JSC-12960

Euler Angles, Quaternions, and Transformation Matrices

(NASA-TM-74839) SHUTTLE PROGRAM. EULER N77-31234 ANGLES, QUATERNIONS, AND TRANSFORMATION MAIRICES WORKING RELATIONSHIPS (NASA) 42 p HC A03/MF A01 CSCL 22A Unclas G3/16 37332

Working Relationships

77-FM-37

<u>1</u>276

a.....

\<u>___</u>

1 32

Mission Planning and Analysis Division July 1977

Lyndon B. Johnson Space Center Houston, Texas

77-FM-37

-

1

`. .

÷

and the second of the second

والانفاقية إمراء ليقدر بالميديات والديقاني ا

_

١

-

|

JSC-12960

SHUTTLE PROGRAM

EULER ANGLES, QUATERNIONS, AND TRANSFORMATION MATRICES -

WORKING RELATIONSHIPS

By D. M. Henderson McDonnell Douglas Technical Services Co., Inc.

JSC Task Monitor: B. F. Cockrell

Approved: Emil R. Schiesser, Chier

Mathematical Physics Branch

. Ken Approved: Ronald L. Berry, Chief

Mission Planning and Analysis Division

National Aeronautics and Space Administrátion Lyndon B. Johnson Space Center Mission Planning and Analysis Division Houston, Texas

July 1977

CONTENTS

• ,

- - - - -

. .

•• - -

••••

--- - - :

.

ł

'n

.

×0

• ·····

Section		Page
1.0	INTRODUCTION	. 1
2.0	DISCUSSION	. 2
	2.1 Euler Angle Transformation Matrices	. 2
	2.2 Transformation Matrices Using the Hamilton Quaternion	. 7
	2.3 Euler Angle and Quaternion Relationships	. 9
3.0	REFERENCES	. 11
	APPENDIX A - RELATIONSHIPS FOR THE THREE-AXIS EULER ANGLE ROTATION SEQUENCES	. A-1
	APPENDIX B - COMPUTER SUBROUTINES FOR THE RELATIONSHIPS .	. B-1

H

EULER ANGLES, QUATERNIONS, AND TRANSFORMATION MATRICES -

WORKING RELATIONSHIPS

By D. M. Henderson McDonnell Douglas Technical Services Co., Inc.

1.0 INTRODUCTION

Due to the extensive use of the quaternion in the onboard Space Shuttle Computer System, considerable analysis is being performed using relationships between the quaternion, the transformation matrix, and the Euler angles. This Internal Note offers a brief mathematical development of the relationships between the Euler angles and the transformation matrix, the quaternion and the transformation matrix, and the Euler angles and the quaternion. The analysis and equations presented here apply directly to current Space Shuttle problems. Appendix A presents the twelve three-axis Euler transformation matrices as functions of the Euler angles, the equations for the quaternion as a function of the Euler angles, and the Euler angles as a function of the transformation matrix elements.

The equations of Appendix A are a valuable reference in Shuttle analysis work and this Internal Note is the only known document where each of the twelve Euler angle to quaternion relationships are given. Appendix B presents a group of utility subroutines to accomplish the Euler-matrix, quaternion-matrix, and Eulerquaternion relationships of Appendix A.

2.0 DISCUSSION

2.1 Euler Angle Transformation Matrices

ting the

111

ومراقبتها والبردين والإلامين وبرا

The following analysis and utility subroutines are offered to simplify computer programs when working with coordinate transformation matrices and their relationships with the Euler Angles and the Quaternions. The coordinate transformation matrices discussed here are defined using the following figure,

Figure 1.- Coordinate system and Euler angles.

The transformation matrix M, is defined to transform vectors in the \overline{x} - system $(\overline{x}, \overline{y}, \overline{z})$ into the original x-system ' y, z) and is given by the equation,

$$x = M\overline{x}$$

where

(1)

x = (x, y, z) and $\overline{x} = (\overline{x}, \overline{y}, \overline{z})$.

Using the right-hand rule for positive rotations, the M matrix in (1) above is constructed by the following analysis. The first rotation in Figure 1 above is about the x-axis by the amount θ_1 . The single rotation about the x-axis results in the following transformation,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_1 & -\sin\theta_1 \\ 0 & \sin\theta_1 & \cos\theta_1 \end{pmatrix} \begin{pmatrix} \overline{x}^{1} \\ \overline{y}^{1} \\ \overline{z}^{1} \end{pmatrix}$$
(2)

or $x = X\overline{x}'$ in matrix form. Rotation about the \overline{y}' -axis by the amount θ_2 yields the intermediate transformation matrix:

$$\begin{pmatrix} \overline{\mathbf{x}}^{\mathbf{i}} \\ \overline{\mathbf{y}}^{\mathbf{i}} \\ \overline{\mathbf{z}}^{\mathbf{i}} \end{pmatrix} = \begin{pmatrix} \cos\theta_{2} & 0 & \sin\theta_{2} \\ 0 & 1 & 0 \\ -\sin\theta_{2} & 0 & \cos\theta_{2} \end{pmatrix} \begin{pmatrix} \overline{\mathbf{x}}^{\mathbf{i}} \\ \overline{\mathbf{y}}^{\mathbf{i}} \\ \overline{\mathbf{z}}^{\mathbf{i}} \end{pmatrix}$$
(3)

or $\overline{x}^{\dagger} = Y_{\overline{x}}^{\dagger}$ in matrix form. Finally rotation about the \overline{z}^{*} -axis by the amount θ_{3} yields the intermediate transformation matrix,

$$\begin{pmatrix} \overline{x}^{n} \\ \overline{y}^{n} \\ \overline{z}^{n} \end{pmatrix} = \begin{pmatrix} \cos\theta_{3} & -\sin\theta_{3} & 0 \\ \sin\theta_{3} & \cos\theta_{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \overline{x} \\ \overline{y} \\ \overline{z} \end{pmatrix}$$
(4)

and in matrix form $\overline{x^*} = Z\overline{x_1}$. Now using the three equations,

$$x = X\overline{x}^{t}$$

$$\overline{x}^{t} = \overline{Y}\overline{x}^{t}$$
(5)
$$\overline{x}^{t} = Z\overline{x}$$

by substitution

Partick and Sa

an the hope of the

5

$$\mathbf{x} = (\mathbf{X} \mathbf{Y} \mathbf{Z}) \, \overline{\mathbf{x}}. \tag{6}$$

