF (LONGI.LT. LONG ) RADIM(J) = -1.*RADIM\J)
        IF (LONGS.LI. LONG) RADSE(J) = -1,*RADSE(J)
        CIRIM(J) * RADIM(J) + 90.
        CIRSE (J)= RADSE (J) + 90:
    100 CONTINUE
        WRITE (3,2G|(ID(JK)&RADIM(J K): CIRIM (JK) : RADSE{JK),
    XCIRSE (JX), JK. = 1*N, )
25 FORHAT (I5, 4F10.4 )
    DO 110 J = 1,N
        READ (2,141 IDD, AZI
```

```
page 2
14 FORMAT (3X , 13, 5X,F 3.0.)
IF (IDO = 10(J)) . 50,51 *51
50 PAUSE
51 CONTINUE
    DEL (I)=AZI - RADIM (J)
    DEL (2) * AZI - CIRIM (J)
    DEL (3) * AZI - RADSE (J)
    DEL (4) = AZI - CIRSE (J)
    DO 50 X = 2,4
    DEL{K)=RAD(DEL{K)}
    DELAZ(J,K)=AS{N(SIN(DEL.(K)))
    DELAZ(J,K)=ACOS(COS(DELAZ(J,K)/)
    DELAZ(J,K)=DEG(DELAZ(J,K):
60 CONT:MUE
    WRITE (3,102) ID(J): (OELAZ (J,X)*K = 2,4)
102 FORMAT (15, 4F10.4)
    110 CONTINUE
        00 112 KK # 1,4
112 KOUNT (KK) =0
    00600 J=1,N
        CHECK = DELAZ (J,I)
        KONT = 1
        00 610 x = 2,4
        IF (DELAZ (J,K) , GE& CHECK I GO TO 620
        CHECK = DELAZ (J,K)
        KONT =K
620 CONTINUE
    $10 COHTINUE
        KOUNT (KO NT) = KOUNT ( KO NT) + 1
        00 636 LM M 1,4
635 DEL (LM)=0.
    DEL (KONT) x DELAZ (J,KONT )
        WRITE (3,2010) J, (DELT LLLL), LLL =104 )
2010 FORMAT [14, 2X , 4 (F 7.1 , 2X 11
600 CONTINUE
    WRITE (3,3000) (KOUNT EKK), KK = 1:4,
3000 FORMAT (' NUMBER OF IMORIUM RADIAL LINEAMENTS s' I*
        * / ' NUMBER OF IMERIUM EIRCUMFRENTIAL LINEAMENIS *I I4
        x/1 NUMEER OF SERENETATIS RADIFIL LINEAMENTS =I I4
        X/ I HuMBER OF SERENETATIS CIRCUMFREMTIAL LINEAMENTS m' I4 I
        gALL EXIT
        END
```


BIBLIOGRAPHY

Adler, J. E. M. and Sallisbury, J. N. (1969) Behavior of water in a vacuum: implications for "Imnar rivers": Science, Vol. 164, pp. 589-590

Advertising Displays, Inc. (1970) Instructions to accompany the Austin Photo Interpretometer: Covington, Kentucky, 35 pp.

Alter, D. (1967) Pictorial Guide to the Moon: Crowell, New York, 199 pp.

Anders, E. (1970) Water on the moon?: Science, Vol. 169, pp. 1309-1310.

Baldwin, R.B. (1971) Rima Goclenius II: J.G.R., Vol. 76, pp. 2459-8465.

Batson, R.M. (1971) Preliminary Catalog of Pictures Taken on the Lunar Surface During the Apollo-15 Mission: J.S.G.S. Interagency Report, No. 35, Washington, D.C. 61 pp.

Bendix Corp. (1968) Handbook for the ASIIA-1 Automated Analytical Stereo Plotter: Vol. 1, Bendix Report No. 5073, 200 pp .

Blackman, R. B. and Tukey J. W. (1959) The Measurement of Power Spectra: Dover, New York, 188 pp .

Bowker, D. E. and Hughes, J. K. (1971) Lunar Orbiter Photographic Atlas of the Moon: NASA SP-206, NASA Scientific and Technical Information Office, Washington, D.C., 675 pp .

