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Abstract

An understanding of tlte behavior of m_terials, of dielectrics inparticular.
under Charged parti_le bombardment in eSsenti'_tl to the predichOn and prevention
of the adverse effects of Space,raft charging. TliLs p_per presents an effort to

_:_" Obtain Such an understanding through a combined analytical _nCi experimental
_pproach.

' A one-dimensional model for _hargin_ of s_mpleS in the LeRC test f_eility is
used in conjunction With experimental d_ta taken in this facility tO develop "m_terial
chargl_g cl_r&eteriSties" for silvered TeflOn. Tl_ese charaeter|$ttcs _re then used
in a one dimensional model fO_ charging in sp_ce to examine expected r_Sponse.
Relative Charging rates as well as relative chaz_ging levels for silvered Teflon and
metal are diSCussed.
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prese,t paper" sumraari_eS the analytical work whicl_ ha_ been perf0r_ed inter°

actively with this expe_in_ental work. The goal of the a,aiysis is twofold. FirSt,

is to model the charging Of material Samples in terrfls of the material's para-

meters. Second, since a goal of the entire study is tO predict behavior of sp_ve-

craft surfaceS, an attet_pt is made to "Scale" the environment, that is, to relate

results obtained using a monoenergetic beam in the ground test facility to expected

results with distributed particle fluxes of the space e,viro,ment. An approach to

establish this environment scaling is to develop models of charging for both

charged particle environments, and _ssume that the material properties are c0t_- ,,,,

stant. Then differences between material chargin_ behavior under ground test and

.. in space are a result of the differences in the two environments. It iS recognized

that the vacuum levels in the grOUnd test and space environments are also different.

No attempt is made here to account for.thiS factor.

This paper, then, represent._ a fi_'st attempt at attaining the two goals of

characterizing material charging and scalin_ to the space environment. The

models used ar. _.one-dimenSional t_ntt describe char_tng of Samples in te.rms of the

charging of a capacitor. This type of model has been used by a number of

workers3, 4, 5, _ to describe Spacecraft charging.

The proceduz'. _ used herein WaS to first develop a one-direst.Siena1 model tO

describe charging _f Samples in the LeRC vactmm test facility. This model con-

tained a number of parameters which were varied to provide best fits to experi-

mental data Obtainec' in the facility. The values o_ these parameters which yielded

the be_t fit Were identified aS the "material charging characteristics. " These were

.' then used in conjunction with a otle-dimeflSional model for' ctmrging in the Spac(_

: substorm environment to make some predictions of the charging behavior of the

tnaterials in space. The insulator studied here is 5 rail silvered FEP Teflon. R!

L_

2. (I_E-III_IENSIONAL(1-i))I;IIOI:NI)1'F,_1" FAI:II,ITT _I(|IIEL

in the LeRC test facility, a monoenergetic beam of electron_ with energies of

_-2 to 20 keV iS directed at nortnal incidence to planar Samples. A beam current

density of 1 flA/cm 2 was ueed t_ obtain all test data dis_u_sed in this report.

i_ The GrOund Te_t Facility Model is a qUaSiStatic current balance model. The

cu_'reat densities considered are th0t_e due to primary {beam) eleeti'ons, secondary

electrons, backscatteted electrOnS, and leakage current through the san_ple bulk.

These -_redenotedby Je' iS'JBS' and Jl'respectively.1_hesample isassumed to
charg_ likea capacitor. Thus a time balanceequstlonisof theform

dV s
. C _ + Jl -'Je ° Js "JBs (|]

4_0
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where Vs iS the m_grRtude of _e surface Voltage, All stl_uS are e_pitctt m this
equ_tt0n, and i'n all otheP_ used tn the test facility mode_,, tl_at t_, all Syr_bOl._

stand for pOSitive nul_be_'s. Tiie act'tal su_ce voltage is of course ne_Biive, and

this iS assumed tht_o_tghout. ThUs this model doe_ not predict positive Surlaee

VOlt,gee correctly, since positive surface voltaBe would tend to reattract th_

emitted Secoddsr_ eleclronS and this effect has riot be_rl inc|uded here.

The first farm in Eq. (1) represettts the net charge deposited on the surface

(per cm _) tl_ a fin _. step, and so is termed the el_arging current det_Sity and denoted

by Jc' The procedure used was to initiall_ at t = 0 with Vs = 0. Then £V s was
calculated from- ............

.......... The current densities are all functions Of Vs and their functional terms are given

in Figure I. Equation (2) is solved by an iterafive procedure. This equation can il
be expressed aS il

_v s --fN s) _t (3) _,.

With the initial aSsUmptiOn Vs = t = 0, a suitable At iS chosen, and _V s calculated.

V s iS then incz emer_ted by/_V s (Set = /_s for the first iteration) and the procedure
repeated until equliibri_m is reached, that t_, utttil

dV

3c-- C-'_t --0

The several current densities in the precedin_ equations are functions of SUr-

face voltage. All but the leakage current density are fuhcti0ns of the primary

electron beam voltage and current density. The parameters which can be varied

are the secondary emission maximum yield, _m, and energy _0r maximum yield,

V m, the backse_tter coefficient, _, the resistivity, p, and the capacitance C.

In p_actlee, values for _ and V m were taken from the literature. Val_es for p

were determined from the measured surface voltages and currents at equilibrium,

and fits obtaihed by varying _and C. This iS discussed t_ore _ully in S_ction4.

i It should be noted that this model does not accOUnt for beam in angle8pPe_d

Or energy, thepresence ofthe vacuum tat_kwalls,or residualgas inthe chamber.

Sif_eeitisone-dlmensionM, itcan not,of course, explicitlydescribeedge effects.

dr effects due to surface variatt0tiS.

Derivatiofls of th@ current density equations are presented it_ Appendix A. A

, su_tnary of the mod_l and equations is glvefl in Figure i.

4_i
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Figure I. 1-13Model Ground Test Environment

3.' (:O_iP_ItlSON _11'II EXPERIq(r.NI"._L I),_TA

3.1 "Floating"AlaminumPlate

The firsttest data Used in conjunction with the test facilitycharging model

were those taken with a bare aluminum plate which is normally used for substrates.

