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.,,ii: Abstract
r_ _

_' To assess the role of spacecraft charging near Jupiter, the plasma distrtbu-
• tion in JupttertS magnetosphere has been modeled using da_a from the plasma

i ,:" analyzer experiments on Pioneer I0 (published results) and on Pioneer II (pre-
"_" liminary results). In the model, electron temperatures are kT -- 4 eV throughout,

i i whereas proton temperatures range over 100 -_ kT __400 eV. The model fluxes
i ,;*_ and concentrations vary over three orders oE magnitude among several co-rotating

°i regions, including, in order of increasing distance from Jupiter, a plasma void,
i plasma sphere, sporadic zone, ring current, current sl, eet, high latitude plasma
!:_i and magnetosheat h. Intermediate and high energ_ ele_t,,ons and, protons (to 100

MeV) are modeled as well. The models supply the information for calculating par-
._!_ ticle fluxes to a Spacecratt in the Jovian environment. The particle balance equa-

tions (including effects of secondary and photoemis_ion) then determine the space=_ craft potential. Negative potentials the order of 10 volts are calculated in the
*_',: near region (magnetic shell paran_eter __6.5 Jovian radii). In the outer region,

. '_ severe differential charging (.,, 10 _ volts) can occur for shadowed, electrically
i isolated portions of the spttcecraft.

o 1

/,

:!',; This papo,r presents the results of one phase of research carried Out at the Jet
Propulsion Laboratory, California Instl_e of Technology, under Contract No.

o _! NA Sff-t00, sponsored by the National ,Aeronautics and Space _dmtnistration.
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Several facts suggest that spacecraft operating in Jupiter% magnetosphere

can charge to significant potentials. These include the existence of a highly struc-

tured magnetosphere, with novel features compared to the _,rthls, and known to

contain both stable and dynamic populations of thermal and energetic (MeV) elec-

trons and ions. Experience wl:h spacecraft in earth environment, especially at

: synchronous altitudes, shows that spacecraft charging occurs in such environ-

meats, and some anomalies in the operation of the Pioneer l0 and 11 spacecraft

heal _ Jupiter have been attributed to such charging. The survival and satisfactory

operation o£ a spacecr_fft orbiting in the Jovian environment is thus of concerti,

bec_tuse of the long period of time spend in the severe environment. To assess

this problem, environmentM models developed from Pioneer data are described

below attd are applied to preliminary computations of likely spacecraft equilibrium

potentials in several magnetospher_ regions, in both sunlight and shadow.

2, Pi,,_S_iA_iOI)ELI)EVELOP_IE_T

The major features of Jupiterls thermal plasma distributions are derived

from Frank et al, 1 who present a thorough discussion of the proton component

data from the plasma analyzer experiment on Piotteer 10. These data range over

• • values of L (magnetic shell parameter, in Jovian radii Rj) between 2.85 and 25
(within the centrifugally dominated region) and are summarized in their Figure 8.1

Comparable results from Pioneer 11 are not yet c0mplete but the major additional

= results are: a plasma viod for L __ 1.8 to 2.0 (within the gravitationally domd_ated

region), and plasma properties nearly independent of latitude for L <__12. For high

latitudes at L > 12, the density is assumed about an order of magnitude smaller
than in the current sheet.

For the electron component more limited results, from Pioneer 10, are dis-

cussed by Intriligator and Wolfe, 2 the main conclusion bein_ an electron peak in

energy near 4 ev throughout the magnetosphere. Assuming charge neutrality (that

is, electron concentrations equal to proton ones) an electron model can b inferred

: from the above proton distribution.

Ancillary information has been used in the models as follows, in order of

" _ increasing distance from Jupiter. Fjeldbo et al, 3 who reports results of Pioneer
i 10 radio occultatlons, provide information which has been used for a very crude

specification of the ionosphere; for details of this multilayered environment in

Jupiter*s upper atmosphere the original reference should be consnlted. Near the

Galllean satellite Io, the configuration of the atomic hydrogen tbrus suggests a
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-_i local proton concentration which ionizes H by charge exchange 4' 5, 6 and the atomic7
sodium distribution suggests the Importance of ionization by local electrons.

=:_ These results have been used to confirm or modify the de_crlptlon of the plasma- '

x sphere. Magnetic field data from Pioneer 10 confirm the reality of the rlng cur-

: rent (the source of external field terms for magnetic field modeling, 8 and theJ
: 9

=._ proton concentration in the current sheet. Elsewhere various indirect Observa-

tions and theoretical considerations are generally consistent wtth the foregoing
interferences; they include discussions of Faraday rotation for HF burst_0

; waveparticle interactions (difh_sion, whistlers, etc. ), 11, 12, 13, 14 and numerous,
,. p_'imarily qUalitatiVe, analyses. 15, 16, 17, 18.19, 20 A description of the magneto-

sheath plasma is taken fror,_ nns_derat_ons of Figure 5 of Wolfe et al. 21

: The pre_entpreliminaryplasz,_model shouldbe improved to includeaspects

_" of the extended distribution of neutral sodium atoms 7 which is possibly in equtlib-_.-
rium with a sodium ion population. In addition, there are observations of neutral

';i hydrogen,6 suggestingprotons,and of aftionizedsulfurnebula.22 Other consid-
" erations for modification of the model include the character of the 4 eV electron

"" peak seen at large L. This is_o: clearlythermal inoriginand couldhave been

-::_. the resultof differeritialchargin_ton PiorleerI0.23 '/tietow energy datafrom the

;' San Diego scintillatorson Pioneer II_4 shouldalsobe inch:,led.