Then from equation 1,

 $M = (X Y Z) \tag{7}$

Computation for the M matrix from the indicated matrix multiplication in equation (7) yields,

$$M = \begin{pmatrix} (\cos\theta_2 \ \cos\theta_3) & (- \ \cos\theta_2 \ \sin\theta_3) & (\sin\theta_2) \\ (\cos\theta_1 \ \sin\theta_3 \ + \ \sin\theta_1 \ \sin\theta_2 \ \cos\theta_3)(\cos\theta_1 \ \cos\theta_3 \ - \ \sin\theta_1 \ \sin\theta_2 \ \sin\theta_3)(- \ \sin\theta_1 \ \cos\theta_2) \\ (\sin\theta_1 \ \sin\theta_3 \ - \ \cos\theta_1 \ \sin\theta_2 \ \cos\theta_3)(\sin\theta_1 \ \cos\theta_3 \ + \ \cos\theta_1 \ \sin\theta_2 \ \sin\theta_3)(\cos\theta_1 \ \cos\theta_2) \end{pmatrix}$$
(8)

The matrix M in equation (8) is a function of;

(1) The three Euler angles θ_1 θ_2 and θ_3 and

(2) The sequence of rotations used to generate the matrix.

By examination of equation (7) it is possible to show that there are twelve possible Euler rotational sequences. If the (X Y Z) notation in equation (7) represents a rotation about the X axis, then the Y axis and finally the Z axis, then the following per-

4

ł

mutations of the rotational order represents the twelve possible Euler angle sets using three rotations,

Х	Y	Z	Y	X	Z	Z	X	(Y		
X	Z	Y	Y	Z	X	Z	Y	′ X	(0	•••
X	Y	x	Y	X	Y	Z	X	K Z [*] .	(9	1)
X	Z	X	Y	Z	Y	Z	Y	′ Z		

Any repeated axis rotation such as XXY does not represent a three axis rotation but reduces to the two axis rotation XY. Hence the rotations described in (9) above represent all twelve possible sets of Euler angle defining sequences. Conversely then, for a given transformation matrix there are twelve Euler angle sets which can be extracted from the matrix. The Euler matrices corresponding to all possible rotational sequences of (9) above are presented in Appendix A.

The utility subroutines "EULMAT" generates the transformation matrix from a given Euler sequence and the Euler angles. The utility subroutine "MATEUL" extracts the Euler angles from a given Euler rotational sequence. The convention is established that the Euler angles occur in the same sequences as the axis rotations. Using this concept and functional notation, equation (7) could be expressed as

 $M = X Y Z = M(\theta_{x}, \theta_{y}, \theta_{z})$ (10) and from (9)

.....

$$M = X Z X = M(\theta_x, \theta_z, \theta_z') \text{ etc.}$$
(11)

This convention is assumed in both subroutines and also used throughout this design note when Euler angles are used. A brief explaination of the use of these two utility subroutines is given in Appendix B.

.

Ē

_

-

والمنافق والمنافع والمنافق والمنافر والمنافع

3.115.01

Ξ

It is interesting to note that a negative rotation in the single axis rotation matrices of equations (2), (3) and (4) will result in the formation of the transpose of the matrix. However the transpose of M in equation (7) is formed from reversing the order of multiplication and transposing the individual axis rotation equations, i.e.

$$M^{T} = (X Y Z)^{T} = (Y Z)^{T} X^{T} = Z^{T} Y^{T} X^{T}.$$
 (12)

Hence the transposes of the matrices of (9) are easily formed by reversing the order of multiplication and transposing each single axis rotation equation. Using the netation in equations(10) and (11) above equation (12) could be written,

$$M^{T}(\theta_{x}, \theta_{y}, \theta_{z}) = M(-\theta_{z}, -\theta_{y}, -\theta_{x}).$$
(13)

It is recommended to avoid confusion that the forward transformation be computed and simply transposed to yield the reverse transformation matrix. All matrices of Appendix A are in the forward form, i.e. $X = M\bar{x}$ and formed from (9).

2.2 Transformation Matrices Using the Hamilton Quaternion The transformation matrix of equation (1) can be written as a function of the Hamilton Quaternion;

(14)

(16)

 $q_{1} = \cos \omega/2$ $q_{2} = \cos \alpha \sin \omega/2$ $q_{3} = \cos \beta \sin \omega/2$ $q_{4} = \cos \gamma \sin \omega/2$

where ω is the rotation angle about the rotation axis with α , β , and γ direction angles with the x, y and z axes respectively. Notice also that $q_1^2 + q_2^2 + q_3^2 + q_4^2 = 1$, since $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$. The rotation angle, ω , is assumed positive according to the right-hand rule of axis rotation. The matrix M becomes

$$M = \begin{pmatrix} (n_1^2 + q_2^2 - q_3^2 - q_4^2) \ 2(q_2q_3 - q_1q_4) \ 2(q_2q_4 + q_1q_3) \\ 2(q_2q_3 + q_1q_4) \ (q_1^2 - q_2^2 + q_3^2 - q_4^2) \ 2(q_3q_4 - q_1q_2) \\ 2(q_2q_4 - q_1q_3) \ 2(q_3q_4 + q_1q_2) \ (q_1^2 - q_2^2 - q_3^2 + q_4^2) \end{pmatrix},$$
(15)

For a more detailed discussion of the derivation of equation (15), see Reference 1. Using functional notation, equation (15) can be written,

$$M = M(q_1, q_2, q_3, q_4).$$

Unlike the Euler angle rotational sequences to describe the transformation matrix of equation (1), only two quaternions can be found from equation (15). The two quaternions are:

 $\begin{array}{ccc}
 q_1 & -q_1 \\
 q_2 & -q_2 \\
 q_3 & and & -q_3 \\
 q_4 & -q_4
 \end{array}$

(17)

)

These two quaternions represent a positive rotation about the rotation axis pointing in one direction and a positive rotation about the same line of rotation pointing in the opposite direction. Both quaternions of (17) satisfy equation (15).

The utility subroutine "QMAT" generates the transformation matrix from a given quaternion. The "QMAT" algorithm generates the matrix as given in equation (15) without duplicating any arithmetic operations. The subroutine "MATQ" extracts the positive quaternion, i.e., $q_1 > 0$, from the transformation matrix and normalizes the results to guarantee an orthogonal matrix. In order to avoid any discontinuity in extracting the quaternion from the transformation matrix, the procedure as described in Reference 2 is used.