This plate was mounted in front of a second identicalplate which was grounded to

the chamber walls. These two plates were held apart and electz'icaUyisolated by

a Teflon spacer t_lug0.'/cm lor_. The plates a_e rectangular with dimensions

15 cm × 20 cm (--300cm 2 area). Surface voltage of the floatingplate was mea-

sured as a functiotlof time USing the surface voltage probe. 1

Figure 2 shews these data and the best fitcalculated curves. In obtaining

thesb fitsto the data. values of 6m --3 and Vma x --400 were used. These are

consistent With ranges of values for these parameters given by Gibbons 7 for a

surface layer of AI203. Itis reasonable to expect some oxide on the surface of

the "bare aluminum" plate since ithad in fact been exposed to air. This points up

)
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Figure 2, Comparison With Experi-
mental Data

the strong dep£adence of charging phenomena on _ample surface condition, and

indicates that care m)'st be taken in making predictiOnt_ foz" charging tO consider
the state 9f the surface.

With these values ir_ the expresgion for _econd_ry emission, the values of C

ill used to obtait_the cu_.es in Figtlre2 Varied from I,2 × I0" t_-farads atV B = 5RV

: to 5 × 10-11 farads atV B = 16 kV, decreasing approximately linearly with in-
_ii!.i creasing beam voltage. The values used for the "bacRScatt_r coefficient"varied

.,,'", from 0. 15 at V B = 5 kV to 0.5 at V B = 16 kV, again it_approximately linear

_ fashion. The expression used to calculate secondary emission current density Is

derived from an expression for yield as a function Of primary energy due to

Sternglass. 8 It is plaUsibl_ that the required variation of [ to obtain fits to the

data is accounted for, in part, by deviations of the actual secondary yield from

that predicted.by Sternglass formula. That iS, the adjustments to _ represent

_< adjustments to the sum of the backScattered and secondary electron_.

The finalpoint of concern here is the time scale forchargingofthe floating

p!_te; _ reaches its equilibrium floatingvoltage WRli a time constant of Several

seconds. This iS not stir'prising, since the capacitaflc_ of the test plate to its _ur-

roundings is expected to be small. The timescale, is relevant, however,to the

question of the behavior of composite sampies. Thisis disctisSedmore lullyin
Section 3.3.

f

#
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3.2 ._d_rOri,d 'l'eflo. _hmpl,_

The I-D model was next used tO fit current and Su_'face VolJ_hge data fr6tn

silvered Teflon SampleS. These consist of an aluminum sub_tl'ate with three _.trips

of 5 m_l silvered Teflon mounted with conductive adhesive to the substrate. Each

o_ these _trips was 5 cm wide and _0 cm long. D_wing test, the alUmLnum subStrate

(and cOnseqUently the silver) was grounded, while the Teflon surface was bom-

barded with electrOn,m

The data and Calculated fits for beam voltages at which equilibrium is reached-

are shown in Figure 3. These data are a composite of four separate data setS,

and indicate charging times on the. ",rder of minutes. The error ba_'s reflect the

_catter in the d_ta as well as the +5 percent reS01_tiOn uncertainty in the voltage

measurementS. Since for inSulAtors there are Strong voltage gradients near the

edges of the samples, the st_rface_}oltagemeasuxements ape those read at the ..........................................

Sample centerWhich iSuniform.

To obtainthesecurves, theeffectiveresistancewas calculatedfrom the

eqtRlibrlumvaluesof surfaceVOltageand leakagecurrent. These valuesindicate

an effectivet-esistivityfor the samples Of about 9 × 1015G-cm, aborta_torder of

cuRef_?l,SOLVk'I_Tm.oe¢_......
: VOLTAGE,[DATA
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magnitude below published values for "eflon. It o_e assumes that the published

vMue of 10l?f_-cm-4s accurate, then a p_rallel path haviflg a resistance ut about

4 × 10_G is in_eated by the d_t_. This could be a surface leak_go, or an edge

leakage, Or leakage through the sheath.

ValUeS Of 6m ffi3 and Vma x ffi300 _vere used in the expression for Secondary
emiSSion, in accordance with the data given by Willis and Skinner. 9 The values of

C retltflred r_nged from 14.0 pf/cm 2 at V B ffi5 kV to 10 pf/cm 2 at V B -- 12 kV and

decreased monotonically with increasing beam voltage_ Extrapolation of the curve

to V B ffi0 indicates a dielectric constant for Teflon of "-2.1. This decrease in

effective capacitance ts believed to be as._ociated with edge effects. Edge gradients

are obs_.rved in the data. These becom_ more pronounced at higher voltages

reducing the effective area. 2 The valtie used for the backscatter coefficient

varies about an order of magnitude for the Teflon Samples. Not only does itchange

with beam voltages but also appears to change during charging at a s_ngle beam

voltage. For the initial portioa of the charging curves, _ varied .¢rom 0.25 at the

lower beam vOltageS to 0.05 at high beam voltages. At equilibrium. _ Varied from

0.02 at 10w beam voltages to 0. _5 at high ones. These variations were not linear:

rather, _- _as relatively constant at low and high beam voltages, with a transition

occurring between V13 = 8 kV and V B = 12 kV. J_gain° part of these variations may

be due to deviations 6f the a_tual SecOndary emission fro_Ahat calculated by the

a_alytical expression b_Ing u_ed.

Some investigation was undertaken tO Study the behavior of the Teflon samples

du_ing arcing. Figure 4(a) ShoWs a_eurve fit to a compoSlte of two data sets for

the inlt{al chargin_ transient with a beam _oltage of 16 kV. Figure 4(b} shows the

V u, -'l" s-i--A"-]L,
0 2 4 6 8 !0 12 0 2 5 S 10 12

Ftgui-e 4. Compai'isori With F_erim_flta| Data. DiSchat'gt_

traneient_; silvered teflon samples; i6 kV b_am
#
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same c,'llvtflated cuz_vea, this tirt:e with a single set of date. The left hand set of

cuteea and poittt$ are the initial cha_ginE t_ansieflt. An ez'c occurred on this

sample between the time of-the vo_t._gc reading at t = 4 rain and that of the current

reading tvken at t -- 5- 1/2 rr.in; the Surface discharged, and eha1 ging was repeated.