!' 3. PL_S_|_IIODELSPECIFICAi"iO_
o

._, The plasma distributionderived from theabove considerationsisspecifiedin
,

:2 Table I, and theseveral regionsand their boundariesare illustratedin Figure I.

• ,.. Values and uncertair-tiesforboundaries and concentrations(equalfor electrons

_ and protons)have been estimated. The thermal energy valuesare quotedwithout
C
_, uncertainty because the uncertainties in the distributions which result from the

,: concentrationcolumn are already large, Inthe co-rotatlngframe [see note (21,
°, Table 11, the thermal distributions are isotropic and may be derived from the

_' entriesinTable Iusing the followingformulae:

_" Jo = 2N (1)"' O

= (I. 56 X 106 cm "2 s =11 No(kT) I/2 for protons
OF

Y = (6.69 × 107 cm "2 s "l) No(kT) 1/2 for electrons .

,i
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Figure 1. Schematic of Plasma Regions at Jupiter for One Quadrant of a Magnetic
Meridional Plane. Drawing is not to scale, although three distances (in Rj) from
Jupiter are indicated along the magnetic equator

integral flux
(energy > E) J = Jo (1 + E/kT) exp (-E/kT) + J2 + J2 (E2 " E) . (2)

dtfferenttal JoE(kT)-2flux J = exp (-E/kT) + J2 ' (3)

In these expressions, values of No, Jo' and kT are to be taken from Table 1;

in that table, Z represents the vertical distance from the magnetic equatorial

plane, and the notes are important. Equations (1) through (3) apply for all thermal

and intermediate energies 0 __ E -_ E 2 and specify fluxes J and j which are conth:-

uous with those it: the radiation belt models (see below) when J2 and J2 are evaluated

at energy E2, where E 2 = 40, 000 eV for electrons and E 2 = 610, 000 eV for protons.
Care should be takt,n that energy unit conversions (between MeV and eV) are

included when J and j are evaluated in cm "2 s °1 and cm "2 s °! eV "! respectively.

For completeness, in Table 1 reference is made to NASA SP-8! 1825 £or a

description of parameters in the solar wind.
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For energies exceedingE2 (seeabove),thereexistsa largebody ofdata from
' fourenergeticcharged partlcl_,experiments on each of the Pioneer I0 and 11 _pae_o

craft. Because the literaturesources and the model specificationforthisenviron-

ment are so detailed they will not be described here. The former are exemplified

by severalarticlesinJournal of Geo_hh,_siealResearch_ Vol. 79, NO. 25 (1974,

Sept. I)and in Sclence,Vol. 188, No. 4187 (1975,May 2). The model has been

developed for the Jupiter-Orbiter-Probe Study, and has been published for limited

distribution,26 As an example, innermagnetosphere electronfluxprofilesare j
shown inFigure 2. The complete radiationbeltmodel includesbothintegraland

differentialfluxesas functionsofpositiOnL and X (magneticlatitude)and particle

energy, forbothelectronsand protons.

0o16MeV

0 I 2 3 4 5 6 7 8 9 10 !1 12 13 14 15 16

MAGNETICSHELLPAJ_METER(t), Rj

FiL_ure2. Distance VariationofEquatorlalFlux of ElectronSliavlng
Energy Greater thantheIndicatedThreshold Vaiues
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The net current to the spacecraft Ine t is given by

Ine t = Ip - Ie + i s + IpE , (4)

where Ip is the total protoxt currertt ifltercepted by the spacecraR, Ie is the incident
electron current, Is is the total secondary electt'on emission from the spacecraft

_0

(including backscattered electrons), and IpE is the photoelectron emission current

from the spacecraft. Each term is a tuflction of the spacecraft poterRial Vs/c
because of the energy dependence ot each term. At steady state the net current

must be zero, establishing the condition for determining Vs/c. I_ Equation (4) is
divided by the appropriate area, this condition can be expressed in terms of par-

ticle fluxes. It is assumed that essentially all of the Spacecraft is covered with

electrically conductive material, and that on the average, only 25 percent of the

surface is exposed to sunlight. Then the condition for zero net current becomes

Jp(Vs/c) - Je(Vs/c) + Js(Vs/c) + JpE(Vs/c) = 0 (5)

The J's representthe particlefluxesof thecorrespondingterms ofEq. (4);and

thedependence on Vs/c isexplicitlyshown for emphasis. To normalize the photo-

electricterm properly,a factor0.25 i_implicitlyincludedinJPE"

Equation (5)was Used tocalculateVs/c atvariouslocationsinthe Jovian

magnetosphere using valuesofJp and Je providedby the model describedinthe
previoussections. The resultsof Sternglassforaluminum, as reported by

Whlpple,27 were used tocalculateJ_. Whipple'svalueof photoelectronyieldfor

aluminum at 1AU (3 × 10-9 A cm'2;reduced for 5.2 AU, was used todetermine

JPE" Although most spacecraR are not likelytobe covered withaluminum, the

yieldswere taken tobe typicalo£conductivematerials.

