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PREFACE .

This volume contains the technical proceedings of the First
International Interactive Workshop on Inversion Methods in
Atmospheric Remote Sounding, held in Williamsburg, Virginia,
December 15-17, 1976. Seventy-three invited scientists from seven
countries, representing universities, research laboratories, and
U.S. Government agencies, participated in the Workshop. The pur-
pose of the Workshop was to provide an interdisciplinary forum to
review and assess the state of the art in Inversion Methods avail-
able for retrieving information about the atmosphere from remotely
sensed data. '

Twenty-one invited papers covered the mathematical theory of
Inversion Methods as well as the application of these methods to
the remote sounding of atmospheric temperature, relative humidity,
and gaseous and aerosol constituents. The emphasis was on the
assumptions, methodology, resolution, stability, accuracy, and
future efforts needed in the various Inversion Methods. Also
included are invited papers on the Direct Radiative Transfer
Methods and results relevant to the Inversion Problem. The latter
were presented in a special session on Radiative Transfer Methods,
held jointly with the Optical Society of America Topical Meeting
on Atmospheric Aerosols, which preceded the Workshop. One of the
major Workshop objectives was to enable researchers in different
areas' of atmospheric remote sounding to compare and optimize the
utilization of these inversion procedures in their respective
remote sounding techniques. Ample time was allowed for dis-
cussions following each paper and in two open discussion sessions.
This fulfilled an important objective of the Interactive Workshop.
Discussions presented were recorded and the transcripts post-
edited. Each discussant edited his/her portion of the statements
with the aim of improving its clarity without changing its sub-
stance.

Since NASA is involved in developing several remote sensing
experiments designed to monitor the atmospheric constituents and
properties from aboard space platforms, the undersigned suggested
to M. P. McCormick, Langley Research Center, that organization of
an Interactive Workshop dealing with the mathematical aspects of
Inversion Methods will greatly benefit all researchers concerned
with inversion and radiative transfer methods. He, along with
J. D. Lawrence, Jr., Langley Research Center, and M. Tepper, NASA
Headquarters, concurred and supported the idea with the result
that the undersigned undertook the assignment of organizing such
a workshop with the goal of making the proceedings of the Workshop
readily available to the scientific community.

To ensure proper representation of major disciplines involved,
a Workshop Program Committee, composed of A. Deepak (Chairman),
01d Dominion University; M. P. McCormick (Associate Chairman),
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NASA Langley Research Center; B. M. Herman, University of Arizona;
J. D. Lawrence, Jr., NASA Langley Research Center; and M. Tepper,
NASA Headquarters, was set up. The Committee was ably assisted in
this endeavor by the following Program Consultants: M. T. Chahine,
Jet Propulsion Laboratory; B. J. Conrath, NASA Goddard Space
Flight Center; A. L. Fymat, Jet Propulsion Laboratory;

J. Russell, III, NASA Langley Research Center; and E. Westwater,
NOAA/Environmental Research Laboratory.

Dr. Tepper opened the Workshop stressing the significance of
inversion problems to NASA and its programs involved in the
monitoring of atmospheric environments of the Earth and other
planets. The challenges inherent in the inversion problem were
perhaps best characterized by his analogy that the problem
of the Inversion Method was like that of unscrambling an eqgq,
wherein one investigates the scrambled egg to determine what it
was like originally.

The undersigned wishes to acknowledge the enthusiastic
support and cooperation given him by the participants, the mem-
bers of the organizing committee, the program consultants, the
session chairmen, and the speakers in making the Workshop a very
stimulating and valuable experience for everyone. Special thanks
are due M. P. McCormick whose wholehearted cooperation and active
support as Associate Chairman assured the success of the Workshop.
Commendations are due the Science and Technical Information Program
Division and especially the Technical Editing Branch, for their
cooperation and high quality of workmanship in publishing this
Proceedings. Last but not least, it is a pleasure to thank and
highly commend the superb job done by Mrs. M. "Sue" Crotts both
in helping with the organization of the Workshop and with the
excellent quality of typing of the manuscript.

Behind every successful remote sensing technique is at least
one reliable Inversion Method. I hope these Proceedings will be
a lasting contribution to the field of Inversion Methods.

Adarsh Deepak
Editor
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HYBRID METHODS ARE HELPFUL

H. C. van de Hulst
Leiden University

A basically simple problem like multiple scattering in
a plane layer often permits the convenient use of different
methods joined together. Sample numerical results to illus-
trate this point refer to X- and Y-functions, asymptotic
fitting, the small-loss approximations, polarization in
high orders, and photon path distribution.

I. INTRODUCTION

Methods to solve problems in radiative transfer and in multiple
scattering exist in such a wide variety that I shall not attempt
another review. 1In any practical problem, the method must be
chosen on the basis of expediency, and this, in turn, depends on
many factors, such as: range of variables; desired accuracy of
results; occasional or frequent computations needed; cost, avail-
able funds; and experience and taste. I emphasize in this paper
the fact that in many situations a hybrid approach containing ele-
ments from different methods, though not "elegant", is the most
practical. A normal rose or fruit tree consists of different
varieties skillfully grown together because the desired properties

of roots and fruits (or flowers) are not met in a single variety.

Before illustrating this point with a number of examples taken
from Ref. 1, I wish to make a general remark. We all have learned
to respect the power of mathematics. Solving a problem in mathemat-—
ical physics often is like going somewhere by train. The mathematics

is like the train: we enter at a station called equation and we get
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Fig. 1. A schematic diagram illustrating the advisability
of accessing from physical concepts to intermediate results, whose

interpretation may be as Iimportant as that of final numbers.

off at a station called solution (see Fig. 1). Once inside the
train, we can relax and look out of the window, for nothing much
can go wrong. In contrast, the roads from our home to the station
and from the last station to our destination may be time-consuming,
uncomfortable, or even hazardous. My point is that in many problems
the train is suburban: it stops at certain intermediate stations.
Boarding the train at one of those stops may be quite as safe,
respectable, and economic as entering at the initial station which
in our topic is called equation of transfer. At any rate, it is
worth a try to find out which is simplest. Likewise, it often
pays to evaluate and physically interpret certain intermediate

results which is the same as getting off before the end station.

The philosophical message is that combining physics with
mathematics makes a hybrid method anyhow. Therefore, we might as

well experiment a little to find the most convenient connection.



II. THE X- AND Y-FUNCTIONS

Conéider any given landscape (Fig. 2) with an isotropic light
source placed at a point P and no other source of illumination.
Looking at this landscape from a distance, say from the direction
Q, we see a blob of light in which the source itself (dimmed or not)
may still be discernible. We define the gain (from P to Q and con-
versely) as the intensity that reaches Q from source plus illumi-
nated landscape divided by the intensity that would reach Q from

the bare source placed at the same distance.

This definition is given in preparation of a discussion of the
well-known X- and Y-functions for isotropic scattering. These
functions were introduced by Ambartsumian in the early forties and
extensively studied by Chandrasekhar about 1945, who defined them

as solutions of certain simultaneous nonlinear integral equations.

all arrows to Q

Fig. 2. A schematic sketch of a "landscape" with an iso-
tropic source at P for illustrating the concept of gain between

point P and a direction Q.



Far simpler, in the gain definition just given, we may take
as the "landscape" a homogeneous slab of isotropically scattering
particles with optical thickness b, the source P just outside the
slab, and the direction Q subtending an angle 6 with the normal.
The X~-function then is the gain with the source seen in front of
the slab and the Y-function is the gain with the source (dimmed)
seen through the slab. This is all there is to it: no problems
of existence or uniqueness if we board the train at this station.

Both functions depend on three variables: b, 4 = cos 6, and a =

the albedo for single scattering.

I was quite pleased when in 1947 I rediscovered these defi-
nitions, from which Ambartsumian had started, and found that cer-
tain properties of these functions can be far more easily derived
from these physical definitions. Since that time, I do not hesi-

tate to use the two approaches mixed.

Figure 3 shows a selection of values of these functions. The
Y-function usually is less than unity because the blob of scat-
tered and multiply-scattered light does not fully compensate the
dimming of the direct source. The X-function always is greater
than unity because it includes a term unity arising from the
unobstructed light from the source. The X-function for a semi-
infinite atmosphere (b = ®) usually is called the H-function. If
b = and a = 1, all radiation incident on the atmosphere is
returned as diffusely reflected light after many scattering events.
If the landscape were a mirror reflecting all incident radiation,
we would see the source double from any direction, which would
mean X(u) = 2. The diffuse reflection leads to the same average
value of 2 for H(u), but the distribution with y is different,
ranging from H(0) = 1.0 to H(1l) = 2.908.

As a counter example, in which the physical picture is of
little use, I mention the extension of the H-function to arguments
outside the domain p = 0 to 1. Such an extension is needed in a

variety of problems. It is then convenient to plot the inverse
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Fig. 3. Reminder of the dependence of the X- and Y-functions
for isotropic scattering on the variables b, a, and u. The X-

function for b = « is called H-function.

function {H(n)} ! against the inverse argument u—l. F%gure 4 gives
an example which happens to refer to anisotropic scattering but
this makes no essential difference. We see that the graph con-
tinues to curve down for u_l < 1 and reaches 0 at u_1= -k, where

k is the diffusion exponent, i.e., the value for which 3/se1f—
consistent solution to the transfer equation in an unbounded medium
exists in which the dependence on optical depth 1 is given by the

- -1
factor exp(* kT). The values and slopes at u b 0 and u = -k

occur in several standard problems.

We have taken these illustrations from isotropic scattering
and one example from very simple anisotropic scattering. Phase
functions of arbitrary form, or phase matrices with polarization,
require a more elaborate set of formulas. Yet, the situation
remains basically the same: carefully preparing the access at
intermediate stations usually pays off in clarity or in speed of

computation.

A final remark on the X- and Y-functions for single-scattering

patterns of arbitrary form is that these same functions appear in
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usual domain 0 £ yu £ 1 for linearly anisotropic scattering with
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conceptually quite different methods. The sketch in Fig. 5, which
we shall not explain in detail, shows four important methods of
solving radiation transfer problems. In the second method,
labeled "invariant embedding," the X- and ¥Y-functions are intro-
duced to describe the effect of a narrow layer added to one or the
other side of a slab. The method of singular eigenfunction expan-
sion works from an entirely different concept, in which the com-
pPlete set of eigenfunctions for the unbounded medium is first
established. The proper coefficients of each that match the
boundary conditions are then found by applying orthogonality
relations and it is in the course of establishing the half-range
orthogonality relations that the X- and Y-functions have to be

introduced.
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Fig. 5. Schematic representation of some commonly used
methods to solve problems of multiple scattering or radiative

transfer.

III. ASYMPTOTIC FITTING

Before describing this method, I wish to convey by means of
Fig. 6 an impression of the range of variables in which the sim-
Plest approximations suffice. I refer to the legend for details.
The diagram shows that, if the scattering is conservative, or
nearly so, a wide range of four decades in the optical thickness b
exists, in which we cannot in practice say: the layer is very thin,
or it is infinitely thick. This is annoying because the conver-
gence of almost any method is small for large b. This point is

illustrated for the successive scattering method in Fig. 7.

The incidence is normal in this example and the scattering is
isotropic, so that the source function for first-order scattering
J, is 1/4 e—T in both examples, In the right-hand side example, the
layer thickness is 1. At each successive scattering there are
losses at both sides and the net effect is that after some five

scattering events, the distribution has become symmetric and drops
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Fig. 6. Representation of the range of the variables b and
a in which the simplest approximations suffice. The very simplest
approximations are valid with an accuracy better than 1% in the
shaded areas in this diagram: left single scattering, right the
equations for a semi-infinite atmosphere. The next approximations,
shown by hatched areas, are left single plus double scattering and
right the thick-layer asymptotic formulae, again to a 1% accuracy.
The corresponding 5% limits are shown by dotted curves. Scales are
linear in log b and Y1 = a and the gquantity treated is the plane

albedo for normal incidence with isotropic scattering.

with every further scattering by a constant factor 0.6192. The con-
vergence, then, is as a geometric series with this ratio. However,
on the left-hand side example, the thickness is b 2 10. Here, the
convergence seems rapid near T = 0, but is not at all visible yet at

T 2 3. Eventually, the convergence will be as a geometric series

with ratio 0.976 (for b = 10), or 0.993 (for b 20), or as a

series with terms proportional to n-a/2 (for b = »}. In any case,

this convergence is too slow to make the method of successive

scattering attractive.
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Fig. 7. Demonstration of the convergence of the method of
successive scattering by plots of the source function against
optical depth T in successive orders. The example refer's to per-
pendicular incidence on a layer with isotropic scattering. Left:
total depth 2 10, slow convergence. Right: total depth 1, rapid

convergence.

In this domain, we have elaborately used the doubling method.
It is clear that by the doubling method we can in ten steps bridge
the range of optical thickness b = 1/32, 1/16, 1/8, ..., 8, 16, 32,
but that it is silly to try to carry this process to b = =, which
we can never reach. Instead, we wish to use the known asymptotic
forms of the reflection and transmission functions for sufficiently
large b. The grafting of the different approach (asymptotic theory)
onto the numerical computation (doubling) makes a hybrid compu-
tational method and we have called this method asymptotic fitting.
It uses the doubling results in exactly the same way as we would
use measured data to find the constants in an equation of known

form.




The approach to such a known form, prescribed by asymptotic
theory is well illustrated by Fig. 8.

namely isotropic scattering, and the ordinate is the source func-

tion.

and higher there is a range of T in which the graph is straight.
In this "diffusion domain" the source function goes as exp(-kT) as

in an unbounded medium.

Again the example is simple,

far enough from the top side, where injection takes place

Jt)

1072

1073

1074

Fig. 8.
in six situations which differ only by the assumed thickness b of

0.90 and

a .080
Ho=05
isotropic

It is seen that not quite at b = 4, but certainly at b = 8

The diffusion domain is thé range of T

10

the layer and in which the single scattering albedo a

1"

the cosine of the angle of incidence u, are kept constant.

b = 8 up the curves show a straight middle portion (diffusion

domain) and the asymptotic laws are valid.

10

T

12

The source function is plotted against optical depth

From



(t = 0 to 3), and from the bottom side, where the escape of radi-
ation becomes noticeable (T = b - 2 to b). Using this knowledge
and taking the results of three successive steps, say b = 8, 16
and 32, yields all desired functions and constants for a semi-

infinite medium.

IV. THE CORNER OF SMALL LOSSES

In the problem of reflection and transmission by a homogeneous
slab of scattering particles, I like to display the results in a
diagram of a, the albedo for single scattering, against b, the
optical thickness of the slab. Such a representation is chosen in
Fig. 9. This figure may be regarded as a companion to Fig. 6,
because it shows in a different way (roughly delineated by the
dotted curves) in which area we may say that the result is as for

b = © and in which area we may say that the result is as for a = 1.

0.5

0.25

0 .2 .4 5 .8 .9 .85 .99 10 a

Fig. 9. The full domain of albedo a and layer thickness

1

b is displayed on linear scales of V1 - a and (1 + b) . The

curves show the values of the reflected flux portion (plane

albedo) for normal incidence with isotropic scattering.
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At one corner, defined by a = 1, b = ©, the reflection is com-
plete. Small losses by escape from the bottom of the slab occur if
b is not quite . Small losses by absorption in the atmosphere
occur if a < 1. These losses are not additive and their combined
behavior has posed nasty problems in many papers, numerical and
analytical alike. Yet, the situation is simple if we refer to
asymptotic theory. Both of these losses have the same dependence on
angle of incidence and escape because they both occur in deep layers.
They add in a way which is universal, except for scale factors.

This is shown in Fig. 10 which is an enlarged portion of the top
right-hand corner of Fig. 9. The dotted curves, which have known
tangents in the corner domain, now indicate the exact loci where
the losses by escape from the bottom (i.e., into the black ground)
and the losses by imperfect scattering in the atmosphere have a

fixed ratio.

V. POLARIZATION IN HIGH-ORDER SCATTERING

The fine visual observations of polarization of the planet
Venus at various phase angles published in Lyot's thesis in 1929
have outlasted 40 years before the first tentative interpretation
could be replaced by a more definite one. Lyot conjectured that
polarization might be completely absent in all but first-order
scattering. This guess was not correct. Since 1970, the accuracy
of both the measurements and the calculations have been greatly'
improved. Most authors now agree that the polarization curves of
Venus measured at different wavelengths present convincing evidence

of concentrated sulfuric acid as the main constituent of the drop-

lets.

Let us return to the basic problem: how much polarization can
be present in the light arising from double and multiple scattering?
I have worked out an extreme practicing example based on Rayleigh
scattering. Radiation is assumed to fall on a semi-infinite atmos-

prhere under 60° from the normal and we seek to compute the intensity

12
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Fig. 10. Enlarged portion of a corner of Fig. 9. Heavy
curves give the combined loss = nonreflected fraction of incident
flux and dotted curves show the ratio of the two kinds of loss.
The curves near the loss-less corner have a universal form inde-

pendent of the phase function.

and polarization reflected back to the source (as for part of a

planet in opposition). The degree of polarization in this example
is 0% in the first order, 9% in the second order, and surprisingly
goes up even further to 13% and 14% in the third and fourth orders

before it settles to 2.2% in very high orders.
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If now we add a factor a” to the nth order and take the sum,
we obtain the intensity diffusely reflected back in each polariza-
tion with a = single scattering albedo (Fig. 11l). The effect just
mentioned then shows up as a maximum polarization of 6.1% for
a = 0.95. The simplest way to collect these results was to com-

bine data obtained by very different methods.

VI. PHOTON PATH DISTRIBUTIONS

The understanding of many problems, for instance, the for-
mation of planetary absorption lines, is greatly aided by a clear
knowledge of the photon path distributions. It is well known that
such distributions may be obtained by an inverse Laplace transform
from the dependence of the reflection function on a (albedo for
single scattering). This knowledge may be put to use in various
ways: the inverse Laplace transform may be applied to any form in
which the reflection function is known--analytic, numerical, or
asymptotic. A systematic exploration of this possibility has made
it possible to combine smoothly the results for very low orders,
where ad hoc calculations are fast, with those of high orders,

where an asymptotic apprcocach is more appropriate.

I shall show two examples, both referring to finite layers
with isotropic scattering. For very low orders, it is possible
to derive the explicit form of the photon path distribution. This
is done for n = 1 and n = 2 in Fig. 12 (with b = l( u = uo = 1) on
the basis of computations made by Irvine. It is much easier to
derive only the average path <Kn> and the variation Oi from the
average path. A smooth distribution curve with a convenient form

and with the correct average and variation then is

_ . m k-1 -m
Pn(l) = 5727'(mk) e

where m and k must be solved from

14
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Fig. 11. Construction of the curve of polarization against

single scattering albedo a for reflection into the precise back-
ward direction against a semi-infinite Rayleigh atmosphere viewed

and illuminated under 60O with the normal.
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Fig. 12. Average photon path length per scattering event for

reflecting against or transmission by a finite isotropically scat-

tering layer with optical thickness b.
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k = m<A > = m?0

and I'(k) is the gamma function.

I have plotted, in Fig. 12, as dotted curves these distribu-
tions for n = 2 and n = 5. The fact that the dotted curve for
n = 2 comes already close to the exact curve means that at higher
n for most practical problems we do not have to worry about the

exact curves but can use the approximation with full confidence.

The larger the total number of scattering events, the larger
the combined optical path. In an unbounded medium, we simply have
an average path length per scattering event equal to 1. In order
to show the transition from very thin to very thick layers, I have
therefore plotted in Fig. 13 the average path length divided by n.
Again, exact results for n = 1 and n = 2 have been combined with
exact asymptotic results (value and slope) near n = ., Note that
toward large values of n, the photon again "forgets" from which
side it came so that the curves for transmission and reflection
converge toward the same value and become tangent. For very thin
layers (b £ 0.1), it is immaterial from the start whether we con-

sider reflection or transmission.
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Fig. 13. Path-length distribution of radiation diffusely

reflected back in vertical direction after n scattering events

from a slab of isotropically scattering particles of optical thick-

ness 1 exposed to vertical illumination. The exact forms, known

for small n, rapidly approach an asymptotic theory.
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SYMBOLS

single scattering albedo

optical thickness

X-function for a semi-infinite atmosphere (b =)
source function for first-order scattering

+ 1/u

photon path distribution function

intensity for the polarized components (subscript & is for

parallel component; and r is for perpendicular component)
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s' 1/(b + a)

X X-function for isotropic scattering
Y Y-function for isotropic scattering
(k) gamma function
0 zenith angle
A wavelength
<Xn> average path
u cos 6
0n2 variation from the average path
T optical depth
REFERENCE
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DISCUSSIONS

Green: I wondered if your slide that you did not talk about had
something to do with multiple scattering and path lengths?

van de Hulst: Yes, this slidel shows the average path length per
scattering. It is simplest to think that you have done a Monte
Carlo calculation and separate the paths out by the number of
scatterings. Those which have two successive scatterings, you
divide by two. And those which have five successive scatterings
you divide the total path length by five. Then that comes at
infinity to a certain value which is not too difficult to calculate.
These have been combined in the graph with definite values shown
as dots. When the thickness is not very large, in .transmission
and in reflection, you get approximately the same path lengths.
And also, if you go to the very large n, the light doesn't know
anymore from which side it came, so the transmission and reflec-
tion curves again coincide.

lSee Fig. 13 in this paper.
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REVIEW OF RADIATIVE TRANSFER METHODS IN

SCATTERING ATMOSPHERES

Jacqueline Lenoble .
Université des Sciences et Techniques de Lille

The problem of radiative transfer in a scattering
plane-parallel atmosphere is discussed, considering the
exact analytical, the computational and the approximate
methods. Some results of numerical comparisons are given.
Finally, the difficulties of realistic atmospheric models
are emphasized.

I. INTRODUCTION

The problem of radiative transfer in scattering atmospheres
can roughly be divided into two cases: (1) when the plane-
prarallel approximation is acceptable a great deal of methods are
now availaple, and it was worth trying a comparative review of
the methods and numerical comparisons between them; and (2) when
the atmosphere cannot be assumed to be plane-parallel (twilight,
finite clouds), the problem reaches a much higher degree of com-
plexity and there is no more a question of choosing between

existing methods, but of seeking the development of new methods.

II. EQUATION OF TRANSFER (Ref. 1)

The general equation of transfer has the matrix form

- >
Yo @B 1B aw
yp ,\lf(r, ’ I(r,0') dw

- > - } (
+ (1 - wo(r))g(r) 1)

¥

> > > > > >
Q.VI(r,) = K(x) {- I(x,Q) +
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where E(;,ﬁ) is the radiance‘matrix at a point (;) in the direc-

tion (5). R(r;Q,Q') is the phase matrix;K(;), the total extinc-

tion coefficient (absorption + scattering):; and ao(;), the single
->

scattering albedo. g(r) is the source function due to thermal

emission; it will be neglected in this paper.

> >
The radiance I(r,Q) is governed by equation

- >
> > > -> - w,, (x) > > >
Q.VI(r,2) = K(r) -I(r,RQ) + {P__(x;Q,Q") I(x,Q")

aT II
+ P (£:9,8') 0(.8') + P__(£:0,8") U8
IQ ’ r I IU r r I
> > > > >
+ P (ri,0") V(r,2")} dw' (2)

and depends on the three other Stokes' parameters Q,U,V.

Neglecting the polarization, the approximate equation

- >
> > > > > > wo(r) > > > > >
Q.VI(r,R) = K(r) —I(r,ﬁ) + o p(xr;Q2,Q") ILr,Q") dw'

> > > (3)
can be used; p(r,R2,2') is the phase function.
Table 1 shows an example of the error done in this approxi-
mation; it can be of the order of 10% for molecules and very small
particles, but becomes negligible for particles with a Mie param-

eter a larger than 4 or 5.

ITT. HOMOGENEOUS PLANE--PARALLEL ATMOSPHERE

A. Generalities

The simplest case is an homogeneous atmosphere limited by two
infinite parallel planes and illuminated on its upper boundary by
the solar beam. The only position variable is z or better the
optical depth 1 = fi K(z)dz, where Z is the altitude of the upper
boundary; the total optical thickness is T, = &f K(z)dz. The
direction 5 is characterized by the zenith angle 6 = Arccos p and

the azimuth angle ¢.
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TABLE 1

Error in Percent When Neglecting Polarization
in the Computation of T

'[_‘1 = o, T =0, B = uo = - 1

ao Rayleigh o =1 o =2 a =25
0.99 5.29 5.37 1.19 0.07
0.9 8.40 9.40 3.77 0.27
0.8 9.17 10.86 5.91 0.46
0.6 8.19 10.51 8.25 0.58
0.4 5.89 8.04 7.59 0.48
0.2

3.06 4.40 4.13 0.24

The equation of transfer is in this case

w 2m o+l
" aI(T,al:El[Q) = I(T;U:¢) — ﬁj J’ p(u,¢;u'l¢')
-1

w T/u
(o]

1 ] 1 1] _2 -
x I(t;u',¢") du' d¢' + o p(u.¢,uo,¢o)F e (4)

where TF is the sun irradiance at the upper boundary on a plane
perpendicular to the solar direction (u0,¢0). Here, I refers to
the radiance of the diffuse flux excluding the direct solar beam.

The boundary conditions are

I(osu < 0,9) =0, (5)
and I(Tl;]..l > 0,¢) given by ground reflection.

Integrating Eq. (4) with Eg. (5) we get the integral form of

the equation of transfer

T
1

I (tiu,g) = I+(T1?Ur¢) e +-ﬁ [ J(tiusple
T

(0 >0 4) (6a)
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t-T

T
I (T, 9) = T (0 d)e M - %—f J(tip, e " dt

0
(H <0 ¥) (6b)
with
wo 2n +1
J(Tiu,9) = Ef J pl,dsu',9") I(tiu',¢') du' dé'
0 -1
ao /1
+—4P(UI¢7UOI¢O) Fe
= gource function (7)
The transmission (S) and reflection (T) functions are defined
by
TV 0 541,9) = o= S(T, 51,05 ) TF (8a)
0 itl, = amu Tl,u, ,uo,¢o
I (T im0, 8) = —— T(T,:iu, b ) 1F (8b)
Tll ]Jl¢ = 4Ty (Tllu"bruo,d)o m

They are useful when the main interest is in the outgoing (dif-
fusely transmitted or reflected) radiation.

We have seen that the equation of transfer contains the phase
function p(6) as kernel. This phase function is either given by
a table of numerical experimental values or by a mathematical
expression. Between the different possible forms, Egq. (9) gives
the expansion in Legendre polynomials:
L
L

P(8) =], _ B, P,(cos 6) (9)

its main advantage is to allow an expansion in azimuth of the
radiance (and of all the radiation parameters):
I(tiu,9) = ) (2 = 6_) 1%(t;u) cos[s(¢ - ¢)] (10)
! =0 os o

s

using Egq. (10) with
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PGusoiu',¢") = [T _ o (2 - 8_) cosls(¢p - ¢)]

X Zi - s By Pi(u) Pi(u') (11)

the equation of transfer with three variables can be split into a

system of equations with only two variables

1% (ts) _ s Y ok 2 . T/u
- = I (i) - 22 _ g By PL(W PL(u) F e
O (4l
] L L L, , s, .
P f—l 22 = s Bl Ps(u) Ps(u ) I (t;u") du’
S = O, 1 eee, L (12)

I will give here a brief description of the methods for the
plane parallel case; it follows a report prepared by a Working

Group of the Radiation Commission (Ref. 2).

B. Exact Analytical Methods

By exact analytical methods, we understand the methods
leading to a solution for the radiance in terms of mathematical
functions, which have finally to be tabulated; therefore, the
accuracy of these methods may not be better than the accuracy of
more direct numerical methods. Their main interest is in the
understanding of the mathematical structure and of the general
behavior of the solutions. Their basic drawback is the difficulty
to use these methods in the case of a real atmosphere.

Among these methods we will classify the Singular
Eigenfunctions (or Case) method, the Wiener-Hopf method, and the
reduction to H-~ or X- and Y- functions which can be founded on
the principles of invariance. This reduction is straightforward
only for very simple phase functions, such as isotropic or
Rayleigh scattering. In these cases, many accurate tables of the
H- and X-, Y-functions have been computed and this makes the

method a reference for testing other methods in the simplest cases.
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C. Computational Methods

By computational methods, we understand methods specifically
designed for computers, but they may include some analytical
treatment before the numerical procedure, as is the case for
the spherical harmonics. The spherical harmonics solution is
based on a discrete spectrum of eigenvalues v and can be seen as
an approximation to the exact Case method which uses a continuous
spectrum. The discrete ordinates method is indeed very similar
to the Spherical Harmonics. In the Monte Carlo method, one photon
at a time is followed on its path through the atmosphere and each
event is defined by a probability distribution. The Dart method
uses a discretization in radiation streams whose arrangement is
based on a regular dodecahedron.

The successive scattering is based on an iteration starting
from the primary scattering. The Gauss Seidel method uses
another possible scheme of iteration with about the same advan-
tages and drawbacks. The matrix operator is based on the inter-
action principles: the reflgction and transmission of the layer
(TO,TZ) are expressed in terms of those of the two layers (To,Tl)
and (TI,TZ). The adding method uses the same principles with a
different algorithm and it reduces to doubling, which is much
faster, for an homogeneous atmosphere. On the other hand, the
invariant imbedding uses the addition of infinitely thin layers
to obtain differential equations for the reflection and trans-
mission functions.

Finally, in the case of very thick layers, asymptotic
relations can be derived; the scattering function of a layer of
optical thickness Tl is expressed in terms of the same function
for a semi-infinite layer; the correcting term contains the solu-
tion of the Milne problem for the same atmosphere and decreases
as erszl, where v is the inverse of the higher eigenvalues which
appears in the Case and in the Spherical Harmonics methods;

relations exist for the transmitted and the internal radiance.
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Table 2 shows an example of numerical comparisonsl between
the Spherical Harmonics, the Matrix Operator, and the Successive
Scattering methods. . It gives the intensity at some depths T and
for some directions M, for the case of a haze layer with
T, = 1, w, = 0.9 and normal incidence (uo = - 1). The relative

difference A between Spherical Harmonics and Matrix Operator

TABLE 2

Intensity Haze L

Tl =1, wo = 0.9, uo = -1
Spherical Matrix A g Successive A

Harmonics Operator © Scattering S
0 1 2.794-2 2.789-2 1.8 2.831-2 12.9
0.6 3.913-2 3.911-2 0.5 3.935-2 5.6

0.5 1 1.374-2 1.371-2 2.2 1.390-2 11.6
+ 0.6 2.210-2 2.208-2 0.9 2.218-2 3.6
- 0.6 1.153-1 1.153-1 0.0 1.157-1 3.5

- 1 2.240 0 2.244 0 1.8 2.239 0 0.4
1 0.6 2.007-1 2.007-1 0.0 2.019-1 6.0
- 1 2.967 0 2.972 0 1.7 2.975 0 2.7

Authors Devaux Plass Quenzel
Kattawax

All the numerical results presented in this paper have been
computed in the framework of a comparison program sponsored by the
Radiation Commission and the author is greatly indebted to all

contributors.
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values is always smaller than two-tenths of a percent. 1In the
Successive Scattering method, the accuracy can be increased by
increasing the number of iterations and the computation whose

results are given here has been stopped in order to achieve an
accuracy of about 1%; it is even better than that.

The computation time is shorter with the Spherical Harmonics
method than with the Matrix Operator method, exéept maybe when a
very large number of solar directions are wanted at the same time.
FPor the Successive Scattering method, the computation time is
quite competitive in this case, but it increases very fast when
60 tends to 1 and when the optical thickness increases.

Table 3 shows the accuracy obtained by Monte Carlo and Dart
methods for the same case of T = 0.2 and for various values of u.
The values plotted are the relative differences A with the "exact"
values obtained by both the Spherical Harmonics and the Matrix
Operator methods. The Monte Carlo program has been run by two
groups of authors; in both cases, the accuracy is about a few
percent, sometimes better than 1%. For the Dart method the error
is a little larger, but remains always smaller than 10%. The
time is much larger for both these methods than for the semi-
analytical methods; but their main interest is in their ability
in handling non-plane-parallel cases as we will see later.

Table 4 shows again a comparison of the intensity computed
by various methods, now in the case of a thick conservative cloud
(Tl = 64; Wy = 1; M, = - 1l). Many methods are unable to treat
such a large optical thickness without a prohibitive computation
time.

In the Spherical Harmonics method, the computation time is
nearly independent of the optical thickness. But the difficulty
here is related to the forward peak; Dr. Devaux has approximated
the phase function of the cloud by the sum of a Delta-function
and an expansion with 36 Legendre polynomials. Therefore, the

result is wrong in the forward direction (u = -~ 1) for small

28




TABLE 3

Error A in Percent Haze L

Tl =1, wo = 0.9, uo =~1, T = 0.2
H Monte Carlo Monte Carlo Dart
1 + 0.4 - 4.0 + 9.4
0.8 + 1.2 - 3.1 + 17
0.6 + 1.8 - 1.5 + 11
0.4 + 3.8 - 0.7 - 4.0
0.2 + 6.2 - 0.5 - 12
0 - 7.3 - 5.2
- 0.2 + 0.6 + 3.0 - 4.5
- 0.4 - 1.8 + 4.7 + 1.9
- 0.6 - 0.5 + 2.9 + 2.0
- 0.8 + 0.6 + 6.5 + 5.6
-1 - 0.7 + 3.4 - 4.3
Authors PLASS - KATTAWAR MIKHAILOV WHITNEY

KUZNETSOV

optical depths; it might easily be checked that the values found
at 1 = -1 for 17 = 6.4 are smaller than the values expected for
primary scattering only. Elsewhere, it is expected that the

truncature procedure gives an accuracy better than 1%.

The Monte Carlo method has no problem with the forward peak
and the results at p = -1 and small optical thickness are better
than those of the Spherical Harmonics. But the computation time
becomes very large for such large optical thickness and only one
group of authors has run the Monte Carlo program for the cloud
case. Except for p = - 1, the results can be compared with those
of the Spherical Harmonics; the accuracy seems of the same order as’

that for Haze.

Finally, the Asymptotic method finds, in the case of large

optical thickness, its own field of application. Of course, it
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TABLE 4
Intensity
Cloud Cl’ Tl = 64, wo =1, uo = =1
Spherical

T n Harmonics Asymptotic Monte Carlo

0 1 1.042 0 " 1.03 0 ~ 1.05 0
0.6 8.254-1 8.21-1 7.88-1

0.2 5.584-1 5.57-1 5.91-1

6.4 1 9.622-1 9.64-1 9.50-1
0.6 9.876-1 1.01 O 9.59-1

0.2 1.003 0 1.06 0O 1.17 O

- 0.2 1.000 O 1.11 0 9.09-1

- 0.6 1.004 0O 1.15 0 1.03 0

-1 1.840 0 1.20 0 1.15+1

32 1 5.237-1 . 5.21-1 5.59-1
0.6 5.697-1 5.68-1 _ 4.49-1

0.2 6.158-1 6.15-1 5.95-1

- 0.2 6.618-1 6.63-1 v 6.78-1

- 0.6 7.079-1 7.10-1 7.30-1

-1 7.54-1 7.57-1 7.45-1

64 - 0.2 8.929-2 9.18-2 7.45-2
- 0.6 1.458-1 1.50-1 1.25-1

-1 1.961-1 2.01-1 1.50-1

Authors DEVAUX GERMOGENOVA MIKHAIIOV

KONOVALOV

KUZNETSOV

does not apply at small optical depth for downward radiation.
But elsewhere, its agreement with the Spherical Harmonics is

better than 5%.

D. Approximate Methods

By approximate methods, we understand methods which include
a very rough approximation of the atmospheric properties or (and)
of the transfer problem. They generally give only the flux and

not the intensity, but the computation time is reduced by a factor
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Symbols are defined as follows:

exact

Eddington (Drs. Irvine, Esposito and Shettle)
Eddington + Similarity (Dr. Shettle)
Delta-Eddington (Dr. Wiscombe)

Double Delta-Eddington (Dr. Bonnel)
Two-Stream (Drs. Irvine and Esposito)
Modified Two-Stream (Drs. Irvine and Esposito)

Modified Two-Stream (Drs. Kerschgens, Raschke and Pilz)

o > » J < © e I

Exponential Kernel (Dr. Brogniez)

b ey

3.29¢

3.1/

2.5/
2.4
a
T
2.
3 T T v v T T T T T l"
0 o1 0.2 03 04 05 06 07 08 09 1
A

Fig. 1. Haze L, T, = 1, EO = 0.9, Uo = ~1, (See Ref. 2)
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N

larger than 100 or even the use of a computer can be avoided.
Moreover they give simple analytical expressions of the flux.
Between them we have classified the similarity relations which
reduce the anisotropic problem to an. isotropic one, the Eddington,
Two-Stream, and Exponential Kernel methods. Various modified
versions of Two-Stream and Eddington have been tried with success.
Recently, Meador and Weaver2 have proposed a general theoretical
framework to compare these methods. Figure 1 shows the net flux
versus T in the case of a haze layer in normal incidence(uO = - 1)
and for Eo = 0.9. The so0lid line corresponds to the "exact" values

obtained by various methods within an agreement of a few tenth of

a percent; the points correspond to various approximate methods.

The worst results are obtained by the Eddington and Standard
Two-Stream methods; the accuracy varies from a few to 10%. The
best results are given by the Delta-Eddington, the Double Delta-
Eddington,and the Exponential Kernel methods, with an accuracy of
about 1%. Intermediate performances are achieved by other modifi-

cations of Eddington or Two-Stream methods.

The results remain about the same when Eo tends to 1, but
'‘most of the methods are a little less accurate in oblique than
in normal incidence, except the Eddington method which becomes

better.

If we consider now increasing the optical thickness, we may
say that a thick conservative cloud is the worst case for the
Standard Two-Stream method (accuracy v 24%) and the best for
Eddington method (accuracy v 1%). But again, always the
Exponential Kernel and the Delta- and Double Delta-Eddington

achieve an accuracy of about 1%.

2 . .
Personal communication of their work is acknowledged by the

author.
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IV. REALISTIC ATMOSPHERES

A. Inhomogeneous Atmospheres

It must be first noted that the case we have called
"homogeneous™ is actually the case where only the extinction
coefficient K is function of the altitude z (see definition of the
optical depth 1), with the single scéttering albedo and the phase

function constant throughout the atmosphere.

A vertically inhomogeneous atmosphere occurs when mixing
ratio of scatterers and absorbers varies with height (Go function
of 1), or when the type of scattering particles varies with height

(phase function varying with T).

The vertical inhomogeneity can be handled by the equation of
transfer, Eg. (4), including the variable T in QO(T) or/and in
p(t;u,¢;u'¢'). Most of the methods reviewed for the homogeneous
case can be applied, perhaps, with slight modifications. At the
limit, the vertically inhomogeneous atmosphere can always be
approximated by superposition of thin homogeneous layers. Anyway,
it must be noted that the computation time may increase rapidly
with the inhomogeneity (for example, doubling is replaced by adding)
and that in some methods numerical difficulties or instabilities

appear (Spherical Harmonics or Discrete Ordinates).