The curves Shown for the pOSt-erc chart, tag trarlslent are ideritlcal to those tot the

initial tran_Jtent, but Shifted in time. This indicates that the charging transient i_

quite repeatable, not only from test tO test of T_flon Samples, but alSO through

areit_g. That Ls, at least sttort term, the arcing does not affect the charging

behavior of Teflon sampleS,

3.3...,Comim,_itcSulniD|t_

One of the Stated objectives of the present work was to investigate the "environ-

ment scaling" effects between the ground test and space environmentS. An obvious

di£ference other than the environment between ground teats so far described and

the. Space condition iS that the attldle$ Of silvered Teflon diScusSed above were all

conducted with the substrate grounded. In contrast, for the ca_e of a spacecraft

in orbit, the entire body, including the "grounds" must come it:to equilibrium with

the charged particle environment. The question of tits behavior of a composite

SyStem becomes particularly interesting because of t,le divergent time Scales in

which charging of "floatlzig" metal plates and Silvered Teflon above ground are
ObServed tO OccUr.

TO investigate this qtiestiOn, a compogite sample was built antt te_ted. The

sample consistedof an.electricaLlyfloatingstandard aluminum sUbstratewit6two

stripsof the 5 crn silveredtapemounted on it. This allowedfor a 5 crn stripof

the aluminum between the two Teflonstripsto be exposed tOthe electronbeam.

, The aluminum substratewas mOuntetlinthe testchamber in the same manner aa

• the floatingalumitmm platedescribedinSection3.1. This configurationiS

. depictedat thetop of Figure 5(a). The bottom ofthisfiguresho,,,sa voltagetrace

atequilibriumfor thissample.

The eXpectationwas thatthiscomposite Sample would charge intwo stages

because ofthe differenteffectivecapacitancesthroughwhich the aluminum and the

Teflonmust charge. The predicts,tooshown inFiguee 5(b),iaba._edon the idea

that when the beam is turned on, the aluminum should charge to its equilibrium

voltage with its time constant of seconds° carrying the Teflon voltage with it.

When this has occUr:'ed, the Teflon should continue to charge from the equilibrium

voltage o_ tits alt,_mtflum tO its own eqUillbt'ium voltage with its own time constant,

tltat is, mintites, The curves in Figure 5_b) were thus obtained by superimposing

, the cutwes for aluminum above and for Tefloil alone with the Teflon cutwe shifted

so that it coincides with the alumihum curve at the point of equilibration for the

al_lminum. As can be seeh from the data plotted in Figure .SCoL the expected be-

havior was found.

00000005-TSG04
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_ Figure 5. Silvered Teflon/Aluminum Composite Sample
FlOating

_._.ii ,:

-_ The expectation that the alurninum and T_,flon comprising th_ composite

; sample should charge to the same surface vo!tage_ as h_d the f}0atlrtg plate; and

_ the TeflOn Samples abOVe grounded SubStrates was based On th_ observation that in

bcLh those cases the equilibration WaS dominated by secohdary emission phenomeha
_- rather than by leakage currents to ground. This is evidenced in tw_ Ways. First,

_: plots of surface voltage at equilibrium versus beam voltage are straight lines;
-_,,_, SuCh behavior iS SuppoSed to be aSSociated with emisSiOn dotninated equilibration.

_! Second, examination of printouts of the model calculations reveal_ that, at equio

librium, the leakage cur.rent density term is several orders of magnitude _maller

than the other currents in the model. The conclusion, th_n, iS that for this type

il Of composite _arnple, each part responds to the charging environme_it with its

i'i characteriSti_time constant,antlcomes intoequilibriumatitscharacteristic

Surfacevoltageso longas leakage currentdoes not playa dominant roleinthe

_.' e_luilibra'ion.
_'_, It should be noted here that the tests run on this composite sample were not

i!:i; , extensive. Ft_rther experimental inVestigati0n o_ this and other compo_it_ _amples_, are planned.

4_

--W_ol/

5:

UUUUUUU_ /o_-_,_



t I .1 ! ! I t ',' a

I. IISF;-III_II,'._._II)_,._I.._i __|_F] II1_1|1;1_1', _li)tll.]h

In order tO predict ehargblg behavior in spa_e, a one-dimensional model for

charging in Space analogous tO the one-diinensional ground test model wag deve-

' loped. The essential, difference between the two models is that tl_e space _odel

aSSl'meS an isotr0pic Maxwellian particle distribution containing both electrons and

tons and a S_herical collection geomett-y. The current densities are derived from

Lang_uir probe calculationS. This type of calculation has been used by se#eral

author_4, 5, 8, 10 to t_-eat the Spacecraft charging problem. Derivbtlon of the _"

current density equations is given in Appendix B; a Summary description iS pre-

sented in Figure 6. As is indicated in this figure, the model aS presented and

used here asSumeS a geomagnetic subStorm condition. That iS, it aSSdmes that V s

iS negative, so that electron9 a1"e repelled and ions attracted. In these equations

V s is an algebraic quantity, that is, the sign iS hnplieit.