Early works by Hamilton (Réference 3) presented the quaternion as having a scalar and a vector part, i.e.,

$$q_1 = S \quad V = (q_2, q_3, q_4)$$
 (18

and equation (16) could be expressed as,

 $M = M(q_1, q_2, q_3, q_4) = M(S, \vec{v}).$ (19)

For a given quaternion the following relationship is

فيصفقون والمقادة الطامينة الخيرية والمتعاويل

true (from (17) above),

$$M(S, V) = M(-S, -V).$$
 (20)

The transpose of the transformation matrix is given by,

$$M^{T}(S, \vec{V}) = M(-S, \vec{V}) = M(S, -\vec{V}).$$
 (21)

2.3 Euler Angle and Quaternion Relationships

By examination of equations (10) and (16) the equality,

 $M(X(\theta_1), Y(\theta_2), Z(\theta_3)) = M(\theta_1, \theta_2, \theta_3) = M(q_1, q_2, q_3, q_4)$ (22) can be written. Based on an equality for each element of the matrix the following nine equations must be true;

$$cos\theta_{2} cos\theta_{3} = q_{1}^{2} + q_{2}^{2} - q_{3}^{2} - q_{4}^{2}$$

$$-cos\theta_{2} sin\theta_{3} = 2(q_{2}\dot{q}_{3} - q_{1}q_{4})$$

$$sin\theta_{2} = 2(q_{2}q_{4} + q_{1}q_{3})$$

$$cos\theta_{1} sin\theta_{3} + sin\theta_{1} sin\theta_{2} cos\theta_{3} = 2(q_{2}q_{3} + q_{1}q_{4})$$

$$cos\theta_{1} cos\theta_{3} - sin\theta_{1} sin\theta_{2} sin\theta_{3} = q_{1}^{2} - q_{2}^{2} + q_{3}^{2} - q_{4}^{2}$$

$$-sin\theta_{1} cos\theta_{2} = 2(q_{3}q_{4} - q_{1}q_{2})$$

$$sin\theta_{1} sin\theta_{3} - cos\theta_{1} sin\theta_{2} cos\theta_{3} = 2(q_{3}q_{4} - q_{1}q_{3})$$

$$sin\theta_{1} cos\theta_{3} + cos\theta_{1} sin\theta_{2} sin\theta_{3} = 2(q_{3}q_{4} - q_{1}q_{3})$$

$$sin\theta_{1} cos\theta_{2} = q_{1}^{2} - q_{2}^{2} - q_{3}^{2} + q_{4}^{2}$$

It is possible to solve for the values of the quaternion using the trigonometric half angle identities. For this Euler sequence, i.e. $X(\theta_1) Y(\theta_2) Z(\theta_3)$, the following quaternion results;

 $\begin{aligned} & q_{1} = -\sin^{1}_{2}\theta_{1} \sin^{1}_{2}\theta_{2} \sin^{1}_{2}\theta_{3} + \cos^{1}_{2}\theta_{1} \cos^{1}_{2}\theta_{2} \cos^{1}_{2}\theta_{3} \\ & q_{2} = +\sin^{1}_{2}\theta_{1} \cos^{1}_{2}\theta_{2} \cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{2} \sin^{1}_{2}\theta_{3} \cos^{1}_{2}\theta_{1} \\ & q_{3} = -\sin^{1}_{2}\theta_{1} \sin^{1}_{2}\theta_{3} \cos^{1}_{2}\theta_{2} + \sin^{1}_{2}\theta_{2} \cos^{1}_{2}\theta_{1} \cos^{1}_{2}\theta_{3} \\ & q_{4} = +\sin^{1}_{2}\theta_{1} \sin^{1}_{2}\theta_{2} \cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{3} \cos^{1}_{2}\theta_{1} \cos^{1}_{2}\theta_{2} \end{aligned}$ (24)

۰,۰۰,۰

. . .

in the state of the

to Maria Mathana Pa

Appendix A gives the quaternion as a function of the Euler angles for each of the twelve Euler rotational sequence presented in Section 2.1. The special equations for the quaternion as functions of the Euler angles, like equations (24) above, are sometimes cumbersome to use, especially when multiple Euler sequences are utilized. Less coding, but perhaps more computer operations, are required by using the more general method of first generating the matrix M from the given Euler angle set and then simply extracting the quaternion from the matrix. This method is effected by first a call to "EULMAT" and then a call to "MATQ".

1

3.0 REFERENCES

 Working Paper: MDTSCO, TM No. 1.4-MPB-304, E914-8A/B-003, "Quaternions and Quaternion Transformations," David M. Henderson, 23 June 1976.

.

11.1.1.11

~

in the state of the state

Ę

11.11

27

Ξ.

-

- 2. Transmittal Memo: MDTSCO, 1.4-MPB-229, "Improving Computer Accuracy in Extracting Quaternions," David M. Henderson, 9 March 1976.
- 3. Sir William Rowan Hamilton, LLD, LL.D. MRIA, D.C.L. CANTAB., "Elements of Quaternions" 2 Volumes, Chelsea Publishing Company, New York, N. Y., 3rd Edition 1969, Library of Congress 68-54711 #8284-0219-1.

APPENDIX A

RELATIONSHIPS FOR THE THREE-AXIS EULER ANGLE ROTATION SEQUENCES

The twelve Euler matrices for each rotation sequence are given based on the single axis rotation equations (2), (3) and (4). The Euler matrices transform vectors from the system that has been rotated into vectors in the stationary system. Also presented here are the equations for the quaternion as a function of the Euler angles and the Euler angles as a function of the matrix elements for each rotation sequence.

A-1

1)
$$M = M(X(\theta_1), Y(\theta_2), Z(\theta_3)) = XYZ$$

••••• ••••

£

Ξ

Axis Rotation Sequence: 1, 2, 3

$$\mathbf{M} = \begin{bmatrix} \cos\theta_2 \cos\theta_3 & -\cos\theta_2 \sin\theta_3 & \sin\theta_2 \\ \sin\theta_1 \sin\theta_2 \cos\theta_3 & -\sin\theta_1 \sin\theta_2 \sin\theta_3 & -\sin\theta_1 \cos\theta_2 \\ +\cos\theta_1 \sin\theta_3 & +\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \sin\theta_2 \cos\theta_3 & \cos\theta_1 \sin\theta_2 \sin\theta_3 & \cos\theta_1 \cos\theta_2 \\ +\sin\theta_1 \sin\theta_3 & +\sin\theta_1 \cos\theta_3 \end{bmatrix}$$

 $q_{1} = -\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3} + \cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3}$ $q_{2} = \sin^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}$ $q_{3} = -\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{2} + \sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{3}$ $q_{4} = \sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}$ $\theta_{1} = \tan^{-1}\left(\frac{-m_{23}}{m_{33}}\right)$ $\theta_{2} = \tan^{-1}\left(\sqrt{\frac{-m_{13}}{1-m_{13}}}\right)$ $\theta_{3} = \tan^{-1}\left(\frac{-m_{12}}{m_{11}}\right)$