The horizontal inhomogeneity is much more difficult to handle,

as it can be imagined from the equation of transfer

2)1/2 9I(X,v,Ziu,$) 1/2

(L - u cos ¢ % + (1 - u?) sin ¢

0TI (X,¥,2iU,9) + 0I(x,YrZil,$)
3y H 3z

- K(XIYIZ) {I(XIYIZ7UI¢) - J(XIYIZ;UILP)} (13)

where the three coordinates x, y, z and the three corresponding

partial derivatives appear. This case comprises the very important
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problem of finite clouds. Here, the flexibility of the Monte Carlo
Method (Refs. 3, 4, and 5) finds all its advant;ges, and although
a few attempts have been done to develop other methods, for
example, invariant imbedding (Ref. 6) or statistical methods

(Ref. 7), the only results obtained for finite clouds until now

have been obtained by Monte Carlo.

B. Spherical Atmospheres

For some problems, we have to consider the sphericity of the
real atmosphere. This is particularly important in remote
sensing of the atmosphere from twilight measurements or from limb
scanning by satellites.

Using spherical coordinates with reference to the local

vertical, the transfer equation has the form

2 @ - ta - uz)l/2
+ Yo sin($ - ¢ ) ———— 3 I(z,u rd_iue) =
1 - “é o’ 3(d - ¢o) o o
- K(z) {I(Z,uo,¢o;u,¢) - J(z,uo,¢o;u,¢)} (14)

where R is the earth radius. Here again, the Monte Carlo method
(Ref. 8) can be applied and the Dart method (Ref. 9) has been
especially studied for this case; but the research in approximate

analytical methods seems prcomising (Ref. 10).

C. Scattering with Gaseous Absorption

All what we have said here concerns monochromatic radiation.
A last problem appears when we have a radiative transfer problem
in a scattering atmosphere with gaseous absorption. Then, the
number of monochromatic problems to be treated becomes prohibi-

tive, even for a single absorption line. Therefore, approximate
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methods have been sought. One of them consists in introducing the

photon path distribution P(A) (Refs. 11 and 12) which is defined by

Ak
v

'gf:jz— }ax (15)
C

[se)
I(wv) = I(mo) J P(A) exp { -
o]
where the subscript v refers to the frequency v and the subscript
¢ to the continuum outside the line; P(A) can be obtained either
directly from a Monte Carlo calculation or by the inverse Laplace

transform

N '
P()) =Lr ( J , ¥ = kv/(o + kc) (16)

When P(A) is once for all obtained, the intensity at any fre-
quency of the spectrum can be obtained from Eg. (15). Moreover,
it is possible for some problems to define various mean path

lengths.

V. CONCLUSION

In the case of plane-parallel atmospheres, even with vertical
inhomogeniety, several methods can be used to obtain the complete
radiation field with a good accuracy and a reasonable computer
time. 1If only the flux and the heating rate are sought, fast
approximate analytical methods are available.

When more realistic atmospheric models must be considered,
the Monte Carlo can be used with a rather good accuracy, but at
the price of large computation times, while active research on

faster approximate methods is carried on.
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SYMBOLS

source function for thermal emission

sun irradiance

radiance

radiance matrix

upward radiance

downward radiance

source function

absorption coefficient

absorption coefficient and single scattering albedo
in the continuum

absorption coefficient and single scattering albedo
at freguency v

extinction coefficient

phase function

phase matrix

coefficients of the phase matrix

photon path length distribution
Stokes' parameters

position variable

earth radius

diffuse reflection function
diffuse transmission function
altitude

Mie parameter (ratio of circumference to wavelength)
zenith angle

cos 6

sun direction

scattering coefficient

optical depth

total optical thickness

azimuth angle
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o/K single scattering albedo

direction variable
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DISCUSSION

Turner: Do you know. if anyone has used a method similar to the
spherical harmonics method using other orthogonal functions, for
example, Gegenbauer or Jacobi polynomials?

Lenoble: I have never heard about that but it would be possible.

Turner: It should be much better than the spherical harmonics
method because these functions more nearly represent the anisotropy
of the scattering phase function and with fewer terms in the series
expansion.

Lenoble: Yes, but that is true for the phase function alone.

Turner: Yes, but one can expand the radiation field function in
a series of these more general functions.

Irvine: But when you do the multiple scattering, it is convenient
to use spherical harmonics, because you can then expand the inten-—
sity in a Fourier series in azimuth and each azimuthal component
satisfies an independent equation of transfer.

Turner: But there are addition formulas for these other poly-
nomials although they are considerably more complicated than those
for the spherical harmonics.

Irvine: I don't know of any that is being done.

Gal: I would like to answer some of these questions. We, at
Lockheed Palo Alto Research Laboratory, are applying the Hartel
formulation for multiple scattering by spherical particulates.
Hartel (Germany, 1941) reported that multiple scattering may be
solved by obtaining solution for the scattering function by suc-
cessive scattering. The scattering function for each scattering
order may be written in terms of a Legendre series expansion.
Hartel did not have the mathematical tools to prove his idea.
Since then, the Legendre expansion is available for a spherical
particle and my colleague, Dr. Chou, solved the radiation transfer
equation for a plane parallel geometry. Agreement with currently
available solutions, such as Dave's iterative and Monte Carlo
methods are excellent. The advantage of our solution is that it
requires an order of magnitude less computer time. This work will
be published in a few months.

Lenoble: I would like to have it.

Barkstrom: Two comments. The first comment is that in stellar
atmospheric work and some recent work which we have done, there is
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an alternate procedure which breaks up the equation of transfer

into a flux conservative finite difference form. The computation
time is comparable with that of the doubling method, and it isn't
bothered by vertically inhomogeneous atmospheres. Secondly, I am
not sure which approximate analytical methods you are referring to
in the three-dimensional case. There are a number of diffusion-
type approximations that are related to the delta-Eddington approxi-
mation. I expect they are going to appear in the literature very
shortly.

Lenoble: For the spherical case, I was referring mostly to the
work by the Soviet group of Scbolev and Minin and this kind of
work. But we are now working on the report for spherical atmos-
pheres and for three~dimentional problems. It is  just at its very
beginning and I don't have much information on this work.

Barkstrom: These methods are connected with problems, such as
finite clouds. ’

Lenoble: But for spherical problems you mentioned the problem of
stellar atmospheres. It is quite different because you don't have
the solar illumination so you have really a spherical symmetry.

Barkstrom: 1It doesn't matter; the procedure is the same.

Unidentified Speaker: What are the publication plans for the
report you are preparing for the Radiation Commission?

Lenoble: Well, the first draft of the report has been published.
But the final printing is to be done at NCAR. Maybe Professor
London can give some more information on the publication.

London: It will be available through the Radiation Commission.

Lenoble: But, presently, it is only the part concerning the plane
parallel atmospheres.
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SOME ASPECTS OF THE INVERSION PROBLEM

IN REMOTE SENSING

S. Twomey
University of Arizona

A brief discussion of several commonly used methods for
inversion--constrained linear inversion, synthesis (Backus-
Gilbert) methods and nonlinear iterative techniques for the
Chahine type--is given. It is demonstrated that a very close
connection exists between Backus-Gilbert solutions and those
given by constrained linear inversion.

A number of examples of the application of such methods
are presented, showing that resolution is not greatly dif-
ferent for quite different algorithms-~-a result quite in
accord with general theoretical considerations: more
"resolution” can be achieved at the expense of introducing
greater a priori bias in the procedure.

I. INTRODUCTION

When Kaplan (Ref. 1), in 1959, outlined the possibilities of
determining atmospheric structure from infrared radiance measure-
ments, there were initially probably more sceptics than enthusiasts.
Nevertheless, the steps toward implementation proceeded faster than
most (at least in terrestrial atmospheric physics) and it was only
a few years later that a crude (horizontal) temperature sounding
experiment was carried out through an open window of the
Meteorological Satellite Center in Suitland, Maryland. At that
time, inversion methematics tended to be concentrated around the
determination of coefficients in arbitrary expansions of the
unknown, and results from the first attempted inversion were quite

promising but, being restricted to the coefficients of a quadratic,
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not capable of coming very close to reality-~-which contained sharp
"step" in temperature akin to an atmospheric thermal inversion and
could, therecfore, be modeled reasonably only if two inflections
could be allowed into the solution. This implied a cubic rather
than a quadratic, and a fairly routine improvement of the inversion
from three unknowns to four was undertaken by the Suitland group.
Disaster soon ensued, The cubic "improvement" indicated negative
absolute temperatures and super-adiabatic lapse rates, a tempera-
ture distribution which was physically unacceptable, but which, if
it could exist, would give radiance values experimentally undis-
tinguishable from those given by the much less spectacular tempera-

ture structure which actually existed.

These facts are mainly of historical interest and are well
known to the present audience. We still find a great deal of
attention directed to procedures and algorithms for inversion, the
implication being that a more sophisticated numerical technology
can sidestep the obstacles which in the 1960s turned modest quad-
ratic success into cubic nonsense. But the ambiguity of inversions
is fundamental, caused by the kernels, which describe the under-
lying physical connection between measured and sought functions,
and a successful algorithm can only succeed by making an acceptable
selection from all the possibilities. That selection is arbitrary;
its basis does not lie within the measurement or the integral
relationship connecting sought distribution with the measured

quantities.

The simplest version of the indirect sensing problem:

b '
g, = / K, (x) £(x)dx (1)
a

or

g = [P k()£ (x)ax
37 =

describes a kind of convolution of the kernel functions with the

unknown or "sought" function f(x). 1In real atmospheric physics
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problems, Ki(x) is fundamentally smooth, being in most cases
necessarily positive and essentially exponential in character, of
the form Zj gje_ij or f: w(u)e-Xk(u)du with Ej or Y(u) non-
negative. Smoothness of Ki(x) implies a diminishing sensitivity
of gi to higher frequency components in f(x), and a fundamental,
inherent instability and ambiguity in any inference of f£(x). This
has nothing to do with inversion algorithms, linear or nonlinear;
simple or complicated: they do not even have to be brought into

the picture to show the fundamental ambiguities. We simply cannot

get something for nothing.

Figure 1 shows two curves from an early paper by Wark and
Fleming (Ref. 2); it shows kernels dt/d 1ln p for an Elsasser band
with maximum contribution at 100 mb and also for a constant mass
absorption coefficient (i.e., simple exponential behavior). (1 bar
= 100 kPa.) Note that the width and smoothness of the two are com-
parable-—the more realistic band model is slightly narrower but
not markedly so. This implies that a great deal can be learned by
looking at simple exponential kernels (which bring us to a LaPlace
transform inversion problem) or kernels of the form xe 1% (which
have the advantage that they attain maxima at x = y_l.

The power spectrum of the kernel xe_yX

can easily be cal-
culated; it decreases rapidly with increasing frequency, asymptot-—

ically as w_z.

Figure 2 shows the Fourier transform of a kernel related to
the indirect measurement of particle size distribution from light
scattering. This illustrates an important and often overlooked
point--that a physical kernel may have in its spectrum a blind
spot at relatively low frequencies, even though it has not yet

begun its ultimate asymptotic decline.

Early inversion procedures were linear in nature and amounted
to the inference of coefficients in some expansion of f(x) in the

form
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f(x) = a + bx + cx 2 + vae

or

1l

f(x) 'ao + a1¢1(x) + a2¢2(x) + ...

but soon use of the values f(xl), f(x2) e f(xn) of £(x) at
selected tabular values of X became common practice. There is
fundamentally no difference between the two approaches since f(xl),
f(xz), etc. can be identified with coefficients in an expansion

of £(x) in terms of a set of functions ¢k(x) which are unity at

x = x, and fall linearly to zero at x = x and x = . With

k k -1 ¥k +1
further development of inversion algorithms, there tended to be a
return to the expansion approach in a somewhat different guise,
in which empirical orthogonal functions were used for the functions
¢i(x). Use of such functions, coupled with constraints resting on
the fundamental properties of empi;ical orthogonal functions (EOF's),
led to more "realistic" inversions. Nevertheless, it is important
to realize what is going on in such cases: one forms a set of
orthogonal functions which are linear combinations of observed
functions; these latter may be measured with instruments of high
resolution and can contain harmonic components which may extend to
frequencies to which.a given indirect sensing procedure (with
finite accuracy, smooth band-limited kernels) is "blind."
Furthermore, orthogonality of the functions ¢m(x), ¢n(x) does not

imply

Jr, x) [¢_(x) - ¢ (x)]ax # 0

so two independent EOF's could be undistinguishable to the remote
sensing measurement. A stable solution is possible only because,
for example, one demands that the expansion coefficients fall off
at a rate similar to that found on average in the original popu-
lation of measured soundings (e.g., a large set of radiosonde pro-
files). 1In this way, a greater degree of structure can be retained
in a solution but it is in a sense pseudo-resolution--the solution

is permitted to "wiggle" in a way which is expected on the basis of
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past data. This kind of procedure while in many ways eminently
reasonable, does nevertheless introduce a strong probability of
bias--for example, solutions for unpopulated or oceanic areas
(those for which indirect sensing is likely to be most valuable)
in essence become pushed toward a behavior pattern representative
in some sense of more populated regions where direct measurements
are most frequent. Since people and radiosondes are simply not
randomly distributed over the globe, the distortions produced
through such bias are systematic in nature. On the part of general-
circulation and numerical weather prediction researchers, a degree
of disenchantment with satellite-based temperature soundings seems
to have emerged recently; it is germane to ask how much the afore-

mentioned bias contributes to this disenchantment.

It is also worth pointing out that the atmosphere as a whole
is generally close to a balanced condition; one's primary concern
in prediction is with departures from that balance. There is no
skill needed to predict cloudless conditions with midday tempera-
tures near the 80s for Arizona in- winter, or to predict showery
conditions with steady trade winds for Hilo, Hawaii. It is the
departures from these norms that constitute the prediction problem
and if we distort temperature profiles toward the expected norm, it
must adversely affect the chances of predicting excursions away

from the norxrm.
II. R‘ESUMF: OF COMMONLY USED METHODS

A. Constrained Linear Inversion

This consists in its most direct application of the conver-
sion of the integral equation to a quadrature form in which the
function f(x) is replaced by a vector containing tabular values of
f(x) in its elements (the behavior of f{x) between the tabular
points being implicitly specified by the quadrature scheme), and

the resulting matrix-vector equation is inverted to find the most
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acceptable vector £, which satisfies the fundamental relationship
to g to within a prescribed accuracy. "Most acceptable" is almost
always specified numerically in terms of minimization of some gquad-
ratic form f*Hf in f which we arbitrarily introduce to gauge
"acceptability." In general, the solution is

£' = (A*a +ym A*g (2)

We obtain a useful solution provided H is framed to be in some

sense a measure of the smoothness of £. One can, of course, take
out any initial guessed or known expected value fo and remove the
corresponding term A£O from g before inverting. The shape of go

is arbitrary and if it contains wiggles or other high-frequency
features these will show up in the solution. But this is artificial
in the sense that for many physical kernels these could be filtered
from fo without changing g perceptibly.

Linear constrained inversion methods are simple extensions of
least-squares methods for solving systems of linear equations.
Methods, inwhich f(x) is described by a vector of expansion coef-
ficients, are algebraically equivalent. It is, however, less easy
to formulate measures of acceptability in terms of such coefficients
if the expansions are polynomials or are made in terms of arbitrary
orthogonal functions (e.g., Fourier or Fourier-Bessel expansions,
Tchebycheff polynomials, etc.). But if,when empirical orthogonal
functions are used, one has a priori statistical grounds for asking
the coefficients to diminish at a known rate, this provides a
valuable method of inversion in situations where a sizable back-
ground of data measurements for f(x) is available. In this pro-
cedure, one is asking that the solution f'(x) be "like" the popu-

lation from which the orthogonal function set was constructed.

B. Synthesis Methods

All linear methods of solution produce a solutuion £'(x) which

for any value of x consists of a linear combination of the measured
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The array bkj is often not calculated explicitly, as in the case
of constrained linear inversion methods, in which Ilbkjllwould be
given by (a*a + YH)_IA*. The Backus-Gilbert (Ref. 3) solution
directed its attention explicitly to the array bkj and the con-
straints are formulated in terms of the bkj' Equation (2) has the
consequence that the solution value f'(xk) can be written

£z ) = J zj bijj(x) f(x)dx
a

so that Zk bijj(x) is a "scanning function" which, of course,
would have to be the delta function § (x - xk) if f'(xk) was to
reproduce f(xk) exactly. That is an evident impossibility and the
linear inversion problem can be regarded as a search for realizable
scanning functions which approximate the delta function and are as
far as possible free from side lobes and other undesirable features
which could distort f£'(x) and produce in it artificial peaks or
troughs. It is sufficient to consider only normalized scanning
functions, so that

b
S, (x)dx = 1
[ sy

Since the coefficients bk ultimately multiply the errors in g,
2
stability is ensured if the magnitude of zj bkj2 = I bkl“ is

limited. To complete the Backus-Gilbert procedure, one, therefore,
needs to solve a minimization problem which is very similar to that’
encountered in constrained linear inversion. An array of coef-

ficients b, is to be determined which minimizes a spread g*kskp

k k

measured about the point x = Xy 1 with ?*k?k < Constant and

pk*kI also constant (kI being written here for the array

fb Kj(x)dx, j=1, 2, 3 ... m). The two constraints (one restric-
a

ting the magnitude of the coefficients, the other a normalization
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constraint) imply two Lagrangian multipliers, but the solution

algebra is again quite straightforward and we obtain

-1
b, = B(s_ + YDk, (4)

B is readily calculated explicitly~-since gI*pk must be unity,
B-l must be }5*1(5k + YI)—lgI. For the particular spread measure

f(x - xk)zsz(x)dx, S, is Hf(x - xk)zKi(x)Kj(x)dx ” » and Y plays

k
a role similar to that played by y in constrained linear inversion,
in that as Yy decreases in size, error magnification increases and
the scanning function becomes narrower, with diminishing vy.
Backus-Gilbert solutions involve covariance matrices C =
||fKi(x)Kj(x)dx ” and vectors such as |LfKi(x)dx|| and H Ki(xK)H'
To the accuracy of quadrature, these quantities are connected with
those occurring in constrained linear inversion through relation-
ships C = AY, k., = I!fKi(x)dx|l = Ae, and so on.l Y is written for
the m X n tabulation H Ki(xj)ll of the kernels. By these relation-
ships, Backus-Gilbert solutions can be transformed into relation-
ships involving the quadrature matrix Q and the measured g, and a
very close relationship can be established between solutions
obtained by the two methods. One simple such relationship applies
to the direct inverse f' = A_lg, which can also be obtained by the
Gilbert-Backus procedure if the square norm of the difference
between the delta function and the scanning function is the basis
for optimization; carrying out.this optimization (unconstrained)
one obtains a solution which the substitution C = AY transforms

into the direct inverse A_lg.

The trade-off curves provided automatically in Backus-Gilbert
inversion shows how much accuracy of measurement is needed to give
a certain resolution. As we change y in Eg. (4), the width of the
scanning function and the magnitude of the b-vectors change; the
latter magnitude determines how much error magnification can enter
*e), and so error mag-

into the solution (which is fk' = Db *g + b

k k
nification can be plotted against resolution. Such a plot, for
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Fig. 3. Trade-off curves by Backus-Gilbert procedure for

kernels of the form xe—yx Several values of y, giving maxima at

x =0.2, 0.4, 0.6, and 0.8, are represented.
kernel xe—Yx is shown in Fig. 3. It is apparent that beyond a
certain point (one-half width of sganning function ® 0.2 times the
interval of integration), a huge increase in accuracy is needed to
produce even a small increase in resolution. This is not an arti-
fact of the Backus-Gilbert method (Ref. 3)-~it is a property of the
kernels involved and, furthermore, is not significantly influenced
by the number of kernels used, provided that a reasonable number
are employed (7 to 10, say). Similar plots can be made of resolu-
tion against number of kernels (for a fixed error magnification) and

they show a rapidly diminishing return with further increase in

number of kernels.
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C. Statistical Inversion Methods

Quite apart from linear inversion techniques with constraints
based on statistics (e.g., EOF expansions), statistics find appli-
cation even more directly. .One sees in inversion linterature a
very natural tendency to use comparisons between "measured" data
(radiosonde soundings, for instance) and data given by inversion
as a basis for judging the relative merits of the various numerical
procedures. If we can make enough simultaneous measurements of
both functions g(y) and f(x), then the relationship between g(y)
and f£(x) in principle can be "learned" from these measurements,
provided only that it is physically reasonable to assume that the
f<>g relationship is linear to a good approximation. This is
essentially the procedure followed in certain kinds of "statistical”
inversions where a matrix (E, say) is inferred from a set of

paired distributions f and g. One is seeking to learn E, where

g '+ ¢ (5)
X

and a number of fairly obvious minimization approaches can be fol-
lowed to minimize |€|2 or some other suitable norm. One can, for

example, for any specified X, = & (i.e., elemental position within
f), solve for the kth row of B, imposing as usual a constraint for
stability. Thus, if the kth ;ow of E is ?k’ we have

£ =).b .g. +e. = b
X 23 k393 Tk T % 9 (6)

for every set of m measurements. If f1k denotes the value of fk
from the 2th measurement and gz is the corresponding array of g-

values, one can write
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[ < 9, (1] [ £1x
< 9, > Eor
) 93 ” P - .
. . (7)
El - ] fmk
L Xxm

and solve bk' For each k (row of B) the procedure can be repeated
~ n .
and thereby a complete matrix B generated. The constraint bk =
~ ~

Constant ensures error magnification, the constraint pk*pk «
(variance of fk) relates the permitted variation in the solution
to the observed variation at the kth level. Rather than computing
E row by row, it can be obtained in toto if the sets of n-
dimensioned vectors f and of m-dimensioned vectors g are collected
into matrices. One version of this procedure considers a set of

measured vectors f£;, £,, ... fl and associated measured ¢g;, g,.

... g with

2

= + W
f1 =B g, +¢

= +
?2 E ?2 €
. (8)
. 4
o= B 99 * ¢

nxl] nXmmX] n x 1
J
which gives

B2 F [F=g3)Ex): G =90 Yg(y) ) (9)
v N n v i j L®) i 3

E is essentially the cross-covariance matrix of the f's and g's
while g is the covariance matrix of the g's. Again, constraints
must be applied to bring about stable solutions in which the indi-
vidual elements of E are not allowed to become large and exces-

sively oscillatory. This can be done in exactly the same way as

52

e



is done in the case of vector equations. It is the rows of B that
Y
need individually to be constrained and this is most easily done

if the equation for br*, the rth row of B can be written:
- y

G.Pr = fr * r ¢ = llgi(yi)l]; gr = fl(xr) (10)

fz(xr)

which can be solved under the constraint br*br = ¢onstant by

b = (G *G+ YI)—1

G*f
“r ~r

If more should be known about the error statistics, they can be
incorporated into the solution process at the expense of a little

additional complexity.

D. Nonlinear Iterative Methods

Linear iterative methods have found application, but they are
not fundamentally different from other linear methods. Nonlinear
iterative methods, on the other hand,are different and appear to be
capable of giving good inversions where more direct methods have
difficulty. Such methods were applied to atmospheric sounding by
Chahine (Ref. 4) and have been successfully used in cloud- and
particle-size distribution problems and elsewhere. They consist
of taking a first guess fo(x) for the unknown f(x) and then modi-
fying it so as to improve the discrepancies between the measured

gi and gi = f Ki(x)f(x)dx. In some applications the entire set of

95

updated simultaneously at all tabular x-values; in other appli-

are calculated and the first guess (or subsequent iterate) is
cations the first guess and all subsequent iterates are updated
as soon as one value for f£' has been calculated. There does not

appear to be any clear-cut advantage of one procedure over the

other.
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Adjustment methods in nonlinear iterative algorithms rely
on the prirnciple that the changé in 9; resulting from an adjust-
ment in £(x) around x = § is proportional to the value of Ki(g).
In some algorithms the value of f(x) is changed only where Ki(E)
is greatest, but if the tabular intervals are closely spaced, high
frequencies may thereby be introduced in proportions that can
become excessive. An alternative, which in the writer's experience
can be superior, is to make the change at x = § proportional to the
value of the kernel there. A useful algorithm based on this
principle is as follows: given an iterate fm(x), this is adjusted
by comparing 95 and gi = IZ Ki(x)fm(x)dx and computing the new

iterate as

9; ~ 95
£ (x) = £ (x) [l + — K.(x)]
m + 1 m gi 1

(11)

This makes the greatest proportional change where Ki(x) is greatest

and makes no change where Ki(x) is zero.

This and several other similar algorithms have been used on
a variety of problems and generally show excellent stability and
independence of the first guess (see Fig. 4). With nonnegative
kernels and positive first guess, no iterate will become negative
anywhere provided none of the g values are zero and max {Ki(x)} <1,
a condition which can always be ensured by appropriate scaling. One,
therefore, has a nonnegativity constraint built into the algorithm
and there is little doubt that that is a major influence on the
stability of the inversion. Since products of kernels are generated
as the iteration proceeds, the bandwidth of admissible frequencies
increases rapidly whatever the first guess, but this is a second-
order process and in practice high frequency oscillations rarely
seem to be a problem in inversions by this method (whether it be

applied to computed data or real measurements).

The relative change made in f(x) at every step can be kept

small simply by limiting it within the algorithm; to the first
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Fig. 4. Iterative nonlinear inversion on a particle sizing
problem. Solid line and open circles refer to the two very dif-

ferent first gquesses fl(x) (shown dashed).

order the solution thus produced is a linear combination of the
kernel functions. Such a solution can be generated by linear
methods also --e.g., we write f(x) = zi EiKi(x), and solve for g.
The equation for g is

Cg =g+e (12)

C being the kernel covariance matrix. The connection between non-

linear iterative solutions, nonlinear jterative solutions with
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limited adjustments and direct linear methods might usefully be
investigated by systematically comparing results given by the
three methods for the same problem. The writer is not aware of

this having been done at the time of writing.
III. ASSESSMENT OF THE VARIOUS PROCEDURES

A. Comparison of Results on a Standard Problem

There are many ways of doing this and they will not always
give the same answer. It is nevertheless informative to take a
very simple problem and solve it in a number of ways. This has
been done as follows:

1 . . _
9; = ) X (x)f(x)dx (i =1, 2, ... N; N = 20)

K, (x) = xe Yi% (y. = 0.1, 0.2, ... 1.0, 1.2, 1.4, ...,

2.0, 2.5, 3.0, 3.5, 4, 5, ... 10)
F(x) =1 - 4(x - 1/2)°

With this integrand, a simple weighted trapezoidal quadrature gave
the 9; with an rms error of 0.1% over all y-values. This problem
has been solved in a variety of ways and the solutions are shown

on the Fig. 5. They are:

a. Constrained linear inversion with minimum constraint H =
I (i.e., minimum "power").

b. Backus-Gilbert inversion, error magnification = 100
(Ref. 3).

c. Chahine's original iterative method, only one ordinate
adjusted per step (Ref. 4).

d. A modification of the latter, as described above.

e. Constrained linear inversion with end points fixed at
their correct values [f(0) = £(1) = 2].

f. Constrained linear inversion with end points fixed at

approximately their correct values £(0) = 1.95, £(1) = 2.05.
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(b) BACKUS - GILBERT, ERROR
MAGNIFICATION (RMS) 100

(d) ITERATIVE NONLINEAR,
ADJUSTMENT PROPORTIONAL
TO K(x).

(f) LINEAR, END POINTS HELD
AT (SLIGHTLY) INCORRECT
VALUES.
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Inversion by several different inversion methods.




There is no point whatever in trying to grade the methods on
the basis of these tests. The results are shown mainly to demon-
strate that reasonable inversions can be obtained by each of the
methods and that rather dramatic improvements (such as from
Figs. 5(a) to 5(e)) can be achieved when we bring in a priori
knowledge. But, as Fig. 5(f) shows, we must be sure of this

a priori knowledge; otherwise, more harm than good is done by its

incorporation.

B. Resolution

There is a very simple method whereby we can make estimates
of the resolution of an inversion procedure in toto. To do this,
we simply take the array of 9 values corresponding to the special
case £(x) = §(x - x5) and applied the inversion algorithm to that
g-vector, obtaining a distribution which we call r(xo). A perfect
inversion procedure would return §(x - xo) when given as input the
g-vector (g(xo), i.e., (Kl(xo), Kz(xo), “en Km(xo)), and the extent
to which any procedure fails to do this is a useful objective
gauge of its resolution. (It should be emphasized that "procedure"
here encompasses the set of kernels which are used, which play a
more important role than the algorithm itself in determining

resolution or lack of it.)

Some examples of resolution tests by this method are shown in

Fig. 6. We also have included in the figure Backus-Gilbert (Ref. 3)
scanning functions for the same set of kernels and it should be
noted that for linear inversion methods the result given by the
above § function test is in fact a scanning function, i.e., the
solution obtained is a convolution of that function with the origi-
nal £(x). In the case of nonlinear inversions, that does not hold
true, but the significance of the distribution r(xo) is still

clear.
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C. Merits and Disadvantages

Each of the procedures possesses certain merits. The con-
strained linear inversion is fast, especially when a large number
of observed g vectors are to be »rocessed in the same way; it is
objective when smoothness constraints are employed, and it allows
anything which we may know about f(x) to be built into the con-
straint. The Backus-Gilbert (Ref. 3) method is aesthetically
appealing in that the scanning function can be calculated and
graphed. Statistical techniques give more realistic soundings
than the other methods. Nonlinear iterative methods avoid the
necessity to formulate explicit constraints. They can accommodate
a wide range of magnitude in f(x) and they seem generally to be

superior with respect to resolution, and tolerance of errors.

iv. CONCLUDING REMARKS

The preceding discussion was not intended to be a step-by-step
review of inversion problems and algorithms. Rather, a number of
selected points were given attention primarily in order to demon-
strate that there is not a great deal of difference fundamentally
between the various procedures. The differences lie rather in the
basic selection process (without which no stable solution can be
obtained). If we decide to select the smoothest solution, we
necessarily damp out features such as the tropopause; if we select
the solution which is closest to some statistical expectation, such
features will appear, but not necessarily in the right place; we
may also thereby fail to see rare but real and important excursions.
It is misleading to judge the result of an inversion on the basis
of "reasonableness." Indeed, in the case of such things as temper-
ature and water vapor soundings, it seems more appropriate that the
selection of "most suitable" constraints and filterings be based
on what is going to be done with them, not on some subjective
judgment which can be greatly influenced by the scaling, etc.,

chosen to display, in some form or other, "true" and "computed"
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soundings, thickness plots or whatever. Nobody really cares what
the temperature is over some point at 9 km (30,000 ft) in mid-Pacific
nor for that matter what the 200 mb thickness is there or how much
water vapor resides above a partiéular level. These quantities
primarily provide input for analysis and prediction procedures.
Many of these procedures are fundamentally nonlinear but may,
perhaps, be approximated closely by a linear operation. In a

very qualitative and general way, one might look at the prediction
of tomorrow's wind field in the Pacific as an operation 6n today's
field and today's satellite radiance data. If today's and
tomorrow's fields were accurately known, statistical or other
techniques could be utilized to optimize the prediction, virtually
ignoring the physics involved. If this is not possible, at least
the selection of "best" from the large population of profiles
which are all equally acceptable from the radiance point of view
should surely be based as much as possible on the intended appli-
cation of the soundings, and users of inversion data should be

more actively brought into the selection process.

As was mentioned earlier, appreciable improvement on resolu-
tion by improving the accuracy of measurement is hardly practicable
since a very great improvement in accuracy produces only a very
modest improvement in resolution. There does appear to be room

for improvement in accuracy so far as the kernels are concerned.

SYMBOLS

E(x) kernel function

ki(x) elements of the kernel function

f(x) "sought" function

g function representing measured gquantities
t time

P pressure
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DISCUSSIONS

Chahine: You have made a flat statement that this type of integral
equation.has an infinite number of solutions. Do you say that this
is true for any kernel and for any form of the given function,
whether it is continuous or discreet?

Twomey: One should, perhaps, modify that to, say, physical
kernels, the kernel which one is likely to encounter in a physical
measurement. It would certainly not be true for many mathematical
kernels, such as delta functions.

Chahine: Not necessarily. Exponential kernels can give you a
unique solution sometimes.

Twomey: Well, you can demonstrate in the presence of finite
accuracy--you only have to go to a high enough frequency and yeu
get ambiguity.

Chahine: The nonuniqueness can be due to noise in the given
function (data) or in the kernel. But it is not necessarily an
intrinsic property of this integral equation. I would like to
make this point clear.

Twomey: Yes. I would agree. However, I would comment that I
think from the point of view of keeping oneself out of trouble,
one would be better off to feel that there are an infinity of
solutions than one would be to think there is a unique solution.

Chahine: Physically?

Twomey: Yes, from the point of keeping oneself out of trouble.
You can't get into trouble mathematically.

King: Don't you think that part of the problem of oversell is
related to formatting? Inversion efforts, thus far, have been
directed toward mimicking the infinitely resolved temperature pro-
file given by the radiosonde. And this, of course, the inversion
is incapable of doing in principle. 1Isn't it preferable to format
the information in terms of, say, the six parameters that one could
infer from six radiance observations? These six gross atmospheric
structure parameters would, perhaps, be of more use to numerical
weather predictors anyway, since their algorithms are not really
sensitive to the kind of detail provided by the radiosonde.

Twomey: 1 agree 100 percent, Jean, yes. I think we should even
go a step further than this because (I think I said it in the
written version of this paper), I don't think any of us really
care what the temperature is 200 millibars above Einewtok or
somewhere like that. It is only data that is going into a
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circulation model or a prediction model and so forth. The first
thing those people are going to do is try to apply some of their
own numerical processes to that. I mean, for example, if you feed
them a superadiabatic lapse rate, they are going to make a con-
vective adjustment to it. So the first thing they are going to do
with a nice temperature profile which you have at great trouble

and expense fashioned, they are going to change it. So I think you
should look at that and incorporate that and see what is best for
‘them. It may be that some of the things inversion people are
sweating to try to put into their profilesare not actually needed
by the people who are going to use those profiles. I think it is
also up to the people who are going to use those profiles to state
what they want, not the way they have been stating it. I think
when Dave Wark and I talked to people some years ago, they would
say, oh, we want a quarter of degree; we want at least as good as
the radiosonde; we want better than the radiosonde. But they have
a grid in which the whole atmosphere is in about 160 km (100 mi)
boxes. So they are only putting themselves on if they say they
want radiosondes every 100 meters and with accuracy of 0.3048 (1 ft)
resolution, because they are not going to be able to handle it.

Kaplan: Well, if we get a superadiabatic lapse rate,we better not
feed it to them to make the convective adjustment, because we are
supposed to be sounding the atmosphere. aAnd we better do the
adjustment because we know how to do it better than they do. And
it isn't the convective adjustment that is required. There are
real needs and I think we have to try to answer those needs. And

I think probably what is necessary is to see what it is that really
is wanted and probably what is wanted in numerical weather pre-
diction is mean temperatures between constant pressure levels or
constant height levels. And, I think we ought to see whether that
can be produced and the solutions given in those forms. And if it
can't, there should be a negotiation going back and forth and trade-
offs between the people doing the soundings and the users, because
the soundings are not being done for its own sake. I mean, some

of us may like the idea of the game, but the real purpose is being
able to improve the weather forecast.

Goldman: I was wondering if you could expand your opinion about
the accuracy of the constraint against no constraint at all? You
have shown in your example that small error in the constraint can
give much worse inversion. And I was wondering if you could
expand a little bit on this by some actual examples?

Twomey: Well, no, I can't. I have that example there, but one
could go on and on, I mean, calculate various examples. I think
it is fairly obvious what is going on. If there are real con-
straints, which there are in many physical problems, of course,
especially at the endpoints of your interval, there is likely to
be some kind of physical or essential constraint there quite
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outside your inversion problem. If it is of that nature and you
can state accurately what it is, you can only benefit by putting
it in. But just exactly how much error you need to be in that
constraint before it is doing more harm than good, that would
obviously depend on your particular problem. You know the pre-
cise numbers that you are working on. It is a simple thing to
test, obviously.
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GENERALIZATION OF THE RELAXATION METHOD FOR
THE INVERSE SOLUTION OF NONLINEAR AND

LINEAR TRANSFER EQUATIONS

Moustafa T. Chahine
Jet Propulsion Laboratory
California Institute of Technology

A mapping transformation is derived for the inverse
solution of nonlinear and linear integral equations of
the types encountered in remote sounding studies. The
method is applied to the solution of specific problems
for the determination of the thermal and composition
structure of planetary atmospheres from a knowledge of
their upwelling radiance.

I. INTRODUCTION

The problem of determining an unknown function g(z) from the

integral equation
I(v) = N gl(z)

given the function I(v) and the integral operator N , has arisen
repeatedly in problems of radiative transfer as in Ref. 1 and in
transport theory as in Ref. 2. The mathematical problem here is
a difficult one and, in fact, may not always have a solution for
an arbitrary function I(v). The difficulties are compounded by
the facts that I(v) is obtained in general from measurements con-
taminated with noise and that the integral operator itself is an

approximation to a real physical process.

In this paper, we treat a specific class of linear and non-

linear integral equations in which the kernel has the important
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property of reaching its maximum peak at different values of z for
different values of v. This mathematical property is very common
in transfer and transport problems where the dominant thsical
process takes place ﬁithin a narrow segment of the range of inte-

gration.

In the following section, we will develop a relaxation method
of solution based on the principle of mapping transformations to

recover

g(z) =N"11(v)

and study the stability and accuracy of the solutions in the
presence of noise in the given data. The remaining sections of
this paper will be devoted to the study of the inverse problems
for the determination of atmospheric temperature and composition

profiles from remote sounding radiance data.

II. MATHEMATICAL FORMULATION

The formulation of remote sounding problems in radiative

transfer leads often to nonlinear integral equations of the form

z
I(v) = B[v,g(zo)] C(v,zo) + f Blv,g(2)] K(v,z) dz (1)
b4

o

In some cases, however, the resulting integral equations are
linear in g(z) and of the form
Z
I(v) = g(z,) C(v,zo) + J g(z) K(v,z) dz (2)
z

o]

In Egs. (1) and (2) C(v,zo) and K(v,z) describe specific
radiative transfer processes such as absorption, emission, or scat-
tering in the atmosphere. In many problems of remote sounding,
this kernal K(v,z) reaches its maximum peak at different values of

z for different values of v. I(v) is a given function, usually
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measured at a discrete number of observations i(vj), and g(z) is

the distribution of an atmospheric parameter to be determined.

Thus, the inverse solution here reduces to finding a function g(z)
such that when it is substituted into Egs. (1) or (2), it will yield
values of I(v) equal to the corresponding measurements i(vj),

with
I(v.) - I(v.) =0
( J) ( J)
for all the given values of vj.

In remote sounding problems there is usually no doubt of the
physical existence of a solution or perhaps even of its uniqueness.
But from a mathematical point of view, the problems of demon-
strating existence and ensuring uniqueness of g(z) are of great
importance and are directly related to the various simplifying
physical and mathematical assumptions made in the derivation of
the integral equation and depend also on the information content
of the measured data. Therefore, a general treatment of the prob-
lems of existence and uniqueness for Egs. (1) and (2) is difficult
unless it is approached from the narrow point of view of the
dependence of the solution on the initial guess and the inter-
polation (or quadrative) method used. However, accurate demon-
stration of existence and uniqueness may be carried out, in
principle, for some problems, depending on the form of the kernel

and the degree of discretization of the function i(vj).

