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SUMMARY 

Economical and ecologically acceptable supersonic travel throughout the world 

can be a reality in the 1990's. The actuality of supersonic commercial 

service being provided by Concorde is demonstrating to the world the advantages 

offered by supersonic travel for both business and recreation. Public accep- 

tance will gradually and persistently stimulate interest to proceed with a 

second generation design that meets updated economic and ecological standards. 
This paper identifies an advanced technology supersonic cruise vehicle, devel- 

oped under the NASA SCAR program, that could be available for commercial 

service in the 1990's. It is estimated that this concept could operate 
profitably on world-wide routes with a revenue structure based upon economy 

fares. This airplane will meet all present day ecological requirements regard- 

ing noise and emissions. 

INTRODUCTION 

The National Supersonic Transport Program was canceled in 1971 after a consid- 

erable investment of the national resources, both material and human. The 

major factors which contributed to the program demise were the ecological and 

economic deficiencies due to marginal range-payload characteristics. In the 
same time period, attractive subsonic wide-body aircraft were being introduced 

into the long-haul aircraft market. At the close of the program, it was clear 

to both Government and industry that significant improvements in supersonic 

technology were required to make a second generation aircraft economically 

viable and ecologically acceptable. 
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In 1972, the National Aeronautics and Space Administration (NASA) initiated an 

Advanced Supersonic Technology (AST) program. The intent of the program was, 

and still is (in the form of the SCAR program), to'give the industry of the 

country the technology data base needed to proceed with development of a 

second generation supersonic cruise vehicle, when that decision is made. 

TECHNOLOGY - WRY? 

At the present time, it is not proper to ask "Why a civil supersonic cruise 

vehicle?" but rather %hy technology studies?" 

For the past several years, NASA Langley Research Center has been pursuing a 

Supersonic Cruise Aircraft Research (SCAR) program to provide sound technical 

bases for future civil and military supersonic vehicles. Under NASA sponsor- 

ship, various engine and airframe companies have been conducting technology 

assessment or impact studies to identify and assign priorities to important 

research and development programs and provide guidance and support to see that 

the critical needs are implemented. This program has provided industry with 

funds to perform contract studies, and has defined a flagpole around which 

industry could gather its own privately funded supersonic technology studies 

and research. An integrated program approach, as illustrated in Figure 1, has 

been formed because of this stimulus. Without an integration team monitoring 

the various on-going programs and assessing the technology impact, guidance 

for updating programs or identifying new programs would be missing. The all 

important technology and economic feedback would also be missing. In earlier 

aircraft development programs, these kinds of advancements in the various 

technologies were largely stimulated by general NASA research and military 

aircraft studies, contracts, and development. 

The present SCAR impact studies have drawn together inputs from NASA research 

efforts, industry independent research and development (IRAD), FAA/SST follow- 

on tasks, and various Climatic Impact Assessment Program (CIAP) and airline 

inputs. Such studies provide the only valid means of assessing the worth of 

the discrete technical advances resulting from the research and technology 
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programs. Such efforts are beneficial in reducing risk and building.experienced 

design teams necessary to permit successful program expansion from the research 

and technology phase to a development/production program at a later date. It 

should also be n0te.d that these studies give emphasis to the need for experi- 

mental programs and correlation of results with parallel theoretical programs. 

TECHNOLOGY - WHEN? 

The point in time when technology readiness must be established depends upon 

what degree of technology advancement is required, what funding support is to 

be made available to establish these advances, when the airplane that results 

from these technology improvements can be made available, and finally, and most 

importantly, when the marketplace is in a position to accept and successfully 

employ this new advanced technology airplane. 

Early introduction of a Supersonic Cruise Vehicle (SCV) into the marketplace 

does not seem likely at this time because of the current economic status of 

the airline industry, its need to replace aging subsonic long range equipment 

with new quiet fuel-efficient replacements, and the political adversity to new 
aircraft designs that are claimed to threaten the ecological well-being of all 

citizenry. 

The 1980's are most likely to be the era of the subsonic transport derivative 

(Figure 2). In the middle 1980's, airlines will be replacing 727-100's, 707's 

and DC-8's. The projected economic viability of the airline industry will not 

be able to support two aircraft programs such as subsonic derivatives and a 

supersonic cruise vehicle. Airline management must opt for the derivative 

aircraft first. 