A-2

(2)
$$M = M(X(\theta_1), Z(\theta_2), Y(\theta_3)) = XZY$$

1

-

2

٩

Axis Rotation Sequence: 1, 3, 2

$$M = \begin{bmatrix} \cos\theta_2 \cos\theta_3 & -\sin\theta_2 & \cos\theta_2 \sin\theta_3 \\ \cos\theta_1 \sin\theta_2 \cos\theta_3 & \cos\theta_1 \cos\theta_2 & \cos\theta_1 \sin\theta_2 \sin\theta_3 \\ +\sin\theta_1 \sin\theta_3 & -\sin\theta_1 \cos\theta_2 & \sin\theta_1 \sin\theta_2 \sin\theta_3 \\ \sin\theta_1 \sin\theta_2 \cos\theta_3 & \sin\theta_1 \cos\theta_2 & \sin\theta_1 \sin\theta_2 \sin\theta_3 \\ -\cos\theta_1 \sin\theta_3 & -\cos\theta_1 \cos\theta_3 & +\cos\theta_1 \cos\theta_3 \end{bmatrix}$$

1

$$q_{1} = +\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3} + \cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3}$$

$$q_{2} = +\sin^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} - \sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}$$

$$q_{3} = -\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}$$

$$q_{4} = +\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{2} + \sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{3}$$

$$\theta_1 = \tan^{-1}\left(\frac{m_{32}}{m_{22}}\right)$$

$$\theta_2 = \tan^{-1}\left(\sqrt{\frac{-m_{12}}{1-m_{12}^2}}\right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{13}}{m_{11}}\right)$$

À-3

ļ

Axis Rotation Sequence: 1, 2, 1

a. :

;

•

$$M = \begin{bmatrix} \cos\theta_2 & \sin\theta_2 \sin\theta_3 & \sin\theta_2 \cos\theta_3 \\ \sin\theta_1 \sin\theta_2 & \cos\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_3 \\ & -\sin\theta_1 \cos\theta_2 \sin\theta_3 & -\sin\theta_1 \cos\theta_2 \cos\theta_3 \\ -\cos\theta_1 \sin\theta_2 & +\sin\theta_1 \cos\theta_3 & -\sin\theta_1 \sin\theta_3 \\ & +\cos\theta_1 \cos\theta_2 \sin\theta_3 & +\cos\theta_1 \cos\theta_2 \cos\theta_3 \end{bmatrix}$$

1.

$$q_{1} = \cos_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{2} = \cos_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{3} = \sin_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$q_{4} = \sin_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$\theta_{1} = \tan^{-1} \left(\frac{m_{21}}{-m_{31}} \right)$$
$$\theta_{2} = \tan^{-1} \left(\sqrt{\frac{1 - m_{11}^{2}}{m_{11}}} \right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{12}}{m_{13}}\right)$$

A-4

(4)
$$M = M(X(\theta_1), Z(\theta_2), X(\theta_3)) = XZX$$

Axis Rotation Sequence: 1, 3, 1

•

. ---.

1

$$M = \begin{bmatrix} \cos\theta_2 & -\sin\theta_2\cos\theta_3 & \sin\theta_2\sin\theta_3 \\ \cos\theta_1\sin\theta_2 & \cos\theta_1\cos\theta_2\cos\theta_3 & -\cos\theta_1\cos\theta_2\sin\theta_3 \\ & -\sin\theta_1\sin\theta_3 & -\sin\theta_1\cos\theta_3 \\ \sin\theta_1\sin\theta_2 & \sin\theta_1\cos\theta_2\cos\theta_3 & -\sin\theta_1\cos\theta_2\sin\theta_3 \\ & +\cos\theta_1\sin\theta_3 & +\cos\theta_1\cos\theta_3 \end{bmatrix}$$

- 1

$$q_{1} = \cos^{1}_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{2} = \cos^{1}_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{3} = -\sin^{1}_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$q_{4} = \sin^{1}_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$\theta_1 = \tan^{-1}\left(\frac{m_{31}}{m_{21}}\right)$$

...:

•••

••

ł

. ۴ ۴ 🛄 ۱

.

:

.

$$\theta_2 = \tan^{-1}\left(\sqrt{\frac{1 - m_{11}^2}{m_{11}}}\right)$$

$$\theta_3 = \tan^{-1} \left(\frac{m_{13}}{m_{12}} \right)$$

A-5

(5)
$$M = M(Y(\theta_1), X(\theta_2), Z(\theta_3)) = YXZ$$

19 (Aspa) Keen Montrae Second of the Device Active Second S Second Seco Second Seco

Axis Rotation Sequence: 2, 1, 3

$$M = \begin{bmatrix} \sin\theta_1 \sin\theta_2 \sin\theta_3 & \sin\theta_1 \sin\theta_2 \cos\theta_3 & \sin\theta_1 \cos\theta_2 \\ +\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_3 \\ \cos\theta_2 \sin\theta_3 & \cos\theta_2 \cos\theta_3 & -\sin\theta_2 \\ \cos\theta_1 \sin\theta_2 \sin\theta_3 & \cos\theta_1 \sin\theta_2 \cos\theta_3 & \cos\theta_1 \cos\theta_2 \\ -\sin\theta_1 \cos\theta_3 & +\sin\theta_1 \sin\theta_3 \end{bmatrix}$$

$$q_{1} = \sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3} + \cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3}$$

$$q_{2} = \sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{2} + \sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{3}$$

$$q_{3} = \sin^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} - \sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}$$

$$q_{4} = -\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}$$

$$\theta_1 = \tan^{-1} \left(\frac{m_{31}}{m_{33}} \right)$$

 $\theta_2 = \tan^{-1} \left(\sqrt{\frac{-m_{23}}{1 - m_{23}^2}} \right)$

 $\theta_3 = \tan^{-1}\left(\frac{m_{21}}{m_{22}}\right)$

jn,

ł

(6)
$$M = M(Y(\theta_1), Z(\theta_2), X(\theta_3)) = YZX$$

. . .

-

ł.,

1

T

÷,

۰.

.

-

....

• = :

.

•

۰.

-

.7

. .