The calculationswere performed by assuming a Vs/c and theniteratinguntil
a s_If-consistentvaluecould be obtained. Usuallya rapidconvergenceof the cal-

culationwas obtainedwith very few iterations.This islargelydue to thedepend-

ence of thesecondary emlsslotlyieldon incidentprotonenergy. Below about 103

eV theyieldismuch lessthanuhity,but above 103 eV the yieldrlses very rapidly

with energy exceeding unity at about 2 × 103 eV. This rapid int.rease in yield _-tth

energy produces a high sensitivity of the calculation tb Vs/c since all low energy
protons are accelerated by a negative spacecraR potential. The high secondary

yield thus tends to limit negative spacecraft potentials to a few keV in re_,ions of

. the magnetosphere where photoemission is unimportant.i

i
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The contribution of each term of Eq. (51 at the steady state spacecraft poten-

tial £or several locations in the Jovian equatorial plane is shown tn Figure 3. The

calculated spacecraft potentials az'e also given, The lower part shows the incident

electron current density. In the upper part of the figure, the proton as well as

secondary and phot0emission contributions are shown. Note that for L _<(;. 5 Hj
photoemtssion is riot every i_pot'tant. For higher L0 however, photoemission

begins to dominate and the spacecraft charges to a slight positive potential, In

those cases the a_tual secondary and photoemission contributions depend on details

of their enerffy distributions, and for simplicity ,:.'ere riot calcOlated in detail.

Their sum is thus shown in FiguPe 3 tot L >_9.5 Rj.

The incident electron current density Col-responding to the Vs/c calculated at
steady state is indicated by the light horizorttal line shown in the electron contribu-

tion_ separating two differently shaded regions. The full column represents the

total Je(0) that would occur if the poteritial were zero. and hence the doubly cross-
hatched region corresponds to that portion of the electron spectrum repelled by

the spaCecz'aft to produce the current balafice.

lo"lo;;i.i.;.;,

10"11_.//

V¢., • "lOOeV

_0 °"10"12....

H
10"9

FigUre 3. Distribution of Particle Fluxes tO and From Spacecraft in
Jovian EqUatorial Plane

)
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The heavy horizontal line appearing in each column shows the relattve con-

tribution to the total incident flux due to lc_w energy plasma particles and high

energy particles, in each case the plasma contribution is the portion closest to the

center of the figure.

Calculations were al_G carried out neglecting the photoemissiott term, that is,

for a spacecraR in eclipse. In the inner region, where photcemtssion iS unimpor-

tant (cf. Figure 3), potentials for the dark case are not Very different from the

sunlit case. However, in the outer regions where photoemission is importa_tt,

_elatively high potentials are calculated tot a spacecraft in darkness. The poten-

tiais for both the sunlit as well as eclipse cages are sun_arized in Table 2. Also

shown there are the potentials calcttlated for one point in the high latitude region

(L -- 16.0 Rj, _. = 450). Inthe outer regions total eclipse of the spacecraft is
unlikely, but the eclipse potentials indicate the level to which electrically isolated

: portions in darkness ar'e likely to charge.

Some calCulation_ were also performed to determine the sensitivity ot the

:, results to the fraction Of the spacec_-aft assumed to be in _unlight. In the ttlner

region this is not too important, but in the outer region a 10 percent sunlit space-

craft would have a negative (102 - 103) potential.

Table 2. Calculated Spacecraft Potentials in the Jovian Environment

; Location Vsc SUn (volts) Vsc ECL (volts)

L = 2.5 Rj -I00 -200

5.0 -1000 -1500

5.7 -I000 -1500

_ 6.5 -2000 -3500
"x

, 9.5 "--+10 -_+i0

,i 11.0 _ +I0 -104

16.0 ".-+10 -1500

: 16.0° _ = 45° "_+10 -104

• l R = 25 Rj "+10 -104

%

I'L i
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_i_ _t model of the Jovian charged particle environment has been constructed fromo:
i_i results of Pioneer 10 and 1i measurements. This model was used to calculate the

!,) potential to which.a spacecraft would cha_'ge in the Jovian environment. Ln the

:! inner region (L __6.5 Rj), the potentials calculated ('-, 103 volts negative) indicate
,:._ severe disturbances to fields and particles measurements from the spacecraft.

,_ "Clean" measurernents would thereforerequireactivecontrolof the spacecraft

'! potential.Inthe outer region_,electricallyisolatedpor.tionsof the spacecraft

are likelyto cha2"gediffe_entially-,,103-I04 voltswith respectto sunlitportions. • G,

._i High differentialCharging seriouslydistortsfieldsand partiClesrreaSurements,

,,_; and represent_ sources for arcing severe enough to damage the spacecraft or cause
L_.i:, malfunction.
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