CURIb"_TOI_ISITIES11)SURFACE

i' e" e" e"

: _ ASSUMPTIONS
_L_t_N£11C-SUBSTORM

/" : _"-CAPACITANCE• C I$OTROPICMAXWEUJANDIS1111BUTION$

"_$URFACEAT SPHERICAL{;OLLIEJCTiON.-OEOS_'TRY
--L = _ VOLTAGEVS

CHAttGINGMODEL

l'_S ) + JpN_;)+jsN;) + }g_;Ns) • }INS)* JCN_;,tl

FUNCTIONALFORMS
OAI_KCONDItiON-NOPHOIOEMISS|ON

S?MBOL& _I_MUI.,A CURRENTOi_I$1TYDUE10

boe_(_..) aAsmE_T_S
_w

'- . S
_leoex_,_ ) eACX;CATTER[Otl.l[ClltON$ies

Vs V_
It - _- _- L_kKAGE_ROUGHINS_ItA10R

tc"cT

Figure I_, i-D Mode] Space Substorm Environmeht

i,
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_/ AS IS evident from the sketch irlFigure i;,secofldary electrons due to io_

' impact a_e not accounted for in this model. Thi_q Is bt, cauS_, the, if_tent l_ere is to

i_ use material eh_t_ing characteristics found b5 fitting the gro_ nd test mod_.l to

:_ experimental data in conjunction with the space model to predict space charging.
J, Since ther'e were no ions used in the experifflents, no coefficiettt for secondary _

_;. electrons tlL_ to ion impact wa_ determined. Therefore this current d_nsity ,.

:,_ Set,roeiS not considered. The surfacf,voltage values predicted by this model are i

:, thereforc somewhat larger titan, if secondary electrons due to ion ifnpact Ilad been

included. For example, a Secoridary coefficientof 1 would yield abotlta 10 pt,rcent ..

reduction in the equilibrium voltage calctflated for aluminum at V e - 5 kV.

_) The prc.cedure used to calculate charging iS identical to that described for the

_!.: ground test model. Material characteristics used were those determined by fitting

_: the ground te_t.model to the data. The capacitance of the aluminum (consixlered to

_:_ represent the spacecraft "ground"} was tal_ to be 15 w 10" 1 1 farads, which is

_. the capacitance Of a one meter diameter sphere (to represent a "typical" space-

craft dimension) to infinity. This capacitance was chosen because the relevant

_ capacitance f,'r charging floating metal objects is that of the object to its surround-

ingS. Tho_e parameters _notably C and _ for Teflon, and I_ for aluminum) which

varied as functions of beam (and therefore surface) voltage were associated with

:i the equilibrium surface voltage for @,e appropriate test for purposes of making the

_' space Voltage calculatit_ns. The relationships between electron and ion teml_era-

tures and between temperatures arid current densities were taken from the Pro-

_. visional Specification for the Geomagnetic Substorm Environment. 11 This

ii' Specification is giver, as Figure 7. Thus, results of the space calculations, shown
_: in Figure 8, are given aS function_ Of electron temperature only

_. in Figure _b) two cu_,es are shown for the surface voltage of silvered Teflon

as a function of electron temperature. The first curve calculated used the exptri-

mentally determined value of 9 _< 1015 _-cm for the effective re._istivity of Teflon.

_,: This curve bends sharply to the right as electron temperature increases. An

_: inspection of the current densities driving the equil|brium indicated that leal_age

_'. current played a large part in the equilibration of. the Teflon. Thus, this curve

_=,_ yields a "good" value for the surface voltage of.Teflon if th_ spacecraft "ground"

_: t_ actually near plasma ground. This would be the case if, for _xample, photo-

_. emisrion were holding the spacecr_,ft ground near plasma ground at_d the TeflOn

I surface o_ concern _#ere shaded. However, if the spacecraft is assumed to be in
_., eclipse, the aluminum representing the spacecraft ground is predicted to acquire a

i' large negative voltage (solid line}. In this case it is _'lear that leakag6 ,'urreat

_ can trot drive the equilibration of the Teflon surfeits, according to the dashe_ line.

Therefore a second curve was calculated for the TeflOn, based on the asst:rr,ption

that there was no leakage. This is shown in tht _ dash-dotted line.

k
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FigUre 7. ProviSional Specification for SatelliteTime in
a Geomagnetic SubeltOrm Envirt)nment (Ref. 11)
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Figure 8. Predictions of ('barging Silvered Teflon and Aluminum
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Ft_,Ore B(M shows the rates Of chJarginl_predicted for the Bpace condition. The

time to el_i-_e the alu_nin_,_l le predicted t_ be _e_0_dS, _ompdrable to the time

required t0 ehari_e the floating p/ate its the ground expes-iments. "i_h_time r'equired

to charge tt,e Tefl0n is preitLeted to be several n_lnute_ at lower electroh te_perz-

ture_, ranRit_g t6 tens of fntnutes _s the electron t_mperatuz4e lrlcreases. Th_Is,

equlllbtation of Teflon is predicted to require Rtgnifieant].y longer time ir_ space

than it does in ground-experiments.

Using the edrves shown in Figure 8, it iS possible to predict th_ response of

a "Spacecraft"° composed of an alumLnum StPUr.ture partially covered ,#ith silVered

Teflo_, to substo_'_ and eclipse conditions. Such _ set of predictions is shown in

Figure 9. For purposes of this figure, it is assumed thht phOtoemissioh is Suf_io

cient to hold illumint_tecl surfaces close to plasma ground.

Figure 9(a) asSumeS that the Teflon Surface of interest iS shaded when the

-_, Spacecraft iS in Sunlight. A substorm injection with a 5 keV Maxwellian electroa ............

diS_rLbution is aSSumed to occur at t = 0 and this environment is assumed to

remain constant tht-ough0ut the time shown. An-eclipse is assumed to occur fl'om

t -- 60 rain tO t -- 120 mln. When the SubSt0rm occurs, the dark Teflon charges

according tO the dashed curve of Figure 8(a)° ShoWn in Figure 9 as a solid curve;

the alutninttm at "ground" is assurried to be held near plasma ground by photo-

emission....The TefloR_ea_h_S_itS leakage dominated eqqi_.ibriumvoltage

oV........._ _"2 ECLIf:._E.--_. -- ,,_-..-ECLIPSE.-.._

_
/

-16- "DARK" INSULATOR F '*SUNLIt" INSIJLA_R

Ve-._V F vt •_,tmV
t

-_0- I I I I I__il 1 [- I I J 1 i I I
20 40 60 80 l_0 120 H0 150 O 20 40 dO sO i00 i20 i_O

TtNl_.mid
_1 tb)

Figure 9, H_sponse to Substorm and Eclipse. J-D Mudel
Predictions
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of -8. ,5 kV with lt_ time eon/_tant of _b_Ut 2l} rain, Whf'f_ tht_ sp_c(,rPMt _,nt_Ps

ec|ipse, the alurniflt.m charges quickly _ln sccotlds) to its _qulllhrtum volt.g_., of

- 10 kV. It is assumed that the charge off the, Teflotl surface is itnmobilt_ o_ this

tithe scale, so this sul'face remains at -8. ,5 kV. At this point, the leakage cuPr_nt,

which was driven by the voltag_ differontial of 8. ,5 kV disappearS, so the Teflon

finds itself to be no loftgev in equiiibt"ium with its environment and proceeds to

charge to its "floatitlg" valu0 of _.-14.5 kV in a charactez'istir 20-30 rain perioa.