Time is therefore available to perform further SCV technology studies. With 
adequate funding, this time can be used to develop much improved airframes and 

propulsion systems, and demonstrate their viability as well. This program 
would establish for this country a supersonic airplane technology readiness 
status by mid 1980 that would permit low-risk development of economic and 
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ecologically viable commercial supersonic cruise vehicles and superior 

advanced supersonic military tactical and long range cruise aircraft. 

SCV DESIGN OBJECTIVES 

A successful second generation SCV must properly meet market needs ,in terms of 

range and size. To insure economic viability, the design should emphasize the 

smallest aircraft size possible, cruise speeds commensurate with best possible 

utilization, and payload fractions at least twice that of Concorde. Lockheed 

marketing studies performed in 1973, with market projections carried out to 

the year 2000, suggested that the most attractive designs adopt trans-Atlantic 

range with approximately a 300-passenger payload capability. Such a concept 

benefits from small airplane size, with resultant improvements in development/ 

production.costs and operating expenses. A later growth version of the 

concept appears as a logical follow-on derivative that would provide nonstop 

trans-Pacific operation. A modest payload growth to 11 - 12 percent appears 

reasonable (Figure 3). 

Cruise speed studies suggest operation at Mach 2.5, with the capability of 
achieving these speeds under representative high-altitude, hot-day operations. 

Range 

The Lockheed concept has been designed to achieve a zero-wind, hot-day range 

of 7400 km (4000 nautical miles). This goal provides a design concept that 

can achieve world-wide operations as shown in Figure 4. The aircraft can 

readily accommodate the North Atlantic with nonstop operation. The aircraft 

will be practical for North-South American operations. It can operate satis- 

factorily in the Pacific using Honolulu as a stopover for east/west flights. 

Nonstop Pacific operation requires a range of 8900 km (4800 nautical miles); 

an aircraft with this capability would increase gross mass approximately 

68,000 kg (150,000 lb) and be more costly for most service operations. It 

may be possible to develop this size airplane as a later growth version of 

the basic 7400 km (4000 nautical mile) design. 
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Speed 

Task III of the NASA-Lockheed technology assessment study carefully examined 

cruise speed options. TWA added airline experience by assisting in a separate 

Lockheed-funded cruise speed study. Figure 5 reveals that Mach numbers 

greater than 2 permit four flights per day across the Atlantic with-reasonable 

allowances made for turnaround time. The studies indicated that increasing 

speed offered greater potential with regard to utilization and scheduling 
flexibility. 

Beyond Mach 2.5, temperature effects prohibit use of practical composite 

materials (Figure 6). SCV's must use polymide type composites. The epoxy 

versions being developed for subsonic aircraft cannot be employed for elevated 

temperature SCV application because of structural deficiencies brought on by 

moisture absorption. 

Capacity 

During the Lockheed economic studies conducted in Task II of the SCAR studies, 

the question of payload size was studied. The results, shown in Figure 7, 
indicate an economic plateau around 300 passengers. Below this number, return 

on investment (ROI) decreases due to increasing direct operating cost (DOC). 

Above this number the forecast traffic potential is not great enough to sus- 

tain utilization and would result in decreased flight frequency. - 

SCV MAJOR CONCERNS 

The aforementioned design goals must be realized while fully recognizing the 

demands of other vital issues: cost, risk, noise, emissions (Figure 8). 
Performance advances can be obtained by two methods: improved flight effici- 

ency in terms of lift-to-drag ratio and fuel consumption; and reduced air- 

plane mass fractions, defined as the ratio of operating mass empty (OME) to 
takeoff gross mass (TOGM). Using today's technology an aircraft sized to 

7400 km (4000 nautical miles) is not competitive. Mass and size need to be 



reduced in order to reduce development costs, facility costs, first costs, 

and support costs. The reduced size aircraft also reduces noise and emissions. 

To minimize risk, the aircraft must reflect simplicity in design wherever 

possible. A simple aircraft design reduces unknowns. 

Technology advancements required to produce a viable supersonic cruise concept 

must encompass all the related disciplines of propulsion, aerodynamics, struc- 

tures, and controls. 

PROPULSION 

Lockheed considers the propulsion technology as one of the most important 

areas that can benefit from research and development. Propulsion technology 

encompasses long-lead-time, high-risk items. This technology offers improve- 

ments in fuel economy and economics along with reductions in noise and 

emissions. Propulsion involves not only the engine but inlet, nozzle, and 

propulsion/airframe integration. 