A. General Method of Solution

The right-hand side of Egs. (1) and (2) may be viewed as an
integral operation transforming variations of g with respect to

z into variations of I with respect to v as
I(v) = Ng(z). (3)

To obtain g(z) we need, therefore, to perform an inverse trans-

formation from the (I,v) plane into the (g,z) plane with
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Pty

g(z) = N1 1(v) ' (4)

We can accomplish this by applying a mapping transformation which
maps points on the v-axis into corresponding points on the z-axis

and similarly maps points on the I-axis into points on the g-axis.
1. The v- z Mapping Transformation

To map the v-axis into the z-axis, let zj be a point between

z0 and z where K(vj,zf reaches its maximum value or

oK (v.,z)
—J =0
9z (5)

From Egs. (1) or (2) we note that variation in g(z) around zj
should affect the values of I(vj) very strongly while variation in
g(z) at values of z << zj and z >> zj should not affect I(vj) by
the same magnitude. We propose, therefore, to use this property
to map this point vj into zj on the z-axis. In general, since
K(vj,z) reaches its maximum values at different values of Zj’
j=1, 2, ... J for different values of vj, i=1, 2, ... J. We

can use Eqg. (5) to derive a relationship between v and z

V., > Z,
J J

and map different points on the v-axis into different points on

the z-axis.
2. The I - g Relaxation Transformation

Mapping of the I-axis into the g-axis is much more difficult
and needs to be carried out by iteration. We apply the mean value
theorem (or the method of steepest descent) to Eg. (1) and derive

a relaxation equation of the form

Blv., g(n + l)(zj)] I(v.)
J - J (6a)

(n) (n)
B[vj.g (zj)] I (vj)
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(n)

Equation (6) is written in an iterative form where g

(z.) is the
e ]

nth guess of the solution. (vj) is the corresponding wvalue

computed according to Eg. (1). i(vj) is given and'g(n + 1)

(zj)
is the resulting {(n + 1) guess. Similarly, the relaxation equa-

tion corresponding to Eq. (2) is of the form

gt (2,) ;)

n

(6b)
g(n)(zj) I

Details of this derivation are given by the author in Refs. 3 and
4. Equations (6a,b) transform changes in the ratio i(v.)/I(n)(vj)
(n)

at different points on the v-axis into changes in g (zj) at

specific points along the z-axis. The mechanism of this trans-

(n)

formation is iterative in which g
n + 1
( )(zj)'

It is possible to generalize Egs. (6a,b) formally and write

(Zj) is modified at every step

n to yield a new value g

the relaxation transformation as

(n + 1) _
g (zj) = aj g (zj) ' (7)

(n)

where aj are scaling factors computed directly from Egs. (6a)

or (6b).

(It is sometimes necessary to use a weighted form of the
scaling factors, as defined in Eg. (10), in which several wvalues

of I(v.), 3 =13' ... j", are used to derive each scaling factor
5 (n)
J

3. Iterative Steps of the Method of Solution

. This approach will be discussed later in this section.)

Assume that a set of measurements I(v,) is given for j = 1,
2, ... J and use Eq. (5) to f£ind the corresponding values of
zj, ij=1, 2, ... J.

(n)(z).

(z) into Eq. (1) [or Eq. (2)] and evalu-

(a) Make an initial guess (n = 0) for g

(b) Substitute g™

(n)

ate I (vj) j =1, 2, ... J using an appropriate interpolation
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(quadrature) formula.

(c) Check the residuals,

E(Yj) - I(n)(vj) L o
= = j o= ’ r - J
(vj) ol j)

R(n)

If all R(n)(vj) -+ 0, then g(n)(zj) is a.solution. If

not, then obtain a new guess,

(n + 1) = o (n) ()
g (zj) aj T (zj)

(d) Go to step (b) and repeat until step (c¢) is satisfied.

B. Analytical Example

In order to illustrate the relaxation method of Solution, we

suggest the following analytical example.

Let
40 2
I(v) = f g(z) e (z V) dz
and given
- - 2
(zo V)

I(v) e
where z_ 1s a constant, find g(z) by the method of relaxation.
(The answer is a delta function, g(z) = 6(zo - 2), which we will
try to determine next.)
1. The v~z Mapping Transformation
- (z - v)?2 i

The kernel e has a maximum at v = z and thus the
corresponding mapping transformation from the v-axis to the z-axis
is v = z.
2. The I - g Relaxation Transformation

The corresponding relaxation equation according to Eg. (6b)

is
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g(n + 1) (n)

(z) = g™ (z) —=)

I(n)(v) vV =z

3. Iterative Solution

In this ideal analytical example we do not need to specify an
interpolation formula because we are dealing with a continuous
function I(v) which maps the entire v-axis into the entire z-axis.

To start the iteration ( n = 0) let us assume a constant
value for the initial guess; for example

g(o)(z) =b

and apply the mapping transformations to generate the following

iterative solutions. We get

(1) 1 _ a 2
g (z) = /E_Aexp [ (zo z) ]
g% (2 =‘/%-_ exp [-—2— (z, - z)z]
;(n + 1) l1+¢cC

(2) = [~ exp [‘ [%*ﬁl‘c—] (Zo-z)z:l
n

where the coefficients Cn are obtained from the following recur-

rence relaxation

To show that the recovered solution g(n)(z) is a delta

function centered at z s wWe can easily prove that,as n > o,

()
C > o J g n (z) dz > 1

and
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where dn is the width of the function g(n)(z) at half peak as

shown in Fig. 1.

Fig., 1. The analytical illustration.

C. Stability and Convergence of Solutions

The previous analytical example offers an ideal case in which
the entire v-axis maps into the entire z-axis, the number of iter-
ations that can be carried out is infinite,and the given function
i(v) is exact. In remote sensing problems, however, we are given
small (and sometimes incomplete) data sets I(vj), =1, 2 ... 3
where the peaks of the kernels are not uniformly distributed and
where both I(vj) and K(vj, z) are known with a certain degree of
uncertainty. Under these conditions, it becomes sometimes neces-
sary to (i) supplement the data with a priori information about
the expected result, (ii) use weighted sealing factors o instead
of o in order to minimize the effects of large measurement noise

on the accuracy and stability of solutions, and (iii) establish
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numerical criteria for determining the optimum number of iterations
required. We will examine these aspects of the problem in the

remaining part of this section.

D. Properties of the Residuals

Application of the relaxation method to a variety of linear
and nonlinear problems has shown that in the absence of noise in
the given data, the computed values of the function I(vj) approach
the measured data I(vj) after a small number of iterations. Their
residual difference R(vj) tends asymptotically to zero (or to the

value of the quadrature errors)in a root-mean-square (rms) sense as

(n)

ms

But, if we add ej noise to the data as
I'(v.) = I(v.) + €,
J J J

we observe that the residuals, in this case, decrease first rapidly
and then approach an asymptotic value equal to the noise in the

data in an rms sense with

(n)
< >rms _> <€ j> rms (9)

(This property will be discussed in more detail in the following

section and will be illustrated in Fig. 6.)

Thus, in the presence of random errors in measurements, the
residuals do not give a false indication of convergence because
they will not tend toward zero. The residuals first decrease and
then approach an asymptotic value of the same order of magnitude
as the errors in measurements. This property is due to the partial
overlapping of the kernels and suggests that the iterative process

(n)

should be terminated when R approaches its asymptotic value.
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The effect of continued iterations beyond this point does not
always increase the amount of information extracted from the data,
and in the presence of large noise levels in the measurements
might lead to oscillations in the recovered solutions. To prevent
such oscillations from happening, it is advisable to apply, after

a few iterations, say n > 3, certain weights to the scaling

(n)

coefficients aj in the form of

(n)
zi _ g % Wy (vy)

Sm) _ §=1,2 ... 3 (10)
J J W, (v,)
Zk =1 31 k
and use a;n) to generate the new iterations as
(n)
(n + 1) - (n)
(z.) = a, (z.) (11)
d J J g ]

The use of &j will slow down the rate of convergence considerably
but will tend to diminish the effects of random noise in the data

on the iterative solution.

Different forms of Wj(vk) can be adopted, such as taking
Wj(vk) equal to the fractional value of the kernels K(v, z) at

z, for v., v. ... Vv.. In this case,we write
J 1 2 J

Wj(Vk) = K(Vk, Zj)/K(Vk: Zk) (12)

where K(vk, zk) is the maximum value of the kernel. Additional
details on the convergence properties of the solution can be found

in Refs. 5, 6, and 7.

Ultimately, the iteration process should be terminated when
the rate of convergence of the solution with respect to itself,

defined as

ag™s = %-zg I A 1)(zj) - g(n)(zj) (13)

approaches a certain prescribed value.
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E. Interpolation Methods

The interpolation aspects of the solution are not trivial,
particularly in cases where the number of measured data points is
deficient. The recovered solution is a function of the number of
useful observations available and of the interpolation method used.
The selection of a suitable interpolation formula is one of the
subjective aspects of this problem. While it is always possible
to apply many different interpolation methods, it is obvious that
from a finite set of J measurements, it is impossible to recover

more than J independent parameters.

Application of the relaxation method of solution to a variety
of problems has shown that the resulting solutions are independent
of the initial guess but depend on the interpolation formula
selected to determine the solution g(z) at the intermediate values
between zj(j =1, 2, ... J). Linear interpolation methods are
recommended in the absence of any information about the expected
solutions; however, other interpolation methods can be applied

when needed.

In cases when a priori knowledge of the shape of the expected
solution is given, a perturbation approach is recommended to make
use of the available information. This can be accomplished in the
iteration process by including in the initial guess all available
information about the shape of the expected solution. To preserve

this shape in subsequent iterations, we perform the interpolation

(n)

on the scaling factors a (z.) and generate scaling factors at

all intermediate values of z, aigl(z). The complete interpolated

solution is then obtained at all values of z as

(n + 1) _ (n) (n)
g (z) = aint(z) g (z) (14)

It is obvious that the same interpolation procedure can be per-

formed also when &;n) is used. In this process, the final answer
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is made to depend on the initial guess by preserving the form of

(0)

the input function g (z) in all the steps of the iterative

solution.

In general, however, reliance on a. priori iﬁformation about
the expected solution should not be considered unless the number
of available measurements is insufficient and unless the infor-
mation content of measurable data is incapable of recovering cer-.
tain essential features of the solution, such as the location of
the tropopause. However, the fundamental mathematical condition
that from a set of J measurements it is possible to recover only

J' independent parameters such that J' £ J remains the rule.

In the following sections, we will apply the relaxation
method to two remote sounding problems and study the properties of
the solution and quality of results specifically for the deter-

mination of the thermal and composition structure of planetary

atmospheres.

IIT. THE INVERSE PROBLEM FOR TEMPERATURE PROFILES

In the problem of remote sounding of atmospheric temperature

profiles, the following equation occurs

z
I(v) = B[v,T(zO)]T(v, zo) + f B[v,T(z) ]K(v, z)dz (15)
b4

o]

Equation (15) is the integral form of the radiative transfer
equation for a plane parallel homogeneous and nonscattering atmos—-
phere in local thermodynamic equilibrium. I(v) is the outgoing
radiance meésured at a vertical distance z from the surface z of
a planet within a narrow solid angle around the local vertical

axis, z. B is the Planck function explicitly given as

by
Blv,T(z)] = av3 /(e T(&) - 1) (16)

where a and b are two given constants. 7T(v, z) is the
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transmittance of a column of absorbers between levels z and z and

is defined for monochromatic observations as

z
(v, z2) = exp - f ps(z')k(v, z')dz' (17)
z

where k(v, z) is the absorption coefficient at v due to all lines,

and can be represented for a Lorentz profile by the equation

S, (T) Gi(T, p)

™

(18)

k(v, p) = )
i (v - vi)z + aiZ(T, p)

where Si is the strength, ai is the half width of the line and vy
is the frequency at peak intensity of the line. The density pro-
file of the absorbing gas s is given by ps(z'). The kernel
K(v, =z, ps, ...) is defined as

at(v, z)

K(v, z) = 'T (19)

The pressure p(z) is related to z through the hydrostatic equation
dp = - p(2) g dz (20)
where p(z) is the density profile of the entire atmosphere.

In practical observations, measurements of I(v) are made at
a discrete number of frequencies vj centered within a finite band

Av with

.\)I
I(v)) =J d(v., V)I(v)dv (21)
j \)Il J

where ¢(vj, v) is the instrument function.
From a practical point of view, it is advisable (but not
necessary for the present method) to substitute Eg. (15) into

Eg. (21) and define the transmittance T(Vj, z) in the interval Av

as

.\)I
T(vj, z) = L)“ ¢(vj, v)T(vj, z)dv (22)

79



Since B(v, T) is a smooth function in the interval Av, we take

B(v, T) = B(\)j, )
and rewrite Eg. (21) as

z .
I(vj) = B[vj, T(zo)]T(vj, zo) + L: B[vj, T(z)]K(vj, z)dz (23)

‘0

In the rest of this paper, we will deal with Eq. (23) whether we

refer to the measured radiance as f(vj) or as I(v).

From a given set of values of i(vj), j=1, 2 ... J, we want
to determine the temperature profile T(zj), assuming that ps(z),
T(Vj, z) and K(vj, z) are known. In this problem, the selection
of the set vj and the determination of T(zj) are strongly related
and form the basis for the method of inverse solution of Eqg. (23).

By selecting a set of frequencies Vj with varying degrees of
atmospheric attenuation such that (v , zo) z T(Vj, Z)y ee. 2
T(vj, Z), we can generate a set of kernels K(vj, z) such that for

each value of vj the kernel possesses a maximum at a different

value of zj as shown in the illustration (Fig. 2).

A. The Mapping Transformation

Equation (23) is a nonlinear integral equation with fixed
limits which may be viewed as a nonlinear transformation from

T(z) to I(V) as in Eqg. (3), namely,
I(v) =NT(=z)

To obtain T(z), we need to perform an inverse transformation as
in Eg. (4), namely

T(z) =N} I(v)

Figure 2 strongly suggests a mapping transformation from the
v axis to the z axis. Since the kernels K(vj, z) are strongly

decaying functions, variations of T(z) around z; will affect the
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Fig. 2. The 4.3 um CO2 band weighting functions for atmos-

pheric temperature sounding corresponding to z = o,

values of I(vj) very strongly, while variations of T(z) at values
of z << zj and z >> zj do not affect I(vj) appreciably. Hence,
we propose to map vj into zj where zj corresponds to the peak

value of the kernel K(vj, z). Mathematically, we derive the trans-

formation

vj = v(zj) (24)
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from the solution of the equation

BK i
(vJ z)

=0 (3=1,2,3...3) (25)

Equation (25)'can be used immediately to map the set of J points

on the v axis into a set of J points on the z axis.

But in order to map the I axis into the T axis, we need a
relationship between I(Vj) and T(Zj)- The author (Refs. 3 and 4) has
applied the mean value theorem to Eg. (9) and derived the-following

relaxation equation

B[v., p(®* 1)(z.)] Iv.)
j 3 j

(n) " (n)
(zj)J vy

(26)

B[v., T
3

Equation (26) relates changes in the outgoing radiance for one fre-
guency vj with changes in the Planck function at one level zj,

as illustrated in Fig. 2. Equation (26) is expressed in an itera-
tive form useful for our purposes where T(n)(z) and T(n * I)(z)

are two temperature profiles at different orders n of an iterative
7 (n)

solution. (v.) s the radiance computed from Eq. (23) for a

(n)

given T (z), and I(v). is the measured radiance. For additional
details regarding the derivation of Eg. (26), see Egs. (6) to

(9) in Ref. 4; We should note here that Eg. (26) can be derived
also by applying the method of steepest descent as indicated in

Ref. 2 by the author.

B. The Iterative Method of Solution

We proceed to solve Egq. (23) for the determination of T(z) by

iteration as follows:

Assume a set of measured radiances, i(vj) is given for j = 1,
2, ... J.

1. Make an initial guess (n = 0) for T(n)(z).

(n)

2. Substitute T (z) into Eg. (23) and evaluate the
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corresponding I(n)(vj) j =1, 2, ... J using in this case a linear
interpolation formula.

3. Check the residuals

(n) (n) 29172
~(n n
I v, - I (v,
@ _1| 53 ©y 3! .
R —3,- z.=1 ~(n) (27)
J % (v))
J
for each frequency and in an rms sense. If R(n) is small, then

(n),

T(n)(z) is a solution. If R is not small, go to step 4.

4. Obtain a new guess

_ (n)_(n)
(zj) = aj T (zj)

T(n + 1)

where the scaling factors are obtained from Egs. (16) and (26) as

(n)
L by /T (z4)

3

(n)

n {1 - [1 - exp(bvj/T(n)(zj))]I (vj)/i‘“)(vj)} (28)

A second criterion to establish convergence of the iterative
solution was applied here. The criterion is obtained by observing
the rate of convergence of the temperature profile with respect to

itself as

(n)

<7 > =
av

T(n)(z.) - T(n _1)(2.) (29)
J J

Q-
|
4

j =1
The iteration is terminated when <AT(n)>av is less than some pre-

scribed value, say 0.1l K.

5. Go to step 2 and repeat until step 3 or Eg. (29) is

satisfied.

C. Accuracy of the Results

The relaxation method of solution has been applied to invert
synthetic radiance data generated by a computer from a set of
model temperature profiles in an atmosphere having a constant CO

2
- . -6 .
mixing ratio of 462 x 10 by mass. The spectral interval selected
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to illustrate this study corresponds to the set of 4.3-um fre-

quencies shown in Fig. 2.

The. instrumental slit function ¢(vj, v) is taken to be
triangular, symmetrical with respect to vj,and having a base width
-1 .
equal to 60 cm . A typical example of the accuracy of the recon-

structed temperature values is shown in Fig. 3.

1. Unigqueness of Solution

The typical results of Fig. 3 show two interesting properties
which call for comment. First of all, examination of the solu-
tions, obtained by using as an initial gquess any isothermal pro-
file or the U.S. Standard Atmosphere temperature profiles, shoﬁs
that all the reconstructed temperature values reproduced very well
the original profile in less than seven iterations and the average
absolute error in the reconstructed temperature, <AT>aV, is less
than 0.1 K, irrespective of the initial gquess. Secondly, when a
small perturbation of the order of 1 XK was superimposed on the
exact profile and the resulting profile used as an initial guess,
the solution converged with similar rapidity. The value of
<AT>av decreased from 1 K to 0.074 K in one iteration only. These
results show clearly that the final answers do not depend on the
initial guess and that convergence is gquaranteed for large, as
well as small, perturbation solutions.

We have also observed that the residuals R(n)(vj) of the

individual sounding frequencies do not converge simultaneously at
the same order n of iteration. The reason for this is because
the absorption properties of the atmosphere do not usually allow
for, or lead to, the selection of a uniform set of kernels

K(vj, z) with equal half-widths and equally spaced peaks Zj'

From a numerical point of view, the resulting system of integral
equations is poorly discretized, and in case the weighting
functions are also broad, it becomes difficult to resolve small

details in the profile even in those regions where the
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Fig. 3. Comparison between the exact temperature profile and
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polations. (From Ref. 4.)
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corresponding peaks are narrowly spaced. We note here that, in
general, the resolution of small detail in only one region of the
profile, to the exclusion of the rest, is not always possible

regardless of the accuracy of the measured data.

It is possible, however, to use more than one measurement to
recover the solution at one point zj. This can be done by applying

weighted scaling factors as in Eq. (11)

(n + 1) _ =(n)_(n)
T (zj) = aj T (zj)
-=(n)

where each ai is obtained as a weighted average of more than one

sounding frequency in a manner similar to Eq. (10).
2. Stability of Solutions

The present relaxation method of solution is a discrete
numerical process in which convergehce is judged according to the
extent to which this algorithm suppresses the effects of quadrature,

random and systematic errors on the final temperature profiles.

a. Quadrature errors. The effect of quadrature errors on
the final answer depends on two sources: one of these is compu-
tational, resulting from the integrations of Eg. (23) for the
(n)

evaluation of I (vj); the other is due to interpolations resul-
ting from the inability of a discrete set of points to fit the
whole temperature profile exactly even for perfect data. In the
results typified by Fig. 3, a modified Simpson's rule was used to
evaluate Eq. (23) with a first-order interpolation formula for the
intermediate values of temperature. The temperature profile in
Fig. 3 is relatively smooth, and the use of a different inter-

polation formula or a larger number of sounding frequencies for

such profiles is not warranted.

b. Random errors. The question of the propagation of random
errors is a critical one and depends on a number of factors,

including the spectral region in which the observations are made.
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In examining the tolerance of this algorithm to random errors, the
effect of their distribution, their maximum values, and their rms

values will be taken into consideration.

To obtain a feeling for the stability of the resolution,
errors were produced by a uniform random error generator sub-
routine; they were then added to the exact synthetic data, and
inversions were performed for a variety of cases as in the previous
section. In the results shown in Fig. 4, a set of 10 random errors
having a maximum value of 9.3% and a rms value of 4.8% was super-
imposed on the exact synthetic data of Fig. 1. The reconstructed
temperature values show an excellent tolerance to random errors.

The average absolute error <AT>av in the temperature here is 1.5 K.

Since the present inversion scheme is nonlinear, the effects
of random errors must be examined for each case separately. The
results of some 30 cases studied are summarized in Fig. 5. They
show that, in observations made in the 4.3-uym region, a temperature
accuracy <AT>av of 1 K can be expected with a 2% rms random error
in observations, and an accuracy of 2 to 3 Kcan be expected with a

5 to 7% yms error in observations.

The effects of random errors in observations vary according
to the frequency and can be estimated in principle from Eg. (16).
We consider a hypothetical set of sounding frequencies for which
the weighting functions form a perfect set of delta functions.
The dependence of errors in the temperature solution on random
errors can be obtained by differentiation of the blackbody func-

tion with respect to temperature which yields

e—bv/T) B
bv B

72(1 -

AT = (30)

Equation (30) shows that a relative error AB/B in measuring the
blackbody radiance will be multiplied, by the expression between
brackets, when the radiance is inverted to temperature. This ideal

multiplication factor is a function of frequency. A comparison of
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this factor with the slope of the least-squares-fit line in Fig. 5

turns out to be very satisfactory.

Perhaps more significant is the effect of random errors in

(n)

measurements on the behavior of the residuals Rj . In the case
of Fig. 3 for zero random errors in observations, we recall that
the solution converged after a small number of iterations. The
variations of the corresponding rms value of the residuals,
<R(n)>rms' with respect to the order of iteration, is shown as the
lowest curve in Fig. 6. By contrast, the uppermost curve corre-

sponds to the case of Fig. 4 with an rms random error of 4.8%.

A closer examination of the various results shown in Fig. 6

reveals that the residuals tend toward different asymptotic values
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according to the values of the corresponding random errors in
observations. For zero random errors, the asymptotic value is

equal to the quadrature errors.

Thus, in the presence of random errors in measurements the
residuals do not give a false indication of convergence; they will
not tend toward zero. The residuals first decrease and then
approach an asymptotic value of the same order of magnitude as
the errors in measurements. This property is the result of the
partial (nonlinear) dependence of several sounding frequencies on
temperature variations at one pressure level, and suggests that
the iterative process should be terminated when R(n) becomes equal
to the value of rms errors in measurements. The effect of con-
tinued iterations beyond this point does not increase the amount
of information extracted from the radiance observations; it sim-

Ply increases the rate of accumulation of errors in the recon-

structed  temperature values.

The solid circles in Fig. 4 correspond to the terminal orders
of iteration at which the average absolute error in the recon-
structed temperature values <AT>aV is within #0.1 K of the mini-
mum. The solid circles occur always in the region of maximum

(n)

curvature of the variation of R with respect to n.

c. Systematic errors. Certain transmittance errors
resulting from an approximate knowledge of the composition and
the spectral properties of the atmosphere are systematic errors.
The effect of these errors on the behavior of the residuals is
qualitatively similar to the. effect of random errors; that is to
say, the larger thé error in transmittance, the larger the corre-
sponding asymptotic value of the residuals. And, inversely, the
residuals tend to their minimum value when the errors in trans-

mittance are minimum. We will show in the following section that
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by investigating the consequences of adopting a criterion which
we shall call’minimization of the residualsr we can develop a
satisfactory method for the determination of other meteorological

parameters, such as the constant mixing ratio of absorbing gases.

The mapping transformation applied in this section can be
adapted to different data requirements as shown by Conrath (Ref.
8), Smith (Ref. 9), Shaw, et al. (Ref. 10), and Taylor (Ref. 11).
Figure 7 is an example taken from Ref. 10 and shows a comparison
between the temperature profile recovered from real data with
colocated radiosonde and rocketsonde data. More recently, the
technique has been applied by Jastrow and Halem (Ref. 12) to
interpret the infrared radiance data from the 15 ym sounding on
the National Oceanic and Atmospheric Administration (NOAA) satel-

lites for numerical weather prediction purposes.

IV. DETERMINATION OF COMPOSITION PROFILES

The dependence of the radiative transfer equation on the con-
centration of absorbing gases ps(z) appears in the kernel of the
equation as shown in Egs. (17), (19), and (23). If the mixing
ratio profile is a constant qs, the dependence of K(v, z) on a,
is simple and the retrieval of q  can be obtained by a minimiza-~
tion process. However, if the mixing ratio is a function of =z,
the unknown ps(z) will appear as a functional in the integral
equation, and the retrieval of ps(z) in this case becomes more

difficult. We will examine these two cases in this section.

A. Case of the Constant Mixing Ratio

The property of the residuals given in Eg. (9) and Fig. 6

has been used in Ref. 4 to derive the constant mixing ratio q of
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absorbing gases, such as the constant mixing ratio of carbon
dioxide in the terrestrial atmosphere. Here, an error in the
value of the mixing ratio qco2 used in computing the kernel intro-
duces an error in K(vj, p) which will prevent the residuals from
converging to near zero. The residuals will reach an absolute
minimum value, only when the correct kernel is used, i.e., when-
the correct mixing ratio is known, assuming all other sources of

error to be relatively small.
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As an illustration, we‘applied this method to the synthetic
data of Fig. 3, assuming, however, the value of qCO2 (which is
equal to 462 x 10-6) to be unknown. The results in Fig. 8 of the
twelfth iteration clearly show that the residuals have one minimum .
at the.correct value of the mixing ratio. The results of the
third iteration, for which T(z) is far from having converged, show
that a good approximation to the value of the mixing ratio can.be

obtained with just a rough knowledge of the temperature profile.

B. Case of the Variable Mixing Ratio

The determination of the composition profile ps(z) can be
obtainedlby applying a mapping transformation similar to the one
used for T(p). However, the relaxation equation required to trans-—
form the I axis into the ps axis may, in some cases, be hard to
express analytically. According to Eq. (7), the relaxation
approach can be generalized to solve for any function or functional
under the sign of integration. If g(zj) is the temperature pro-
file then aj can be obtained directly from Eg. (26). But in the
case of the composition profile, the determination of aj is more

difficult because ps(z) appears as a functional in the kernel,

) BT(\)JI z, <OS(Z)>: ee.)
K(le Zy <OS(Z)>, ces) = 3z

since T and K depend on the distribution of ps(z) between z and z.
The notation <ps(z)> indicates that the transmittance and the ker-

nel are functionals of ps(z).
1. The General Approach

To determine ps(z), let us first integrate Eg. (23) by parts

and write the result as in Ref. 5

Z
- V1 - : 9B
I(vj) = B[vj, T(z) ] L T[vj, z, <p_(2)>, el 5y 42 (31

[e]
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(From Ref. 4.)

To determine ps(zj) from a given set of radiance measurements,
assuming that the temperature profile is known and is not iso-

thermal, we map the v. axis into the z. axis according to Eq. (5)
(n)

then make an initial guess ps

(zj) and solve the equation

z
- 3
I(vj) - B[vj, T(z)] = L T[vj, z, <a;n)ps(n)(zj)>, .ol a—]:
(o]

dz (32)

to obtain a set of scaling factors a;n), for i =1, 2 ... J. We

o

generate the next iteration through the relaxation equation

(n + 1) . (n) _(n).
s (zj) = aj ps (zi) (33)

This iteration process is repeated until each value of the scaling
constants approaches unity, which is equivalent to satisfying the

residuals in Eq. (9). This relaxation method of solution leads to
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accurate determination of composition profiles without any a priori

information for the expected solution, as shown in Fig. 9.

The relaxation method can be applied in conjunction with any
interpolation formula. The extent of interpolation is dictéted
by the quadrature requirements, and by the need to optimize the
quality of solutions obtained from a finite set of. sounding fre-
guencies. Additional details on this subject can be found in

section 2 of Ref. 5 and in section 4 of Ref. 6.

2. Approximate Relaxation Equation

The determination of aén) can be rather time consuming because

it requires reevaluation of T many times. Two approximate relax-
ation equations have been derived in Egs. (13) and (17) of Ref. 5.
We give here one approximation to the relaxation equation

(n)

(n) I(v.) - 177 W)
a =1 - —= J J > 0 (34)
f T(n) ln'r(n) E-lé-dz
2z
Z
o]

where T and B are functions of both v and z. Equation (34) proved

to be very useful particularly when a is close to unity.

V. REMOTE SOUNDING IN THE PRESENCE OF CLOUDS

Equation (23) is derived for the case of plane, parallel,
homogeneous and nonscattering atmospheres. This is an ideal case
which does not usually apply to observations in the presence of
clouds or other horizontal inhomogeneities. In this section, we
treat the problem of remote sounding of cloudy atmospheres for the
determination of the "clear column" vertical profiles, i.e., the
vertical temperature profiles in the clear portions of the fields
of view. We will separate the problem into two parts. The first
part deals with the simple case of a single cloud layer or a single
degree of horizontal inhomogeneity and the second part deals with

the general case of multiple cloud layers. The treatment of this
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Fig. 9. Determination of the variable water vapor profile

from synthetic data with random noise. (From Ref. 5.)

problem in this section will be brief and will describe only the
results which have been published in Refs. 13 to 16. Additional

work on this problem is still continuing.

A. Observations in the Presence of a Single Cloud Layer

In this part, we treat two cases of clouds. The first case
is general and requires no a priori knowledge of the radiative
properties of the clouds. The second case is for clouds with

known properties, such as black or gray clouds.
1. Clouds with Spectrally Unknown Characteristics

We consider two adjacent fields of view having different
fractional cloud covers at the same height z, as shown in Fig. 10.
We express the outgoing radiance il(v) and iz(v) from the first

and second fields of view as

I (v) = [Il(v)]clear_ NlG(v, Z_, t, r, €, ...)

-
—~
<
~
I

Iz("’]eleax' N,G(v, Z_s £r Ty @ .. (35)

97



ll(l/) , lz(v)
A }
Ny N,
A\YAVAVAY) -VV CLOUDS
R 7/ A il S URFACE

~—FOV1 - V2 — =
loppAr™) "W = N6, Z, t e P, )
lotear®™ - 1L®) = N, G, Z, 1 e,P, )

Fig. 10. The single cloud layer.

Equation (35) makes no assumption about the radiative transfer

properties of clouds; it simply states that the observed radiance
ik(v) is equal to the clear column radiance which would have been
measured in the absence of clouds minus the radiance G "obscured"
by the presence of ‘a fractional cloud cover N,. G is unknown and

k
depends on -v, zc,and the spectral properties of the clouds.

If the two fields of view are small and contiguous, we can

assume that

I = [Il(v)]clear = [Iz(v)]clear

and substitute into Eg. (23) to eliminate G and get

IV =1, +n i -1,m] (36)
where N = unknown = _ﬁ;—:—ia
Thus, if n is known, we can reconstruct the clear column radiance
according to Eg. (36) for all frequencies and proceed to recover

T(z) as described earlier.
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According to Eq. (36), N can be determined from a knowledge
of I(v) at any frequency, say V', as

IV - I, ()

"TE N - 5,00 : (37)

However, the exact value of the clear column radiance I(v') is
actually unknown because I(v') itself depends on T(z). Thus, the
determination of n and T(z) should be carried out simultaneously
and the selection of v' should satisfy certain convergence cri-

terion in order to ensure uniqueness of the solution.

The argument for the selection of v' is as follows: if

(n) (n)

T (z) is any guess on the solution and I (v') is the corre-
sponding radiance according to Eqg. (23), we get from Eq. (37).

(n)
I (v') - I,(v")
n(n) 1 (38)

il(v') - iz(v')
and by adding and subtracting I(v) from the numerator we get

ar ™

(n) ™ vy -1y (n)

n =n o+ I _ )
I, - I, (v

il(v') - Tz(v')

=n + =n+3 (n)

(n)

Now, in order to minimize § (n), Egs. (26) and (16) require

that v' < Vj where Vj is the set of temperature sounding frequen-—
cies. By simple differentiation of the Planck function with

respect to T and by substitution into Eg. (26), we can show that

G(n)(n) is directly proportional to v for a given temperature

(n)

error AT = T(z) - T (z), as

ar™ (v) LJAB(v', T) _ by’ AT
I(v') - B(V', T) bv' g2

At the same time, the frequency range v' should be cloud

dependent so that il(v') # iz(v').

We can translate this into a condition for convergence and

select v' to ensure that
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E = . 21 <1 (3 =1 ) (39)
) 5 y oeae
I(v) =17 (vy)

The basic steps of the method of solution for n and T(zj) are

shown in Fig. 11.
1. Make an jinitial guess (n = 0) for T(n)(z);

(n) (n)

2. Substitute T (z) into Eq. (23) and compute I (v') and

(™) (Vi3 =1, 2, ... 3.

(n) (n)

3. Substitute I (v') into Eq. (38) and compute n .
(n)

4. Substitute 7 into Eq. (36) and reconstruct

f(n)(vj);j =1, ... J.

5. If the convergence criterion E is satisfied, then
(n)

I (v.) is closer to the exact clear column radiance I(vj) than
the computed I(n)(v) and the relaxation equation
+ -
BLv,, o0 1)‘33)] I(n)(vj) _
(n) = T(n) (j = A J) (49)
B[v., T z, I (v.)
[ 5 ( j)] 3

is used to obtain the new guess T(n + 1)(zj).

6. Go back to step 2 and repeat until

i(n)(vj) _ I(n)(vj)
(v,) = — > 0 (41)
J I(n)(vj)

(n)

R

Application of this method to recover T(z) in the presence of
clouds has shown that the solution exhibits the same characteristics
as in the case of clear fields of view. See Ref. 6 for additional

details.
2. The Single Layer of Black Clouds

For the case of black clouds, the term G(v, zc. ee.) in

Eg. (35) can be expressed analytically as
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G(v, z) = - Blv, T(z))]IT(v, 2) + Blv, T(z)]t(v, 2 )

z
+f Blv, T(z)IK{(v, z) dz (42)

z
o]

where z is the cloud-top height. By substituting Egq. (42) into
Eg. (35), and using Eg. (23), we can express the measured radiance
in any field of view ik(v) as an integral function of the clear
column temperature profile T(z), the cloud-top height z, and the

fractional cloud cover N, according to Eg. (1) in-Ref. 13, as

I(v) =N { B[v, T(z ) 1T (v, z)

z
+ Jz B[v, T(z)]K(v, z) dz }
c

+ (1_- N) { Blv, T(zo)]T(v, Zo)

2z

+ J B[v, T(z)]lK(v, 2z) dz } (43)
ZO
— 1o gy 7 ) —
(n) 7(n)
T _ | 1) - 1)
— E= | ———————< 1
SUESS 1) - 1)
v
(n) =
1 e )
RELAXATION l SOLUTION
(n+1)
| «— T

Fig. 11. Flow diagram of the iteration method of solution

for the determination of the clear-column temperature profiles.
(From Ref. 14.)
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If N and z_ are known, it is obvious that the problem reduces to
the case described earlier in this paper. In practice, however,
neither z_ nor N are known, and a method of solution should be
derived. to account for (or eliminate) the effects of clouds. When
we solve Eg. (23) for measurements made in the presence of clouds
(i.e., this is equivalent to assuming N = 0 in Eq. (43)), we obtain
an apparent temperature profile ik(z) which is different from the
true clear-column profile T(z). The author (Ref. 13) derived a

simple relationship between T(z) and T(z) in the form of

T >
B[vj, T(zj)] B[vj, T(zj)] z., 2 2

+ a{B[vj, T(zj)] - B[vj, T(zc)]} (zj <z )| (49)

where a = N/(1 - N) and B is the Planck function given in Eq. (16).

Let us consider next two adjacent fields of view having dif-
ferent amounts of clouds, N, and Ny, at the same height zc. We
can eliminate B[vj, T(zc)] from Eq. (44) and write (see Eg. (12)

in Ref. 13)

B[vj, T(z)] = B[vj, Ty (25)]
+ n{Blvy, Ty(zp] - Blvy, Tr(z) 1) (45)

The practical benefits of Eq. (45) are obvious. The clear column
temperature profile T(z) can now be recovered directly by a simple
transformation of the apparent temperature profiles il(z) and %2(2)
of two adjacent fields of view. 1 is an unknown constant which can

be determined from an additional frequency as described earlier in

this section.
3. Determination of the Amount and Height of Clouds

The value of the fractional cloud cover N and the height zc of
clouds can be determined when the radiative transfer properties of

the clouds in G(v, Zc' t, r, e, ...) are given.
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For the case of black clouds, the author (Ref. 4) showed that
by substituting Eq. (43) into Eq. (35) and by taking the ratio for

two different sounding frequences vy and V,, We get

I(n) ) G(n)(v1, zc) .
( = Y (46)
v,) - Ik(vz) G (Vo zc)

(v) = I_(v))

I (n)

where Eq. (46) is now a function of one unknown zc, assuming that

T(n)(z) has been determined as described earlier. The solution for

zc can be obtained by minimization techniques as described in

section 6 of Ref. 6. The corresponding value of Nk is obtained

directly from Eq. (35) as

(@ (v)) - T (v.)
_ x'V1 (a7
N G(v, z)

Applications of this approach to the infrared data from the Vertical
Temperature Profile Radiometer (VTPR) sounder on NOAA 4 are illus-

trated in Fig. 12.

B. Observations in the Presence of Multiple Cloud Formations

The two methods described earlier for the elimination of the
effects of a single layer of clouds can be extended to multiple
cloud formations for the cases of clouds with spectrally unknown
characteristics and for black clouds. Derivation of the required
equations can be found in Ref. 14. A brief summary of the final

results will be given next.
1. Clouds with Spectrally Unknown Characteristics

Let us reexamine Eqg. (35) now and look at NG, on the right-
hand side of the equation, as a one term expansion of the dif-
ference between the clear column radiance I(v) and the radiance
measured in the presence of clouds I(v). In the case of Eq. (35),
N is just a coefficient of expansion and G(v, z, t, r, e, ...) is

the expansion function. The mathematical form of G need not be
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from the VIPR sounder on the NOAA 4 satellite, for the period of
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defined because it will be eliminated by using measurements from
adjacent fields of view as shown in Eq. (35). A knowledge of the
form of the function G is necessary, however, if we need to deter-

mine the amount of the corresponding fractional cloud covers.