ţ

8

ή

۶

ļ

Axis Rotation Sequence: 2, 3, 1

$$M = \begin{cases} \cos\theta_1 \cos\theta_2 & -\cos\theta_1 \sin\theta_2 \cos\theta_3 & \cos\theta_1 \sin\theta_2 \sin\theta_3 \\ +\sin\theta_1 \sin\theta_3 & +\sin\theta_1 \cos\theta_3 \\ \cos\theta_2 & \cos\theta_2 \cos\theta_3 & -\cos\theta_2 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_2 & \sin\theta_1 \sin\theta_2 \cos\theta_3 & -\sin\theta_1 \sin\theta_2 \sin\theta_3 \\ +\cos\theta_1 \sin\theta_3 & +\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \sin\theta_3 & -\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \sin\theta_3 & -\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_2 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_2 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_2 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_2 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_2 & -\cos\theta_1 \sin\theta_3 & -\cos\theta_1 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_2 & -\cos\theta_1 \sin\theta_3 & -\cos\theta_1 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_3 & -\cos\theta_1 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_3 & -\cos\theta_1 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_3 & -\cos\theta_1 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_3 \\ -\sin\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_3 \\ -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \\ -\cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_1 \cos\theta_$$

!

:

$$q_{1} = -\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3} + \cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3}$$

$$q_{2} = +\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}$$

$$q_{3} = +\sin^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}$$

$$q_{4} = -\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{2} + \sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{3}$$

$$\theta_1 = \tan^{-1} \left(\frac{-m_{31}}{m_{11}} \right)$$

$$\theta_2 = \tan^{-1}\left(\frac{m_{21}}{\sqrt{1-m_{21}^2}}\right)$$

$$\theta_3 = \tan^{-1} \left(\frac{-m_{23}}{m_{22}} \right)$$

ţ

A-7

, m

1

ļ

(7)
$$M = M(Y(\theta_1), X(\theta_2), Y(\theta_3)) = YXY$$

Axis Rotation Sequence: 2, 1, 2

.

$$M = \begin{bmatrix} -\sin\theta_1 \cos\theta_2 \sin\theta_3 & \sin\theta_1 \sin\theta_2 & \sin\theta_1 \cos\theta_2 \cos\theta_3 \\ +\cos\theta_1 \cos\theta_3 & +\cos\theta_1 \sin\theta_3 \\ \sin\theta_2 \sin\theta_3 & \cos\theta_2 & -\sin\theta_2 \cos\theta_3 \\ -\cos\theta_1 \cos\theta_2 \sin\theta_3 & \cos\theta_1 \sin\theta_2 & \cos\theta_1 \cos\theta_2 \cos\theta_3 \\ -\sin\theta_1 \cos\theta_3 & -\sin\theta_1 \sin\theta_3 \end{bmatrix}$$

•

$$q_{1} = +\cos_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{2} = +\sin_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$q_{3} = +\cos_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{4} = -\sin_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$\theta_{1} = \tan^{-1} \left(\frac{m_{12}}{m_{32}} \right)$$
$$\theta_{2} = \tan^{-1} \left(\frac{\sqrt{1 - m_{22}^{2}}}{m_{22}} \right)$$
$$\theta_{3} = \tan^{-1} \left(\frac{m_{21}^{2}}{m_{23}^{2}} \right)$$

A-8

(8)
$$M = M(Y(\theta_1), Z(\theta_2), Y(\theta_3)) = YZY$$

.....

.

i,

i

;

....

1

à

۲

Ξ

-

2

1

•

Axis Rotation Sequence: 2, 3, 2

$$M = \begin{bmatrix} \cos\theta_{1}\cos\theta_{2}\cos\theta_{3} & -\cos\theta_{1}\sin\theta_{2} & \cos\theta_{1}\cos\theta_{2}\sin\theta_{3} \\ -\sin\theta_{1}\sin\theta_{3} & +\sin\theta_{1}\cos\theta_{3} \\ \sin\theta_{2}\cos\theta_{3} & \cos\theta_{2} & \sin\theta_{2}\sin\theta_{3} \\ -\sin\theta_{1}\cos\theta_{2}\cos\theta_{3} & \sin\theta_{1}\sin\theta_{2} & -\sin\theta_{1}\cos\theta_{2}\sin\theta_{3} \\ -\cos\theta_{1}\sin\theta_{3} & +\cos\theta_{1}\cos\theta_{3} \\ \end{bmatrix}$$

1

م تو کر اراف افع از افراد . .

ì

:

.....

$$q_{1} = +\cos^{1}_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{2} = +\sin^{1}_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$q_{3} = +\cos^{1}_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{4} = +\sin^{1}_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$\theta_{1} = \tan^{-1} \left(\frac{m_{32}}{-m_{12}} \right)$$

$$\theta_2 = \tan^{-1}\left(\frac{\sqrt{1-m_{22}^2}}{m_{22}}\right)$$

$$\theta_3 = \tan^{-1} \left(\frac{m_{23}}{m_{21}} \right)$$

ł

A-9

1

ŀ

Ì

(9)
$$M = M(Z(\theta_1), X(\theta_2), Y(\theta_3)) = ZXY$$

Axis Rotation Sequence: 3, 1, 2

$$M = \begin{bmatrix} -\sin\theta_1 \sin\theta_2 \sin\theta_3 & -\sin\theta_1 \cos\theta_2 & \sin\theta_1 \sin\theta_2 \cos\theta_3 \\ +\cos\theta_1 \cos\theta_3 & +\cos\theta_1 \sin\theta_2 \\ \cos\theta_1 \sin\theta_2 \sin\theta_3 & \cos\theta_1 \cos\theta_2 & -\cos\theta_1 \sin\theta_2 \cos\theta_3 \\ +\sin\theta_1 \cos\theta_3 & +\sin\theta_1 \sin\theta_3 \\ -\cos\theta_2 \sin\theta_3 & \sin\theta_2 & \cos\theta_2 \cos\theta_3 \end{bmatrix}$$

-

1

$$q_{1} = -\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3} + \cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3}$$

$$q_{2} = -\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{2} + \sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{3}$$

$$q_{3} = +\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}$$

$$q_{4} = +\sin^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}$$

$$\theta_{1} = \tan^{-1} \left(\frac{-m_{12}}{m_{22}} \right)$$
$$\theta_{2} = \tan^{-1} \left(\sqrt{\frac{m_{32}}{1 - m_{32}^{2}}} \right)$$
$$\theta_{3} = \tan^{-1} \left(\frac{-m_{31}}{m_{33}} \right)$$

Ë

A-10

(10) M = M(Z(
$$\theta_1$$
), Y(θ_2), X(θ_3)) = ZYX

-

Ξ

.