Advanced Engines 

Throughout the SCAR program, attention has been given to engine cycle studies. 

Lockheed has maintained a continuous exchange with the two engine manufacturers 

involved in the SCAR program: the Pratt and Whitney Aircraft Company and the 

General Electric Company. Many advanced engine cycles have been studied since 

1973 as indicated in Figure 9. The number of cycles have been narrowed down 

from eight in 1973 to two in 1976. Turbojets, various-bypass-ratio turbofans, 

and various combinations of forward, rear, and dual-valved variable cycle 

engines (VCE) have been investigated. The two most promising cycles that 

have emerged are a medium-bypass-ratio turbofan, designated as a variable 

stream control engine (VSCE), and a double-bypass, dual-cycle engine. The 

valve concepts look complex with marginal benefits. 

Performance results from these cycle development efforts are compared in 

Figure 10 with the 1971 SST engine. The best turbojet and fan are compared 

944 



along with three VCE concepts. Only small supersonic cruise fuel consumption 

benefits are offered by the more modern engines. The 1971 SST turbojet 

engine reflects near optimum cruise efficiency, whereas the modern engines 

reflect recognition of' noise constraints which limit operating temperatures 

and require tailored exhaust profiles. 

Subsonic fuel consumption for the SCAR engines are improved due to better 

off-design airflow schedules that result in less spillage and boattail drag. 

Large payoffs have come in improved engine mass due to advanced materials and 

lowered operating temperatures. The fan cycle offers the most attractive 
options to date due to its light mass and superior subsonic fuel consumption. 

Noise 

The critical airport noise problem for an SCV is jet exhaust noise. This 

problem, while not relevant for current subsonic transport design, is a major 

problem for Concorde. The SCAR studies have revealed four new potential 

schemes for relieving the jet noise problem. These schemes are shown in 

Figure 11 along with the mechanical suppressor which was available for first 
generation SST's. The shaded areas of the figure suggest areas of uncertainty 

for the various noise reduction methods. The mechanical suppressor, while 

offering the largest reduction potential, is the least attractive because of 

maintenance, stowage, and loss of nozzle efficiency. The coannular effect 
looks very attractive but to date has only been verified using small scale 

models. Full scale forward flight effects are required. 

Optimization of the flight profile is a noise reduction method that is additive 

to the other schemes. Lift-to-drag ratio refinements brought about from high 

lift refinements, powered lift, and wing shape modifications, can be used to 

improve take-off and climb performance. Active controls can be employed for 

flight profile management. 

Jet noise shielding provided by an above-wing engine installation appears to 

offer a new noise relief prospect. 
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Two airframe-engine arrangements that may offer this jet noise shielding 

potential are shown in Figure 12. The over-under engine arrangement could 

provide flyover noise benefits of 3 to 5 EPNdB while the acoustical staggered 

engine arrangement could provide sideline noise benefits of up to 3 EPNdB. 

The experimental results obtained from two recent independent test programs 

are summarized in Figure 13. The twin jet noise studies indicate a 3 EPNdB 

noise reduction beneath the path of the aircraft as compared to the noise 

levels 90 degrees to the plane of the twin jets. This data was obtained from 

University of Tennessee tests (Ref. 1) at relatively low jet velocities. 

General Electric Company data (unpublished) at higher jet velocities indicate 

noise reduction levels of 5 EPNdB. 

King shielding benefit studies were made jointly by Lockheed and NASA to examine 

the use of wing structure as the shielding medium. A photograph of the config- 

uration is shown in Figure 14. The effort stressed use of engines on top of 

the wing positioned to obtain noise shielding in combination with upper surface 

blowing to achieve aerodynamic improvements. The shielding benefits proved 

to be small. Erosion and corrosion problems plus sonic fatigue problems 

appear to be sizeable. Therefore the concept is not considered to be 

attractive. 

Advanced Inlets 

A serious propulsion need exists to develop advanced technology inlets to 

match and integrate with the development of advanced cycles. The B-70 and 

YF-12 are the only mixed compression inlets designed and built for supersonic 

aircraft. Both of these inlets incorporate technology of the 1960’s. 