The one~term expansion of Eg. (35) may not be sufficient in
the presence of multiple cloud formations. Therefore, we propose

to use a three-term expansion of the form

clear ] ] 1" " m n
I (v) - Ik(v) —.Nk G + Nk G + Nk G (48)

with G' = G'(v, z, t', ', e', ...) and similarly for G" and G™ .
The expansion functions G depend on v and z as well as on the cloud
transmissivity %, reflectivity r and emissivity e. N', N" and N"™
are the expansion coefficients. The next step now is to eliminate
G from Egq. (48) and express I(v) as a function ik(v) and Ni, Nﬂ

and NE .

In order to eliminate the expansion functions, we consider
observations over four adjacent fields of view, K =1, 2, 3, and 4,
and use the first three equations to express G', G" and G™ as
functions of the N, , I(v) and ik(v). We substitute the results

k
into Eqg. (48) for k = 4 and write

~ 3 ~ ~
v =T, + ), _ ol Iom-I W] (49)

Details of the substitution are given in Appendix A of Ref. 15.
As expected, we note that the first term, £ = 1, of Eg. (49) corre-

sponds to the case of a single cloud layer as given in Eg. (36).

The determination of T(z) and n_,Z is carried out simultaneously

L
by iterations according to the steps given in Fig. 11. A typical
illustration of the accuracy of this method is shown in Fig. 13,
using synthetic radiance data. Additional details on the accuracy

and stability of the solution are given in Ref. 14. Experimental

105



10 T T T T T T T T T
/

| <|aT|>,, =0.80 °C .
—— EXACT

20 | : // ® RECONSTRUCTED .
) + 4% NOISE
30 [ / —
50 |- i / CLOUD ]
FRACTION
ol ! HETGHTS AL CLOUD COVERS ]
2 mb FOV 1| Fov 2|Fov 3| Fov 4
. 100 o| . i
W \ 250 | .0 .1 .3 .2
D 1]
2wl b S A I R I
g \~ \ . - - . -1
YVYYTYy
300 | ) N i
\\'
~
500 ~reeen \\ _
~
L .
700 ~< .
1000 I TR i ) 1 ! ] .\31
-4 0 4 210 220 230 240 250 260 270 280
AT, °c TEMPERATURE, K

Fig. 13. Determination of the clear-column temperature pro-

file in the presence of three cloud layers. (From Ref. 14.)

verification of the expansion approach has been obtained and dis-

cussed in Refs. 15 and 16.

We contlude the discussion here by indicating that the use of
more than four expansion terms is feasible from a mathematical
point of view, but from an experimental point of view the expansion
may not converge always because of the effects of noise in the

data and uncertainties in the accuracy of the computed kernels.

2. Multiple Layers of Black Clouds

In the case of black clouds, Eg. (45) can be extended to read

B[vj, T(zj)] = B[vj, Tl(zj)]

3 nd -~
+ 22 i lng{B[\)j, (2] - Blvg, Ty (201} (50)
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where ik(zj) is the apparent femperature profile, over the kth

field of view (obtained without accounting for the effects of

clouds). The coefficients nl should be determined from additional

radiance data measured at different frequencies over the same k

fields of view or from a priori knowledge of certain properties of

the solution, such as the value of T(z) or the lapse rate 4T/dz

at given heights z.

VI. APPLICATIONS AND EXTENSIONS

The mapping transformation method described in this paper has

been presented specifically as a method of solution of the non-

linear radiative transfer equation. However, it must be obvious

that the mapping transformation is general and can be applied to a

wide class of nonlinear as well as linear integral equations, as

in the case of the analytical example. The only requirement is

for the kernel K(v, z) to be a rapidly decaying function with

maxima occurring at different values of z for different values of

V.

Extensions of this method and applications to other linear

and nonlinear problems can be found in the works of Barcilon

(Ref. 7), Menzies, et al. (Ref. 17), Twomey, et al. (Refs. 18 and

19), Twitty (Ref. 20), Grassl (Ref. 21), Gautier, et al. (Ref.
Encrenaz, et al. (Ref. 23), and Gille, et al. (Ref. 24).

SYMBOLS
constant defined in Eg. (16)
constant defined in Eg. (16)

W o o

Planck function

subscript denoting clouds
convergence criterion
function to be determined

radiance from cloudy portion of fields of view

M @ 1 B Q

radiance function
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outgoing radiance measurement
absorption coefficient

kernel of integral equation
numbeér of iterations
fractional cloud covers
integral operator

Pressure

W =2 8RR OH

residual function defined in text

subscript denoting absorbing gas

[}

H

temperature

apparent temperature profile

=

geopotential height

N

lower and upper limits of the range of integration

N
o}

relaxation weight

= N

scaling factor Eg. (7)
weighted scaling factor Eg. (10)

line half width

random error

cloud coefficients
-1

frequency, cm

air density

atmospheric transmittance

S A4 T < 30 Q@ @

instrument function
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DISCUSSION

Rodgers: Can you produce an estimate of the error in your final
solution using the relaxation method? I mean the total error.

Chahine: This is a nonlinear equation and it is very difficult to
determine explicitly the effects of noise in the data on the
accuracy of the final solution. By trying several cases of noise
levels, it becomes possible to describe the growth of errors in
the solution as a function of noise in the data. Professor
Barcilonel has shown that the growth of errors in the final solu-
tion is cyclical. 1In other words, he has shown that the growth
of errors in the final solution does not vary linearly with the
growth of noise in the given function.

Rodgers: This isn't quite what I meant. I meant the departure of
your solution from the real profile. I didn't mean the sensi--
tivity of your solution on noise in the measurement.

Chahine: That depends on the degree of discretization of the given
function or in other words on the information content of the given
data. It depends also on any a priori information available about

the expected solution.

Gille: When you iterate and drive the radiance residuals down,
they drop monotonically. Does the error of your temperature
solution also drop monotonically?

Chahine: During the first few iterations, the errors in the solu-
tion decrease monotonically with the radiance residuals. However,
when the decrease in the radiance residuals R(N) pecomes slow?2

the accuracy of the solution becomes dependent not only on the rR(n)
but also on its first and second derivatives. Thus, at higher
iterations, beyond the point of maximum curvature in the Figure,

the errors in the solution do not necessarily decrease monotonically
with R(n); and very often they don't.

Fleming: I would like to take exception to your statement that
your solution does not depend on the initial profile. If the
Chairman will permit me, I have a slide to illustrate my point.

lSee Ref. 7 in this paper.

2 . . .
Pointing to Fig. 7.
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DEPENDENCE OF THE CHAHINE SOLUTION ON THE INITIAL PROFILE
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This is a VTPR simulation study in which we have 107 retrievals by
the Chahine method on the right-hand side. The arrows show the
locations of the peaks of weighting functions and the dashed line
is the RMS error of the solutions when forecasts were used for the
initial approximation. The solid line is the RMS error of the
solutions when climatology is used for the initial approximation.
Notice that there is a definite dependence of the solution on what
is used as the initial approximation. On the left is the same
situation, except the retrieval method is the Rodgers-Strand-
Westwater statistical solution. Clearly, the Chahine method shows
a dependence on the first guess virtually of the same magnitude as
the Rodgers-Strand-Westwater method.

Chahine: I agree with you here because the slide I presented on
the VTPR showed very strong dependence on the initial guess. I
agree with your results.

Fleming: But you just said and your abstract said it is not
dependent on the initial guess.
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Chahine: That depends on the properties of the kernel and the
given functions. In my abstract I was not dealing specifically
with the VTPR data. I said from a complete set of data you should
be able to get a complete solution independent of the initial gquess.
But for the case of the VTPR, the given data are incomplete and,
therefore, the solution is incomplete and depends on the initial
guess. For the specific result you have shown on the VITPR I agree
with your conclusion.

Susskind: I would like to make a comment on the past two comments.
When we talk about the dependence of the initial guess, there are
two different things which would cause dependence on thé initial
guess that Dr. Chahine was just referring to. First, if we think
about the effects of clouds and the ability to retrieve surface
temperatures, if you only have VTPR soundings and you want to
filter out the effects of clouds, then you have to return the guess
at the surface, because there is sufficient information in the
observations to construct the clear column radiances. That's one
dependence of the guess. You get a surface temperature that looks
like the guess, then that's one kind of problem. Even if you have
the clear column radiance and you don't have to worry about the
clouds, the shape of the profile to some extent is what is impor-
tant. You have information at, say, the peaks of the weighting
functions of the channel, that much information, and you have to
make some assumptions as to what's happening in between those
points. If the shape of the initial guess is wrong, the shape of
the solution will be wrong. The fine vertical structure of the
solution has to follow the guess. If the points come closer and
closer together so that you have more information, then you could
say to better approximation that the solution does become inde-
pendent of the guess because you're talking about errors in shape
between points that are very close together and it's not--well,
it's essentially linear in there. It doesn't matter what's hap-
pening. So there are two different things that cause dependence
on the guess.

Staelin: Does your method apply to certain other situations? You
began by saying you might associate each frequency with that alti-
tude where the weighting function peaks. There are certain problems
where all the weighting functions peak at the same altitude, how-
ever. For example, if you are attempting to sound temperature by
looking up from the ground every weighting function peaks at the
surface. Other problems involve weighting functions that have two
peaks. Does your method apply to these cases?

Chahine: Yes it does, but the results are not as satisfactory as
for the case where the weighting function has distinct peaks at
different values of the physical axis. If you cannot discriminate
between the information received from different heights, you can-
not have a satisfactory inverse solution. Professor Twomey has
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introduced a modification to the relaxation equation which applies
to the case you have just described.l

Twomey: You showed one of the last graphs and there was the
residual decreasing to the error level and then flattening out.

I have seen this same behavior in algorithms, and it's kind of
spookey, really. The thing I want to ask though is the following:
This seems to hold with random errors and I have the feeling that
there must be some kind of error that would be disastrous which
the thing would try to invert. Have you found out anything about
the character of that kind of error?

Chahine: Yes. But first, regarding the property of the residuals
shown herez, I thought at first when I noticed that the residuals
did not decay down to zero in the presence of noise in the data,
this behavior is a property of the nonlinear equations I was
studying. However, in examining the residuals obtained by Dr.
Twitty3 for his linear equation, I found out that the residuals

in his case also decreased rapidly at first and then approached an
asymptotic value nearly equal to the errors in the data. Because
of this, I now believe that this behavior of the residuals is due
to the types of overlapping kernels under consideration. Now when
does this property of the residuals break down? Usually it does
not fail in the presence of systematic noise alone or random noise
alone. But it sometimes breaks down when random and system noise
are both large and are both present in the data.

Westwater: On your statement that the residuals converged to the
noise level, does this convergence depend on the method of inter-
polation that you use to fit the function "f"? You would think
that linearly interpolating between estimated points might con-
ceivably give a different residual than a gquadratic interpolation
or a higher order interpolation.

Chahine: Yes, because in the absence of noise in the data, the
residuals decrease rapidly and approach an asymptotic level equal
to the quadrature error. Now, different interpolation methods will
introduce different quadrature errors and, therefore, the residuals
will approach different values reflecting the level of quadrature
errors in the solution.

Westwater: That would imply to me that you're really not con-
verging to the noise level, because if you're converging to a

lSee Ref. 19 in this paper.
2 . .

See Fig. 7 in this paper.
3See Ref. 20 in this paper.
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quantity that depends upon method of interpolation that you're
using, that really does not bear a direct relationship to the
noise level.

Chahine: The noise level in the system of equations is the sum of

the systematic noise, the random noise as well as the quadrature
noise.
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STATISTICAL PRINCIPLES OF

INVERSION THEORY

C. D. Rodgers
Clarendon Laboratory

The accuracy of solutions to the inverse problem of
radiative transfer is a topic that has received very little
attention from the theoretical point of view in the meteorol-
ogical literature. Many of the sources of error are sta-
tistical in nature, and statistical methods must be used to
deal with them. Such methods give considerable insight into
both the nature of the problem and the nature of the solu-
tion.

All the available information about an unknown profile
can be expressed in the form of values of functions of that
profile and error estimates of these values. Estimation
theory shows how these values are combined to give an esti-
mate of the unknown profile and its error covariance. Many
inversion methods can be expressed in this form, although
the error estimate is not usually carried out. Practical
applications are described, both for inversion of individual
profiles, and the global analysis of satellite data.

I. INTRODUCTION

This paper is based, to a large extent, on a review paper
(Ref. 1), which covers many of the topics in much more detail.
The subject is not new by any means. However, the implications
of a correct statistical analysis of meteorological inverse prob-
lems do not seem to be properly appreciated, so it seemed reason-
able to try to state them clearly at this Workshop. All physical
problems involving measurements of continuous variables must be

analyzed by statistical methods simply because measurement error
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is statistical in nature. We can never measure an exact value,

we can only say that the value lies in such and such a range, or
belongs to a population with a known probability density function.
Any quantity derived from the measurement is also a random variable,
and in developing methods for finding derived quantities, we must
take account of this fact. There are standard statistical tools
available (e.g., Ref. 2); therefore, it is not necessary to invent
anything new--it is Jjust a matter of recognizing when a particular

tool is applicable to the problem in hand.

The kind of question that we would like to answer is some-
thing like this: Given a set of measurements of radiation emitted
(reflected, scattered) by the atmosphere, our current understanding
of the physics of the atmosphere, and any other measurements that
may be relevant, what can we say about the state of the atmosphere?
The guestion is usually expressed in terms of profiles of unknown
quantities, such as temperature and composition. Given a measure-
ment of a known function of a profile, estimate that profile when
there are experimental errors in the measurement, and errors in
our knowledge of the function. 2n essential part of the measure-
ment is a proper characterization of both kinds of errors. If we
do not know the magnitude of the error in a measurement or in the

theory, the measurement is not worth making.

A little thought shows that this question can only be answered
in a statistical sense. Given a probability density function rep-
resenting our knowledge of some function of a profile, find a
probability density function representing our knowledge of the
profile itself. This applies to almost any physical measurement
of almost anything, but it is a little more complicated in our case
because the result is a profile, rather than a single number to

which we can assign error bars.

If we are going to discuss general profiles, we should use
the algebra of Hilbert space. It seems to me that the use of

Hilbert space notation is an unnecessary complication in this
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subject. This is not because the algebra is more difficult than
the algebra of matrices, but simply that many physicists are
unfamiliar with the mathematical jargon, and in the end computer
programs that implement inversion methods will use the algebra of
matrices. In practice, it is not possible to specify an absolutely
general profile because this would require an uncountable infinity
of numbers. We must, therefore, deal with profiles that can be
specified by a finite number of numbers, using some representation
or discretization of the profile. An important consideration in
the choice of representation is that it must be indistinguishable
from the true profile for all practical purposes. In our case, the
radiation emitted by an atmosphere with the true profile must be
the same as that emitted by an atmosphere with a profile given by

the corresponding representation well within experimental error.

At this point, we run up against the main problem of all
inversion methods. The problem is ill posed (underconstrained).
We need a relatively large number of numbers to construct a
reasonable representation, and our measurement of radiation is
usually made in a relatively small number of spectral intervals
(or scan angles in the case of limb sounding). Even if there were
no experimental error, there are usually not enough measurements
to determine a profile uniquely. The presence of experimental

error simply makes the problem worse.

II. A STATISTICAL APPROACH

The only way of solving the problem is by making use of some
kind of extra a priori information. (The alternative is to find
a different problem to solve.) The source of a priori information
may be the physics of the problem, statistics of other measure-
ments, arbitrary restrictions, prejudice, etc. The information,
itself, can take many forms, such as representations with smaller
number of parameters, smoothness, least squares deviation from

some a priori profile, climatology, etc., but whatever the form,
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they are all similar in nature. They contain (or purport to con-
tain) information about the unknown profile, just as the measure-
ments do. An enlightening way of describing a priori information
is to call it "virtual measurements." They provide values of
known functions of the unknown profile with specified errors just
as the real measurements do. To solve an inverse problem, the
real measurements and the virtual measurements must contain enough
pieces of information to determine all the parameters of the pro-
file with an accuracy adequate for the application, i.e., there
must be enough virtual measurements to make the problem well

posed.

One way of considering the problem in order to develop some
physical insight is to express it in terms of N-dimensional geom—
etry, with N = 3 for the purpose of imagining what might happen.
If the representation of the profile requires N parameters, we can
treat it as a point in an N dimensional "profile space" with the
parameters as coordinates. A priori information can be regarded
as giving a value and uncertainty (including covariance) to these
parameters, or equivalently, can be regarded as specifying a
‘region of profile space within which we believe the solution to
lie. This a priori constraint region may or may not be infinite
in extent. In the example in Fig. 1, the a priori region is rep-

resented by the large ellipsoid.

The measurement consists of M numbers, each of which is a
known function of the profile. They represent a point in an M
dimensional "measurement space," which is a mapping of profile
space. Typically, M << N, and a point in measurement space maps
on to a region of profile space. This region is the class of pro-
files which are consistent with the measurements. 1In Fig. 1, such
a region is represented by the axis of the infinite cylinder. The
finite width of the cylinder expresses experimental error. The
class of solutions which is consistent with both the measurements

and the constraints within the error bounds is represented by the
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KTs:' K

Fig. 1. Illustrating the relationship in profile space
between the a priori information (XO’SX)' the measurement

(KnglK) and the solution (%,8).

small ellipsoid in Fig. 1. We can see that the main effect of the
constraints is to determine those components of the profile which
are not determined by the measurement--in this case, position
along the cylinder. The aim of statistical inverse theory is to
determine the position and extent of the solution region of pro-
file space, i.e., to find the solution and its uncertainty, or to
characterize the class of profiles consistent with both the real

and the virtual measurements.

III. LINEARITY

We can classify inverse problems according to their degree
of nonlinearity in terms of the methods used to solve them and
to carry out the error analysis. One such classification is

1. Linear: Linear problems can be solved explicitly, pro-

vided that there are enough measurements, both real and virtual,
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so that the problem is well posed. Few real problems are linear.

2. Nearly linear: This class of problems can be linearized
and solved with a few iterations.

3.- Modérately nonlinear: These are sufficiently nonlinear
for an ad hoc method to be required to find a solution efficiently,
but are linear enough within the error bounds to ensure that thé errox
analysis can be carried out with linear theory.

4. Grossly nonlinear: These are nonlinear, even within the

error bounds of the solution.

In many cases, considerable improvement can be gained by not
solving for the profile directly, but by solving for some non-
linear function of it. For example, if we solve for a Planck
function profile rather than a temperature profile, in the case
of 4.3 uym band or 15 um band temperature sounding, the problem

becomes nearly linear rather than moderately nonlinear.

IvVv. LINEAR ERROR ANALYSIS

The purpose of error analysis is to characterize the class of
profiles which are consistent with the measurement. Linear error
analysis applies to all except grossly nonlinear problems. We
will assume Fhat we have somehow found a profile which is a
solution within the error bounds. We will use it as a lineariza-

tion point.

The measurement y is a known function F(x) of the unknown
profile represented by the vector of parameters x, with error
covariance S

y = F(x) + ¢ Covariance (g) = Sy

We assume that within the error bounds of the solution, this

equation can be linearized about our initial solution to

oF
y = F(XO) + 3% (x - xo) + g
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Denote the Frechet derivative oF/dx by the matrix‘§, and we can

write:

y - Fx)) = K(x -xo)-_+ £ (1)

The a priori information can be linearized similarly. For sim-
plicity, we will only consider the case where X is an a priori

value for the profile x, with covariance Sx'

x =X+ € Covariance (E) = Sx. (2)

where £ is a random vector.

There are standard statistical methods for combining indepen-
dent measurements of the same quantity, such as Egs. (1) and (2).
They are based on expected value, minimum variance or maximum
likelihood estimators. The one everybody should be familiar with
is the combination of two scalar measurements. If x; and x, are
two independent measurements of an unknown x, with stanaard de?ia—
tions o4 and Oy respectiveiy, then the best estimate of x is %

with standard deviation G where

2 -1

2 -
+ 0, )

o _ -
g = (o,

A

_ ~2 2 2
X =0 (x1/°1 + x,/0%)

i.e., the measurements are weighted inversely with their variances.

In our multivariate case, this generalizes to

-1 -1

-1
y X) (3)

3 =(s!+x's
Y] X ny

. Coapa-l oo T_-1
g-x = g{sx (x - xo) +.K Sy (y - F(Xo))} (4)

which is in effect a weighted mean of two independent measurements
of x - X weighted with inverse covariance.matrices. One estimate
is X - xo,and the other is K*(y - F(x;)) where 5* is any matrix

such that 5&* is a unit matrix. The second estimate is not unique

because 5* is not unique. For the purposes of this section, é is
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the more important quantity, being the covariance matrix of the
solution %. It contains information about the uncertainty in %,

it bounds the class of acceptable solutions.

Equations (3) and (4) comprise the complete solution in the
case of linear problems and define the iteration to be carried
out in the case of nearly linear problems. At each stage of the
iteration X, is replaced by & from the previous stage. Apparently
different solutions (e.g., statistical, Twomey-Tichenov, etc.) only
differ in the form of X and Sx' which express the nature of the
a priori constraints. In the case of moderately nonlinear prob-
lems, it may be necessary for efficiency to find X bydhsing some
ad hoc procedure, such as Chahine's method, but a final stage of

linearization and error analysis should be carried out according

to Egs. (3) and (4).

To understand the meaning of the covariance matrix §, we can
examine the diagonal elements, which comprise the "residual vari-
ance" or accuracy of the individual elements of the solution pro-
file. This examination is illustrated in Fig. 2 for an idealized case.
Residual variance_gives a useful rough estimate of the accuracy of
the solution profile, but it is not a complete description. Off-
diagonal elements of S are generally nonzero, so that there are

correlations between the errors at different levels.

The form of the errors may be more easily understood if we
diagonalize the error covariance matrix by finding its eigenvalues
and vectors. The vectors form a set of "error patterns" whose
coefficients are statistically independent from each other, and
the values are the variances of these coefficients. An illus-
tration of such a set of‘error patterns is given in Fig. 3 and
Table 1. The solution is uncertain to the extent of adding each
pattern to it with a coefficient which is random and has a vari-
ance given by Kn. Note that all the patterns have only fine scale

structure which is on the same kind of space scale in all cases.
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TABLE 1

Eigenvalues of the Solution Covariance
for an Idealized Case

A 469 274 84 47 40 36 21 19

V. NONLINEAR ERROR ANALYSIS

There is no general method of error analysis that can apply
to all nonlinear problems, just as there is no general solution.
However, we can outline a strategy based on the linear error
analysis which will give a good indication of the solution error

and the degree of nonlinearity.

We must first define what is meant by a solution in the non-
linear case. This will be something like the maximum of a likeli-
hood, or the minimum of a quadratic risk function, for example

% might be the minimum of

(x ~ x)Ts;(?c -x) + (y - F(x))Ts;(y - F(x)) (5)

where we have used linear a priori information {ZX, Sx} and a non-
linear observing system--F(X). More general expressions can be
used. The minimization is possible in principle, but I do not
wish to discuss how it should be done. A linearization is pos-
sible about %, and we can define a matrix é as in Eg. (3). The
linearization may not be valid in the region of profile space
defined by g, and the only way to find out is to explore that
region empirically, or to examine higher order terms in the expan-
sion of y in terms of x - X. It is usually much easier to explore
empirically than to expand to quadratic and cubic terms. A sen-
sible strategy is to explore in the direction of the eigenvectors

of,s to a distance from % given by the square root of the
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corresponding eigenvalue. In terms of the illustration in Fig. 1,
we are exploring in the directions of the axes of the error ellip-
soid, to a distance of one 0. At these new points in profile
space, we evaluate either y or the risk function, both according
to the linear approximation and according to the proper expression
'given in Eq. (5). A comparison of the two values will give a
measure of the nonlinearity within the error bounds and an esti-

mate of the true error bounds.

Using this technique, we can distinguish between moderately
nonlinear and grossly nonlinear problems. This should be done in
the development stages of an inversion method, even if it is not

done when the method is in operational use.

Similarly, the only way of distinguishing between nearly
linear and moderately nonlinear problems is to try a linearization
algorithm, and to make some kind of quality judgment on the number

of iterations required for convergence.

VI. SEQUENTIAL ESTIMATION

The basic concept of statistical inversion methods is one of
updating information. We start with some a priori knowledge of a
profile, together with a measure of uncertainty, as may be
expressed in a covariance matrix. We then measure something
related to the profile, enabling us to make a new, updated

estimate of the profile, and an updated covariance metrix.

Once this simple principle has been grasped, a host of pos-
sibilities become apparent. I will briefly describe three of

them.

1. It is not necessary to update the estimate with a whole
vector of observations at once. The measurements can be included
one at a time as scaiars. The updatihg can then be carried out
without inverting a matrix, because the estimation Egs. (3) and

(4) can be manipulated to give
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1

§=5 -5 K (kS K + 5 ) ks (6)

~ X X, A, X y N X

2 -%=8SK(KS K +5) Yy -F(x) + K(E - x)) (7)
XU XV y Y o N o

If v is a scalar, then SY is a scalar and K is a vector: thus,

the inverse becomes a scalar reciprocal. After updating with one
component of vy, S and % take the place of Sx and Xq for the next
stage. The matrix inverse is eliminated, but, in fact, the total
number of operations is similar so that there is no direct compu-
tational advantage. However, if the order in which the data is
used is chosen correctly, problems of nonlinearity can be reduced
so that the number of iterations is reduced. This is simply a
matter of using the more linear measurements first: thus, when
the time comes to incorporate the nonlinear measurements, the cur-

rent estimate is nearer to the solution.

2. We can make use of the horizontal homogeneity of the
atmosphere in a very simple way. If we have inverted a profile at
position n, obtaining ﬁn and én’ then we can use this in conjunc-
tion with any other available estimate to construct the a priori
estimate at position n + l.- We could, for example, use a very

simple model of the horizontal behavior of the atmosphere:

O P + e -
xn + 1 xn (xn + 1 xn)
= + A
Sn + 1 S S

where {xz 41’ Sﬁ + 1} is the a priori estimate at n + 1, X is a
climatology, and AS is a measure of the horizontal correlations.

This simple model is something like a random walk process. The
effect, in the case of temperature sounding in cloudy cases, for
example, is to propagate information into a cloudy region from a sur-
rounding clear region, taking proper account of the growing uncer-

tainty as we go further from the clear region.

3. We can, in principle, do a global analysis of fields of
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temperature and composition using sequential estimation and updating
the whole analysis at every measurement time. In practice, the
covariance matrices required would be prohibitively large. However,
we can use the principle to carry out two-dimensional analyses and
then combine the analyses to construct a three-dimensional field.
The method can be used to reconstruct missing measurements or to
interpolate objectively on to synoptic times. I will describe in
some detail how this method has been used to analyze Nimbus 5 SCR

radiances.

Nimbus 5 is in a near polar orbit, and the SCR measures radi-
ances from every latitude between 80°s and 80°N twice each orbit.
We assume that the radiance at any latitude can be represented by

a Fourier series in longitude whose coefficients vary with time:

R(A,t) = R(t) + zean(t)cos(n)\) + b_(t)sin(n}) (8)
1

where R(A,t) is the radiance (oxr other quantity to be analyzed)

at longitude A and time t. ﬁ(t) is the zonal mean;an(t) and bn(t)
are the Fourier coefficients. Six wave numbers have been used and
13 coefficients are given because the satellite has 13.4 orbits
per day: thus, on a time scale of a day resolution of a finer

structure cannot be expected.
We may write Eg. (8) in a vector product form
T
R(A,t) = K (A) x x(t)

where X is a column vector of Fourier coefficients, and KT is a
row vector of sines and cosines. We operate on each latitude
independently. At time tn’ we make a measurement of R(A(tn),tn)
at some longitude A(tn). ‘Let us call that measurement y, with
error variance 62. The available a priori information at tn is
the estimate of the Fourier coefficients made at time tn -1 the
last time a measurement was made at the same latitude. Let us
call this estimate ﬁn _ .- We must make some assumption about the

1
statistics of the time evolution of the Fourier coefficients. The
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simplest assumption is a random walk, in-which case the a priori
estimate for time tn is

xo = £ (9)

n -1

S

S, _,t (-t _)8s - (10)

n
o
n
where AS is a measure of the increase of our uncertainty per unit

time. We now combine the measurement yn of K(An) X K(tn) accordihg

to the linear version of Egs. (6) and (7).

A o o T 0O i T o
S =8 - SK (KSK_+02) K.S
n n nn noaon n" n
A o o T_o 2.1 T o
X =x, + S K((KSK +0°) (y -Kzx)
n n nn nnn n n n

where the notation has been simplified in an obvious way. Note
that the inverse is a scalar reciprocal, so that the arithmetic to
be performed at each stage is not excessive. If a measurement is

. . o o .
missing at time tn’ then xn and Sn are the best estimate.

This sequential estimator permits an estimate of the time
development of the Fourier coefficients x, and ensures knowledge
of the accuracy of the estimation. It can be used to interpolate
missing data and to smooth existing data in an objective manner.
(Incidentally, the a priori information and its covariance allows
us to detect bad data by means of a 30 test.) We can also use it
to reconstruct global fields at synoptic times, simply by evalu-

ating the Fourier series at the appropriate times.

As it stands, the method is one sided. We can only use the
measurements which precede tn to estimate at tn. If the method is
being used operationally, this is the best we can do, because the
future is not available to us. In this case, more attention should

~

be paid to the "forecast"” from x to xz (Egs. 9 and 10).

n-1
However, if we are analyzing a long run of data for research pur-
poses, we would like to use both sides of the time axis. This can

be done quite easily by analyzing the data backwards in time, and
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combining the forwards and backwards estimates in the proper sta-
tistical manner—-by using the reciprocal of the covariance as a

weight.

Figures 4 and 5 illustrate the effect of this kind of esti-
mator in reconstructing missing data and smoothing existing data,
when operating on a time series of measurements about 10 days

long at a latitude of 40°N.
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Fig. 4. Reconstruction and smoothing of Nimbus 5 SCR chan-~
o , ,
nel B12 at 40 N-—-a typical case. The data points are marked D;

the reconstructed data is a continuous line.
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Fig. 5. Illustrating reconstruction of about 1-% days of

missing data.

VII. DISCUSSION

All the previous discussion is a special case of the Kalman
filter (Ref. 3), which is a particularly powerful and general
approach to the analysis of multivariate time series. Some gen-
eralizations of the problem, such as the case where it is not the
profile, but some function of the profile (e.g., thickness) which
is of interest have not been discussed. Problems of this type are

also amenable to Kalman filtering.
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Fourier coefficients

known function of the unknown profile
matrix denoting the Frechet derivative 9F/93X
any matrix satisfying the relation 5%* = unit matrix
value of K at time tn

radiance

zonal mean

error covariance

covariance matrix of x

values of S at position n

a priori estimate of én at position n + 1
time

time at nth position

transpose of a matrix

parameters of F(x)

two independent measurements of x

best estimate of x

values of x for an idealized case

initial value of x

a priori estimate of ﬁn at position n + 1
a priori value for the profile x
measured quantity

measurement of 5(An) X 5(tn)

measurement of the horizontal correlations
measurement error

random vector

longitude

nth eigenvalue of the solution covariance
standard deviation

standard deviation of x

error variance

standard deviations for x, and x

1 o respectively
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DISCUSSION

Susskind: I just wanted to ask something quickly about what you
have just done. These radiances—--are these the observed radiances,
or the radiances taking out the effects of clouds, or what? T
mean, if you have clouds coming into the picture,it is certainly
going to foul up.

Rodgers: These are actually stratospheric radiances.
Susskind: Okay, so you're not worrying about that.

Rodgers: This isn't the Nimbus 5 selective chopper. It's about
45 kilometers.

Green: On your first slide, you said "given some knowledge of a
function." Should you have replaced the word "function" by
"functional"?

Rodgers: Sorry, yes, it is functional.

Green: Thus, the problem is how to get a function from a func-
tional.

Rodgers: 1 was just not being quite rigorous.

Chahine: Clive, you made a statement that we should pay just as
much attention to our actual measurement as we do to virtual
measurements. I know how to improve my actual measurements. I
have the physics. How can I improve my virtual measurements and
be sure of that?

Rodgers: By the same sort of techniques as your actual measure-
ments. If you have no virtual measurements, you just can't solve
the problem. You just have to go into some other problem. The
only way of producing a profile is by having enough virtual
measurements from somewhere. It may be physics. I can produce a
virtual measurement off the top of my head immediately. I can say
the temperatgre in the atmosphere anywhere is going to lie between
zero and 500 . I know it's not going to help you very much; it
reduces the variance a bit. It just makes it noninfinite at least.
Butoit still means the errors on all the points are going to be
250",

Chahine: For the nonlinear method, I assume the temperature to be
positive and real. But in your case, you are using a priori sta-
tistics.

Rodgers: This isn't only statistics. This applies to any kind of

virtual measurement.
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Chahine: Only real physical data should be used to judge virtual
data. That's because of the high variability of the atmosphere
and clouds. How can you be sure that the virtual measurements
that you have now are good tomorrow or are good in the presence of
a front? - '

Rodgers: I don't know. But in the method you described you have
virtual measurements which you haven't stated explicitly and this
is your interpolation rule. That's virtual measurement, which is
a very unrealistic one in fact.

Chahine: Not for temperature. Professor Kaplan might like to
comment on the assumption of constant lapse rate between two levels
in the atmosphere.

Kaplan: That is assuming you know where the lapse rate changes.
And anybody who has worked on recording radiosonde measurement of
temperature knows that the temperature can increase in the atmo-
sphere in general linear with height up to the point where the
lapse rate changes. Of course, the lapse rate changes at arbitrary
levels and you have to be able to pick the point at which this
comes in. I mean, there are assumptions. You assume if you pick
the height at which you attribute a frequency, measurements at a
frequency, this is a point at which the lapse rate changes or you
fit to a polynomial. But there are these constraints.

Rodgers: But you have got to recognize that it is a virtual
measurement of some kind, with some variance,

Kaplan: Yes, and to the extent to which your vertical resolution
gets worse as you get larger, this is more and more an error. AsS

you narrow your resolution this becomes much less important.

Chahine: Have you done an analysis to determine how often you
hit and how often you miss?

Rodgers: What do you mean?

Chahine: With your probability approach, how often do you end up
with the correct answer in applying your technique to real data?

Rodgers: Well, this doesn't really apply. This is not really
within the scope of what I was trying to describe. I wasn't
going into techniques of how you find £, I was going into tech-
niques of how you find S.

Chahine: I wanted to see, in applying the statistical approach to
real data, how often you hit?

Rodgers: You mean how good can your statistics be?
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Chahine: Yes.

Rodgers: That's another question which I haven't really tried to
touch on here. I know it is very difficult to get a priori infor-
mation. Statistics is only one way. But whatever your a priori
information is, you have to work on it as hard as you can.

Wark: Have you ever given any consideration to other aspects of
the radiance field? Namely, that we usually try to solve for pro-
files as though they existed as the only profile in nature, and
then we go on to another set of radiances and try to solve them.
In addition to this, we have gradients which exist in the radiance
field and these gradients are very strongly tied to the dynamics
of the atmosphere. That is, the same set of radiances in the same
location at the same time of year can be associated with quite
different profiles, mainly because of the gradients which occur,
which are the physical dynamical processes in the atmosphere.

Rodgers: This is why I have been recently getting interested in
doing global analysis of radiances to try and make an estimate of
the global distribution rather than individual profiles.

Wark: But have you tried to associate this with the gradients in
the temperature field?

Rodgers: Not yet. My feeling about analyzing meteorological data
is that it should be the meteorological analyst's job, not ours.
We shouldn't go through this -interface of profiles or anything
like it. We should get him good calibrated radiances. He's
already doing an inverse problem. He's solving for the field of
whatever it is, given certain measurements of something different.
Radiances are just another thing.

Wark: That's right. We should be giving radiances to the
meteorologists and let them inject them into their analyses.

Chahine: What you are asking for is a simultaneous solution of
the radiative transfer equation and the equations of motions.
This is a great aim. It isn't easy.

Wark: But I wanted to emphasize the point that the solution for
profiles is not necessarily our aim here in a meteorological
sense. ’

Rodgers: Sure. There are lots of things you can get out of this
stuff other than profiles.

Malchow: A bit of a detailed question about your §. In non-

linear iterative processes, how is it supposed to be handled? It
seems to be unstable if it is iterated within the iterative process.
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Rodgers: It certainly isn't unstable. No.

Malchow: I was wondering if you had any experience with that
problem?

Rodgers: Well, 8§ is trying to find the small ellipsoid in

Figure 1 here. Intuitively, it is not going to be unstable pro-
viding you have got the right kind of a priori information. If §
is the wrong shape compared with this cylinder, then perhaps §

is going to stretch way up the cylinder. It is a matter of getting
the right information in and if you've got enough information, §
is easy. If S is not easy, you haven't got enough information.

Deirmendjian: This is not a question but just a comment. Since
this is an interactive Workshop, may I interject some non-
scientific thoughts about Dr. Rodgers' introduction of the word
"aesthetics." I like it because "aesthetics" derives from a Greek
verb meaning "to perceive with the senses." It is a scientist's
prerogative to introduce--and to be governed a little by--
aesthetics in his work. This implies things like restraint, non-
exaggeration, nonreliance on innumerable assumptions, criteria or
data banks, and so on. I would like to make an analogy, if I may,
between sailing, about which I know some things, and the use of
mathematical inversion techniques, about which I know very little.
Some people want us to use more and more instruments and electronic
gadgetry which are supposed to help us sail better, on the assump-
tion that we have no senses--seeing, hearing, sensory feeling--

or judgment or "sea-sense," A good sailor does use all these
things to advantage for a successful voyage. So, in analogy to
this, I feel that sometimes we tend to resort to inversion tech-
niques too blindly, without using our judgment or "feel" about
handling a given problem, which may lead to "anti-aesthetic"
excesses.
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INVERSE SOLUTION OF THE PSEUDOSCALAR TRANSFER

EQUATION THROUGH NONLINEAR MATRIX INVERSION

Jean I. F. King
Air Force Geophysics Laboratory

The upwelling radiance from a plane-parallel planetary
atmosphere viewed either in a 1limb or frequency scan depends
on the internal scattering and thermal state of the atmo-
sphere. Each upwelling profile is the solution of a uniquely
specified, but generally unknown, pseudoscalar transfer
equation.

Nonlinear matrix inversion operators have been devel-
-oped which, applied to observed radiances, infer maximal
information regarding atmospheric scattering parameters and
vertical distribution of radiant sources and sinks. The
algorithim has the attractive feature of noise discrimination,
attributing instrumental errors to extra-atmospheric sources.