Bradley, J. V. (1968) Distribution-Free Statistical Tests: Prentice Hall, Englewood Clifs, New Jersey, 388 pp .

Burke, J. D., Brereton, R. G., and Muller, P. M. (1970) Desert strean channels resembling lunar sinuous rilles: Nature, Vol. 225, pp. 1234-1236.

Cameron, W. S. (1964) An interpretation of Schroeter's Valloy and other lunar sinuous rilles: J.G.R., Vol. 69, pp. 2423-2430

Cameron, W. S. and Niksch, M. A. (1972) Apolio-15 Lunar Photography: National Space Craft Data Center Users' Note No. 72-07, NASA, Greenbelt, Maryland, 58 pp.

Carr, M. H. and El-Baz, F. (1971) Geologic map of the ApennineHadley region of the moon: U.S.G.S., Map No. I-723, Sheet 1, Washington, D.C.

Crow, E.L . et al. (1970) Statistics Manual, Dover, New York 288 pp.
Cruikshank, D. P. and Wood, I. A. (1972) Lunar rilles and Fawaiian voldanic features: possible analogues: Moon, Vol. 3, p. 412.

Dietrich, J. W. and Clanton, U. S. (1972) Photographic summary: in Apollo-15 Preliminary Science Report, NASA SP-289, Washington D.C., pp. 3-1 to 3-32.

Doyle, F. J. (1972) Photogrammetric analysis of Apollo-15 records: in Apollo-15 Preliminary Science Report, NASA SP-289, Washington D.C, pp. 25-27 to $25-36$.

Duffield, W. A. (1972) Kilauea volcano provides a model for plate tectonics: Geotimes, Vol. 17, Pp. 19-20.

E1-Baz, Farouk (1968) Abstracts of the 1968 G.S.A. annual meeting, Geological Society of America, Boulder, Colorado.

Elger, T. G. (1895) The Moon, George Philiips \& Son, London, 173 pp .
Elston, W. E., Laughlin, A. W. and Brower, J. A. (1971) Lunar nearside tectonic patterns from orbiter photographs: J.G.R., VoI. 76 , pp. 5670 - 5673

Esten, K. D. (1966) Automation of Stereo Compilation: in Manual of Photogrammetry, Yol. 2, American Society of Photogrammetry, Vol, 2, Falls Church, Virginia, pp. 759-802.

Fielder, G. (1960) A theory of the origin of Iunar rilles: Sky and Telescope, Vol. 19, pp. 334-337

Fleischer, R. (1937) Story of the telescope: The Sky; reprinted in Page, T. \& Page, W. L. (I966) Telescopes, Macmillan Co., New York, pp. 40-45.

Fuller, C.E. and Johnston, W.A. (1919) Applied Mechanics, Vol. 2, Wiley, Mew York, 556 pp .

Gaske11, R.E. (1958) Ensineering Mathematics, Dryden, New York, 462 pp.
Gast, P. W. et al. (1972) Preliminary examination of lunar samples: in Apollo-15 Preliminary Science Report, NASA SP-289, Washington D.C., Pp. 6-1 to 6-25

Gilvarry, J. J. (1969) Geometric and physical scaling of river dimen sions on the earth and moon: Nature, Vol. 221. pp. 533-535.

Goodacre, W. (1931) The Moon with a Description of its Surface ConEiguration: Pardy \& Son, Bournemouth, EngIand, 464 pp.

Gold, T. (196I) Permafrost on the moom: J.G.R., VoI. 66. p. 2531.
(1966) The moon's surface: in The Nature of the Lunar Surface: Hess, W. N., Menzel, D. H. and OTKeefe, J. A., eds., Johns Hopkins, Baltimore, Md. pp. 107-127.

Greeley, R. (1971) Lava tubes and channels in the Iunar Marius Hills: Moon, Vol. 3, pp. 289-314
(1971) Ltnar Hadley Rille: considerations of its origin: Science, Vol. 17, pp. 722-725

Green, Jack (1969) Terrestrial analogs: water on the moon: Presentation at the North American Rockwell Science Center, Jan. 16, 1969.

Hackmann, R. J. (1960) Generalized photogeologic map of the moon: Army Map Service, C.E.