Upon exit from eclipse, a simtl._r pattern is foliowed. TI_e aluminum falls quickly

to near plasma grourtd. Because this discharging i_ d_iven by phbtoemission, it .b.

require_ only about 0. 02 sec for the aluminum to reach plasma ground (assuming

--10 -9 A/cm 2 ph0tocurrent). Now, the Tet_n again finds itself OUt of equilibrium

with its plasma environment, and.proceeds to discharge slowly to its previous

equillbrium potential of -8.5 kV.

Figure 9(b) ShOws a similar type of time history for an insulating surface

_hich iS exposed to sunlight. Again, the solid lin_ represents the surface voltage

of the Teflon and the dashed line the spacecraft ground. The entry into eclipse

and subsequent chargin_ up is analogous tO the charging of the composite sample

discussed in Section 4. The aluminum charges rapidly (in seconds) to its equi-

librium value. B_cauSe the Tet_lon had no significant charge on its surface, its

voltagefollow_thatofthe aluminum untilthe aillminumreaches equilibrium. The

Tel'Ionthencontinuesto cliargeslowlytoitsequilibriumpotential,Upon exitfrom

eclipse,both the aluminum and the Teflonar_ dischargedby photo,misSion. Thus..

the aluminum reaches plasma ground inabout 0.02 sec, as intht previous cas_.

The Teflonalsodischargesmore quicklythanitcharged;itrequiresabout4 rain

to reach plasma groutzd.

These resultsindicatea need for chargingstudieswhich takeintoaccount

relativecharging ratesas well as differentequilibriumcharginglevelsofvarious

spacecraft surfaces. _ "typical" spa(:ecraft has several d_fferent types of sur-

faces (solar cells, thermal blankets, etc. ) each ot which can be expected to charge

with its own tim_ cOnStant. The impt_rtahce of the ejfect of the different time
constants should be assessed.

5. C(I_(;I,i'Ii|M; I_t,;_l._l_k>

The present study has resulted in the development of a sot of "mate_'ial charg-

ing characteristics" which describe the charging o_ small (300 cm 2) samples o_

5 rail silvered Teflon anti oxidiged aluminum. Based on these characteristics,

predictions of charging in space have been made and Used to estimate the behavior

of a composite body under conditionsof s4bstorm and eclipse. Severalinteresting

00000005-TRI



differences ht.t-w_n charging hehavlar tinder ground tt, st conditions and predi,.tt, d

behavior in spac_ havt. b_t_n tlot_.d for silvert,d Teflon. Undt.r ground test _.ondi-

tions sllv_Ped T_,flon aequlrt s the same surface, potential fimuntt,d Oh grotm,.t.d :,rid

floating subs,rates because the etluillbratton is domidvt_d by surfac,_ ,.mission

phenomena. How_.veP, in space,, significant differt, nces arc prt'.dtctt.d in surfs,',.

voltage, for these two mountitig configuratiofm. _l_is is b_eause lt.akage ,,ulrrent

dominates the equilibration ot the Teflon When the aluminum is at ground° While.

surfact, emission dominates for the floatL_g aluminum case. The tim_, requir_d

for silvered Tt_flon t_) charge to equilibrium irl tests is s6veral minut¢.s, this time

i_ predicted to be seve_'al tens of minutes in space. _,
In contrast to tits several minutes to several tens of mlnut_s time scales for

silvered Teflon. flo_ ting aluminUtn samples are observed in ground test and pre-

dicted in space to chat'gt_ to equilibrium in seconds Their capacitance is much

lower than that of Teflon since it is determined b;, their surroundings. There. are

also orders of magnitude di£t_erences in time scal_s for dischar_,ing by photo-

emission of alumitlum and Teflon. This discrepancy in char_ing and discharging

rates gives rise to sudden changes in the electric fields which tht_ Teflon must

sustain upon entry into and exit from eclipse. It is felt that these differential

charging rates as well as dif£erential charging levels may be important and should

be investigated further. Thus, transient (qu,_sistatic) as well as steady stale

models should ze developed£or chat'ging.

The one-d!m_,nsionalmodels describedhereinhaY(,been foundusefulinthe

interpretationo_ experimentalresults,and as guidestorelatingtestresultsto

expected space behavior. Models of ground testsituationsare needed sincethey

can be ust_dinteractivelywithtestdata. This is e.sp_ciallytruesince itis im-

possible,or atleastimpractical,to simulate accuratelythe geosynchronous

environment• "thusenvironment scalingmust be done throughuse o¢models, at

leastfor thepresent.

Finally,higherdimensionalmodels are nt_edbd. One-dimensional models

can not account_or such thingsas edge e_[_ctsor interactionsbetween adjacent

surl_acesatdil_ferentpotentialsas withdifferentchargingproperties. Su_h effects

are clearlyimportant,2 and may dominate th_ chargingbehaviorof multisur[ace

samples and spacecraft,

473

• : I '

00000005-TSG 11



t I I ! ! I ! ? I

References

1. Horkopee, F. D,, Stevens, N, J., and Sturman, J.C. (i07r;| Th_ I.e,R¢" suit-

sto_m simulation facility, _t" IIi- 1, Spao¢,_rnft ('hnrp, ing T_.t.hrlology
Conference, Colorado Sprln-=g-_,-t'_1b. -----

2. Stevens, N.J., tl_rkopec, F.D., Staskus, J.V., and i]l¢.,ch, R.A. (I.o7¢;)
Tostifig of typical spacec-raft mat_rialB in a sir°sulated substorm environ.,

mont, Paper III-_, Spacecraft Charging Technology_ ('onfe.t-c,n¢,¢,, Color:,dn
Spz'ings, co1¢_.