I. THE MILNE PROBLEM @DO MODE> IN CODON LANGUAGE

Assume the upwelling intensity I(0,u) to be exactly repre-
sentable in u = cos 0 space by a linear expression and n - 1
hyperbolic components.

n-1 La ]

a=11+K\u (1
o

I(0,u) = const (u + Q + 2

Substituting the more convenient transform variable

k = sec 6 = 1/u, we have

L
1€0,1/x) _ i 2
K = const {KZ * K * z0L =1k + Ka (2)

The positive definite character of I(0, 1/k) requires the
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hyperbolic poles, kK = - Ka(a =1,2,...,n - 1), to be negative.
By "clearing of fractions" the upwelling intensity can be

alternatively expressed as the quotient polynomial with n roots

K = - l/ui (i =1,2,...,n). Thus,
n
I, _ (pjc + 1)
EiQL%ZEl_= const — 1
aqt = L1 (K
K Ha -1 [K + l]
o
_ n n-1_ H1/K
= const Hi - 1“1 Ha -1 K& " (3)
where we have defined the H-function as
H? - l(K + l/ui)
H(1/k) = ——= (4)
K Ha -1 (c + Ka)

Again, the positive definiteness of the upwelling inténsity
requires the polynomial roots, « =-l/ui(i =1,2,...,n), to be
negative.

The quotient polynomial H-function can be characterized by
its sequence of roots and poles along the real axis in the trans-
form plane. We shall call such a linear array a codon. The
importance of this representation lies in the fact, as we shall
see, that all the radiation physics is implicit in the codon root-
pole morphology.

Using -partial fraction analysis, we are able to express the

coefficients of the upwelling intensity expansion as residues (or

pole~-strengths) of the H-function codon at the poles k = - Ka'
Thus, we find from Egs. (3) and (4)
I(o,1/x) = const H(1l/k)
K H
o}
L
i} 1,9,n-1_"a
= const ") + " + Ea -1 %+ Ka (5)
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where the residues

my _ (- k)

LaEHLKlim _gK T K) H(i/'()= 12 n_i
o o HoKa HB - 1(KB - Kd)
# a
(6)
and
H = 1i kH(l/k) = 1
o "K—3£$O Hn P 1 K
i=1% "a=1"a

The Q-constant, the residue of the double pole at the origin, is

evaluated after some algebra as

0T n - mIlE
[0 ]

ITI. CODON TRANSFER THEORY

The upwelling profile can be considered the externally
sensed solution of an internal transfer problem. We proceed now
to construct, i.e., to infer, the unique transfer equation,
source function, constitutive relation, and characteristic func-
tion which are implied by the observed intensity.

We need first an equation of transfer. Now the transfer
equation can be viewed as a conservation condition imposed on the
intensity under steady-state. We shall show that the transfer
equation has a deeper origin as a codon identity in transform
space.

From Eq. (2) we see that the o component of the upwelling

intensity obeys the split codon identity

K KG
+
K + K K + K
o o

=1 (8)

Let us consider this identity as a codon operator, viz.
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K
K

kK + K
(47

o : '
Ja(’t) + P Ja(‘f) = JOL(T) ) (9)
o
and seek the internal (scalar) t~space eigenfunction which con-
verts this codon equation into the equation of transfer.

By defining the internal (vector) intensity by

_ _ K
Ia(T’l/K) = Ia(o'l/K)Ja(T) = E—;—E; g, (1) (10)

we see by inspection that the required eigenfunction form is

—KaT
Ja(T) = Lae (11)

for then we have the equation of transfer

dIU,(T’ l/K)

= = Ia(T, 1/k) - Ja(T) (12)

We note in passing from Egs. (2) and (11) that the eigenfunction

J(t1) is the inverse Laplace transform of the upwelling intensity

= ) I(0, 1/k)
K

J(T)

(13)

n - 1 —KaT
const (r'+ 0+ Za i ]

Equation (12), as it stands, is a relation between the two
dependent variables I(t, 1/k) and J(t). To eliminate one of
these, a second or constitutive relation is needed. This
expresses the source function, the radiation emitted at level Tt
in the direction 6 = cos_lu, as the sum of radiation incident in

all directions which is scattered into 8, viz.
1 .1
J(t,w) =5 f1 Y, u")I(T, ") dn' (14)

For local thermodynamic equilibrium, the source emission is
uncorrelated with the directions of the incident. beams

g' = cos—lu', in which event
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J(t,n) > J(71) (15)

so that the eigenfunction becomes the source function
1 1
3 =5 [ vanIrunay (16)

We can write, therefore, as the integro-differential equation of
transfer

dar(t,1l/k)

1 1
S - I(T,1/k) = 5—[1 Y(u)I(T,u)du (17)

The finite exponential sum character of Eq. (13) demands that
the source function J(T) be compounded of radiation restricted to
a finite number of fixed directions. This is mathematically
accommodated by expressing the characteristic function as a finite

delta-function sum, i.e.,
Y = )L v s - uy) . (18)

Equatidn (18) implies that the characteristic function acts as a
filter and permits only the beams in the directions u = uj = % ui
to participate in the source function. The ID transfer equation
then becomes

di(t,1/K)

- -1
L - I, /) = 3D = 5 )y b Ty (19)

The determination of the strength and direction of the inci-
dent beams is facilitated by taking the derivative of the con-
stitutive relation

dI(T,ui)

HURS BN (20)

Substituting from Egs. (10) and (13L we can write
-K T

-K T Le ¢

n-1 o 1 n-1 a
1 zu =1 5Ta® T2 Zilpi l'—za =151 7 K My (21)
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. . 1
The constant terms are equal in the conservative case 5-2 b, = 1.

Interchanging the order of summation leads to

n-1 o _wn-1 a 1 i
za =1 %le® B za =1 %Fe® 2 2. . (22)

which in turn requires

1 Zn _____.wi 1y ___.lp__l__ = En ___ﬁ_ =1
2=l ik, 2Tl ok e - k2?
o i o i o i
(23)
where we have assumed u_i = - ui and w—i = wi .

We shall now demonstrate that wi is the residue of reciprocal

H-functions. Consider the bilaterally symmetric T-function

defined by
n=1
1 KZHa - [ 2 - KZ]
T/ E Fazontia T o 2 L
i=1 u,2
i
v,
=1+) (24)
u?Kz -1
i
Clearly, we have for k = % Ka
n 1'bi
T(+1/K)=0=1-} _ ———— (25)
1 - k%2
o i

which shows that the T-~function satisfies the requirement of
Egq. (23).
The strength of the beam at u = My is given now as the

residue of the reciprocal H-functions
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<
]
as
I+

lim i u? k2 - J? T(1/x)
i W, i ue

2 _ 2 n -1 2_2
-« lim 1 (x l/ui) _ Ha = l(l/ui Ka) (26)
- = 2 -
My KEH/QHES 176 n? 12 - 1ud)

# i

The deep reciprocity inherent in the codon formulation of
the radiative transfer problem is seen by comparing La and wi.
The coefficients La of the exponential source function expansion,
as defined in Eq. (13), namely,

n-1 _KaT
= + +

J(1) const [T Q za -1 Lo }
are identified as residues at the poles of the H-function codon,
from Eq. (6), namely,

lim H(l/k) _ i =

1
= =xm, + =
HoLa K Kd (k Ka) " P
K< I
a B

(27)

In contrast, the weights of the filter function wi which enter

the constitutive relation, from Eq. (19), namely,
1
J(1) =5 L, Tty

are residues at the poles of the reciprocal paired H-function

codons
2 _ 2 n - 2 _ 2
1im L 1 %0 T/ Ty = 1 (/wf = K)
'\l)i:K——*i'_ =n
i k2H(1/K)H(-1/x)  Th L (1/u2 - 1/u2)
j=1 i ]
# i

It is further seen that a knowledge of the codon structure, i.e.,
its roots and poles, serves to specify all the radiation functions

and parameters of the problem. The codon concept shifts the
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emphasis and changes the character of transfer theory. Rather
than seeking the solution for a particular radiation parameter,
one develops algorithms for determining the underlying codon
structure from the given data. Thus, in the forward problem in
which the internal scattering characteristic function ¥ (u) is
known, Gaussian quadrature is used to determine the weights wi
and directions ui. These determine, in turn, the constants Ka and
La and thus the upwelling intensity. On the other hand, in the
inverse problem we must construct the codon structure from the
observed upwelling intensity profile. This requires a nonlinear
matrix inversion algorithm, developed by the author (Ref. 1),
which solves uniquely and exactly the following problem: Given
2n upwelling intensities Ij = I(0, uj) sensed at the arbitrary
nadir angles Sj = cos_luj (3 =0,1,..., 2n - 1), find the unique
2n constants C, Q, and the n - 1 pairs (La" Ka)' which are speci-
fied by the measurements. This is equivalent to the inversion of

the following nonlinear equation set

L
n-1 a .
Ij—c[uj+Q+Za=l 1_+Kau.]'3_0’l""’2n 1 (28)

The Planck intensity source function follows readily from Eq. (13);

-K T
e ¢ ] (29)

The inference of the internal scattering parameters becomes a

namely,

B(T)=c[r+9+22;i%

mere evaluation of My and wi from the inferred constants La' Ka'

JII. SUMMARY, GENERALIZATION, AND PROSPECTUS

In this paper, we have discovered three features: first,
that underlying the interaction of radiation and matter, i.e.,
radiative transfer theory, is a simple code; second, that the
code consists of linear arrays of roots and poles along an axis

in a complex transform space (which we have called "codons"); and
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third, that the code translates easily into observable and infer-
able radiation parameters. Stated succinctly, we have found a
code, we have determined its structure, and we have broken the
code.

In assessing the importance and implications of this work,
we must set forth how transfer theory differs from conventional
differential analysis. The specification of density distributions
is of great interest in physics, for example, the fluid density
in the Euler-Lagrange equation or the Y-probability density in
Schrddinger wave mechanics. In these and other cases, the den-
sities, specified as solutions of partial differential equations,
are considered primal and, hence, not further analyzable into more
basic component parts. In contrast, the transfer equation through
its linkage between two spaces relates the source function, and
energy density, to the solution of an integro-differential
equation. In this relation, the density J(t) is analyzed and
dissected as the discrete sum of a more primitive concept, the
beam field I(t; u,K) quantized in the directions “i and e-folding
lengths K;l.

We have seen that the physics of the generalized transfer
problem is completely determined by the root-pole morphology of
the codon. Further, the alternate root-pole structure along the
negative real axis of the H-codon in classical theory is a rela-
tively restricted grouping. It is natural to inguire into the
physical systems implied by more general codon patterns.

We find that there are codon identities other than the
linear expression, Eg. (8), which can generate transfer equations.
In particular, the quadrétic identity can be used to generate a
wave transfer equation. The Planck intensity, derived from first
principles, is such an example. We may ask what is the condition
for the source function to obey a differential equation? We find
this occurs if,and only if, the associated codon exhibits the group

property of invariance under displacement. This, in turn, occurs
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if, and only if, the codon roots and poles are equally spaced. We

are able to express all the finite polynomials (Legendre, Laguerre,

Hermite, Jacobi) entering into the y-functions of simple quantum

systems as inverse of such equally spaced (canonical) codons

(Ref. 2).

Finally, it proves possible to infer the relativistic

radial (Dirac) wave equation as the inverse of a split quadratic

codon equation.

B
H

(o]
H(u)

I(t, W)

SYMBOLS

Planck intensity source function
H-function residue at origin
discrete ordinate H-function of Chandrasekhar
radiant intensity at optical depth T at an angle
0 = cos_lu with the zenith
source function
reciprocal e~folding depth of radiant beam
coupling constant between the forcing function and the
K, medium modes
Q0 = g(«), where g(t) is the Hopf g-constant
discrete ordinate T-function of Chandrasekhar
dummy variables specifying particular values of K and
u,respectively
independent variable specifying the complex transform
plane

characteristic function
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DISCUSSIONS

Green: You used quantum mechanics as an illustration for your
problem. In most applications of gquantum mechanics, the
Schrddinger equation or the Dirac equation does not serve as the
goal of the search. For example, in the nuclear force problem,

you can assume that the Schrddinger equation or the Dirac equation
is a basic law of nature or the basic equation of motion and you
might be attempting from scattering data, experimental accelerator
data, to infer a basic law force so that the Schr&dinger equation
or the Dirac equation has the same role as the radiative' transfer
equation and the scattering data has the role of some experimental
observation from which you hope to find a basic nuclear force or
atomic force. Thus, it seems that if in your analogy of your codons
you arrive at the Schrddinger equation or the Dirac equation you

do not have a parallelism to the real world use of the Schrddinger
equation or the Dirac equation as something which connects scat-
tering observations to some physical aspect of the description of
your system. Which is the law of force governing your system
which you would then insert into the Schrddinger equation?

King: Let me try to answer that. Perhaps our conventional view

of the Schrddinger and Dirac equations needs reassessing. Let us
think generally. A codon identity quite literally is a separation
of unity into two or more parts. The radiative transfer equation
is the transcription into our space of this codon separation. The
radiative heat exchange represents the flow resulting from this
nonequilibrium partition arising from the nonisothermal temperature
distribution. The Schr&dinger and Dirac equations may be similarly
viewed as representing unequal partitioning of the Psi-function,
concentrated in regions of high electron expectancy and dilute
elsewhere. At a deeper level, this separation is represented in
the Dirac equation by a triply split codon identity. This identi-
fication of the Dirac equation as an inverse codon identity has

the important conceptual consequence that nature, at least in the
radial Dirac equation describing the Kepler atom, is contrained by
a law of form, rather than a law of force.

Unidentified Speaker: Could you predict something that isn't
known?

King: Yes. At present no theory or model exists for the fine
structure constant. It currently enters into field theory as an
ad hoc, empirically determined, externally imposed coupling con-
stant between the electromagnetic field and the electron. I hope
to model the fine structure constant as a codon counting algorithm
involving the harmonic sum of codon poles.

Irvine: I am a little bit perplexed at your unhappiness with the
transfer equation, Jean. You say there are ambiguities in it, but
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that is true of all physics. In every physical equation we are
making a mathematical approximation to reality. The best des-
cription of radiation we think we have now would be quantum field
theory. Of course, there are aspects of that that are not present
in Maxwell's equations. Likewise, in the transfer equation, we
are negelcting information which is present in Maxwell's equations.,

King: Yes, I agree with you. What I should have said was that a
linear transfer equation is satisfied only by exponential-type
source functions. In other words, only restricted classes of
source functions satisfy the linear transfer equation. We agree
to that.

Irvine: You also expressed unhappiness about the fact that one
uses a local thermodynamic equilibrium approximation for the source
function. Of course, that is not necessary. That is simply
because we are ignoring any possible information on the micro-
physics at a given point.

Twitty: I guess I am either missing something or I don't under-
stand this relationship between the codons and the equations you
have derived. There are an infinite set of equations you could
write down that are identities, and one could do these kind of
transforms on all of those and produce some infinite set of dif-
ferential equations which hopefully would not describe anything

we know about physics. What is so special about the ones you have
derived?

King: The special feature is that the transfer equation is the
only inverse statement of a linear codon identity. And I would
say that quadratic codon identities lead to sinusoidal source
functions and quadratic transfer equations.

Twitty: But then the Dirac equation looks far more complicated.
King: It is still a wave equation.

Twitty: No, I am not referring to the Dirac equation. Your
identity that gives it is far more complicated.

King: Yes, the reason for that is the additional constraint which
codons must obey in quantum mechanics. The differential equation
format of wave mechanics demands that the roots and poles of the
corresponding codons in the transform plane be equally spaced.
These codon patterns associated with various quantum systems are
developed in the paper cited.

Twitty: So it seems to me that somewhere in this identity, mathe-

matical identity is what you're really talking about, there is the
basic physics and you have used some additional knowledge about
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the physics to say that this identity corresponds to what we know
in terms of the wave equation describing the problem.

King: Yes. That requirement is that the Psi-function codon be
invariant under translation in the transform plane. This invari-
ance, in turn, demands equally spaced roots and poles, namely,
canonical codons, for superposition.

Fymat: I have a question and a comment. The guestion is: Have
you carried on this work for the case of scattering and with con-
tributions from single and multiple scattering in the source
function?

King: No, I have not. The formalism appears indifferent to

whether or not the impinging photon is singly- or multiply-scattered.
Perhaps this is not a disadvantage inasmuch as it is difficult to
conceive any measurement which would discriminate between the two.

Fymatl: The comment is that in his book, Professor van de Hulst
has emphasized that we should use what he called the scattering
amplitude matrix, a 2 x 2 matrix which contains information both
on the amplitude and the phase of the wave. He carried the theory
only for single scattering. On the other hand, Fano has shown the
analogy between this treatment and quantum mechanics. Dr. Vasudevan
and myself have pursued this analogy further in a paper we have
recently published.2 This article provides the complete theory of
multiple scattering for both amplitude and phase by exploiting the
close analogy between the quantum mechanical states of half-spin
systems and the polarization states of electromagnetic radiation.
The interest of this new form.iation is that it enables you to
carry the multiple scattering with the phase information. Although
we are not observing the phase in the visible, this is possible in
other regions of the spectrum. The phase also contains

lDr. Fymat's post-Workshop comment: "I did not say that the
scatterer molecule or particle conserved any memory of the scat-~
tering order. Rather, I was concerned with the formalism that
your codon approach would  take had you considered a particular
scattering process and the consequent polarization it induces in
the radiation field. Here, the radiative transfer equation would
become four-dimensional (using, for example, Stoke.' representation
of the polarization state), and the source-function would be far
more complicated than Planck's function as it wouil receive con-
tributions from both single and multiple scattering.”

2 . . . .
Published in Astrophysics and Space Science, Vol. 38,
pp. 95-124, 1975.
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information about the atmosphere. I thought you might wish to use
this work were you interested in extending your codon approach to
scattering and polarization.

King: Yes, I see. All of these methods must ultimately rest on
some conservation principle.
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BACKUS-GILBERT THEORY AND ITS APPLICATION
TO RETRIEVAL OF OZONE AND

TEMPERATURE PROFILES

Barney J. Conrath
Goddard Space Flight Center

The analytical methods of Backus and Gilbert were orig-
inally formulated for application to inverse problems asso-
ciated with the physics of the solid earth. However, the
theory is sufficiently general to be applicable to many types
of inverse problems, and, in particular, constitutes a use-
ful tool for analyzing the information content of atmospheric
profile retrievals. Basically, the method provides a gquanti-
tative evaluation of the trade-off between vertical resolution
of a retrieved profile and formal root-mean-square (rms) error
due to measurement noise propagation. As one example of an
application of the theory, the problem of retrieving the top-
side ozone profile from backscattered ultraviolet (BUV)
measurements is considered. For measurements of the type
currently being obtained with the Nimbus 4 and AE-E BUV experi-
ments, it is found that a vertical resolution of approximately
0.75 scale height can be achieved for a formal volume mixing
ratio profile error of 10%. Other examples include treatments
of the retrieval of temperature profiles from measurements in
the 15 um COy absorption band for both the terrestrial and
Martian atmospheres. Finally, the method is applied to the
problem of retrieving temperature profiles of the Jovian
planets from measurements in the far infrared pressure induced
H, lines to be obtained from the Mariner Jupiter/Saturn fly-by
missions. In the latter example, the results of the Backus-
Gilbert analysis are compared with an analysis by Gautier and
Revah, based on more conventional information theory tech-
niques.
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I. INTRODUCTION

The method of Backus and Gilbert was originally developed for
application to inverse problems encountered in the physics of the
solid earth. The theory was formulated primarily from a physical
point of view in a series of three papers by Backus and Gilbert
(Refs. 1, 2, and 3) and summarized within a more formal framework by
Backus (Ref. 4). In addition to providing an inversion algorithm,
the method also provides diagnostic information which can be used
in assessing the value of a given set of measurements. Although the
original applications were in the field of seismology, the theory
is quite general and can be readily applied to inversion problems
encountered in atmospheric physics. Examples of such applications
include those of Conrath (Ref. 5), Westwater and Cohen (Ref. 6),
Fleming (Ref. 7), Wang (Ref. 8), and Rodgers (Ref. 9).

In the present paper, a review of the method as applied to
profile retrieval in planetary atmospheres is given. The basic
theory is discussed, and certain aspects are illustrated through
the use of examples. This review will be followed by the presen-
tation of results of a recent application of the method to the
problem of retrieving high level ozone profiles from satellite
measurements of back-scattered ultraviolet radiation. Finally,
applications to problems of temperature profile retrieval from
remote infrared measurements of the earth's atmosphere as well as
the atmospheres of Mars, Jupiter, and Uranus are considered. 1In
the case of Jupiter, results are compared %ith those obtained by
Gautier and Revah (Ref. 10) who employed a different theoretical

approach.

IT. THEORY

Basically, the method of Backus and Gilbert treats a general

set of integral equations of the form

gi=fKi(z).f(z) dz i=1,2, ...m (1)
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It is assumed that there exist measurements of the quantities g,

and that the Ki(z) are known functions of the independent variable

zZ. The problem is to infer information on the unknown function
£(z). 1In the applications considered in this paper, the g; are
generally related to radiance measurements the kernels Ki(z)

are determined by the radiative transfer process (scattering,

absorption, etc.), f£(z) is an atmospheric profile, and z is some

measure of height within the atmosphere.

The finite number cf kernels Ki(z) do not constitute a com-
plete set, in general, so it is not possible to obtain an exact
specification of f£(z) from measurements of g;- Nevertheless, it
still may be possible to specify certain useful properties of f(z)
from the available measurements. Let f(z) be an integral pro-
perty of the profile associated with level z, and assume it is to

be obtained by a linear estimate of the form

. m
£(z) = )} a(a)g; (2)

where the z-dependent coefficients ai(z) are determined by the
inversion method chosen. A relation between f(z) and £(z) is

obtained by substituting Eg. (1) into Egq. (2), i.e.,

£(z) = [ A(z, z") £ (z")dz" (3)

where

A(z, z') = a; (z)K, (z') (4)

1

I ~18

i
Thus, the nature of the estimate f(z) is controlled by the behavior
of A(z, z'), usually called the averaging kernel. The essence of
the Backus-Gilbert method is to attempt to control the shape of
A(z, z') through the choice of the coefficients ai(z). Originally,
effort was directed primarily toward making A(z, z') resemble a
delta function as nearly as a given set Ki(z) would permit. 1In

other words, the goal was to achieve i some sense the best
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resolution possible. However, there are some applications for
which it is desirable to force A(z, z') toward-some.other pre-
determined shape. - For example, it may be required that %(z)
approximate a uniformly weighted average of f(z) over some range

of the independent variable centered on z, in which case A(z, z')
should be made to approximate a rectangular function. In any event,
one approach to controlling the shape of A(z, z') is to choose the
coefficients ai(z) such that they minimize some quadratic form for

each value of z, for example,

o(z) = [ J(z, z") [A(z, z') - D(z, z")]? adz’ (5)

where the weight J(z, z') and the function D(z, z') are chosen to

produce the desired behavior in A(z, z').

Another aspect of the problem which must be considered is
measurement noise. Any measurements of 9; will have associated
with them errors of unknown magnitude. However, if the statistical
properties of the measurement errors are known, the resulting sta-
tistical properties of the errors in f(z) can be found. By assuming
that the measurements possess zero mean error and have an error
covariance matrix %, it is easily shown that OE, the error vari-

~

ance in f, is given by
2
o. (z) = gT(z) E a (z2) (8)
£ v

where a (z) is the column vector of coefficients ai(z), and the
superscript T denotes matrix transposition. From the point of

view of controlling the propagation of measurement noise, it is
desirable to choose the coefficients ai(z) such that UE(Z) is
minimized at each level z. However, it is not possible, in general,
to minimize both Q(z) and G%(z) simultaneously; therefore, a com-
promise is reached by minimizing a linear combination. This

relationship can be written as

R(z) = wQ(z) + (1L - w) ro%(z) (7)
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where the factor r ensures thqt both terms have the same physical
dimensions. By varying the weight w, emphasis can be shifted from
minimizing the error to maximizing control over the shape of

A(z, z'). Thus, there is a tradeoff between the two considerations,
and the best choice for w must be determined by the nature of the

particular application.

The value of a(z) which minimizes R(z) can be readily calcu-

lated; as a result, an expression for %(z) of this form is obtained

Bz =d' g =V(2) [s(2) +[l—'7w—] rE N g (8)
where

v (z) = [®,(z')D(z, 2)3(z, z')dz' (9)
and

s44(2) = ) K; (2K (2")3(z, 2')dz’ (10)

An interesting special case of this form of solution results when

J(z, 2') =1 for all z and z', and D(z, z') = §(z - 2'). Then

Siy = f K, (2)K, (2)dz (11)
and

Vi(z) = Ki(Z) (12)

Thus, Eg. (8) has the form of the "minimum information" solution

(Ref. 11) for the continuous case

-1
£(z) = 15T(z)[f15(z')1§T(z')dz' ry g] g (13)

where

e

Thus, viewed from within the framework of Backus-Gilbert theory,

the minimum information solution is that solution for which the

averaging kernel lies closest to a delta function subject to a
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constraint on error propagation controlled by the value of Y.
Note that for the general form of Eq. (8), the matrix to be
inverted is a function of z so a matrix inversion is required for
each value of z considered. However, in the special case when
J(z, 2') is independent of z, a single matrix inversion is
required for all values of z. This may be a nontgivial point of
consideration when an inversion method is being chosen for pro-

cessing a large quantity of data.

A second form of Q(z) which has been used extensively is that

obtained with
D(z, 2z') = 6(z ~ z') and J(z, z') = 12(z - z')2

This form generally results in an averaging kernel with a broader
central peak but smaller sidelobes compared with the averaging ker-

nel obtained by using J(z, z') = 1. This choice from Eq. (5)

yields

Q(z) = s(z) =12 [ (z - 2')2a2(z, z")dz" (14)
where s(z) is called the "spread." It has units of z and is a
measure of the spread of A(z, z') about z' = z. The unusual

normalizing factor 12 is chosen so a regtangular A of unit area
has a value of s equal to its w?dth. Although this choice is quite
arbitrary, it can be demonstrated that s is 'a good approximation

to the usual measures of the widths of other well-known functions.

Some examples are:

(a) Gaussian

- 52 2
A(z) = 1 e z</2b

v2mb
s =—2—x 2b = 0.85 x 2b
2vm
(b) Triangular
(L - z/2b)/2b lz[ < 2b
A(z) = .
0. |z| > 2b
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s = 1.2 X 2b

(c) Lorentzian

A(z) = +——B
122 + b2
3

s == x 2b = 0.95 x 2b

where b is the half-width at half-maximum. Thus, it appears that
s can be taken as a reasonable though somewhat unconventional

measure of the resolution in =z.

As before, a is determined by minimizing a linear combination
of s and o;; however, in this case, it is necessary to impose an
additional constraint to obtain a nontrivial solution. The con-
straint chosen by Backus and Gilbert is that A(z, z') be unimodu-

lar, i.e.,
f A(z, z")dz' =1 (15)

This is a reasonable choice if f(z) is interpreted as some average
value of f. However, it should be noted that, in general,
A(z, z') can be negative for some values of z', thus, the analog

with a weighted average is not complete unless one is willing to

admit negative weights. Carrying out the minimization process yields

Wl (z)u
a(z) = —/—/——————— (16)
S T -1
uWw  (2)u
w u
where
(z) =ws(z) + (1 -w rE (17)
u, = f K, (2)dz (18)
and
= - y 2 ' [ [
s34 = 12 [ (z - 2%, (= YK (z")dz (19)

161



Thus, by varying the weight w a tradeoff between error and resolu-
tion as measured by s can be obtained. If s is plotted against

oz as w varies from O to 1, a "tradeoff curve" is obtained which
can be used to pick the appropriate value of w for the application
at hand. One such tradeoff curve is obtained for each value of z

considered. Examples are given in the following sections.

Other parameters can be defined which are useful in charac-
terizing the behavior of A(z, z'). One such parameter is the

"center"” defined as
c(z) = [ z'a%(z,z")dz'/ [ a%(z, z")dz" (20)

A "resolving length" can then be defined as the spread about the
center ‘

2

2(z) = 12 [ [c(z) - 2']1% A%(z, z")az (21)

Obviously, if %(z) is to represent a weightéd average of £ over a
region centered on z, then we would like to have c(z) = z. Note

that the spread also can be written as
s(z) = (z) + 12[z - c(2)]1?2 [ a2(z, z")dz" (22)

Thus, s(z) has contributions due both to the width of A(z, z') and
the displacement of its center from z. Thereforé, minimizing s(z)
has the desirable property of reducing both the width of A and the

departure of its center from the value of z being considered.

It is of interest to note that the minimum information form
(Eg. (13)) does not, in general, result in a unimodular averaging
kernel. However, the derivation leading to Eq. (13) can be modi-

fied to incorporate a unimodular constraint, resulting in the

solution
-1
T 1 -~ KT(z)m u T 1
~ 3 A~ -
f(z) = § K (2) + T -1 wow g (23)
uw u
28 =
where

R = f §(z)§T(z)dz + (/w -~ 1) r E
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III. APPLICATION TO OZONE PROFILE RETRIEVAL

The problem of retrieving information on the vertical dis-—
tribution of ozone within the earth's atmosphere from measurements
of backscattered ultraviolet radiance using a satellite borne
sensor can be analyzed from the point of view of Backus-Gilbert
theory. Although a considerable body of literature on the treat-
ment of this type of inversion problem exists (e.g.,Refs. 12, 13, and
14), no attempt will be made here to review the various methods.
Rather, we shall be concerned with more general questions con-

cerning the information content of the measurements.

The extraction of ozone information from backscattered radi-
ance measurements is in principle a straightforward process. The
incident solar radiation is scattered back to the satellite sensor
from various levels within the atmosphere and from the lower
boundary surface. In addition, if the measurement is made within
an ozone absorption band, the radiation is attenuated by absorption
along the total path. To a first approximation, the majority of
the radiation is backscattered from an effective scattering layer.
If the distribution of scatterers (atmospheric molecules and
aerosols) is assumed known, then a measurement of the ratio of the
backscattered radiance to the incident solar flux permits the
attenuation due to ozone absorption to be inferred. From a knowl-
edge of the ozone absorption coefficient, the total ozone above
the effective scattering layer can be inferred. For an estimate
of total ozone, the effective scattering layer should be located
in the troposphere. To obtain profile information, measurements
at several different wavelengths are required, corresponding to

scattering layers covering a range of heights in the stratosphere.

The problem of extracting ozone information divides naturally
into two distinct problems: retrieval of high level profiles and
retrieval of total column abundance. Since the retrieval of total
column abundance does not require a profile inversion in the usual

sense, only the upper level profile retrieval will be considered
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here. Most investigations of profile inversion have been limited
to the "topside" or region above the ozone peak so that only
single scattering need be considered. For example, the Nimbus 4
BUV data have been ﬁsed to retrieve profiles only above approxi-

mately the 10 mb level.

For a single scattering Rayleigh atmosphere, the backscattered
spectral radiance Ii measured by a nadir viewing sensor at wave-

length Ai can be written as

3 Po -(1 + cos 6)[Bip + kiX(P)]
I, =— (1 + c0526)8 F f e dp

i léw
)

where Fi~is the solar spectral flux, 6 is the solar zenith angle,
Bi is the scattering extinction coefficient, ki is the absorption
coefficient, X(p) is total ozone (cm-kPa) above pressure level p,
and P, is lower boundary pressure level. It is assumed that the
integrand in Eg. (1) approaches zero as p - P- Given measure-~-
ments of Ii/Fi, the retrieval problem then is to solve thp integral

equation for X(p).

In forming a linear inversion problem, most methods consider
perturbations about some starting profile or first gquess Xo(p).
For this discussion, the atmosphere is_divided into discrete layers
of uniform thickness in %np . Further, because of the large range
of variation of I with A, a logrithmic scaling is found convenient.
Then the dévigpion of 4n Ii from the value it would have for an
ozone profile Xo(p) can be written to first order

3 &n I,
§ AnT, 2 . 6 nx,
1 J

: Blnx

J J
where xj is the amount of ozone in the jth layer. The partial
derivatives are evaluated at X = Xo(p) with the integral written
in numerical quadrature form and provide a measure of the sensi-

tivity of the radiance at the ith wavelength to changes in the

164



ozone content in the jth layer. In the notation of Section II, the
partial derivatives correspond to a discrete form of Ki(z), whereas
§ &n Ii =9; and § ¢nx., = f£.,. A set of kernel functions for seven
wavelengths in the Hartley-Huggins band is shown in Fig. 1. (These

kernels were provided by C. L. Mateer.)

Using the methods of Section II, with the spread as the param-
eters characterizing the averaging kernel, tradeoff curves were
calculated. BAn example of a tradeoff curve is shown in Fig. 2 for
the 3.76 mb level. In this case, a random noise in the measurement

comparable to that achieved with the Nimbus 4 BUV experiment (~1%)

0; WEIGHTING FUNCTIONS

160
—50
L
S =
wr V3
g —~40 £
A S
& ¥
o
—30
—20
100 L | | I
0 1 2 3 4 5 6

|ain1/ainx|

Fig. 1. Kernel functions for topside ozone profile retrieval
using backscattered ultraviolet measurements. Each curve is

"labeled by the wavelength (Angstroms) to which it pertains. (1 bar

100 kPa.)
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Fig. 2. Tradeoff curve at the 3.76 mb level for ozone pro-

file retrieval from backscattered ultraviolet measurements. The

spread is used here as a measure of vertical resolution, and an
rms measurement error of 1% was assumed. (1 bar = 100 kPa.)
was assumed. The L~shape of the curve is characteristic of remote
sensing profile retrieval techniques in general. If an attempt is
made to improve the resolution as measured by the spread much
beyond 1 scale height, the rms profile error increases rapidly.

By combining information from curves such as these from many dif-
the spread as a function of height was calculated

3).

ferent levels,
for several different rms errors (Fig. If a 10% error is

accepted, then a vertical resolution of one scale height or better
can be achieved between 0.5 and 10 mb. If, however, an error no
larger than 1% is demanded, virtually no vertical structure infor-

mation can be obtained.
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VERTICAL RESOLUTION OF RETRIEVED PROFILES
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Fig. 3. Spread as a function of height for various ozone pro-
file errors. An rms measurement error of 1% was assumed. (1 bar =

100 kPa.)

IV. APPLICATION TO TEMPERATURE PROFILE RETRIEVAL

Backus-Gilbert theory has found considerable use in the
analysis of problems associated with the retrieval of atmospheric
temperature profiles from remotely measured, thermally emitted,
infrared radiation. The method has been applied with considerable
success to the sounding of the terrestrial atmosphere; however, it
has proven to be an especially useful tool in analyzing the poten-
tial of various types of measurements for sounding the atmospheres
of other planets. In the case of the Earth's atmosphere, there is
usually information on the temperature profile available in

addition to the radiance measurements. For planetary atmospheres,
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the radiance measurements are frequently all that is available

for estimating a profile. Examples of both types will be con-

sidered.

For purposes of this discussion, consider a nonscattering
atmosphere in local thermodynamic equilibrium. Then the spectral
radiance in the ith spectral interval as measured with a sensor

located above the atmosphere can be written as

oo 3Ti(z)
I, = Bi(To)Ti(O) + J B, [T(z)] dz (24)
0 9z
In this expression, z = - Rn(p/po), i.e., z would be the geometric

height expressed in units of scale height for an isothermal atmos-
phere. Bi(T) is the Planck function for temperature T within
spectral inverval i (assumed to be narrow), and Ti(Z) is the atmos-
pheric transmittance between level z and the sensor. The term
Bi(To)Ti(O) is the contribution from the lower boun@ary located at
pressure level Py here assumed to be that of a blackbody at temper-
ature To. This term is usually specified from measurements in

transparent spectral intervals.

The problem then is to use measurements of Ii to retrieve
information on the temperature profile T(z). The problem is first
linearized by expansion about an appropriately chosen reference
profile To(z); this results in the set of linear integral equations

™

AT, = j:)lgi(z)AT(z)dz (1 =1, 2, ... m) (25)
where m is the number of spectral intervals for which measurements
exist. The radiance difference is AIi = Ii - Ii whereIi is calculated
from Eq. (24) using the reference profile, and AT(z) = T(z) - To(z).

The kernel functions Ki(z) are given by

o
dBi [T (z)] BTi(z)

aT 0z (26)

Ki(Z) =
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These equations are now of the form of Eg. (1) so thé methodology

of Section II can be applied.

A. Earth

Remote temperature sounding in the Earth's atmosphere has
been carried out using measurements within the 15 um and 4.3 um CO2
bands as well as measurements in 02 microwave lines. Only soundings
within the 15 um band will be considered.

Conrath (Ref. 5) analyzed measurements within the 15 um band

in terms of the tradeoff between averaging kernel spread and pro-

file error, assuming an error covariance matrix of the form

E=o0"1 (27)
£ v
where o2 is the variance of the measurement noise and is assumed

€
to be the same in all spectral intervals and % is the unit matrix.

With these assumptions, it was possible to calculate tradeoff
curves in terms of spread as a function of c%/cg. Two cases were
considered, one for a set of seven spectral intervals and the other
for a set of 16 intervals. Kernel functions for the seven-interval
set are shown in Fig. 4. Typical tradeoff curves for the 49-mb
level are shown in Fig. 5. Again, the characteristics L-shape curves
result. Averaging kernels from selected points on the tradeoff curve
for the seven-interval set (broken curve in Fig. 5) are shown in
Fig. 6. The first averaging kernel corresponds to a point near the
minimum error-maximum spread end of the tradeoff curve while the
last is from the maximum error-minimum spread end of the curve. Note
that the latter has a substantially more narrow central peak than
the former but has developed sidelobes with negative excursions.

The center as a function of height calculated using Eg. (20)

is shown in Fig. 7. The same value of c%/og

was used at all levels.
Ideally, c(z) should lie on the broken diagonal line shown in the
figure. However, above approximately 10 mb, c(z) stops increasing.

This level corresponds to the peak of the uppermost kernel function,
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Fig. 4. Kernel functions for the 15-um C02 band in the ter-

restrial atmosphere. The labels 1, 2, 6, 7, 8, 10, and 14 refer
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to frequencies 667.5 cm ', 677.5 cm ', 697.5 cm ', 702.5 cm ',

707.5 cm-l, 727.5 cm_l, and 747.5 cm_l, respectively.

(1 bar = 100 kPa.)

and essentially no useful information is obtained above that level.
The corresponding resolving length as a function of height is given
in Fig. 8. The values shown correspond to formal rms temperature
errors g of 1 to 2 K for instrument noise levels typical of those
achievable with existing spectrometers operating in the 15-um band.
Thus, the resolution as measured by the resolving length is approxi-
mately 0.5 scale height in the lower troposphere, but degrades to

in excess of two scale heights at 10 mb.
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Fig. 5. Tradeoff curves at the 49-mb level for temperature
profile retrieval from measurements within the 15—um CO2 band in
the terrestrial atmosphere. The broken curve is for a set of
seven spectral intervals while the solid curve is for a sixteen

7

interval set. (1 bar = 100 kPa ; 1 erg = 10 ' J.)

Fleming (Ref. 7) has considered the problem of attempting to
construct averaging kernels which are approximately rectangular in
shape. This effort was motivated by the fact that in meteorolog-
ical applications, the thickness of atmospheric layers between
constant pressure surfaces is frequently the desired quantity.
Since the thickness is proportional to the mean temperature of a

layer, a rectangular averaging kernel permits direct estimation of
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Fig. 7. Center as function of scale height for the seven spec-
tral interval set whose kernel functions are shown in Fig. 4.