(1966) Geologic map of the Montes Apenninus region of the moon: U.S.G.S., Map No. I-463, Washington, D.C.

Hapke, B. and Greenspan, B. (1970) Crater densities in the vicinity of luner sinuous rilles: EOS 5I, p. 345.

Harbaugh, J.W. and Merriam, D.F. (1968) Computer Applications in Stratigraphic Analysis: Wiley, New York 282 pp .

Hartmann, F. K. and Kuiper, G. P. (1962) Concentric structures surrounding lunar basins; C.L.P.L. Yol. 1, pp, 1-66

Hartmann, W. K: (1963) Radial structures surrounding lunar basins, I: the Imbrium system: C.L.P.L., Vol.52. pp. 1-15

Hatheway, A.W. and Herring, A.K. (1970) Bandera lava tubes of New Mexico and Iuner implications: C.L.P.L., Vol. 8, pp, 299-327.

Helmering, R.J. (1973) Selenodetic control derived from Apollo Metric photography: fioon, Vol. 8, pp. 450-460.

Holmes, A. (1965) Principles of Physical Geology: 2nd ed., Ronald, Newtork, 1288 pp.

Howard, K. A. (197I) Geologic map of part of the Apennine-Hadley region of the moon: U.S.G.S. Map No. I-723, Sheat 2, Washington D.C.

Howard, K. A. and Head, J. (1972) Regional Geology of Hadley Rille: in Apolio-15 Preliminary Science Report, NASA SP-289, Washington, D.C., PP 25 33 to 25-57.

Howard, K. A. and Larsen, B. R. (1972) Lineaments that are artifacts of lighting: in Apolio-15 Preliminary Science Report, NASA SP289, Washington, D.C., Pp. 25-58 to 25-62

Howard, K.A. et al. (1972) Geology of Hadley Rille: Preliminary Report: U.S.G.S. Interagency Report 41, Washington, D.C. 57 pp.

Husain, L. et al. (1972) The ages of lunar material from Fra Mauro, Hadley Rille, and Spur Grater: in Procedings of the Third Lunar . Science Conference, Geochimica et Cosmocmimica Acta Supplement 3, Dieter Heyman, ed., Vol. 2, MIT Press, Cambridge, Mass. PP. 1557-1568.

Keil, K., et al. (1970) Mineral chemistry of Lunar samples: Science, Vol. 167, pp. 597-599.

Koch, G.S. and Link, R.F. (1970) Statistical Analysis of Geological Data: Vol. I, Wiley, New York, 375 pp .

Kopal, Z. (1969) The earliest maps of the moon: Moon, Vol. 1.
(1962) Physics and Astronomy of the Moon: Academic Press, New York, 303 pp .

Kosofsky, L. J. and E1-Baz, F. (1970) The Moon as Viewed by Lunar Orbiter: NASA SP-200, Washington, D.C. 152 pp .

Langley, R. (1971) Practical Statistics: Dover, New York, 399 pp.
Leonardi, P (1972) Winding and meandering furrows on the lunar surface: Modern Geology, Vol. 31, pp. 151-156

Leopold, L. B., Wolman, M. G. and Miller, J. P. (1964) Fluvial processes in Geomorphology: Freeman, San Francisco, 522 pp.

Leopold, L. B. and Wolman, M. G. (1967) River Channel Patterns: Braided, Meander and Straight: U.S.G.S. Prof. Paper 282-B, pp. 31-84.
$\frac{\&}{769-794}$ (1960) River meanders: G.S.A. Bull., VoI. 71, pp.

Lockheed Electronics Co. Tnc. (1972) Apollo-15 Index of Mapping Camera and Panoramic Camera Photographs, NASA, Houston, 217 pp .

Mason, B. and Melson; W.G. (1970) The Lunar Rocks; Wiley, New York, 179 pp.
McAdams, W. (1954) Heat Transmission: McGraw-Hill, New York, 532 pp.
MCCall, G. J. F. (1970) Lunar rilles and a possible terrestrial analogue: Nature, Vol. 225, pp. 714-716.

Mills, A. A. (1969) Fluidization phenomena and possible implications for the origin of Iunar craters: Nature, Vol. 224, pp. 863-866.