The major areas of needed effort for advanced engine inlet technology are 

presented in Figure 15. Advanced control technology being developed today 

will allow for digital integrated propulsion controls for the inlet, engine, 

and nozzle package. The need for self-starting capability of the inlet must 

be verified. Inlet hardware commonality and simplicity have to be design 

goals for inlets even if designed for slightly different local Mach numbers 

at the inlet face. 
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An example of inlet airflow matching between inlet and engine for the General 
Electric double-bypass, dual-cycle engine is shown in Figure 16. Corrected 

airflow is plotted versus Mach number. The. dashed lines indicate the initial 

SCAR inlet design using axisymmetrical inlets with translating centerbodies. 

These inlets are of the 1960 technology type. The final design features 2-D 

inlets with articulated centerbodies which allow for large throat area for 

transonic operation. All of the inlets are designed to have identical corrected 

airflow at cruise. 

It should be noted that the over-wing inlet, due to its larger local Mach 

number, must have a 14 percent larger capture area at cruise to deliver the 
same corrected airflow to the engine. However, because of the airflow flexi- 

bility of the new proposed engines, the engines need only have different 

engine/inlet controls in order to be adaptable to either below-wing or over- 

wing installations. The mass increase of the larger over-wing inlet is offset 

by the ability of the inlet to supply increased transonic airflow resulting 

in a 25 percent thrust increase transonically with a corresponding 7 percent 

reduction in fuel consumption. These benefits offset partially the mass and 
friction drag penalties paid for the larger inlet. 

Engine Location 

SCV engine integration with the airframe is a complex design task that affects 

performance, flying quality, maintenance, and noise characteristics. A 

comprehensive engine location study was undertaken to identify the airplane 

performance, mass, and noise characteristics of several engine location 
arrangements (Figure 17). This study included over-the-wing, tail-mounted, and 
fuselage-mounted engines. Configurations incorporating three engines, T-tails, 
staggered engines, and canards were examined. Two configurations evolved 
which had superior performance characteristics: the over-under engine arrange- 

ment and the more conventional four-engines-under wing arrangement. 

The over-under engine installation offers some unique characteristics that 

warrant more detailed investigation (Figure 18). High lift enhancement results 
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from increased flap span. Inlet unstart isolation is provided by wing 

structural shielding. Mass reduction is created by a more efficient engine 

support structure. Vertical tail size is reduced due to movement inboard 

of the critical engine-out moment arm. Flyover noise reduction is produced 

by jet noise shielding. 

Concerns were expressed regarding engine/inlet airflow matching, hardware 

commonality for inlet and engine, and above-wing engine-out incremental forces 

and moments. These concerns were the basis for high speed wind tunnel tests. 

The tests examined the supersonic characteristics of an engine mounted over 

the wing as shown in Figure 19. No problems were revealed. Aerodynamic 

disturbances of inlet unstart for over-wing mounted engines were reduced over 

that for a conventional four-engines-under-wing arrangement, since the critical 

engine was further inboard and experienced reduced local dynamic pressure over 

the top of the wing. Favorable sidewash at the vertical tail was generated by 

the inlet flow disturbance. 

AFRODYNAMICS 

An SCV concept must be configured to favor cruise efficiency. In recognition 

of this, much wind tunnel testing and analysis, together with analytic tools 

employing elaborate computer programs, have been developed over the years by 

both NASA and industry. A respectable data base regarding the importance 

and understanding of wing planform shape, equivalent body shape and fineness 

ratio, drag-due-to-lift minimization using twist and camber, and trim drag 

alleviation has been amassed. Further work is in progress in these areas. 

Nacelle-airframe integration, elements of which have already been discussed, 

also forms an important part of this current activity. 

A critical problem with all aircraft designed for efficient high speed operation 

relates to the flight characteristics that these swept wing, slender body air- 

craft generate at subsonic speeds, and during take-off and landing operations. 

The design challenge is to seek out design features and refinements that 

improve these deficiencies. 

948 



For these reasons, Lockheed has spent much of its SCAR aerodynamic efforts on 

low speed studies, wind tunnel tests, and analysis. A photograph of the low 

speed model is shown in Figure 20. 

Wing Development 

The first generation SST developed by Lockheed during the FAA/SST program of 

the 1960’s featured a low wing loading, double delta planform, tailless con- 

cept. The philosophy of this design was to aerodynamically eliminate aero- 

dynsmic center movement due to Mach number change (double delta planform); 
eliminate cruise trim drag with proper wing shape and center of gravity 

location to enhance cruise L/D (tailless configuration); and utilize a large 

wing area to permit higher altitude, lower sonic boom cruise operations, and 

at the same time allow operations in the terminal area without need for high 

lift devices. Fundamentally, the concept stressed simplicity. 