3. DeForest, S.E. (1072) Spact_craft charging at synchronous orbit, .]. (;_,ophys. =.,
Re....._. 77ff;51.

4. Frederlcks, R.W,, and Scarf, F. L, (1973) Observations of spacecraft
charging effects in erler-getic plasma regions, in Photon and Partivl_, Inter-
actions with Surfaces in Space, R. J. L. Grard, EtTitor, D, R¢*id(l Publ.
(_0., Dord_'echt, _oiland.

5. Inouye, G.T. (1975) Spacecraft charging model, AI_A papr.r 75-2:3,",, AIAA
13th AerOspace Sciences Meeting, Pasadena, California,

R. Rosen, A. (1975) Spacecraft charging: Environment induced anomalit_s,
AT_A Paper 75-91, AIAA 13thAerospace Sciences Meeting, Pa._adt.n:,,
California.

7. Gibbons, D.J. (19_f;) Secondary electron emis,cion, in Handboo.k of V_ruum
Physics, Vol 2, A.H. Beck, Editor, Pt_rgrm_on Pr_,ss, Oxford, Fngland

8. Sterrtglass, 1_. J. (1950) J. Phys. Rev. 80:.°2 ",

9. Willis, R. F. , and Skinner, D.K. (1973} Sevond:_ry _.D._.tron f.mission yl_.ld
behavior of polymers, Solid State Communi_ ation._ I.'_:, e,:,

10. Cauffman, D.P. (1975) Inclusion of secohd_rv. __'., .tons in mod_-ls of _-quili-
brium potentials, Paper SAra3 Presented at thr_ ,'7,'in_ Af;U M_._,ting,
Washington, D.C.

11. Lovell, R. R., Stevens, N.J., and Purvis, ('. K (1!,7,) Provision:d specifi-
cation for satellite time in a geomagn_.ti(, substorm environment, Paper
V-2, Spacecraft Charging l"echnology ¢onf_T_.nc_., ('olor_do ,_prings,_lo

12. Langmuir0 I., and MottoSmith, H.M. (192_:) The tht, ory of voll¢._.tors in
gaseous discl':arges0 Phys. Rev. 28 (No. 4).717.

13. Grard0 R.J.L. , Knott, K., and Pederson, A. (1973) rhe influcn_.b ot photo=
electron and secondary electt'ott emission on elettri_ field measurements
in the magne¢osphere and solar wind, in Photon and Particle Interaction
w.ith Surfaces i," Space, R.J.L. Gt'a='d, Edit0t', D. Reidvl, D0rdrecht,
H6fiand. -

14. Abramowitcz, M., and Stegun, I.A., Editors (t9_;8) Handbook of M_th_,mati-
cal Functions, Dover Publications, Inc., New York.

174 s_



i ,

Fil
|

?!

Ap__endi A
: * Oh_Dlmenaio_ol Ground Te_t Modal

,_.=o
; •/ In this model,-, electrons from the et.eetron Run =,re assumed to appro_,'ll the

_ planar sample noPmally. All motion is rO_tri_ ted to th(, x direction (see I"igur_,

A 1). T|I_ _lCectroh beam is assumed monoenerg_.tit', with energy

A
: F R = e V B

i 4 where e is the electronic charge anti V H the beam voltage, the current density

i'_"i: emitted from the gun is given by

_ ._, .to "- no e (A 11;__! \ me/
i !,

where n = particle density. It is assumed here that n e (the charg_ density) is
i _i 0 0

i : " eonstarlt, in order to account for the spreading of the beam in the real s_tuation.

i i' Thus the continuity equation requires that some particles are "lost".
_ We wish to calculate current densities to the sample surface. ('urrent densi-

= _ ties to be considered are those due to primary electrons, secondary electrOns,

!:2X- baekseattered electrons, and leakaRe through the bulk of the insulator, the insula-

:_!i tor is assumed to be mounted above a grounded substrate for purposes of calcula-

,=_ " ting leakage.

-_-_, Throughout this d_ve] _pment the sample surface is assumed negative, arid all

! ;' secondary and backscattered electrons are assumed to escape. All signs are _iven

explicitly so that symbols represent positiv0 quantities.

" t_ilGv ev_
i°,. (iv8 - evs)

; :.: -V _ -

L3,
=) Figure A I.

i-
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2, I:IilIII':X'I'lli':X.q'l_IiiI:l'ilI'I|IIIXlIil:i.l':i:'lli|!_'_

Consider electrons approaching tho samplt, with ,,norgy E Itin assum,.d thr,t

the eleetran_ do not eollld(_with ont,another, s,ndthf,t motion i_ r,,stri('t_.dto one-

dimension. If the sample t_urfao,, hers a r,.pulsiv,, pot_,nti,1 of mr_gnltud,. V S, ,.n,TRy

conserw, tion rt'quirt's that thoy nrriv,, at th,. _urfnt,_. with _,norgy l':-t,VS, Sin,'+,

all electrons leave the gun with {,n¢,rgy oV H. the ,.urr4,nt d,,nsity to th*+snmpl*, sur-

f_,ce Is simply a..

Jc _ noe (eVl_" °Vs)I _ (A2)

Rearraaging and using lgq. (A1), wt. fiod

Je--Jo (I VS _I/2 (A3)• " V_l

since we are requiring that noe remain constant.