Morris, E. C. and Shoemaker, E. M. (1968) Fragmental debris., Geology, Television observations from surveyor: Part II of Surveyor Project Final Report, JPL Tech Rept. 32-1265, p. 69.

Murase, T. and McBirney, A. R. (1970) Thermal conductivity of lunar and terrestrial igneous rocks in their melting range: Science Vo1. 170, pp. 165-167.

Murray, J. B. (1971) Sinuous rilles: in Geology and Physics of the Moon, G. Fielder, ed., Elsevier, Amsterdam, pp. 27-39.

Mutch, T. (1972) Geology of the Moon: Rev. Ed. Princeton University Press, Princeton, New Jersey, 391 pp.

Nastryth, J. and Garpenter, J. (1874) The Moon Considered as a Planet, a World and a Satellite: 2nd ed., John Murray, London, 189 pp .

Neison, E. (1876) The Moon and the Condition and Configurations of its Surface: Longmans, Green \& Co., London. 576 pp .

Oberbeck, V.R. and Quaide, W.L. (1967) Estimated thickness of a fragmental surface layer of Oceantus Procellarum: J.G.R., Vol. i2. pp. 4697-4704.

Oberbeck, V. R., Quaide, W. L. and Greeley, R. (1969) On the orton of lunar sinuous rilles: Modern Geology, Vol.I, pp 75-80.

Oberbeck, V. R. et a1. (1972) Lunar Rilles-A Catalog and Method of Classification, NASA TEC. MEM. TM-X-62, 088, Wash. D.C., 82 PP.
$0^{\text {t K Keefe, }}$ J. A. (1969) Water on the moon and a new non-dimensional number: Science, Vol. 163, pp. 669-670.

O11ier, C. (1969) Volcanoes: MIT Press: Cambridge, Mass. 177 pp.
Pickering, W.H. (1903) The Moon: Doubleday Fage, New York, 103 pp.
Quaide, W. (1965) Rilles, ridges and dmes-clues to maria history: Icarus, Vol. 4, pp. 374-379.

Roberson, F.I. and Kaula, W.M. (1972) Apollo-15 Iaser altimeter: in Apolio-15 Preliminary Science Report, NASA SP-289, Washington, D.C. Pp. 25-48 to 25-49.

Scheidegger, A. E. (1970) Theoretical Geomorphology: Springer-Verlag, New York, 430 pp.

Schermerhorn, W. (1966) Plotting machines with mechanical or optical trains: in Manual of Photogranmetry, American Society of Photogramentry, Vol. \dot{L}, Falls Church, Va. pp. 629-758.

Schubert, G., Lingenfelter, R. E. and Peale, S. J. (1970) The Morphology, distribution and origin of lunar sinuous rilles: Reviews of Geophysics and Space Physics, VoI. 8, pp. 199-224.

Schum, S. A. (1969) Lunar rivers or coalesced chain craters?: Science, Vol. 165, p. 201.

Schumm, S. A. (1970) Experimental studies on the formation of lunar surface features by fluidization: G.S.A. Bull., Vol. 81, pp. 25392552.

Shaler, N. S. (1903) A Comparison of the Features of the Earth and Moon: Smithsonian contributions to knowledge, Vol, XXXIV, Smithsonian Institute, Washington, D.C., 130 pp .

Shoemaker, E. M. and Hacknan, R. J. (1960) Stratigraphic basis for a Iunar time scale: in Kopal, Zednek and Mikhailov, eds.: The Moon, Symposium 14, Internat. Astron. Union, Leningrad, London, Academic Press., pp. 289-300.

Skolnikoff, I. S. and Redheffer, R. M. (1958) Mathematics of Physics and Modern Engineering: McGraw-Hill, New York, 810 pp .

Smoluchowski, R. (1968) Mars: retention of ice: Science, Vol. 159, pp. 1348-1350.

Soderblom, L. A. and Lebofsky, L. A. (1972) Techniques for rapid determination of relative ages from orbital photography: J.G.R. VoI. 77, pp. 279-292.

[^0]: Figure I-2 Sketch reproduced from Pickering (1903). This is the first accurate sketch of Hadley Rilie. Only the southern falf is portrayed. The remainder is not clearly visible froin earth.