Technology advancements made since that time suggest that alternatives to that 

design philosophy may offer attractive potential. In addition, different, and 

in some cases, more demanding design requirements are imposed by today's 

scenario. Noise is a more critical consideration and forces the aerodynami- 

cist to develop better subsonic lift-drag ratio levels for airport operation. 

Vortex lift cannot be relied upon because of attendant vortex drag and resul- 

tant low levels of L/D. Camber lift and the L/D benefits of high lift flaps 

must be utilized. 

The added complexity of high lift devices is measurably offset by the benefits 

in wing mass savings, achieved because the high lift devices permit adoption 

of a higher design wing loading (smaller wing). The wing mass savings has a 

significant favorable impact on design range or gross mass for a given range. 
The best wing loading for achieving maximum payload range characteristics is 

always higher than the wing loading desired for airport performance needs. 

All subsonic transports in operation today adopt wing loadings that favor 

cruise performance, and adopt high lift devices to tailor the wing aerodynamic 

characteristics to provide good airport performance characteristics. A similar 

philosophy applied to an SCV therefore seems like an attractive prospect. 
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Figure 21 depicts the major considerations affecting wing area selection for a 

given payload range supersonic cruise airplane. The incremental range gain 

with decreasing wing area shows the benefit for cruise operation at wing 

loadings for best cruise efficiency. A 1970 technology design wing area is 

identified. The range benefit obtainable from improved lift augmentation is 

indicated by the 199X objective wing size. 

Takeoff field length and approach speed sensitivity to reduced wing area are 

shown in the side plots. These figures serve to indicate the need for advance- 

ments in high lift required to achieve satisfactory speeds and field lengths, 

when taking the high wing loading option. 

High Lift Assessment 

Lift enhancement is made difficult by the very features which are responsible 

for its high cruise efficiency - leading edge sweep and reduced span. Large 

wing leading edge sweep angles are desired so that the leading edge falls 

behind the Mach line in cruise. This geometry relationship produces benefits 

in cruise L/D, and allows for rounded wing leading edge shapes that benefit 

low speed L/D. Trailing edge sweep also improves supersonic L/D levels. Hence 

for best supersonic cruise efficiency, the highly swept arrow wing offers the 

greatest potential. 

Extreme sweep, combined with low span, offers very poor low speed aerodynamic 

characteristics, and requires auxiliary means for achieving desired levels of 

performance. One potential solution to the problem is to adopt the variable 

sweep wing design concept - configure a wing with an inboard pivot that will 

allow for rotation of an outer wing panel, so as to reduce its sweep and 

increase wing span for low speed operations. This novel design idea was 

thoroughly explored in the FM/SST program of the 60's, and was abandoned 

because of extreme design complexity and mass bogies. 

Use of a fixed wing with supersonic leading edge sweep offers some relief to 

the low speed problem, but the benefits do not totally eliminate the need for 
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auxiliary geometry changes. The exception to this would be use of large 

wing areas (the Lockheed approach of the 1960’s). 

The present Lockheed philosophy is to recognize the need for high lift devices 

(Figure 22), and accept the challenge that these auxiliary flaps be developed 

so as to provide satisfactory low speed aerodynamic characteristics while 

adopting the most efficient high speed wing shape - the arrow wing. 

The development task that needs to be done can and should include the following 

considerations: 

Angle of attack - high values produce more lift, but also more vortex 

drag, worsen flight station visibility, and require a longer landing 

gear. 

Active controls - offer the potential for using relaxed static stabil- 
ity as a means for alleviating the trim drag normally associated with 

flap deflection (it should be noted that the notch of the arrow wing 
also helps alleviate flaps-down trim problems, since the flap is 

located in a more forward location than would be the case with an 

unnotched planform). 

Powered lift - the high thrust-weight ratio of the SCV suggests the 

use of vectored thrust, or engine bleed air for BLC, as a further 

means for achieving lift for takeoff. 

Folding wing tips - can be employed to provide tip extensions for low 

speed operation, and retract during normal flight regimes. 