3. [:ll|l|l':X'f iII':XslT'_ IIIE TO .':,l-:i:ll'_il_J{'t I.:J.l.:Cl'llliX_

Sternglass I has given the following expresaion for secondary yield as a func-

tion of primary electron energy at impact:

_:i r , _,,,''_-1
6(Ei} -" 7.46 m _ exp L-_\-_, j (A,_

where 6m is the maximum yield, eV m is the primary energy for wh'_ch maximum

yield iS attained and Ei is primary energy at impact From the discussion given
in Eq. (A2} above, for this case

E i -- eV B - eV S (A',}

The secondary cur "ent density is then

Js --Je 6 (eV B - eV s) (A,;)
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' which is

S

"_' 4. C|'RIIENT DENSITYDUE TO BACKSCATTEREDELECTROgS

i:, No analytical expres31on was found for backScattered electron emission. FOr _-
;, simplicity, it was therefore assumed that backscattered electron current density

_? representsa fractionof the incidentcurrentdensity. THUS,

7. : Je: % -%7
e7

f: 5. LEIKAGE CURRENTDENSITY

':i LeEtkagecurrentis gener_llyrepresentedby

i"

VS
:_! i1=_ (,4g)

_, Interms of bulk resistivitythisill:
lOl" - ...............

Where.[ is.httLk.re_/_.ti,v'<7,A ilthe area and the thicknesso£ the Sample. Then

:_ j/_ VS
L' 11 = A = _ _11)

_, 6. THE1-B MODEL

The _rtmary electrori current density represents a e_ource of electrtms arriv-

ing a_ the $_traple. The other three current densities repree_ent loss of electrons

trom the surface. ThUs the ,et current den_lty tO the surface l/_

#

_;c:: )
o:

............ " ....... - ........ : - i ..... l__ , :"" -:" ....

00000006



! _. v

ii!_''

i _i! ..
7 ¸

oi_ Jc =Je " :is " JB_ " Jl _, 12)
i:i

oi This net current density plays the role of a charging curl'ent to the surface. Thus.

_. tt _¢e represet_t the sample's charging aS the charg|ng of a capacitor, we have

i dVS
i ,_, Jc _C _=je-jS " JBS" J(_ (Ai3)

_ _"_ where C is capacitance, here expressed in farads per square centimeter to main-
4m.

tain consistency of units. Eqttation (A131 iS solved i_ the manner described in the....

_: test on a compUter_-to calculate the charging.

,._:,. Itremains to aSSociate the experimentally measured parameters, Surface

i .,_,, voltage, and totalcurrent to ground, with calculated valueS. The surface voltage
io_, aSSociation iS trivial;itis Simply -VS. The total ctlrrenttO ground is the charging

_,, current plus the leakage current for the sample as a Whole. Thus

L,_. IM --A% + ill (a 141

1. SternglaSS, E.J.. (1950)J.PhyS. Rev. 80:925.

i_, ..
i___'-
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Appendix B

One-DimenSional Space Sub_t_rmMod_l

I., I_qTIIOIII_CTIO._

The one-dimensional space model aSSumeS a tw0-dimenstotlal iSotropic

M_wellian velocity distribution for primary particles, and a spherical collection

geo_netry. The calculatiOh_ are e_ent{ally those for a spherical L_n_nuir probe.
2

The present calculations bre based on the work.of Langmuir 1 and Grard.et al,

and follow closely the derivation of Cauffman. 3 The latter work has not been

published; therefore portions of it aze reproduced here _or clarity, Such pOrtiOns _

are identified by SuperScript reference. ,
Geometry for the calculations iS depicted in FigUre B1.3 The sheath is as-

i

sumed to have radius a, _nd the collector radius H. The radial and tangential

velocity components in the "tlnd(sturbed" region (sheath edge) are _'r and Vt' res-

pectively, and tho.qe at the collector _urface ur and Ut. The Surzace potential of

the colle_t0r iS V S. The potential {n th_ _heath (s asSu_ned to be a fltnct{on of

ra_i{al d{Stance from the c0U_ctOr and {o be monotonic. The plasma is assumed

cOlli_ionles_, that is, orbit l{mited theoi-yapplies, and energy and _ngular mo-

m_ntu_ are aSSumed constant for each particle.

The integrt_lrequirin_ solution for current densities due to primary elec-

tronS3.,2 and ions, and b_ckscbttered elect_'ons is

, , Figure B1.
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.... d_ R dE R dJi
Jt 4_R 2 4wR2 _ (E r, 01_) (B1)

whore tim subscript I statlds for _tther e (electronS} or p (H+ ions}, and #d and E R

arc;the angle and energyat impact on the collectoz'{seeFigure Bit.

, -: For _ecortdnry electron current, solution must be found f0r3'2

i 4,.2 //2 djn

!:' where s (E R) is the secondary electron yield aS a function of eleetrort impact

_ energy.

- TheSe integrations cannot be performed directly because the distribution

_. function for. the particles at the collector is unknowti, and therefore we can not

_:. determine dJi/dE R. However, we do know the distribution at the Sheath edge, and

=: can therefore determine dJi/dE a. If we assume the plasma to be colllSi0nle_S, we

;:,, can also convert the limits on E R and OR to limits on E a and 0a, and perform the

;_ required integrations On these variableS.

i:i' I.I Condilion._ for I.:oileelion

- '", In order tO contribute t0 ctlrrent collected at R, a particle muJt have energy

: ' E R __ 0 and direction 0R -_ 0 <- s/2. Since the plasma is aSSumed collisionlesS

-:_: and V(r) iS a_umed monotonic, each particle's _nergy and angular momentum

! i_- must be conserved. Assume the particles of interest have charge -e. Energy
)' c ,nServ_tlon demands

:_!_. Angular momentum c0nServation tiemandS
=!!.