(1 bar = 100 kPa.)

thicknesses. For this purpose, D(z, z') in Eq. (5) was taken as

a rectangular function, and the weight used was

J(z, z') = [1 - D(z, z")]? (28)

This choice of weight acts as & penalty function which tends to
suppress the amplitude of A(z, z') outside the region delineated

by D(z, z'). Fleming's results showed that a slightly better
thickness estimate could be obtained in this way than by integrating
a retrieved temperature profile, although the improvement was con-

sidered marginal.

Recently, Rodgers (Ref. 9) has employed the Backus—-Gilbert
formulation to analyze the vertical resolution achievable with
statistical estimation techniques. The basic approach used was to

treat the available a priori. statistics as a measurement of the
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in the text. (1 bar = 100 kPa.)

temperature profile with high vertical resolution but large error.
The results of the study indicate that the use of statistics along
with the radiance measurements considerably improves the vertical
resolution over that achieved with the radiance measurements alone.
For example, by using statistics representative of forecast errors,
it was found that an improvement in resolution by about a factor

of two can be achieved at a profile error level of 0.5 K.

B. Mars

The Mariner 9 spacecraft, launched into orbit about Mars in
November 1971, carried a Michelson interferometer operating in the
infrared. Measurements within the 15-um CO2 band were used to

retrieve temperature profiles on a near-global basis. Although the
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average basal pressure of the atmosphere is only about 5 mb, the

fact that it is almost pure carbon dioxide permitted a large por-

tion of the lower atmosphere to be sounded.

Because of the virtual nonexistence of a priori information

on the Martian thermal structure, only the radiance measurements

were available for retrieval purposes. Kernel functions for a 5-

interval set of measurements are shown in Fig. 9. An analysis was

carried out with this set of functions in terms of a tradeoff

between spread and error.

The resulting vertical resolution as

measured by the resolving length is shown in Fig. 10 as a function

of height for a formal rms temperature profile error of 2 K. The

center as a function of height is shown in Fig. 11. For purposes

of comparison with Figs. 7 and 8, the Martian pressure scale height

is approximately 10 km.

Not surprisingly, the results for Earth

T T L T T T
.01 MARS
1
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O
E 4 668.45 cm™
y
o 2+
n
]
w
£ st 677
1
692
2y 701
} 707
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0 A 2 3 4 5 .6
dt/d2np

Fig. 9. Set of 15-um CO. band kernel functions used for

2

temperature sounding in the Martian atmosphere. (1 bar = 100 kPa.)
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Fig. 10. Resolving length as function of height in the
Martian atmosphere obtained with the kernel functions shown in

Fig. 9. (1 bar = 100 kPa.)

and Mars are quite similar. The behavior of c(z) indicates that
little useful information is obtained above 0.1 mb, and the reso-
lution varies from slightly greater than 0.5 scale height in the
lower atmosphére to in excess of 2 scale heights at the upper limit
of the sounding region. Unlike the Earth, however, the vertical
resolution for Mars cannot be significantly improved at the present
time because of a lack of additional information. Nevertheless,
almost 20 thousand Martian temperature profiles have been retrieved
(Refs. 15 and 16) and used to study the dynamic regime of the lower

atmosphere (Refs. 17, 18, and 19).
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C. The Jovian Planets

The atmospheres of the Jovian planets (Jupiter, Saturn,
Uranus, and Néptune) are composed primarily of hydrogen and helium
with small admixtures of methane, ammonia, and other gases. The
hydrogen spectrum includes pressure induced lines, two of which
are centered at =360 cm_1 and =600 cm_l. These lines are quite
broad (100 cm_l) and can be used for temperature sounding even
with measurements of moderate spectral resolution. In addition,
the \)L+ CH‘+ band can be used for temperature retrieval, provided that
measurements with a spectral resolution of the order of a few cm
are available. Kernel functions for Jupiter for a set of spectral
intervals including both hydrogen and methané absorption features
are shown in Fig. 12. The uppermost kernel requires a spectral
resolution of 1 cm—l, while the remaining kernels are for 5 cm_1

resolution.
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Earth-based measurements of the Jovian thermal emission spec-
trum have been used to obtain disk-averaged temperature profiles
(see, e.g., Ref. 20). In addition, the Mariner dupiter/Saturn (MJS)
1977 Mission will carry a Michelson interferometer capable of
giving high quality spectral measurements at good spatial reso-
lution during flybys of Jupiter, Saturn, and possibly Uranus.
Therefore, there is considerable interest in analyzing the capa-
bilities of measurements of this type. The set of kernels shown
in Fig. 12, excluding the uppermost kernel, were employed in a

Backus-Gilbert analysis. The results are summarized in Fig. 13

.005
JUPITER 7>
01 —H /4
2 /I
/
---CH
02 Y -
/— % K
/
| /7
05 min. /'

PRESSURE BARS

5 | ] 1
0 1 2 3 4

SPREAD SCALE HEIGHT

Fig. 13. Spread as a function of height in the Jovian atmo-
sphere obtained with the kernel functions shown in Fig. 12. Both
the minimum spread obtainable and the spread obtainable for the
temperature profile errors indicated are shown. Measurement errors
consistent with current state-of-the-art instrumentation were

assumed. (1 bar = 100 kPa.)
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where spread as a function of height is plotted. The hydrogen and
methane regions were treated separately, and two curves are shown
for each; one represents the minimum spread achievable and the
second is the spread obtainable with the profile errors indicated.
An instrument noise level equal to that anticipated for the MJS 1977
interferometer was assumed. The rapid increase of the spread as
either end of a sounding region is approached is due to the fact
that c(z) does not increase outside the region from which useful
information is obtained (see Eg. (22)). Thus, the total vertical
range covered by the combined spectral regions is slightly over two
pressure decades, although the lower limit may be set in practice

by the presence of cloud decks. As a final example, an analysis for
Uranus using only the hydrogen absorption features is presented in
Fig. 14. The results are similar to those for Jupiter except that
the pressure range over which information can be obtained is some-

what displaced.
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Fig. 14. Spread as a function of height in the atmosphere of
Uranus obtained with the kernel functions shown in Fig. 12.

(1 bar = 100 kPa.)
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Recently, Gautier and Revah (Ref. 10) have provided an
analysis of the Jovian temperature sounding problem from a more
conventional information theory point of view, and it is of inter-
est to compare the results of that study with those obtained with
Backus-Gilbert theory. In the study of Gautier and Revah, it was
assumed that the radiative transfer Eg. (24) could be written in

a linearized form

-t(v,p) 2t

5D dp (29)

G(V) =J B[vo, T(p)] e
0 .

where G(v) is a function of the measured radiance at frequency v,
and vo is a reference frequency. The Jovian atmosphere was assumed
to be infinitely deep so there is no boundary term. For measure-
ments within the hydrogen lines, the optical depth has the func-

tional form
t(v, p) = k(v)p? (30)
By introducing the new variables,

n = %n t(vo, p) (31)
& =-2nk(v)/k(vo) (32)

Eg. (29) can be rewritten in the convolution form

e -]

g(g) = ﬁa,K(E - n) £ (n)dn (33)

where g(£) is obtained from the measurements, f£(n) is related to

the temperature profile, and the kernel has the functional form

K(E - n) = expl- (§ - n) - exp(§ - n)] (34)

By an appropriate continuation of g(£) outside the range of £ for
which measurements are possible, the convolution theorem can be

applied to Eq. (33) to obtain
g*(k) = K*(k) £* (k) (35)

where the asterisks denote a Fourier transformation and k is
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interpreted as a spatial frequency in the vertical. It is assumed
that the measurements are contaminated by noise whose Fourier spec-
trum N*(k) is essentially constant over the range of interest. 1In
general, Ig*(k)l will tend to be a monotonically decreasing func-
tion of k. At some value of k, such as km' lg*(k)l will become
equal to the noise IN*(k)I. Therefore, for higher spatial fre-
quencies, no useful information can be obtained. The minimum sam-
pling interval &n required to reproduce all the profile information
contained in the measurements is obtained from Shannon's sampling

theorem

Sn = (36)

T
k
m
Gautier and Revah define the vertical resolution to be &n, which
is one-half of the shortest wavelength retrievable. By assuming
hydrostatic equilibrium and using Egs. (30) and (31), Eqg. (36)

can be rewritten

§z = — (37)

where, as before, z is height in units of scale height. Thus, if
k_ can be established, the vertical resolution cdan be estimated.

To calculate km, g* (k) must be known. Gautier and Revah estimated
this quantity by using a model Jovian atmosphere to which white
noise of approximately 2 K standard deviation was added to simulate
fine scale structure. This permitted §z to be calculated as a

function of measurement signal to noise ratio.

It is obvious that the Gautier-Revah and Backus-Gilbert
approaches are philosophically somewhat different, as the former
makes use of the anticipated properties of the profile to be
retrieved while the latter depends solely on the behavior .of the
kernel functions. Nevertheless, it is of interest to compare the
results obtained with the two methods. For signal to noise ratios

comparable to those anticipated in the hydrogen lines with the
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MJS interferometer, the calculations of Gautier and Revah indicate
a vertical resolution of approximately 0.5 scale height which is

consistent with the Backus-~Gilbert results shown in Fig. 14.

V. CONCLUDING REMARKS

The Backus-Gilbert theory has proven to be a useful tool for
analyzing the potential of various types of remote radiation
measurements for the retrieval of atmospheric profiles. While it
has generally come to be regarded as a means of studying the trade-
off between vertical resolution and profile error, its applicability
is, in fact, considerably broader. It can be used to construct
averaging kernels whose shapes are dictated by the requirements of
a particular application. The extent to which the method is suc-
cessful can be judged on the basis of whether the resulting
averaging kernels are better approximations to what is required
than are the kernel functions of the original set of integral

equations.

Examples from several widely differing applications were pre-
sented in this review. However, the results were quite similar
in all cases. The broad, smooth kernels associated with radiative
transfer processes whether it is backscattered solar radiation or
thermally emitted radiation cannot be combined into sharply peaked
averaging kernels without incurring strong propagation of measure-
ment errors. However, examination of each case reveals that for
reasonable error levels, averaging kernels can be obtained which
are narrower than the original radiative transfer kernels. In this
sense, inversion of the data sets is judged to be worthwhile. 1In
the case of temperature profiles in the Earth's atmosphere, a large
body of information is available in addition to radiance measure-
ments and this information can be used to improve the quality of
the retrievals. For other planetary atmospheres, frequently little

other information is available. In such cases, analyses of the
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type presented are particularly useful in establishing the value

and limitations of retrieved profiles.

The Backus-Gilbert theory is, of course, not unique in its

ability to analyze vertical resolution. Another approach, which -

is of interest because of its use of more conventional information

theory techniques, was briefly reviewed and found to give essen-

tially the same vertical resolution, at least for the one example

considered.

a
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Bi(T)

c(z)

K(z)
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K, (z)
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SYMBOLS
column vector of coefficients (Eg. (6))
coefficients used in linear estimation
averaging kernel
half.width at half-maximum
Planck radiance at temperature T and ith frequency
center of averaging kernel defined in Eq. (20)
desired function in definition of Q(z)
measurement error covariance matrix (Eg. (6))
matrix elements
unknown profile
value of £ corresponding to jth layer
inferred property of unknown profile
solar flux at ith frequency or wavelength
vector of measurement gquantites (Eg. (8))
measured quantities
function of measured radiance at frequency
radiance at ith frequency or wa;elength
weight factor in definition of Q(z)
absorption coefficient
kernel functions
kernel elements
resolving length of kernel defined in Eg. (21)
atmospheric pressure level

lower boundary pressure level
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Q(=z)

r
R(z)

s

4"
s(z)
sij(Z)

t(v, p)

T(p)
T°(2)

(z)

quadratic form used to control shape of averaging ker-
nel

factor used in R(z)

linear function of Q(z) and Gé(z)

matrix defined in Eq. (8)

spread of averaging kernel defined in Eq. (14)

matrix elements defined in Egq. (10)

optical depth from level p to top of the atmosphere at
frequency

atmospheric temperature as a function of pressure
reference temperature profile

vector defined in Eq. (16)

vector elements

vector defined in Egq. (8)

vector elements

weight used in R(2)

matrix defined in Eq. (17)

matrix elements

amount of ozone in jth layer

amount of ozone in an atmospheric column above pres-
sure level p

first guess for X(p)

height-related independent variable

scattering extinction coefficient

height-related variable defined in Eq. (31)

frequency

frequency related variable defined in Eq. (32)

error variance in £(z)

measurement error variance

error variance in T

atmospheric transmittance from level z to the top of
the atmosphere at ith frequency

matrix defined following Eq. (23)
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matrix elements

wij

) delta function

Y = (1 - wr/w

0 solar zenith angle
vo reference frequency
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DISCUSSIONS

Chahine: Do you really need to use the Gilbert-Backus method to
find that the optimum spacing is reduced to half width?

Conrath: It depends on what you are trying to do. It is not
always true. The optimum resolution turns out to be of the order
of the half-width of the original kernel. However, you can improve
on it a bit by moving around on the trade-off curve, particularly
in the vicinity of the elbow. It depends on how you wish to trade
off between resolution noise.

Chahine: The degree of resolution is not only a function of the
kernel and the data, but it is also a function of the structure of
the solution profile. To make my point clear, I need to draw a
very brief diagram on the blackboard.

Conrath: I think the point is that you have to be very careful by
what you mean by "resolution." Go ahead.

Chahine: If you are trying to "resolve" the tropopause from remote
sensing data you will find that this is an extremely difficult task
no matter how narrow the weighting functions are. This is a result
of the fact that the outgoing radiance is a weak function of the
value of temperature at the tropopause. On the other hand, one can
resolve the stratopause with the same set of weighting function.
Thus, my question is: How can you get the resolving power without
taking the structure of the solution into account?

—TEMPERATURE —TEMPERATURE
PROFILE PROFILE
KERNEL KERNEL
(a) (b)

Fig. D-1.

Conrath: Again, I think it depends on how you define the resolving
power of the resolution essentially. In the case of Backus-Gilbert,
if you use the spread of the resolving length as the parameter, it
is in the same sense that you would use the width of a spectrometer
slit function as a measure of your resolution. Obviously, what
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sort of features you can see depend completely on the details of
the spectrum. You can see or detect a spectral line much nar-
rower than your 'slit function provided it's strong enough. You'll
see it spread out, of course.

Chahine: Then would I change my resolving power if my solution
happened to be like in Fig. D-l(a) instead of being like in Fig.
D-1(b)?

Conrath: Well, not in the definition I am using, So you are free
to define it however you prefer,

Chahine: Okay.
Conrath: So you have to take it in the context in which it is used.

Chahine: So the resolving power that I wanted to ask is, is the
function really of the solution you are after?

Conrath: 1If you want to define it your way, yes.
Kaplan: But he is not defining it .that way.
Conrath: I think it is arbitrary.

Rodgers: The situation that Dr. Chahine has drawn on the board,
the resolving power is identical in both cases. There is no dis-
tinction between those two profiles. It is just a matter of sign,
providing it is a reasonably linear problem and the 15 micron band
is reasonably linear in that case. There is quite a distinction
between information and signal and it must be realized. The eye
may see a low-wattage bulb because the eye is a logarithmic device.
The detectors we use are linear devices.

Chahine: If the solution happened to be the stratopause, I can
resolve it; if it is the tropopause, I cannot. What is the
resolving power then?

Rodgers: The resolving power is something that doesn't have any
kind of meaning in your relaxation method.

Chahine: WNo, I am not thinking in terms of the relaxation method.

Rodgers: In Backus—-Gilbert method, those two situations are iden-
tical. The sign is irrelevant. Absolute value is irrelevant.

Drayson: I think the point of nonlinearity here is very important,
If you work in the 4.3 micron band the temperatures, the Planck
function is a very nonlinear function of temperature. But if one
is holding for the Planck function and gets a temperature from that,
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then you do have a linear problem. So, I think the point Clive is
making about the instrument senses in a linear sort of way is a
very good point here. But if you are trying to get temperature
directly, what Chahine says about the--if you are thinking on a
4.3 micron band, then you can't see that. You very much enhance
the positive temperature there because the signal is much much
stronger, because of a nonlinearity of the Planck function.

Kaplan: Of course, nobody is interested in the Planck function
unless it's a game to play. It's really the temperature that we
are after, and so the nonlinearity does come in and it is crucial.
I'1l talk more about this later.

Westwater: I really was going to amplify Dr. Rodgers' comments.
But what the Backus-Gilbert technique really does is estimate one
functional from another and the functional that you estimate is

the convolution of the averaging kernel with the particular profile
that you are trying to retrieve. And, of course, that functional
will vary depending on the radiance that your observations have
sensed. But the measure of resolution itself, mainly the spread

of the averaging kernel, does not depend on the profile you are
trying to retrieve. And I think this is what Clive Rodgers also
has said.

Conrath: Yes, again in the sense of the analogy with the instru-
ment slit function of a spectrometer in sensing a spectrum; what
you actually see depends on the spectrum.

Twomey: I simply wanted to comment that the possibilities of
getting a trade-off curve and the scanning function or slit function
or whatever, this can be applied with any linear method at all.

But in the Gilbert-Backus procedure it is looked at explicitly.

The nonlinear method, you produce a combination of your measurements,
your g's, whatever they may be called. And so provided it is a
linear method, your solution is a convolution type operation or is
gotten by a convolution type operation on your inaccessible f(x).
And you can always calculate this function and you can, of course,
look at the spread of it. It is not a specific property of the
Gilbert-Backus procedure.

Conrath: That's right. In fact, you can derive various other
algorithms from the Backus-Gilbert point of views simply by mini-
mizing a different quadratic form.

Barkstrom: I would like to make a comment and see if the procedure
that I am suggesting is correct on the Backus-Gilbert, that in the
procedure if you go back to the original papers, for example,
Backus' paper and Backus-Gilbert and Parkers exposition, there's

a suggestion in there that you would go ahead and perform an
inversion and then the trade-off curve is computed quite separately.
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It would suggest an inversion procedure where, in fact, you per-
formed the original inversion procedure and then smoothed after
you have done the retrieval, Is thata . . .?

Conrath: That is not my impression of what Backus and Gilbert
originally had in mind. I suppose you could approach it from that
point of view.. If you use it as an inversion method, the retrieval
you get depends on where you are on the trade-off curve. You have
to choose your value of what I call "w" here.

Barkstrom: How constant is the value of "w"?
Conrath: What do you mean "how constant"?

Barkstrom: If you choose a given tolerance on your retrieved pro-
file, how constant is the value of "w" across the atmosphere?

Conrath: You mean in going from one sounding to another?
Barkstrom: Going from one region of the atmosphere to another.
Conrath: Horizontally?

Barkstrom: Presumably vertically.

Conrath: Vertically, you can choose "w'" different at different
levels. In the type of Backus-Gilbert method I have outlined here,
you essentially do the analysis at each individual level inde-
pendent of all other levels.

Barkstrom: Yes, and then if you set the tolerance on the retrieve
profile at some particular value , . .

Conrath: WNo, "w" would change with height in general.

Fleming: Just to go back to Roland Drayson's comments, I think it
is a matter of how you treat your kernel function, If you linearize
the Planck function, you get a factor derivative of the Planck
function with respect to temperature. In that case, if you simply
redefine your kernel functions to include the original waiting
function times that factor and call that new quantity the kernel
function, then, indeed, the kernel is temperature dependent and
then the resolving power will be a function of temperature. But,
if you use the method of Dr. Chahine, he specifically objects to
linearizing the Planck function, in which case, he must live with
the original weighting function which is temperature independent,
except for there is a dependence but in another sense. In which
case, I would have to agree with Dr. Conrath,
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Conrath: I think what you're talking about essentially is a kernel
of the form (dt/dx x d4B/4T).

Fleming: Yes. In that case, it becomes temperature dependent.

If you actually define your kernel functions that way, then you
have included a temperature dependence and I would, of course, have
to agree with Dr. Chahine.

Susskind: I'm a little confused about what you mean by "resolution."
I just want to ask a very simple question. Say we have a range of
atmosphere 10 scale heights and you have 10 measurements, Is it
possible to have a resolution of better than one scale height? Can
you by this Backus-Gilbert theory show the optimum is better than
one scale or you'd be showing my 10 measurements aren't really all
that independent and maybe I can only get two scale heights? I

mean, is it possible to have more resolution than you have measure-
ments in the range in which you are trying to measure things?

Conrath: I think the answer is no.

Susskind: I should think so too, but I wasn't quite clear. So in
other words you could only be degrading what you think you have?

Conrath: That's right.
Susskind: Not doing any better than what it appears to be. All

right, so you're talking about the optimum number of independent
things you can think you measure, and not do any better. Good.
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INVERSION OF INFRARED LIMB EMISSION
MEASUREMENTS FOR TEMPERATURE AND

TRACE GAS CONCENTRATIONS

John C. Gille and Paul L. Bailey
National Center for Atmospheric Research

Limb emission measurements are characterized by sharp
weighting functions at high altitudes, and for temperature
determinations, strongly nonlinear dependence of the
weighting function on the temperature. Several methods for
inverting this type of measurement have been described and
used, including iterative, statistical, nonlinear and
approximate direct approaches. These approaches will be
described; advantages and disadvantages of each will be
outlined.

I. INTRODUCTION

In techniques utilizing limb emission, often called the limb
scanning approach, the data for inversion are measurements of the
radiance emitted by the atmosphere, made while a passive radiometer
scans from the planet to space across the planetary limb. The
change in geometry changes the inversion problem from that for
downward or nadir viewing instruments, most importantlv by making
the problem of temperature determination strongly nonlinear, but

more agreeably by yielding narrower weighting functions.

The geometry of limb radiance measurements is shown in Fig. 1.
The advantages of the technique, which follow from the geometry,
have been described by Gille and House (Ref. 1) [herein referred

to as GH]. They need be summarized only briefly here. First,

195



RAY PATH z=h

h JTANGENT TO
IGH SATELLITE
\ ’x
Ll ) 2

Fig. 1. The geometry,of 1imb scanning.

because of the geometry, there is no contribution from atmospheric
layers below the lowest point along the ray path. Because of the
rapid drop of atmospheric density above the lowest point, called
the tangent point, very narrow weighting functions result.
Secondly, the long slant pati leads to more emitter along a path
through a given altitude, and, thus, sensitivity to higher alti-
tudes. A third advantage is that the cold background of space
means that all the signals originate in the atmosphere, and no

variability can be attributed to the background.

Because the vertical resolution is coming from the geometric
effects in a real instrument, the vertical field of view must be
as narrow as practicable to obtain the advantages of the inherent
high vertical resolution. However, the spectral width can be made
very broad in order to get more signal. This illustrates a general
tendency for geometric and spatial effects to play the role in
limb scanning that spectral effects do in nadir sounding. In
operation, the radiometer samples the atmospheric signal many times

during the scan across the limb.
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The equation from which the outgoing limb radiation is cal-
culated is given as

dt(h, x)

ax dx (1)

(o]
N(h) =J B(x)
00
where N(h) is the radiance received when looking at tangent point
h, B is the Planck function, x is the coordinate along the ray path,
and 1(h, x) is the transmittance between the spacecraft and the
point X along a path through h. By converting from a horizontal

to a vertical integral, and rearranging terms, one obtains

® drt dt ax
o - [ [, - (8] (&

where z is the vertical coordinate, c is the concentration of the
absorber gas, p the atmospheric density, a the amount of absorber
along the ray path between the atmospheric level and the satellite,
and subscripts a and p refer to points on the ray path anterior and

posterior to the tangent point. Equation (2) can be written

N(h) =L B(2)W(z, h)dz (3)

where W is the weighting function which tells how much the level =z
contributes to radiation observed along a path whose lowest point

is h.

Weighting functions for an ideal instrument with an infin-
itesimal field of view have been presented for a broad carbon
dioxide channel by GH. They typically have widths at the half-
power points in the order of 3 km. These are for an ideal instru-
ment with an infinitesimal field of view. For a real instrument,
with a nominal 2 km field of view, the weighting functions are as
shown in Fig. 2. ©Note that as a result of convolving the infini-
tesimal weighting functions with a finite field of view, the

weighting function is now about 5 km wide.
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Fig. 2. Weighting functions for Mimb scanning, with a finite
field of view. The field of view has a Gaussian shape, and

nominal 2 km width.

The important thing to note is that the weighting function
depends strongly on the density at the tangent point. This is the
reason for the major nonlinearity; through the hydrostatic equation,
temperature at levels below a geometric level will affect the
pressure and density at the level, and, therefore, change the
weighting function. This is what makes the temperature determi-

nation from limb radiance measurements the strongly nonlinear

problem that it is.

Weighting functions for trace constituents, such as ozone,
have been calculated by Gille and others (Ref. 2) and by Russell
and Drayson (Ref. 3). They also-display the narrow width expected
in the limb geometry. Once the temperature profile is determined,
the trace gas concentration measurements are a straightforward,

nearly linear problem as in the nadir viewing case.
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First to be presented in this paper will be results and
thoughts on the information content of limb radiance measurements.
This will be followed by a description of four inversion techniques

currently being actively pursued.

At this time, an operational metﬁod'for inverting the data
obtained from the Nimbus 6 Limb Radiance Inversion Radiometer
(LRIR) is being developed. In a few months, it is expected that
much more definitive cdmparisons between the different techniques
and quantitative results confirming the technique, and establishing
the accuracy of the results, will be available. In the concluding
section, some preliminary results of the recovery of temperature

and ozone profiles from the data are shown.

IT. INFORMATION CONTENT OF LIMB RADIANCE MEASUREMENTS

It is desirable to be able to assess the amount of information
in a set of measurements, in order to guide algorithm development,
and to ensure that there is a reasonable match between the effort
that goes into the inversion and the information contained in the
radiance data. A technique to determine the information content
has been described by Gille and Bailey (Ref. 4). It will be

summarized very briefly here.

In that reference, it was pointed out that three effects have
the potential to degrade the information that is contained in a
set of radiance measurements. First, radiative transfer itself
tends to obliterate some detail. Second, the characteristics of
the measuring instrument will add further smoothing and reduction
of information. Finally, the retrieval may also reduce the infor-
mation that still remains. In the reference cited, the first two

effects were studied.

The method was to calculate the change in the outgoing radi-
ance due to sinusoidal temperature perturbations with 2 K amplitude

and vertical wavelengths from 2 to 14 km. It became clear that the
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features with shorter wavelengths are greatly attenuated compared
with larger disturbances just by the radiative transfer process.

This is what one would expect when considering the width of the

weighting functions, even for an infinitesimal field of view.

The instrument field of view response may be approximated by
a Gaussian, for which one can calculate analytically a smoothing of
the signal. One finds that small vertical scales are further
reduced. By comparing these with the effects of instrumental noise
and the effects of imprecise sample spacing, one can determine what
vertical wavelengths are just at the noise level. (This can also
be used to determine how frequently the radiance profile needs to
be sampled for given instrument characteristics.) Finally, because
there is a trade-off between instrument field of view and noise, it
is possible to determine the optimal field of view for a given

application.

Another way of looking at this is to perform a spectral decom-
position of limb scanning measurements. An example of such a spec-
trum is shown in Fig. 3, in which the amplitude of the components
are plotted against sgpatial frequency. For the Nimbus 6 geometry,
one cycle per milliradian is a wave of 4 km vertical extent; 0.5

cycle per milliradian is, therefore, a wave with 8 km wavelength.

From the previous discussion, it will be recognized that the
amplitude of the signal at high frequencies contains only noise,
and that there is no information about the atmosphere contained at
these frequencies. One may then apply an optimal filter (Ref. 5)
to determine what the real amplitude might be. In Fig. 3, the
circles represent the unfiltered signal, whereas the symbol F indi-
cates the result of applying an optimal filter. If one knows some-
thing about the modulation transfer function of the instrument,
then one can do a certain amount of boosting of the middle fre-
quencies (to compensate for the smoothing introduced by the instru-
ment). It is even possible that the atmospheric smoothing can be

partially compensated. Clearly, however, one must have a high
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Fig. 3. Amplitude spectrum of the narrow CO2 channel 1imp
radiance profile. Circles indicate the original spectrum; F's

show the spectrum after optimal filter is applied.

signal to noise ratio in order to be reasonably confident that one
is actually increasing the realism of the reconstructed radiance

profile.

ITI. ITERATIVE INVERSION TECHNIQUE

The equation for the limb radiance profile can be transformed

to (GH)

N(h - z) = poR ] J’h BIT(D] § 16D, - G2,
-z
-— Z -
x exp [-R 1 J g T(z')dz'] T(=z) 1 dz (2)
%o
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where the pressﬁre po is at the reference level Z,. The exponential
terms show the effect of the hydrostatic equation on the pressure,
and the nonlinear dependence of radiance on the temperature pro-
file. Because of this, and the sharply peaked weighting function,
GH utilized the iterative inversion technique of the Chahine type.
This is very fully described in GH. and will not be gone into in
greater detail here. Some features of the iterative scheme are
presented in Ref 6. Perhaps most interesting is that for the
implementation used by GH, although radiance residuals continue to
drop with continued iteration, temperature errors went through a
minimum and then began to grow. Another feature was that in early
stages of the iteration radiance residuals oscillated as a function
of iteration number, presumably as the atmosphere "sloshed" while

it adjusted itself to the hydrostatic equation.

This method gives good results, which are nearly independent
of the initial guess. The major problem as far as reducing a
large amount of data, however, is the.large number of iterations
required to drive the residuals below the root mean square (rms)
radiance error. An iterative approach must be made very fast in

\
order to process large amounts of data.

Gille and others (Ref. 2) also applied the iterative inversion
to constituent profiles. For this problem, the results were fairly
fast in terms of the number of iterations; only two to four itera-~
tions were generally required to get the residuals below the
radiometric error. However, the calculation of the radiance is
still a very time-consuming process. Two variations of this
approach might be noted; Gille and others (Ref. 2) corrected the
profile at each level, based only on the measurement at that level.

Tallamraju (Ref. 7) used a corrector for a level based on all the

radiances.
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IV. DIRECT INVERSION

In the early studies of the limb radiance problem, it was
recognized that a simple first-order inversion method was possible
due to the highly localized nature of the weighting function
(Ref. 8). This behavior provided the motivation for the corrector
equation in the iterative scheme used by GH. More recently, a
similar principle has been suggested for use with pressure modu-

lated limb scanning radiometer proposed for Nimbus G.

As described by House and Ohring (Ref. 8), the radiance at

a tangent height h may be approximated by
N(h) ¥ B(T(h))e(h) (5)

where ¢ (h) is the effective atmosphere emittance. If the emittance
is known, the temperature may be recovered from the Planck func-
tion. If the constituent concentration is sought, the temperature
must be known as well as a relationship between emittance and

mixing ratio.

For an isothermal, constant mixing ratio atmosphere with con-

stant absorption, the emittance is given by Burn and Upplinger

(Ref. 9)
e@(h), W, T) = 1 - exp (i/%__(—h)—w) (6)

where p(h) is the pressure at tangent height h, W is the mixing

ratio, T is the temperature, and K is the absorption coefficient.

The localization of the radiance contribution to the vicinity
of the tangent point is such that virtually all the radiance
comes from within two scale heights of the tangent point for
moderate or weak absorption. On the order of 80 to 90% comes from
within one scale height of the tangent point. In a more realistic
situation, where the absorption coefficient is directly proportional
to pressure, the degree of localization will be enhanced since the

largest pressures occur at the tangent point. The radiance at
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tangent height h should then be approximated by the form

Nip(h)) = B(T(h)) |1 - exp KM (MW (N) (7)

v T(h)

where the variables T(h) and W(h) represent temperature and mixing
ratio averaged in some manner over the region of the atmosphere
from which the radiance arises. By assuming the radiance all comes

from within one scale height of the tangent point,

_ h +H h + H
T(h) = LI T(z)A(z)dz L} A(z)dz
(8)
_ h + H h +H
Ww(h) = J W(z)a(z)dz Ll A(z)dz
h

where A(z) is an arbitrary weight depending upon the optical

characteristics of the atmosphere in the vicinity of h.

The effective absorption coefficient may be difficult to
accurately specify and could most easily be obtained empirically
from detailed forward radiance calculations. The most useful form,
however, is to have the effective emittance specified in terms of

the atmospheric variable of interest
= = N
e®, T, W) = SR (9)

In the case of COZ’ the mixing ratio profile is assumed to be
giobally uniform and does not need to be considered explicitly.
Temperature variability also appears to be of second order impor-
tance and can be neglected as an explicit parameter. This results

in a simple relationship
N(p) = B(T(p))e(p) (10)

where E(E) is the instrument response weighted Planck function,
which may be parameterized and inverted to give T(B). The e(p) are
determined from Eq. (9) by calculating N(p) and T (using Eqg. 8)

for a set of atmospheres. The effective emissivity for LRIR
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Fig. 4. Effective emissivity of the narrow carbon dioxide

channel for midlatitude summer standard atmosphere, as a function

of pressure. (1 bar = 100 kPa.)

Channel 1 (narrow C02) is shown in Fig. 4 for the summer mid-
latitude standard atmosphere. The effective emissivities for
atmospheres fall very close to the same curve. The effective
emissivity for Channel 2 (broad C02) has a similar shape, but

displaced toward lower emissivity and higher pressures.

other

is

It can be seen that values for the emissivity become greater

than one as the channel becomes opaque. In reality, the effective

temperature for these pressures should be derived from a much

deeper layer of the atmosphere which is appreciably warmer than

the region near the tangent point.
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For nonuniformly mixed constituents, Eg. (9) is solved for
e(p, 5, ﬁ), which is then interpreted to give W as a function of
pressure. Inversion for temperature using a uniformly mixed con-

stituent like CO_ can proceed in several ways. If the radiance

2
N(p) is known at pressure p, the emissivity and hence, B(T(p))

and 5(p) can be obtained directly.

If the radiance is known to correspond to some weighted tem-
perature, the pressure corresponding to the resulting emissivity
can be obtained from the emissivity curve. For constituents such
as ozone, the mixing ratio can be obtained if the radiance is
known to correspond to a specified temperature and pressure. In
this situation, it is convenient to fit emittance in the form shown

in Eq. (7)

e(p, T, W) = e(%)

%

(11)

In application, CO, radiance will, not be known as a function

2
of either temperature or pressure. Both parameters must be deter-
mined from observations made in two different spectral channels in

the 15-pm CO,. band having different optical properties.

2
If both channels-are looking at a level in the atmosphere
where one of the channels is becoming opacue, the effective radia-

ting temperature of the opaque channel is very close to the atmo-

spheric temperature at that level. By using this temperature, the
emissivity for the transparent channel and hence the pressure at
that level may be determined. If the angular separations between
samples on the radiance profiles are known, the entire profile of
effective temperature against pressure may be reconstructed by
applying the hydrostatic equation, the spectrally weighted Planck
function, and the curves of emissivity against pressure. This is

shown schematically in Fig. 5.

Depending upon the averaging function A(z) used in Eg. (8),

the T(E) profile may be shifted an appropriate amount in P to
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Fig. 5. Schematic of the direct inversion scheme. Point
where narrow channel is saturated allows determination of the
temperature, from which the broad channel emissivity 82(p), and,

therefore, p(ho) =P, may be determiined.

provide an estimate of the T(p) profile. Thus, the technique has
great potential for providing initial profiles for more exact

inversion schemes.

Once the temperature and pressure profiles have been deter-
mined, a straightforward application of Egs. (9) and (12) can be
used to obtain ﬁ(p). Again, a shift in pressure compatible with
the weights used in Eq. (8) will result in an approximate W(p) pro-

file.

V. STATISTICAL RETRIEVALS

Another approach which we have explored is the use of sta-
tistical relationships. If one writes the measured radiances as a

column vector, the radiative transfer equation may be written
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N(hi) = ciij (12)

where the Bj's are the Planck functions, subscripts indicate levels
and E contains the information about the distribution of material
(including the hydrostatic equation) and transmittance of the gases.
In this form, g is required to include most of the nonlinearity.
This coefficient matrix can be calculated from synthetic data, cal-
culated in turn from a wide range of atmospheric profiles. Once

it is known, it can be applied to real data to determine the Planck
function and, therefore, the temperature. It is a rather empirical
approach, but it appears to work moderately well and it was very

fast.

A problem with this approach is that by putting all the
nonlinearity into the coefficient matrix, one may be left with
larger errors than desired. A more interesting idea to expand the
true limb radiance profile as a linear combination of approximate

(nonlinear) radiance profiles

Np(pp;) = DijNA(Phj) = DijB(Tj)E(pj) (13)

Here the tactics are to incorporate the nonlinearity in a known,

interpretable way into NA

special case may be noted--when Dij = Gij' we again have the direct

and to keep Dij linear or nearly so. A

inversion, described earlier, When the elements of D are found by

regression, then we have a full linearized statistical inversion.

Now, by applying D_l, Be is determined. By knowing p, & and
B are immediately known. The nonlinearity is now incorporated in
the €(p). The trick is to find the best way to incorporate a
large part of the nonlinearity in an analytically manageable form
so that, after a linear inversion, the nonlinear form may be

analytically interpreted with small errors.

Some preliminary results indicate that Eg. (13) does indeed
give somewhat better results than Eq. (12) for temperature, and

considerably better for ozone. One of the problems that tends to
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Fig. 6. Preliminary temperature retrieval for Wallops Island
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limb radiance for the LRIR over pass at 1737 GMT. x's and o's are
for retrievals before and after a correction for atmospheric non-

sphericity. (1 bar = 100 kPa.)

arise, however, is that although one can deal with 75% of the atmo-
spheric cases fairly well, the other 25% (which includes things
like stratospheric warmings and other interesting cases) are not
handled well. It is very desirable to develop a technique that is
general enough to handle all these cases without requiring separate

treatment.
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VI. CONCLUDING REMARKS

As noted above, many months of real data are now in the process
of being analyzed. Much of the past year has been spent in pro-
cessing the raw data in order to have good, calibfated radiances
with which to work. At present, a search is being conducted for
an inversion method that will have the ability to extract the large
amount of information contained in the limb scans, but with accept-

able computer time.

As an indication of the progress to date, and the information
obtainable by limb scanning, Figs. 6 and 7 show temperature and
ozonel retrievals, respectively, at Wallops Island in July, 1975.
They are compared with rocket soundings taken within three hours
of the satellite overpass. The temperature profile and the rocket
are in reasonably good agreement from 25 to 55 km. The root-mean-
square (rms) error is about 3 K which is close to the experiment
objective. Similarly, the ozone profile in Fig. 7 looks very
reasonable. If one takes the percentage difference between the
ozone retrieval and the optical rocket measurement at each level,
and then takes the rms value of that percentage difference, one

gets 14%. This is close to the claimed accuracy of the rocket

instrument.

These results to date give us great confidence that the infra-
red limb scanning approach is very powerful and technically
feasible. They also indicate that the data quality from LRIR is
such that large amounts of new data will be available to refine
limb scanning techniques and to study the upper atmosphere in

hitherto unobtainable detail.

See Footnote 1 in Discussions.
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SYMBOLS

gravitational acceleration
true limb radiance
approximate limb radiance
gas constant for air

temperature

» B o =Z 2 u
b

coordinate along the ray path

ACKNOWLEDGMENT

The National Center for Atmospheric Research is sponsored by

the National Science Foundation,

REFERENCES

1. J. C. Gille and F. B. House, On the inversion of limb
radiance measurements I: Temperature and thickness, J. Atmos.

Sci. 28, 1427 (1971).