Figure 23 illustrates how flaps and relaxed static stability help improve the 
low speed characteristics. The flaps generate camber lift producing an 
increased lift at constant angle of attack. The flaps also generate additional 

nose down pitching moment. However, the trim requirement needs are alleviated 

by moving the center of gravity aft. Tail loads are not needed for trim but, 

as indicated, the aircraft will operate with a negative static margin. Results 

from NASA and Lockheed low speed wind tunnel tests indicate that a trimmed 
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approach lift coefficient compatible with the wing loading desired for best 
payload and range can be attained at an acceptable angle of attack. 'These 

data show that the incremental pitching moment coefficient from the trailing 

edge flaps requires a relaxation of inherent static stability requirements by 

about 6-8 percent. Relaxed Statid Stability (RSS) is predicated on the con- 

tinued development of necessary active control stability augmentation systems. 

Additional lift enhancement is proposed for the Lockheed SCAR baseline con- 

figuration by means of folding wing tips (Figure 24). During cruise.these 

panels are vertical, adding to the directional stability. At low speed, when 

the trailing edge flaps are extended, the wing tips are redeployed horizontally. 

Wind tunnel tests verify that the added span improves the lift curve slope 

so that at approach angle of attack, a supplemental lift increment of approxi- 

mately 10 percent can be realized by reasonably sized tip extensions. 

The use of powered lift to enhance arrow wing lift characteristics has received 

serious attention. One application, using upper surface blowing as a means 

for supplementing flap lift, was discussed early in connection with Figure 14. 

Other means studied were vectored thrust and BLC. Analytic studies and large 

scale NASA wind tunnel tests have been carried out. Lockheed assisted in the 

data analysis of these tests. 

Findings are summarized in Figure 25. Shown is the thrust increase needed to 

provide added lift, as a function of the reduction in approach speed permitted 

by the lift increment, assuming fixed approach attitude. Compared are the 

relationships using simple flap deflection, flaps with hinge line chordwise 
I 

blowing, and thrust vectoring by means of tilting exhaust nozzles. The figure 

shows that in the range of flap effectiveness linearity (6f = O"-300), 

use of powered lift requires greater levels of approach thrust to achieve a 

given decrement in approach speed. Greater thrust means higher approach noise. 

Therefore, these results do not suggest any advantage for powered lift. How- 

ever, the potential of this idea has not yet been fully explored, and further 

study of powered lift appears to be warranted. 
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STRUCTURES 

Advances in aircraft structures offer significant potential when applied to 

supersonic cruise vehicles, with the prospect that the “1960 all-titanium 

structure" vehicle mass can be decreased by ten percent. This will be 

achievable because of new developments in materials, controls technology, 
manufacturing processes, and analytic methods. 

As part of the NASA SCAR activities, Lockheed performed a one year structural 

design contract study of an arrow wing planform SCV. This program exercised 

the latest computer aided analytic techniques and advanced materials options, 

and studied numerous structural design concepts. Design criteria, design 

conditions, stress allowables, loads, structural arrangements, masses, aero- 
elastic characteristics, and flutter behavior were all established during this 
detailed study. Results are presented in Reference 2. 

Materials 

A new structural advancement receiving great attention at present is the 

prospect of using new composite materials to replace metal alloys. These 

composites are formed from filaments of metal or carbon imbedded in a formable 

matrix. The orientation of the fibers can be arranged to produce any desired 

structural property with regard to load intensity and direction. Strength/ 
mass properties exceed conventional metal alloys. Therefore, these new 

materials have the potential of offering lighter, more efficient structures 

for advanced aircraft. 

Figures 26 and 27 show Lockheed aircraft that are being used to obtain flight 

service experience with these new materials. The L-1011 is being used to 
examine epoxy type composites in support of the NASA ACEE program. The YF-12 
shown is a NASA research vehicle operated by Dryden Research Center, and is 

being used to obtain real world high temperature advanced materials charac- 

teristics in the actual flight environment of future SCV concepts. 
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Adoption of these new materials for commercial transport application will 

require an extensive, time consuming, development program. Current projec- 

tions are shown in Figure 28. Most emphasis is being directed towards the 

epoxy subsonic aircraft type materials. Adoption of the high temperature 

materials for SCV use will require accelerated program activity, if these new 

materials are to see extensive application in basic structures. 

Projected benefits of high temperature composites in reducing SCV size are 

shown in Figure 29. Using 1985 technology, take-off gross mass decreases 

6 percent over 1980 technology, reducing the aircraft cost by $8 million 
(based on a production run of 300 aircraft). 