_' Ru t = avt (_ Ru sin {JR "-av sin 8a (B41
-_, . i
: _,

- _i: Where

....:' ":+tit2 ) 1/2 and v-- vp:!. u = (i_ (Vr2 + ) i/2

_ '-=

. .:, , 480
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Soivtng for,Ea and ea itlterms of E R end _)R yleldS the conditions for collection3

_0 -_0a_- sm'l E a - o
0-_0R<- _

(B5)

_ E R _0__> E _>E _ 0 forV S _0 (attraction)

a o -eV S for V S __0 (i_epulsion)

|.2 Eaer_yFormat

An iSotropic Maxwellian v.elocitydistributionin three-dimensionS has a

diStrlbutiOngiven by

f(_) = _ exp - (B_)

We are interested _ a two-dimenSional distributionwhich can be found from

21t

g(Vr' vt) -- f(Vr'"t _in X o vt cos %) dx (B7)

Substituting for f(_) and integrating° we have

vt exp t ' (B8)

LangmuIr I gives the incremental current across the sheath as

di --4_ a2 n e #r g(Vr' vt)dVr dvt (Bg)

Th_rl°

a hi"( "i ]312 r. iiv2+vt ,l

and, chat_gi.g to E a. I s coordinates We ltaVe 3
k
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a2
. / evi _I/2 2 _ exp _in_aCOSCad%dE ¢B11_dJl"7 hie\2--_t/ eeVf _ a

as required,

i 2. PIiI_,IAII_ ..XNI}II.tI'KSC,VI'I"EIII':I)P.._,Itl'ICi,ECIIIItI.,"NT I)ENSII"IF._

: Sincebackgcatteredelectrorlcurrentdensityisconsideredtobe simply a

fractionof the incidentelectroncut'rentdensity,the same integrationappUes tO

both. The caiculationforpositiveion collectibtzisthe Same as tot electroncoUec-

tionwRh appropriatesignchanges toaccountfor thepositivecharge, and using the

ionmass and temperature. In Eqs. (Bg)to (Bll),the signon the leadingcharge

has been Suppressed. Appropriate signswillbe St_ppliedinSectionB. 5.

The integrationto be performed is

= -_ dO. dE
Ji _-_ nie_2-_i/ 2 sin 0a cos 0a Ea exp eV i a a"

(eVi)2E 0 0 (B12)

Cauffman 3 evaluatesthisintegraland find_oin agreement _#ithLangrnuir1

• Ji= Jioexp VS -<0 (RepuLsive)

\ t/

where

leVi _I/2
J/O ; hie \2-'_'mmt/ .,

Since the interesthere is intnodellngcharginginsub_tOrm_ with nophotoemission,

we eXpectVS negative. Thus, electront_are repel.i,ed and ionsattracted.So we
have for electrons

•" Je = Jeo exp (B14}
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: fo_ iOnS

Where the minus sign reflects the fact that ion_' are attracted by negative V S. For
7 bacRscattered electrons.

:,: where _ is the backscatter coefficient.

'I,, 3. SECONDARY ELJ?,CTRONS DUE TO ELECTRON IMPACT

_ o

i_. Secondary yield aS.a-function of electron impa_t energy h_ been given by

_:' Sternglab_. 4 as

_i, ' ER ER

_=;-_. 8(ERI ffi7.4 8m _ exp 2 (A4)

-._. where 6m is the maximum yield and eVm the energy at which the mbximum yield
, i_ Obtained. To determine secondary electron current density, we must multiply

,... the left hand _tde of equation (Bill by &(ERI and integrate. Thus we need
=.!_:

....._, _.a , 2 _ z_a+eVsl
_ Js i_ _ ;ve--__._ • - o eV m

i_. . Ea Vs

_i_i' ×exp _-2. j/ jSinOaC°S 0ad%dE a (BI_)

),'

,:; Which iSCa_Iman's3 eqttatibttfor_econtiaryelectrons,exceptthathe uses a

_ec Or dependence of !_ on 9r whlch is not ue_d here. The 0a integral is the _ame

":":' aS before anti ytelds

!'!' JS Jeo i (Za+eVsl_ "_"

:,:i:,;<,, (eVelleVm EO i

':: 483
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/ v \1/2
NOW, sequentially setting X2 ffiEa + eVS and _ -- (eVe)" i/2 x +_v'v_m/ and sub,sdotutll_, we rind

/_bTS Ve _/I z V. '/2 6

where

/v.\ 1/_ /v \1/2

IL) • ")
_-V_e forvs >o

I10 ;

I kl/'
iv / {.r vs _ o

Sincewe are colllILclerlngBubstorm C_ISesonlyhere. the conditionVs -_0 isof

interest.FOe thigcase the integralin Eq. (B19)iSjust

J r} - exp (-rl2) dn (B201

L.

ReCalling the egpresiion for repeated integrals of the error function complement 5

7" (t'z)n---- n---T--exp(-t2) dt (B2I)
in erfc(z) _ _.

where, by definition,

in erfe(z): /i n.!eric(t)dt

and

O0

1o eric(Z) = 2_ /exp (-t2)dt = ez'tc(_)

•' 484
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and identifying.t, z and n with the appropriate variables in {B20)0 we have

So, from Eqs. (1319)and (B22),we have

JS "-_-JeoT'4b m _mSI i5erfc exp + {B23)

and we note thatthe dependence ofJs on VS iS the Same as thatofJe and JBS'

I..LE._K.X.E CI'IIIIE_I" IIE_iSII"_

Leakage currentdensityisdefinedinthe Same manner for the space model as

itwas for the +.eStfacilitymodel {SeeSe.zion5of AppendiX A). Thus, we have

vs

! where p iSbulkresistivityand I is the thicknessof the insulatingfilm.

! _. Till.: i-ll SP_,I:E_iODl.'l,

Now, the net currentdensityto the sample surfaceis

_" Jc -- "Je + Jp + JS+ JBS ° Jl (B25)

where the _i_l_son the currentdensitiesare given explicityhere, and we recall

.: thatVs inthismodel is algebraic(thatis, can be positiveor negative),although
the derivatlt)t_shave assumed itnegative.

" I The net curretlt density [plays the role ot a charging current to the surface, so
i::- that



.i: whet0 C is capacity oxpr_ssed in farad_ per square contlrnctor and whore wv

assume w_ aPO chargi .g a capacttor. Equation (B2g) ts solved in the same wsy

-_i' as Eq. (A131 on a computer to det_.rmine VS v_rsus time for charging.
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