-

-

 $\{ i \}$

11

ł

ľ

Axis Rotation Sequence: 3, 2, 1

•

$$M = \begin{bmatrix} \cos\theta_1 \cos\theta_2 & \cos\theta_1 \sin\theta_2 \sin\theta_3 & \cos\theta_1 \sin\theta_2 \cos\theta_3 \\ -\sin\theta_1 \cos\theta_3 & +\sin\theta_1 \sin\theta_3 \\ \sin\theta_1 \cos\theta_2 & \sin\theta_1 \sin\theta_2 \sin\theta_3 & \sin\theta_1 \sin\theta_2 \cos\theta_3 \\ +\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \sin\theta_3 \\ -\sin\theta_2 & \cos\theta_2 \sin\theta_3 & \cos\theta_2 \cos\theta_3 \end{bmatrix}$$

$$q_{1} = +\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3} + \cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3}$$

$$q_{2} = -\sin^{1}_{2}\theta_{1}\sin^{1}_{5}\theta_{2}\cos^{1}_{2}\theta_{3} + \sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}$$

$$q_{3} = +\sin^{1}_{2}\theta_{1}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{2} + \sin^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{3}$$

$$q_{4} = +\sin^{1}_{2}\theta_{1}\cos^{1}_{2}\theta_{2}\cos^{1}_{2}\theta_{3} - \sin^{1}_{2}\theta_{2}\sin^{1}_{2}\theta_{3}\cos^{1}_{2}\theta_{1}$$

$$\theta_{1} = \tan^{-1}\left(\frac{m_{21}}{m_{11}}\right)$$

$$\theta_2 = \tan^{-1} \left(\frac{-m_{31}}{\sqrt{1-m_{31}^2}} \right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{32}}{m_{33}}\right)$$

A-11

(11)
$$M = M(Z(\theta_1), X(\theta_2), Z(\theta_3)) = ZXZ$$

.

Axis Rotation Sequence: 3, 1, 3

:

$$M = \begin{bmatrix} -\sin\theta_1 \cos\theta_2 \sin\theta_3 & -\sin\theta_1 \cos\theta_2 \cos\theta_3 & \sin\theta_1 \sin\theta_2 \\ +\cos\theta_1 \cos\theta_3 & -\cos\theta_1 \cos\theta_3 \\ \cos\theta_1 \cos\theta_2 \sin\theta_3 & \cos\theta_1 \cos\theta_2 \cos\theta_3 & -\cos\theta_1 \sin\theta_2 \\ +\sin\theta_1 \cos\theta_3 & -\sin\theta_1 \sin\theta_3 \\ \sin\theta_2 \sin\theta_3 & \sin\theta_2 \cos\theta_3 & \cos\theta_2 \end{bmatrix}$$

t

Ą

ŗ

$$q_{1} = +\cos^{1}_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{2} = +\sin^{1}_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$q_{3} = +\sin^{1}_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$q_{4} = +\cos^{1}_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

. .

·--

. ..

.

÷

$$\theta_{1} = \tan^{-1} \left(\frac{m_{13}}{-m_{23}} \right)$$
$$\theta_{2} = \tan^{-1} \left(\frac{\sqrt{1 - m_{33}^{2}}}{m_{33}} \right)$$

$$\theta_3 = \tan^{-1}\left(\frac{m_{31}}{m_{32}}\right)$$

ţ

A-12

ţ

l f

(12)
$$M = M(Z(\theta_1), Y(\theta_2), Z(\theta_3)) = ZYZ$$

Axis Rotation Sequence: 3, 2, 3

$$M = \begin{bmatrix} \cos\theta_1 \cos\theta_2 \cos\theta_3 & -\cos\theta_1 \cos\theta_2 \sin\theta_3 & \cos\theta_1 \sin\theta_2 \\ -\sin\theta_1 \sin\theta_3 & -\sin\theta_1 \cos\theta_3 \\ \sin\theta_1 \cos\theta_2 \cos\theta_3 & -\sin\theta_1 \cos\theta_2 \sin\theta_3 & \sin\theta_1 \sin\theta_2 \\ +\cos\theta_1 \sin\theta_3 & +\cos\theta_1 \cos\theta_3 \\ -\sin\theta_2 \cos\theta_3 & \sin\theta_2 \sin\theta_3 & \cos\theta_2 \end{bmatrix}$$

$$q_{1} = +\cos_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$q_{2} = -\sin_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$q_{3} = +\sin_{2}\theta_{2}\cos(\frac{1}{2}(\theta_{1} - \theta_{3}))$$

$$q_{4} = +\cos_{2}\theta_{2}\sin(\frac{1}{2}(\theta_{1} + \theta_{3}))$$

$$\theta_{1} = \tan^{-1} \left(\frac{m_{23}}{m_{13}} \right)$$
$$\theta_{2} = \tan^{-1} \left(\sqrt{\frac{1 - m_{33}^{2}}{m_{33}}} \right)$$
$$\theta_{3} = \tan^{-1} \left(\frac{m_{32}}{m_{31}} \right)$$

A-13

APPENDIX B

COMPUTER SUBROUTINES FOR THE RELATIONSHIPS

The following subroutines with a brief description of their use are presented in this appendix.

- "EULMAT" Generates the transformation matrix from a given set of Euler_angles_and an axis rotation sequence.
- (2) "MATEUL" Extracts the Euler angles from the given transformation matrix and an axis rotation sequence.
- (3) "QMAT" Generates the transformation matrix from a given quaternion.
- (4) "MATQ" Extracts the quaternion from a given transformation matrix.
- (5) "YPRQ" Generates the quaternion directly from the yaw-pitchroll Euler angles.
- (6) "POSNOR" Computes the positive-normalized quaternion from the given quaternion.

NAME:	EULMAT
PURPOSE:	Generates a 3 x 3 transformation matrix from a
	given sequence and Euler angle set.
INPUT:	ISEQ - Rotation_Sequence (Integer Array (3); i.e.,
	1, 2, 3)
	EUL - Euler Angles in radians, in "ISEQ"
	Order; ARRAY_(3)
<u>OUTPUT</u> :	A - The 3 x 3 transformation matrix
ALGORITHM REFERENCE:	Appendix A; Euler Sequences (1) thru (12).

•

.

• -

B-2

ŕ

ł

EULER ANGLES TO THE TRANSFORMATION MATRIX

AFOR, IS EULMAT. EULMAT FOR: 5383-02/19/77-06:29:23 (.0).

Ţ

••

and the second second

المعاوفة أنقف ومغافر فلإمارك للمعاول والمحاصل للمرود

.