Manufacturing Technology 

A very significant technology emerging from the SCAR program is new manu- 

facturing techniques such as high temperature forming (superplastic forming) 

and no-draft forming (Figure 30). These techniques significantly impact 

fabrication cost by eliminating machining operations, and by providing large 

structural assemblies with fewer detailed parts. Figure 31 shows a typical 

cost comparison to indicate the savings of using the no-draft precision 

forging method. Ninety percent less material is used with the total cost 

reduced by 75 percent. This real-world component, a titanium tail bumper 

forging used on the L-1011, is shown in Figure 32. Further applications and 

development will offer even greater opportunities to sa?re mass and reduce 

production costs for 1990 airplanes. 

Analytic Methods 

Many new analytic methods have emerged since the first generation SST program 

(Figure 33). The benefits from these new analytic methods include accelerated 

design processes, more efficient structure, greater accuracy, improved correla- 

tion of theory and experimental tests, al.1 at reduced cost, The structural 

design iteration process requires involved analyses and many technical disci- 

plines (Figure 34). The ability to use computer programs which are properly 
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interfaced and combined with computer graphics, measurably helps to improve 

response time and accuracy of results. 

Shown in Figure 35 is a typical arrow wing structural model used for analysis. 

A computer derived map of temperature contours for one particular design condi- 
tion is presented in Figure 36. A graphic representation of static deformation 

of the wing is shown in Figure 37. 

CONTROLS 

The most promising advanced technology that will see early implementation on 

future subsonic transport aircraft will involve use of advanced controls. 

These advances will pave the way for extensive application on SCV's in the 

1990's. This belief is highlighted by the milestone chart of Figure 38. 
Certified use of active controls for load relief on the L-1011 is projected 

by 1982. 

Potential active controls benefits are illustrated in Figure 39. Throttle 

management, programmed flaps, and relaxed stability will produce better climb 

profiles, less trim drag, and resulting noise relief. Maneuver load control, 

gust load alleviation, elastic mode suppression, and relaxed stability are 

means for mass savings that will be developed in the 1980’~ on subsonic air- 
craft. Flight station ride quality and envelope limiting are safety items 
needed for long-body aircraft. Relaxed stability, fuel management, and inlet 
controls will improve performance by reducing trim drag and improving engine 

performance. 

The projected impact of active controls on take-off gross mass is presented 

in Figure 40. The benefits are the result of analyses performed using the 

arrow wing structure studies results presented in Ref. 2. The benefits 

shown may appear to be small. However, it should be appreciated that the 

mass savings indicated follow benefits already realized by propulsion, aero- 

dynamics, and materials advanced technology. 
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CONCEPT DEVELOPMENT 

A vital need of the SCAR program has been to assess technology advances to 

indicate the impact, relative benefit, and research priorities for the various 

emerging improvements. The following paragraphs describe a potential 1990 SCV 

design that adopts the technology advances discussed in previous paragraphs. 

Figure 41 presents a summary of the advanced technology items that were 

adopted. An advanced turbofan is employed in an over-under engine arrangement. 

Potential noise relief options are envisioned as allowing the engine to be 

sized for maximum payload and range while meeting noise standards. The wing 
can be optimized for cruise while being tailored to meet low speed needs by 

use of a high lift system combined with relaxed static stability. New 

materials and fabrication techniques are employed along with active controls. 

To meet the 290 passenger, 7400 km (4000 n. mi.) design requirement using 

1970 technology would require a 385,500 kg (850,000 lbm) aircraft, as shown 

in Figure 42. Advanced technology reduces take-off gross mass'by 117,000 kg 

(260,000 lbm). The mass reduction is distributed between the various tech- 

nologies of propulsion, aerodynamics, and structures. The cross-hatched area 

indicates potential attainable with more optimistic advancements. 

Concept Description I 

The concept, shown in Figure 43, is 89.5 m (294 ft) long with a 36.4m 
(119.5 ft) wing span. 