2. J. C. Gille, F. B. House, R. A, Craig, and J. R. Thomas,
Nimbus-F Limb Radiance Inversion Experiment, vol. I
Technical, Honeywell, Inc. Aerospace Division, Rep. 65-D-47,

1970.

3. J. M. Russell, III and S. R. Drayson, The inference of atmo-
spheric ozone using satellite horizon measurements in the

1043 cm” ' band, J. Atmos. Sci. 29, 376 (1972).

4. J. C. Gille and P. L. Bailey, On the Information Content of
Limb Radiance Measurements, Conference on Atmospheric
Radiation, Am. Meteorol. Soc., Boston, Mass., Aug, 1972,

pp. 13-15.

5. J. W. Brault and O. R. White, The analysis and restoration of
astronomical data via the fast Fourier transform, Astron.

Astrophys. 13, 169 (1971).

212



6. J. C. Gille, Limb Radiance Inversion: Iterative Convergence
for a Nonlinear Kernel, in "Mathematics of Profile Inversion

(L. Colin, ed), NASA TM X-62, 1972, p. 150.

7. R. K. Tallamraju, Inference of Stratospheric Minor Constituents
from Satellite Limb Radiant Intensity Measurements, University
of Michigan Technical Report, ORA Project 011023, University

of Michigan, Ann Arbor, 152 pp.

8. F. B. House and G. Ohring, Inference of Stratospheric
Temperature and Moisture Profiles from Observations of the

Infrared Horizon, NASA CR-1419, 1969.

9. J. W. Burn and W. G. Uplinger, The Determination of Atmospheric
Temperature Profiles from Planetary Limb Radiance Profiles,

NASA CR-1513, 1970.

213



DISCUSSIONS

King: As you know the geometry of limb viewing truncates the

kernel which has the efféct of imposing the tangent height as the
bound of your intensity integral. This finite bound converts the
integral equation from a Fredholm to a Volterra type. Now for
fairly general classes of kernels of this truncated type, the
Volterra equation has direct solutions which do not involve matrix
inversions. One could progressively work down to retrieve the
temperature, if the true atmospheric kernel is sufficiently approxi-
mated by a soluble class of Volterra kernels. Have you tried this?

Gille: Not explicitly. I think one of the major problems is,
first of all, knowing where you are starting. If you have that
point, then working up and down from there is what I described in
the case of what we called the direct method. 1If one already has
radiance as a function of pressure (which is the hard part), then
working down would be the "onion peeling" approach, which is
equivalent to inverting a diagonal matrix. We have done a little
work on this, and expect to do more. There is a problem with sensi-
tivity to noise at the top levels. We have not tried anything like
an analytic approach because the transmittances are not accurately
approximated by closed form expressions. It sounds like something
worth looking into, however.

Chahine: I have two questions and one comment. Your weighting
functions are the most beautiful weighting functions that I have
seen today. They might not be aesthetic but they are mathematically
beautiful. I would like to have seen a comparison between the
results obtained by the three or four methods you have described.

If you tried the relaxation and the emissivity approach, would you
get large variations in your solution?

Gille: I think the variations would be rather small. I think one
of the major differences would be computer time, which might be
rather different for different kinds of approaches. We don't have
that kind of comparison. That's one of the things I was alluding
to when I said in two or three months I think we will have a good
deal more. I think many of these are now getting to the point
where we can try them not only on synthetic data but on some of the
real data and see how well they do.

Chahine: The second question is on the emissivity coefficients you
have described. And you have said they are fairly independent of
temperature. I am surprised because in the stratosphere you can
have large variations in temperature, from day to day or season to
season. Were you able to determine that the emissivity coefficient
really was a weak function of temperature even for variations of

20 degrees?
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Gille: The flrst order effect is that if you are looking at a geo-
metric altltude, the atmospheric pressure or density varies as the
temperature changes, through hydrostatic adjustment. That is the
thing you take out by plotting versus pressure. Then it is things
like the variation of line intensities over the band, and changes
in the intensities of overtone bands that matter. While these
effects make a difference, they don't add a lot of spread to the
emissivities.

Susskind: Is it broad banded?
Gille: Yes, the channels are quite broad, of the order 100-200 cm—l.

Mateer: I was a little disappointed that you didn't show any
results of ozone profiles, John.

Gille: The focus of this meeting has been on methods and I felt I
should talk about methods rather than results, Carl. Also, I was
involved in a NASA meeting at NCAR until just before I left, and
some slides I meant to bring were inadvertantly left behind. Our
ozone profiles, although I can't show you one, look quite reason-
able. We have results from about 20 km up to 55 km, with a maximum
in mixing ratio between 30-35 km in mid-latitudes. We have a few
cases of simultaneous rocket data for comparison, but have only
looked hard at a comparison from Wallops Island where there was a
simultaneous flight by two rocket ozone sensors. The satellite

and rocket retrievals had an rms percentage difference between

20 and 50 km of 14%. That is about what is claimed for the accuracy
of the rocket measurements.

Kaplan: I am surprised, Carl, that you haven't asked him about the
variation from day and night and at twilight and dawn! Do you have
any results on ozone changes?

Gille: The ozone top at the moment is at about 55 kilometers and
we don't see any extremely large effects there. There could be
effects of perhaps 20 percent. We're still checking it out.

Kaplan: Do you see, or don't you want to say yet, dawn and twi-
light effects at all?

Gille: We appear not to see them. In fact, I can tell you one
problem that does occur. We look at the day side, looking back
not along the orbit plane but 30° off it, north to south at a

i o .
In response to Dr. Mateer's comment, the authors included,

after the Workshop, their ozone retrieval results (Fig. 7).
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given altitude. Going south on the night side, we are looking
south to north. Some differences between day and night are due to
the fact that the viewing geometry is slightly different and one
can see small effects of gradients, but at the altitudes we are
talking about those effects are not there. By and large, up to

55 there does not seem to be any very significant effect. What
we really want to do is push up a little bit higher and I think
the signal to noise ratio will allow us to do it. I think there
we ought to be able to do it,
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INVERSION OF SCATTERED RADIANCE HORIZON
PROFILES FOR GASEOUS CONCENTRATIONS

AND AEROSOL PARAMETERS

Harvey L. Malchow and Cynthia K. Whitney
Charles Stark Draper Laboratory, Inc.

This paper presents techniques that have been developed
and used to invert limb scan measurements for vertical pro-
files of atmospheric state parameters. The parameters which
can be found are concentrations of Rayleigh scatterers, ozone,
No,, and aerosols, and aerosol physical properties including
a Junge-size distribution parameter and real and imaginary
parts of the index of refraction. The novel techniques developed
for this problem should be of interest for nonlinear numerical
search problems in general.

I. INTRODUCTION

There is growing scientific opinion that physical processes
in the earth's stratosphere are of vital importance to man and the
biosphere, and that far too little is understood about these proc-
esses. Examples include the interactions and the resulting
balance between stratospheric ozone, NO, and aerosols, which
affect the ultraviolet radiation and the temperature environment
at the Earth's surface. It is widely appreciated that a proper
understanding of these phenomena and their consequences will
require a significant body of new experimental data, and that the
scope of the requirement is such that remote sensing by satellite

offers the most practical approach.
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A variety of remote sensing techniques based on radiometric
data is available for stratospheric monitoring. It is possible to
consider any combination of extinction, emission,and scattering as
potential signal generating phenomena. Furthermore, in the cases
of emission and scattering, it is possible to consider any com-
bination of vertical, horizontal, or inclined scan directions for

obtaining the information.

This paper reports on new data processing techniques that
were developed for one of the many possible stratospheric monitoring
techniques. It is anticipated, however, that some of the tech-
niques presented here will be useful for the other types of experi-
ments as well.

In the problem addressed here, the measurements consist of
multispectral limb scans of visible scattered sunlight. Figure 1
illustrates the experiment geometry, and Fig. 2 illustrates a
typical simulated "measurement data" set. These measurements are
inverted for the atmospheric state, which is comprised of vertical

profiles of atmospheric parameters, within the altitude regime of

Incidence Solar
Irradiance

Detector

Line of

Scéi//,,//””,"’
Scattering SCgFtered
Atmosphere Radiance

Earth

Fig. 1. Scattered radiance limb scan geometry.
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Radiance

Scan Angle

Fig. 2. Multispectral Limb Scan Measurements.

observations. The parameters are the concentrations of Rayleigh
scatterers, ozone, NO2 and aerosols, and the aerosol physical pro-
perties, such as Junge size distribution parameter (within the
optically active size range) and the real and imaginary parts of index

of refraction.

Inclusion of so many state parameters may seem ambitious, but
this is necessary because they are all optically active over the
same band of visible wavelengths. Therefore, it is not possible
to invert for a subset of these parameters except by assuming
values for the remaining ones. The ability to treat them all is,
in fact, a significant advantage of the limb scan experiment.
Examples of the inversion results for simulated experiments are
presented here to demonstrate the viability of the inversion tech-

nique.
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II. GENERAL FRAMEWORK

The limb scan inversion problem has some features which are
similar to, and some which are different from, other inversion
problems in atmospheric sciences. The purpose of this section is
to set a framework for discussing the limb scan problem by focus-—
sing on those features which are shared with other inversion prob-
lems, and to note the standard techniques which are applicable to

them.

A major similarity between the limb scan and other inversion
problems is the inevitable presence of noise in the measurements.
Let xa represent the actual atmospheric state, and z(xa) represent
the measurement as predicted from the state. The actual measure-

ment observed is

z=2(x) + n
a

where n represents noise. The above is called the measurement

equation. If linearized about some X. by Taylor expansion with the

0
partial derivative H, it takes the same form as that which occurs
in many other inversion problems where a Fredholm integral is

replaced by a quadrature:

z - z(xo) = Qg) [xa ~ xo] +n

The problem of extracting the state X from this equation has been
approached in various ways by Deutsch (Ref. 1, Twomey (Ref. 2),
Mateer (Ref. 3), Westwater and Strand (Ref. 4), Rodgers (Ref. 5)

and others.

The presence of noise suggests that a stechastic approach to
the problem is appropriate. In fact, one can argue that not only
are the measurements random variables due to the noise, but also
that the state is a random variable drawn from an ensemble 6f
possible states. The well-known theory of optimal "estimation
offers a general framework for addressing most such inversion prob-

lems, and it is, in fact, the approach adapted here to the limb
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scan inversion problem. This common point of departure is reviewed

and related to other work in the remainder of this section.

A way of defining an optical state estimate is suggested by
the Gauss-Markov theorem, which states that a minimum variance,
unbiased estimate of xa can be obtained as a linear function of
measurements by minimizing a Euclidian distance. Various authors
use various names for the construct playing this role. One common
name is "cost function," expressing the desirability of minimizing
it. Defining a Euclidian distance generally requires two basic
choices: the quantities to measure the distance between, and the
positive definite metric to use. This means choosing the terms to
put in the cost function, and the weights to give them. These
choices are resolved by considering what is done with the cost

function.

A typical way to minimize the cost function is to differentiate
with respect to the state estimate, set the derivative to zero,
and solve for the estimate. To provide an estimate that can actu-
ally be evaluated, it is necessary that the cost function involve
only known variables (and not, for instance, the unknown actual
state). A well-defined estimate is guaranteed by requiring that
each term in the cost function involve the deviation between a
known value of a quantity and the known value that quantity would
be expected to have if the state were known to be equal to the
estimate. Typically, each such term is multiplied by the inverse
of the variance of that quantity. That is, distance is measured
between known values and expected values that depend on the state

estimate and variances define the metric coefficients.

In the l1imb scan problem, there are many atmospheric param-
eters in the state and many wavelength channels and altitudes for
measurement. It is appropriate to use vectors for state and
measurement, and covariance matrices for expressing uncertainties

of each. With
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qQ, = actual vector quantity

<g> = vector quantity expected if state = estimate

Cq = guantity covariance
the typical cost function term is
T -1
- <g> - <>
(a, q)cq (a, q>)

where T indicates transpose.

Generally, the measurement vector contributes the leading
term in the cost function. Some authors include various additional
terms as well. Often there is a term representing a prior esti-
mate of the state vector. It should be noted that exclusion of
such a term is only a special case: zero prior estimate and infi-
nite prior covariance. The fact that the prior estimate is always
implicitly present makes the optimal estimation procedure poten-
tially recursive. The optimal state estimate and its covariance
obtained after one batch of data could be used as the prior esti-

mate and covariance before another batch of data.

This idea of recursion leads naturally to consideration of
cases where the state is evolving with some running variable v.
(Examples of such a variable include scattering particle radius,
scattering angle, altitude, longitude, latitude, and time.) When
there is evolution, it may be appropriate that the prior estimate
at v be determined or at least modified by the posterior estimate
at v - Av. This is accomplished by some authors by including terms
in the cost function representing one or more derivatives of the
state with respect to the running variable. These terms have the
same effect as modifying the prior estimate at v to align better
with the posterior estimate at v - Av; thus, the posterior esti-
mate at v is also closer to that at v - Av, and the whole function
is more smoothly behaved. In the case of the limb scan inversion,

the point of the experiment is to find excursions from rather than
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parameters of a smooth model, so no smoothing is involved, and no

derivative terms appear in the cost function.

The following notation will be a convenient basis for subse-

quent discussion. Let the vector x be the state estimate and the

0
Because of noise, the measurement vector z has a

matrix E be its covariance. The prior state estimate is x_ with a

covariance EO'
covariance matrix 5. If the state were, indeed, known to be equal
to x, then the expected values of x0 and z would be x and z(x).

The cost function is thus

Cost function = (z - z(x))~ 5'1(7. - 2(x))
T -1
+ (xO - X) 50 (x0 - x)

With z(x) linearized about X, and with partial derivative

0
matrix H, the optimal state estimate is found to be

x = x, + K(z - z(x))

where

T T -1
E@EE + R

K=Pp
N N "

0

Intuitively reasonable behavior forr§ is demonstrated by noting
that for large noise covariance 5, 5 is small and x is largely

determined by x The measurement has influence only in proportion

to its trustworghiness.

The gain matrix 5 is sometimes called the Kalman gain because
the procedure being discussed here is a special case of the well-
known Kalman filter (Ref.6). In the typical Kalman filter problem,
the state evolves with a running variable v, and the prior estimate
xo(v) is obtained from the posterior estimate x(v - Av) by using a
dynamic model for the evolution over Av. Use of such a dynamic
model can have the effect of smoothing, so that aspect of the
Kalman filter formalism has not been applied to the limb scan prob-

lem.
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Once the optimal state estimate x is determined, its covariance
E follows by simply substituting the expression for x into the defi-
nition

2
= < - >
? (x xa)

and evaluating the expectations. The result is

R=G-kRBR

The covariance update provides small R whenever 5 is small. For

B - o,
KH=PH@EPH) !
n v [AVERAV) LAVIRRAVERRA V)

Premultiplying by

-EmTw

and rearranging parentheses establishes 5 % = % and E = 0 in the
limit. That is, there is no uncertainty at all concerning the

state after a noiseless measurement. The R, in general, represents
residual state uncertainty which remains because the measurement was

not noise free.

In the case of highly nonlinear problems, the Taylor series

expansion z(x) = z(xo) + (R) (x - xo) is not very accurate and

as a result, the posterior state estimate may not even approximately
reproduce the observed measurement. The staqgard technique for
overcoming such a difficulty is to make many iterations on the same
data, with the partial derivatives and the state estimate (but not
the covariance) updated at each iteration. The process is commonly
called multiple local iteration. Iteration ig*to be distinguished
from recursion, iteration being applied to overcome nonlinearity and

recursion being applied to smooth over noise.

The above remarks review the standard aspects of nonlinear
optimal estimation that are applicable to the limb scan inversion

problem. There are, however, a number of features of the limb scan
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inversion problem which tend to distinguish it from other inversion

problems and require special techniques. These are the subjects of

the following sections.

IITI. OVERCOMING COMPUTATIONAL PROBLEMS ASSOCIATED WITH LIMB SCANS
IN PARTICULAR

Computational problems arise in the limb scan inversion prob-
lem because of requirements to (1) perform matrix inversions in
computing the optimal state estimate, and (2) perform radiative
transfer simulations to compute expected measurements and partial

derivatives.

The required matrix inversions are difficult first because of
the inherent large dimensionality of the problem. Typically there
may be from ten to one hundred scan positions, with several state
variables and several measurements per scan position. Rigorously,
each measurement depends on every one of the state variables. This
is because at each scan position, all the lower atmosphere pro-
vides a source for multiply-scattered photons, whereas all the
upper atmosphere contributes to and damps the received signal.
Thus, in a completely rigorous inversion, the dimensionality of
covariance and partial derivative matrices can be of the order of

hundreds by hundreds.

The solution to the problem of large dimensionality lies in
approximations that replace the one large inversion, with its many
measurements and many state variables, by many small inversions,
each involving just a few measurements and a few state variables.
The convenient partitioning is by scan position; the state variables
at the tangent altitude of a given scan are found from the multi-
spectral radiance measurements at that scan. The effect of the
upper atmosphere can be fully accounted for by making the state a
function of a running variable v = altitude, starting the inversion
at the top of the atmosphere, and working downward from there, so

that accurate estimates of the atmospheric parameters above each
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position are available. The lower atmosphere can be accounted for
at least approximately by using the prior estimate for it. The

overall approach is colloquially called "onion peeling."

The onion peeling technique described above is remarkably
efficient because most of the sighal received at each scan position
comes from near the tangent altitude. This is the case because
the atmosphere is maximally dense near the tangent altitude, aﬁd
because the geometric length of the line of sight through altitudes
near tangent is large. Figure 3 plots density of signal contri-
bution against slant range along the scan. For a nearly exponen-
tially decaying atmosphere, the curve is nearly Gaussian, and the
width of that Gaussian corresponds to a small altitude increment

because of the limb scan geometry.

Even with the dimensionality of the problem reduced by the
onion peeling described above, there is still a potential diffi-
culty due to the dynamic range of the variables. It is possible,
in particular, for the diagonal entries of covariance matrices to
be of significantly different magnitudes, the result being that

the required matrix inversions are numerically difficult. This

t

Density of
Signal Contribution

Slant Range Detector

Fig. 3. Scan through Earth's Atmosphere
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difficulty is, however, easily circumvented by redefining the
variables. We let the measurement be log (radiance) instead of
radiance, and correspondingly we let the state elements be log
(constituent density) or log (aerosol physical property), as the

case may be.

Radiative transfer simulations are required in the limb scan
inversion problem to produce the predicted measurement z(x) and the
partial derivative matrix H. A first problem to be faced in per-
forming a simulation is that the aerosol physical properties (Junge
size parameter and complex refractive index) enter the radiative
transfer problem only indirectly, through the resulting optical
properties (phase functions and cross sections). In an inversion
procedure, it is not practical to take a conventional approach,
calculating the aerosol optical properties from the physical pro-
perties with a Mie code. Instead, a precalculated aerosol model
can be used. The model used here consists of polynomial coeffi-
cients obtained from multivariate regression of a large data base
of aerosol optical properties calculated from physical properties
by a Mie code. 1In milliseconds of computation, the resultant model
yields values of phase function, scattering cross section and
absorption cross section, given Junge-size parameter and complex

index of refraction.

For the limb scan situation, the calculation of measurement
given optical state is still a nontrivial problem. The process is
governed by a complicated integro-differential equation of radia-
tive transfer requiring elaborate computer simulation. The curved
geometry inherent in the problem restricts the number of applicable
computer models, and at present only two accurate techniques are
available: Monte Carlo simulation as described by Collins and Wells
(Ref. 7) and DART simulation as described by Whitney (Ref. 8).
Other than these, there is only a simple but unrealistic single

scattering approximation.
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The choice of which of the available radiative transfer models
to use is dictated by speed requirements. In the course of a limb
scan inversion, the radiative transfer model is called many thou-
sands of times. Thé number of calls grows multiplicatively with
the number of wavelengths, number of state variables, number of
iterations, and number of scan positions, and typically approaches
105. Therefore, only the single scattering and DART models are

really practical to use.

Although the computational difficulties associated with limb
scan inversion are largely circumvented by the steps described
above, there remain difficulties associated with nonlinearity.
These are of a fundamental nature not particularly limited to the

limb scan problem. Their solution is described in the next section.

IV. ESTIMATING PARTIAL DERIVATIVES FOR NONLINEAR INVERSIONS IN
GENERAL

It was found that even the combined application of all the
techniques described in the last section was insufficient to pro-
duce a scattered limb scan inversion. The reason is the extreme
nonlinearity of the radiative transfer over the dynamic range of
the state variables normally encountered. Because nonlinearity is
a characteristic of many inversion problems, and not just the limb
scan, the technique for overcoming it presented here may be fruit-

fully applied to other nonlinear problems as well.

The heart of the problem is in the calculation of the partial
derivative matrix E. The radiative transfer is sufficiently non-
linear over the state variable excursions required that the usual
idea of partial derivative is not suitable. The local slope of a
curve of radiance against state variable simply does not follow
the curve far enough to be used as an accurate basis for updating

the state.

Given the nonlinearities of the problem, we are likely to
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encounter the situations illustrated in Figs. 4a and 4b. The
radiance as a function of number density of aerosols is plotted

as a sigmoid curve. The left asymptote is found at aerosol densi-
ties so low that the radiance is entirely determined by the other
atmospheric constituents. The right asymptote is found at aerosol
densities so high that the atmosphere is essentially opaque. A
measured value of radiance is indicated by the dashed lines in the
figures. 1In Fig. 4a, the prior estimate of the state is in a
region where the local slope is so small that the updated state
estimate resulting from that slope is vastly larger than the actual

state. In Fig. 4b, the prior estimate is in a region where the

4

Log Radiance

measurement [ [z_

Local Slope

e
Log
Density
State
Prior Actual Estimated
Estimate State State
(a) . Overshoot due to partial derivative,
Log Radiance Local Slope
measurement 4(/ r__,___._--————--
—_—
State Log
Prior Density
Estimate Actual
Estimated State
State

(b) . Undershoot due to partial derivative.

Fig. 4. Radiance as a function of numper density of aerosols.
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local slope is so large that the updated state estimate resulting
from that slope is much too close to the prior estimate. It is
possible for the overshoot, in the case of Fig. 4a, to throw the
problem outside the numerical operating range of the computer, and
it is possible for the undershoot, in the case of Fig. 4b to inter-
minably delay converdence, in either case making the problem

unsolvable in a practical sense.

The remedy for the problems described is to use a derivative-
like construct that is more global in its meaning than the local
partial derivative. Such a construct is determined by first formu-
lating a mathematical model for the curves of radiance as a function
of the state parameter. To acknowledge the changing slope, the
radiance is modeled as a quadratic function of the state parameter.
Figure 5 illustrates how such a model can be fairly accurate over a
region substantial enough to include the required state excursions.

The quadratic model is actually constructed by the following steps:

1. Establish the prior estimate of radiance, based on the

state prior estimate.

2. Perturb the state +* one standard derivation, and calculate

/

/ Quadratic Fit

Log
Radiance /

Actual Curve

_—
Log
Density
State Actual
Prior State
Estimate

Fig. 5. Quadratic fit.
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the perturbed radiances.

3. Fit a quadratic curve through the three points.

Thus, the model is:

2
z, =a + b(xi - x2) + c(xi - xz)
where i = 1, 2, 3, and the coefficients are found as:
a =z,
2 2
1 [ (x - %) (x3 = %5)
b=p | (23 7 2) 2 * 2, m o2 2
T o T S
©CTp | Y%7 %) X T E 2 T & 3~ %2
1 [ 2 2
D = > (x3 - x2) (x2 - xl) + (x2 - xl) (x3 - xz) }

The guadratic model is the basis for evaluating a derivative
like construct that is more global in its meaning then the local
partial derivative is. The construct is evaluated by the following

algorithm.

1. If the measurement line intersects the quadratic model
curve, replace the partial derivative by the slope of the line
from prior estimate point to the nearest intersection.

2. If the measurement line does not intersect the quadratic
model curve, replace the partial derivative by the slope of the

line from prior estimate point to the extremum of the quadratic.

V. SIMULATION RESULTS

This section presents inversion results for a simulated limb
scan experiment. In the simulation, a set of limb radiances is
calculated from a known atmospheric state. These radiances are

treated as "measurements" and inverted to retrieve the known state.

Seven state parameters are inverted, namely: (1) concentration

of Rayleigh scatterers; (2) concentration of ozone; (3) concentration
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of nitrogen dioxide; (4) aerosol extinction; (5) aerosol Junge--
size parameter; (6) aerosol refractive index, real part; and

(7) aerosol refractive index, imaginary part. Eight wavelengths
are used in the inversion: 0.3500, 0.4000, 0.4500, 0.5000, 0.5500,
0.6750, 0.7770, and 0.8630 um. These were chosen to fall within
the sensitive spectral range of a silicon diode detector, and at
the same time to involve only the chosen parameteré as optically
active constituents. The specific problem geometry has the scan
direction, Earth centroid, and satellite lying in the same plane
with the Sun nearly behind the detector so that the scattering
angle is approximately 164°. For aerosol inversion, this is a
moderately good geometry, in that the aerosol angular scattering

function is roughly midway between its highest and lowest values.

For each state parameter, three graphs have been constructed.
The first displays the state parameter as a function of altitude,
the second shows the evolution of the inverted state parameter as
the inversion process is recycled at a particular scan altitude,

and the third displays error bars for the completed inversion.

The particular graphs presented were constructed with input
noise statistics, but without actual noise values. Ideally, they
should be representative of mean performance with zero mean noise,
and the error bars should describe the spread to be expected.

Later runs with actual random noise included required an artificial
scaling down of the gain by a factor of 5 to produce the anticipated

behavior.

The atmospheric state is defined at altitude intervals of 1
kilometer, and three varieties of state are represented in the

first graph. These are:

1. Prior Estimate State--The first guess, constructed from
various standard sources which are compiled in Malchow (Ref. 9).
This state is represented by relatively smooth functions of alti-

tude.

232



2. True State—--This is the state that is used to produce the
simulated measurements. It is constructed from various sources of
real data, except for the aerosol parameters, which are chosen by
random selection from what is considered a likely range of varia-
tion.

3. Inverted State--This is the state found by the inversion
process. Since no noise has been added to the simulated measure-
ments, this state is identical to the true state when the inversion

is perfect.

The scan range extends from 22 to 13 kilometers. For 22 kilometers
and above, the true state and prior estimate state are set equal
in order to focus attention on the inversion process itself and not
the consequences of initial errors. It has been found in other
simulations that such initial errors can be overcome in approxi-

mately three scans.

The second graph of each set shows the path followed by each
parameter through state spaceen route to convergence. Since the
limb problem is highly nonlinear, many iterations of the inversion
procedure are carried out at each scan position. The convergence
curve represents only the 20 kilometer scan altitude. For this
particular altitude it can be seen from the curves that a stable
solution is achieved in 10 iterations. However, more iterations

are needed at the higher altitudes.

The third graph of each set shows the 1o error bars. The
error bar plotted at 23 kilometers represents the covariance input
to the problem. The error bars at lower altitudes are generally
smaller, having been reduced by the information gained in the
inversion process. In cases where even further reduction is

desired, avaraging over data sets can be employed.

The first set of data (Figs. 6, 7, and 8) is for Rayleigh scat-
terers (also called neutral density). Since this constituent has

little variability relative to its range with altitude, the prior
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estimate is plotted separately from the inverted and true states.
The first graph (Fig. 6) shows a good tracking of the true state
by the estimated state. At 20 kilometers the true and Prior esti-
mate states differ by 3% initially. This is representative of a
lo excursion. After 8 iterations, the second graph (Fig. 7) shows
close convergence to the true state. Error bar results for this
constituent (Fig. 8) show a small reduction of initial input

uncertainty.

The second set of data (Figs. 9, 10, and 11) is concerned with
ozone concentrations. The true ozone state (based on data from
Ref. 10), is marked by strong perturbations both up and down from
the prior estimate. However, ozone is strongly represented in the
simulated measurements at the chosen scan altitudes, with the
result that this constituent can be inverted quite accurately as
the inverted and true states show. At 20 kilometers, the initial
perturbation was about -50%. The initial uncertainty assumed for
ozone is 1lo = 60%, and the inversion reduces this by a factor of

3 or 4.

The next set of graphs (Figs. 12, 13, and 14) is concerned with
N02. This constituent has relatively small prior estimate (Ref.
11) optical depths for the chosen scan altitude regime and the
true state (based on our SKYLAB measurements) is even smaller.
Therefore, one expects and gets less accuracy for NO2 in the
inversion than for ozone. The error bars show a modest reduction

from the assumed initial uncertainty of 1o = 300%.

Aerosol extinction is the subject of the next set of graphs
(Figs. 15, 16, and 17), 1In this case, the prior estimate curve is
based on Elterman's data (Ref. 12). The true state is constructed
from lidar data (Ref. 13), and shows layered structure. Since
Since aerosol extinction exhibits a great deal of spatiai dynamics,
it is important that the inversion process can deal with a large
range of extinction values. This particular inversion problem shows

that order of magnitude changes in aerosol extinction over a 1
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kilometer interval can be dealt with by the nonlinear algorithm.
The error bars for aerosol extinction show a reduction of the
initial order of magnitude uncertainty by as much as a factor of

50.

The final three sets of graphs (Figs. 18 to 26) are con-
cerned with inversion of aerosol physical parameters. A note-
worthy feature of these graphs is that the inversion accuracy for
these parameters is proportional to the aerosol extinction. In
each case, the closest agreement between the true and inverted
states occurs at the peaks in aerosol extinction. Graphs of
aerosol extinction have been superposed on the error bar graphs to
illustrate this point. The results show thest when moderate aerosol
concentrations are present, useful information about the aerosol

physical characteristics can be obtained from limb scans.

In general, the simulated measurement calculations displayed
here demonstrate that sufficient information is present in the con-
sidered wavelength set to separate and invert the studied
constituents. An important next step in the simulation studies
will be to relate the expected inversion accuracy to the quality
of the measurements. Other potential error sources that will
require analysis include albedo uncertainties, modeling errors,
such as those from guadrature in the radiative transfer calcu-
lations, and errors in the constituent cross-section averages

over finite wavelength intervals.
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VI. CONCLUDING REMARKS

This paper has demonstrated the feasibility of inverting
mul tispectral horizon profile radiance data at altitude inter-
vals of 1 kilometer for number densities of Rayleigh scatterers,
ozone, N02, and aerosols, and for aerosol physical properties
including a size distribution parameter and the complex index of
refraction. This is the first demonstration of a remote sensing
technique that would provide all this information simultaneously

on a global basis and with all the correlations.

The inversion technique itself extends standard nonlinear
estimation theory in order to accommodate the limb scan problem.
A crucial aspect of the extension is the use of a derivative-like
construct which is more global in its meaning than the local
partial derivative. Nonlinear estimation theory extended in this
way apparently constitutes the first numerical search technique

based on a construct other than the local partial derivative.

The multi-spectral horizon profile remote sensing techmique
and the extended nonlinear inversion technique together imply data
requirements and, hence, specifications for a high quality radio-
meter. TIn conjunction with the analysis and simulation effort
reported here, Charles Stark Draper Laboratory has designed an
instrument specifically to meet the implied requirements.

SYMBOLS

scalar coefficient
scalar coefficient
scalar coefficient
covariance of g
determinant

partial derivative matrix

] n oo
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identity matrix
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§ gain matrix

n noise

P state covariance

;O prior estimate of state covariance
; quantity

a, actual value of quantity

<g> expected value of quantity

R noise covariance

; transpose

v running variable

Av increment of running variable
X atmospheric state estimate

xa actual state

X prior estimate of state

z radiance measurement

Al' KZ’ An wavelength

o] standard deviation
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DISCUSSION

Twitty: First, your results are really incredible. I missed some-
where just what went into this. What is your input from which you
are extracting all of these parameters? What spectral inputs and
what scattering information?

Malchow: We are assuming that there is a multi-channel photometer
that has eight wavelength channels of information ranging from
4000 to 7000 X. The band width of each channel is rather narrow,
something like 20 or 50 2. It depends somewhat on the instrument

design.

Chahine: What are you measuring?
Malchow: We are doing scans of the sunlit limb.

Twitty: So this is through the limb with the Sun in one specific
place?

Whitney: It doesn't matter where the Sun is. Sun can be anywhere.
Twitty: For the results you show here, the Sun was way overhead?
Malchow: It was somewhat behind and off to the side.

Whitney: It happened to be what was in that Skylab experiment.
We constructed the geometry accordingly.

Gille: Do you have any data from Skylab or other similar kind of
experiments that you can test this on?

Malchow: We have Skylab data but it is really bad. First of alil,
the channels are not calibrated relative to one another because
there was a rush to get the instrument onto the, spacecraft. They
were calibrating it at Woods Hole or somewhere when the calibration
light bulb burned out. They could not get another one before the
instrument had to go on the spacecraft. So they did try to cali-
brate it but with about 10% uncertainty in one channel or another.
We cannot really work with that much noise. If the noise levels
were lower, we could probably fit it to a clean atmosphere at
higher altitudes, but the present noise levels are just too large.

Herman: I think what is puzzling some people here is the question
of whether these were simulated measurements or not. They were
simulated, am I correct?

Malchow: Yes.
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Herman: Now to do this, apparently you must have performed cal-
culations using, let's say, a Junge size distribution?

Malchow: Yes.

Herman: Now suppose the actual size distribution is non-Junge.
That would throw everything off, am I correct?

Malchow: Yes, indeed.

Herman: Now the other thing is you were able to extract more this
way than we can from ground-based measurements and I am trying to
figure out why. There must be something in your computer simu-
lation that is enabling you to reproduce all these various variables
more accurately than can be achieved in practice.

Malchow: I think one of the advantages over the ground-based data
problem is that in the stratosphere we are not looking through as
much atmosphere as on the way in or out. So we're getting more
signal from the particular layer that we are looking at relative
to the total signal that we are getting. As to the question of
whether the Junge-size parameter is relevant or not, in any of
these inversion processes you find what you are looking for. If
you put in six parameters to describe the state, you find six
parameters. All we have done is an exercise with the simplest
analytic model that gave us some kind of information about the
aerosol size distribution.

Unidentified Speaker: Where are the errors involved?

Whitney: There were error statistics in the measurement, which
did not actually perturb the measurements. That would be the

desirable thing to do, namely, to run through that exercise.l

Malchow: Yes, all we have shown is a closed problem in effect.

Reagan: To amplify a little bit on what Dr. Herman was talking
about, I am curious about the globality or the global ability for
the optimization to home in and along with that I would like to
ask a question about the sequence that you went about for say
determining refractive index and size. Was it sequential? Was
it simultaneous?

Whitney: Yes, simultaneous.

1 '

Post-Workshop cormments added by the authors--"We were able
to do that soon after the Workshop. We found that preserving the
stability required cutting the gain by a factor of five."
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Reagan: Also, if you changed things a bit and you still came up
with the same results, that would, it seems, say something about
the globality of it.

Irvine: You have assumed that you have values of the intensity
measured in a two-dimensional altitude and frequency plane. How
much do the parameters that you are looking for influence the
intensity in different portions of that plane so that you get
some separation there?

Whitney: Well, for instance, the NO, tends to be in a layer that
is at a different altitude than the ozone, and aerosols have their
own characteristics with altitudes.

Irvine: And there is different wavelength dependence too?

Whitney: Correct. The various constituents are active at dif-
ferent wavelengths. We have not yet conducted a channel optimiza-
tion and that is an exercise that must be done. I believe that
the only basis for working with those particular wavelengths shown
here is that they correspond to what was in the Skylab data.

Irvine: Can I ask you something else? What percentage abundance
of NO2 can you hopefully detect? What mixing ratio?

Malchow: As you saw in our results, we are getting into diffi-
culties with the levels that we used in this experiment. The
numbers that appear on those graphs are getting down to about the
lower limit of what you can deal with.

Irvine: And was that something like one part in lOlO?

Malchow: I don't remember what the mixing ratio was. I can show
you what the actual density wvalues were. But I would say that for
nominal NO, it is probably shaky in the altitude region where we
did the inversion.

Whitney: That's pretty far away from where it is peaked.

Irvine: Does one have any hope of detecting some of the compounds
that are related to the ozone abundance--the fluorocarbons and the
ClO0 and things like that?

Whitney: I tend to be doubtful with the wavelengths we used
because there is a limit to how many independent wavelengths there
really are. And you cannot look for more bits of information than
are really there.

Shettle: I have a question regarding the relation of your error
bars to the accuracy of your convergence. Your fitted values seem
to converge within a small fraction of the error bars you show.
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Whitney: That is because we did not actually perturb the measure-
ment values. We simply processed the statistics. We did not do

a Monte Carlo type of problem where you would actually put the
perturbations on in accordance with those statistics.

Thomas: I feel that the quality of your results in regard to the
aerosols might arise from the fact that you only had one parameter
in the size distribution. We have taken a look at the possible
inversion of all of the matrix elements, using a three-parameter
model, and we found three orders of magnitude separation between
the first and second eigenvalues. So limiting the model to one
parameter might be of great value to you.

Malchow: Yes, I think it was. Two parameters would be really
tough, and more parameters than that I cannot really see being
handled easily.

Editorial Footnote: The following statement was submitted by the
authors soon after the Workshop--"Some of the questioners of our
results expressed concern that we had not produced simulations
that included random noise inputs. Within the week following the
meeting, we did successfully run simulations with additive random
noise, and we obtained results that were guite satisfactory. To
produce these results, we found it necessary to introduce a small
amount of gain damping."
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INVERSION OF SOLAR AUREOLE MEASUREMENTS
FOR DETERMINING AEROSOL

CHARACTERISTICS

Adarsh Deepak
0ld Dominion University
and
Institute for Atmospheric Optics and
Remote Sensing (IFAORS)

Solar aureole is the region of enhanced sky brightness
within about 20° around the Sun's disk, mainly because of the
predominantly forward scattering of aerosol particles. It is
shown that the solar aureole radiance is very sensitively
dependent on the aerosol size distributions. The photographic
solar aureole isophote (PSAI) measurement technique for deter-
mining the aerosol size distribution n(r) and other charac-
teristics takes advantage of this sensitivity. Single scat-
tering theory of the sclar aureole is given. The assumptions
and conditions imposed on the single scattering theory to
make it tractable to inversion are discussed. The important
role of the almucantar measurements is also discussed. Efforts
that need to be performed in the near future are also stated.

I. INTRODUCTION

As man makes more and more of an impact on his environment
because of the rapidly expanding technology, it becomes increasingly
imperative to study the background level of these aerosols in
order to monitor how man is affecting the balance in the atmosphere
and what effects these aerosols will have on such things as cli-
mate, air quality, solar radiation dosage, man's health, food pro-

duction, etc.
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Remote sensing techniques based on extinction and scattering
of electromagnetic radiation by aerosols are perhaps the most prac-
tical and economical way of diagnosing and monitoring the atmo-
spheric aerosols on a long—-term basis. The aerosol characteristics
of special interest are: the size distribution n(r), the complex
refractive index @ = m' - im", and the altitude distribution of
these quantities. Of these, the size distribution perhaps plays
the most important role in electromagnetic scattering phenomena
and atmospheric processes. It is assumed for the sake of sim-

plicity that the aerosols are spherical, r being the radius.