ENTRY POINT COL237 SUBROUTINE EULMAT

STORAGE USED: CODELLI GJEZBJ: DATA (D). 073134; BLANK COMMONI2)

EXTERNAL REFERENCES LALOCK, NAMES

31143 31164 31105	NF5K32	- •	 	
_ کن: ۲	5 I N			

TYPE, PELATIVE LOCATION, NAME AST OCK

STORAGE	V2210-WENT (PEACU) (ACC)
3001 - 701 - 701 - 701 - 701 - 700 - 8	0201200 1001 10110 1000 100110 020142 1620 1001 000144 1600 100110 020177 30L 1000 0001350 1000 100044 020177 1000 100010 100000 100004 020177 1000 100000 100004 10004 0201757 1000 100000 100000 100000 02000 00000 000000 000000 000000
10101 10103 10103 10105 10119 00113	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
00116 00117 00121 10123	IFTI-EC-JYXTT, J-KI=1 0, 5 CONTINUE 1, CONTINUE 1, CONTINUE
10125 10127 20130	12+ SINA-SIN(FULIK)) 12+ COSA=GOS(FULIK)) 13+ COSA=GOS(FULIK) FD-22 BC TO 21
17131 10133 10135	164 164 164 164 164 164 164 164
0137 10140 10141	-194 K13129H3= SINA 194 K13129H3=CQSA 208 50 TO 100
70142 30143 30144 30144	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	SO TO 132 S6# X41, J, K)=COSA S6# X41, J, K)=COSA S7# X41, J, K)=COSA S7# X41, J, K)=COSA S7# X41, J, K)=COSA
10151 J0152	

-

÷ -

<u>.</u>

utrianget of

्र झ 11

i jest_i,

÷...

i to but i i

÷ -

> Ţ -2 ÷

-

<u>ند</u>:

12

NAME:	MATEUL
PURPOSE:	Extracts the Euler angles from the given trans-
	formation matrix and the required Euler
	rotational sequence.
INPUT:	ISEQ - Rotation sequence, (Integer Array (3),
	i.e., 1,2,3.)
	A - The 3 x 3 transformation
OUTPUT:	EUL - The Euler angles, in "ISEQ" order; ARRAY(3).
ALGORITHM REFERENCE:	Appendix A; Euler angles as a function of the
matrix elements, sequen	ces (1) thru (12).

F . .

-

-

l

Ņ

.

1

TRANSFORMATION MATRIX TO THE EULER ANGLES

.

4

-

٩

 \mathbf{x} :

2. .

T. FOR 15 FOR SILI-D	MATEUL, MATEUL 2/19/77-06:24:25 (+0)	ORIGINAE PAGE IS OF POOR QUALITY
SUPROUT	INE MATEUL	2335
STORAGÉ	USED: CODE(11 DUC353; DATA)	IT) 200052; BLANK COMMON(2)
EXTERNA	L REFERENCES INLOCK. NAMES	· · · · · · · · · · · · · · · · · · ·
103 1504 3005	SURT ATAN2 NERRISS	•
STARAGE	ASSIGNMENT RELOCK. TYPE,	RELATIVE LOCATION, NAMED
	100054 101 101 01 100114 301 101 01 100151 301 101 01 100151 501 101 01 100151 501 100 01 100151 501 100 01 100151 501 100 100 100151 500 100 100	1966 1910 0001 1977 1920 4 4 4 0001 0001 19257 6 4 1 0001 00017 19257 6 4 1 0001 00017 19257 6 4 1 0001 00017 1927 000 1 00001 0000 2012 00 1 00001 0000
	1*SUE NOUTINE MA DIMENSION AG33*DIMENSION AG33*DIMENSION ISE4*IFISEQ6135*JFISEQ6137*TECK=15*IFGISEQ6237*TECK=15*IFGISEQ6236*IFGISEQ6237*IFGISEQ6237*IFGISEQ6237*IFGISEQ6231*IFGISEQ6231*IFGISEQ6231*IFGISEC613<	TEUL (156

វ្រី	TRANSFORMATION	MATRIX TO THE EULER ANGLES
• • • •		(CONTINUED)
10150 20152 20154 20154 20155 20161	29# 30# 31# 32# 33# 54#	IF(1EOK.NE.C) L=1 GO TO 30 25. CSIGN=-1.C IF(1EOK.NE.D) L=3 30 1.0 N=1.3 FNSGN=1.0
30162 30163 30165 20167 30171 30172	35+ 36+ 37+ 38+ 39+ 40+	FUSEN-1.J IF(N.EQ.17 GO TO 70 IF(N.EQ.17 GO TO 50 IF(IEQK.NE.01 GO TO 40 FNSGN=BSIGN JJ=1 GO TO 45
L0175 L0174 L0175 20175 20177 20177	417 429 4429 4474 4544 4544	40 JJEL TF(ESIGN.GT.J.C) FDSGNE-1.0 45 FNUHEFNSGNAATIJJ FDENEFDSGNAATIJJ GO TO 90 0 TO 90
0202 0204 00205 00205 00205 00205 00207	477 487 497 497 50 7 51 7	SC IF(IEQK.NE.U) GO TU SS FNSGN=BSIGN II=K JJ=K GO TU GC
0210 00211 00212 00213 00213	52* 53* 54* 55* 56*	55 FUSCULDIDA II=L JJ=I 60 FNUM=FNSGN#ACJ+KI FDEN=FDSGN#ACJ+JJ 60 TL 97
30215 30216 30220 30221 30221 50222	59× 59× 60× 61×	7: IF(IEQK.NE.3) GO TO 85 FNUH=CSIG.N#A(I.K) FDEN=SQPT(1.0-A(I.K)***) GO TO 90 ENUM=SQPT(1.0-A(I.I)**2)
10223 50224 50225 50225 50225 50225 502231	©∠¤ 63* 64* 65* 67*	FDEN=AII, IS 90 EUL(N)=ATAN2(FNUK,FDENT 100 CONTINUE RETURN 5NO

.....

END OF COMPTLATION:

ł

(

...

ŧ

N: NO DI

O DIAGNOSTICS.

7

.

ORIGINAL PAGE IS OF POOR QUALITY

NAME:	QMAT
PURPOSE:	Generates the transformation matrix from the given
	quaternion.
INPUT:	Q - The quaternion; ARRAY(4).
<u>OUTPUT</u> :	A - The 3 x 3 transformation matrix
ALGORITHM REFERENCE:	Equation (15) from Section 2.2.

•

h

!