A summary of the concept characteristics is shown in Figure 44. The takeoff 

gross mass is 268,500 kg (592,000 lbm) with a payload fraction of 9 percent or 

26,300 kg (58,000 lbm). The engine airflow size at take-off is 270 kg/s 

(600 lbm/sec). This is approximately the same engine size as employed by 

today's wide-body transports. The approach speed is 81 m/s (158 knots). The 

wing area of 624 m 2 (6720 ft2) corresponds to a wing loading of 430 kg/m2 

(88 PSF) at takeoff. FAR part 36 noise levels are met. 
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Payload-range characteristics are shown in Figure 45. The 26,300 kg 

(58,000 lbm) payload reflects only passengers and their baggage with no 

provisions for cargo. The total fuel load is approximately 136,000 kg 

(300,000 lbm) with the reserve fuel being 70 percent of the payload. The 

aircraft requires a 3350 m (11,000 foot) takeoff field length on a hot day 

and a 3050 m (10,000 foot) landing field length. 

Figure 46 compares the advanced SCV concept with the first generation Lockheed 

L-2000 design. The concept has increased range and carries more passengers 

at a slightly slower speed. It employs a smaller wing, and has a longer 

fuselage to accommodate the increased payload. There is no projected improve- 

ment in sonic boom. The masses are about the same. 

Operating Costs 

Prediction of real operating economics for a 1990 aircraft is impossible to do 

reliably. However, some meaningful trends are illustrated in Figure 47. Total 
operating cost (TOC) is plotted as a function of seat cost using 1973 dollars 

and 8.7Blliter (334/gallon) fuel cost. An SCV will have higher cost per seat 

than for subsonic transports - it is a more technology intense airplane. The 

operating cost will be higher because of increased fuel requirements, increased 

engine maintenance, and lack of cargo revenue. However, Lockheed studies indi- 

cate the possiblity of an attractive realization of return on investment (ROI) 

even if the operating costs are 10 - 20 percent higher than the subsonics. 
What is presumed is that SCV's will provide all one-class passenger accommoda- 

tions, that is, first class supersonic service with fare levels between 
present day tourist and first class rates. 

CONCLUDING REMARKS 

Technology accomplishments that strongly benefit economics have been identified 

(Figure 48). Small wing size, composite materials, and active controls provide 

improved performance with a smaller airframe-engine combination. Advanced 
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manufacturing techniques and refined analytic tools show promise of providing 

lower development and fabrication costs. 

The technology accomplishments that benefit ecology are presented in Figure 49 

Engine cycle development and coannular noise relief have led to a light mass, 

reduced exhaust velocity turbofan. Jet and structural shielding benefits 

support the use of the over-under engine concept. 

Future SCAR effort should follow the guidelines indicated in Figure 50. In 

propulsion, a scaled engine demonstrator is needed to verify predicted cycle 

characteristics. In-flight noise relief tests are critical and need more 

priority. Inlet research is needed to keep pace with cycle development. In 

aerodynamics, more wind tunnel testing is needed to verify emerging analytical 

methods. In structures, development of materials and manufacturing techniques 

should be accelerated. Large scale hardware programs should be implemented. 
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Figure 13.- Twin jet noise studies. 

Figure 14.- Over-the-wing shielding benefits. 
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Figure 16.- Inlet airflow optimization. 

967 



OVER-UNDER 

FOUR- 
ENGINES- 

UNDER- 
WING 
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Figure 18.- Over-under engine installation. 
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Figure 19.- Inlet unstart test. 

Figure 20.- High lift development model. 
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Figure 22.- Low speed lift enhancement. 

970 



LIFT OFF 
ATTITUDE 

0.2 
a- rad 

I J 
8 16 

a-DEG 

Figure 23.- Benefits of flaps and RSS. 
-v- . 

0.8 

5l-l 

o.t3- 
APPROACH a 

' WING TIPS 

o- I I I I 
0 0. 10 0.20 

a-rad 

I I I 1 

0 4 8 12 
a-DEGREES 

Figure 24.- Folding wing tips. 
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Figure 27.- YF-12 panel tests. 
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Figure 28.- Advanced composites technology schedule. 
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Figure 29.- Composite materials impact. 
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Figure 30.- Advanced manufacturing technology. 
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Figure 31.- Low-cost -no-draft precision titanium forging. 

Figure 32.- Titanium manufacturing. 
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Figure 35.- Finite element structural model. 

UPPER SURFACE 

LOWER SURFACE 

Figure 36.- Temperature contours. 
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Figure 41.- Features. 
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Figure 42.- Technology impact. 
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Figure 45.- Payload-range characteristics. 
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Figure 47.- Economics. 
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Figure 48.- SCAR technology accomplishments - economics. 
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Figure 49.- SCAR technology accomplishments - ecology. 
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