Nearly all the aerosol remote sensing methods, active and

passive, are based on the measurement of extinction, scattered

intensity, or polarization of the direct, backscattered, or multi-
angle scattered radiation made multi-spectrally or through narrow
bandpass spectral filters. It is by inverting the measurements
obtained by one or a combination of these methods that the aerosol
characteristics are usually determined. 1In this paper, simple and
practical methods based on the measurement and inversion of the

solar aureole radiance are described.

II. SOLAR AUREOLE MEASUREMENTS

The solar aureole is the area of enhanced brightness closely
surrounding the Sun's disk (within about 200) because of mostly
aerosol scattering of sunlight. Since the aerosols scatter pre-
dominantly in the forward direction, the contribution of atmo-
spheric haze to the sky radiance for angles close to the Sun is
roughly 102 to 103 times the contribution by molecular scattering.
This is illustrated in Fig. 1. It is to take advantage of this .
large signal range that a simple, portable, photographic solar
aureole measurement (PSAM) technique was developed at the

University of Florida in 1970 (Ref. 1) and has since been used to

. diagnose the aerosol size-altitude distributions (Refs. 2 to 5) by

using the aureole radiance measurements along the almucantar.

266



The almucantar is a conical scan of constant solar zenith angle
with the local zenith as the axis. A solar aureole measurement
program was subsequently initiated at the NASA Langley Research Center
Center in 1974 and the photographic solar aureole isophote (PSAI)
method (Refs. 6 and 7) was developed. Isophotes are lines or
curves of equal radiance. The PSAI method is an extension of the
almucantar solar aureole radiance (ASAR) method. In the latter,
the radiance measurements taken along the almucantar are used to
infer the aerosol properties. In the PSAI method, in addition to
making the almucantai measurements, one takes advantage of the
fact, which emerged from our computer studies, that the shape of
the solar aureole isophotes is sensitively dependent on the charac-
teristics of the aerosol size distribution. Suggestions for the
use of solar aureole measurements to determine aerosol properties
had also been made earlier by Deirmendjian (Refs. 8 and 9) and
other researchers (Refs. 10 to 13). Solar aureole measurements,

taken with scanning photometers for determining aerosol properties

Or— DISK

'~<._CLEAR SKY WITH HAZE

_4.. ~—
e ————

PURE BLUE SKY

-6 e e — . —— o ——

! 1 | | |
O I 2 3 4 5 6
rS

Fig. 1. Relative intensities of the sky brightness as com-
pared to that of the Sun's direct light. rs represents the

distance from the Sun in solar radii. (From Ref. 14.)
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have also been made by Shaw (Ref. 15) and Twitty, et al. (Ref. 16).

The following sections briefly describe the theory, photo-
graphic measurements, and results of the PSAI method. For details

of some of the theoretical. aspects discussed here, see Ref. 1.

III. STIMPLIFYING ASSUMPTIONS

The forward scattered radiance, being highly sensitive to
n(r), is relatively insensitive to effects due to aerosol refrac-
tive index, polarization, and multiple scattering (MS), a fact
that helps in simplifying the inversion problem. In this paper,
only the single scattering (SS) theory treatment is considered
which should help in understanding the difficulties involved in
the inversion of aerosol scattering measurements. Therefore, one
makes the following reasonable simplifying assumptions:

(1) Particles are spherical so that results of the Mie
theory can be used in computations.

(2) The atmosphere is horizontally homogeneous and vertically
inhomogeneous.

(3) BAbsorption effects are ignored by selecting to work in
spectral regions for which atmospheric absorption is nil.

(4) The polarization effects are small for forward scattered
light and can be ignored.

(5) For relatively clear days (visibility > 15 km), the MS
effects at the forward scattering angles are ;mall compared with
SS (Ref. 4) and can be ignored.

(6) An average value for the refractive indeéx of all atmo-
spheric aerosols is assumed for forward scattexing.

(7) The atmosphere is treated as plane-parallel; the spher-
ical Earth effects, which become significant for zenith angles
¢ larger than 750, are incorporated into the theory by the use of
the generalized Chapman type functions' S(¢) (Refs. 4 and 17) in

place of the secant functions.
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IV. SINGLE SCATTERING THEORY OF THE SOLAR AUREOLE

Figure 2 illustrates the geometry of the calculation. Shown
is an acceptance cone d originating at the detector and a solid '
angle dQ' centered at the elemental scattering volume dV at alti-
tude y (km) . ¢s and ¢ are the zenith angles of the Sun and
the narrow view cone and w is the dihedral angle between the
normals to the Sun zenith and view cone zenith planes intersecting

at dv. The scattering angle ¥ is then given by the relation

cos Y = cos ¢ cos ¢s - sin ¢ sin ¢s cos W (1)
The element dv is given by

av = R? 40 s(¢) day (2)
where the generalized Chapman type functions (Refs. 4 and 17)
S(¢) = sec ¢ (for ¢ < 75°) (3)

The optical depth defined by

Tj(X, y) = J B:'j(kr y) (3 = M, R) (4)
y
Zenith Sun
/‘"/WV
_F— d

o

An m/
. A
{NORMAL SURFA(%\/\/

Fig. 2. The geometry of the sky single scattering problem.
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for a ray traversing the distance from the Sun to the air mass

element AV is given by

T, = ZjTj(A, y)Sj(¢s) (j = M, B) (5)

and from the air mass to the detector by

= . . ’ - ->\r .
T, zj{rj(x 0) TJ( y)}SJ(¢) (6)_

where M denotes air molecules; A, the aerosol species; A, the

1

wavelength; and B' the volume scattering coefficient (VSC) (km_
at altitude y for the jth constituent. In this paper, all quan-
tities represented by ?A' BA, BA' FA, FA' PA, and PA are functions
of m, even though their M dependence is not indicated in their
representation form. The primes denote the y-dependence of the

quantities. annd.%ﬁ are defined by the following relations:

Y
BA(A, ¥) = J 1 nir, y)mr2Q(x, m)dr (7)

r
2

where Q(x, M) is the efficiency factor (Ref. 18), x = 21r/A is

the particle size parameter, r, and r, are minimum and maximum

values of r and @ = m' -~ im", the complex refractive index of
aerosols.
' =
By ¥) = B, (Mg (¥) (8a)

where the VSC for molecules is

3 2 _ 2
81° (n 1) (4 + 34) (8b)
N oA (4 - 3d)

By(A) =

In Eq. 8(b), N is the number of molecules cm_3; n, the refractive
index of the medium, d = 4A/(1 - A); and A is the depolarization
of scattered light at a scattering angle of 90o for a linearly

polarized incident radiation with its electric vecto¥ perpendicular
to the scattering plane. For unpolarized incident light, A is

replaced by £ = 2A/(1 + A). Then the volume scattering function
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(VSF) for air molecules (j = M) is

' — -1 -l
Fybr 2r y) = 8, (WP, (Wpy(¥), km sr (9)

where the molecular phase function is

= — 2 -1
PM(w) = Jorm (1 + cos<y), sr (10)

where pM(y) is the dimensionless function representing the alti-
tude distribution of molecular density. The VSF for aerosols

(i = 1) is
Fa (b, A, y) = BA(A, Y)PA (¥r Ay y) (11)

where the aerosol volume phase function is

Y

2

PA!(IPI A, ¥) = —'——l—_ J n(r, Y){il(lP: m, x) +
ke

2n v
2k BA(AI y) . (12)
i r i ’ d
12(w fi, x)} dr

and i1 and i2 are the Mie intensity functions and k = 27/A.

The sky radiance due to the molecules and aerosols in the

volume element dV is then given by

= '
dB(¢, ¢S, wr A) Ho(k){SM(¢)FM(¢, A, y) +
(13)
-(Ti + 1)
SA(¢)FA(w, A, vt e dy
Integrating over all such elemental volumes, the total single

scattered sky radiance is
-Z.7.5.(¢) o -%.T.(A, y)D.
B(¢, ¢, w, A) = H (A) e 333 8, () J e I jFﬁ(w, A, y)dy
0

=] —Z.T.(A' Y)D-
+ sA(qnf e 7 FL W, A, v)ay (14)

o
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where

D, = 8, ) - S.(¢) (3 = M, B) (15)
3 J(fbs 3 ¢ J ’
Before discussing the inversion problem, a brief description of
the photographic solar aureole measurement (PSAM) technique will

be in good order.

V. THE PHOTOGRAPHIC SOLAR AUREOLE MEASUREMENT TECHNIQUE

A photographic technique of making measurements of the solar
aureole radiance is briefly described here. Figure 3 schematically
illustrates the equipment. Photographs of the Sun's aureole are
taken with a small format camera (35 mm or 70 mm) through a wave~
length filter with the Sun occulted by a neutral density (ND) disc
(ND = 4) held coaxially on a stem about 0.6 m to 1.3 m (2 to
4 ft.) in front of the lens. The ND filter attenuates the radi-
ance of the direct sunlight by a factor of 104, so that the
optical density of the Sun's image is of the same magniéude as
the optical densities of the surrounding aureole, as shown in a

typical photograph in Fig. 4a. The Sun's image not only enables

ND FILTER

/

A FILTER

/

CAMERA

Fig. 3. Schematic illustration of the arrangement of the

solar occulting disc and the camera for aureole photography.
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Fig. 4(a). A typical solar aureole 35 mm-photograph taken
through a wavelength filter A = 500 nm. (b). An isodensity
tracing of the photograph. (c). The computed solar isophote
mapping of the photograph.
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one to calibrate the entire photograph relative to its radiance,
but also enables accurate measurements to be made of the angular
distances from the Sun. Photographs are taken through different
wavelength filters. In addition, the direct solar irradiance

measurements through the same filters are made with a photometer

to determine tT(A, O).

A. Solar Aureole Isophotes

The optical density of the whole photograph is read with the
help of a Joyce-Loebl Isodensitracer which gives digital data out-
put on a magnetic tape and at the same time provides an isodensity
tracing, such as shown in Fig. 4b. Isodensities are lines or
curves of equal optical density in a photograph. Isophotes are
then generated from the taped data output, as shown in Fig. 4c,
where an economy-wise reduction has been made in the number of

data points.

B. Almucantar Radiance

The photogrammetry of the solar aureole is presented in
another paper submitted for publication, where it is shown that
the almucantar projects on the film as a conic (Fig. 5). The
shapes of the conics for three different values of the solar zenith
angle ¢S are illustrated in Fig. 6. Accordingly, the measured
almucantar radiance as a function of the scattering angle is
shown in Fig. 7. The peak at o° corresponds to Sun's direct

light reduced in intensity by the ND disc.

VI. THE INVERSION OF SOLAR AUREOLE MEASUREMENTS

In order to make Eg. (14) simpler and amenable to inversion,
measurement should be restricted to zenith angles ¢S or ¢ less
¢
than 75°. Then the spherical Earth correction can be neglected

and
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ZENITH

SUN RAYS
/

Fig. 5. Almucantar projection on the film as a conic.

ALMUCANTAR PROJECTION ON FILM

Fig. 6. The shapes of the conics for three solar zenith

angles ¢S = 100, 250, and 450, for a lens of focal length 55 mm.

275



RADIANCE B,

10%

10% L 1 1 I 1 1 1
(o] 3 6 9 2 5 18 2
ANGLE y, Deg -

Fig. 7. Plot of the almucantar radiance as a function of the
scattering angle (solid line). Symbols indicate theoretically

computed radiance for different size distributions.

D, = D =D = sec ¢S - sec ¢ (16)

Equations (14) and (15) reduce to

B(¢, ¢S, w, A) =G f'{Fh(w, Ar )+ FA(w, e vl e
0

where

G = HO(A) sec ¢ e_T(A' O)sec ¢ (18)
With Eq. (17), it is possible to obtain the information about

the size altitude distribution of aerosols from the multispectral

measurements of (a) sky radiance B(A) as a function of ¢S, ¢, and

w and (b) the total optical depth T(A, 0).

The altitude distribution of molecular density pM(y) can be
obtained from tables or from radiosonde data. The functions

FA(w, A, v) and TA(A, y) , both of which depend on the altitude
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size distribution n(r, y), are the unknowns in Eq. (16).
Therefore, in order to make Eq. (16) tractable to inversion, an
assumption has to be invoked about the separability of the

altitude-size distribution function n(r, y) in the form

n(r, y) = n(r)oA(y) (19)

where the dimensionless quantity pA(y) is defined by

o, (¥) = N(0, y)/N(0, 0) (20)

N(O, y) being the number of particles cm_3 at altitude y(km).

This assumption implies that the form of the particle size
distribution n(r) does not itself change with altitude y, but only
the number density or concentration varies. This is a reasonable
agssumption in view of Junge's experimental observations that up to
about 3 km, the aerosol size distribution n(r) remains nearly con-
stant. Since most of the aerosols are concentrated below 3 km,
and according to Elterman's data, the aerosol density falls off
nearly two to three orders of magnitude at an altitude of about
5 km, the error introduced due to extension of the assumption of

constancy of n(r) to regions above 3 km is small. Then, functions

BA, FA, and PA reduce to
BA.(X, y) = BA(A)pA(y) (21)
Fi(wr A, Y)Y = FA(w. X)DA(y) " (22a)
and
PA(UJI >\r Y) = P(‘Pr )\) (22b)
where
r, )
B (A) = J mr2Q(x, ®M)n(r)dr (23a)
r1
and
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X
(0, M) = —J 2.+ i )n(x)dr (23b)

Thus,

Pa(¥, X) = F (¥, A)/B,(R) (23c)

In case two aerosol layers having different size distributions are
present in the atmosphere, it is then convenient to choose a two-

term model for n(r, y), such as

n(r, y) = nl(r)plA(y) + nz(r)DZA(y) (24)

which is separable in r and y in each of its terms. This case is

not discussed here, but will be treated in a subsequent paper.

In Eg. (17), both the molecular and aerosol scattering con-
tributions depend on the unknown quantity TA(Y). Let us define
the "effective transmission" functions for air molecules and

aerosols as

1 @ ‘ZjTj(Al y)D
TM(D) = 700 J dy e, (¥) e (25)
M
0
and
o ~z.T.{(A, ¥)D
" J3J
A 0

where the integrated thickness is given by

wj(y) = J pj(y')dy' (3 = M, A) (27)
0
By using Egs. (25) and (26), Eg. (17) can be written as

B(¢, ¢_r ws A) = G{PM(¢, K)TM(A, O)TM(D) + P (Y, A) T (A O)TA(D)} (28)

The y-dependence on the right-hand side of Eg. (28) is now confined

to the two factors, TM and Ty representing effective transmission
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factors. It can easily be shown that TM is related to TA as fol-

lows:

~t_ (A, ¥)D “TaAe 0Dy, D
T D =—2> e ™ l-e e ® '

M TM(AI 0) D

(29)
-t,, (A, O)D
Lo ™ O 0
- - — (D)
D TM(AI 0) A

Granting we know HO(A), T(A, 0) can be determined by direct radi-

ance Bs of the half-degree Sun cone Qs given by

-1(A, O)sec ¢
B (Me S ~T (A, O)sec ¢

B, = —g— = 1.67 x 10* B (Me ° S (30)
S

TM(A, 0) can be computed from radiosonde data for the observation

site so that

TA(A, 0) = t(A, O) =~ TM(A, 0) (31)

Many techniques for obtaining the aerosol characteristics suggest
themselves in the light of this analysis. One of the simplest and
the most elegant is the method based on the almucantar radiance

measurements, as explained in the following section.

VII. ALMUCANTAR AS AN INDICATOR OF n(r)

The difficulty of obtaining information about aerosol charac-
teristics from Eg. (28) 1ies in that the dependence of B on n(r),
m and TA(y) is not separable. One simple method of handling this

problem is to make radiance measurements in the almucantar

(6 =)
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For ¢ = ¢s' TA = TM =1 so that Egq. (28) reduces to

B(o = ¢, w, N) = GIB, (), N1, (A, 0) + P (¥, N, (A, 0)  (32)

which is independent of y. PA(w, A) can then be obtained from

almucantar radiance measurements by rewriting Eg. (32) as

B(¢ = ¢_, w, A)
_ 1 S
PAN" A) = TA(A, 0) G

- Py M, (A, 0)r (33)

Figure 8 shows a plot of the experimental phase function curve

normalized to unity at 3°.

In the following is described an algorithm for obtaining
n(xr) from PA(w, A). If we assume for f an average value of say
1.55 + i(0.0), it should then be possible to obtain n(r) from
Eg. (33) by either a numerical inversion scheme or a model-fitting
approach. In either case, theoretical values of PA(w, A) obtained

from Eg. (23¢) are compared with experimental values of PA(w, A)

10! F
=
Q
[
©
2
=]
s
B 50 =
10 =
b —
o = —_—
a
w ’
N
=l
<
=
o
(=]
2
lO-' 1 1 1 1 1 ) I |
[o] 3 6 3 12 15 18 2l

SCATTERING ANGLE y , DEGREES

Fig. 8. Experimental phase function curve obtained from
almucantar radiance curve shown in Fig. 7. Dashed curve corre-
sponds to right-hand side of the Sun; solid curve to the left-

hand side.
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obtained from Eg. (33). In the latter approach, a c¢atalog of phase
functions is generated by use of an analytic model for n(r), such
as

\) —
(e, /x)" " °
e

P3
= — 34
n(r) (34)

(p,/m)” 73 i

p, (e - 1) +1

2

where Pyr Py Py and v are adjustable constants and the efficiency
factor, Q = 2, for large r. Typical size distribution curves for
different values of the parameter v are shown in Fig. 9. Any

other realistic analytic model of n(r) will do just as well.

A set of phase function curves corresponding to values of v
that range from 4.0 to 5.2 are shown in Fig. 10. By comparing
the experimental phase function curve in Fig. 8 with one of the
curves in the catalog, one obtains a reasonably good estimate of
the n(r). If, however, one wants to go a step further and obtain
the n(r) that gives the best fit to the experimental phase function
curve, a least squares computer code is used. But the cost of
such a computation is often prohibitive, especially when Mie
theory is used, encouraging one to stop short and settle for the
n(r) obtained with a visual fit to one of the computed curves in

the catalog.

VIII. SOLAR AUREOLE ISOPHOTES AS INDICATORS OF n(r) and pA(y)

An extensive parametric computation of the solar aureole
isophotes as functions of n(r) and pA(y) and to some extent, of
i, has been carried out by using Egs. (28) and (34) and the aerosol
number density profile N(0, y), such as the one obtained from lidar
measurements and shown in Fig. 11l. Everything else being the same,
circumsolar isophotes corresponding to three values of the

parameter v of the gize distribution n(r) (Fig. 9) are shown in
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Fig. 10. A set of phase function curves corrésponding to
the size distribution curves shown in Fig. 9 for v values in the

range 4.0 to 5.2.
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Fig. 11. Altitude distribution of particle number density

(cm-3) obtained from lidar observations.

Figs. 1l2a, 12b, and l2c. It is easy to see from Figs. 9 and 12
that by slightly increasing the number of smaller particles and
decreasing the number of larger particles as v becomes larger,
the shape of the isophotes undergoes a dramatic change. As the
value of v increases upwards from a value of 4.0, the isophote
pattern attains a shape increasingly similar to that of the
experimentally obtained isophotes (Fig. 4c),until for a value of
v = 5.0 the computer generated pattern (Fig. 12c) best resembles
the latter. Thus, Fig. 12 illustrates the fine sensitivity of the
patterns of the circumsolar isophotes to the size distribution
n(r). In contrast, in the case of the lidar backscattering ratio
profile, defined by

FA(N, A ¥)

Ry(me Ar y) =1+ (35)

Fﬁ(ﬂ, Ay Y)

283



20

15
mm

10

a
agqqaagaaq
q4aAqaaA4aTaAag

aqaa aqg
< adq
qaqg < a o aqaq
ad aaaq
ada g o0 do aqaa
ag aqadq
ada o g o qadaa
< aqaa

adaaga aaq

agqQaaqaaqaaa

a4494a4aqaaqQ

a

1 1 L
8 =2 2o
TR Y

(a)

oo

CTOCOVCTSOO OO
COO O SOOI

[eXe]

B-DHHRDHD 1)
0BDOODE
DDDODDDD

DDDDD

DDDDDD o

ODOCLDD k]

0

oo N

SOOI
SOOOG
oo
SOOI
SO0
SO0
coood
SOOSOY

20

ool @

X, mm
(b)

Q

boosobn

Qg Q
=a= s

gl

35

20 25
X, mm

15

10

(c)

Computer generated SS circumsolar isophotes for

Fig. 12.

(a) vV = 4.0,

different values of the size distribution parameter v

(b) v=4.4, and (c) v = 5.0.

284



The changes in RA corresponding to the changes in the value of v
from 4.0 to 5.2 occur in the peak values of RA at 16.5 km and
22.5 km (Fig. 13) which is a feature not too sensitive to n(r)
since these differences can be easily removed by adjusting the

scaling parameter in n(r).

30r

251

20~ o 40

ALTITUDE, km
&
T

BACKSCATTERING RATIO

Fig. 13. Lidar profiles of the backscattering ratio for
vV =4.0, v=4.6, and v = 5.2 showing two layers of volcanic dust
with peak concentrations at altitudes of 16.5 km and 22.5 km over

Hampton, Virginia.

Attempts are underway to optimize computer programs that will
obtain the best fit to the isophote pattern or numerically invert
the isophote data by utilizing, to their advantage, the fact that
radiance along each isophote remains constant. In this regard,
it is important to keep in mind that even though isophotes depend
on both n(r) and pA(y), within the aureole region the isophote
shape is more sensitively dependent on n(r) than on pA(y). The
sensitivity of the isophotes to pA(y) increases for larger angular

distances from the Sun.
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IX. NUMERICAL INVERSION METHODS

Whereas in the modeling approach one starts with a model
judicially guessed at by experience, in the numerical inversion
approach one starts with an initial estimate of parameters. A
typical iterative scheme, such as the one described by Malchow

and Whitney (Ref. 19), is illustrated in Fig. 14.

Radiance or -
Phase Functionu_____,_Compérlson | N
Measurements ———a with 3 P v
Measurements
L. Radiative
Initial Transfer or Parameter
Estimate ™phage Function I UPdc'flte
of Simulation Algorithm
Parameter 147 | -
- —> Estimate of
Parameters

Fig. 14. Schematic representation of iterative inversion of

measurements.

Simulations of the sky radiance isophote shape or the phase func-
tion are performed by using the radiative transfer equation (such
as Eq. (28) for SS) or Eq. (23c¢c) respectively, along with the
initial set of parameters. Comparisons are made with the appro-
priate measurements. If the discrepancy is greater than a minimum
prescribed value, then a parameter updating algorithm is used to
obtain a new estimate of parameters. However, when the convergence
criteria is satisfied, the final estimates of parameter are assumed

<

to be accurate.

In such an iterative scheme, the simulation relation (e.g.,

the radiative transfer Eg. (28)) is called several times during
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each iteration. And here lies the problem, namely, the prohibitive
costs of computation. One way to handle the problem is to use
simple approximations for PA and BA in terms of the parameters in
n(r), m, and N(0O, v). Exact Mie theory computations of scattered
radiance when used in an inversion scheme were found to be pro-
hibitively expensive. Thus, it is imperative that in developing

a radiative transfer code with the aim of using it in an inversion
scheme, it must be as computationally fast as possible in order

to be of practical use in numerical retrievals of aerosol charac-
teristics. Work is in progress on the development and opti-
mization of such inversion schemes and radiative transfer programs

based on the exact Mie theory results.

X. CONCLUDING REMARKS

Under the present state of the art in inverting sky scat-
tered radiance, it seems that for the present the modeling approach
applied to the solar aureole measurements gives reasonably good
estimates about the aerosol characteristics, particularly about
the size distribution n(r). 1In addition, such a parametric
modeling approach provides not only a clear physical insight into
the problem, but also understanding of the sensitivity of the
individual aerosol parameters that are sought. On the other hand,
catalog or modeling methods can become very unwieldy when more
than one aerosol parameter is sought. It is precisely in such
cases that when several parameters are simultaneously sought, the
numerical inversion schemes have an added advantage over the

modeling approach.

In spité of thé tremendous upsurde in research activity in
_ this field in recent years, much of our present knowledge of
aerosol characteristics is either on a localized scale or is
spatially and/or temporally averaged. To acquire a large scale

or global view of aerosol characteristics, their monitoring must
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be carried from aboard space platforms. Greater endeavor needs

to be made in the area of aerosol remote sensing techniques and,

particularly, on the inversion aspects of the problem.

SYMBOLS

sky radiance
direct solar radiance
almucantar radiance

4A/(1 - A), in Eg. (8b)

sec ¢s - sec ¢
Sj(¢s) - Sj(¢), in Eq. (15)

volume scattering functions. Prime denotes y-

dependence

factor defined in Eq. (18)

unattenuated solar irradiance

Mie intensity functions
intensity of solar disk normalized to unity at its
center

M for molecules and = A for aerosols

2mn/A

complex refractive index of aerosols; m = m' - im"

real part of m

imaginary part of m

differential size distribution, cm_gum_
molecular refractive index

number density of aerosols at y(km), cm °

. -3
number density of molecules, cm

adjustable constants in Eq. (34)

phase functions. Prime denotes y-dependence
efficiency factor

radius, um

solar radius

distance of scattering volume to the detector
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lidar backscattering ratio
"effective transmission" function, defined in Egs.

(25) and (26)

e

scattering volume of atmosphere
integrated thickness, defined in Eg. (27)
distance along x-~direction on photograph
altitude, km

distance along y-direction on photograph

™ KM X g
o

7 33 volume extinction coefficients for the jth con-

stituent. Prime denotes y-dependence

=3

two-dimensional function of r and y
A wavelength

o} dimensionless factor representing the altitude
dependence of jth constituent.

T total optical depth for all constituents

T optical depth for the jth constituent

optical depths from top of atmosphere to V and

V to detector, respectively

v adjustable constant in Eq. (34)

b, ¢ zenith angles of the Sun and detector view cone,
respectively
scattering angle
dihedral angle between the normals to the Sun zenith
‘and view cone zenith planes intersecting at the
scattering volume

Q, Qf solid angles of cones centered at the detector and

the scattering volume

Q half-degree Sun cone
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DISCUSSION

Fymat: You have mentioned that you are using the solar aureole,
but it seems to me that you are also using lidar and multi-wave-
length extinction. I am, therefore, a little bit lost on what
measurements you are employing and what parameters you are
attempting to recover.

Deepak: Normally, you use a radiometer to perform an extinction
measurement of the direct solar radiation. What I am suggesting
is that the extinction data are not sufficient to obtain the size
distribution accurately. But, if in addition one has measurements
of the angular distribution of scattered radiance, one gets a much
better idea of the size distribution. That is one point.
Monostatic lidar measurements, on the other hand, give you a good
vertical resolution of aerosol backscattering coefficient from
which information about the altitude distribution of aerosol con-
centration can be obtained. What I have shown is that whereas

the lidar backscattering ratio data one can fit with any of the
size distributions!obtained with v = 4.0 to 5.2, the solar aureole
isophote data one could fit with only one of those size distri-
butions. Only one of them reproduced all these isophote curves
including the bumps seen in the curves.

Fymat: I have two very brief questions. Are you doing all the
work assuming the Junge distribution? And, are you fitting for
one Junge parameter?

Deepak: Let me show the size distribution function that I used,
but did not have the time to show earlier.l It is a function with
four constants and those curves of size distribution and isophotes
that you saw were obtained from this function by varying the
parameter v. For large particles, the size distribution behaves as
a Junge distribution. We have one scaling parameter and three
adjustable constants here. The aim is to obtain the set of
parameters which gives the best fit to the experimental values of
the multispectral phase function, the isophotes, the extinction
coefficient, as well as the lidar backscattering ratio. So one
tries to best fit as many different measurements obtained by
different methods by adjusting the parameters in order to get at
the so-called "unique" size distribution.

(In response to Dr. Deirmendjian's show of hand): Well, I must also
mention that Professor Deirmendjian suggested a similar approach to
aureole measurements a long time ago and tried to show the same
thing.

lSee Eq. (34) in text.
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Deirmendjian: Well, I have no comment then! In 1956, that is
what I wanted to show and I did take Junge-type distribution with
different slopes and I demonstrated that the aureole would change.

Irvine: You assumed an index of refraction?
Deepak: Yes, I did.

Irvine: In some problems that could make a big difference, but
I guess here, since you are mostly concerned with the diffraction
peak, it may not be so sensitive.

Deepak: Yes, that is indeed another advantage of the forward
scattering, that it is not as sensitive to that effect. However,
it does have some sensitivity. I have done a parametric study
with about 15 different indices of refraction--varying the wvalues
of both the real part as well as the imaginary part. Only one
index of refraction, with a value of 1.55-i(0), gave a good fit
to the data. When I used a small value for the imaginary part,
the curves tended to flatten out. So, there is that small ball-
park of error in the index of refraction value, depending on the
coarseness of grid of values chosen.

Irvine: It might have been useful to have some chemists at the
conference who consider these sorts of inversion problems using
laboratory data; that is, deducing hydrosol properties from scat-
tered intensities and polarizations. You also assume single
scattering?

Deepak: As a first approximation, yes. That is why this method
is valid for relatively clear days. But I think perhaps Jerry
Twitty and definitely Dr. Green have done some work with multiple
scattering in the solar aureole. Dr. Green might elucidate
further upon this point in his talk later.

Irvine: It would be relatively easy to take these models you
deduce and see how much second-order scattering there is to see how
good an approximation single scattering is?

Deepak: Yes, I did some calculations on that. Second order con-
tribution was not that much. It was within 5 to 6% of the single
scattering contribution.

Twitty: With regard to multiple scattering, that is obviously a
function of how much aerosol is actually in the atmosphere. So

to estimate it you have got to say something about your optical
depth. What Adarsh has done is essentially independent of that
because he has assumed single scattering. So up to whatever point
multiple scattering becomes important, his results hold.

293



Deepak: Up ta about optical depths of 0.5 or so, the method is
good.

Twitty: Now in the work I did for my doctoral thesis, radiance
measurements along the solar almucantar in the same geometry that
Adarsh showed, I did not actually include any multiple scattering
but it can be shown to what extent that was important for the
specific data that I used in the analysis, which had quite low
optical depths, about 0.1 for the aerosol part.

Herman: 0.0l1 or 0.1?
Twitty: O0.1.
Herman: What did you find for results on multiple scattering?

Twitty: I used our data from about 3° to about 250, which is very
similar to what Adarsh sgows, and the multiple scattering is about
5% of the radiance at 25 . So, I think it is similar to other
people's results, including yours.

P. Russell: I wonder about the sensitivity of this method to the
stratospheric aerosol. 1In particular, what happens to your sim-

ulated isophotes if you Jjust eliminate the stratospheric aerosol

from the simulation? .

Deepak: I have done a number of numerical parametric studies on
that, but did not have time to show the results. We added aerosol
layers, first two and then three layers, and moved them up and
down in gltitude. The shift in the isophote pattern was seen at
about 15 away from.the Sun. In the near forward direction, no
noticeable shift in the shape of the isophotes was detected. But
for larger angles there was definitely a shift. One could show
that introduction of upper aerosol layers does affect the shape
of isophotes at larger angular distances from the Suné The iso-
phote curves changed a little bit at angles beyond 10 or so,
even though the aerosol layer introduced into the model was opti-
cally very thin.

P. Russell: Does that mean then that the size distribution param-
eter that you extract from this method is sort of a mean parameter
for the tropospheric and stratospheric aerosols?

Deepak: Exactly, all results are averaged over the entire atmos-
phere-~for example, we obtain average refractive index and average
size distribution--because we are using the assumption of separa-
bility of the altitude size distribution here. ¢

P. Russell: Would the fact that the stratospheric aerosols seem

to have their effects in a different angular region help you to
separate the stratospheric and tropospheric?
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Deepak: Well, one of the ways you can do this is to go up in a
plane and take aureole photographs, but it is very expensive.

And that is one of the reasons for trying to improve the tech-
niques of the inversion of this ground-based data so that strato-
spheric aerosol effects can be separated. For this purpose, work
is in progress on optimizing a few different inversion schemes,

I hope to use some of the techniques that have been developed by
Harvey Malchow and Cindy Whitney. The results are not gquite com-
plete yet.

P. Russell: It looks very impressive, very low cost.

van de Hulst: On the matter of the influence of multiple scat-
tering, it is possible to make a very easy rough estimate of when
it becomes important. If I stand looking at the Sun, there is a
drop of a factor of 1000 from the solar disk to where the aureole
starts. If I integrate over a solid angle of say 10 times the
radius of the Sun, which is a solid angle of 100 times the Sun,
“then the integrated radiation coming from the aureole is still a
factor 10 below that of the Sun. That means that multiple scat-
tering must be somewhere in the order of 10%. And this holds for
me standing on the ground. Another factor of two is lost for the
average aerosol particle in the layer somewhere up in the atmos-
phere. By this estimate in the normal clear air situation, the
multiple scattering is rarely important beyond some 5%.

Reagan: It was not clear whether you were trying to rationalize
and obtain agreement between the aureole data and the extinction
and the lidar backscatter measurements. I might add, amplifying
on the index of ‘refraction aspect, that the relationship between
the extinction coefficient and the backscatter coefficient does
indeed change rather markedly as you change either the real or
imaginary component. If you are trying simultaneously to make
those agree with the aureole data, you would indeed have had some
sensitivity to index. Did you go back and check on this and
iterate in that sense?

Deepak: The same computer code calculated all the things I have
shown. I ran the programs for different m'and m'" values. The
shapes of the lidar backscattering ratio curves came out to be
nearly identical except for the differences in magnitude at peaks
of aerosol concentration, which differences could be removed by
adjusting the scaling parameter in n(r). From this, I could not
clearly distinguish between the various size distributions for the
same refractive index. However, I feel that further work needs to
be done on this aspect.
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ANALYTIC MODEL APPROACH TO THE INVERSION

OF SCATTERING DATA

Alex E. S. Green and Kenneth F. Xlenk
University of Florida

We apply an analytic model approach which has been
developed in nuclear studies to several simple atmospheric
inversion problems. We illustrate by past work on the
solar aureole that this method gives a sharp determination
of aerosol size distribution parameters. We show that this
analytic approach, together with ground level point sampling
data measurements, may be used to infer information on the
tropospheric ozone profile.

I. ATMOSPHERIC AND NUCLEAR OPTICS

Many of us who are now involved in atmospheric inversion
problems were previously involved in analogous problems in other
disciplines. As is natural, we try to bring to bear the experience,
sense of aesthetics, or prejudices, if you will, which we have
acquired in these other fields. The beauty of this conference as
it is developing following some of the earlier papers is the sense
of open-mindedness which has emerged. It is as if this conference

has said, "Let a thousand flowers blossom."

In my own (Green) case, my main prior involvement with inver-
sion problems has been in connection with two nuclear physics endeav-
ors based largely upon scattering data--(l) inferring the nature of
the fundamental interaction between neutrons and protons, and
(2) inferring the detailed nature of the nuclear potential mani-

fest in the shell and optical models of the nucleus. Let me use
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the first problem as an illﬁstration of how understanding is

advanced in scattering inversion problems.

When the neutron was discovered in 1932} the fundamental prob-
lem in nuclear physics became that of inferring the basic force
between neutrons and protons. The approach followed has been to
perform scattering experiments, i.e., fire neutrons or protons on
hydrogen targets, and examine the emerging angular distributions
(phase functions) and polarizations at various energies (wave-
lengths) of the outgoing particles. The hope was to be able to
test various proposed two-body potentials which when inserted into
the Schrddinger equation or Dirac equation might account for these
data within statistical error. This was the main line of approach
in nuclear physics until the early 1960s when the only phenomeno-
logical models which could fit the 0 to 400 MeV array of scattering
data and auxiliary data such as the. properties of the bound two-
body system (the deuteron) were exceedingly complex, requiring

as many as 40 adjustable parameters in their description.

A breakthrough came in the mid-1960s when the discovery of the
w, p and n mesons by particle physicists led to the revival of
meson theory of nuclear forces initiated by Yukawa in 1935. With
the additional physical constraints of meson theory, it suddenly
became possible to fit the scattering data with one boson exchange
model requiring only five to ten adjustable parameters, rather
than the 40 parameters of purely phenomenological models. Although
the final story is not yet told, the nuclear physics community,
since 1967 (Refs. 1 and 2), has felt a great aesthetic sense of
relief that the fundamental law of nuclear physics is not as mon-

strous as it had appeared to be in the early sixties.

Thus, as some of the earlier speakers have already suggested,
it is the additional physics, physical judgment,and physical infor-
mation which one brings to bear with the scattering data which will

often determine the success and utility of an inversion scheme.
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Studies leading to the nuclear shell and optical models
(Ref. 3) are even more analogous to the atmospheric inversion prob-
lem. For over 40 years, experiments have been performed in which
.various nuclear particles accelerated from 1 MeV to 100 GeV energy
range are scattered from various nuclear targets. Many lead to
optical-type angular distributions (phase functions), polarizations,
scattering, and absorption cross sections. Many of these data
patterns can be accounted for by assuming a complex energy depen-
dent nuclear potential (complex wavelength dependent index of
refraction). Even the terminology of this subject, such as "the
cloudy crystal ball model," reflects the light scattering analogy.
Now nuclear opticians, like atmospheric opticians, divide up into
a school concerned with average gross properties and a school con-
cerned with statistical fluctuations. Both groups have greatly
enriched the subject, although, as in the light scattering case,
the communications between the schools has not always been the

best.

My own specialized pursuits of atmospheric optics (apart
from a stint in World War II) began in 1959 just after an intensSive
involvement with nuclear optics (Ref. 4). In these pursuits, I
have mostly used the gross structure-nuclear optical modelers
approach. The style here has been to use analytic models whose
parameters are determined by nonlinear least square adjustment to
experimental data. Then we look at the systematics of the param-
eters with the ultimate objective of relating them to more funda-
mental physical parameters, e.g., those in the basic nuclear force.
I would like now to illustrate this nuclear optical approach with

a few simple-minded attacks on some atmospheric optics problems.

II. AUREOLE STUDIES

Deirmendjian and Sekera (Refs. 5 and 6) very early recognized
the importance of Mie particles in the theory of the solar aureole.

Their work was motivated by an attempt to account for some reported
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anomalously high transmission of the ultraviolet part of direct
sunlight. It is interesting to note that D. S$. Saxon, who col-
laborated with Deirmendjian and Sekera on scattering from dielectric
spheres (Ref. 7) during the same time frame, played an important

role in the development of the nuclear optical model.

our work, on determining aerosol size distributions from solar
aureole intensities, has used a type of atmospheric modeling and
single scattering theory which we first used in a satellite ozone
sounding analysis (Ref. 8). That the skylight in the neighborhood
of the sun can be used to good advantage may be surmised from the
optical theorem of nuclear and atomic scattering theory and
bistatic radar analysis (Ref. 9). These works indicate that
whereas backscatter cross sections (180o scatter) vary in a
complex manner with particle shape and index of refraction, for-
ward scatter cross sections are primarily determined by the volume
of the particle. This property was first utilized in the doctoral
theses of 