-

-

•

1

•

1 ________

OUATERNION	TO.	THE	TRA	NSF	orma	TION	MATRIX
1 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						-	

ORIGINAL PAGE IS OF POOR QUALITY

3FOR IS OMA T. GNA T. G

ENTRY POINT 000077 SUPROUTINE QMAT

STORAGE USED: CODE(112___________ DATA (U) "GUULU: PLANK COMMON(2) (

EXTERNAL REFERENCES COLOCK . NAMEL

NERK35 . 5 . 3

. ظ

-Ē STORAGE ASSIGNMENT (BLOCK, TYPE, BELATIVE LOCATION, NAME)

1000 §	10000 7 100014	INJP4 P5	0010 0010	P R	50136- 50136- 653065	Р2 Темр	0005 P	255831
--------	--------------------------	-------------	--------------	--------	----------------------------	------------	--------	--------

.0101	1* 2*	GUBRGUTTNE CMATEGARD Simension 0447-A13-51
20104	44 24	P2=Q(2)+Q(2) P3=Q(3)+Q(3)
0106	5 8 6#	04=643+643+ 65=02+64543
	7 * 8¥	P6=F4+014 / T5 MP=1.9-P3+0(3)
50112 50117	94 104	111,117-16 HP - PO 12,21=1, P5 - P6 117 - 31 16 HP - P5
00114 112	118 174	P5=P2*0(3)
	144	A (1 , 2) = P5 - P6 A (2 , 1) = P5 + P6
) <i>1.4</i>) <i>1.4</i>	PE=P2#Q(4) PA=C3+Q(1)
00123	18#	A(1,3)=P5+P6 A(3,1)=P5-P6
	214	P5=P3*U(4) P5=P2*U(1)
	2 2 * 27*	A (2, 5) = PS = PS A (2, 5) = PS + PS
$-\frac{10131}{10132}$	244 25*	FND

END OF CUMPILATION: NO DIAGNOSTICS.

NAME:	MATQ
PURPOSE:	Extracts the positive quaternion from the given
	transformation matrix.
INPUT:	A - The 3 x 3 transformation matrix
OUTPUT:	Q - The positive quaternion;ARRAY(4).
ALGORITHM REFERENCE:	See Reference 2.

F

•

:

• -

٩.

- -

i

ŀ

-	UBFQUT1	NE MATO	CNTRY POINT DOCCUS
•	STÖRÅGE	USED: CODE	(1) DOOL 20; DATATON CONDED; BEANK COMMON(2)
	EXTERNAL	REFERENCE	S (HLOCK, NAME)
		SURT Nervet	
	CTOPACE	ASSIGNMENT	INLOCH, TYPE, PELATINE LOCATION, NAMES
	3501 3601 3701	000073 100 001111 350 00015 IN	Lent 302352 1976
		1.1	SUBPOUTINE MATE (ARG)
-01 -01 -01	103 104	2 4 4	JINENSION A43+37+444444444444444444444444444444444
מי הני	105 195	47 57 57	10 4 U J= + 4 1 (J) = + 1 1 (J) = + 1 1 (J) = + 1
_0 _0	112 114	7. * ₽.*	IF(J.EQ.3) 60 10 20 IF(J.EC.4) 60 TO 30
ניני סג חי	116 122 171	1 <u>0</u> ¥ 11¥	
្តិភ្ល	123	174 134 148	10 TO 35 10 TEMP=4(1,1)-A(2,4)-A(3,3)+1+1
ີ 10 ວິດີ ວິດີ	125	16 4 16 4	TEUDEAL3, 28-AL2, 38 30 TU 35 50 TU 35 50 TU 35 50 TU 35
	127	17# 19# 19#	$\frac{T(J) = A(1, 3) - A(3, 1)}{50 - 10 - 51}$
پاپ مي رو	132	214	T(J)=A(1,1)=A(1,2) T(J)=A(2,1)=A(1,2) T(J)=A(1,2),1)=A(1,2)
20	134	27¥ 27¥	
	14:	25* 25*	$4 = CONTINUE 1F(1) = E(0) = 0 = TO = 6^{\circ} 1F(1) = E(0) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$
-	5144 5145 5347	レイボ ビマチ シウチ	IF(1, NE.1) Q(1)=APS(C+25#((1)/0(1)) TEMP=C-25/Q(1)
بر م ۲		75¢ 31¥	DI JITENPATIJI DI JITENPATIJI F. CONTINUC
, , ,	0154 2155 2155	」 (1) - 本 (1) - 本	5 J RETURN END
د ج الله الله الله الله الله	0140 0147 0153 0154	204 214 314 374	TEMPEL.25/0(1) UD 5. UE2.4 DIUSETEMPATIUS F. CONTINUE S. RETURN
•	1251	- ντο οι τΩμΡ1	HATION: NU DIPENUSTICS.

ļ

5

K 🖄

÷

NAME:	YPRQ
PURPOSE:	Generates the quaternion directly from the yaw-
	pitch-roll Euler angles, i.e., a 3, 2, 1 Euler
	sequence.
INPUT:	YPR - The yaw-pitch-roll Euler angles; ARRAY (3).
<u>OUTPUT</u> :	QO - The positive quaternion, ARRAY (4).
ALGORITHM REFERENCE:	Appendix A, the quaternion equations for Euler
sequence (10) , a 3, 2,	

NOTE: This subroutine calls "POSNOR" to take the normal of the positive quaternion.

÷

5

÷

Ynd-PITCH-ROLL EULER ANGLES TO THE QUATERNION

ORIGINAL PAGE IS OF POOR QUALITY

1

ε. 12

....

•---

. . . .

. . .

:

٦

and the strength of the

_____ _____

والمعالية المراجع

7

..... ••

-

2

1.144.64

. •

÷

ENTRY POINT DIC114 SUBROUTINE YPRO

STORAGE USED: CODE(1) DODID1: DATA (D) DODC24: BLANK COMMON(2) CU

EXTERNAL REFERENCES (BLOCK, NAME)

3343	PUSNOR	
3004	7 05	
<u> 2225</u>	SIN	
3036	NERR35	

STORAGE ASSIGNMENT UBLOCK, TYPE, PELATIVE LOCATION, WAME)

	P 6201 R	007011 CR	10 <u>0</u> 0 P	00 007 (
	Y 6207	007016 INUPS	1100 R	00000 k
°даба́к сербте г	τ			

END OF COMPTLATION:

DIAGNOSTICS. NO

NAME:	POSNOR
PURPOSE :	To output the positive and normalized quaternion
	from the given quaternion.
INPUT:	Q - The quaternion; ARRAY (4).
OUTPUT:	QO - The positive-normalized quaternion;
	ARRAY (4).

ALGORITHM REFERENCE:

the state of

. . 1.

...

1. If the sign of Q(1) is negative: Set QO(I) = -Q(I) for I = 1, 2, 3, 4.

2. Set QO(I) = QO(I)/TEMP
where TEMP =
$$\sqrt{QO_1^2 + QO_2^2 + QO_3^2 + QO_4^2}$$

.

-

· . :